
ON THE LOCAL QUOTIENT STRUCTURE OF ARTIN STACKS

JAROD ALPER

ABSTRACT. We show that near closed points with linearly reductive stabilizer, Artin stacks are for-
mally locally quotient stacks by the stabilizer. We conjecture that the statement holds étale locally
and we provide some evidence for this conjecture. In particular, we prove that if the stabilizer of a
point is linearly reductive, the stabilizer acts algebraically on a miniversal deformation space, gen-
eralizing the results of Pinkham and Rim. We provide a generalization and stack-theoretic proof of
Luna’s étale slice theorem which shows that GIT quotient stacks are étale locally quotients stacks by
the stabilizer.

1. INTRODUCTION

This paper is motivated by the question of whether an Artin stack is “locally” near a point a
quotient stack by the stabilizer at that point. While this question may appear quite technical in
nature, we hope that a positive answer would lead to intrinsic constructions of moduli schemes
parameterizing objects with infinite automorphisms (e.g. vector bundles on a curve) without the
use of classical geometric invariant theory.

We restrict ourselves to studying Artin stacks X over a base S near closed points ξ ∈ |X | with
linearly reductive stabilizer.

We conjecture that this question has an affirmative answer in the étale topology. Precisely,

Conjecture 1. If X is an Artin stack finitely presented over an algebraic space S and ξ ∈ |X | is a
closed point with linearly reductive stabilizer with image s ∈ S, then there exists an étale neighborhood
S′ → S, s′ 7→ s and an étale, representable morphism f : [X/G] → X where G → S′ is a flat and finitely
presented group algebraic space acting on an algebraic space X → S′. There is a lift of ξ to x : Spec k → X
such that the group schemes AutX (k)(x) and G ×S′ k are isomorphic and such that f induces an isomor-
phism Gx → AutX (k)(f(x)).

For example, if S = Spec k with k algebraically closed and x ∈ X (k), Conjecture 1 implies that
the stabilizer Gx acts on an algebraic space X of finite type over k fixing some point x̃ ∈ X(k) and
there exists an étale, representable morphism f : [X/Gx] → X mapping x̃ to x and inducing an
isomorphism on stabilizer groups.

There are natural variants of Conjecture 1 that one might hope are true. One might desire a
presentation [X/G] → X with X → S affine and G → S linearly reductive; in this case, one
would have that étale locally on X , there exists a good moduli space. One might also like to relax
the condition that Gx is linearly reductive to geometrically reductive. However, some reductivity
assumption on the stabilizer seems necessary (see Example 3.10).

Conjecture 1 is known for Artin stacks with quasi-finite diagonals (see Section 3.1). By a combi-
nation of an application of Sumihiro’s theorem and Luna’s slice argument, this conjecture is true
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over an algebraically closed field k for global quotient stacks [X/G] where X is a regular scheme
separated and of finite type over k and G is a connected algebraic group (see Section 3.3).

However, the conjecture appears to be considerably more difficult for general Artin stacks with
non-finite stabilizer group schemes (e.g. Gn

m, PGLn, GLn,...). To begin with, there is not in general
a coarse moduli scheme on which to work étale locally. Second, if G → Spec k is not finite, an
action of G on Spf A for a complete local noetherian k-algebra may not lift to an action of G and
SpecA (consider Gm = Spec k[t]t on Spf k[[x]] by x 7→ tx) so that for certain deformation functors
where one may desire to apply Artin’s approximation/algebraization theorems (such as in the
proof of [AOV08, Prop 3.6]), formal deformations may not be effective.

While we cannot establish a general étale local quotient structure theorem, we establish the
conjecture formally locally:

Theorem 1. Let X be a locally noetherian Artin stack over a scheme S and ξ ∈ |X | be a closed point with
affine linearly reductive stabilizer. Let Gξ ↪→ X be the induced closed immersion and Xn (n = 1, 2, . . .) be
its nilpotent thickenings.

(i) If S = Spec k and there exists a representative x : Spec k → X of ξ, then there exists affine schemes
Un and actions of Gx on Un such that Xn ∼= [Un/Gx]. If Gx → Spec k is smooth, the schemes Un are
unique up to Gx-equivariant isomorphism.

(ii) Suppose x : Spec k → X is a representative of ξ with image s ∈ S such that k(s) ↪→ k is a finite,
separable extension and Gx → Spec k a smooth, affine group scheme. Fix an étale morphism S′ → S
and a point s′ ∈ S′ with residue field k. Then there exist affine schemes Un and linearly reductive
smooth group schemes Gn over S′n = SpecOS′,s′/mn+1

s′ with G0 = Gx such that Xn ×S S′ ∼=
[Un/Gn]. The group schemes Gn → S′n are unique and the affine schemes Un are unique up to
Gn-equivariant isomorphism.

If, in addition, the stabilizer Gx is smooth, then this theorem implies that Gx acts algebraically
on a miniversal deformation space of ξ and this action is unique up to Gx-equivariant isomor-
phism.

After this paper was written, the author was made aware of similar results by Pinkham and
Rim. In [Pin74], Pinkham shows that if Gm acts on an affine variety X over an algebraically
closed field k with an isolated singular point, then the deformation space of X inherits a Gm-
action. In [Rim80], Rim showed that for an arbitrary homogeneous category fibered in groupoids,
if the stabilizer is a linearly reductive algebraic group, then the stabilizer acts on a miniversal
deformation.

Both Pinkham and Rim follow Schlessinger’s approach of building a versal deformation and
show inductively that choices can be made equivariantly. We use an entirely different method.
Following the techniques of [AOV08], we use a simple (although technical) deformation theory
argument to give a quick proof recovering Rim’s result when then category fibered in groupoids
is an Artin stack. Our result is more general in that (1) when the base is a field, we allow for
non-reduced stabilizer groups and (2) we can work over any base scheme. Additionally, Pinkham
and Rim appear to give actions on the tangent space and deformation space only by the abstract
group of k-valued points. Our methods show immediately that these actions are algebraic.

Luna’s étale slice theorem implies that GIT quotient stacks are quotient stacks by the stabilizer
étale locally on the GIT quotient. More precisely, Luna proved in [Lun73] that if G is a linearly
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reductive algebraic group over an algebraically closed field acting on an affine scheme X and if
x ∈ X is a point with closed orbit, then there exists a locally closed, Gx-invariant affine W ⊆ X
such that the induced morphism on GIT quotients W//Gx → X//G is étale and such that

[W/Gx] //

��

[X/G]

��
W//Gx // X//G

is cartesian. Furthermore, if x ∈ X is smooth, then Gx acts on a normal space Nx ⊆ Tx to the orbit
such that the morphism of GIT quotients W//Gx → Nx//Gx is étale and

[W/Gx] //

��

[Nx/Gx]

��
W//Gx // Nx//Gx

is cartesian. Luna’s étale slice theorem has had many remarkable applications.

We prove the following generalization of Luna’s étale slice theorem.

Theorem 2. Let S be a noetherian affine scheme. Let G → S be a smooth affine group scheme acting on a
scheme X affine and of finite type over S and denote p : X = [X/G]→ S. Suppose X → X//G is a good
moduli space with X//G → S of finite type. Let f : S → X be a section such that the stabilizer group
scheme Gf → S is smooth and the orbit of f is closed (ie. o(f)→ X ×S T is a closed immersion).

(i) If X → S is smooth at points in f(S), there exists a locally closed Gf -invariant subscheme W ↪→ X
affine over S, a normal space to the orbitN ⊂ TX/S×X S with an action ofGf , and aGf -equivariant
morphism N →W . IfW = [W/Gf ] and N = [N/Gf ], the induced diagram

W

%%yy ��
N

��

W//Gf

$$yy

X

��
N//Gf X//G

is cartesian with étale diagonal arrows.
(ii) If there is a G-equivariant embedding of X into a smooth affine S-scheme, there exists W as above

such that the diagram
W //

��

X

��
W//Gf // X//G

is cartesian with étale horizontal arrows.

Remark 1.1. If S = Spec k with k an algebraically closed field and G → Spec k is a smooth and
linearly reductive algebraic group, we recover Luna’s slice theorem [Lun73, p.97]. We note that in
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[Lun73], the field k is assumed to have characteristic 0 but the methods of the paper clearly carry
over to positive characteristic if G is a smooth and linearly reductive algebraic group.

Remark 1.2. The condition thatX can beG-equivariantly embedded into a smooth affine S-scheme
is satisfied under very general hypotheses. If S is regular of dimension 0 or 1, this is well known.
Thomason shows in [Tho87, Corollary 3.7] that X can be G-equivariantly embedded into a vector
bundle space A(V) if: (1) S is regular with dimS ≤ 2 and G → S has connected fibers, or (2) G is
semisimple or split reductive, or (3) G is reductive with isotrivial radical and coradical, or (4) S is
normal and G is reductive.

In particular, over S = Spec k with algebraically closed, Conjecture 1 holds for any quotient
stack X = [SpecA/G] with G → Spec k a smooth, linearly reductive group scheme around a
closed point ξ ∈ |X |.

Our statement is slightly more general than Luna’s slice theorem. First, we only require X =
[X/G] to be a quotient stack admitting a good moduli space with X affine and G an arbitrary
smooth, affine group scheme (which is not necessarily linearly reductive). If S = Spec k with
char(k) = 0, this is an equivalent formulation since GLn is linearly reductive and any quotient
stack [X/G] admitting a good moduli space is equivalent to [SpecA/GLn] for some affine scheme
SpecA with a GLn-action. Second, our version is valid over any noetherian base scheme S with
respect to S-valued points with closed orbit and smooth, linearly reductive stabilizer.

Acknowledgments. I thank Dan Abramovich, Johan de Jong, Daniel Greb, Andrew Kresch, Max
Lieblich, Martin Olsson, David Smyth, Jason Starr, Ravi Vakil, Fred van der Wyck and Angelo
Vistoli for their suggestions.

2. BACKGROUND

We will assume schemes and algebraic spaces to be quasi-separated. An Artin stack, in this
paper, will have a quasi-compact and separated diagonal. We will work over a fixed base scheme
S.

Recall that if G → S is a group scheme acting on an algebraic space X → S and f : T →
X is a T -valued point of X , then the orbit of f , denoted o(f), set-theoretically is the image of
(σ ◦ (1G × f), p2) : G×S T → X ×S T . We call G→ S an fppf group scheme if G→ S is a separated,
flat, and finitely presented group scheme. If Gf → T is an fppf group scheme, then the orbit has
the scheme structure given by

o(f) //

��

X ×S T

��
BGf // [X/G]×S T

If Gf → T and G→ S are smooth group schemes, then o(f)→ T is smooth.

2.1. Stabilizer preserving morphisms. The following definition generalizes the notion of fixed-
point reflecting morphisms was introduced by Deligne (see [Knu71, IV.1.8]), Kollár ([Kol97, Def-
inition 2.12]) and by Keel and Mori ([KM97, Definition 2.2]). When translated to the language
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of stacks, the term stabilizer preserving seems more appropriate and we will distinguish between
related notions.

Definition 2.1. Let f : X → Y be a morphism of Artin stacks. We define:

(i) f is stabilizer preserving if the induced X -morphism ψ : IX → IY ×Y X is an isomorphism.
(ii) For ξ ∈ |X |, f is stabilizer preserving at ξ if for a (equivalently any) geometric point x :

Spec k → X representing ξ, the fiber ψx : AutX (k)(x) → AutY(k)(f(x)) is an isomorphism
of group schemes over k.

(iii) f is pointwise stabilizer preserving if f is stabilizer preserving at ξ for all ξ ∈ |X |.

Remark 2.2. Property (i) is requiring that for all T -valued points x : T → X , the induced morphism
AutX (T )(x)→ AutY(T )(f(x)) is an isomorphism of groups.

Remark 2.3. One could also consider in (ii) the weaker notion where the morphism ψx is only
required to be isomorphisms of groups on k-valued points. This property would be equivalent if
X and Y are Deligne-Mumford stacks over an algebraically closed field k.

Remark 2.4. Any morphism of algebraic spaces is stabilizer preserving. Both properties are stable
under composition and base change. While a stabilizer preserving morphism is clearly pointwise
stabilizer preserving, the converse is not true. For example, consider the action of Z2×Z2 = 〈σ, τ〉
on the affine line with a double origin X over a field k where σ acts by inverting the line but
keeping both origins fixed and τ acts by switching the origins. Then the stabilizer group scheme
SX ↪→ Z2 × Z2 × X → X has a fibers (1, τ) everywhere except over the origins where fibers are
(1, σ). The subgroup H = 〈1, τσ〉 acts freely on X and there is an induced trivial action of Z2 on
the non-locally separated line Y = X/H . There is Z2-equivariant morphism Y → A1 (with the
trivial Z2 action on A1) which induces a morphism [Y/Z2]→ [A1/Z2] which is pointwise stabilizer
preserving but not stabilizer preserving. We note that the induced map [Y/Z2] → A1 is not a
Z2-gerbe even though the fibers are isomorphic to BZ2. This example arose in discussions with
Andrew Kresch.

It is natural to ask when the property of being pointwise stabilizer preserving is an open condi-
tion and what additional hypotheses are necessary to insure that a pointwise stabilizer preserving
morphism is stabilizer preserving. First, we have:

Proposition 2.5. ([Ryd13, Prop. 3.5]) Let f : X → Y be a representable and unramified morphism of
Artin stack with IY → Y proper. The locus U ⊆ |X | over which f is pointwise stabilizer preserving is open
and f |U is stabilizer preserving.

Proof. The cartesian square

IX
� � ψ //

��

IY ×Y X

��
X �
� ∆X/Y// X ×Y X

implies that ψ is an open immersion and since the projection p2 : IY×Y X → X is proper, the locus
U = X r p2(IY ×Y X r IX ) is open. �
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Remark 2.6. The proposition is not true if f is ramified: if f : [A1/Z2]→ [A1/Z2] where Z2 is acting
by the non-trivial involution and trivially, respectively, then ψ is only an isomorphism over the
origin. The proposition also fails without the properness hypothesis: if f : [A2/Gm] → [A1/Gm]
where Gm is acting by vertical scaling on A2 and trivially on A1, then ψx is only an isomorphism
over the x-axis.

Remark 2.7. The question in general of when a pointwise stabilizer preserving morphism f : X →
Y is stabilizer preserving can be subtle in general. Even if X has finite inertia, the notions are not
equivalent. For instance, consider X = Spec k[ε]/(ε2) where k is a field with a µ2 action where ε
has degree 1. Then [X/µ2]→ Bµ2 is pointwise stabilizer preserving but not stabilizer preserving.

2.2. Weakly saturated morphisms. If f : X → Y is a morphism of Artin stacks of finite type over
a field k, the property that closed points map to closed points has several desired consequences
(see for instance Theorems 6.5 and 6.10). However, this does not seem to be the right notion over
an arbitrary base scheme as even finite type morphisms of schemes (e.g. Spec k(x)→ Spec k[x](x))
need not send closed points to closed points. Weakly saturated morphisms will enjoy similar
properties.

Definition 2.8. A morphism f : X → Y of Artin stacks over an algebraic space S is weakly saturated
if for every geometric point x : Spec k → X with x ∈ |X ×S k| closed, the image fs(x) ∈ |Y ×S k|
is closed. A morphism f : X → Y is universally weakly saturated if for every morphism of Artin
stacks Y ′ → Y , X ×Y Y ′ → Y ′ is weakly saturated.

Remark 2.9. Although the above definition seems to depend on the base S, it is in fact independent:
if S → S′ is any morphism of algebraic spaces then f is weakly saturated over S if and only if f is
weakly saturated over S′. Any morphism of algebraic spaces is universally weakly saturated. If
f : X → Y is a morphism of Artin stacks of finite type over S, then f is weakly saturated if and only
if for every geometric point s : Spec k → S, fs maps closed points to closed points. If f : X → Y
is a morphism of Artin stacks of finite type over Spec k, then f is weakly saturated if and only if f
maps closed points to closed points.

Remark 2.10. The notion of weakly saturated is not stable under base change. Consider the two
different open substacks U1,U2 ⊆ [P1/Gm] isomorphic to [A1/Gm] over Spec k. Then

U1 t U2 t Spec k t Spec k //

��

U1 t U2

��
U1 t U2

// [P1/Gm]

is 2-cartesian and the induced morphisms Spec k → Ui are open immersions which are not weakly
saturated.

Remark 2.11. There is a stronger notion of a saturated morphism f : X → Y requiring for every
geometric point x : Spec k → X with image s : Spec k → S, then fs({x}) ⊆ |X ×S k| is closed.
We hope to explore further the properties of saturated and weakly saturated morphisms as well
as develop practical criteria to verify them in future work.

Remark 2.12. Recall as in [Alp08, Definition 5.2], that if φ : X → Y is a good moduli space, an open
substack U ⊆ X is saturated for φ if φ−1(φ(U)) = U . In this case, an open immersion U → X is
weakly saturated if and only if U is saturated for φ.
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3. EVIDENCE FOR CONJECTURE 1

3.1. Conjecture 1 is known for stacks with quasi-finite diagonal. An essential ingredient in the
proof of the Keel-Mori theorem (see [KM97, Section 4]) is the existence of étale, stabilizer pre-
serving neighborhoods admitting finite, flat covers by schemes. We note that the existence of
flat, quasi-finite presentations was known to Grothendieck (see [sga64, Exp V, 7.2]). We find the
language of [Con05] more appealing:

Proposition 3.1. ([Con05, Lemma 2.1 and 2.2]) Let X be an Artin stack locally of finite presentation
over a scheme S with quasi-finite diagonal ∆X/S . For any point ξ ∈ |X |, there exists a representable, étale
morphism f :W → X from an Artin stackW admitting a finite fppf cover by a separated scheme and point
ω ∈ |W| such that f is stabilizer preserving at ω. In particular,W has finite diagonal over S.

Remark 3.2. The stackW is constructed as the étale locus of the relative Hilbert stack HilbV/X → X
where V → X is a quasi-finite, fppf scheme cover. In fact, the morphism W → X is stabilizer
preserving at points Spec k → W corresponding to the entire closed substack of V ×X Spec k
so that every point x ∈ |X | has some preimage at which f is stabilizer preserving. If X has
finite inertia, it follows from Proposition 2.5 that f is stabilizer preserving. In fact, as shown in
[Con05, Remark 2.3], the converse is true: for X as above with a representable, quasi-compact,
étale, pointwise stabilizer preserving coverW → X such thatW is separated over S and admits a
finite fppf scheme cover, then X has finite inertia.

We now restate one of the main results from [AOV08].

Proposition 3.3. ([AOV08, Prop. 3.6]) LetX be an Artin stack locally of finite presentation over a scheme
S with finite inertia. Let φ : X → Y be its coarse moduli space and let ξ ∈ |X | be a point with linearly
reductive stabilizer with image y ∈ Y . Then there exists an étale morphism U → Y , a point u mapping
to y, a finite linearly reductive group scheme G → U acting on a finite, finitely presented scheme V → U

and an isomorphism [V/G]
∼→ U ×Y X of Artin stacks over U . Moreover, it can be arranged that there is a

representative of ξ by x : Spec k(u)→ X such that G×U k(u) and AutX (k(u))(x) are isomorphic as group
schemes over Spec k(u).

Strictly speaking, the last statement is not in [AOV08] although their construction yields the
statement.

Remark 3.4. In particular, this proposition implies that given any Artin stack X locally of finite pre-
sentation over a scheme S with finite inertia, the locus of points with linearly reductive stabilizer
is open.

Corollary 3.5. Conjecture 1 is true for Artin stacks X locally of finite presentation over S with quasi-finite
diagonal. In fact, étale presentations [X/G] can be chosen so that X is affine.

Proof. Given ξ ∈ |X |, by Proposition 3.1 there exists an étale neighborhood f : W → X stabilizer
preserving at some ω ∈ |X | above ξ such thatW has finite inertia. Applying Proposition 3.3 toW
achieves the result. �

Remark 3.6. In fact, the conjecture is even true for Deligne-Mumford stacks with finite inertia which
are not necessarily tame (i.e. have points with non-linearly reductive stabilizer). This follows
easily from (see [AV02, Lemma 2.2.3] and [Ols06b, Thm 2.12]). We wonder if any Artin stack
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with finite inertia can étale locally be written as a quotient stack by the stabilizer. We note that
non-reduced, non-linearly reductive finite fppf group schemes are still geometrically reductive.

3.2. Examples. Here we list three examples of non-separated Deligne-Mumford stacks and give
étale presentations by quotient stacks by the stabilizer verifying Conjecture 1. In these examples,
good moduli spaces do not exist Zariski-locally. We will work over an algebraically closed field k
with char k 6= 2.

Example 3.7. Let G → A1 be the group scheme which has fibers isomorphic to Z2 everywhere
except over the origin where it is trivial. The group scheme G → A1 is not linearly reductive.
The classifying stack BG does not admit a good moduli space Zariski-locally around the origin
although there does exist a coarse moduli space. The cover f : A1 → BG satisfies the conclusion
of Conjecture 1. The morphism f is stabilizer preserving at the origin but nowhere else. This
example shows that one cannot hope to find étale charts [X/G]→ X of quotient stacks of linearly
reductive group schemes which are pointwise stabilizer preserving everywhere.

Example 3.8. (4 unordered points in P1 modulo Aut(P1))

Consider the quotient stack X = [P(V )/PGL2] where V is the vector space of degree 4 homo-
geneous polynomials in x and y. Let U ⊆ X be the open substack consisting of points with finite
automorphism group. Any point in p ∈ U can be written as xy(x−y)(x−λy) for λ ∈ P1. If λ 6= 0, 1
or∞, the stabilizer is

Gp =

{(
1 0
0 1

)
,

(
0 λ
1 0

)
,

(
λ −λ
1 −λ

)
,

(
1 −λ
1 −1

)}
When λ = 1 (resp. λ = 0, λ = ∞), the only elements of the stabilizer are the identity and(

0 1
1 0

)
, (resp.

(
1 0
1 −1

)
,

(
1 −1
0 −1

)
). Therefore, the stabilizer group scheme of the morphism

P1 → U is a non-finite group scheme which is Z2 × Z2 → P1 but with two elements removed over
each of the fibers over 0, 1 and∞ (so that the generic fiber is Z2 × Z2 and the fibers over 0, 1 and
∞ are Z2.

We give an étale presentation around 1. Let Z2 act onX = A1r{0} via λ 7→ 1/λ. The morphism
f : X → P4, λ 7→ [xy(x − y)(x − λy)] is Z2 invariant where Z2 acts on P4 via the inclusion Z2 ↪→

PGL2 defined by −1 7→
(

0 1
1 0

)
. The induced morphism [X/Z2] → X is étale and stabilizer

preserving at 1. However, it is not pointwise stabilizer preserving in a neighborhood of 1. The
j-invariant j : U → P1, [xy(x − y)(x − λy)] 7→ [(λ2 − λ + 1)3, λ2(λ − 1)2] gives a coarse moduli
space. The morphism j is not separated and j is not a good moduli space (i.e. j∗ is not exact on
quasi-coherent sheaves).

The following example due to Rydh shows that coarse moduli spaces (or even categorical quo-
tients) may not exist for non-separated Deligne-Mumford stacks.

Example 3.9. The Keel-Mori theorem states that any Artin stack X → S where the inertia stack
IX/S → X is finite admits a coarse moduli space. The finiteness of inertia hypothesis cannot be
weakened to requiring that the diagonal is quasi-finite. Let X be the non-separated plane attained
by gluing two planes A2 = Spec k[x, y] along the open set {x 6= 0}. The action of Z2 on Spec k[x, y]x
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given by (x, y) 7→ (x,−y) extends to an action of Z2 on X by swapping and flipping the axis
(explicitly, if X = U1 ∪ U2, the multiplication is defined by Z2 × U1 → U2, (x2, y2) 7→ (x1,−y1)
and Z2 × U2 → U1, (x1, y1) 7→ (x2,−y2)). Then X = [X/Z2] is a non-separated Deligne-Mumford
stack. There is an isomorphism X = [A2/G] where G = A1 t (A1 r {0})→ A1 is the group scheme
over A1 whose fibers are Z2 over the origin where it is trivial and G acts on A2 = Spec k[x, y] over
A1 = Spec k[x] by the non-trivial involution y 7→ −y away from the origin.

Rydh shows in [Ryd13, Example 7.15] that this stack does not admit a coarse moduli space. In
fact, there does not even exist an algebraic space Z and a morphism φ : X → Z which is universal
for maps to schemes. The above statements are also true for any open neighborhood of the origin.

The following is a counterexample for Conjecture 1 if the stabilizer is not linearly reductive.

Counterexample 3.10. Over a field k, let G → A1 be a group scheme with generic fiber Gm and
with a Ga fiber over the origin. Explicitly, we can write G = Spec k[x, y]xy+1 → Spec k[x] with
the multiplication G ×A1 G → G defined by y 7→ xyy′ + y + y′. Let X = [A1/G] be the quotient
stack over Spec k and x : Spec k → X be the origin. The stabilizer Gx = Ga acts trivially on the
tangent space F x(k[ε]). The nilpotent thickening X1 cannot be a quotient stack by Ga giving a
counterexample to Conjecture 1 in the case that the stabilizer is not linearly reductive.

3.3. Conjecture 1 is known for certain quotient stacks.

Theorem 3. Let X be an Artin stack over an algebraically closed field k. Suppose X = [X/G] is a quotient
stack and x ∈ X (k) has smooth linearly reductive stabilizer. Suppose that one of the following hold:

(1) G is a connected algebraic group acting on a regular scheme X separated and of finite type over Spec k,
or

(2) G is a smooth linearly reductive algebraic group acting on an affine scheme X .

Then there exists a locally closed Gx-invariant affine W ↪→ X with w ∈W such that

[W/Gx] −→ [X/G]

is affine and étale.

Proof. Part (2) follows directly from Luna’s étale slice theorem (see [Lun73] and Section 6).

For part (1), by applying [Sum74, Theorem 1 and Lemma 8], there exists an open G-invariant
U1 containing x and an G-equivariant immersion U1 ↪→ Y = P(V ) where V is a G-representation.
Since the action ofGx on Spec Sym∗ V ∨ fixes the line spanned by x, there exists aGx-semi-invariant
homogeneous polynomial f with f(x) 6= 0. It follows that V = Yf ∩ U1 is a Gx-invariant quasi-
affine neighborhood of x with i : V ↪→ V := (U1)f is an open immersion and V is affine. Let
π : V → V //Gx be the GIT quotient. Since V r V and x ∈ V are disjoint Gx-invariant closed
subschemes, π(V r V ) and π(x) are closed and disjoint. Let Z ⊆ (V //Gx) r (π(V r V )) be an
affine open subscheme containing x. Then U = π−1(Z) is a Gx-invariant affine open subscheme
containing x.

The stabilizer acts naturally on TxX and there exists a Gx-invariant morphism U → TxX which
is étale since x ∈ X is regular. Since Gx is linearly reductive, we may write TxX = Txo(x) ⊕W1
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for a Gx-representation W1. Define the Gx-invariant affine W ⊆ U by the cartesian diagram

W //
_�

��

W1_�

��
U // TxX = Txo(x)⊕W1

and let w ∈W be the point corresponding to x.

The stabilizer Gx acts on G ×W via h · (g, w) = (gh−1, h · w) for h ∈ Gx and (g, w) ∈ G ×W .
The quotient G×Gx W := (G×W )/Gx is affine. Since the quotient morphism G×W → G×Gx W
is a Gx-torsor it follows that T(g,e)G ×Gx W = (TeG ⊕ TwW )/TeGx where TeGx ⊆ TeG ⊕ TwW
is induced via the inclusion Gx → G ×W,h 7→ (h−1, h · w). Therefore, G ×Gx W → X is étale
at (e, w). Furthermore, G ×Gx W → X is affine. It follows that the induced morphism of stacks
f : [W/Gx]→ [X/G] is affine and étale at w.

Let φ : [W/Gx] → Y = W//Gx be the good moduli space corresponding to the GIT quotient
π : W → W//Gx. If Z ⊆ [W/Gx] is the closed locus where f is not étale, then Z is disjoint to {w}
and it follows that φ(Z) and φ(w) are closed and disjoint. Let Y ′ ⊆ Y is an open affine containing
in Y r φ(Z) containing φ(w) so that φ−1(Y ′) = [W ′//Gx] where W ′ = π−1(Y ′) is a Gx-invariant
affine. The morphism f : [W ′/Gx]→ [X/G] satisfies the desired properties. �

4. ACTIONS ON DEFORMATIONS

4.1. Setup. Let X be a category fibered in groupoids over Sch /S with S = SpecR.

For an R-algebra A, an object a ∈ X (A), and a morphism A′ → A of R-algebras, denote by
FX ,a(A

′) the category of arrows a → a′ over SpecA → SpecA′ where a morphism (a → a1) →
(a→ a2) is an arrow a1 → a2 over the identity inducing a commutative diagram

a1

��

a

>>

  
a2

Let FX ,a(A′) be the set of isomorphism classes of FX ,a(A′). When there is no risk of confusion, we
will denote Fa(A′) := FX ,a(A

′) and F a(A′) = FX ,a(A
′).

For an A-module M , denote by A[M ] the R-algebra A⊕M with M2 = 0.

Definition 4.1. We say that X is S1(b) (resp. strongly S1(b)) if for every surjection B → A (resp.
any morphismB → A), finiteA-moduleM , and arrow a→ b over SpecA→ SpecB, the canonical
map

F b(B[M ]) −→ F a(A[M ])

is bijective.

Remark 4.2. We are using the notation from [Art74] although we are not assuming that A is re-
duced. Recall that there is another condition S1(a) such that when both S1(a) and S1(b) are satisfied
(called semi-homogeneity by Rim), then there exists a miniversal deformation space (or a hull) by
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[Sch68] and [Rim80]. We are isolating the condition S1(b) and strongly S1(b) to indicate precisely
what is necessary for algebraicity of the action of the stabilizer on the tangent space.

Remark 4.3. Any Artin stack X over S satisfies the following homogeneity property: for any sur-
jection of R-algebras C ′ → B′ with nilpotent kernel, B → B′ any morphism of R-algebras, and
b′ ∈ X (B′), the natural functor

(1) Xb′(C ′ ×B′ B) −→ Xb′(C ′)×Xb′(B)

is an equivalence of categories (see [Ols07, Lemma 1.4.4]). In particular, any Artin stack X over S
is strongly S1(b).

It is easy to see that if X satisfies S1(b), then for any R-algebra A, object a ∈ X (A) and finite
A-module M , the set F a(A[M ]) inherits an A-module structure. In particular, for x ∈ X (k), the
tangent space F x(k[ε]) is naturally a k-vector space. For any k-vector space, the natural identifica-
tion Hom(k[ε], k[V ]) ∼= V induces a morphism

F x(k[ε])⊗k V −→ F x(k[V ])

which is an isomorphism for finite dimensional vector spaces V .

Remark 4.4. If X is also locally of finite presentation, then this is an isomorphism for any vector
space V since if we write V = lim

−→
Vi with Vi finite dimensional then lim

−→
F x(k[Vi]) → F x(k[V ]) is

bijective.

4.2. Actions on tangent spaces. For a ∈ X (A), the abstract group AutX (A)(a) acts on the R-
module F a(A[ε]) via A-module isomorphisms: if g ∈ AutX (A)(a) and (α : a → a′) ∈ F a(A[ε]),

then g · (a→ a′) = (a
g−1

→ a
α→ a′).

Remark 4.5. For example, suppose X is parameterizing flat families of schemes and X0 → SpecA
is an object in X (A). An element g ∈ Aut(X0) acts on infinitesimal deformations via

X0

��

� � i // X

p

��
SpecA �

� // SpecA[ε]

 g7−→


X0

��

� � g−1◦i // X

p

��
SpecA �

� // SpecA[ε]



If x ∈ X (k) with stabilizerGx, we have shown that there is a homomorphism of abstract groups

Gx(k) −→ GL(F x(k[ε]))(k)

We are interested in determining when this is algebraic (i.e. arising from a morphism of group
schemes Gx → GL(F x(k[ε])). For any k-algebra A, let a ∈ X (A) be a pullback of x. Note that there
is a canonical identification AutX (A)(a) ∼= Gx(A) which induces a homomorphism

Gx(A) −→ GL(F a(A[ε]))(A)
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If X is strongly S1(b), then using the isomorphism A[ε] ×A k → k[A], we have a bijection
F x(k[A])→ F a(A[ε]). The natural maps induce a commutative diagram of A-modules

F x(k[ε])⊗k A //

''

F x(k[A])

��
F a(A[ε])

If X is locally of finite presentation over S, by Remark 4.4, the top arrow is bijective so that the
diagonal arrow is as well. Therefore, we have a natural homomorphism of groups

Gx(A) −→ GL(F x(k[ε])⊗k A)(A) = GL(F x(k[ε]))(A)

for any k-algebra A which induces a morphism of group schemes Gx → GL(F x(k[ε])).

Therefore, if X → S is locally of finite presentation and is strongly S1(b), then for x ∈ X (k), the
stabilizer Gx acts algebraically on F x(k[ε]). In particular,

Proposition 4.6. If X is an Artin stack locally of finite presentation over a scheme S and x ∈ X (k), then
the stabilizer Gx acts algebraically on the tangent space F x(k[ε]). �

Remark 4.7. The above proposition is certainly well known, but we are unaware of a rigorous proof
in the literature. We thank Angelo Vistoli for pointing out the simple argument above.

In [Pin74, Prop. 2.2], Pinkham states that if X is the deformation functor over an algebraically
closed field of an affine variety with an isolated singular point with Gm-action, then the tangent
space T 1 inherits an algebraic Gm-action. However, it appears that he only gives a homomor-
phism of algebraic groups Gm(k) → GL(T 1)(k). There are certainly group homomorphisms
k∗ → GLn(k) which are not algebraic.

In [Rim80, p. 220-1], Rim states that if X is category fibered in groupoids over the category
B of local Artin k-algebras with residue field k with X (k) = {x} which is homogeneous in the
sense that (1) is an equivalence for a surjection C ′ → B′ and any morphism B → B′ in B, then
F x(k[ε]) inherits a linear representation. However, he only shows that there is a homomorphism
of algebraic groupsGx(k)→ GL(F x(k[ε]))(k). While it is clear that there are morphisms of groups
Gx(A) → GL(F x(k[ε]))(A) for local Artin k-algebras with residue field k, it is not clear to us
that this gives a morphism of group schemes Gx → GL(F x(k[ε])) without assuming a stronger
homogeneity property.

4.3. Actions on deformations. Let X be an Artin stack over S and suppose G → S is a group
scheme with multiplication µ : G ×S G → G acting on a scheme U → S via σ : G ×S U → U . To
give a morphism

[U/G] −→ X
is equivalent to giving an object a ∈ X (U) and an arrow φ : σ∗a→ p∗2a over the identity satisfying
the cocycle condition p∗23φ ◦ (id × σ)∗φ = (µ × id)∗φ. We say that G acts on a ∈ X (U) if such
data exists. (In fact, there is an equivalence of categories between X ([U/G]) and the category
parameterizing the above data.)
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Remark 4.8. Suppose X is the Artin stack over SpecZ parameterize smooth curves. Suppose that
we are given a smooth family of curves X → U (i.e. an objective of X over U ). If G acts on
the scheme U , then giving a morphism [U/G] → X is equivalent to giving an action of G on X
compatible with the action on U .

4.4. Action of formal deformations. Let U be a noetherian formal scheme over S with ideal of
definition I. Set Un to be the scheme (|U|,OU/I

n+1). If X is an category fibered in groupoids over
Sch /S, one defines X (U) to be the category where the objects are a sequence of arrows a0 → a1 →
· · · over the nilpotent thickenings U0 ↪→ U1 ↪→ · · · and a morphism (a0 → a1 → · · · ) → (a′0 →
a′1 → · · · ) is a compatible sequence of arrows ai → a′i over the identity. One checks that if I
is replaced with a different ideal of definition, then one obtains an equivalent category. Given a
morphism of formal schemes p : U′ → U, one obtains a functor p∗ : X (U)→ X (U′).

If G → S is a group scheme over S with multiplication µ acting on the formal scheme U via
σ : G ×S U → U such that I is an invariant ideal of definition, we say that G acts on a deformation
â = (a0 → a1 · · · ) ∈ X (U), if as above there is an arrow φ : σ∗â → p∗2â in X (G ×S U) satisfying
the cocycle p∗23φ ◦ (id × σ)∗φ = (µ × id)∗φ. This is equivalent to giving compatible morphisms
[Ui/G] → X . (Given an appropriate definition of a formal stack [U/G], this should be equivalent
to giving a morphism [U/G]→ X .)

5. LOCAL QUOTIENT STRUCTURE

We show that for closed points with linearly reductive stabilizer, the stabilizer acts algebraically
on the formal deformation space. In other words, Artin stacks are “formally locally” quotient
stacks around such points. This gives a formally local answer to Conjecture 1. We will use the
same method as in [AOV08] to deduce that all nilpotent thickenings are quotient stacks.

5.1. Deformation theory ofG-torsors. We will need to know the deformation theory ofG-torsors
over Artin stacks. We recall for the reader the necessary results of the deformation theory of G-
torsors from [Ols06a] and [AOV08].

Suppose G→ S is a fppf group scheme and p : P → X is a G-torsor. Let i : X → X ′ be a closed
immersion of stacks defined by a square-zero ideal I ⊆ OX ′ . Then the collection of 2-cartesian
diagrams

P
p

��

i′ // P ′

p′

��
X i // X ′

with p′ : P ′ → X ′ a G-torsor form in a natural way a category.

Proposition 5.1. Let LBG/S denote the cotangent complex ofBG→ S and f : X → BG be the morphism
corresponding to the G-torsor p : P → X .

(i) There is a canonical class o(x, i) ∈ Ext1(Lf∗LBG/S , I) whose vanishing is necessary and sufficient
for the existence of an extension (i′, p′) filling in the diagram

(ii) If o(x, i) = 0, then the set of isomorphism of extensions filling in the diagram is naturally a torsor
under Ext0(Lf∗LBG/S , I).
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(iii) For any extension (i′, p′), the group of automorphisms of (i′, p′) (as a deformation of P → X ) is
canonically isomorphic to Ext−1(Lf∗LBG/S , I).

Proof. This is a special case of [Ols06a, Theorem 1.5] with Y = Y ′ = BG and Z = Z ′ = S. �

Proposition 5.2. Let G→ S be an fppf group scheme. Then

(i) LBG/S ∈ D
[0,1]
coh (OBG).

(ii) If G→ S is smooth, LBG/S ∈ D
[1]
coh(OBG).

If G→ Spec k is linearly reductive and F is a coherent sheaf on BG, then

(iii) Exti(LBG/k,F) = 0 for i 6= −1, 0.
(iv) If G→ Spec k is smooth, Exti(LBG/k,F) = 0 for i 6= −1.

Proof. Part (i) and (ii) follow from the distinguished triangle induced by the composition S →
BG→ S as in [AOV08, Lemma 2.18] with the observation that G→ S is a local complete intersec-
tion. Part (iii) is given in the proof of [AOV08, Lemma 2.17] and (iv) is clear from (ii). �

5.2. Proof of Theorem 1.

Proof. We prove inductively that each Xi is a quotient stack by Gx using deformation theory. For
(i), let p0 : U0 = Spec k → X0 be the canonical Gx-torsor. Suppose we have a compatible family of
Gx-torsors pi : Ui → Xi with Ui affine. This gives a 2-cartesian diagram

U0
//

p0

��

. . . // Un−1
jn //

pn−1

��

Un

pn

��
X0

// . . . // Xn−1
in // Xn

By Corollary 5.1, the obstruction to the existence of a Gx-torsor pn : Un → Xn restricting to pn−1 :
Un−1 → Xn−1 is an element

o ∈ Ext1(Lf∗LBGx/k, I
n) = Ext1(LBGx/k, I

n/In+1) = 0

where f : Xn−1 → BGx is the morphism defined by Un−1 → Xn−1 and I denotes the sheaf of
ideals defining X0. The vanishing is implied by Proposition 5.2(iii). Therefore, there exists a Gx-
torsor Un → Xn extending Un−1 → Xn−1. Since U0 is affine, so is Un and the Gx-torsor pn gives an
isomorphism Xn ∼= [Un/Gx]. Furthermore, ifGx is smooth, this extension is unique by Proposition
5.2(iv).

For (ii), first choose a scheme S′ and an étale morphism S′ → S such that S′ ×S k(s) = k. Let
s′ ∈ S′ denote the preimage of s and S′n = SpecOS′,s′/mn+1

s′ . The group schemeG0 = Gx → Spec k
extends uniquely to smooth affine group schemes Gi → S′n ([sga64, Expose III, Thm. 3.5]) which
by [Alp08, Prop. 3.9(iii)] are linearly reductive. If X ′ = X ×S S′, then BGx ↪→ X ′ is a closed
immersion with nilpotent thickenings X ′n isomorphic to Xn ×S S′. Let p0 : U0 = Spec k → X0 be
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the canonical Gx-torsor which we may also view as a torsor over Gn → S′n. Suppose we have a
compatible family ofGn → Sn-torsors pi : Ui → Xi with Ui affine. This gives a 2-cartesian diagram

U0
//

p0
��

. . . // Un−1
jn //

pn−1

��

Un

pn
��

X ′0 // . . . // X ′n−1
in // X ′n

of Artin stacks over S′n. By Corollary 5.1, the obstruction to the existence of a Gx-torsor pn : Un →
X ′n restricting to pn−1 : Un−1 → X ′n−1 is an element

o ∈ Ext1(Lf∗LBGn/Sn
, In) = H2(BGx, g⊗ In/In+1) = 0

where f : X ′n−1 → BGx is the morphism defined by Un−1 → X ′n−1. Since the set of extensions is
H1(BGx, g⊗ In/In+1) = 0, there is a unique extension pn : Un → X ′n. �

Corollary 5.3. Let X be a locally noetherian Artin stack over Spec k and ξ ∈ |X | be a closed point with
smooth, affine and linearly reductive stabilizer. Let x : Spec k → X be a representative of ξ. Then there ex-
ists a miniversal deformation (A, ξ̂) of x with Gx-action, which is unique up to Gx-invariant isomorphism.

Proof. The first statement follows directly from the above theorem with the observation that lim
−→

Ui →
X is a miniversal deformation. �

Remark 5.4. The action ofGx on Spf A fixes the maximal ideal so we get an induced algebraic action
of Gx on (m/m)∨. The miniversality of ξ gives an identification of k-vector spaces Ψ : (m/m2)∨

∼→
F x(k[ε]) which we claim is Gx-equivariant.

The map Ψ is defined as follows: if τ : Spec k[ε]→ SpecA/m2 there is an induced diagram

x //

  

τ∗ξ1

�� ��
ξ1

over

Spec k //

&&

Spec k[ε]

��
SpecA/m2

then Ψ(τ) = (x → τ∗ξ1). The action of Gx on F x(k[ε]) is given in Section 4.2. Under the identifi-
cation (m/m2)∨ ∼= FU,u(k[ε]) where U = SpecA/m2 and u : Spec k → U is the closed point, then
Gx-action on FU,u(k[ε]) can be given explicitly: If p : SpecB → Spec k, then an element g ∈ Gx(R)

gives a B-algebra isomorphism αg : A/m2 ⊗k B → A/m2 ⊗k B and an element σ ∈ FU,u(k[ε])

corresponds to a B-module homomorphism A/m2 ⊗k B and g · σ ∈ FU,u(k[ε]) is the B-module

homomorphism corresponding to the composition A/m2 ⊗k B
α−1
g→ A/m2 ⊗k B → B.

We also note that if p : SpecB → Spec k, then under the isomorphisms given in Section 4.2, we
have a commutative diagram

FU,u(k[ε])⊗k B
∼ //

Ψ⊗kB
��

FU,p∗u(B[ε])

ΨB

��
FX ,x(k[ε])⊗k B

∼ // FX ,p∗x(B[ε])
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where for (τ : SpecB[ε]→ U) ∈ FU,p∗u(B[ε]), ΨB(τ) = (p∗x→ τ∗ξ1).

For g ∈ Gx(B) and (τ : SpecB[ε]→ U) ∈ FU,u(B[ε]), the pullback of the cocycle φ : σ∗ξ1 → p∗2σ
(defining theGx-action on ξ1) under the morphism (g, id) : SpecB×kU → Gx×kU gives an arrow
β making a commutative diagram

p∗x
g //

��

p∗x

��
p∗2ξ1

β // p∗2ξ1

over

SpecB
= //

��

SpecB

��
SpecB ×k U

αg // SpecB ×k U

We have a commutative diagram

p∗x
g //

""

��

p∗x

%%

��

τ∗ξ1
γ //

��

(αg ◦ τ)∗ξ1

��
p∗2ξ1

β // p∗2ξ1

over

SpecB
= //

''

��

SpecB

((

!!

SpecB[ε]
= //

τ

��

SpecB[ε]

αg◦τ
��

SpecB ×k U
αg // SpecB ×k U

where γ : τ∗ξ1 → (g ◦ τ)∗ξ1 is the unique arrow making the bottom square commute. The arrow γ

identifies g ·Ψ(τ) = (p∗x
α−1
g→ p∗x→ τ∗ξ1) and Ψ(g · τ) = (x→ (αg ◦ τ)∗ξ1).

6. LUNA’S ÉTALE SLICE THEOREM

In this section, we recover Luna’s étale slice theorem. Many of the ingredients of the proof
are stacky versions of Luna’s methods. However, we believe that using stacks allows for a more
streamlined proof. In [Lun73], it was necessary to prove and apply a G-equivariant version of
Zariski’s Main Theorem; we simply apply Zariski’s Main Theorem for Artin stacks. We remark
that the method to prove étaleness of the induced map on quotients is different. We apply a
general result which gives sufficient conditions for an étale morphism of Artin stacks to induce
an étale morphism on good moduli spaces (Theorem 6.5) while Luna reduces to the case where
x ∈ X is normal so that étaleness of the map between the quotients is equivalent to the morphism
being unramified and injective on stalks, both of which can be checked algebraically. We therefore
have no normality assumptions in the fundamental lemma (Theorem 6.10).

6.1. Equivariant linearizations. A group action on a scheme X affine and smooth over S can be
SX -linearized if SX → X is linearly reductive:

Lemma 6.1. Let S be an affine scheme and G → S be an fppf affine group scheme acting on a scheme
p : X → S with p affine. Let f : T → X and suppose that the stabilizer Gf → T is linearly reductive and
p is smooth at points in f(T ). The stabilizer Gf acts naturally on the T -schemes X ×S T and the pullback
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of the tangent bundle TX/S ×X T . There exists a non-canonical Gf -equivariant morphism

X ×S T
p2

''

// TX/S ×X T

��
T

Proof. The Gf action on X ×S T = Spec f∗(p2)∗OX×SX and TX/S ×X T = Spec Sym∗ f∗ΩX/S is in-
duced fromGf -actions on theOT -modules f∗(p2)∗OX×SX and f∗ΩX/S . To give anGf -equivariant
T -morphism X ×S T → TX/S ×X T it suffices to give a Gf -equivariant morphism of Gf -OT -
modules f∗ΩX/S → f∗(p2)∗OX×SX . Let I be the sheaf of ideals in OX×SX defining ∆ : X ↪→
X ×S X . There is a surjection (p2)∗I → I/I2 inducing an exact sequence

0 −→ K −→ f∗(p2)∗I −→ f∗(I/I2) −→ 0

of Gf -OT -modules. We may consider any Gf -OT -module as an OBGf
-module. By observing that

f∗ΩX/S
∼= f∗(I/I2) is locally free and applying HomBGf

(f∗(I/I2), ·)

Ext1
BGf

(f∗(I/I2),K) = H1(BGf ,K ⊗ f∗(I/I2)∨) = 0

the sequence above splits. Therefore there is anGf -equivariant morphism f∗(I/I2)→ f∗(p2)∗I →
f∗(p2)∗OX×SX . �

Remark 6.2. In general (with f : T → X and X → S affine and smooth at f(T )), there exists
non-canonically an T -morphism X ×S T → TX/S ×X T . The hypothesis that Gf → T is linearly
reductive guarantees that this morphism can be constructed Gf -equivariantly.

By applying the lemma with T = X and f = id, we see that if the stabilizer SX → X is
linearly reductive, then there is an SX -invariant X-morphism Ψ : X ×S X → TX/S . Suppose that
S = Spec k and x : Spec k → X . Then the base change of the X-morphism Ψ by x : Spec k → X
yields a Gx-invariant morphism X → Tx. In this case, a smoothness hypothesis is not necessary
to find a Gx-equivariantly linearization around point with linearly reductive stabilizer. Of course,
the induced morphism X → Tx is étale only when x ∈ X is smooth.

Lemma 6.3. ([Lun73, Lemma on p. 96]) Suppose G is an affine group scheme of finite type over a field k
acting on an affine scheme X over k. If x ∈ X(k) is closed point with linearly reductive stabilizer Gx, then
there is a linear action of Gx on the tangent space Tx and a Gx-equivariant morphism X → Tx sending x
to the origin and inducing an isomorphism on tangent spaces.

Proof. Let m ⊆ A be the maximal ideal of x. Since x is a fixed point under the induced action
by Gx on SpecA, there is a dual action of Gx on the k-vector space m and a Gx-invariant map
m → m/m2. There exists a finite dimensional Gx-invariant subspace V ′ ⊆ m such V ′ � m/m2.
SinceGx is linearly reductive, there is aGx-invariant subspace V ⊆ mwith V ∼→ m/m2. This gives
a homomorphism of rings

Sym∗m/m2 ∼→ Sym∗ V −→ A

which induces the desired Gx-invariant morphism X → TxX . �
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Example 6.4. There are group actions on affine space that are not linear. For instance, consider
Z2 acting on A2 by the involution x 7→ −x, y 7→ −y + x2 with x the origin. The k-vector space
〈x, y〉 ⊆ k[x, y] is not Gx-invariant but it is contained in the Gx-invariant k-vector space 〈x, y, x2〉.
This contains a Gx-invariant subspace 〈x, y − 1

2x
2〉which maps Gx-equivariantly onto m/m2.

6.2. Descent of étaleness to good moduli spaces. We begin by recalling a generalization of [Lun73,
Lemma 1 on p.90] which gives sufficient criteria for when an étale morphism of Artin stacks in-
duces an étale morphism of good moduli spaces.

Theorem 6.5. ([Alp08, Theorem 5.1]) Consider a commutative diagram

X
f //

φ
��

X ′

φ′

��
Y

g // Y ′

where X ,X ′ are locally noetherian Artin stacks, g is locally of finite type, φ, φ′ are good moduli spaces and
f is representable. Let ξ ∈ |X |. Suppose

(a) f is étale at ξ.
(b) f is stabilizer preserving at ξ.
(c) ξ and f(ξ) are closed.

Then g is étale at φ(ξ).

Corollary 6.6. Consider a commutative diagram

X
f //

φ
��

X ′

φ′

��
Y

g // Y ′

with X ,X ′ locally noetherian Artin stacks of finite type over S, g locally of finite type, and φ, φ′ good
moduli spaces. If f is étale, pointwise stabilizer preserving and weakly saturated, then g is étale.

Proof. It suffices to check that g is étale at closed points y ∈ Y . There exists a unique closed point
ξ ∈ |X | above a closed point y ∈ |Y |. The image s ∈ S is locally closed and we may assume it is
closed. Since f is weakly saturated, by base changing by Spec k(s) → S, we have that Xs → X ′s
maps closed points to closed points so that f(ξ) ∈ |X ′s| is closed and therefore f(ξ) ∈ |X ′| is closed.
It follows from the above theorem that g is étale at y. �

We will need the following generalization of [Lun73, Lemma p.89]. Note that here we replace
the hypothesis in [Alp08, Proposition 6.4] that f maps closed points to closed points with the
hypothesis that f is weakly saturated.
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Proposition 6.7. Suppose X ,X ′ are locally noetherian Artin stacks and

X
f //

φ′

��

X ′

φ
��

Y
g // Y ′

is commutative with φ, φ′ good moduli spaces. Suppose

(a) f is representable, quasi-finite and separated.
(b) g is finite
(c) f is weakly saturated.

Then f is finite.

Proof. We may assume S and Y ′ are affine schemes. Furthermore, X → Y ×Y ′ X ′ is representable,
quasi-finite, separated and weakly saturated so we may assume that g is an isomorphism. By
Zariski’s Main Theorem ([LMB00, Thm. 16.5]), there exists a factorization

X I //

f

  

Z

f ′

��
X ′

where I is a open immersion, f ′ is a finite morphism and OZ ↪→ I∗OX is an inclusion. Since X ′
is cohomologically affine and f ′ is finite, Z is cohomologically affine and admits a good moduli
space ϕ : Z → Y .

Since f is weakly saturated, I is weakly saturated. Since X and Z admit the same good moduli
space, by Remark 2.12, I must be an isomorphism. �

Proposition 6.8. Suppose X ,X ′ are locally noetherian Artin stacks and

X
f //

φ′

��

X ′

φ
��

Y
g // Y ′

is a commutative diagram with φ, φ′ good moduli spaces. If f is representable, separated, étale, stabilizer
preserving and weakly saturated, then g is étale and the diagram is cartesian.

Proof. Since f is representable, separated, quasi-finite, stabilizer preserving and weakly saturated,
so is Ψ : X → X ′ ×Y ′ Y . By Proposition 6.7, Ψ is finite. Moreover, by Corollary 6.6, g is étale, and
therefore so is Ψ. Therefore, Ψ : X → X ′ ×Y ′ Y is a finite, étale morphism between Artin stacks
which both have Y has a good moduli space but since Ψ is also stabilizer preserving, it follows
that Ψ has degree 1 and is therefore an isomorphism. �

Remark 6.9. The conditions above that f is stabilizer preserving and weakly saturated are nec-
essary (even if one requires further that g is étale). Indeed, both the open immersion Spec k →
[A1/Gm] and the étale presentation Spec k → BG for a finite group G induce isomorphisms on
good moduli spaces but the corresponding diagrams are not cartesian.
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6.3. The fundamental lemma. The fundamental lemma expands on Theorem 6.5 by guaranteeing
that after shrinking Zariski-locally on the good moduli spaces, one has étaleness everywhere and
that the induced square is even cartesian. Although we will only use the lemma in the case when
X ,X ′ are quotient stacks, we would like to stress precisely where the quotient stack structures are
used in Luna’s slice theorem as to emphasize the difficulties at proving Conjecture 1 in general.

Theorem 6.10. Consider a commutative diagram

X
f //

φ
��

X ′

φ′

��
Y

g // Y ′

with X ,X ′ locally noetherian Artin stacks over a scheme S and φ, φ′ good moduli spaces with Y and Y ′
algebraic spaces. Suppose f is representable and separated, and both f and g are locally of finite type.
Suppose:

(a) f is stabilizer preserving at ξ
(b) f is étale at ξ.
(c) ξ and f(ξ) are closed.

Then there exist a Zariski sub-algebraic space Y1 ⊆ Y such that f |φ−1(Y1) is étale, g|Y1 is étale, and the
diagram

(2) φ−1(Y1)
f //

φ

��

X ′

φ′

��
Y1

g // Y ′

is cartesian. If Y and Y ′ are schemes such that Y ′ has affine diagonal, then Y1 and g(Y1) can be chosen to
be affine.

Proof. The hypotheses imply by Theorem 6.5 that g is étale at φ(ξ). The closed subset of |X |

Z = {η ∈ |X |
∣∣f is not étale at η or g is not étale at φ(η)}

is disjoint from the closed subset {ξ}. Therefore, U = Y r φ(Z) is an open sub-algebraic space
containing φ(ξ) such that f |φ−1(U) and g|U are étale. So we may assume that f and g are étale.

We now shrink further to ensure that f is weakly saturated. By Zariski’s Main Theorem ([LMB00,
Thm. 16.5]), there exists a factorization f : X ↪→W → X ′ such that X ↪→W is an open immersion
andW → X ′ is finite. SinceW → X is finite, there exists a good moduli space ϕ : W → W . Since
f(ξ) ∈ |X ′| is closed, ξ ∈ |W| is closed. Therefore, {ξ} andW r X are disjoint closed substacks of
W , which implies that ξ /∈ Z := ϕ−1(ϕ(W r X )). Set U = Y r φ(X ∩ Z). Then φ−1(U) = W r Z
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which is a saturated open substack ofW . Since finite morphisms are weakly saturated, the com-
position φ−1(U)→W → X ′ is weakly saturated. Therefore, we have a commutative diagram

φ−1(U)
f //

φ

��

X ′

φ′

��
U

g // Y ′

where f is representable, separated, étale, and weakly saturated and g is étale. Now Ψ : φ−1(U)→
U ×Y ′ X ′ is a representable, separated and quasi-finite morphism of Artin stacks both having U as
a good moduli space. By Proposition 6.7, Ψ is finite. Since f is stabilizer preserving at ξ, so is Ψ; it
follows that Ψ is a finite étale morphism of degree 1 at ξ. The open substack U ′ ⊆ φ−1(U) where
Ψ is an isomorphism contains ξ. By setting Y1 = U r φ(φ−1(U) r U ′), we obtain a diagram as in
(2) which is cartesian.

For the final statement, if Y is a scheme, then in the above argument we can choose Y1 to be
affine. If Y ′ is a scheme with affine diagonal, then we can choose Y ′1 to be an open affine subscheme
of g(Y1) and it follows that Y1 ∩ g−1(Y ′1) is also affine. �

6.4. Proof of Theorem 2.

Proof. For (i), since the orbit o(f) ↪→ X is closed, by [Alp08, Theorem 12.14], the stabilizer Gf =
SX ×X S is linearly reductive over S. Lemma 6.1 gives an Gf -invariant S-morphism

g : X −→ TX/S ×X S

For s ∈ S, the induced morphism on fibers is gs : Xs → TXs,f(s) which induces an isomorphism
on tangent spaces at f(s). Since Xs → Spec k(s) is smooth, gs is étale at f(s). Since X → S is flat at
points in f(S), by fibral flatness ([Gro67, IV.11.3.10]), g is flat at points in f(S). Since the property
of being unramified can be checked on fibers, g is étale at points in f(S). Furthermore, o(f) → S
is smooth and there is an Gf -equivariant inclusion To(f)/S ×X S ⊆ TX/S ×X S. Since Gf → S is
linearly reductive and X → S is smooth over f(S), there is a decomposition of OBGf

-modules

f∗ΩX/S
∼= f∗Ωo(f)/S ⊕F

andN = SpecS Sym∗F ⊆ TX/S×XS is a space normal to the tangent space of the orbit To(f)/S×XS
inheriting a Gf -action. If we define W = g−1(N), then W is a Gf -invariant closed subscheme of
X and f : S → X factors as a composition w : S → W and W ↪→ X . If W = [W/Gf ] and
N = [N/Gf ], the induced maps

W

  ~~
N X

are étale at w(S). By applying the Fundamental Lemma 6.10, we have established (i).

For (ii), let X ↪→ X ′ be a G-equivariant embedding into a smooth affine S-scheme X ′. If W ′ ⊆
X ′ satisfies the conditions of the theorem with ψ′ : W ′ → V ′ a good moduli space. Then W =
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W ′ ×X ′ X = [W/Gf ] for an open affine Gf -invariant open W ⊆ X . We have a commutative cube

W //

��

}}

X

��

~~
W ′ //

��

X ′

��

V //

}}

Y

~~
V ′ // Y ′

where the vertical arrows are good moduli spaces and the arrows out of the page are closed im-
mersions. The top square and front square are cartesian. We claim that the bottom square is also
cartesian. Indeed, there is a commutative diagram

W //

��

X

��
V ′ ×Y ′ Y //

��

Y

��
V ′ // Y ′

Since the big square and the bottom square are cartesian, the top square is cartesian. Therefore,
W → V ′ ×Y ′ Y is a good moduli space so by uniqueness, the induced map V → V ′ ×Y ′ Y is an
isomorphism. Therefore, in the cube, the back square is cartesian and the horizontal arrows are
étale. �
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