Rational points and derived categories

Nicolas Addington University of Oregon

Joint with Ben Antieau (UIC), Sarah Frei (Rice), and Katrina Honigs (Oregon)

arXiv:1906.02261

Western Algebraic Geometry Online (WAGON) April 18, 2020

Question (H. Esnault):

Let X and Y be smooth projective varieties over a non-closed field $k \neq \bar{k}$, with equivalent derived categories of coherent sheaves $D^b(X) \cong D^b(Y)$.

Does $X(k) \neq \emptyset$ imply $Y(k) \neq \emptyset$?

Today:

No. Abelian and hyperkähler counterexamples.

Why this question?

- 1. General curiosity: how much does $D^b(X)$ know about X?
 - $\dim X$.
 - ▶ Canonical ring, and anti-canonical ring.
 - ► $\bigoplus H^{2i}_{\text{sing}}(X(\mathbb{C}), \mathbb{Q})$ and $\bigoplus H^{2i+1}_{\text{sing}}(X(\mathbb{C}), \mathbb{Q})$ with their Hodge structures, $\bigoplus H^{2i}_{\text{\acute{e}t}}(\bar{X}, \mathbb{Q}_{\ell}(i))$ and $\bigoplus H^{2i+1}_{\text{\acute{e}t}}(\bar{X}, \mathbb{Q}_{\ell}(i))$ with their Galois action, $\bigoplus \operatorname{CH}^{i}(X) \otimes \mathbb{Q}.$

But not the grading, integral structure, ring structure.

- Not $\pi_1(X)$, Br(X), birational type...
- 2. Dreams of using $D^b(X)$ to study birational geometry.

What was known?

1. Honigs, Achter, Casalaina-Martin, and Vial, 2016: Yes over finite fields if dim $X \leq 3$ or X is Abelian.

Conjecture of Orlov \Rightarrow yes over finite fields in general.

- 2. Antieau, Krashen, and Ward, 2014: Yes for genus-1 curves over any field.
- 3. Hassett and Tschinkel, 2014: K3 surfaces...
 - Over \mathbb{R} , if $D^b(X) \cong D^b(Y)$ then $X(\mathbb{R}) \cong Y(\mathbb{R})$.
 - Some results over local fields.
 - ▶ In general, if $X(k) \neq \emptyset$ then Y has a 0-cycle of degree 1.

What was known? (cont'd)

- Ascher, Perry, Dasaratha, and Zhou, 2015: No for derived categories of *twisted* sheaves on K3 surfaces over Q, Q₂, or R.
- 5. Auel and Bernardara, 2015: Studied geometrically rational surfaces...

One result: A Del Pezzo surface S of degree ≥ 5 has a rational point iff $D^b(S)$ admits a full exceptional collection.

Ballard and collaborators have also studied rational points and exceptional collections – different definition.

Abelian counterexamples

Theorem 1. For every $g \ge 2$, there is an Abelian g-fold X defined over \mathbb{Q} and an X-torsor Y with $Y(\mathbb{Q}) = \emptyset$ such that

 $D^b(X) \cong D^b(Y).$

The same holds over $\mathbb{F}_q(t)$ for any odd q.

Theorem 2. If C is a smooth, projective, geometrically connected curve of genus $g \ge 1$ over any field, then

$$D^b(\operatorname{Pic}^0_C) \cong D^b(\operatorname{Pic}^{g-1}_C).$$

To deduce Theorem 1 from Theorem 2, mine the literature for explicit curves such that $\operatorname{Pic}_C^{g-1}$ has no rational points:

Coray and Manoil, 1996. Poonen and Stoll, 1999.

Idea of Theorem 2

Consider the divisor

$$D = \{ (L, M) : H^1(L \otimes M) \neq 0 \} \subset \operatorname{Pic}_C^0 \times \operatorname{Pic}_C^{g-1}.$$

Fiber of D over $0 \in \operatorname{Pic}_{C}^{0}$ is the canonical Θ -divisor in Pic^{g-1} .

Fibers over other points of Pic_C^0 are translates of Θ .

The line bundle $\mathcal{O}(D)$ realizes Pic_C^0 as a fine moduli space of line bundles on $\operatorname{Pic}_C^{g-1}$, and vice versa.

Repackage Mukai's classic proof that $D^b(A) \cong D^b(\hat{A})$ to show that $\mathcal{O}(D)$ induces an equivalence $D^b(\operatorname{Pic}^0_C) \cong D^b(\operatorname{Pic}^{g-1}_C)$. **Theorem 3.** There is an explicit K3 surface S, defined over \mathbb{Q} , and two smooth, projective, 4-dimensional moduli spaces X and Y of sheaves on S, such that

- X has infinitely many rational points,
- Y has no zero-cycle of degree 1, and

•
$$D^b(X) \cong D^b(Y)$$
.

Moreover $X_{\mathbb{C}}$ and $Y_{\mathbb{C}}$ are not isomorphic, or even birational.

Some geometry of degree-2 K3 surfaces

Given a line $L \subset \mathbb{P}^2$, get a genus-2 curve $C = \pi^{-1}(L) \subset S$. As the line moves, get a family of curves parametrized by \mathbb{P}^{2*} . Fine print: We'll choose our sextic so that [C] generates $\operatorname{Pic}(\bar{S})$, and in particular every curve C is geometrically integral.

The two fourfolds

X and Y are the moduli spaces of stable sheaves on S of rank 0, $c_1 = [C]$, and $\chi = -1$ or 0.

More geometrically: $X \to \mathbb{P}^{2*}$ is the relative $\overline{\operatorname{Pic}}^0$ of the family of curves. $Y \to \mathbb{P}^{2*}$ is the relative $\overline{\operatorname{Pic}}^1$.

The equivalence $D^b(X) \cong D^b(Y)$ is a family version of our earlier equivalence.

Extension to singular curves is due to Arinkin, 2010.

Addington, Donovan, and Meachan, 2015 studied this example over \mathbb{C} with a view toward autoequivalences.

Rational points

 $X = \overline{\operatorname{Pic}}^0$ has lots of rational points, because every C has a degree-0 line bundle \mathcal{O}_C .

Fun: X is birational (and derived equivalent) to $Hilb^2(S)$, which also has lots of rational points.

 $X_{\mathbb{C}}$ and $Y_{\mathbb{C}}$ are not birational: Sawon, 2005.

 $Y = \overline{\operatorname{Pic}}^1$ has \mathbb{R} -points and \mathbb{Q}_p -points for every p, but we can choose our sextic so that Y has no \mathbb{Q} -points...

Let $\alpha \in Br(Y)$ be Brauer class that obstructs existence of a universal sheaf on $S \times Y$.

Use α as a Brauer–Manin obstruction to rational points.

Brauer-Manin story

We have $\alpha \in Br(Y)$ from the fact that Y is a moduli space of geometrically stable sheaves.

Strategy: for all $y \in Y(\mathbb{R})$ we want $\alpha|_y = \frac{1}{2} \in Br(\mathbb{R})$, and for all $y \in Y(\mathbb{Q}_p)$ we want $\alpha|_y = 0 \in Br(\mathbb{Q}_p)$.

A point $y \in Y(\mathbb{Q})$ would give points in $Y(\mathbb{R})$ and $Y(\mathbb{Q}_p)$, but

$$0 \to \operatorname{Br}(\mathbb{Q}) \to \operatorname{Br}(\mathbb{R}) \oplus \bigoplus \operatorname{Br}(\mathbb{Q}_p) \to \mathbb{Q}/\mathbb{Z} \to 0$$

$$\alpha|_y \mapsto (\frac{1}{2}, 0, 0, 0, \dots) \mapsto 1/2 \text{ (not } 0!)$$

For \mathbb{R} , we ask that $S(\mathbb{R}) = \emptyset$ and make a little argument.

For \mathbb{Q}_p , if we reduce to \mathbb{F}_p and no semi-stable sheaves appear, then $\alpha|_y = 0$ for all $y \in Y(\mathbb{Q}_p)$ as desired.

Finitely many primes where we have to worry about semi-stables / the curves C can become reducible / the sextic has tritangent lines. Find conditions to control these.

Last Slide

Use Magma to search for an example that satisfies all our conditions.

$$w^{2} = -x^{6} - x^{5}z - x^{4}y^{2} - x^{4}z^{2} - x^{3}yz^{2} - x^{2}y^{2}z^{2}$$

- $xy^{5} - xy^{4}z - xz^{5} - y^{6} - y^{3}z^{3} - y^{2}z^{4} - yz^{5} - z^{6}$

Troublesome primes: 5, 31, 7517, 84716037398136110308799, and

 $\begin{array}{l} 4424904772196959344085200612883251617292465803437757948\\ 5992572698404066491363246248977477562371729031497984350\\ 0902180031058767256453958545754450340721124283977338015\\ 3664612642260759001523868554216076825404419681. \end{array}$