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Abstract. We develop the theory of associating moduli spaces with nice geometric properties to
arbitrary Artin stacks generalizing Mumford’s geometric invariant theory and tame stacks.
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1. Introduction

1.1. Background. David Mumford developed geometric invariant theory (GIT) ([GIT]) as a means
to construct moduli spaces. Mumford used GIT to construct the moduli space of curves and rigid-
ified abelian varieties. Since its introduction, GIT has been used widely in the construction of
other moduli spaces. For instance, GIT has been used by Seshadri ([Ses82]), Gieseker ([Gie77]),
Maruyama ([Mar77]), and Simpson ([Sim94]) to construct various moduli spaces of bundles and
sheaves over a variety as well as by Caporaso in [Cap94] to construct a compactification of the
universal Picard variety over the moduli space of stable curves. In addition to being a main tool in
moduli theory, GIT has had numerous applications throughout algebraic and symplectic geometry.
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Mumford’s geometric invariant theory attempts to construct moduli spaces (e.g., of curves) by
showing that the moduli space is a quotient of a bigger space parameterizing additional information
(e.g. a curve together with an embedding into a fixed projective space) by a reductive group. In
[GIT], Mumford systematically developed the theory for constructing quotients of schemes by
reductive groups. The property of reductivity is essential in both the construction of the quotient
and the geometric properties that the quotient inherits.

It might be argued though that the GIT approach to constructing moduli spaces is not entirely
natural since one must make a choice of the additional information to parameterize. Furthermore,
a moduli problem may not necessarily be expressed as a quotient.

Algebraic stacks, introduced by Deligne and Mumford in [DM69] and generalized by Artin in
[Art74], are now widely regarded as the correct geometric structure to study a moduli problem. A
useful technique to study stacks has been to associate to it a coarse moduli space, which retains
much of the geometry of the moduli problem, and to study this space to infer geometric properties
of the moduli problem. It has long been folklore ([FC90]) that algebraic stacks with finite inertia
(in particular, separated Deligne-Mumford stacks) admit coarse moduli spaces. Keel and Mori gave
a precise construction of the coarse moduli space in [KM97]. Recently, Abramovich, Olsson and
Vistoli in [AOV08] have distinguished a subclass of stacks with finite inertia, called tame stacks,
whose coarse moduli space has additional desired properties such as its formation commutes with
arbitrary base change. Artin stacks without finite inertia rarely admit coarse moduli spaces.

We develop an intrinsic theory for associating algebraic spaces to arbitrary Artin stacks which
encapsulates Mumford’s notion of a good quotient for the action of a linearly reductive group. If
one considers moduli problems of objects with infinite stabilizers (e.g. vector bundles), one must
allow a point in the associated space to correspond to potentially multiple non-isomorphic objects
(e.g. S-equivalent vector bundles) violating one of the defining properties of a coarse moduli space.
However, one might still hope for nice geometric and uniqueness properties similar to those enjoyed
by GIT quotients.

1.2. Good moduli spaces and their properties. We define the notion of a good moduli space
(see Definition 4.1) which was inspired by and generalizes the existing notions of a good GIT
quotient and tame stack (see [AOV08]). The definition is strikingly simple:

Definition. A quasi-compact morphism φ : X → Y from an Artin stack to an algebraic space is a
good moduli space if

(1) The push-forward functor on quasi-coherent sheaves is exact.
(2) The induced morphism on sheaves OY → φ∗OX is an isomorphism.

A good moduli space φ : X → Y has a large number of desirable geometric properties. We
summarize the main properties below:

Main Properties. If φ : X → Y is a good moduli space, then:

(1) φ is surjective and universally closed (in particular, Y has the quotient topology).

(2) Two geometric points x1 and x2 ∈ X (k) are identified in Y if and only if their closures {x1}
and {x2} in X ×Z k intersect.

(3) If Y ′ → Y is any morphism of algebraic spaces, then φY ′ : X ×Y Y ′ → Y ′ is a good moduli
space.
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(4) If X is locally noetherian, then φ is universal for maps to algebraic spaces.
(5) If X is finite type over an excellent scheme S, then Y is finite type over S.
(6) If X is locally noetherian, a vector bundle F on X is the pullback of a vector bundle on Y if

and only if for every geometric point x : Spec k → X with closed image, the Gx-representation
F ⊗ k is trivial.

1.3. Outline of results. Good moduli spaces characterize morphisms from stacks arising from
quotients by linearly reductive groups to the quotient scheme. For instance, if G is a linearly
reductive group scheme acting linearly on X ⊆ Pn over a field k, then the morphism from the
quotient stack of the semi-stable locus to the good GIT quotient [Xss/G] → Xss//G is a good
moduli space.

In section 13, it is shown that this theory encapsulates the geometric invariant theory of quotients
by linearly reductive groups. In fact, most of the results from [GIT, Chapters 0-1] carry over to
this much more general framework and we argue that the proofs, while similar, are cleaner. In
particular, in section 11 we introduce the notion of stable and semi-stable points with respect to a
line bundle which gives an answer to [LMB00, Question 19.2.3].

With a locally noetherian hypothesis, we prove that good moduli spaces are universal for maps to
arbitrary algebraic spaces (see Theorem 6.6) and, in particular, establish that good moduli spaces
are unique. In the classical GIT setting, this implies the essential result that good GIT quotients
are unique in the category of algebraic spaces, an enlarged category where quotients by free finite
group actions always exist.

Our approach has the advantage that it is no more difficult to work over an arbitrary base scheme.
This offers a different approach to relative geometric invariant theory than provided by Seshadri in
[Ses77], which characterizes quotients by reductive group schemes. Moreover, our approach allows
one to take quotients of actions of non-smooth and non-affine linearly reductive group schemes
(which are necessarily flat, separated and finitely presented), whereas in [GIT] and [Ses77] the
group schemes are assumed smooth and affine.

We show that GIT quotients behave well in flat families (see Corollary 13.4). We give a quick
proof and generalization (see Theorem 12.15) of a result often credited to Matsushima stating that
a subgroup of a linearly reductive group is linearly reductive if and only if the quotient is affine. In
section 10, we give a characterization of vector bundles on an Artin stack that descend to a good
moduli space which generalizes a result of Knop, Kraft and Vust. Furthermore, in section 9, we
give conditions for when a closed point of an Artin stack admitting a good moduli space is in the
closure of a point with lower dimensional stabilizer.

Although formulated differently by Hilbert in 1900, the modern interpretation of Hilbert’s 14th
problem asks when the algebra of invariants AG is finitely generated over k for the dual action
of a linear algebraic group G on a k-algebra A. The question has a negative answer in general
(see [Nag59]) but when G is linearly reductive over a field, AG is finitely generated. We prove the
natural generalization to good moduli spaces (see Theorem 4.16(xi)): if X → Y is a good moduli
space with X finite type over an excellent scheme S, then Y is finite type over S. We stress that
the proof follows directly from a very mild generalization of a result due to Fogarty in [Fog87]
concerning the finite generation of certain subrings.
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1.4. Summary. The main contribution of this paper is the introduction and systematic develop-
ment of the theory of good moduli spaces. Many of the fundamental results of Mumford’s geometric
invariant theory are generalized. The proofs of the main properties of good moduli spaces are quite
natural except for the proof that good moduli spaces are finite type over the base (Theorem 4.16
(xi)) and the proof that good moduli spaces are unique in the category of algebraic spaces (Theorem
6.6).

We give a number of examples of moduli stacks in section 8 admitting good moduli spaces
including the moduli of semi-stable sheaves and alternative compactifications of Mg. In each of
these examples, the existence of the good moduli space was already known due to a GIT stability
computation, which is often quite involved.

It would be ideal to have a more direct and intrinsic approach to construct the moduli spaces
much in the flavor of Keel and Mori’s construction of a coarse moduli space. One could hope that
there is a topological criterion for an Artin stack (eg. a weak valuative criterion) together with an
algebraic condition (eg. requiring that closed points have linearly reductive stabilizers in addition
to further conditions) which would guarantee the existence of a good moduli space. We will address
this problem in a future work.

Acknowledgments. This paper consists of part of my Ph.D. thesis. I am indebted to my advisor
Ravi Vakil for not only teaching me algebraic geometry but for his encouragement to pursue this
project. I would also like to thank Max Lieblich and Martin Olsson for many inspiring conversations
and helpful suggestions. This work has benefited greatly from conversations with Johan de Jong,
Jack Hall, Andrew Kresch, David Rydh, Jason Starr and Angelo Vistoli.

2. Notation

Throughout this paper, all schemes are assumed quasi-separated. Let S be a scheme. Recall
that an algebraic space over S is a sheaf of sets X on (Sch/S)Et such that

(i) ∆X/S : X → X ×S X is representable by schemes and quasi-compact.
(ii) There exists an étale, surjective map U → X where U is a scheme.

An Artin stack over S is a stack X over (Sch/S)Et such that

(i) ∆X/S : X → X ×S X is representable, separated and quasi-compact.
(ii) There exists a smooth, surjective map X → X where X is an algebraic space.

All schemes, algebraic spaces, Artin stacks and their morphisms will be over a fixed base scheme
S. QCoh(X ) will denote the category of quasi-coherent OX -modules for an Artin stack X while
Coh(X ) will denote the category of coherent OX -modules for a locally noetherian Artin stack X .

A morphism f : X → Y of schemes is fppf if f is locally of finite presentation and faithfully flat.
A morphism f is fpqc (see [Vis05, Section 2.3.2])) if f is faithfully flat and every quasi-compact
open subset of Y is the image of a quasi-compact open subset of X. This notion includes both fppf
morphisms as well as faithfully flat and quasi-compact morphisms.

We will say G → S is an fppf group scheme (resp. an fppf group algebraic space) if G → S is
a faithfully flat, finitely presented and separated group scheme (resp. group algebraic space). If
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G→ S is an fppf group algebraic space, then BG = [S/G] is an Artin stack. The quasi-compactness
and separatedness of G→ S guarantee that the diagonal of BG→ S has the same property.

2.1. Stabilizers and orbits. Given an Artin stack X a morphism f : T → X from a scheme T ,
we define the stabilizer of f , denoted by Gf or AutX (T )(f), as the fiber product

Gf //

��

T

f,f

��
X

∆X/S// X ×S X .

Proposition 2.2. There is a natural monomorphism of stacks BGf → X ×S T . If Gf → T is an
fppf group algebraic space, then this is a morphism of Artin stacks.

Proof. Since the stabilizer of (f, id) : T → X ×S T is Gf , we may assume that T = S and that
f : S → X ison a secti. Let BGpre

f → (Sch /S) be the prestack defined as the category with objects

(Y → S) and morphisms (Y → S) → (Y ′ → S) consisting of the data of morphisms Y → Y ′ and
Y → Gf . Define a morphism of prestacks

F : BGpre
f →X

by F (g) = f ◦ g ∈ X (Y ) for (
g

Y → S) ∈ ObBGpre
f (Y ). It suffices to define the image of morphisms

over the identity. If α ∈ AutBGpre
f (Y )(Y

g→ S) corresponds to a morphism α̃ : Y → Gf , then

since AutX (Y )(f ◦ g) ∼= Gf ×S Y , we can define F (α) = (α̃, id) ∈ Gf ×S Y (Y ). Since BGf is the

stackification of BGpre
f , F induces a natural map I : BGf → X . Since F is a monomorphism, so is

I. �

Remark 2.3. Proposition 2.2 also follow from the factorization of [LMB00, Proposition 3.7] applied
to T → X ×S T .

If f : T → X is a morphism with T a scheme and X → X is an fppf presentation, we define the
orbit of f in X, denoted oX(f), set-theoretically as the image of X ×X T → X ×S T . If Gf → T is
an fppf group scheme, then the orbit inherits the scheme structure given by the cartesian diagram

oX(f) //

��

X ×S T

��
BGf // X ×S T

2.4. Points and residual gerbes. There is a topological space associated to an Artin stack X
denoted by |X | which is the set of equivalence classes of field valued points endowed with the Zariski
topology (see [LMB00, Ch. 5]). Given a point ξ ∈ |X |, there is a canonical substack Gξ called the

residual gerbe and a monomorphism Gξ → X . Let ξ be sheaf attached to Gξ (ie. the sheafification

of the presheaf of isomorphism classes T 7→ [Gξ(T )]) so that Gξ → ξ is an fppf gerbe.

Definition 2.5. If X is an Artin stack, we say that a point x ∈ |X | is algebraic if the following
properties are satisfied:
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(i) ξ ∼= Spec k(ξ), for some field k(ξ) called the residue field of ξ.
(ii) Gξ → X is representable and, in particular, Gξ is an Artin stack.

(iii) Gξ → Spec k(ξ) is finite type. �

Proposition 2.6. ([LMB00, Thm. 11.3]) If X is locally noetherian Artin stack over S, then every
point x ∈ |X | is algebraic.

If X is locally noetherian, ξ ∈ |X | is locally closed (ie. it is closed in |U| for some open substack
U ⊆ X ) if and only if Gξ → X is a locally closed immersion, and ξ ∈ |X | is closed if and only if
Gξ → X is a closed immersion.

If ξ ∈ |X | is algebraic, then for any representative x : Spec k → X of ξ, there is a factorization

(2.1) Spec k // BGx //

��

Gξ //

��

X

Spec k // Spec k(ξ)

where the square is cartesian. Furthermore, there exists a representative x : Spec k → X with
k(ξ) ↪→ k a finite extension.

Given an fppf presentation X → X , we define the orbit of ξ ∈ |X | in X, denoted by OX(ξ), as
the fiber product

OX(ξ) //

��

X

��
Gξ // X

Given a representative x : Spec k → X of ξ, set-theoretically OX(ξ) is the image of Spec k×X X →

X. Let R = X ×X X
s,t

⇒ X be the groupoid representation. If x̃ ∈ |X| is a lift of x, then
OX(ξ) = s(t−1(x̃)) set-theoretically.

If x : Spec k → X is a geometric point, let ξ : Spec k → X ×S k. Then Gξ = BGx, k(ξ) = k, and
oX(x) = OX×Sk(x), which is the fiber product

oX(x) //

��

X ×S k

��
BGx // X ×S k

Definition 2.7. A geometric point x : Spec k → X has a closed orbit if BGx → X ×S k is a closed
immersion. We will say that an Artin stack X → S has closed orbits if every geometric point has
a closed orbit.

Remark 2.8. If p : X → X is an fppf presentation and X is locally noetherian, then x : Spec k → X
has closed orbit if and only if oX(x) ⊆ X ×S k is closed and X has closed orbits if and only if for
every geometric point x : Spec k → X, the orbit oX(p ◦ x) ⊆ X ×S k is closed.
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3. Cohomologically affine morphisms

In this section, we introduce a notion characterizing affineness for non-representable morphisms
of Artin stacks in terms of Serre’s cohomological criterion. Cohomologically affineness will be an
essential property of the morphisms that we would like to study from Artin stacks to their good
moduli spaces.

Definition 3.1. A morphism f : X → Y of Artin stacks is cohomologically affine if f is quasi-
compact and the functor from quasi-coherent OX -modules to quasi-coherent OY -modules

f∗ : QCoh(X ) −→ QCoh(Y)

is exact.

Remark 3.2. Recall that we are assuming all morphisms to be quasi-separated. If f is quasi-
compact, then by [Ols07, Lem. 6.5(i)] f∗ preserves quasi-coherence.

Proposition 3.3. (Serre’s criterion) A quasi-compact morphism f : X → Y of algebraic spaces is
affine if and only if it is cohomologically affine.

Remark 3.4. [EGA, II.5.2.1, IV1.7.17-18] handles the case of schemes. In [Knu71, III.2.5], Serre’s
criterion is proved for separated morphisms of algebraic spaces with X locally noetherian. The
general result is proved in [Ryd10, Theorem 8.7].

Remark 3.5. We warn the reader that for a general morphism f : X → Y of Artin stacks, the
condition of being cohomologically affine is not equivalent to Rif∗F = 0 for quasi-coherent sheaves
F and i > 0. Indeed, if E is an elliptic curve over a field k, then f : Spec k → BE is cohomologically
affine but R1f∗OSpec k = OBE 6= 0. However, if f : X → Y is a morphism of Artin stacks where X
and Y have affine diagonal, then cohomologically affineness is equivalent to the vanishing of higher
direct images of quasi-coherent sheaves. This remark was pointed out to us by David Rydh and
Jack Hall.

The following proposition states that it is enough to check cohomologically affineness on coherent
sheaves.

Proposition 3.6. If X is locally noetherian, then a quasi-compact morphism f : X → Y is
cohomologically affine if and only if the functor f∗ : Coh(X )→ QCoh(Y) is exact.

Proof. The proof of [AOV08, Proposition 2.5] generalizes using [LMB00, Proposition 15.4]. �

Definition 3.7. An Artin stack X is cohomologically affine if X → SpecZ is cohomologically
affine.

Remark 3.8. An Artin stack X is cohomologically affine if and only if X is quasi-compact and the
global sections functor Γ : QCoh(X ) → Ab is exact. It is also equivalent to X → Spec Γ(X ,OX )
being cohomologically affine.

Remark 3.9. By Proposition 3.3, if X is a quasi-compact algebraic space, X is cohomologically
affine if and only if it is an affine scheme.

Proposition 3.10.
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(i) Cohomologically affine morphisms are stable under composition.
(ii) Affine morphisms are cohomologically affine.

(iii) If f : X → Y is cohomologically affine, then f
red

: X
red
→ Y

red
is cohomologically affine. If X

is locally noetherian, and X and Y have affine diagonals, the converse is true.
(iv) If f : X → Y is cohomologically affine and S′ → S is any morphism of schemes, then

fS′ = XS′ → YS′ is cohomologically affine.

Consider a 2-cartesian diagram of Artin stacks:

X ′
f ′ //

g′

��

Y ′

g

��
X

f // Y

(v) If g is faithfully flat and f ′ is cohomologically affine, then f is cohomologically affine.
(vi) If f is cohomologically affine and g is a quasi-affine morphism, then f ′ is cohomologically

affine.
(vii) If f is cohomologically affine and Y has quasi-affine diagonal over S, then f ′ is cohomologically

affine. In particular, if Y is a Deligne-Mumford stack, then f cohomologically affine implies
f ′ cohomologically affine.

Proof of (i): If f : X → Y, g : Y → Z are cohomologically affine, then g ◦ f is quasi-compact and
(g ◦ f)∗ = g∗f∗ is exact as it is the composition of two exact functors.

Proof of (v): Since g is flat, by flat base change the functors g∗f∗ and f ′∗g
′∗ are isomorphic.

Since g′ is flat, g′∗ is exact so the composition f ′∗g
′∗ is exact. But since g is faithfully flat, we have

that f∗ is also exact. Since the property of quasi-compactness satisfies faithfully flat descent, f is
cohomologically affine.

Proof of (ii): Let f : X → Y be an affine morphism. Since the question is Zariski-local on Y,
we may assume there exists an fppf cover by an affine scheme SpecB → Y. By (v), it suffices to
show that X ×Y SpecB → SpecB is cohomologically affine which is clear since the source is an
affine scheme.

Proof of (vi): We immediately reduce to the case where either g is a quasi-compact open im-
mersion or g is affine. In the first case, we claim that the adjunction morphism of functors (from
QCoh(Y ′) to QCoh(Y ′)) g∗g∗ → id is an isomorphism. For any open immersion i : Y ′ ↪→ Y of
schemes and a sheaf F of OY ′-modules, the natural map i∗i∗F → F is an isomorphism. Indeed,
i−1i∗F ∼= F and i−1OY = OY ′ so that i∗i∗F = (i−1i∗F)⊗i−1OY OY ′ ∼= F . Let p : Y → Y be a flat
presentation with Y a scheme and consider the fiber square

Y ′
i //

p′

��

Y

p

��
Y ′

g // Y
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Let F be a quasi-coherent sheaf of OY ′-modules. The morphism g∗g∗F → F is an isomorphism if
and only if p′∗g∗g∗F → p′∗F is an isomorphism. But p′∗g∗g∗F ∼= i∗p∗g∗F ∼= i∗i∗p

′∗F where the last
isomorphism follows from flat base change. It is easy to check that the composition i∗i∗p

′∗F → p′∗F
corresponds to the adjunction morphism which we know from above is an isomorphism.

Let 0 → F ′1 → F ′2 → F ′3 → 0 be an exact sequence of quasi-coherent OX ′-modules. Let
F3 = g′∗F2/g

′
∗F1 so that 0 → g′∗F ′1 → g′∗F ′2 → F3 → 0 is exact. Note that g′∗F3

∼= F ′3 since
g′∗g′∗ → id is an isomorphism. Since f is cohomologically affine, f∗g

′
∗F ′2 → f∗F3 is surjective and

therefore so is g∗f
′
∗F ′2 → f∗F3. Since g is an open immersion, f ′∗F ′2 → g∗f∗F3 is surjective but since

g∗f∗ and f ′∗g
′∗ are isomorphic functors so is f ′∗F ′2 → f ′∗F ′3.

Suppose now that g is an affine morphism. It is easy to see that a sequence F1 → F2 → F3 of
quasi-coherent OY ′-modules is exact if and only if g∗F1 → g∗F2 → g∗F3 is exact. We know that
the functors g∗, g

′
∗, and f∗ are exact. Since f∗g

′
∗ = g∗f

′
∗ is exact, it follows that f ′∗ is exact. This

establishes (vi).

Proof of (iv): If h : S′ → S is any morphism, let {Si} be an affine cover of S and {S′ij} an

affine cover of h−1(Si). Since f is cohomologically affine, by (vi) that fSi is cohomologically affine
and therefore fS′ij is cohomologically affine. The property of cohomologically affine is Zariski-local

so fS′ is cohomologically affine.

Proof of (vii): The question is Zariski-local on S so we may assume S is affine. The question
is also Zariski-local on Y and Y ′ so we may assume that they are quasi-compact. Let p : Y → Y
be a smooth presentation with Y affine. Since ∆Y/S is quasi-affine, Y ×Y Y ∼= Y ×Y×SY (Y ×S Y )
is quasi-affine and p is a quasi-affine morphism. After base changing by p : Y → Y and choosing a
smooth presentation Z → Y ′Y with Z an affine scheme, we have the 2-cartesian diagram:

Z

��

h′′ // Z

��
X ′Y

h′ //

��

~~

Y ′Y

��

~~
X ′

f ′ //

g′

��

Y ′

g

��

XY
h //

}}

Y

p}}
X

f // Y

Since f is cohomologically affine and p is a quasi-affine morphism, by (vi) h is cohomologically
affine. The morphism Z → Y is affine which implies that h′′ is cohomologically affine. Since the
composition Z → Y ′Y → Y ′ is smooth and surjective, by descent f ′ is cohomologically affine.

For the last statement, ∆Y/S : Y → Y ×S Y is separated, quasi-finite and finite type so by
Zariski’s Main Theorem for algebraic spaces, ∆Y/S is quasi-affine.

Proof of (iii): Since X
red
→ X is affine, the composition X

red
→ X → Y is cohomologically
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affine. Using that Y
red
→ Y is a closed immersion, it follows that X

red
→ Y

red
is cohomologically

affine because f∗ is exact and faithful for affine morphisms f . For the converse, by Remark 3.5,
cohomologically affineness of f (resp., f

red
) is equivalent to the vanishing of higher direct images

of quasi-coherent sheaves under f (resp., f
red

). Note that f is quasi-compact and we may suppose
that X is noetherian. If I be the sheaf of ideals of nilpotents in OX , there exists an N such that
IN = 0. We will show that for any quasi-coherent sheaf F , R1f∗F = 0. By considering the exact
sequence,

0 −→ In+1F −→ InF −→ InF/In+1F −→ 0,

and the segment of the long exact sequence of cohomology sheaves

R1f∗In+1F −→ R1f∗InF −→ R1f∗(InF/In+1F).

By induction on n, it suffices to show that R1f∗InF/In+1F = 0.

If i : X
red
↪→ X and j : Y

red
↪→ Y, then for each n, InF/In+1F = i∗Gn for a sheaf Gn on X

red
and

Rif∗(InF/In+1F) = Ri(f ◦ i)∗Gn
which vanishes if i > 0 since f ◦ i ' j ◦ f

red
is cohomologically affine. This establishes (iii). �

Remark 3.11. Cohomologically affine morphisms are not stable under arbitrary base change. For
instance, if A is an abelian variety over an algebraically closed field k, then p : Spec k → BA is
cohomologically affine but base changing by p gives A→ Spec k which is not cohomologically affine.
This remark was pointed out to us by David Rydh.

Remark 3.12. It is not true that the property of being cohomologically affine can be checked on
fibers; e.g, consider A2r {0} → A2. Moreover, for a non-representable morphism, the conditions of
being proper and quasi-finite do not necessarily imply cohomologically affine; e.g, consider BG→ S
where G→ S is a non-linearly reductive finite fppf group scheme (see section 12).

Proposition 3.13. Let f : X → Y, g : Y → Z be morphisms of Artin stacks over S where either
g is quasi-affine or Z has quasi-affine diagonal over S. Suppose g ◦ f is cohomologically affine and
g has affine diagonal. Then f is cohomologically affine.

Proof. This follows from Proposition 3.10 by factoring f : X → X ×Z Y → Y as the first morphism
is affine and X ×Y Z → Y is cohomologically affine by base change. �

3.14. Cohomologically ample and projective. Let X be a quasi-compact Artin stack over S
and L a line bundle on X .

Definition 3.15. L is cohomologically ample if there exists a collection of sections si ∈ Γ(X ,LNi)
for Ni > 0 such that the open substacks Xsi are cohomologically affine and cover X .

Definition 3.16. L is relatively cohomologically ample over S if there exists an affine cover {Sj}
of S such that L|Xj is cohomologically ample on Xj = X ×S Sj .

Remark 3.17. Is this equivalent to other notions of ampleness? The analogue of (a’)⇔ (c) in [EGA,
II.4.5.2] is not true by considering OBG on the classifying stack of a linearly reductive group scheme
G. The analogue of (a) ⇔ (a’) in [EGA, II.4.5.2] does not hold since for a cohomologically affine
stack X , the open substacks Xf for f ∈ Γ(X ,OX ) do not form a base for the topology.
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Definition 3.18. A morphism of p : X → S is cohomologically projective if p is universally closed
and of finite type, and there exists an S-cohomologically ample line bundle L on X .

4. Good moduli spaces

We introduce the notion of a good moduli space and then prove its basic properties. The reader
is encouraged to look ahead at some examples in Section 8.

Let φ : X → Y be a morphism where X is an Artin stack and Y is an algebraic space.

Definition 4.1. We say that φ : X → Y is a good moduli space if the following properties are
satisfied:

(i) φ is cohomologically affine.

(ii) The natural map OY
∼→ φ∗OX is an isomorphism.

Remark 4.2. If X is an Artin stack over S with finite inertia stack IX → X then by the Keel-Mori
Theorem ([KM97]) and its generalizations ([Con05], [Ryd13]), there exists a coarse moduli space
φ : X → Y . Abramovich, Olsson and Vistoli in [AOV08] define X to be a tame stack if φ is
cohomologically affine in which case φ is a good moduli space. Of those Artin stacks with finite
inertia, only tame stacks admit good moduli spaces.

Remark 4.3. A morphism p : X → S is cohomologically affine if and only if the natural map
X → Spec p∗OX is a good moduli space.

Remark 4.4. One could also consider the class of arbitrary quasi-compact morphisms of Artin
stacks φ : X → Y satisfying the two conditions in Definition 4.1. We call such morphisms good
moduli space morphisms. Most of the properties below will hold for these more general morphisms.
Precisely, if the target has quasi-affine diagonal, then the analogues of 4.5, 4.7, 4.9, 4.12, 4.14 and
4.16 (i-iii, v, vii-xi) hold. Moreover, if φ : X → Y is a good moduli space morphism of Artin stacks
over Z where X is locally noetherian and Y → Z is representable, then for any other morphism
φ′ : X → Y ′ of Artin stacks over Z with Y ′ → Z representable, then there exists a morphism
χ : Y → Y ′ over Z such that φ′ = χ ◦ φ which is unique up to 2-isomorphism–indeed this follows
from Theorem 6.6 by fppf descent.

Proposition 4.5. Suppose f : X → Y is a cohomologically affine morphism of Artin stacks where
Y is an algebraic space. Let F be a quasi-coherent sheaf of OX -modules and G be a quasi-coherent
sheaf of OY -modules. Then the projection morphism

f∗F ⊗ G → f∗(F ⊗ f∗G)

is an isomorphism. In particular, if φ : X → Y is a good moduli space, for any quasi-coherent sheaf
G of OY -modules, the adjunction morphism G → φ∗φ

∗G is an isomorphism.

Proof. Since the question is fppf local on Y , we may assume Y is affine. Then any quasi-coherent
sheaf G on Y has a free resolution G2 → G1 → G → 0. For i = 1, 2, the projection morphism
f∗F ⊗ Gi → f∗(F ⊗ f∗Gi) is an isomorphism. Since the functors f∗F ⊗ − and f∗(F ⊗ f∗−) are
right exact (using that f is cohomologically affine), we have a commutative diagram of right exact
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sequences

f∗F ⊗ G2
//

��

f∗F ⊗ G1
//

��

f∗F ⊗ G //

��

0

f∗(F ⊗ f∗G2) // f∗(F ⊗ f∗G1) // f∗(F ⊗ f∗G) // 0

Since the left two vertical arrows are isomorphisms, so is f∗F ⊗G → f∗(F ⊗ f∗G). If φ : X → Y is
a good moduli space, applying the projection formula with F = OX shows that G → φ∗φ

∗G is an
isomorphism. �

Remark 4.6. If X is the quotient stack [X/R] when R ⇒ X is a smooth groupoid, then the push-
forward φ∗ corresponds to the functor taking invariants. Therefore, it is clear that φ∗ is not in
general faithful and that the adjunction morphism φ∗φ∗G → G is not in general an isomorphism
for a quasi-coherent OX -modules G.

Proposition 4.7. Suppose

X ′

φ′

��

g′ // X

φ
��

Y ′
g // Y

is a cartesian diagram of Artin stacks with Y and Y ′ algebraic spaces. Then

(i) If φ : X → Y is a good moduli space, then φ′ : X ′ → Y ′ is a good moduli space.
(ii) If g is fpqc and φ′ : X ′ → Y ′ is a good moduli space, then φ : X → Y is a good moduli space.

(iii) If φ : X → Y is a good moduli space and F is a quasi-coherent sheaf of OX -modules, then
the adjunction g∗φ∗F → φ′∗g

′∗F is an isomorphism.

Proof. For (ii), Proposition 3.10(v) implies that φ is cohomologically affine. The morphism of quasi-
coherent OX -modules φ# : OY → φ∗OX pulls back under the fpqc morphism g to an isomorphism
so by descent, φ# is an isomorphism.

For (i), the property of being a good moduli space is preserved by flat base change as seen in
proof of Proposition 4.5 and is local in the fppf topology. Therefore, we may assume Y = SpecA

and Y ′ = SpecA′ are affine. There is a canonical identification of A-modules Γ(X , φ∗Ã′) = Γ(X ×A
A′,OX×AA′). By Proposition 4.5, the natural map A′ → Γ(X , φ∗Ã′) is an isomorphism of A-
modules. It follows that X ×A A′ → SpecA′ is a good moduli space.

For (iii), the statement is clearly true if Y ′ → Y is flat. In general, we can reduce to the case where
Y and Y ′ are affine schemes so that Y ′ → Y factors as a closed immersion composed with a flat
morphism. Therefore, it suffices to show (iii) when Y ′ → Y is a closed immersion defined by a quasi-
coherent sheaf I of OY -ideals. We need to show that φ∗F/(Iφ∗F)→ φ∗(F/IF) is an isomorphism,
where IF = im(φ∗I ⊗ F → F). Since φ is cohomologically affine, φ∗(φ

∗I ⊗ F) → φ∗(IF) is
surjective but by the projection formula (Proposition 4.5), it follows that I ⊗ φ∗F → φ∗(IF) is
surjective or in other words the inclusion Iφ∗F → φ∗(IF) is an isomorphism. The statement
follows since φ∗F/φ∗(IF) ∼= φ∗(F/IF). �
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Remark 4.8. If S is an affine scheme and X = [SpecA/G] with G a linearly reductive group scheme
over S, then it is easy to see that φ : X → SpecAG is a good moduli space (see Section 12). If
g : SpecB → SpecAG. Then (i) implies that [Spec(A⊗AGB)/G]→ SpecB is a good moduli space.
In particular, the natural map

B ∼= (A⊗AG B)G

is an isomorphism. If S = Spec k, this is [GIT, Fact (1) in Section 1.2]. In the special case where
B = AG/I for an ideal I ⊆ AG, then this implies that AG/I → (A/IA)G is an isomorphism. By
exactness of invariants, we see that I = IA ∩AG.

If M is an A-module with G-action, then the adjunction map in (iii) implies that the map

MG ⊗AG B −→ (M ⊗AG B)G

is an isomorphism. In the case where B = AG/I for an ideal I ⊆ AG, this implies that MG/IMG →
(M/(IA)M)G. By exactness of invariants, one also sees that IMG = (IA)M ∩MG.

Part (iii) was proved in the case of tame Artin stacks in [Nir08] by using the local structure
theorem of [AOV08] to reduce to the case of a quotient stack of an affine scheme by a finite linearly
reductive group scheme. As in [Nir08, Theorem 1.7 and 1.8], part (iii) directly implies that that
the cohomology and base change theorem and semicontinuity theorem hold for noetherian Artin
stacks admitting a proper good moduli space.

Lemma 4.9. (Analogue of Nagata’s fundamental lemmas) If φ : X → Y is a cohomologically affine
morphism, then

(i) For any quasi-coherent sheaf of ideals I on X ,

φ∗OX /φ∗I
∼→ φ∗(OX /I)

(ii) For any pair of quasi-coherent sheaves of ideals I1, I2 on X ,

φ∗I1 + φ∗I2
∼→ φ∗(I1 + I2)

Proof. Part (i) follows directly from exactness of φ and the exact sequence 0 → I → OX →
OX /I → 0. For (ii), by applying φ∗ to the exact sequence 0→ I1 → I1 + I2 → I2/I1 ∩I2 → 0, we
have a commutative diagram

φ∗I2

�� ((
0 // φ∗I1

// φ∗(I1 + I2) // φ∗I2/φ∗(I1 ∩ I2) // 0

where the row is exact. The result follows. �

Remark 4.10. Part (ii) above implies that for any set of quasi-coherent sheaves of ideals Iα that∑
α

φ∗Iα
∼→ φ∗

(∑
α

Iα
)

The statement certainly holds by induction for finite sums and for the general case we may assume
that Y is an affine scheme. For any element f ∈ Γ(X ,

∑
α Iα), there exists α1, . . . , αn such that

f ∈ Γ(X , Iα1 + · · · Iαn) under the natural inclusion so that the statement follows from the finite
case.



14 ALPER

Remark 4.11. With the notation of Remark 4.8, (i) translates into the natural inclusion AG/(I ∩
AG) ↪→ (A/I)G being an isomorphism for any invariant ideal I ⊆ A. Property (ii) translates into
the inclusion of ideals (I1 ∩ AG) + (I2 ∩ AG) ↪→ (I1 + I2) ∩ AG being an isomorphism for any pair
of invariant ideals I1, I2 ⊆ A. If S = Spec k, this is precisely [Nag64, Lemma 5.1.A, 5.2.A] or [GIT,
Facts (2) and (3) in Section 1.2].

Lemma 4.12. Suppose φ : X → Y is a good moduli space and J is a quasi-coherent sheaf of
ideals in OY defining a closed sub-algebraic space Y ′ ↪→ Y . Let I be the quasi-coherent sheaf of
ideals in OX defining the closed substack X ′ = Y ′ ×Y X ↪→ X . Then the natural map

J −→ φ∗I
is an isomorphism.

Proof. Since the property of being a good moduli space is preserved under arbitrary base change,
φ′ : X ′ → Y ′ is a good moduli space. By pulling back the exact sequence defining J , we have an
exact sequence φ∗J → φ∗OY → φ∗OY ′ → 0. Since the sequence 0 → I → φ∗OY → φ∗OY ′ → 0 is
exact, there is a natural map α : φ∗J → I. By composing the adjunction morphism J → φ∗φ

∗J
with φ∗α, we have a natural map J → φ∗I such that the diagram

0 // J //

��

OY //

��

OY ′ //

��

0

0 // φ∗I // φ∗OX // φ∗OX ′ // 0

commutes and the bottom row is exact (since φ∗ is exact). Since the two right vertical arrows are
isomorphism, J → φ∗I is an isomorphism. �

Remark 4.13. With the notation of 4.8, this states that for all ideals I ⊆ AG, then IA ∩ AG = I.
This fact is used in [GIT] to prove that if A is noetherian then AG is noetherian. We will use this
lemma to prove the analogous result for good moduli spaces.

Lemma 4.14. Suppose φ : X → Y is a good moduli space and A is a quasi-coherent sheaf of
OX -algebras. Then SpecX A → SpecY φ∗A is a good moduli space. In particular, if Z ⊆ X is a
closed substack and imZ denotes its scheme-theoretic image the morphism Z → imZ is a good
moduli space.

Proof. By considering the commutative diagram

SpecA i //

φ′

��

X

φ

��
Specφ∗A

j // Y

the property P argument of 3.13 implies that φ′ is cohomologically affine. Since φ∗i∗OSpecA ∼= φ∗A,
it follows that OSpecφ∗A → φ′∗OSpecA is an isomorphism so that φ′ is a good moduli space. Let I be
a quasi-coherent sheaf of ideals in OX defining Z. Then Z ∼= SpecOX /I, φ∗(OX /I) ∼= φ∗OX /φ∗I
and φ∗I is the kernel of OY → φ∗i∗OZ . �
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Lemma 4.15. If φ1 : X1 → Y1 and φ2 : X2 → Y2 are good moduli spaces, then φ1×φ2 : X1×SX2 →
Y1 ×S Y2 is a good moduli space.

Proof. The cartesian squares

X1 ×S X2
(id,φ2)//

zz

X1 ×S Y2
(φ1,id)//

xx &&

Y1 ×S Y2

$$
X2

// Y2 X1
// Y1

imply that (id, φ2) and (φ1, id) are good moduli space morphisms (ie. cohomologically affine mor-
phisms f : X → Y which induce isomorphisms OY → f∗OX ; see Remark 4.4) so the composition
φ1 × φ2 is a good moduli space. �

Theorem 4.16. If φ : X → Y is a good moduli space, then

(i) φ is surjective.
(ii) φ is universally closed.

(iii) If Z1, Z2 are closed substacks of X , then

imZ1 ∩ imZ2 = im(Z1 ∩ Z2)

where the intersections and images are scheme-theoretic.
(iv) For an algebraically closed OS-field k, there is an equivalence relation defined on [X (k)] by

x1 ∼ x2 ∈ [X (k)] if {x1}∩{x2} 6= ∅ in X×S k which induces a bijective map [X (k)]/∼ → Y (k).
That is, k-valued points of Y are k-valued points of X up to closure equivalence.

(v) φ is universally submersive (that is, φ is surjective and Y , as well as any base change, has the
quotient topology).

(vi) φ is universal for maps to schemes (that is, for any morphism to a scheme ψ : X → Z, there
exists a unique map ξ : Y → Z such that ξ ◦ φ = ψ).

(vii) φ has geometrically connected fibers.
(viii) If X is reduced (resp. quasi-compact, connected, irreducible, or both locally noetherian and

normal), then Y is also. The morphism φ
red

: X
red
→ Y

red
is a good moduli space.

(ix) If F is a quasi-coherent sheaf of OX -modules flat over S, then φ∗F is flat over S. In particular,
if X → S is flat (resp. faithfully flat), then Y → S is flat (resp. faithfully flat).

(x) If X is locally noetherian, then Y is locally noetherian and φ∗ preserves coherence.
(xi) If S is an excellent scheme (see [EGA, IV.7.8]) and X is finite type over S, then Y is finite

type over S.

Proof of (i): Let y : Spec k → Y be any point of Y . Since the property of being a good moduli
space is preserved under arbitrary base change,

Xy //

φy
��

X

φ

��
Spec k

y // Y
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φy : Xy → Spec k is a good moduli space and k
∼→ Γ(Xy,OXy) is an isomorphism. In particular,

the stack Xy is non-empty implying φ is surjective.

Proof of (ii): If Z ⊆ X is a closed substack, then Lemma 4.14 implies that Z → imZ is a good
moduli space. Therefore, part (i) above implies φ(|Z|) ⊆ |Y | is closed. Proposition 4.7(ii) implies
that φ is universally closed.

Proof of (iii): This is a restatement of Lemma 4.9(ii).

Proof of (iv): We may assume Y and X are quasi-compact. The OS-field k gives s : Spec k → S.
The induced morphism φs : Xs → Ys is a good moduli space. For any geometric point x ∈ Xs(k)

and any point y ∈ {x} ⊆ Xs with y ∈ Xs(k) closed, property (iii) applied to the closed substacks

{x}, {y} ⊆ Xs implies that φs({x}) ∩ {φs(y)} = {φs(y)} and therefore φs(y) ∈ φs({x}) = {φs(x)}.
But φs(x) and φs(y) are k-valued points of Ys → Spec k so it follows that φs(x) = φs(y). This implies
both that ∼ is an equivalence relation and that [X (k)]→ Y (k) factors into [X (k)]/ ∼ → Y (k) which

is surjective. If x1 � x2 ∈ Xs(k), then {x1} and {x2} are disjoint closed substacks of Xs. By part

(iii), φ({x1}) and φ({x2}) are disjoint and in particular φ(x1) 6= φ(x2).

Proof of (v): If Z ⊆ |Y | is any subset with φ−1(Z) ⊆ |X | closed. Then since φ is surjective and
closed, Z = φ(φ−1(Z)) is closed. This implies that φ is submersive and since good moduli spaces
are stable under base change, φ is universally submersive.

Proof of (vi): We adapt the argument of [GIT, Prop 0.1 and Rmk 0.5]. Suppose ψ : X → Z
is any morphism where Z is a scheme. Let {Vi} be a covering of Z by affine schemes and set
Wi = |X | − ψ−1(Vi) ⊆ |X |. Since φ is closed, Ui = Y − φ(Wi) is open and φ−1(Ui) ⊆ ψ−1(Vi)
for all i. Since {φ−1(Vi)} cover |X |,

⋂
iWi = ∅ so by Remark 4.10,

⋂
i φ(Wi) = ∅. Therefore,

{Ui} cover Y and φ−1(Ui) ⊆ ψ−1(Vi). By property (ii) of a good moduli space, we have that
Γ(Ui,OY ) = Γ(φ−1(Ui),OX ) so there is a unique map χi : Ui → Vi such that

φ−1(Ui)

φ

��

ψ

##
Ui

χi // Vi

commutes. By uniqueness χi = χj on Ui ∩ Uj . This finishes the proof of (vi).

Proof of (vii): For a geometric point Spec k → Y , the base change X ×Y k → Spec k is a good
moduli space and it separates disjoint closed substacks by (iii). Therefore, X ×Y k is connected.

Proof of (ix): Consider

X
p

��

φ // Y

q
~~

S
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We may assume Y and S are affine. Since F is flat over S, the functor p∗(·) ⊗ F is exact. By
Proposition 4.5, the natural map Id→ φ∗φ

∗ is an isomorphism of functors QCoh(Y )→ QCoh(Y ).
Therefore, there is an isomorphism of functors

q∗(·)⊗ φ∗F ∼= φ∗φ
∗q∗(·)⊗ φ∗F ∼= φ∗(p

∗(·)⊗F)

which is exact since φ∗ and p∗(·)⊗F are exact. It follows that φ∗F is flat over S.

Proof of (x): Note that X is quasi-compact if and only if Y is quasi-compact. Therefore we may
assume Y is quasi-compact so that X is noetherian. The first part follows formally from Lemma
4.12. If J• : J1 ⊆ J2 ⊆ · · · is chain of quasi-coherent ideals in OY , let Ik be the coherent sheaf of
ideals in OX defining the closed substack Yk×Y X , where Yk is the closed sub-algebraic space defined
by Jk. The chain I• : I1 ⊆ I2 ⊆ · · · terminates and therefore J• terminates since φ∗Ik = Jk.
Therefore, Y is noetherian.

For the second statement, we may assume that Y is affine and X is irreducible. We first handle
the case when X is reduced. By noetherian induction, we may assume for every coherent sheaf F
such that SuppF ( X , φ∗F is coherent. Let F be a coherent sheaf with SuppF = |X |. If Ftors

denotes the maximal torsion subsheaf of F (see [Lie07, Section 2.2.6]), then SuppFtors ( X and
the exact sequence

0 −→ Ftors −→ F −→ F/Ftors −→ 0

implies φ∗F is coherent as long as φ∗(F/Ftors) is coherent. Since F/Ftors is pure, we may reduce
to the case where F is pure. Furthermore, we may assume φ∗F 6= 0. Let m 6= 0 ∈ Γ(X ,F). We
claim that m : OX → F is injective. If ker(m) 6= 0, then Supp(imm) ( |X | is a non-empty, proper
closed substack which contradicts the purity of F . Therefore, we have an exact sequence

0 −→ OX
m→ F −→ F/OX −→ 0

so that φ∗F is coherent if and only if φ∗(F/OX ) is coherent. Let p : U → X be a smooth
presentation with U = SpecA affine. Let ηi ∈ U be the points corresponding to the minimal
primes of A. Since Spec k(ηi)→ U is flat, the sequence

0 −→ k(ηi) −→ p∗F ⊗ k(ηi) −→ p∗(F/OX )⊗ k(ηi) −→ 0

is exact so that dimk(ηi) p
∗(F/OX ) ⊗ k(ηi) = dimk(ηi) p

∗F ⊗ k(ηi) − 1. By induction on these
dimensions, φ∗F is coherent.

Finally, if X is not necessarily reduced, let J be the sheaf of ideals in OX defining X
red

↪→ X .
For some N , JN = 0. Considering the exact sequences

0 −→ J k+1F −→ J kF −→ J kF/J k+1F −→ 0

Since J annihilates J kF/J k+1F , φ∗(J kF/J k+1F) is coherent. It follows by induction that φ∗F
is coherent.

Proof of (viii): These statements are easy to check directly. For instance, suppose X is locally
noetherian and normal. By part (x), we can assume Y = SpecA is the spectrum of a noetherian

domain. If ν : Y ′ → Y is the normalization, then since X is normal, φ factors as φ : X φ′−→ Y ′
ν−→ Y .

But by the universality of good moduli spaces (part (vi)), we also have a factorization φ′ : X φ−→ Y
ϕ−→

for some ϕ : Y → Y ′ which must be an isomorphism. We conclude that Y is normal.
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Proof of (xi): Clearly we may suppose S = SpecR with R excellent and Y = SpecA. We have
that φ

red
: X

red
→ SpecA

red
is a good moduli space and for each irreducible component Xi of X

red
,

the morphism Xi → φ
red

(Xi) is a good moduli space. Using [Fog83, p. 169], we may assume that
X and Y are reduced and irreducible. Since S is excellent, the normalization π : X ′ → X is a finite
morphism. By Lemma 4.14 and part (x), there is a good moduli space φ′ : X ′ → Y ′ such that
Y ′ → Y is a finite morphism. By (viii) and (x), Y ′ = SpecA′ is normal and noetherian. Since A
is finitely generated over R if and only if A′ is finitely generated over R, we may assume that Y is
normal and noetherian.

Fogarty proves in [Fog87] that if X → Y is a surjective R-morphism with X irreducible and of
finite type over R and Y is normal and noetherian, then Y is finite type over S. His argument
easily extends to the case where X is not necessarily irreducible but the irreducible components
dominate Y . If p : X → X is any fppf presentation of X , then φ ◦ p is surjective (from (i)) and the
irreducible components of X dominate Y . Since Y is normal and noetherian (from (x)), Fogarty’s
result then implies that Y is finite type over S. �

5. Descent of étale morphisms to good moduli spaces

One cannot expect that an étale morphism between Artin stacks induces an étale morphism of the
associated good moduli spaces. However, if the morphism induces an isomorphism of stabilizers at a
point, then one might expect that étaleness is preserved. The following theorem is a generalization
of [Lun73, Lemma 1 on p.90] and [KM97, Lemma 6.3] (see [Con05, Theorem 4.2] for a stack-
theoretic statement). We will apply this theorem to prove uniqueness of good moduli spaces in the
next section.

Theorem 5.1. Consider a commutative diagram

X
f //

φ
��

X ′

φ′

��
Y

g // Y ′

with X ,X ′ locally noetherian Artin stacks and φ, φ′ good moduli spaces and f representable. Let
ξ ∈ |X |. Suppose

(a) There is a representative x : Spec k → X of ξ with AutX (k)(x) ↪→ AutX ′(k)(f(x)) an isomor-
phism of group schemes.

(b) f is étale at ξ.
(c) ξ and f(ξ) are closed.

Then g is formally étale at φ(ξ).

Proof. Since f is étale at ξ, there is a cartesian diagram

Gξ //

��

X1
//

��

· · ·

Gξ′ // X ′1 // · · ·
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where the vertical arrows are étale and Xi,X ′i the nilpotent thickenings of the closed immersions
Gξ ↪→ X ,Gξ′ ↪→ X ′. Indeed, Gξ′ ×X ′ X is a reduced closed substack of X étale over Gξ′ and there
is an induced closed immersion Gξ ↪→ Gξ′ ×X ′ X which must correspond to the inclusion of the
irreducible component of {ξ} ⊆ |Gξ′ ×X ′ X|.

Let Xi → Yi,X ′i → Y ′i be the induced good moduli spaces and Y = lim
−→

Yi, Y
′ = lim

−→
Y ′i . The

étale morphism Gξ → Gξ induces a morphism on underlying sheaves and a diagram

Gξ //

��

Gξ′

��
Spec k(ξ) // Spec k(ξ′)

We claim that the diagram is cartesian and that k(ξ′) ↪→ k(ξ) is a separable field extension. Let K
be an algebraic closure of k(ξ). The morphism Gξ → Gξ′×k(ξ′)k(ξ) pulls back under the base change
SpecK → Spec k(ξ) to the natural map of group schemes BGx → BGf(x), where x : SpecK → X
is a representative of ξ, which by hypothesis (a) is an isomorphism. This implies that the diagram
is cartesian. Since Gξ′ → Spec k(ξ′) is fppf, descent implies that Spec k(ξ)→ Spec k(ξ′) is étale.

If k(ξ) = k(ξ′), then each Xi → X ′i is an isomorphism which induces an isomorphism Yi → Y ′i .

It is clear then that ÔY ′,φ′◦f(ξ)
∼→ ÔY,φ(ξ).

If Z ′0 = Spec k(ξ), there is an étale morphism h0 : Z ′0 → Y ′0 . There exists unique schemes Z ′i
and étale morphisms hi : Z ′i → Y ′i such that Z ′i = Z ′j ×Y ′j Y

′
i for i < j and inducing a formally

étale covering Z′ → Y′ with Z′ = lim
−→

Z ′i. By base changing by Z′ → Y′, we obtain a formal scheme

Z→ Y with Z = lim
−→

Zi where Zi = Z ′i ×Y ′i Yi and Z0 =
⊔

Spec k(ξ) as well as a cartesian diagram

Gξ ×k(ξ) Z0
//

h0
��

X1 ×Y1 Z1

h1
��

// X2 ×Y2 Z2

h2
��

// · · ·

Gξ′ ×k(ξ′) k(ξ) // X ′1 ×Y ′1 Z
′
1

// X ′1 ×Y ′2 Z
′
2

// · · ·

where the vertical arrows are étale. Since Gξ ∼= Gξ′ ×k(ξ′) k(ξ), the morphism h0 is a disjoint union
of isomorphisms. Since extensions of étale morphisms over nilpotent thickenings are unique, each
hi is a disjoint union of isomorphisms. Therefore, the induced morphism of good moduli spaces
Z→ Z′ is adic and formally étale. In the cartesian diagram

Z

��

// Z′

��
Y // Y′

the vertical arrows are adic, formally étale coverings. It follows that Y → Y′ is both adic and
formally étale. �



20 ALPER

6. Uniqueness of good moduli spaces

We will prove that good moduli spaces are universal for maps to algebraic spaces by reducing to
the case of schemes (Theorem 4.16 (vi)).

Definition 6.1. If φ : X → Y is a good moduli space, an open substack U ⊆ X is saturated for φ
if φ−1(φ(U)) = U .

Remark 6.2. If U is saturated for φ, then φ(U) is open and φ|U : U → φ(U) is a good moduli space.

Lemma 6.3. Suppose φ : X → Y is a good moduli space. If ψ : X → Z is a morphism where Z is
a scheme and V ⊆ Z is an open subscheme, then ψ−1(V ) is saturated for φ.

Proof. Since Z is a scheme, there exists a morphism χ : Y → Z with ψ = χ ◦ φ. It follows that
ψ−1(V ) = φ−1(χ−1(V )) is saturated. �

The following gives a generalization of [Lun73, Lemma p.89] although in this paper, we will only
need the special case where g is an isomorphism.

Proposition 6.4. Suppose X ,X ′ are locally noetherian Artin stacks and

X
f //

φ
��

X ′

φ′

��
Y

g // Y ′

is commutative with φ, φ′ good moduli spaces. Suppose

(a) f is representable, quasi-finite and separated.
(b) g is finite.
(c) f maps closed points to closed points.

Then f is finite.

Proof. We may assume S and Y ′ are affine schemes. By Zariski’s Main Theorem ([LMB00, Thm.
16.5]), there exists a factorization

X I //

f

  

Z

f ′

��
X ′

where I is a open immersion, f ′ is a finite morphism and OZ ↪→ I∗OX is an inclusion. Since X ′ is
cohomologically affine and f ′ is finite, Z is cohomologically affine and admits a good moduli space
ϕ : Z → Z. We have a commutative diagram of affine schemes

Y
i //

g

��

Z

g′

��

Γ(X ,OX ) Γ(Z,OZ)
i#oo

Y ′ Γ(X ′,OX ′).

g′#

OO
g#

gg
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Since i# is injective and g is finite, i : Y → Z is a surjective, finite morphism.

For any closed point ζ ∈ |Z|, there exists a closed point ξ ∈ |X | with ϕ(ζ) = (i ◦ φ)(ξ) and
f(ξ) ∈ |X ′| is closed. Then f ′−1(f(ξ)) ⊆ |Z| is a closed set consisting of finitely many closed points.
In particular, I(ξ) is closed but since ϕ separates closed points and ϕ(I(ξ)) = ϕ(ζ), it follows that
I(ξ) = ζ. Therefore, I(X ) contains all closed points. This implies that I is an isomorphism so that
f is finite. �

The following lemma will be useful in verifying condition (iii) above.

Lemma 6.5. Suppose

X
f //

φ

  

X ′

φ′

��
Y

is a commutative diagram with φ, φ′ good moduli spaces and f surjective. Then f maps closed
points to closed points.

Proof. If ξ ∈ |X | is closed, the image y ∈ |Y | is closed and after base changing by Spec k(y)→ Y ,
we have

Xy
fy //

φy

$$

X ′y
φ′y
��

Spec k(y)

with φy, φ
′
y good moduli spaces. Since Xy and X ′y have unique closed points, fy(ξ) is closed in |X ′y|

and therefore f(ξ) is closed in |X ′|. �

Theorem 6.6. Suppose X is a locally noetherian Artin stack and φ : X → Y is a good moduli
space. Then φ is universal for maps to algebraic spaces.

Proof. Let Z be an algebraic space. We need to show that the natural map

Hom(Y,Z) −→ Hom(X , Z)

is a bijection of sets. The injectivity argument is functorial by working étale-locally on Z.

Suppose ψ : X → Z. The question is Zariski-local on Z by the same argument in the proof
of Theorem 4.16 (vi) so we may assume Z is quasi-compact. There exists an étale, quasi-finite
surjection g : Z1 → Z with Z1 a scheme. By Zariski’s main theorem for arbitrary algebraic spaces

([LMB00, Thm 16.5] and [RG71, Proposition 5.7.8]), g factors as an open immersion Z1 ↪→ Z̃ and

finite morphism Z̃1 → Z. By taking the fiber product by ψ : X → Z, we have

X̃

f̃
��

X1

j
??

f // X
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with j an open immersion and f̃ is finite. By Lemma 4.14 since X̃ ∼= SpecA for a coherent sheaf

of OX -algebras A, there is a good moduli space φ̃ : X̃ → Ỹ with Ỹ = Specφ∗A. The induced

map Ỹ → Y is finite since φ∗A is coherent (Theorem 4.16 (x)). If ψ̃ : X̃ → Z̃, then ψ̃−1(Z1) is

saturated for φ̃ by Lemma 6.3 and therefore there is a good moduli space φ1 : X1 → Y1 inducing

a morphism g : Y1 → Y which factors as the composition of the open immersion Y1 ↪→ Ỹ and the

finite morphism Ỹ → Y . In particular, Y1 → Y is finite type.

Write Z2 = Z1×ZZ1 so that s, t : Z2 ⇒ Z1 is an étale equivalence relation and write Xi = X×ZZi
and ψi : Xi → Zi. By the above argument, there is a good moduli space φ2 : X2 → Y2 and
induced finite type morphisms s, t : Y2 ⇒ Y1. Since Zi are schemes, there are induced morphisms
ξi : Xi → Zi such that ξi = ψi ◦ ξi. By uniqueness, χ1 ◦ s = s ◦χ2 and χ1 ◦ t = t ◦χ2. The picture is

(6.1) X2
////

φ2
��

X1
f //

φ1
��

X

φ
��

Y2
s //
t
//

χ2

��

Y1
g //

χ1

��

Y

��
Z2

s //

t
// Z1

// Z

Our goal is to show that Y2 ⇒ Y1 is an étale equivalence relation with quotient Y . The morphism
f : X1 → X is surjective, étale and preserves stabilizer automorphism groups for all points (in the
sense of Theorem 5.1(a)). To show that g : Y1 → Y is étale, it suffices to check at closed points. If
y1 ∈ |Y1| is closed, then as g is finite type, the image g(y1) is closed in some open V ⊆ Y and g is
étale at y1 if and only if g|g−1(V ) is étale at y1. We can find a closed point ξ ∈ |φ−1(V )| over g(y1)

and a closed preimage ξ1 ∈ |(φ′ ◦ g)−1(V )| over y1. It follows from Theorem 5.1 that g is étale at
y1. Similarly, s, t : Y2 ⇒ Y1 are étale.

Now consider the induced 2-commutative diagram

X1

ϕ

��

f

$$
Y1 ×Y X

h // X

Then ϕ is étale, quasi-compact and separated and, in particular, quasi-finite. Note that ϕ is also
surjective. Indeed, to check this, we may assume Y = SpecK for an algebraically closed field K
and since g is etale, we may also assume Y ′ = SpecK in which case ϕ is isomorphic to f which we
know is surjective. By Lemma 6.5, ϕ sends closed points to closed points. By Corollary 6.4, ϕ is a
finite étale morphism and since ϕ has only one preimage over any closed point in Y ′×Y X , ϕ is an
isomorphism. Similarly s, t : Y2 ⇒ Y1 are étale and the top squares in diagram 6.1 are cartesian.
Furthermore, by universality of good moduli spaces for morphisms to schemes, Y2 = Y1 ×Y Y1 so
that Y is the quotient of the étale equivalence relation Y2 ⇒ Y1. Therefore there exists a map
χ : Y → Z and the two maps χ ◦ φ and ψ agree because they agree after étale base change. �
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7. Tame moduli spaces

The following notion captures the properties of a geometric quotient by a linearly reductive group
scheme.

Definition 7.1. We will call φ : X → Y a tame moduli space if

(i) φ is a good moduli space.
(ii) For all geometric points Spec k → S, the map

[X (k)] −→ Y (k)

is a bijection of sets.

Remark 7.2. [X (k)] denotes the set of isomorphism classes of objects of X (k).

Remark 7.3. This property is stable under arbitrary base change and satisfies fppf descent. If X
is locally noetherian, then by Theorem 6.6, tame moduli spaces are universal for maps to algebraic
spaces and therefore φ is both a good moduli space and coarse moduli space. The map from a tame
Artin stack to its coarse moduli space is a tame moduli space.

Proposition 7.4. If φ : X → Y is a tame moduli space, then φ is a universal homeomorphism.
In particular, φ is universally open and induces a bijection between open substacks of X and open
sub-algebraic spaces of Y .

Proof. If U ⊂ X is an open substack, let Z be the complement. Since φ is closed, φ(Z) is closed
sub-algebraic space. Set-theoretically φ(Z) ∩ φ(U) = ∅ because of property (ii) of a tame moduli
space. Therefore, φ(U) is open. �

Proposition 7.5. If φ : X → Y is a tame moduli space and x : Spec k → X is a geometric point,
then the natural map BGx → X ×Y Spec k is a surjective closed immersion.

Proof. The morphism Spec k → X ×S Spec k is finite type so that BGx → X ×S Spec k is a locally
closed immersion. By considering the cartesian square

X ×Y k //

��

X ×S k

��
Spec k // Y ×S k

it follows since Spec k → Y ×S k is separated that the induced morphism BGx → X ×Y k is a
locally closed immersion. But it also surjective since [X (k)]→ Y (k) is bijective. �

Remark 7.6. It is not true that BGx → X ×Y Spec k is an isomorphism. For instance over S =
Spec k, if I is the ideal sheaf defining BGm → [A1/Gm] and Xn ↪→ [A1/Gm] is defined by In+1

with n > 0, then Xn → Spec k is a good moduli space but the induced map BGm → Xn is not an
isomorphism.

Proposition 7.7. (Analogue of [GIT, Proposition 0.6 and Amplification 1.3]) Suppose φ : X → Y
is a good moduli space. Then φ : X → Y is a tame moduli space if and only if X has closed
orbits. If this holds and if Y is locally separated, then Y is separated if and only if the image of
∆X/S : X → X ×S X is closed.
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Proof. The only if implication is implied by the previous proposition. Conversely, suppose X has
closed orbits and suppose φ is not a tame moduli space. Let x1, x2 ∈ X (k) be two geometric
points mapping to y ∈ Y (k) and s ∈ S(k). Since φs : Xs → Ys is a good moduli space and
BGx1 , BGx2 ⊆ Xs are closed substacks with the property that φs(BGx1) = φs(BGx2) = {y} ⊆ |Y |,
it follows that x1 is isomorphic to x2.

Since φ : X → Y is a good moduli space, the image of ∆X/S is precisely the image of X ×Y X →
X ×S X . Since

X ×Y X //

��

X ×S X

φ×φ
��

Y
∆ // Y ×S Y

is cartesian and φ×φ is submersive, ∆(Y ) is closed if and only if (φ×φ)−1(∆(Y )) is closed, which
is true if and only if im(∆X/S) is closed. �

7.8. Gluing good moduli spaces. It is convenient to know when good moduli spaces can be
glued together. Certainly one cannot always expect to glue good moduli spaces (see Example 8.2).
Given a cover of an Artin stack by open substacks admitting a good moduli space, one would like
criteria guaranteeing the existence of a global good moduli space.

Proposition 7.9. Suppose X is an Artin stack (resp. locally noetherian Artin stack) over S
containing open substacks {Ui}i∈I such that for each i, there exists a good moduli space φi : Ui → Yi
with Yi a scheme (resp. algebraic space). Let U =

⋃
i Ui. Then there exists a good moduli space

φ : U → Y and open sub-algebraic spaces Ỹi ⊆ Y such that Ỹi ∼= Yi and φ−1(Ỹi) = Ui if and only if
for each i, j ∈ I, Ui ∩ Uj is saturated for φi : Ui → Yi (see Definition 6.1).

Proof. The only if direction is clear. For the converse, set Uij = Ui ∩ Uj and Yij = φi(Uij) ⊆ Yi.
The hypotheses imply that φi|Uij : Uij → Yij is a good moduli space. Since good moduli spaces are

unique (Theorem 4.16(vi) and Theorem 6.6), there are unique isomorphisms ϕij : Yij
∼→ Yji such

that ϕij ◦ φi|Uij = φj |Uij and ϕij = ϕ−1
ji . Set Uijk = Ui ∩ Uj ∩ Uk so that Yij ∩ Yik = φi(Uijk). Since

the intersection of saturated sets remains saturated, φi|Uijk : Uijk → Yij∩Yik is a good moduli space

and there is a unique isomorphism ϕijk : Yij ∩ Yik
∼→ Yji ∩ Yjk such that ϕijk ◦φi|Uijk = φj |Uijk . We

have ϕij |Yij∩Yik = ϕijk. The composition

α : Yik ∩ Yij
ϕikj→ Yki ∩ Yji

ϕkji→ Yjk ∩ Yji
satisfies α ◦ φi|Uijk = φj |Uijk so by uniqueness ϕijk = ϕkji ◦ ϕikj . Therefore, we may glue the Yi
to form a scheme (resp. algebraic space) Y . The morphisms φi agree on the intersection Uij and
therefore glue to form a morphism φ : U → Y with the desired properties. �

There is no issue with gluing tame moduli spaces.

Proposition 7.10. Suppose X is an Artin stack (resp. locally noetherian Artin stack) over S
containing open substacks {Ui}i∈I such that for each i, there exists a tame moduli space φi : Ui → Yi
with Yi a scheme (resp. algebraic space). Let U =

⋃
i Ui. Then there exists a tame moduli space

φ : U → Y and open sub-algebraic spaces Ỹi ⊆ Y such that Ỹi ∼= Yi and φ−1(Ỹi) = Ui.
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Proof. By Proposition 7.4, each φi induces a bijection between open sets of Xi and Yi and therefore
every open substack of Xi is saturated. �

8. Examples

Example 8.1. If X is a tame Artin stack (see [AOV08]) and φ : X → Y is its coarse moduli space,
then φ is a good moduli space.

Let S = Spec k.

Example 8.2. φ : [A1/Gm]→ Spec k is a good moduli space. Similarly, φ : [A2/Gm]→ Spec k is a
good moduli space. The open substack [A2r{0}/Gm] is isomorphic to P1. This example illustrates
that good moduli spaces may vary greatly as one varies the open substack.

Example 8.3. If G is a linearly reductive group scheme over k (see Section 12) acting a scheme
X = SpecA, then φ : [X/G]→ SpecAG is a good moduli space (see Theorem 13.2).

Example 8.4. φ : [P1/Gm] → k is not a good moduli space. Although condition (ii) of the
definition is satisfied, φ is not cohomologically affine. There are two closed points in [P1/Gm] which
have the same image under φ contradicting property (iii) of Theorem 4.16.

Example 8.5. φ : [P1/PGL2] → Spec k is not a good moduli space. Indeed, there is an iso-
morphism of stacks [P1/PGL2] ∼= B(UT2) where UT2 ⊂ GL2 is the subgroup of upper triangular
matrices. Since UT2 is not linearly reductive (see Section 12), φ is not cohomologically affine.

Example 8.6. We recall Mumford’s example ([GIT, Example 0.4]) of a geometric quotient that is
not universal for maps to algebraic spaces over S = SpecC. The example is: SL2 acts naturally on
the quasi-affine scheme

X = {(L,Q2)| L is nonzero linear form,
Q is a quadratic form with discriminant 1}

The action is set-theoretically free (ie. SL2(k) acts freely on X(k)) but the action is not even proper
(ie. SL2×X → X×X is not proper). If we write X = [X/ SL2], then X is the non-locally separated
affine line which is an algebraic space but not a scheme. The morphism

φ : X → A1

(αx+ βy,Q2) 7→ Q2(−β, α)

is a geometric quotient but not categorical in the category of algebraic spaces as X is an algebraic
space which is not a scheme. The induced map X → A1 is not a good moduli space (as one can
check directly that Γ(X ,OX )→ Γ(X ,OX /I) is not surjective where I defines a nilpotent thickening
of the origin).

In the following examples, let S = Spec k with k an algebraically closed field of characteristic 0.
The characteristic 0 hypothesis is certainly necessarily while the algebraically closed assumption
can presumably be removed.
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Example 8.7. Moduli of semi-stable sheaves
Let X be a connected projective scheme over k. Fix an ample line bundle OX(1) on X and a
polynomial P ∈ Q[z]. For a coherent sheaf E on X of dimension d, the reduced Hilbert polynomial
p(E,m) = P (E,m)/αd(E) where P is the Hilbert polynomial of E and αd/d! is the leading term.
A coherent sheaf E on X of dimension d is called semi-stable (resp. stable) if E is pure and for any
proper subsheaf F ⊂ E, p(F ) ≤ p(E) (resp. p(F ) < p(E)). A family of semi-stable sheaves over T
with Hilbert polynomial P is a coherent sheaf E on X ×S T flat over T such that for all geometric
points t : SpecK → T , Et is semi-stable on Xt with Hilbert polynomial P .

Let Mss
X,P be the stack whose objects over T are families of semi-stable sheaves over T with

Hilbert polynomial P and a morphism from E1 on X ×S T1 to E2 on X ×S T2 is the data of a
morphism g : T1 → T2 and an isomorphism φ : E1 → (id×g)∗E2. Mss

X,P is an Artin stack finite type
over k. Let Ms

X,P ⊆ Mss
X,P be the open substack consisting of families of stables sheaves. While

every pure sheaf of dimension d has a unique Harder-Narasimhan filtration where the factors are
semi-stable, every semi-stable sheaf E has a Jordan-Hölder filtration 0 = E0 ⊂ E1 ⊂ · · · ⊂ El = E
where the factors gri = Ei/Ei−1 are stable with reduced Hilbert polynomial p(E). The graded
object gr(E) =

⊕
i gri(E) does not depend on the choice of Jordan-Hölder filtration. Two semi-

stable sheaves E1 and E2 with the same reduced Hilbert polynomial are called S-equivalent if
gr(E1) ∼= gr(E2). A semi-stable sheaf is polystable if can be written as the direct sum of stable
sheaves.

The family of semi-stable sheaves on X with Hilbert polynomial P is bounded (see [HL97, Theo-
rem 3.3.7]). Therefore, there is an integer m such that for any semi-stable sheaf F with Hilbert poly-

nomial P , F (m) is globally generated and h0(F (m)) = P (m). There is surjection OX(−m)P (m) →
F which depends on a choice of basis of Γ(X,F (m)). There is an open subscheme U of the Quot

scheme QuotX,P (OX(−m)P (m)) parameterizing semi-stable sheaves and inducing an isomorphism

on H0 which is invariant under the natural action of GLP (m) on QuotX,P (OX(−m)P (m)). One can
show that Mss

X,P = [U/GLP (m)]. The arguments given by Gieseker and Maruyama and also later

by Simpson (see [HL97, Ch. 4]) imply that there is a good moduli space φ :Mss
X,P →M ss

X,P where

M ss
X,P is projective. Moreover, there is an open subscheme M s

X,P such that φ−1(M s
X,P ) = Ms

X,P

and φ|Ms
X,P

is a tame moduli space. To summarize, we have

Ms
X,P
� � //

��

Mss
X,P

φ

��
M s
X,P
� � // M ss

X,P

We stress that φ is not a coarse moduli space and two k-valued points of Mss
X,P have the same

image under φ if and only if the corresponding semi-stable sheaves are S-equivalent.

Example 8.8. Compactification of the universal Picard variety
Let g ≥ 2. Recall that a semi-stable (resp. stable) curve of genus g over T is a proper, flat morphism
π : C → T whose geometric fibers are reduced, connected, nodal 1-dimensional schemes Ct with
arithmetic genus g such that any non-singular rational component meets the other components in
at least two (resp. three) points. For a semi-stable curve C → Spec k, the non-singular rational
components meeting other components at precisely two points are called exceptional. A quasi-stable
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curve of genus g over T is a semi-stable curve such that in any geometric fiber, no two exceptional
components meet. A line bundle L of degree d on a semi-stable curve C → Spec k of genus g is
said to be semi-stable (or balanced) if for every exceptional component E of C, degE L = 1, and if
for every connected projective sub-curve Y of genus gY meeting the complement in kY points, the
degree dY of Y satisfies: ∣∣dY − d

g − 1
(gY − 1 + kY /2)

∣∣ ≤ kY /2
It is shown in [Mel08] that the stack Gd,g parameterizing quasi-stable curves of genus g with semi-

stable line bundles of degree d is Artin. There is an open substack Gd,g ⊆ Gd,g consisting of stable
curves and the morphism Gd,g → Mg is the universal Picard variety. Lucia Caporaso in [Cap94]

showed that there exists a good moduli space φ : Gd,g → P d,g (which is not a coarse moduli space)

where P d,g is a projective scheme which maps onto Mg. Furthermore, there is an open subscheme

Pd,g ⊆ P d,g such that φ−1(Pd,g) = Gd,g and φ|Gd,g is a coarse moduli space.

Example 8.9. In [Sch91], Schubert introduced an alternative compactification of Mg parameter-
izing pseudo-stable curves. A pseudo-stable curve of genus g is a connected, reduced curve with at
worst nodes and cusps as singularities where every subcurve of genus 1 (resp. 0) meets the rest of

the curve at least 2 (resp. 3) points. For g ≥ 3,the stackMps
g of pseudo-stable curves is a separated,

Deligne-Mumford stack admitting a coarse moduli space M
ps
g . For g = 2, Mps

g is a non-separated

Artin stack and admits a good moduli space φ : Mps
g → M

ps
g which identifies all cuspidal curves

(cuspidal curves whose normalization are elliptic curves, the cuspidal nodal curve whose normaliza-
tion is P1, and the bicuspidal curve whose normalization is P1) to a point (see [Has05], [HL07b]).
The bicuspidal curve is the unique closed point in the fiber and has as stabilizer the the linearly
reductive group Gm o Z2. For g ≥ 2, the schemes M

ps
g are isomorphic to the log-canonical models

Mg(α) = Proj
⊕

d(Mg, d(KMg
+ α∆) for 7/10 < α ≤ 9/11, where δ is the boundary divisor, and

the morphism Mg →M
ps
g contracts ∆1, the locus of elliptic tails (see [HH09]).

Hassett and Hyeon show in [HH08] for g ≥ 4 (the g = 3 case is handled in [HL07a]) that a flip
occurs at the next step in the log minimal model program at α = 7/10. Furthermore, they give
modular interpretations for Mg(7/10) and Mg(7/10− ε) as the good moduli spaces (but not coarse
moduli spaces) for the stack of Chow semi-stable curves (where curves are allowed as singularities
nodes, cusps, and tacnodes do not admit elliptic tails) and Hilbert semi-stable curves (which are
Chow semi-stable curves not admitting elliptic bridges), respectively.

9. The topology of stacks admitting good moduli spaces

Proposition 9.1. Let X be a locally noetherian Artin stack and φ : X → Y a good moduli space.
Given a closed point y ∈ |Y |, there is a unique closed point x ∈ |φ−1(y)|. The dimension of the
stabilizer of x is strictly larger than the dimension of any other stabilizer in φ−1(y).

Proof. The first statement follows directly from the fact that Xy → Spec k(y) is a good moduli
space and therefore separates closed disjoint substacks. Let r be maximal among the dimensions
of the stabilizers of points of φ−1(y). By upper semi-continuity ([EGA, IV.13.1.3]), Z = {z ∈
|φ−1(y)| | dimGz = r} ⊂ φ−1(y) is a closed substack (given the reduced induced stack structure).
Let x ∈ |Z| be a closed point. If φ−1(y) r {x} is non-empty, there exists a point x′ closed in the
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complement. Since there is an induced closed immersion Gx ↪→ Gx′ , dimGx < dimGx′ contradicting
dimGx = dimGx′ . �

This unique closed point has linearly reductive stabilizer (see Proposition 12.14). Conversely, it
is natural to ask when a point of an Artin stack X is in the closure of another point with lower
dimensional stabilizer. This question was motivated by discussions with Jason Starr and Ravi
Vakil. If X admits a good moduli space, then the answer has a satisfactory answer:

Proposition 9.2. Suppose X is an irreducible noetherian Artin stack finite type over S and
φ : X → Y is a good moduli space. Let d be minimal among the dimensions of stabilizers of points
of X and U = {x ∈ |X | | dimGx = d} be the corresponding dense open substack. Then any closed
point z ∈ |X | not in U is in the closure of a locally closed point w ∈ |X | with dimGw < dimGz.

Proof. Define

(9.1)
σ : |X | → Z, x 7→ dimGx

τ : |X | → Z, x 7→ dimx φ
−1(φ(x))

By applying [EGA, IV.13.1.3], σ is upper semi-continuous and since φ : X → Y is finite type, τ
is also upper semi-continuous. In particular, U is an open substack.

Let z ∈ |X | r |U| be a closed point not contained in the closure of any locally closed point w
with dimGw < dimGz. In particular, z /∈ U so dimGz > d. Set y = φ(z). There is an induced
closed immersion Gz ↪→ φ−1(y) and a diagram

Gz �
� //

$$

φ−1(y) //

��

X

φ

��
Spec k(y) // Y

where both Gz → Spec k(y) and φ−1(y) → Spec k(y) are good moduli spaces. We claim that
Gz ↪→ φ−1(y) is surjective. If not, there would exist a locally closed point w ∈ φ−1(y) distinct from

z but containing z in its closure. But since |Gz| is a proper closed subset of |Gw|, dimGw < dimGz
contradicting our assumptions on z. Therefore dimGz = dimz φ

−1(φ(z)).

For any x ∈ |X |, we will show that dimGx ≤ dimx φ
−1φ(x). Let Z = {z ∈ φ−1(φ(x)) | dimGx ≤

dimGz} which is a closed substack (with the induced reduced stack structure) of φ−1(φ(x)). Let
x′ ∈ |Z| be a closed point. The composition of the closed immersions Gx′ ↪→ Z ↪→ φ−1(φ(x))
induces the inequalities dimGx ≤ dimGx′ ≤ dimx φ

−1φ(x).

For any point x ∈ |X |,

0 = dimGx + dimGx ≤ dimx φ
−1(φ(x)) + dimGx

Set r = dimGz > d. Let W ⊆ X be the open substack consisting of points w ∈ |X | such that
dimGw ≤ r and dimw φ

−1(φ(w)) ≤ −r. Since dimw φ
−1(φ(w)) + dimGw ≥ 0, it follows that for all

w ∈ |W|, dimGw = r and dimφ−1(φ(w)) = −r which contradicts that U ⊆ X is dense. �
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10. Characterization of vector bundles

If φ : X → Y is a good moduli space and G is a vector bundle on Y , then φ∗G is a vector bundle
on X with the property that the stabilizers act trivially on the fibers. It is natural to ask when
a vector bundle F on X descends to Y (that is, when there exists a vector bundle G on Y such
that φ∗G ∼= F). In this section, we prove that if X is locally noetherian, there is an equivalence
of categories between vector bundles on Y and vector bundles on X with the property that at
closed points the stabilizer acts trivially on the fiber. This result provides a generalization of the
corresponding statement for good GIT quotients proved by Knop, Kraft and Vust in [KKV89] and
[Kra89]. We thank Andrew Kresch for pointing out the following argument.

Definition 10.1. A vector bundle F on a locally noetherian Artin stack X has trivial stabilizer ac-
tion at closed points if for all geometric points x : Spec k → X with closed image, the representation
of Gx on F ⊗ k is trivial.

Remark 10.2. This is equivalent to requiring that for all closed points ξ ∈ |X |, inducing a closed
immersion i : Gξ ↪→ X , there is an isomorphism i∗F ∼= OnGξ for some n.

Theorem 10.3. If φ : X → Y is a good moduli space with X locally noetherian, the pullback
functor φ∗ induces an equivalence of categories between vector bundles on Y and the full subcategory
of vector bundles on X with trivial stabilizer action at closed points. The inverse is provided by
the push-forward functor φ∗.

Proof. We will show that if F is a vector bundle on X with trivial stabilizer action at closed
points, the adjunction morphism λ : φ∗φ∗F → F is an isomorphism and φ∗F is locally free. These
statements imply the desired result since the adjunction morphism G → φ∗φ

∗G is an isomorphism
for any quasi-coherent OY -module (see Proposition 4.5).

We may assume that Y = SpecA and F is locally free of rank n. We begin by showing that λ is
surjective. Let ξ ∈ |X | be a closed point which induces a closed immersion i : Gξ ↪→ X defined by
a sheaf of ideals I, a closed point y = φ(ξ) ∈ Y , and a commutative diagram

Gξ
i //

φ′

��

X

φ

��
Spec k(y)

j // Y

It suffices to show that i∗λ is surjective for any such ξ. First, the adjunction morphism α : j∗φ∗F →
φ′∗i
∗F is surjective. Indeed, j∗α corresponds under the natural identifications to φ∗F/(φ∗Iφ∗F)→

φ∗(F/IF) ∼= φ∗F/φ∗(IF) which is surjective since φ∗Iφ∗F ⊆ φ∗(IF). Now i∗λ is the composition

i∗φ∗φ∗F ∼= φ′∗j∗φ∗F
φ′∗α
� φ′∗φ′∗i

∗F ∼→ i∗F
where the last adjunction morphism is an isomorphism precisely because F has trivial stabilizer
action at closed points. Therefore, λ is surjective.

Since Y is affine,
⊕

s∈Γ(X ,F)OY → φ∗F is surjective and it follows that the composition⊕
s∈Γ(X ,F)OX → φ∗φ∗F → F is surjective. Let ξ ∈ |X | be a closed point. There exists n sections

of Γ(X ,F) inducing β : OnX → F such that ξ /∈ Supp(cokerβ). Let V = Y r φ(Supp(cokerβ)) and
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U = φ−1(V ). Then ξ ∈ U and β|U : OnU → F|U is surjective morphism of vector bundles of the same
rank and therefore an isomorphism. It follows that φ∗β|V : OnV → φ∗F|U and λ|U : φ∗φ∗F|U → F|U
are isomorphisms. This shows both that λ is an isomorphism and that φ∗F is a vector bundle. �

Remark 10.4. The corresponding statement for coherent sheaves is not true. Let k be a field with
char(k) 6= 2 and let Z2 act on A1 = Spec k[x] by x 7→ −x. Then [A1/Z2] 7→ Spec k[x2] is a good
moduli space. If i : BZ2 ↪→ [A1/Z2] is the closed immersion corresponding to the origin, then
i∗OBZ2 does not descend.

11. Stability

Artin stacks do not in general admit good moduli spaces just as linearly reductive group actions
on arbitrary schemes do not necessarily admit good quotients. Mumford studied linearized line
bundles as a means to parameterize open invariant subschemes that do admit quotients. In this
section, we study the analogue for Artin stacks. Namely, a line bundle on an Artin stack determines
a (semi-)stability condition. The locus of semi-stable points will admit a good moduli space and
will contain the stable locus which admits a tame moduli space. In particular, we obtain an answer
to [LMB00, Question 19.2.3].

Let X be an Artin stack with p : X → S quasi-compact and L be a line bundle on X .

Definition 11.1. (Analogue of [GIT, Definition 1.7]) Let x : Spec k → X be a geometric point
with image s ∈ S.

(a) x is pre-stable if there exists an open substack U ⊆ X containing x which is cohomologically
affine over S and has closed orbits.

(b) x is semi-stable with respect to L if there is an open U ⊆ S containing s and a section
t ∈ Γ(p−1(U),Ln) for some n > 0 such that t(x) 6= 0 and p−1(U)t → U is cohomologically
affine.

(c) x is stable with respect to L if there is an open U ⊆ S containing s and a section t ∈
Γ(p−1(U),Ln) for some n > 0 such that t(x) 6= 0, p−1(U)t → U is cohomologically affine,
and p−1(U)t has closed orbits.

We will denote X s
pre, X ss

L , and X s
L as the corresponding open substacks.

Remark 11.2. If S = SpecA is affine, then x is semi-stable with respect to L if and only if there
exists a section t ∈ Γ(X ,Ln) for some n > 0 such that t(x) 6= 0 and Xt cohomologically affine. See
Proposition 11.11 for equivalences of stability.

Remark 11.3. The Γ(X ,OX )-module
⊕

n≥0 Γ(X ,Ln) is a graded ring and will be called the pro-

jective ring of invariants. More generally, the OS-module
⊕

n≥0 p∗Ln is a quasi-coherent sheaf of
graded rings and is called the projective sheaf of invariants.

Proposition 11.4. (Analogue of [GIT, Proposition 1.9]) If X is an Artin stack quasi-compact over
S, there is a tame moduli space φ : X s

pre → Y , where Y is a scheme. Furthermore, if U ⊆ X is an
open substack such that U → Z is a tame moduli space, then U ⊆ X s

pre.

Proof. This follows from Propositions 7.7 and 7.10. �
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There is no guarantee that X s
pre is non-empty. Furthermore, the scheme Y in the preceding

proposition may be very non-separated. For instance, if X = [(P1)4/PGL2], Xpre is the open
substack consisting of tuples of points such that three are distinct. There is a good moduli space
Xpre → Y where Y is the non-separated projective line with three double points.

Theorem 11.5. (Analogue of [GIT, Theorem 1.10]) Let p : X → S be quasi-compact with X an
Artin stack and L be a line bundle on X . Then

(i) There is a good moduli space φ : X ss
L → Y with Y an open subscheme of Proj

⊕
n≥0 p∗Ln

and there is an open subscheme V ⊆ Y such that φ−1(V ) = X s
L and φ|X s

L
: X s
L → V is a tame

moduli space.
(ii) If X ss

L and S are quasi-compact, then there exists an S-ample line bundle M on Y such that
φ∗M∼= LN for some N > 0.

(iii) If S is an excellent quasi-compact scheme and X is finite type over S, then Y → S is quasi-
projective.

Proof. By the universal property of sheafy proj, there exists a morphism φ : X ss → Proj
⊕

n≥0 p∗Ln.
The set-theoretic image Y is open and by the definition of semi-stability, φ : X ss → Y is Zariski-
locally a good moduli space. Let V ⊆ Y be the union of open sets of the form (Proj

⊕
n≥0 Γ(p−1(U),Ln))t

where U ⊆ S is affine, t ∈ Γ(p−1(U),Ln) for some n > 0 such that p−1(U)t is cohomologically affine
and has closed orbits. It is clear that φ−1(V ) = X s

L and Proposition 7.7 implies φ|X s
L

: X s
L → V is

a tame moduli space.

The quasi-compactness of X ss
L and S implies that Y is quasi-compact and there exists N > 0,

a finite affine cover {Si} of S, and finitely many sections tij ∈ Γ(p−1(Si),LN ) such that Y is the
union of open affines of the form (Proj

⊕
n≥0 Γ(p−1(Si),Ln))tij . It follows that M = O(N) on

Proj
⊕

n≥0 p∗Ln is an S-ample line bundle and there is a canonical isomorphism φ∗M|Y ∼= LN |X ss
L

.

If in addition S is excellent and X is finite type, then Theorem 4.16(xi) implies that Y → S is
quasi-projective. �

Corollary 11.6. Let X be an Artin stack finite type over S. If X admits a good moduli space
projective over S then X → S is cohomologically projective. If S is excellent, the converse holds.

Proof. Suppose φ : X → Y is a good moduli space with Y projective over S. Let M be an ample
line bundle on Y . It is easy to see that φ∗M is cohomologically ample and since φ is universally
closed, it follows that X is cohomologically projective over S. For the converse, there exists an
S-cohomologically ample line bundle L such that X ss

L = X and Y → S is quasi-projective. Since
Y → S is also universally closed, the result follows. �

Example 11.7. Over SpecQ, the moduli stack,Mg, of stable genus g curves and the moduli stack,
Mss

X,P , of semi-stable sheaves on a connected projective scheme X with Hilbert polynomial P , are
cohomologically projective.
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11.8. Equivalences for stability. Suppose X is a locally noetherian Artin stack and φ : X → Y
is a good moduli space. Recall the upper semi-continuous functions:

(11.1)
σ : |X | → Z, x 7→ dimGx

τ : |X | → Z, x 7→ dimx φ
−1(φ(x))

If in addition φ : X → Y is a tame moduli space, then for all geometric points x, dimx φ
−1(φ(x)) =

dimBGx by Proposition 7.5, which implies that

σ + τ = 0.

so that σ and τ are locally constant.

Definition 11.9. x ∈ |X | is regular if σ is constant in a neighborhood of x. Denote X reg the open
substack consisting of regular points.

Lemma 11.10. If X is locally noetherian and σ is locally constant in the geometric fibers of S,
then X has closed orbits. In particular if X = X reg, X has closed orbits.

Proof. It suffices to consider S = Spec k with k algebraically closed. Suppose x : Spec Ω → X is
a geometric point such that BGx → X ×k Ω is not a closed immersion. Since the dimension of
the stabilizers of points of X ×k Ω is also locally constant, we may assume Ω = k. The morphism
BGx → X is locally closed so it factors as BGx → Z → X , an open immersion followed by a closed
immersion. Let y be a k-valued point in Z with closed orbit. Since Z is irreducible (as BGx is
irreducible), dimBGy < dimZ but dimBGx = dimZ. It follows that σ is not locally constant at
y. �

Proposition 11.11. (Analogue of [GIT, Amplification 1.11]) Let X be a noetherian Artin stack
which is finite type over an affine scheme S and L a line bundle on X . Let x be a geometric point
of X ss

L . Then the following are equivalent:

(i) x is a point of X s
L.

(ii) x is regular and has closed orbit in X ss
L

(iii) x is regular and there is a section t ∈ Γ(X ,LN ) for N > 0 with t(x) 6= 0 and such that Xt is
cohomologically affine and x has closed orbit in Xt.

Proof. We begin with showing that (i) implies (ii). Let φ : X ss
L → Y be a good moduli space and

V ⊆ Y such that φ−1(V ) = X s
L. Write x : Spec k → X and let X = X ×S k, Y = Y ×S k,...

Consider

BGx // X s
L ×V Spec k //

��

X s
L //

��

X ss
L

��
Spec k

φ(x) // V // Y

First, all points in X s
L are regular. By Proposition 7.5, the composition BGx → X

s
L×V Spec k → X s

L
is a closed immersion.
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It clear the (ii) implies (iii). Suppose (iii) is true and define the closed substacks of Xt by
Sr = {x ∈ |Xt|

∣∣ dimGx ≥ r}. For some r, x ∈ Sr r Sr+1. If we let

Z1 = {x}
Z2 = Sr+1 ∪ Xt r Sr

which are closed substacks of Xt. Since x is regular, they are disjoint. We have φ : Xt →
Spec Γ(Xt,OX ) is a good moduli space and by Proposition 4.16(iii), φ(Z1) ∩ φ(Z2) = ∅. There
exists f ∈ Γ(Xt,OX ) with f(x) 6= 0 and f |Z2 = 0. The stabilizers of points in (Xt)f have the same
dimension so by Lemma 11.10, (Xt)f has closed orbits. Finally, since Xs is quasi-compact, there

exists an M such that tM · f ∈ Γ(X ,LMN ) and (Xt)f = XtM ·f . This implies (i). �

11.12. Converse statements. The semi-stable locus of a line bundle admits a quasi-projective
good moduli space. In this section, we show the converse holds under suitable hypotheses: given
an open substack which admits a quasi-projective good moduli space, then the open substack is
contained in the semi-stable locus of some line bundle. The following theorem provides a general-
ization of [GIT, Converse 1.13]. We note that although Mumford states the result for the stable
locus, the same proof holds for the semi-stable locus.

Lemma 11.13. Let X be a noetherian regular Artin stack and U ⊆ X an open substack. Then
Pic(X )→ Pic(U) is surjective.

Proof. Let i : U ↪→ X . If L is a line bundle on U , then by [LMB00, Cor. 15.5], there exists a
coherent sheaf F such that F|U ∼= L. Since Fv v|U ∼= Lv v ∼= L, we may assume that F is reflexive.
Since X is noetherian and regular, any reflexive rank 1 sheaf is invertible. �

Theorem 11.14. (Analogue of [GIT, Converse 1.13]) Let X be a noetherian regular Artin stack
with affine diagonal over a quasi-compact scheme S. Then

(i) IfW ⊆ X is an open substack and ϕ :W →W is a tame moduli space with W quasi-projective
over S, then there exists a line bundle L on X such that W ⊆ X s

L.
(ii) If U ⊆ X is an open substack and ψ : U → U is a good moduli space with U quasi-projective

over S, then there exists a line bundle L on X such that U ⊆ X ss
L and U is saturated for the

good moduli space φ : X ss
L → Y .

(iii) If W,U , ϕ, ψ are as in (i) and (ii) such that W ⊆ U and W = ψ−1(W ), then there exists a
line bundle L on X such that U ⊆ X ss

L . In particular, we have a diagram

X s
L
� � //

��

X ss
L

φ

��

W �
� //

ϕ

��

. �

==

U

ψ

��

. �

>>

V
� � // Y

W
� � //
. �

==

U
. �

==

where the four vertical faces are cartesian and the far square is as in Theorem 11.5.
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Proof. For (ii), let M be an S-ample line bundle on U . By the lemma, there exists a line bundle
L on X extending ψ∗M. Let D1, . . .Dk be the components of X r U of codimension 1 and write
LN = L ⊗OX (N(

∑
iDi)).

Set q : U → S and p : X → S. Let S′ ⊆ S be an affine open and set U ′ = q−1(U), X ′ = p−1(U ′)
and U ′ = X ′ ∩ U . We will show that if s0 ∈ Γ(U ′,M⊗n) such that U ′s0 is affine, then s = ψ∗s0

extends to a section t ∈ Γ(X ′,L⊗nN ) for some N such that X ′t = U ′s. We may choose N large enough
such that s extends to a section t which vanishes on each D′i = Di ∩ X ′. We have

U ′s ⊆ X ′t ⊆ X ′ r ∪iD′i
If g : X → X ′t is a smooth presentation with X a scheme, then since X → S has affine diagonal,
g is an affine morphism. Since U ′s is cohomologically affine, U = g−1(U ′s) is an affine scheme and
therefore all components of X r U have codimension 1. Since t vanishes on each codimension 1
component of X ′rU ′, it follows that X ′t = U ′s. Therefore, U ′s ⊆ X ss

LN . We may cover U with finitely

many such open substacks. Clearly, U ⊆ Y and U = φ−1(U).

Statements (i) and (iii) follow from similar arguments by realizing that the open substacks U ′s
have closed orbits by Proposition 7.7. �

12. Linearly reductive group schemes

Definition 12.1. An fppf group scheme G → S is linearly reductive if the morphism BG → S is
cohomologically affine.

Remark 12.2. Clearly G→ S is linearly reductive if and only if BG→ S is a good moduli space.

Remark 12.3. If S = Spec k, this is equivalent to usual definition of linearly reductive (see Propo-
sition 12.6). If char k = 0, then G → Spec k is linearly reductive if and only if G → Spec k is
reductive (ie. the radical of G is a torus).

Linear reductive finite flat group schemes of finite presentation have been classified recently by
Abramovich, Olsson and Vistoli in [AOV08]. Over a field, linearly reductive algebraic groups have
been classified by Nagata in [Nag62]. It is natural to ask whether these results can be extended to
arbitrary linearly reductive group schemes.

If G→ S is a finite flat group schemes of finite presentation, then G→ S is linearly reductive if
and only if the geometric fibers are linearly reductive ([AOV08, Theorem 2.19]). If in addition S is
noetherian, linearly reductivity can even be checked on the fibers of closed points of S.

This result does not generalize to arbitrary fppf group schemes G→ S. Indeed, let k be a field
with char(k) 6= 2 and consider the group scheme G → A1

k with fibers Z/2Z over all points except
over the origin where the fiber is the trivial group. There is a unique non-trivial action of G on
A2
k → A1

k. Let X = [A2
k/G] and X0 be the fiber over the origin. Then Γ(X ,OX ) → Γ(X0,OX0) is

not surjective (ie. invariants can’t be lifted) implying G→ A1 is not linearly reductive. Clearly the
geometric fibers are linearly reductive. One might hope that if G→ S has geometrically connected
fibers, then linearly reductivity can be checked on geometric fibers.

If G → S is an fppf group scheme, the set of points s ∈ S such that the fiber Gs is linearly
reductive is not necessarily open. For example, the only fiber of GLn(Z)→ SpecZ which is linearly
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reductive is the generic fiber. If in addition G → S is finite, then by [AOV08, Lemma 2.16 and
Theorem 2.19], this the condition of the fibers being linearly reductive is open.

Example 12.4.

(1) GLn, PGLn and SLn are linearly reductive over Q. They are not linearly reductive over Z
although GLn and PGLn are reductive group schemes over Z.

(2) A diagonalizable group scheme is linearly reductive ([SGA3, I.5.3.3]). In particular, any torus
(Gm)n → S is linearly reductive and µn → S is linearly reductive where µn = SpecZ[t]/(tn −
1)×Z S .

(3) An abelian scheme (ie. smooth, proper group scheme with geometrically connected fibers) is
linearly reductive.

Proposition 12.5. (Generalization of [AOV08, Proposition 2.5]) Suppose S is noetherian and
G→ S be an fppf group scheme. The following are equivalent:

(i) G→ S is linearly reductive.
(ii) The functor CohG(S)→ Coh(S) defined by F 7→ FG is exact.

Proof. This is clear from Proposition 3.6. �

Proposition 12.6. Let G → Spec k be a finite type and separated group scheme. The following
are equivalent:

(i) G is linearly reductive.
(ii) The functor V 7→ V G from G-representations to vector spaces is exact.

(iii) The functor V 7→ V G from finite dimensional G-representations to vector spaces is exact.
(iv) Every G-representation is completely reducible.
(v) Every finite dimensional G-representation is completely reducible.

(vi) For every finite dimensional G-representation V and 0 6= v ∈ V G, there exists F ∈ (V ∨)G

such that F (v) 6= 0.

Proof. The category of quasi-coherent OBG-modules is equivalent to category of G-representations
so that (ii) is a restatement of the definition of linearly reductive. Proposition 12.5 implies that (ii)
is equivalent to (iii). For (iii) =⇒ (v), if 0 → V1 → V2 → V3 → 0 is an exact sequence of finite
dimensional G-representations, then by applying the functor HomG(V3, ·) = HomG(k, V ∨3 ⊗ ·) =
(V ∨3 ⊗ ·)G which is exact, we see that the sequence splits. Conversely, it is clear that (v) =⇒
(iii). A simple application of Zorn’s lemma implies that (iv) ⇐⇒ (v). We have established the
equivalences of (i) through (v).

For (iii) =⇒ (vi), 0 6= v ∈ V G gives a surjective morphism of G-representations v : V ∨ → k, α 7→
α(v). After taking invariants, (V ∨)G → k is surjective which implies there exists F ∈ (V ∨)G with
F (v) 6= 0. Conversely for (vi) =⇒ (iii), suppose α : V → W is a surjective morphism of finite
dimensional G-representations and w ∈ WG. Then α−1(w) = V ′ → k is surjective morphism of
G-representations giving 0 6= F ∈ V ′∨ so by (vi) there exists v′ ∈ V ′G ⊆ V G with F (v′) 6= 0. The
image of v′ ∈WG is a scalar multiple of w so it follows that V G →WG is surjective. �

Remark 12.7. The equivalences of (ii) - (vi) remain true without the assumptions that G is finite
type and separated over k.
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Proposition 12.8. (Generalization of [AOV08, Proposition 2.6]) Let G → S be an fppf group
scheme, S′ → S a morphism of schemes and G′ = G×S S′. Then

(i) If G→ S is linearly reductive, then G′ → S′ is linearly reductive.
(ii) If S′ → S is faithfully flat and G′ → S′ is linearly reductive, then G→ S is linearly reductive.

Proof. Since BG′ = BG×S S′, this follows directly from Proposition 3.10. �

Example 12.9. If G → S is a linearly reductive group scheme acting on a scheme X affine over
S, then p : [X/G]→ S is cohomologically affine. Indeed, there is a 2-cartesian square:

X //

��

S

��
[X/G] // BG

Since S → BG is fppf and X → S is affine, [X/G]→ BG is an affine morphism. This implies that
the composition [X/G] → BG → S is cohomologically affine. Furthermore, from the property P
argument of of 3.13, it follows that [X/G]→ p∗O[X/G] is a good moduli space.

Conversely, if G→ S is an affine group scheme acting on an algebraic space X and [X/G]→ S is
cohomologically affine, then X is affine over S. This follows from Serre’s criterion (see Proposition
3.3) since X → S is the composition of the affine morphism X → [X/G] with the cohomologically
affine morphism [X/G]→ S.

Example 12.10. A morphism of Artin stacks f : X → Y is said to have affine diagonal if ∆X/Y :
X → X ×Y X is an affine morphism. The property of a morphism having affine diagonal is stable
under composition, arbitrary base change and satisfies fppf descent. If G → S is an fppf affine
group scheme acting on an algebraic space X → S with affine diagonal, then [X/G]→ S has affine
diagonal. Indeed, let X = [X/G] and consider

G×S X
ψ //

��

X ×S X
p1 //

��

X

X
∆X/S // X ×S X

where the square is 2-cartesian. Since G → S is affine, p1 ◦ ψ is affine. Since X → S has affine
diagonal, p1 has affine diagonal. It follows from the property P argument of 3.13 that ψ is affine
so by descent X → S has affine diagonal. In particular, BG→ S has affine diagonal.

12.11. Linearly reductivity of stabilizers, subgroups, quotients and extensions.

Proposition 12.12. Suppose X is a locally noetherian Artin stack and ξ ∈ |X |. If x : Spec k → X
is any representative, then Gx is linearly reductive if and only if Gξ is cohomologically affine.

Proof. This follows from diagram 2.1 and fpqc descent. �

The above proposition justifies the following definition.
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Definition 12.13. If X is a locally noetherian Artin stack, a point ξ ∈ |X | has a linearly reductive
stabilizer if for some (equivalently any) representative x : Spec k → X , Gx is linearly reductive.

The following is an easy but useful fact insuring linearly reductivity of closed points.

Proposition 12.14. Let X be a locally noetherian Artin stack and φ : X → Y a good moduli
space. Any closed point ξ ∈ |X | has a linearly reductive stabilizer. In particular, for every y ∈ Y ,
there is a ξ ∈ |Xy| with linearly reductive stabilizer.

Proof. The point ξ induces a closed immersion Gξ ↪→ X . By Lemma 4.14, the morphism from Gξ
to its scheme-theoretic image, which is necessarily Spec k(ξ), is a good moduli space. Therefore ξ
has linearly reductive stabilizer. �

Matsushima’s Theorem. We can now give a short proof of an analogue of a result sometimes
referred to as Matsushima’s theorem (see [MFK94, Appendix 1D] and [Mat60]): If H is a subgroup
of a reductive group scheme G, then H is reductive if and only if G/H is affine. In [Mat60],
Matsushima proved the statement over the complex numbers using algebraic topology. The algebro-
geometric proof in the characteristic zero case is due Bialynicki-Birula in [BB63] and a characteristic
p generalization was provided by Haboush in [Hab78] and Richardson in [Ric77].

Theorem 12.15. Suppose G → S is a linearly reductive group scheme and H ⊆ G is an fppf
subgroup scheme. Then

(i) If G/H → S is affine, then H → S is linearly reductive.
(ii) Suppose G→ S is affine. If H → S is linearly reductive, then G/H → S is affine.

Suppose X is a locally noetherian Artin stack and ξ ∈ |X |. Then

(iii) If X → S is cohomologically affine and Gξ → X is affine, then ξ has a linearly reductive
stabilizer.

(iv) If X → S has affine diagonal and ξ has a linearly reductive stabilizer, then Gξ → X is affine.

In particular, if X = [X/G] where G → S is an affine, linear reductive group scheme and X → S
is affine, then ξ has a linearly reductive stabilizer if and only if OX(ξ)→ X is affine.

Proof. For (i) and (ii), the quotient stack [G/H] is an algebraic space which we will denote by
G/H. Since the square

G/H //

��

S

��
BH // BG

is 2-cartesian, BH → BG is affine if and only if G/H → S is affine. By considering the composition
BH → BG→ S, it is clear that if G/H → S is affine, then H is linearly reductive. For the converse,
since BG → S has affine diagonal, the property P argument of 3.13 implies that G/H → S is
cohomologically affine and therefore affine by Serre’s criterion (see Proposition 3.3).
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For (iii) and (iv), consider the commutative square

Gξ //

��

X

��
Spec k(ξ) // S

For (iii), the composition Gξ → X → S is cohomologically affine. Since Spec k(ξ) → S has affine
diagonal, Gξ → Spec k(ξ) is cohomologically affine so ξ has linearly reductive stabilizer. For (iv),
since ξ has linearly reductive stabilizer, the composition Gξ → Spec k(ξ) → S is cohomologically
affine. Because X → S has affine diagonal, Gξ → X is cohomologically affine and therefore affine
by Serre’s criterion. �

More generally, we can consider the relationship between the orbits and stabilizers of T -valued
points.

Proposition 12.16. Let X → S be an Artin stack and f : T → X be such that Gf is an fppf
group scheme over T . Then

(i) If X → S is cohomologically affine and the natural map BGf → X×ST is affine, then Gf → T
is linearly reductive.

(ii) If X → S has affine diagonal and Gf → T is linearly reductive, then the natural map
BGf → X ×S T is affine.

In particular, if X = [X/G] where G→ S is linear reductive, X → S is affine, and f : T → X has
fppf stabilizer Gf → T , then Gf → T is linearly reductive if and only if oX(f) ↪→ X ×S T is affine.

Proof. Consider the composition BGf → X ×S T → T . The first part is clear and the second part
follows from the property P argument of 3.13 and Serre’s criterion. �

Matsushima’s theorem characterizes subgroup schemes of a linearly reductive group that are
linearly reductive. The following generalization of [AOV08, Proposition 2.7] shows that quotients
and extensions of linearly reductive groups schemes are also linearly reductive.

Proposition 12.17. Consider an exact sequence of fppf group schemes

1 −→ G′ −→ G −→ G′′ −→ 1

(i) If G→ S is linearly reductive, then G′′ → S is linearly reductive.
(ii) If G′ → S and G′′ → S are linearly reductive, then G→ S is linearly reductive.

Proof. We first note that for any morphism of fppf group schemes G′ → G induces a morphism
i : BG′ → BG with i∗ exact. Indeed p : S → BG′ and i ◦ p are faithfully flat and i∗ is exact since
p∗ ◦ i∗ is exact. There is an induced commutative diagram

BG′
i //

πG′ ##

BG
j //

πG
��

BG′′

πG′′{{
S
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and a 2-cartesian diagram

BG′
i //

πG′

��

BG

j
��

S
p // BG′′

The natural adjunction morphism id → j∗j
∗ is an isomorphism. Indeed it suffices to check that

p∗ → p∗j∗j
∗ is an isomorphism and there are canonical isomorphisms p∗j∗j

∗ ∼= πG′∗i
∗j∗ ∼= πG′∗π

∗
G′p
∗

such that the composition p∗ → πG′∗π
∗
G′p
∗ corresponds the composition of p∗ and the adjunction

isomorphism id→ πG′∗π
∗
G′ .

To prove (i), we have isomorphisms of functors

πG′′∗
∼→ πG′′∗j∗j

∗ ∼= πG∗j
∗

with πG∗ and j∗ exact functors.

To prove (ii), j is cohomologically affine since p is faithfully flat and G′ → S is linearly reductive.
As πG = πG′′ ◦ j is the composition of cohomologically affine morphisms, G → S is linearly
reductive. �

13. Geometric Invariant Theory

The theory of good moduli space encapsulates the geometric invariant theory of linearly reductive
group actions. We rephrase some of the results from Section 4-12 in the special case when X is
quotient stack by a linearly reductive group scheme.

13.1. Affine Case.

Theorem 13.2. (Analogue of [GIT, Theorem 1.1]) Let G→ S be a linearly reductive group scheme
acting an a scheme p : X → S with p affine. The morphism

φ : [X/G] −→ Spec p∗O[X/G]

is a good moduli space.

Proof. This is immediate from Example 12.9. �

Remark 13.3. If S = Spec k, X = SpecA and G is a smooth affine linearly reductive group scheme,
this is [GIT, Theorem 1.1] and

X −→ SpecAG

is the GIT good quotient.

Corollary 13.4. GIT quotients behave well in flat families. Assume the hypothesis of Theorem
13.2 and set Y = Spec p∗O[X/G]. For any field valued point s : Spec k → S, the induced morphism

φs : [Xs/Gs] → Ys is a good moduli space with Ys ∼= Spec Γ(Xs,OXs)Gs . If X → S is flat, then
Y → S is flat.
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Proof. If X → S is flat, then X = [X/G] → S is flat and by Theorem 4.16(ix), Y → S is flat.
The second statement follows since good moduli spaces are stable under arbitrary base change and
Xs ∼= [Xs/Gs]. �

13.5. General case. Let G→ S be a linearly reductive group scheme acting an a scheme p : X →
S with p quasi-compact. Suppose L is a G-linearization on X. Let X = [X/G], g : X → X and
L the corresponding line bundle on X . Define Xss

L = g−1(X ss
L ) and Xs

L = g−1(X s
L). If S = Spec k,

then this agrees with the definition of (semi-)stability in [GIT, Definition 1.7].

Theorem 13.6. (Analogue of [GIT, Theorem 1.10])

(i) There is a good moduli space φ : X ss
L → Y with Y an open subscheme of Proj

⊕
n≥0(p∗Ln)G

and there is an open subscheme V ⊆ Y such that φ−1(V ) = X s
L and φ|X s

L
: X s
L → V is a tame

moduli space.
(ii) If Xss

L and S are quasi-compact over S (for example, if |X| is a noetherian topological space),
then there exists an S-ample line bundle M on Y such that φ∗M∼= LN for some N .

(iii) If S is an excellent quasi-compact scheme and X is finite type over S, then Y → S is quasi-
projective. If X → S is projective and L is relatively ample, then Y → S is projective.

Proof. This is a direct translation of Theorem 11.5. For the final statement, the extra hypotheses
imply that for every section s ∈ Γ(X ss,Ln) over an affine in S, the locus Xs is cohomologically
affine which implies that Y = Proj

⊕
n≥0(p∗Ln)G. �

Remark 13.7. If S = Spec k and G is a smooth affine linearly reductive group scheme, this is [GIT,
Theorem 1.10] and

Xss
L −→ Y ⊆ Proj

⊕
n≥0

Γ(X,Ln)G

is the GIT good quotient.

References

[AOV08] Dan Abramovich, Martin Olsson, and Angelo Vistoli, Tame stacks in positive characteristic, Ann. Inst.
Fourier (Grenoble) 58 (2008), no. 4, 1057–1091.

[Art74] Michael Artin, Versal deformations and algebraic stacks, Invent. Math. 27 (1974), 165–189.
[BB63] A. Bia lynicki-Birula, On homogeneous affine spaces of linear algebraic groups, Amer. J. Math. 85 (1963),

577–582.
[Cap94] Lucia Caporaso, A compactification of the universal Picard variety over the moduli space of stable curves,

J. Amer. Math. Soc. 7 (1994), no. 3, 589–660.
[Con05] Brian Conrad, Keel-mori theorem via stacks, http://www.math.stanford.edu/~bdconrad/papers/

coarsespace.pdf (2005).

[DM69] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études
Sci. Publ. Math. (1969), no. 36, 75–109.
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