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In the vast realm of algebraic varieties, moduli
spaces stand out as some of the most enchanting va-
rieties, capturing the imagination of algebraic geome-
ters with their profound elegance and deep connec-
tions to other branches of mathematics. By a moduli
space, we mean a geometric space whose points are in
‘natural’ bijection (more on what we mean by ‘nat-
ural’ in a moment) with isomorphism classes of your
favorite mathematical objects, for example, Riemann
surfaces or vector bundles on a fixed space. A mod-
uli space is a solution to the classification problem: it
packages all of the data of the geometric objects into
a single space, a mathematical catalogue where any
object can be located by selecting the corresponding
point.

One example that might already be familiar is pro-
jective space CPn: a point in CPn naturally corre-
sponds to a complex line in Cn+1 through the origin.
Remarkably, many other types of objects in algebraic
geometry can be naturally classified as a moduli space
represented by an algebraic variety, which is often
even a projective variety. Surprising, right? The ex-
istence of a variety Mg, whose points correspond to
smooth curves of genus g, is so strikingly beautiful. Is
this some sort of divine creation by the mathematical
gods, or is there a a deeper reason why Mg exists?

In the study of moduli spaces, many researchers
simply take their existence for granted (as they prob-
ably should) and move on to explore their geometry.
After all, one of the motivating principles is that the
geometry of a moduli space reflects properties of the
objects they represent. Over the past sixty years,
mathematicians have unraveled charming geometric
features of moduli spaces and their objects. Picking
your favorite moduli problem and studying aspects of
its geometry serves as an excellent way to introduce
moduli spaces. This could be the basis for a fasci-
nating Notices article and, indeed, some such articles
have been written, e.g., [Vak03] and [Cha21], but this
is not that article. We are singularly focused on the
question:

Why do moduli spaces exist as varieties?

By surveying how solutions to this question have
evolved since Riemann’s work in the 1850s, we will

reveal many of the central ideas in modern mod-
uli theory, and we will do so using the language of
stacks. Stacks have unfortunately a formidable repu-
tation (even in the algebraic geometry community),
and while they are indeed abstract categorical gad-
gets, we will attempt to convince you that this repu-
tation is undeserved by giving precise definitions and
outlining their key properties. While we present this
material primarily in the algebraic setting, we also
try to highlight parallel constructions in topology and
analytic geometry.

Riemann’s moduli problem

The spirit of Riemann will move future generations as it
has moved us.

Lars Ahlfors (1953)

The study of moduli began with Bernhard Rie-
mann: by viewing surfaces as branched covers over
the projective line, Riemann determined that the
“corresponding class of algebraic equations, depends
on 3p−3 continuous variables,1 which we shall call the
moduli of the class” [Rie57, p. 33]. In this extraordi-
nary paper, Riemann both introduces the concept of
‘moduli’ and computes that the ‘number of moduli’
of Mg is 3g − 3.

While Riemann’s argument can be made com-
pletely rigorous with today’s methods (as we try to
summarize here), there were foundational issues—
today, we would say that Riemann computed the di-
mension of a ‘local deformation space’. Most notably,
Mg was not known to exist and it was not clear what
type of space Mg was supposed to be. Despite this,
Riemann had an instinctive grasp of its geometry—in
fact, in the same paper [Rie57], he introduced ‘mani-
folds’ to describe its geometry, a notion that was not
formally defined until the 1940s.

Riemann’s moduli problem: Does Mg exist
as a complex analytic space?

Oswald Teichmüller was the first to give a precise
formulation of Riemann’s moduli problem in terms

1Here p is the genus. We will use the symbol ‘g’.
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of a universal property. In the 1940s, Teichmüller
constructed what is now referred to as the Teich-
müller space Tg parameterizing complex structures
on a topological surface of genus g, showed that it
is homeomorphic to a ball in C3g−3, and realized
Mg = Tg/Γg as the quotient of the action of the
mapping class group Γg of isotopy classes of auto-
morphisms.

The functorial worldview

A fundamental challenge in constructing a moduli
space is formulating precisely what ‘natural’ means
in the bijection between points of the moduli space
and isomorphism classes of geometric objects. It
is not enough to require only a bijective correspon-
dence as, after all, any two complex manifolds or vari-
eties of positive dimension are bijective (as they each
have the cardinality of the continuum). The bijection
should preserve a sense of proximity: curves that are
not too different (e.g., the coordinates of the equa-
tions defining them are close in value) should be close
in the moduli space.

Alexander Grothendieck’s approach, which is the
one we follow here, requires a psychological change of
perspective. Instead of thinking of a space X as a set
with a topology endowed with additional structure,
we think of a space X by its relationship to all other
spaces, i.e., by keeping track of the set Mor(T,X)
of morphisms to X from any other space T . For
instance, one can recover the underlying set of a space
X as Mor(pt, X).

This approach is justified by the Yoneda Lemma:
for an object X of a category C, the contravariant
functor

hX : C → Sets, S 7→ Mor(S,X)

recovers the object X itself. This is formulated pre-
cisely as a functorial bijection Mor(hX , G)

∼→ G(X)
for every other contravariant functor G. This is not
a deep statement (the proof is shorter than the state-
ment). Nevertheless, it is a giant leap of abstraction
and, in the words of Dan Piponi, “is the hardest triv-
ial thing in mathematics.”

Family matters
Suppose that we have a hypothetical moduli space
Mg whose points are in bijective correspondence with
isomorphism classes of smooth curves of genus g. If
T is a path, e.g., a smooth curve, in Mg, then the
map T → Mg takes every point t ∈ T to a curve
[Ct] ∈ Mg, where we expect the curves Ct to vary
continuously, even algebraically, for t ∈ T . Even
better, one would hope that we could package these
curves into a family of curves, i.e., a smooth proper
morphism C → T of varieties where the fiber of t is
Ct. In this dream world, there would be a universal
family Ug →Mg, where the fiber over [C] ∈Mg is C
and the family C → T is the pullback of the universal
family under T →Mg.

Figure 1: In addition to the correspondence between
families of curves and paths in the moduli space, this
image also demonstrates another property: the mod-
uli spaceMg of smooth curves is not compact! As the
path approaches the boundary of the moduli space,
the curve degenerates to a singular nodal curve. We
will see later that the moduli space Mg of stable
curves is compact.

It may seem that we just made life more difficult
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as we must specify an immense amount of categorical
data to define a space. In practice, however, it is usu-
ally (but not always) straightforward to define well-
behaved notions of families. For example, projective
space CPn parameterizes quotients2 Cn+1 ↠ C, and
a map S → CPn is classified by a quotient line bundle
O⊕n+1

S ↠ L of the trivial rank n + 1 vector bundle.
For Mg, we consider the functor

FMg
: Sch/C→ Sets

S 7→
{

families C → S of smooth
curves of genus g

}/
∼

defined on the category of all C-schemes.3 In the
topological (resp., analytic) setting, one instead de-
fines the functor on the category of topological spaces
(resp., analytic spaces) using families of Riemann sur-
faces.

A compelling feature of the functorial approach is
that if a moduli functor F : C → Sets is represented
by a scheme M , i.e., there is a functorial bijection
F (S) ∼= Mor(S,M), then there is a universal family.
This is an object of the moduli functor ξuniv ∈ F (M)
over M (corresponding to the identity map under
F (M) ∼= Mor(M,M)) from which every other object
is obtained: if η ∈ F (S) is an object over S, there
is a unique morphism S → M such that ξuniv pulls
back to η.

Unfortunately, many moduli functors of interest,
including FMg

, are unfortunately not representable.
Why you ask? Automorphisms! A non-trivial au-
tomorphism α of a smooth complex curve C can be
used to glue a trivial family, e.g., C × R → R, to a
non-trivial family, e.g., C → S1, where every fiber is
isomorphic to C.

2While one usually thinks of points in CPn as lines C ⊆
Cn+1, it is sometimes convenient to to parameterize the dual
notion of one-dimensional quotients.

3A scheme is a generalization of a variety where functions
are allowed to be nilpotent. Moduli theory is, in fact, one
subject where the power of scheme theory is especially evident.

Figure 2: A non-trivial family obtained by gluing the
trivial family via an automorphism.

If the functor FMg
were representable by a space

Mg, this family would correspond to the constant
map to Mg sending every point to [C] ∈ Mg, but
this is a contradiction as the constant map should
correspond to the trivial family.

The Grothendieck revolution

One can hope that we shall be able one day to eliminate
analysis completely from the theory of Teichmüller space,
which should be purely geometric.

Alexander Grothendieck (1960)

Grothendieck, in a series of ten lectures at Car-
tan’s seminar [Gro60], developed a general theory
of analytic moduli spaces in the language of cate-
gories and functors, reformulated Teichmüller the-
ory in this setting, and showed that the Teichmüller
space Tg represents a functor parameterizing fami-
lies of Riemann surfaces. He then applied his functo-
rial approach to algebraic geometry in his FGA series
[Gro59]: he introduced the Hilbert, Quot, and Picard
functors, showed that they were representable by pro-
jective schemes, developed descent theory, and intro-
duced the notions of prestacks and stacks. At the
same time, Grothendieck also redeveloped the entire
foundations of algebraic geometry in the language of
schemes in nearly 9000 pages in his EGA and SGA
series. His profound contributions to algebraic ge-
ometry and more broadly mathematics provided the
tools with which we study moduli spaces today.

Grothendieck was fascinated with Mg. While he
did not publish much, he generously shared his ideas,
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as evidenced by his written correspondence with
Mumford, Artin, Serre, and others. He recognized
that the presence of automorphisms prevented the ex-
istence a scheme Mg representing the functor FMg

of
families of smooth curves. In an effort to circumvent
this issue, he rigidified the moduli problem by param-
eterizing the data of a curve C together with a level
n structure, i.e., a symplectic basis of H1(C,Z/nZ).
While he could show that the rigidified moduli prob-
lem was representable by a scheme, he struggled to
show that it was quasi-projective. If he could have
verified quasi-projectivity, he also would have been
able to construct Mg as a quasi-projective variety by
taking the quotient of this space by the finite group of
symplectic automorphisms, relying on the easy fact
that quasi-projective varieties are closed under taking
quotients by finite groups.

Stable curves and compactifying Mg

The moduli space Mg is not compact as illustrated by
Figure 1. It turns out that the GIT construction of
Mg by Mumford and Gieseker (which we will outline
shortly) also produces a compactification, namely a
projective variety Mg containing Mg as an open sub-
set. Mayer and Mumford introduced stable curves in
1964 to give a modular compactification of Mg where
points on the boundary Mg \Mg correspond to sin-
gular stable curves. A connected projective complex
curve C of genus g ≥ 2 with at worst nodal singular-
ities (locally given by xy = 0) is called stable if its
automorphism group is finite, or equivalently if every
component isomorphic to CP1 meets the rest of the
curve in at least three nodes.

Figure 3: Stable and unstable curves of genera 6 and
5, respectively, illustrated both over the real and com-
plex numbers.

We will now explain a general approach for con-
structing moduli spaces as quotients, which we will
then apply it to construct Mg as a projective variety
and therefore Mg as a quasi-projective variety.

Mumford’s approach using GIT

As for Mg there is virtually no doubt that it can be pro-
vided with the structure of an algebraic variety.

André Weil (1958)

By integrating Grothendieck’s formalism of scheme
theory with 19th century invariant theory, David
Mumford developed a theory of quotients in algebraic
geometry now known as Geometric Invariant The-
ory (or GIT ), and applied this theory to construct
moduli spaces [Mum65]. The central idea is to first
construct a moduli space parameterizing additional
data, e.g., a smooth curve C together with a choice
of embedding C ↪→ CPn, or a vector bundle F on
a fixed projective variety X together with a basis of
the global sections of a fixed twist F (n), and then to
quotient out by a reductive group acting transitively
on the set of choices.
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Outline of the GIT strategy

① Express the moduli problem M as a quo-
tient U/G of the action of a quasi-projective va-
riety U by a reductive group G and choose a G-
equivariant compactification U ⊆ CPn, where G
acts linearly on CPn.

② Show that a point u ∈ U is in U if and only if it
is GIT semistable, i.e., there exists a non-constant
G-invariant homogeneous f ∈ Γ(U,O(d))G with
f(u) ̸= 0.

③ Realize the the moduli space M = U/G as
the projective variety defined by the graded ring⊕

d≥0 Γ(U,O(d))G.

Step ② is the hardest. While the Hilbert–Mumford
Criterion translates this problem into the enumera-
tive and sometime combinatorial question of verifying
that the Hilbert–Mumford index µ(u, λ) ≤ 0 is non-
positive for every one-parameter subgroup λ : C∗ →
G, it can be difficult to verify this criterion.

We now outline the strategy of Mumford [Mum77]
and Gieseker [Gie82] to construct Mg as a projective
variety using GIT. Let ΩC = (TC)

∨ be the canonical
bundle (also called the cotangent bundle) and Ω⊗k

C be
its tensor powers. For each integer k ≥ 3, a choice
of basis of the space Γ(C,Ω⊗k

C ) of k-pluricanonical
sections defines an embedding into CPN with N +
1 = h0(C,Ω⊗k

C ) = (2k − 1)(g − 1). The moduli of
smooth k-pluricanonically embedded curves in CPN

is a quasi-projective variety that can be compactified
using either the Hilbert scheme or, as in Mumford’s
original approach, the Chow scheme. Applying the
Hilbert–Mumford Criterion, one needs to show for a
curve C

C is stable ⇐⇒ µ([C], λ) ≤ 0 for all λ,

where [C] denotes the choice of a lift of C to either
the Hilbert or Chow scheme. Mumford ingeniously
discovered a proof of the implication: by reinterpret-
ing the Hilbert–Mumford index in terms of geometric
invariants on the complex surface C×C1, he verified
the criterion for smooth curves. With a trick using
GIT semistable reduction, this reduces the construc-
tion of Mg to the (⇐) implication. While (⇐) is

the conceptually easier direction requiring one to con-
struct a destabilizing one-parameter subgroup λ for
each non-stable curve C, it is the also most demand-
ing step requiring pages and pages of calculations.

Grothendieck was at first skeptical of this ap-
proach. In a letter to Mumford on January 29, 1962,
he writes: “I am afraid you will not convince me of
the usefulness of Chow coordinates, in fact your ex-
ample shows again that the wrong method will lead to
prove statements under unnatural assumptions (such
as normality).” Later the same day (perhaps after
trying to construct Mg himself), he writes: “I have
been too rash in my reply to your last letter... I
have no means of attacking the problem, which in
fact meets with a few unsolved problems on equiva-
lence relations I still had in store. Therefore I grant
you that, for the time being, in your example Chow
coordinates do give mathematical information about
existence of quotients which is not obtained by other
means. I do not expect this situation to hold for long
still!” It did, however, take another 30 years until
Kollár gave an alternative argument utilizing tech-
niques in birational geometry.

Mumford also used GIT to construct a quasi-
projective variety parameterizing stable vector bun-
dles on a fixed smooth curve, and C.S. Seshadri ex-
hibited a projective compactification parameterizing
semistable vector bundles [Ses67]. The GIT machin-
ery has been widely applied to construct other moduli
spaces.

Why stacks?

The notion of stacks came up in the sixties. But to swal-
low schemes was already enough for one generation of
mathematicians.

Gerd Faltings

As we have seen above, automorphisms obstruct
the functor FMg from being representable. Rather
than defining a moduli functor by specifying families
of objects and when two families are isomorphic, we
will define them as a moduli stack by specifying fami-
lies of objects and how they are isomorphic. In other
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words, we will give an assignment

Sch/C→ Groupoids, S 7→ FamS

taking a C-scheme S to a groupoid4 FamS of families
of objects over S. But what exactly do we mean by
this? As groupoids form a ‘2-category’, some care is
needed to make this precise.

The first definition of an algebraic stack—now
referred to as Deligne–Mumford stacks—was intro-
duced by Deligne and Mumford in a remarkable pa-
per [DM69]. Unfortunately, Deligne and Mumford
did not prove any of their assertions about stacks,
and the lack of rigorous foundations contributed to
the forbidding reputation of algebraic stacks over the
following decades. It was not until the 2000s that al-
gebraic stacks entered into mainstream algebraic ge-
ometry. There are now several textbooks covering
algebraic stacks—see [LMB00], [Ols16], and [Alp24].
Notably, Johan de Jong’s Stacks Project [Sta24] has
provided an unquestionably solid foundation.

As we will see, the language of stacks offers an
intrinsic approach to constructing moduli spaces that
Grothendieck may have been happy with.

Prestacks

An absence of proof is a challenge; an absence of definition
is deadly.

Pierre Deligne

The categorical gadget that we will use is a
prestack, conventionally called a category fibered in
groupoids. Instead of trying to define an assignment
S 7→ FamS , we will build one massive category X that
encodes all of the groupoids FamS and that lives over
another category S, e.g., the category Sch of schemes.
Loosely speaking, the objects of X will be a family a
of objects over a scheme S, i.e., a ∈ FamS , and a mor-
phism a→ b between a family a over S and a family
b over T will be the data of a morphism f : S → T
together with an isomorphism α : a

∼→ f∗b of a will

4A groupoid is a category where all morphisms are isomor-
phisms.

the pullback of b. We visualize this data as

X

��

a
α //

_

��

b_

��

S S
f
// T

where the lower case letters a, b are objects in X
and the upper case letters S, T are objects in S, e.g.,
schemes.

Definition 1 (Prestacks). A functor X → S is a
prestack over a category S if
(1) (pullbacks exist) for every diagram

a //
_

��

b_

��

S // T

of solid arrows, there exists a morphism a → b
over S → T ; and

(2) (universal property for pullbacks) for every di-
agram

a′ //
$$

_

��

a //
_

��

b_

��

S′ // S // T

of solid arrows, there exists a unique arrow a′ →
a over S′ → S filling in the diagram.

A contravariant functor F : S → Sets (which we of-
ten think as a presheaf ) can be viewed as a prestack:
the objects are pairs (S, a) consisting of S ∈ S and
a ∈ F (S), and a morphism (S, a) → (T, b) is a map
f : S → T such that F (f)(b) = a. Likewise, an ob-
ject X ∈ S can be viewed as the prestack S/X of
objects in S over X, i.e., pairs (S, S → X) consisting
of S ∈ S and a morphism S → X in S. By abuse of
notation, we will use X also to denote this prestack.

There is a ‘Yoneda 2-Lemma’ giving an equivalence
between objects of a prestack X over T ∈ S and
a morphism T → X , and it is customary to abuse
notation by using the same symbol to refer to both
the object and morphism.

A prototypical example of a prestack over Sch is the
category QCoh of pairs (S, F ) where S is a scheme
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and F is a quasi-coherent sheaf on S. As we will
shortly see, this is also a stack because quasi-coherent
sheaves and their objects glue uniquely. These two
gluing properties should be familiar in the case of a
Zariski covering {Ui} of a scheme S: (1) given quasi-
coherent sheaves F and G on S, morphisms ϕi : Fi →
G satisfying ϕi|Ui∩Uj = ϕj |Ui∩Uj glue to a unique
morphism ϕ : F → G; and (2) quasi-coherent sheaves
Fi on Ui, and isomorphisms αij : Fi|Ui∩Uj

∼→ Fj |Ui∩Uj

on the intersection Ui ∩ Uj that satisfy the cocycle
condition αjk ◦αij = αik on Ui∩Uj ∩Uk, there exists
a unique quasi-coherent sheaf F on S and isomor-
phisms ϕi : F |Ui

∼→ Fi. These two gluing properties
translate into QCoh being a stack in the big Zariski
topology on Sch.

Detour: the étale topology

Grothendieck showed that quasi-coherent sheaves can
not only be glued in the Zariski topology, but also in
the étale topology. An étale morphism between com-
plex varieties is a covering space, except that we do
not require that every fiber has the same cardinality.

Figure 4: The map C \ {0, p} → C \ 0, defined by
z 7→ z2, is étale for any p ∈ C. It is finite and étale,
i.e., a covering space, for p = 0.

The Zariski topology unfortunately is not sufficient
for many purposes. As a Zariski open subset is, by

definition, the complement of a closed loci defined by
finitely many polynomials, they are simply too big.
The broader class of étale morphisms are more flexi-
ble for many constructions and play a similar role to
analytic opens. For instance, any Zariski open neigh-
borhood of a node on a irreducible curve remains irre-
ducible, but there are reducible étale neighborhoods
separating the branches.

Figure 5: In the étale topology, nodal singularities
can be separated into two branches.

In the arithmetic setting, conjugation on C induces
a Z/2-bundle SpecC → SpecR. As SpecR is just
one point, this Z/2-bundle is not trivializable in the
Zariski topology, but it does become trivial after the
étale cover SpecC→ SpecR.

Sites
In order to formulate the descent condition of a stack,
we must first make sense of what we mean by a topol-
ogy where an ‘open subset’ is an étale morphism.
That is, we need to modify the concept of a topologi-
cal space replacing open subsets with a more abstract
notion of covering. We use that the notation that
Xij := Xi ×X Xj for maps Xi → X and Xj → X.
When each Xi ↪→ X is the inclusion of an open sub-
set, Xij = Xi ∩Xj is simply the intersection.

Definition 2 (Sites). A site is a category S together
with the following data: for each object X ∈ S, there
is a set Cov(X) consisting of coverings of X, i.e.,
collections of morphisms {Xi → X}i∈I in S. We
require that:
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(1) (identity) If X ′ → X is an isomorphism, then
(X ′ → X) ∈ Cov(X).
(2) (restriction) If {Xi → X}i∈I ∈ Cov(X) and Y →
X is a morphism, then the fiber products Xi ×X Y
exist in S and the collection {Xi ×X Y → Y }i∈I ∈
Cov(Y ).
(3) (composition) If {Xi → X}i∈I ∈ Cov(X) and
{Xij → Xi}j∈Ji ∈ Cov(Xi) for each i ∈ I, then
{Xij → Xi → X}i∈I,j∈Ji ∈ Cov(X).

The category Top of topological spaces, where a
cover {Xi → X} is a usual open covering {Xi}, is
a site. For us, the most important example is the
big étale site Schét on the category of schemes, where
a covering {Xi → X} of a scheme X is the data of
étale morphisms Xi → X such that ⨿iXi → X is
surjective.

A presheaf is a contravariant functor F : S → Sets,
while a sheaf is a presheaf such that for every cov-
ering {Si → S} and objects ai ∈ F (Si) such that
ai|Sij

= aj |Sij
, there exists a unique object a ∈ F (S)

such that ai = a|Si
.

Stacks

A stack is to a prestack as a sheaf is to a presheaf.

Grothendieck introduced stacks in [Gro59] in or-
der to formulate properties of descent, and showed
that the prestack QCoh of quasi-coherent sheaves is
a stack over Schét.

Definition 3 (Stacks). A prestack X over a site S
is a stack if for every covering {Si → S}:
(1) (morphisms glue) For objects a, b ∈ X over S ∈
S and morphisms ϕi : a|Si

→ b such that ϕi|Sij
=

ϕj |Sij

a|Sij

??

��

a|Si

��

ϕi

��

a|Sj

??

ϕj

@@
a

ϕ
// b over Sij

??

��

Si

��

Sj

??
S,

there exists a unique morphism ϕ : a → b over idS
with ϕ|Si

= ϕi.

(2) (objects glue) For objects ai over Si and isomor-
phisms αij : ai|Sij → aj |Sij

ai

��

ai|Sij

αij

��

77

a

aj |Sij

''
aj

CC over Sij

??

��

Si

��

Sj

?? S

satisfying the cocycle condition αjk|Sijk
◦ αij |Sijk

=
αik|Sijk

on Sijk, there exists an object a over S
and isomorphisms ϕi : a|Si

→ ai over idSi
such that

ϕi|Sij
= ϕj |Sij

◦ αij on Sij .

Algebraic spaces and stacks

Recall that a smooth manifold, by definition, has an-
alytic local charts by Rn, while a scheme has Zariski
local charts by affine schemes. Algebraic stacks are
defined in essentially the same way: by requiring a
stack X over Schét to have local charts in the étale
topology (resp., smooth topology) by affine schemes,
we obtain Deligne–Mumford stacks (resp., algebraic
stacks).

To formulate precisely what a chart U → X is,
we need some terminology. A morphism X → Y
of prestacks (or presheaves) is Sch is representable by
schemes if for every morphism T → Y from a scheme,
the base change X ×Y T is a scheme. Similarly, a
morphism is representable if each base change is an
algebraic space (as defined below). Most properties
of morphisms (e.g., surjective, étale, and smooth) are
étale local, even smooth local on the base, and there-
fore extends to representable morphisms.

Definition 4 (Algebraic spaces and stacks).

(1) An algebraic space is a sheaf X on Schét such
that there exists a scheme U and a surjective étale
morphism U → X representable by schemes.
(2) A Deligne–Mumford stack or simply DM stack is
a stack X over Schét such that there exists a scheme U
and a surjective, étale, and representable morphism
U → X .
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(3) An algebraic stack is a stack X over Schét such
that there exists a scheme U and a surjective, smooth,
and representable morphism U → X .

While not apparent from the definition, the diago-
nal X → X ×X is representable. It encodes the data
of the automorphism groups, otherwise known as the
stabilizers: given a point x ∈ X (C), the stabilizer Gx

is defined as the fiber product of the diagonal with
(x, x) : SpecC → X × X . The group Gx(C) of C-
points of Gx is identified with automorphism x

∼→ x
over the identity. The diagonal encodes the ‘stack-
iness’ of X : X is an algebraic space if and only if
all stabilizers are trivial or equivalently if the diago-
nal is a monomorphism, and X is DM if and only if
all stabilizers are finite5 groups or equivalently if the
diagonal is unramified.

Remark 5 (Parallel theories). Modifying the underly-
ing site and the properties of the covers U → X leads
to parallel theories of stacks. Using the site of topo-
logical spaces, smooth manifolds, or complex mani-
folds, and requiring that U → X be a local home-
omorphism (instead of étale), we obtain topological,
differential, or analytic Deligne–Mumford stacks. Im-
posing instead that U → X is a local Serre fibration
(instead of smooth), submersion, or analytic submer-
sion, we obtain general topological, differential, or an-
alytic stacks.

An orbifold (resp., orbispace) is a differential (resp.
topological) Deligne–Mumford stack X where the
generic stabilizer is trivial, i.e., there is an open dense
substack that is a manifold (resp., topological space).

Remark 6 (Groupoids). Groupoids provide an alter-
native framework to the language of stacks. If U → X
is a smooth presentation of an algebraic stack, then
s, t : R := U ×X U ⇒ U is a smooth groupoid of
schemes, where one views R as a scheme of relations
on U : a point r ∈ R specifies a relation between the
points s(r), t(r) ∈ U . There is a composition map
R ×s,U,t R → R, inverse map ι : R → R, and iden-
tity map e : U → R subject to natural commutativ-
ity relations. A prototypical example is the smooth

5This is true for quasi-separated stacks. Without this mild
separation condition, infinite discrete groups such as Z may
appear as stabilizer groups.

groupoid G × U ⇒ U arising from the action of an
algebraic group G on a scheme U .

Likewise, there are topological, differential (or Lie),
and analytic groupoids. In each setting, the quo-
tient X := [U/R] of a groupoid R ⇒ U exists as a
stack, and there is an equivalence between groupoids
R ⇒ U and the data of a stack X together with a
presentation U → X .

Quotient stacks
An important example is a quotient stack [X/G],
arising from an action of an algebraic group G on
a scheme X over C, provide important examples of
algebraic stacks. Objects of the quotient stack [X/G]
over a C-scheme S are diagrams (S ← P → X) where
P → S is a principal G-bundle and P → X is a G-
equivariant map.

Miraculously, the quotient stack [X/G] behaves
as if the action were free: the projection X →
[X/G] is a principal G-bundle!

In particular, X → [X/G] is a surjective, smooth, and
representable morphism, which verifies that [X/G] is
an algebraic stack.

Similar to how toric varieties provide concrete ex-
amples of schemes, quotient stacks are helpful for
building geometric intuition for general algebraic
stacks and, at the same time, serve as a fertile testing
ground for conjectural results. On the other hand,
it turns out that many algebraic stacks are quotient
stacks or are at least locally quotient stacks. Thus
many properties that hold for quotient stacks can
also be established for many algebraic stacks. It is
a delicate question whether a given algebraic stack
is a global quotient stack, related to both arithmetic
and geometric properties.

The geometry of [X/G] could not be simpler: it is
the G-equivariant geometry of X:

Geometry of [X/G] G-equivariant geometry of X

point x ∈ [X/G] orbit Gx of x ∈ X

aut. group Aut(x) stabilizer Gx

function f ∈ Γ([X/G]) G-equiv. function f ∈ Γ(X)G

map [X/G] → Y G-equiv. map X → Y

line bundle G-equiv. line bundle
tangent space T[X/G],x normal space TX,x/TGx,x
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Mg and Bunr,d(X) are algebraic

As a prestack over the big étale site (Sch/C)ét of
complex schemes, Mg is the category of families of
stable curves of genus g, i.e., flat6 and proper mor-
phisms C → S of schemes such that every geomet-
ric fiber is a stable curve of genus g. A morphism
(C′ → S′)→ (C → S) is a cartesian diagram

C′ //

��

C
��

S′ // S.
□

For a stable curve [C] ∈ Mg over SpecC, the group
of isomorphisms [C]

∼→ [C] in the category Mg over
the identity id : SpecC→ SpecC is precisely the au-
tomorphism group Aut(C), as expected.

The key geometric fact needed to show both that
Mg is a stack and that it is algebraic is: every
stable curve of genus g is embedded into CP5g−6

by choosing a basis of Γ(C,ω⊗3
C ), where ωC is the

dualizing sheaf (which is the cotangent bundle ΩC

when C is smooth). Importantly, this also holds
in families. While it is not hard to see that mor-
phisms inMg glue uniquely (as an easy consequence
of descent theory), this geometric fact allows one to
glue objects by descending the closed subschemes of
CP5g−6. The embedding arising from a choice of
basis is unique up to the action of projective auto-
morphisms Aut(CP5g−6) = PGL5g−5. By consider-
ing the Hilbert scheme H := Hilb(CP5g−6) param-
eterizing all (possibly very singular) subschemes of
CP5g−6, one can show that there is locally closed7

subscheme H ′ ⊆ H parameterizing precisely stable
curves of genus g embedded by ω⊗3

C . This implies
thatMg

∼= [H ′/PGL5g−6] is an algebraic stack.
For the moduli of vector bundles on a fixed smooth

projective curve C, we define Bunr,d(C) as the
prestack over Sch/C consisting of pairs (S, F ), where
S is a scheme and F is a vector bundle F on C × S
such that for every s ∈ S the restriction Fs to Xs =
C×S Specκ(s) has rank r and degree d. A morphism
(S′, F ′) → (S, F ) is the data of a map f : S′ → S

6Flatness is defined as a rather abstract algebraic property,
but it magically ensures that the fibers vary ‘nicely’ in families.

7The local closedness is the most delicate detail.

and an isomorphism f∗F
∼→ F ′. Étale descent im-

plies that Bunr,d(C) is a stack over (Sch/C)ét. As
with Mg, algebraicity of Bunr,d(C) can be verified
by rigidifying the moduli problem: for every vector
bundle F on X, there exists an integer n such that
the nth twist F (n) is globally generated, which means
that after choosing a basis Γ(X,F (n)) of rank P (n),
we can express F (n) as a quotient O⊕P (n)

X ↠ F (n)

and thus F as a quotient O⊕P (n)
X (−n) ↠ F . Utiliz-

ing Grothendieck’s Quot scheme parameterizing all
coherent quotient sheaves of O⊕P (n)

X (−n), one can
show that there is an open subscheme Q′

n parame-
terizing vector bundle quotients which induce an iso-
morphism on global sections after twisting by n. This
expresses Bunr,d(C) as an infinite union of quotient
stacks [Q′

n/GLP (n)], and, in particular, verifies alge-
braicity.

Verifying algebraicity intrinsically

As a general fact, our knowledge of nonprojective exis-
tence theorems is exceedingly poor, and I hope this will
change eventually.

Grothendieck, letter to Murre, 1962

Until the late 1960s, moduli spaces such as
Grothendieck’s Hilbert and Quot schemes had mostly
been constructed as projective varieties using tools of
projective geometry. In the 1970s, Michael Artin es-
tablished criteria—now known as Artin’s Axioms—
for a moduli problem to be an algebraic stack or a
(possibly non-projective) algebraic space [Art74] in
terms of the local properties of the moduli problem,
i.e., its deformation and obstruction theory. Artin’s
Criteria can be applied to verify that Mg, Bun(C),
and many other moduli problems are algebraic stacks.

Constructing projective moduli

However I do not claim at all that [GIT] should be
avoided, but only that sometimes it may be good to have
an alternative.

Gerd Faltings [Fal93]

A pleasant byproduct of our definitions is that it is
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usually not hard to show that a given moduli problem
is representable by an algebraic stack and equipped
with a universal family. While many geometric ques-
tions can be studied (and arguably should be studied)
on the moduli stack, it is often convenient to make
a trade-off: by sacrificing the existence of a universal
family, we can sometimes construct a more familiar
geometric space, ideally a projective variety. This
allows us to utilize the much larger toolkit of projec-
tive geometry (e.g., birational geometry, intersection
theory, Hodge theory, ...) to study a moduli problem.

Trichotomy of moduli
Auts None Finite Reductive at

closed points

Structure Scheme/alg.
space

DM stack alg. stack

Defining
property

Zariski/étale
locally affine

étale locally
affine

smooth locally
affine

Examples CPn, Hilb,
Quot

Mg Bunssr,d(C)

Quotient
stacks [X/G]

action is free finite stabi-
lizers Gx

reductive sta-
bilizers Gx at
closed orbits

Local quotient
structure

Zariski/étale
locally SpecA

étale locally
[SpecA/Gx]

étale locally
[SpecA/Gx]

Type of mod-
uli space

fine moduli
space

coarse mod-
uli space

good moduli
space

When there are no automorphisms, no tradeoff is nec-
essary, and the moduli problem is often represented
by an algebraic space and equipped with a universal
family. In this case, we say that it is a fine moduli
space. The remaining question is whether the moduli
space is projective, and there are various ampleness
criteria, e.g., the Nakai–Moishezon criterion, that can
be applied.

When there are automorphisms, we try to approx-
imate the moduli problem with an algebraic space
that preserves many geometric features. As we will
see shortly, when the automorphisms are finite (resp.,
reductive at closed points), there is often a coarse
moduli space inducing a bijection on points (resp.,
a good moduli space inducing a bijection on closed
points).

We have already summarized how Mumford’s GIT
can be used to construct projective moduli spaces.
We now outline an alternative, more intrinsic ap-
proach, and then sketch how it can be applied to
both the moduli of stable curves and semistable vec-
tor bundles.

Six steps toward projective moduli

① Algebraicity: Express the moduli problem M as a
substack

M ⊆ X
of a larger moduli stack X , and define an object x ∈ X to
be semistable if it is in M. Show that X is an algebraic
stack locally of finite type.

② Openness of semistability: Show that semistability
is an open condition, i.e., M = X ss ⊆ X is an open sub-
stack.

③ Boundedness of semistability: Show that semista-
bility is bounded, i.e., M = X ss is of finite type.

④ Semistable reduction: Show that M satisfies the
existence part of the valuative criterion for properness.

⑤ Existence of a moduli space: Show that there is
a fine/coarse/good moduli space M → M where M is a
proper algebraic space.

⑥ Projectivity: Show that a tautological line bundle on
M descends to an ample line bundle on M , i.e., M is
projective.

Geometry of DM stacks
In order to explain how the above strategy applies
to Mg, we first describe a few general properties of
DM stacks. The first fundamental result is their local
quotient structure.

Theorem (Local Structure). If x ∈ X is a point of
a quasi-separated DM stack with stabilizer Gx as a
finite abstract group, there exists an étale morphism
([SpecA/Gx], w) → (X , x) inducing an isomorphism
of stabilizer groups at w [LMB00, Thm. 6.2].

By definition, x ∈ X has an étale neighborhood
SpecA → X , but here we have an étale neigh-
borhood [SpecA/Gx] → X that preserves stabilizer
group at x. Analogously, Deligne–Mumford topolog-
ical and differential stacks are also locally quotient
stacks [U/G] for a proper action of a finite group.

Quotient stacks [SpecA/G] by finite groups are
particularly simple: the map

[SpecA/G]→ SpecAG

induces a homeomorphism on topological spaces.
The Local Structure Theorem reduces many proper-
ties of DM stacks to quotient stacks of affine schemes
by finite groups.
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Moreover, when the stack X is smooth, then
there exists an étale morphism ([SpecA/Gx], w) →
([TX ,x/Gx], 0), where TX ,x is the Zariski tangent
space of X at x or, in other words, the first order de-
formation space. For the moduli spaceMg of smooth
curves, the tangent space at a smooth curve [C] is
identified with H1(C, TC) and the stabilizer group is
the automorphism group Aut(C). In this case, we
have a roof diagram

[SpecA/Aut(C)]
étale
ss étale

((
[H1(C, TC)/Aut(C)] Mg

and the local geometry at [C] ∈ Mg is the Aut(C)-
equivariant geometry of H1(C, TC). We can think of
the quotient stack [H1(C, TC)/Aut(C)] as the stacky
tangent space at [C]. While the stacky tangent space
is smooth, the quotient space H1(C, TC)/Aut(C)
may be singular.

Figure 6: Visualization of the local structure of M3

at a curve C with symmetry group S4. By factoring
S4 into cyclic groups Z2 and Z3, we iteratively fold
the vector space H1(C, TC) along the fixed loci of each
cyclic group; the creases reflect the loci of curves with
symmetry.

To approximate a DM stack X with an algebraic
space, we will use the concept of a coarse moduli
space, i.e., a map X → X to an algebraic space such

that every point of X has an étale neighborhood of
the form

[SpecA/G]

��

étale // X

��

(SpecA)/G := SpecAG étale // X,

□

where G is a finite group and the diagram is cartesian.
Applying the Local Structure Theorem and gluing
the quotients (SpecA)/G in the étale topology yields
the Keel–Mori Theorem:

Theorem (Existence). If X is a separated DM stack,
there exists a coarse moduli space X → X where X
is a separated algebraic space [KM97].

While the coarse moduli space gives a canonical
map to an algebraic space, another fundamental re-
sult, sometimes referred to as Le Lemma de Gab-
ber, asserts that any DM stack admits a finite mor-
phism V → X from a scheme. Most of the theory of
schemes, e.g., quasi-coherent sheaves and their coho-
mology, carry over to DM stacks with little change.

Moduli of stable curves

The variety Mg is perhaps the single most studied
variety over the last sixty years. As an alternative to
the GIT construction, we outline how to apply the
six-step strategy.

Step ① (Algebraicity): We can viewMg as a substack
of the stack Mall

g of all curves, and Artin’s Axioms
can be applied to verify that Mall

g is an algebraic
stack locally of finite type.

Step ② (Openness of stability): Since any deforma-
tion of a nodal singularity is either smooth or nodal,
Mg ⊆Mall

g is an open substack.

Step ③ (Boundedness of stability): The third power
ω⊗3
C of the dualizing sheaf of a stable curve is very

ample. Therefore, the representability of the Hilbert
scheme as a finite type scheme implies thatMg is of
finite type. (It seems that every boundedness argu-
ment in algebraic geometry ultimately relies on the
boundedness of a Hilbert or Quot scheme.)
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Step ④ (Stable reduction): Properness of Mg is es-
tablished using the valuative criterion, which trans-
lates into an explicit geometric property: given a fam-
ily C → T \ {t} of smooth curves over a punctured
smooth curve, there exists (after possibly replacing T

with a finite cover) a family C̃ → T of stable curves
extending C. This can be demonstrated by first find-
ing some extension (e.g., by using a Hilbert scheme)
where the central fiber is possibly horribly singular,
taking a resolution of singularities so that the reduced
central fiber is nodal, choosing a ramified extension
of T so that the central fiber of the normalized base
change is reduced, and then contracting any rational
components meeting the rest of the curve at fewer
than three points.
Step ⑤ (Existence of a moduli space): As Mg is
proper, the Keel–Mori Theorem yields a coarse mod-
uli space Mg as a proper algebraic space.
Step ⑥ (Projectivity): Kollár gave a solution to the fi-
nal and most difficult step in [Kol90]. By considering
the multiplication map on pluricanonical bundles

Symm π∗(ω
⊗k

Ug/Mg
)→ π∗(ω

⊗mk

Ug/Mg
),

where π : Ug → Mg is the universal family, and us-
ing that the first vector bundle has a reduction of
structure group to PGLv where v = rkπ∗(ω

⊗k

Ug/Mg
),

he constructed a quasi-finite morphism Mg →
[Gr(q,Symm Cv)/PGLv], and deduced the projectiv-
ity of Mg from the projectivity of the Grassmannian.

The projectivity of Mg is just the starting point
to its geometry. It turns out that Mg is irreducible.
Over C, this follows from Teichmüller’s description,
but it is even true in positive characteristic as first
shown by Deligne and Mumford [DM69]. We recom-
mend [HM98] for a survey of the geometry of Mg.

This six-step strategy has been applied to con-
struct many other projective moduli spaces of in-
terest, e.g., stable maps and Hassett’s weighted sta-
ble curves. Most notably, by using advances in the
minimal model program and the finite generation
of the canonical ring, Kollár, with the assistance of
many others, constructed projective moduli spaces
of canonically polarized varieties of any dimension
[Kol23].

Geometry of algebraic stacks

Mirroring our discussion of DM stacks, we will fo-
cus on two foundational results: the local quotient
structure and the existence of moduli spaces.

Theorem (Local Structure II). For an quasi-
separated algebraic stack X of finite type over C with
affine stabilizers and a point x ∈ X (C) with reduc-
tive8 stabilizer Gx, there exists an étale morphism
([SpecA/Gx], w) → (X , x) inducing an isomorphism
of stabilizer groups [AHR20, Thm. 1.1].

The upshot is that quotients stacks [SpecA/G]
by a reductive group G can be viewed as the basic
building block of algebraic stacks near points with
reductive stabilizer. In the differential setting, this
is analogous to Weinstein’s conjecture–—now Zung’s
Theorem—that differential stacks are locally quotient
stacks near points whose stabilizers are proper Lie
groups.

Quotient stacks [SpecA/G] by a reductive group
are particularly well-understood. For instance,
Hilbert’s 14th question—whether the finite genera-
tion of A implies the finite generation of AG—has a
positive answer in this case, and thus SpecAG is a
variety. The affine case of GIT asserts that the map

[SpecA/G]→ SpecAG

has desirable geometric properties of a quotient, e.g.,
it identifies closed G-orbits of SpecA with closed
points of SpecAG. Examples such as [Cn/C∗] →
SpecC (where C∗-acts with weights 1, . . . , 1) and
[C2/C∗]→ C1 (with weights 1 and −1) illustrate how
two distinct orbits can be identified in the quotient if
their orbit closures intersect.

8As we are in characteristic 0, the reductivity of an alge-
braic group G translates into the complete reducibility of G-
representations. Finite groups, tori, and the matrix groups
SLn and GLn are all reductive.
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Figure 7: A visualization of [C2/C∗]: it looks like
the non-Hausdorff complex plane C

⋃
C\0 C where

both origins specialize to an extra stacky point with
C∗ stabilizer. The map [C2/C∗] → C, given by
(x, y) 7→ xy, is an example of a good moduli space.
The fiber over t ̸= 0 ∈ C in C2 is the orbit xy = t
and corresponds to a single point of [C2/C∗], while
the fiber over t = 0 consists of three orbits.

The Local Structure Theorem allows us to formu-
late a generalization of a coarse moduli space well-
suited for moduli problems that may have non-finite
automorphisms, e.g., vector bundles on a curve. A
morphism X → X, from an algebraic stack X of fi-
nite type over C with affine diagonal to an algebraic
space X, is a good moduli space if every point of X
has an étale neighborhood of the form

[SpecA/G]

��

étale // X

��

SpecAG étale // X,

□

where G is a reductive group and the diagram is
cartesian.

While this formulates the properties of the de-
sired moduli space, it does not address their exis-
tence. Similar to the construction of the coarse mod-
uli space, the Local Structure Theorem allows us to
attempt to glue the affine GIT quotients SpecAGx of

étale neighborhoods [SpecA/Gx] → X into a good
moduli space for X . However, the presence of non-
closed C-points introduces an an additional complex-
ity in the gluing in this case, e.g., [Cn/C∗] has a point
as its good moduli space but also contains CPn−1 as
an open substack. In addition, X is necessarily non-
separated once it contains points with affine but not
finite stabilizers. By replacing the separatedness hy-
pothesis with the conditions of Θ-completeness and
S-completeness allows us to formulate an alternative
to the Keel–Mori Theorem.

Theorem (Existence II). If X is an algebraic stack
of finite type over C with affine diagonal, then there
exists a good moduli space X → X where X is a sep-
arated algebraic space if and only if X is Θ-complete
and S-complete [AHLH23, Thm. A].

Both Θ- and S-completeness are valuative crite-
ria requiring that C∗-equivariant families over cer-
tain C∗-equivariant punctured surfaces extend over
the surface. For instance, X is Θ-complete if for ev-
ery pointed curve (T, t), every Gm-equivariant mor-
phism

(
C × T

)
\ {(0, t)} → X extends uniquely to

a Gm-equivariant morphism C × T → X . Using the
notation Θ := [C1/C∗] and ΘT := Θ× T , this trans-
lated to requiring that every map ΘT \ {(0, t)} → X
extends uniquely to a map ΘT → X .

Moduli of semistable vector bundles

Fix a connected, smooth, and projective complex
curve C. The moduli stack Bunr,d(C), parameter-
izing vector bundles on C of rank r and degree d,
is unbounded (i.e., not finite type), horribly non-
separated, and does not admit a reasonable moduli
space. Remarkably, semistability offers a solution to
all three of these issues. Extending Mumford’s defi-
nition of a stable vector bundle, Seshadri [Ses67] de-
fined a vector bundle F on C to be semistable if for
every subsheaf E ⊆ F satisfies

degE

rkE
≤ degF

rkF
.

We define Bunss
r,d(C) as the full subcategory of

Bunr,d(C) whose objects are pairs (T,E) where E
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is a vector bundle on C×T such that for every point
t ∈ T , the restriction Et := E|C×{t} is semistable.

Seshadri constructed a projective moduli space of
Bunss

r,d(C) using GIT [Ses67], but we can also apply
the intrinsic six-step approach outlined above.

Step ① (Algebraicity): By construction, Bunss
r,d(C)

is a substack of Bunr,d(C), which (as we sketched
above) is an algebraic stack locally of finite type. In
fact, it is convenient to view Bunss

r,d(C) as substack
of the even larger algebraic stack Cohr,d(C) parame-
terizing coherent sheaves of rank r and degree d.

Step ② (Openness of stability): Given a family of vec-
tor bundles F on C × T over a finite type scheme
T , there are only finitely many ranks r′ and de-
grees d′ of a destabilizing subsheaf E ⊆ Ft of a fiber
Ft := F |C×{t}. For each pair (r′, d′), there is a rela-
tive Quot scheme Qr′,d′ proper over T parameterizing
such subsheaves whose image in T is closed. Remov-
ing each such locus gives an open subscheme of T con-
sisting precisely of points t ∈ T with Ft semistable.

Step ③ (Boundedness of stability): Choosing an am-
ple line bundle OC(1) on C, one shows that if F is
semistable and n > 2g−2−d/r, then H1(C,F (n)) = 0
(this is not hard: by Serre–Duality, H1(C,F (n)) ∼=
HomOC

(F (n),ΩC), and this group is zero as there
are no maps F (n)→ ΩC between semistable bundles
where the slope of the target is smaller). It follows
that if n > 2g− 1− d/r, then F (n) is globally gener-
ated by P (n) = h0(C,F (n)) sections. Therefore, the
finite type Quot scheme QuotP (OC(−n)⊕P (n)) shows
that Bunss

r,d(C) is of finite type.

Step ④ (Semistable reduction): The existence part of
the valuative criterion was proven by Stacy Lang-
ton [Lan75]: for each punctured curve T \ {t}, any
semistable vector bundle F on C × (T \ {t}) can be
extended to a semistable vector bundle F̃ on C × T .
Langton’s strategy is to first find some extension
F̃ to C × T , e.g., by using the properness of the
Quot scheme. If the central fiber F̃t := F̃ |C×{t}
is not semistable, there is a destabilizing subsheaf
Et ⊂ F̃t and one replaces F̃ with ker(F̃ ↠ F̃t ↠
F̃t/Et). The central fiber of F̃ is now closer to be-
ing semistable, and she proved that the central fiber
becomes semistable after finitely many steps.

Step ⑤ (Existence of a moduli space): We claim that
there is a good moduli space Bunss

r,d(C) → Mps
r,d(C)

to a proper algebraic space whose points are in bi-
jection with the closed points of Bunss

r,d(C), i.e., the
polystable vector bundles. By applying the Existence
Theorem, one must verify that Bunss

r,d(C) is Θ- and
S-complete. It is not hard to see that the larger stack
Cohr,d(C) is both Θ- and S-complete. For instance,
we can use the correspondence between maps from
Θ = [C1/C∗] to Cohr,d(C) and filtrations of a vector
bundle to reinterpret Θ-completeness: since a map
(Θ×T ) \ {0, t} → Cohr,d(C) corresponds to a family
of coherent sheaves F on X×T together with a filtra-
tion of the restriction F |X×(T\{t}), Θ-completeness
is the requirement that the filtration extends to a
filtration of F . This is an easy consequence of the
properness of the Quot scheme. Therefore, to show
that Bunss

r,d(C) is Θ-complete, we can first use Θ-
completeness of Cohr,d(C) to find a filtration of F
extending the filtration of F |X×(T\{t}), and then use
properties of semistability to show that the central
fiber of the unique extension is semistable.

Step ⑥ (Projectivity): Gerd Faltings gave an ex-
plicit construction of Mps

r,d(C) as a projective vari-
ety [Fal93]. The central idea is to show that there
is a vector bundle V on C such that the determi-
nantal line bundle LV := detRp2,∗(Euniv ⊗ p∗1V )∨ on
Bunss

r,d(C), where Euniv is the universal vector bun-
dle on C × Bunss

r,d(C), descends to an ample line
bundle LV on Mps

r,d(C). Ampleness is verified by ex-
plicitly constructing sections. To achieve, this Falt-
ings first proved an interesting characterization of
semistability: a vector bundle E on C of rank r
and degree d is semistable if and only if there ex-
ist a vector bundle V such that H0(C,F ⊗ V ) =
H1(C,F ⊗ V ) = 0. This allows us to construct a
section of LV that does not vanish at F : the derived
pushforward Rp2,∗(Euniv ⊗ p∗1V ) is represented by a
two-term complex α : K0 → K1 of vector bundles of
the same rank on Bunss

r,d(C), and the induced section
OBunss

r,d(C) → LV = det(K1) ⊗ det(K0)∨ is nonzero
at F because det(α|F ) is an isomorphism, or in other
words because H0(C,F ⊗ V ) = H1(C,F ⊗ V ) = 0.
This implies that a positive tensor power of the de-
scended line bundle LV on Mps

r,d(C) is globally gener-
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ated, i.e., defines a map to projective space. A similar
but more involved line of reasoning shows that this
map does not contract any curves, which is sufficient
to guarantee that LV is ample.

For geometric properties of Mps
r,d(C), we direct

the reader to [HL10]. The above approach can be
adapted to construct projective moduli spaces of K-
polystable log Fano varieties and of semistable com-
plexes with respect to certain Bridgeland stability
conditions.
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