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Abstract

These notes provide the foundations of moduli theory in algebraic geometry with
the goal of providing self-contained proofs of the following theorems:

Theorem A. The moduli space Mg of stable curves of genus g ≥ 2 is a smooth,
proper, and irreducible Deligne–Mumford stack of dimension 3g − 3 which admits a
projective coarse moduli space.

Theorem B. The moduli space Bunss
r,d(C) of semistable vector bundles of rank

r and degree d over a smooth, connected, and projective curve C of genus g is a
smooth, universally closed, and irreducible algebraic stack of dimension r2(g − 1)
which admits a projective good moduli space.

Along the way we develop the foundations of algebraic spaces and stacks, which
provide a convenient language to discuss and establish geometric properties of moduli
spaces. Introducing these foundations requires developing several themes at the
same time including:

• using the functorial and groupoid perspective in algebraic geometry: we will
introduce the new algebro-geometric structures of algebraic spaces and stacks,

• replacing the Zariski topology on a scheme with the étale topology: we will
introduce Grothendieck topologies proving a generalization of topological
spaces, and we will systematically use descent theory for étale morphisms, and

• relying on several advanced topics not typically seen in a first algebraic geometry
course: properties of flat, étale and smooth morphisms of schemes, algebraic
groups and their actions, deformation theory, and the birational geometry of
surfaces.

Choosing a linear order in presenting the foundations is no easy task. We attempt
to mitigate this challenge by relegating much of the background to appendices. We
keep the main body of the notes always focused on developing moduli theory with
the above two theorems in mind.
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Chapter 0

Introduction and motivation

Moduli spaces arise as solutions to one of the most fundamental problems in mathe-
matics:

Classification problem: Can we classify the isomorphism classes
of all algebro-geometric objects of a certain type?

There are many types of objects that we may want to classify:

• subspaces V ⊂ Cn of dimension k;

• plane curves C ⊂ P2 of degree d;

• curves C of genus g together with a degree d morphisms C → P1;

• line bundles on a fixed projective variety X;

• representations of a group, e.g. an absolute Galois group Gal(Qp/Qp), the
fundamental group π1(Σ) of a topological surface of genus g, or the path
algebra of quiver;

But the following two examples are our primary interest:
(1) smooth (or more generally stable) curves of genus g, and
(2) vector bundles (or more specifically semistable vector bundles) on a fixed

smooth curve C.
They will be used throughout this book to illustrate the concepts of moduli.

A moduli space is a space whose points are in natural bijection
with isomorphism classes of correspondence with isomorphism
classes of the given algebro-geometric objects.

The key word above is ‘natural’, and it is probably not clear to you what this
could mean. Indeed, one of the main challenges in developing moduli theory is
precisely formulating what this means. After all, any two complex manifolds or
varieties of positive dimension are bijective; they both have the cardinality of the
continuum. Our approach to clarify a ‘natural bijection’ will be to introduce the
notion of a family of objects and require a certain relationship between maps to the
moduli space and families of objects.

Moreover, the structure of the ‘space’ depends on the context: if we are classifying
topological objects, we might hope for the structure of a topological space, while if
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we are classifying differential objects, we might hope for the structure of af manifold.
In this book, we are mainly focused on classifying objects appearing in algebraic
geometry, and we desire for a moduli space with the structure of a variety, ideally a
projective variety.

Once one starts viewing spaces through the lens of moduli, everything appears
to be a moduli space: every space M is the moduli space of its points. It is of course
more interesting when there are alternative descriptions. Projective space P1 is the
set of points in P1 (not so interesting) or the set of lines in the plane passing through
the origin (more interesting). It is even more interesting when there are several
descriptions, and even better when these viewpoints integrate several branches of
mathematics. This is the case in both of our main examples in this text:
(1) a smooth algebraic curve of genus g can also be viewed as a compact Riemann

surface of genus g, and
(2) a semistable algebraic vector bundle on a fixed curve C can be equivalently

considered as a holomorphic vector bundle with flat unitary connection, or as
an irreducible unitary representations of π1(C).

This leads to a rich interplay between algebraic, analytic, and topological approaches.
As Mumford writes in the preface of [Mum04]:

Besides of being a form of cartography, the theory of moduli spaces has
the wonderful feature of having many doors, many techniques by which
this theory can be developed. Of course, there is traditional algebraic
geometry, but there is also invariant theory, complex-analytic techniques
such as Teichmüller theory, global topological techniques, and purely
characteristic p methods such as counting objects over finite fields. This
is another part of its charm.

Discrete vs continuous moduli. Depending on the types of objects, the moduli
space could be discrete or continuous, or a combination of the two. We illustrate
this with the following examples:

• The moduli space of line bundles on P1 is the discrete set Z: every line bundle
on P1 is isomorphic to O(n) for a unique integer n ∈ Z.
• The moduli space parameterizing quadric plane curves C ⊂ P2 is the connected
space P5: a curve defined by a0x

2 + a1xy + a2xz + a3y
2 + a4yz + a5z

2 is
uniquely determined by the point [a0, . . . , a5] ∈ P5, and as a plane curve varies
continuously (i.e. by varying the coefficients ai), the corresponding point in
P5 does too.

• For smooth curves, the genus g is a discrete invariant while for smooth curves
of a fixed genus g, the moduli space Mg is a variety (it is in fact an irreducible
quasi-projective variety but we are now getting far ahead of ourselves). The
moduli space of all smooth curves can thus be viewed as the disjoint union∐
gMg.

• For vector bundles on a smooth curve C, the rank r and degree d are discrete
invariants while the moduli space Bunss

C,r,d of semistable bundles of rank r and
degree d is an irreducible projective variety.

Why study moduli spaces? Properties of moduli spaces can inform us about
properties of the objects themselves. In fact, many properties of objects are best
formulated in terms of moduli spaces. For instance, to express the condition that a
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general genus 3 curve can be parameterized by an explicit coordinate system—namely
a general genus 3 curve is canonically embedded into P2 as a plane quartic and thus
parameterized by a point in the space P(Γ(P2,O(4))) ∼= P14—we could say that the
moduli space M3 is unirational, i.e. there is a dominant rational map P14 99KM3.

Do moduli spaces exist? Before we can even begin to discuss the geometry of
moduli spaces, we need to show that they exist. This is no easy task, and is one
of the major goals of this book. We develop the foundations of moduli theory in
order to prove that there is a projective moduli space parameterizing stable curves
of genus g (Theorem A) and a projective moduli space parameterizing semistable
vector bundles of rank r and degree d on a fixed smooth curve (Theorem B). It
seems like a miraculous coincidence that these moduli spaces exist as varieties! Their
existence is the starting point of moduli theory.

Trichotomy of moduli. A recurring them in moduli is the influence of auto-
morphism groups on properties of a moduli space and the techniques used to study
its geometry. There is a trichotomy in moduli theory depending on the size of the
automorphism groups: (1) no automorphisms, (2) finite automorphisms, and (3)
infinite automorphisms. In (3), the moduli spaces are particular well-behaved when
the closed points of the moduli stack have reductive automorphisms.

No Auts Finite Auts Reductive Auts

Type of space Scheme/algebraic
space

Deligne–Mumford
stack

algebraic stack

Defining
property

Zariski/étale-locally
an affine scheme

étale-locally an affine
scheme

smooth-locally an
affine scheme

Examples Pn, Gr(k, n), Hilb,
Quot

Mg Bunr,d(C)

Quotient
stacks [X/G]

action is free finite stabilizers reductive stabilizers

Existence of
moduli space

fine moduli space coarse moduli space good moduli space

Our approach. In this chapter, we motivate the approach of this text by gradually
building in enriched structures on sets and groupoids. We first introduce families of
objects and the functorial worldview (Section 0.3) and then develop the groupoid
perspective (Section 0.4). After motivating the étale topology (Section 0.5), we
combine these perspectives by introducing moduli stacks (Section 0.6) and sketch
our main techniques to construct a projective moduli space (Section 0.7).

13



Sets

Topological
spaces

Functors or
presheaves on Sch

Ringed spaces

Schemes Algebraic spaces

Sheaves on Schét

Groupoids

Prestacks over Sch

Stacks over Schét

Deligne–Mumford
stacks

Algebraic
stacks

Figure 1: Schematic diagram algebro-geometric enrichments of sets and groupoids.

0.1 A brief history of moduli
We quickly discuss the historical development of moduli theory as a means to provide
a first glimpse to many themes in moduli.

0.1.1 Riemann and the origins of Mg

Die 3p− 3 übrigen Verzweigungswerthe in jenen Systemen
gleichverzweigter µ werthiger Functionen können daher beliebige Werthe
annehmen; und es hängt also eine Klasse von Systemen gleichverzweigter
2p+ 1 fach zusammenhängender Functionen und die zu ihr gehörende
Klasse algebraischer Gleichungen von 3p− 3 stetig veränderlichen
Grössen ab, welche die Moduln dieser Klasse genannt werden sollen.

Translation: The remaining 3p− 3 branch points in these systems of
similarly branching µ-valued functions can therefore be assigned any
given values; and thus a class of systems of similarly branching functions
with connectivity 2p+ 1, and the corresponding class of algebraic
equations, depends on 3p− 3 continuous variables, which we shall call
the moduli of the class.

Riemann [Rie1857, pg.33]

This is a remarkable sentence in a remarkable paper—Riemann both introduces
the concept of ‘moduli’ and computes that the ‘number of moduli’ of Mg is 3g − 3.
Riemann’s idea went something like this: instead of considering abstract smooth
curves, let’s view curves as branched covers over P1 and consider the moduli space

Hurd,g =

{
[C → P1]

∣∣∣∣ • C is a smooth curve of genus g
• C → P1 is a simply branched covering of degree d

}
.

(0.1.1)
Formally studied later by Hurwitz [Hur1891], these moduli spaces—which are now
referred to as Hurwitz spaces—also play an essential role in irreducibility arguments
for Mg (see §5.7).

A simply branched covering is a finite map of smooth curves where the ramification
indices are at most two and and every fiber has at most one ramification point
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(Definition 5.7.1). By Riemann–Hurwitz (5.7.2), every simply branched covering
C → P1 is branched over 2g+ 2d− 2 distinct points of P1. This gives a commutative
diagram

Hurd(C)
� � //

zz

Hurd,g

zz &&

{[C]} �
�

//� � // Mg Sym2d+2g−2 P1

(0.1.2)

where

• the map Hurd,g → Sym2d+2g−2 P1 sends a covering [C → P1] to the 2g +

2d− 2 branched points; here SymN P1 = (P1)N/SN is the space classifying N
unordered points,

• the map Hurd,g →Mg is defined by [C → P1] 7→ [C], and

• Hurd(C) is the preimage of [C] ∈ Mg under Hurd,g → Mg, i.e. Hurd(C)
classifies simply branched coverings C → P1 where C is fixed.

If d is sufficiently large, then for every general collection of 2d + 2g − 2 points of
P1, there exist a genus g curve C and a simply branched covering C → P1 branched
over precisely these points, and moreover there are at most finitely many such maps.
In other words, Hurd,g → Sym2d+2g−2 P1 has dense image and finite fibers; see
Lemma 5.7.7 for a precise statement. Therefore,

dimMg = dim Hurd,g −dim Hurd(C)

= 2d+ 2g − 2− dim Hurd(C)
(0.1.3)

To compute the dimension of Hurd(C), we observe that a simply branched covering
C → P1 is the data of a degree d line bundle L and two base point free sections
such that the induced map to P1 is simply branched. Since a general choice of two
sections defines a simply branched covering (Lemma 5.7.5), we can compute

dim Hurd(C) = dim Picd(C) + 2h0(C,L)− 1,

where we subtract one since scaling any two sections will define the same map
to P1. Riemann–Roch (5.1.4) tells us that h0(C,L) = d + 1 − g. On the other
hand dim Picd = dim Pic0 = g; this can be seen using the exponential sequence:
0→ Z→ OC

exp−−→ O∗C → 0 yields a long exact sequence

H1(C,Z)︸ ︷︷ ︸
Z2g

→ H1(C,OC)︸ ︷︷ ︸
Cg

→ H1(C,O∗C)︸ ︷︷ ︸
Pic(C)

deg−−→ H2(C,Z)︸ ︷︷ ︸
Z

, (0.1.4)

and provides an identification Pic0(C) ∼= Cg/Z2g. We conclude that dim Pic0(C) = g
and dim Hurd(C) = g + 2(d + 1 − g) − 1 = 2d − g + 1. Plugging this into (0.1.3)
yields

dimMg = (2d+ 2g − 2)− (2d− g + 1) = 3g − 3.

Riemann in fact gave several other heuristic arguments computing the dimension of
Mg. See [GH78, pg. 255-257] or [Mir95, pg. 211-215] for further discussion on the
number of moduli of Mg, and see [AJP16] for a historical background of Riemann’s
computations.
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Riemann’s moduli problem: Does Mg exist as a complex ana-
lytic space?

While Riemann’s argument can be made completely rigorous with today’s meth-
ods (as we do ourselves later in this text), there are foundational issues with
Riemann’s method—today we would say that Riemann computed the dimension
of a ‘local deformation space.’ Most notably, Mg was not known to exist and it
wasn’t clear what type of space Mg was supposed to be. Despite this, Riemann had
an instintive grasp of its geometry—in fact in the same paper [Rie1857], Riemann
introduced the word ‘Mannigfaltigkeit’ (or ‘manifold’) to describe its geometry. Man-
ifolds were not formally defined until much later in the 1940s following Teichmüller,
Chern, and Weil. Riemann was aware of the foundational issues in geometry:

It is well known that geometry presupposes not only the concept of space
but also the first fundamental notions for constructions in space as given
in advance. It only gives nominal definitions for them,... while the
relationship of these presumptions is left in the dark... From Euclid to
Legendre, to name the most renowned of modern writers on geometry,
this darkness has been lifted neither by the mathematicians nor the
philosophers who have laboured upon it. —Riemann 1854

Riemann’s work has inspired many generations of mathematicians to lift us out
of this darkness.

The spirit of Riemann will move future generations as it has moved us.
—Ahlfors [Ahl53, p. 53]

It is difficult to recall another example in the history of 19th century
mathematics when a struggle for a rigorous proof led to such productive
results. —Monastyrsky [Mon87, p. 41]

0.1.2 Moduli of curves of low genus

Genus 0. For n ≥ 3, the moduli space M0,n of smooth genus 0 curves with n
ordered distinct points can be described as

M0,n =
(
P1 \ {0, 1,∞}

)n−3 \ (all diagonals).

Indeed, given n ordered distinct points p1, . . . , pn on P1, there is a unique auto-
morphism g ∈ Aut(P1) ∼= PGL2 taking (p1, p2, p3) to (0, 1,∞). When n = 4, we
obtain that a bijection M0,4 = P1 \ {0, 1,∞} given by the classical cross-ratio of four
points in P1 first discovered by Pappus of Alexandria [Ale86] in 300 AD (see also
Example 6.6.8).

Genus 1. Every elliptic curve (E, p), i.e. a smooth genus 1 curve E with a marked
point p ∈ E, can be described as a plane cubic in Weierstrass form

Eλ = V (y2z − x(x− z)(x− λz)) ⊂ P2

for some λ 6= 0, 1, where p = [0 : 1 : 0] ∈ Eλ. However, the choice of λ is not distinct:
the values λ, 1/λ, 1− λ, 1/(1− λ), λ/(λ− 1), and (λ− 1)/λ determine isomorphic
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elliptic curves. In other words, the map A1 \ {0, 1} →M1,1 given by λ 7→ [Eλ] is a
6-to-1 surjective map. The j-invariant on the other

j = 28 (λ2 − λ+ 1)3

λ2(λ− 1)2

uniquely determines the isomorphism class of the curve and thus gives a bijection
M1,1

∼= A1. For a modern treatment, see [Har77, §4].

Genus 2. Every smooth genus 2 curve C is hyperelliptic and can be written as a
double cover y2 = (x− a1) · · · (x− a6) over P1. This is a consequence of the sheaf of
differentials ΩC being a base point free line bundle of degree 2 with 2 global sections;
the induced map C → P1 is ramified over 6 points by Riemann–Hurwitz (5.7.2). We
obtain the description that

M2 =
(
Γ(P1,O(6)) \∆

)
/GL2,

where ∆ ⊂ Γ(P1,O(6)) denotes the locus of binary sextics with a double root. After
a projective change of coordinates on P1, we can arrange that the curve is ramified
over 0, 1, ∞ and 3 other points a4, a5, a6 ∈ P1 \ (0, 1,∞). In this way, we obtain a
surjective map (P1 \ {0, 1,∞})3 \∆→M2.

Invariant theory of binary sextics (see [Cle1870]) provides an even sharper
description: the ring of invariant polynomials, i.e. polynomials in a0, . . . , a6 that
are invariant under automorphisms of P1, is generated by invariants J2, J4, J6,
J8, J10, and J15, whose degree is indicated by the subscript, with a single relation
J2

15 = G(J2, J4, J6, J10) for some polynomial G. The invariant J10 is the discriminant
while J15 does not affect the scheme structure. This yields that M2 is an open subset
of weighted projective space

M2 = ProjC[J2, J4, J6, J10] \ {J10 = 0},

and thus M2 is an affine variety embedded into A8 via

J5
2

J10
,
J3

2J4

J10
,
J2

2J6

J10
,
J2J

2
4

J10
,
J2J

3
6

J2
10

,
J5

4

J2
10

,
J4J6

J10
,
J5

6

J3
10

.

We can identify this coordinate ring with the invariant ring of the action on Z/5
on A3 where a generator ζ ∈ Z/5 acts via ζ · (x, y, z) = (ζx, ζ2y, ζ3z); the above
functions are identified with the invariants x5, x3y, x2z, xy2, xz3, y5, yz, z5. This
yields the rather elegant global description

M2 = A3/(Z/5).

This was studied classically by Bolza [Bol1887] and more recently by Igusa [Igu60].

Genus 3. A non-hyperelliptic smooth genus 3 curve embeds as a quartic in P2

under the canonical embedding. Letting ∆ ⊂ Γ(P1,O(4)) be the locus of singular
quartics, we obtain a description of the open locus of non-hyperelliptic curves as
the quotient

(
Γ(P1,O(4)) \∆

)
/GL3—this is the first time that our description only

describes a general curve. On the other hand, a hyperelliptic genus 3 curve is double
cover of P1 ramified over 8 points, and we obtain a set-theoretic decomposition

M3 =
(
Γ(P1,O(4)) \∆

)
/GL3︸ ︷︷ ︸

dim=6

∐(
Γ(P1,O(8)) \∆

)
/GL2︸ ︷︷ ︸

dim=5

,
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suggesting that the locus of hyperelliptic curves is a divisor in M3.

Genus 4. A non-hyperelliptic smooth curve C of genus 4 embeds into P3 under its
canonical embedding, and can be realized as the intersection C = Q∩S of a quadric
Q and cubic S. This gives a rational map Γ(P3,O(2))× Γ(P3,O(3)) 99KM4 whose
image is the locus of non-hyperelliptic curves; as above the hyperelliptic locus can be
parameterized by Γ(P1,O(10)) \∆

)
/GL2. Alternatively, a general non-hyperelliptic

smooth genus 4 curve can be realized as the normalization of a plane quintic with
precisely two nodes, or as a degree 3 cover of P1 branched over 12 points.

Genera 5–10. Classically, general curves were described either as plane curves
with prescribed singularities via the image of a map C → P2, or as branched covers
C → P1. For a general genus g curve C, the smallest degree d such that C is realized
as a normalization of a singular plane curve is d = b 2g+8

3 c. If the plane curve had
at worst nodal singularities, then the number of nodes is δ := (d− 1)(d− 2)/2− g.
Meanwhile, the minimum degree of a map C → P1 is b g+3

2 c.

g d = min degree δ = # of nodes (d+1)(d+2)
2 − 3δ min degree # of branch pts

of im(C → P2) of C → P1

0 1 0 3 1 0
1 3 0 10 2 4
2 4 1 12 2 6
3 4 0 15 3 10
4 5 2 15 3 12
5 6 5 13 4 16
6 6 4 16 4 18
7 7 8 12 5 22
8 8 13 6 5 24
9 8 12 9 6 28
10 9 18 1 6 30
11 10 25 -9 7 34

Table 1: General curves of low genus

In [Sev15] and [Sev21], Severi used such descriptions to show that Mg is unira-
tional for g ≤ 10. Like other mathematicians of his era, Severi did not formulate
precisely what it meant for Mg to be a moduli space.

What goes wrong for g ≥ 11? As the genus grows, it clearly becomes more
difficult to describe a general genus g curve. To give an indication of the challenges
for g ≥ 11, let’s try to describe a genus g curve as a degree d = b 2g+8

3 c planar curve
with δ = (d − 1)(d − 2)/2 − g nodes at prescribed points p1, . . . , pδ ∈ P2. If the
plane curve defined by f ∈ Γ(P2,O(d)) has a nodes at each pi, then the equations
fx(pi) = fy(pi) = fz(pi) = 0 imposes 3δ linear equations on Γ(P2,O(d)). For such
nodal plane curves to exist, we would need

dim Γ(P2,O(d))− 3δ =
(d+ 1)(d+ 2)

2
− 3

(
(d− 1)(d− 2)

2
− g
)
> 0.

As illustrated by Table 1, g = 11 is the first case where this does not hold!
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Severi’s conjecture. Severi conjectured that Mg is unirational for all g: “Ritengo
probabile che la varietà sia razionale o quanto meno che sia riferibile ad un’involuzione
di gruppi di punti in uno spazio lineare...” [Sev15, pg. 881]. While this conjecture
turned out to be false, it motivated mathematicians for decades: “Whether more
Mg’s, g ≥ 11, are unirational or not is a very interesting problem, but one which
looks very hard too, especially if g is quite large" [Mum75, pg. 37]. In the 1980s,
Eisenbud, Harris, and Mumford disproved this conjecture and showed that in some
sense quite the opposite is true in large genus: Mg is general type for g ≥ 24 [HM82],
[EH87].

Petri’s description of canonical curves. While most 19th and early 20th
century mathematicians described curves as either plane singular curves or as covers
of P1, Petri’s explicit description [Pet23] of canonically embedded curves was an
exception and is more reminiscent of modern approaches. As Mumford writes
in [Mum75, p.17], Petri’s approach “is unavoidably a bit messy, but just to be
able to brag, I think it is a good idea to be able to say ‘I have seen every curve
once.’ ” Building on M. Noether’s result [Noe1880] that the canonical embedding
C ↪→ Pg−1 of a non-hyperelliptic smooth curve C is projectively normal—that is,
ϕ : Sym∗ Γ(C,ΩC)→

⊕
d≥0 Γ(C,Ω⊗dC ) is surjective—and also building on work of

Enriques [Enr19] and Babbage [Bab39], Petri showed that the homogeneous ideal
I = kerϕ is generated by quadrics unless C is a plane quintic (g = 6) or trigonal (i.e.
a triple covering of P1) in which case I is generated in degree 2 and 3. Petri’s analysis
was remarkably constructive leading to explicit equations in Pg−1 cutting out C
along with explicit syzygies among the equations. Petri’s work continues to inspire
research in the theory of moduli and syzygies. We won’t cover this perspective
further in this text but we recommend [SD73], [Mum75, pgs. 17-21], [AS78], [Gre82],
[Gre84], and [ACGH85, §III.3].

0.1.3 Analytic approaches and the Teichmüller space

In the late 19th and early 20th century, Riemann surfaces were described as quotients
of the upper half plane by a discrete subgroup of PSL2(R); such subgroups are named
Fuchsian groups after Fuchs [Fuc1866]. Fricke and Klein classified Fuchsian groups
using the theory of automorphic functions in their 1300 page volumes [FK1892],
[FK12]. They constructed what’s now known as the Teichmüller space, showed that
it is a contractible space, and even exhibited complex structures. Torelli showed
that a Riemann surface can be constructed from its Jacobian [Tor13], and Siegel
constructed the moduli space Ag of abelian varieties of dimension g as an analytic
space [Sie35].

Teichmüller1 was the first to give a precise formulation of Riemann’s moduli
problem, to construct Mg as a complex analytic space, and to interpret 3g − 3 as
its complex dimension [Tei40], [Tei44]. Teichmüller constructed the Teichmüller
space Tg parameterizing complex structure on a topological surface Σg of genus
g up to homeomorphism. The space Tg is homeomorphic to a ball in C3g−3 and
inherits an action of the mapping class group Γg of diffeomorphisms of Σg modulo
the subgroup of diffeomorphisms isotopic to the identity. This action is properly
discontinuous, and Mg is realized as the quotient Tg/Σg. Although largely forgotten
for nearly 20 years, Teichmüller theory was later greatly expanded by Ahlfors, Bers,

1Bers use of the famous quote of Plutarch (Perikles 2.2) to describe Teichmüller in [Ber60a]
seems fitting: “It does not of necessity follow that, if the work delights you with its grace, the one
who wrought it is worthy of your esteem.”
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and Weil among others; see [Wei57], [Wei58], [AB60], [Ber60b], and [Ahl61]. For
modern expository treatments, see [Ber72], [Hub06], and [FM12].

Teichmüller had also introduced the notion of families of Riemann surfaces and
showed that the Teichmüller space satisfies a universal property. Grothendieck, in a
series of lectures at Cartan’s seminar [Gro61], developed a general theory of analytic
moduli spaces in the language of categories and functors, reformulated Teichmüller
theory in this setting, and showed that Tg represents a functor parameterizing
families of Riemann surfaces. This set the stage for Grothendieck’s later work on
algebraic moduli: “One can hope that we shall be able one day to eliminate analysis
completely from the theory of Teichmüller space, which should be purely geometric”
[Gro61, Lecture I].

0.1.4 The origins of algebraic moduli theory

As for Mg there is virtually no doubt that it can be provided with the
structure of an algebraic variety.

Weil [Wei58, pg. 383]

Cayley, Gordan, and Hilbert. The invariant theorists of the 19th century were
interested in classifying homogeneous polynomials of degree d in n variables up to pro-
jective automorphisms, or in other words in the moduli space Γ(Pn−1,O(d))/PGLn.
They attempted to describe this moduli space by exhibiting explicit invariant poly-
nomials in the coefficients aI of a polynomial f =

∑
I aIx

I . The origins of invariant
theory lie in work by Boole [Boo1841] and Cayley [Cay1845], and was further de-
veloped by Gordan and Hilbert along with many others. Gordan exhibited explicit
generators of the ring of invariants of binary forms (n = 2) [Gor1868] and Hilbert
later proved that the ring of invariants is finitely generated for any ring [Hil1890],
[Hil1893].

Cayley constructed the moduli space of curves in P3 [Cay1860], [Cay1862], which
is now referred to as the Chow variety. His idea was to associate to a degree d curve
C ⊂ P3 the set of a lines L ⊂ P3 meeting C; this is a hypersurface of degree d in
Gr(1,P3), and the Chow variety is the closure of all hypersurface in Γ(Gr(1,P3),O(d))
obtained this way. The general theory of Chow varieties parameterizing subschemes
in Pn of any dimension was later developed by Chow and van der Waerdan [CW37].

Weil. In Weil’s work on the Riemann hypothesis for curves over finite fields
[Wei48], he needed to construct the Jacobian of a curve parameterizing degree 0 line
bundles. At that point, varieties had only been considered as embedded in affine or
projective space, and in his foundation work [Wei62] Weil enlarged the category to
abstract varieties. This was enough to construct the Jacobian and give a proof—in
fact his second proof—of the Riemann hypothesis for curves. Later Weil and Chow
independently showed that the Jacobian was projective.

Baily. Baily constructed the moduli space Ag of principally polarized abelian vari-
eties as a quasi-projective variety [Bai60a], [Bai60b], showed that Satake’s topological
compactification [Sat56] is algebraic [Bai58], and together with Borel introduced
what’s now known as the Baily–Borel compactification [BB66]. Using the period
map Mg → Ag associating a curve to its Jacobian and Torelli’s theorem that this
map is injective, Baily concluded that Mg has the structure of a quasi-projective
variety. However, he did not prove that this provided a ‘natural’ structure of a
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variety nor that it had any uniqueness properties, i.e. that Mg is a coarse moduli
space.

Thirdly, in order to call E the variety of moduli of Riemann surfaces
of genus n, one should be able to state that it is unique and in some
sense universal among normal parameter varieties of algebraic systems of
curves of genus n. Namely, given any normal algebraic system of curves
of genus n there should exist a natural map of the parameter variety
of the nonsingular members of this system into E. — Baily [Bai60b,
pgs. 59-60]

Mumford credits Baily for the quasi-projectivity of Mg in [Mum75, p. 98] just as
Gieseker does in his commentary in [Mum04].

Grothendieck. After Grothendieck’s formalization of analytic moduli theory, in
his ‘FGA series’ [Gro60a, Gro60b, Gro61a, Gro61b, Gro62a, Gro62b], he applied
his functorial approach to algebraic geometry. He defined the Hilbert, Quot, and
Picard functors, and showed that they are representable by projective schemes.
Grothendieck of course later reformulated the entire foundations of algebraic geometry
by developing scheme theory. His profound influence on algebraic geometry and
more broadly mathematics helped shape the future of moduli theory.

Although he didn’t publish onMg, Grothendieck was nevertheless very much inter-
ested in moduli theory and in the existence ofMg as a quasi-projective variety—see his
email correspondence with Mumford in the early 1960s [Mum10, §II]. Grothendieck
was aware that the presence of automorphisms obstructed the representability of the
functor parameterizing smooth families of curves. He rigidified the moduli problem
by also parameterizing a level structure on a curve. While he could show that the
functor of smooth curves with level structure r ≥ 3 was representable by a scheme,
he struggled to show that it was quasi-projective. The idea was to construct Mg as a
quotient of the rigidified moduli space by modding out by the finite group acting on
the choice of level n structure. The lack of quasi-projectivity impeded this approach
as the quotient of non-quasi-projective variety by a finite group need not exist as a
variety (see Example 0.5.5).

Grothendieck was also interested in the connectedness of Mg in positive charac-
teristic. In an email to Mumford on April 25, 1961 [Mum10, p. 638], Grothendieck
wrote: “Yet I have some hope to prove the connectedness of the Mg,n (arbitrary
levels) using the transcendental result in char. 0 and the connectedness theorem;
but first one should get a natural “compactification” of Mg,n which should be simple
over Z.” Deligne and Mumford [DM69] later provided the compactificationMg,n

and applied it to prove the connectedness of Mg in all characteristics—this argument
is given in §5.7.

Mumford. Motivated by Riemann’s moduli space as well as by constructions of
Chow varieties, Picard varieties, and the moduli of abelian varieties in the early
20th century, Mumford made immense contributions to the foundations of moduli
theory. He was the first to systematically study their geometry.

The point is, I love maps, that is “maps” in the sense of “maps of the
world,” “charts of the ocean,” “atlases of the sky”! I think one of the key
things that attracted me to the group of problems was the hope of making
a map of some parts of the world of algebraic varieties. An algebraic
variety felt like a tangible thing in the lectures of Oscar Zariski, so why
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shouldn’t you venture out, like Magellan, and uncover their geography?
—Mumford, preface of [Mum04]

By integrating Grothendieck’s formalism of scheme theory with 19th century
invariant theory, Mumford developed a theory of quotients in algebraic geometry
now known as Geometric Invariant Theory (or GIT ), and then applied this theory
to construct both Mg and Ag. His theory was originally sketched in [Mum61] and
fully worked out in the definitive text [GIT].

Later, Mumford constructed a quasi-projective variety parameterizing stable
vector bundles on a fixed smooth curve [Mum63], and Seshadri then showed the
moduli space of semistable vector bundles provides a projective compactification
[Ses67]. In the seminal joint work [DM69], Deligne and Mumford not only introduce
the compactificationMg,n and apply it (as noted above) to prove the connectedness
of Mg in all characteristics, they also first introduce the notion of an algebraic
stack—now referred to as Deligne–Mumford stacks.

Artin. The theory of algebraic spaces and stacks was developed by M. Artin.
Similar to Weil’s enlargement of affine and projective varieties to abstract varieties,
enlarging the category of schemes to algebraic spaces allows us to construct the
quotient of finite group actions or more generally any étale equivalence relation.2
Knutson, a student of Artin, was the first to write down the theory of algebraic
spaces [Knu71].

In 1969, Artin proved two crucial results in moduli theory—Artin Approximation
(Theorem A.10.9) and Artin Algebraization (Theorem D.6.6). In his groundbreaking
paper [Art74], Artin not only introduced the concept of algebraic stacks broadening
the definition of Deligne and Mumford, but he also provided a local deformation-
theoretic characterization of algebraic stacks. This is known as ‘Artin’s Criteria’
and can be used to verify the algebraicity of a moduli stack (see §D.7). Artin also
established

As Faltings’s said: “The notion of stack came up in the sixties. But to swallow
schemes was already enough for one generation of mathematicians.” The theory of
stacks once had a formidable reputation and a somewhat questionable foundation.
This could be in part due to the abstract categorical nonsense involved in its
formulation and to 2-categorical subtleties, or perhaps due to shifting conditions on
the diagonal of an algebraic stack in the literature. Or it could be in part due to
that Deligne and Mumford did not give proofs for their results on algebraic stacks
in [DM69, §4]—they write: “The proofs of the results stated in this section will be
given elsewhere.” Sure enough, future mathematicians worked out the details, and
there are now excellent textbooks on stacks such as [LMB00] and [Ols16]. Of course,
the Stacks Project [SP] has now provided an unquestionably solid foundation.

For further historical background, we recommend [Mum75], [Oor81], [JP13],
[AJP16], and [Kol18].

0.2 Moduli sets of curves, vector bundles, and tri-
angles

To define a moduli space as a set entails specifying two things:
2Matsusaka also built a theory of Q-varietiesby considering certain quotients of equivalence

relations [Mat64] but it was not as robust as algebraic spaces.
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(1) a class of certain types of objects, and
(2) an equivalence relation on objects.

Here’s our first attempt at defining Mg:

Example 0.2.1 (Moduli set of smooth curves). The objects of the moduli set of
smooth curves, denoted as Mg, are smooth, connected, and projective curves of
genus g over C. Two curves are declared equivalent if they are isomorphic. There are
many variants obtained by parameterizing additional structure or choosing different
equivalence relations.

• We already saw the Hurwitz moduli set Hurd,g in (0.1.1) parameterizing
branched covers C → P1 of degree d.

• The moduli setMg,n of n-pointed smooth genus g curves parameterizes the data
of a smooth curve C together with n ordered distinct points p1, . . . , pn ∈ C; two
objects (C, pi) ∼ (C ′, p′i) are equivalent if there is an isomorphism α : C → C ′

with α(pi) = p′i.

• The moduli set Mg[n] of smooth genus g curves with level n structure parame-
terizes smooth, connected, and projective curves C of genus g over C together
with a basis (α1, . . . , αg, β1, . . . , βg) of H1(C,Z/nZ) such that the intersection
pairing is symplectic, while two objects (C,αi, βi) ∼ (C ′, α′i, β

′
i) are declared

equivalent if there is an isomorphism C → C ′ taking αi and βi to α′i and β′i.

• For the moduli set whose objects are plane curves C ⊂ P2, there are several
choices for equivalence relations C ∼ C ′: (a) C and C ′ are equal as subschemes,
(b) C and C ′ are projectively equivalent (i.e. there is an automorphism of P2

taking C to C ′), or (c) C and C ′ are abstractly isomorphic.

Example 0.2.2 (Moduli set of vector bundles on a curve). The moduli set Bunr,d(C)
parameterizes vector bundles of rank r and degree d on a fixed smooth, connected,
and projective curve C; the equivalence relation is isomorphism. The special case of
r = 1 yields the set Picd(C) parameterizing degree d line bundles on C. This is non-
canonically identified with with the abelian variety H1(C,OC)/H1(C,Z) = Cg/Z2g

via the exponential exact sequence (0.1.4).

A recurring theme in moduli is the exhibition of moduli spaces as quotients of
group actions.

Example 0.2.3 (Moduli set of orbits). Given a group action of a group G on a set
X, we define the moduli set of orbits by taking the objects to be all elements x ∈ X
and by declaring x to be equivalent to x′ if they have the same orbit Gx = Gx′. In
other words, the moduli set of orbits is the quotient set X/G.

Some examples to keep in mind are the Z/2-action on A1 via (−1) · x = −x
and the usual scaling action of Gm on An via t · (x1, . . . , xn) = (tx1, . . . , txn). The
quotient set (An \ 0)/Gm is identified with Pn−1. The quotient An/Gm including
the origin—and particularly the case of A1/Gm—shows up repeatedly in this text.
Another interesting example is the Gm-action on A2 given by t · (x, y) = (tx, t−1y).

0.2.1 Toy example: moduli of triangles
Before diving deeper into Mg and Bunr,d(C), let’s study the simple yet surprisingly
fruitful example of the moduli of triangles. These moduli spaces are easy to visualize
and, as M. Artin has remarked, are useful to illustrate various themes of stacks and
moduli.
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Example 0.2.4 (Labelled triangles). A labelled triangle is a triangle in R2 where
the vertices are labelled with ‘1’, ‘2’ and ‘3’, and the distances of the edges are
denoted as a, b, and c. We require that triangles have non-zero area or equivalently
that their vertices are not colinear.

1

2

3a

b

c

Figure 2: To keep track of the
labelling, we color the edges.

We define the moduli set of labelled triangles M as the set of labelled triangles
where two triangles are said to be equivalent if they are the same triangle in R2 with
the same vertices and same labeling. By writing (x1, y1), (x2, y2) and (x3, y3) as the
coordinates of the labelled vertices, we obtain a bijection

M ∼=
{

(x1, y1, x2, y2, x3, y3) | det

(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)
6= 0
}
⊂ R6 (0.2.1)

with the open subset of R6 whose complement is the codimension 1 closed subset
defined by the condition that the vectors (x2, y2)− (x1, y1) and (x3, y3)− (x1, y1)
are linearly dependent.

y3

x3

Figure 3: Picture of the slice
of the moduli space M where
(x1, y1) = (0, 0) and (x2, y2) =
(1, 0). Triangles are described by
their third vertex (x3, y3) with
y3 6= 0. We’ve drawn represen-
tative triangles for a handful of
points in the x3y3− plane.

Example 0.2.5 (Labelled triangles up to similarity). We define the moduli set of
labelled triangles up to similarity, denoted by M lab, by taking the same class of
objects as in the previous example—labelled triangles—but changing the equivalence
relation to label-preserving similarity.
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similar not similar

Figure 4: The two triangles on the left are similar, but the third is not.

Every labelled triangle is similar to a unique labelled triangle with perimeter
a+ b+ c = 2. We have the description

M lab =

(a, b, c)

∣∣∣∣
a+ b+ c = 2
0 < a < b+ c
0 < b < a+ c
0 < c < a+ b

 . (0.2.2)

By setting c = 2− a− b, we may visualize M lab as the analytic open subset of R2

defined by pairs (a, b) satisfying 0 < a, b < 1 and a+ b > 1.

Figure 5: M lab is the shaded
triangle. The pink lines repre-
sent the right triangles defined
by a2 + b2 = c2, a2 + c2 = b2

and b2 + c2 = a2, the blue
lines represent isosceles trian-
gles defined by a = b, b = c
and a = c, and the green point
is the unique equilateral trian-
gle defined by a = b = c.

a

b

degenerate triangles
right triangles

isosceles
triangles

equilateral

1

1

Example 0.2.6 (Unlabelled triangles up to similarity). We now turn to the moduli
of unlabelled triangles up to similarity, which reveals a new feature not seen in to
the two previous examples: symmetry!

We define the moduli set of unlabelled triangles up to similarity, denoted by
Munl, where the objects are unlabelled triangles in R2 and the equivalence relation
is symmetry. We can describe a unlabelled triangle uniquely by the ordered tuple
(a, b, c) of increasing side lengths as follows:

Munl =

{
(a, b, c)

∣∣∣∣ 0 < a ≤ b ≤ c < a+ b
a+ b+ c = 2

}
. (0.2.3)

25



a

b

1

degenerate
a
+
b =
c

iso
sce
les
a

=
b

isosceles b = c equilateral

right triangles
a2 + b2 = c2

1/2

1/2 2/3

2/3

Figure 6: Picture of Munl

The isosceles triangles with a = b or b = c and the equilateral triangle with
a = b = c have symmetry groups of Z/2 and S3, respectively. This is unfortunately
not encoded into our description Munl above, but this is not yet encoded into our
description. Note that we can identify Munl as the quotient M lab/S3 under the
natural action of S3 on the labellings, and that the stabilizers of isosceles and
equilateral triangles are precisely their symmetry groups Z/2 and S3. The action of
S3 on the locus of triangles which are not isosceles or equilateral is free.

0.3 The functorial worldview

Defining a moduli functor requires specifying:
(1) families of objects,
(2) when two families of objects are equivalent, and
(3) and how families pull back under morphisms.

0.3.1 Family matters

Introducing families allows us to give a precise formulation of the moduli problem.
A family F → S of objects defines a set-theoretic map S →M to the moduli space
by assigning a point s ∈ S to the fiber Fs (or more precisely the pullback of F → S
under the inclusion {s} ↪→ S). We will require that S → M is a morphism in
whatever category we are working in (e.g. topological spaces or schemes).

We say that M is a fine moduli space if there is a bijective correspondence
between families over S and morphisms S →M , or in other words that the space
M represents the functor assigning a space S to the set of all families over S.

Here are some advantages of defining families:

• We can endow the set M of objects in the moduli problem with a topological
space: an arbitrary subset U ⊂M is declared to be open if for every family
of objects F → S, the locus {s ∈ S | [Fs] ∈ U} is an open subset of S. In a
similar manner, we can introduce other structures, e.g. a global function on
M could be defined as the data of compatible global function on S for every
family F → S.
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• In the situation that M is a fine moduli space, the identity map id : M →M
corresponds to a family of objects U →M over the moduli space. This is the
universal family : for any other family F → S of objects, there is a unique
morphism S →M such that the universal family U →M pulls back to F → S.

This is certainly a giant leap in abstraction! And it may seem that we just
made life more difficult: rather than introducing a space by specifying its points,
its topology, and any other structures, we must specify an immense amount of
categorical data. But as examples illustrate, it is usually quite straightforward to
define good notions of families.

Example 0.3.1 (Families of labelled triangles). Revisiting the moduli of labelled
triangles up to similarity introduced in Example 0.2.5, we define a family of labelled
triangles over a topological space S as a tuple (T , σ1, σ2, σ3) where T → S is a fiber
bundle with three sections σi : S → T equipped with a continuous distance function
d : T ×S T → R≥0 such that for every point s ∈ S, the restriction ds : Ts×Ts → R≥0

is a metric on the fiber Ts with Ts isometric to a triangle with vertices σi(s).
We say two families (T , (σi)) and (T ′, (σ′i)) of labelled triangles over S ∈ Top are

similar if there is a homeomorphism f : T → T ′ over S compatible with the sections
(i.e. f ◦ σi = σ′i) such that for each s ∈ S, the induced map Ts → T ′s on fibers is a
similarity of triangles, i.e. an isometry after rescaling. Given a family T → S of
labelled triangles and a continuous map S′ → S, the pullback family is defined as
the fiber product T ×S S′ of sets together with the pullback sections σ′i : S′ → T ′
and its inherited distance function.

Figure 7: A family of labelled triangles over a curve corresponds to an arc in the
moduli space.

We define the moduli functor of labelled triangles as

FM lab : Top→ Sets, S 7→ {families (T → S, σi) of labelled triangles}/(similarity).

Recall from (0.2.2) that the assignment of a triangle to its side lengths yields a
bijection between FM lab and

M lab =

(a, b, c)

∣∣∣∣
a+ b+ c = 2
0 < a < b+ c
0 < b < a+ c
0 < c < a+ b

 .

Since this extends to a compatible isomorphisms of FM lab(S)→ Mor(S,M lab) for
every space S, the topological spaceM lab represents the functor FM lab . Consequently,
there is a universal family Tuniv ⊂M lab × R2 with σi : M lab → Tuniv.
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b = 1
a = 1

a+ b = 1

-

(0, 1, 1) (1, 0, 1)

(1, 1, 0)

M lab

a
c

b

Figure 8: The universal family U lab →M lab of labelled triangles up to similarity.

Example 0.3.2 (Families of unlabelled triangles). Revisiting Example 0.2.6, we
define a family of unlabelled triangles as a fiber bundle T → S equipped with a
continuous distance function d : T ×S T → R≥0 that restricts to a metric on every
fiber and such that every fiber is isometric to a triangle. Two families T → S and
T ′ → S are similar if there is a homeomorphism f : T → T ′ over S compatible with
the sections inducing similarities of triangles on fibers.

We define the functor

F : Top→ Sets, S 7→ {families T ⊂ S × R2 of triangles}/similarity

but we can already see complications arising from the presence of symmetries of our
objects—each equilateral triangle has symmetry group S3 while the isosceles triangles
have symmetry groups Z/2. This functor is not representable as there are non-trivial
families of triangles T such that all fibers are similar triangles (Proposition 0.3.19).
For instance, we construct a non-trivial family of triangles over S1 by gluing two
trivial families via a symmetry of an equilateral triangle.

Figure 9: A trivial (left) and non-trivial (right) family of equilateral triangles. Image
taken from a video produced by Jonathan Wise: see http://math.colorado.edu/
~jonathan.wise/visual/moduli/index.html.
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0.3.2 Moduli functors of curves, vector bundles, and orbits
Defining a moduli functor F : Sch/C → Sets in the category of C-schemes entails
specifying for every C-scheme S a set F (S) of families of objects over S, and pull
back maps F (S) → F (S′) for morphisms S′ → S which are compatible under
composition.

To gain intuition of a moduli functor, it is always useful to plug in special test
schemes. For instance, by plugging in S = SpecC, we obtain the underlying moduli
set F (SpecC) of objects. By plugging in S = C[ε]/(ε2), we obtain a set of pairs
consisting of a C-point and a tangent vector, and plugging in a curve (or a DVR)
gives families of objects over the curve.

Example 0.3.3 (Moduli functor of smooth curves). A family of smooth curves of
genus g is a smooth, proper morphism C → S of schemes such that for every s ∈ S,
the fiber Cs is a connected curve of genus g.

s

t

S

CCs
Ct

Figure 10: A family of curves over a curve S.

The moduli functor of smooth curves of genus g is

FMg
: Sch/C→ Sets, S 7→ {families of smooth curves C → S of genus g} / ∼,

where two families C → S and C′ → S are equivalent if there is a isomorphism
C → C′ over S. If S′ → S is a map of schemes and C → S is a family of curves, the
pullback is defined as the family C ×S S′ → S′.

Example 0.3.4 (Moduli functor of vector bundles on a curve). Let C be a fixed
smooth, connected, and projective curve over C. A family of vector bundles of rank
r and degree d over a scheme S is a vector bundle E on C × S such that for every
s ∈ S, the restriction Es := E|Cκ(s)

of E to Cκ(s) := C ×C κ(s) has rank r and degree
d. The moduli functor of vector bundles on C of rank r and degree d is

Sch/C→ Sets S 7→
{

vector bundles E on C × S
of rank r and degree d

}/
(isomorphism),

If f : S′ → S is a map of schemes and E is a vector bundle on C × S, the pullback
is defined as the vector bundle (id×f)∗E on C × S′
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We will see in Section 0.3.5 that these two functors are not representable, and
correspondingly that there is no fine moduli space.

Example 0.3.5 (Moduli functor of orbits). Consider the action of an algebraic
group G over C acting on a scheme X. For every scheme S, the abstract group G(S)
acts on the set X(S)—in fact, giving such actions functorial in S uniquely specifies
the group action (Exercise C.1.8). We can consider the functor

Sch/C→ Sets S 7→ X(S)/G(S).

This is a very naive candidate for a moduli functor of a quotient, and very far from
being representable even for free actions (see Exercise 0.3.25). We will modify this
example in §??.

In some cases, you may know precisely which objects you want to parameterize,
but it may not be straightforward to introduce a notion of families. Or there may be
several candidate notions for a family of objects, which could translate to different
scheme structures on the same topological space. This happens for instance for the
moduli of higher dimensional varieties.

0.3.3 Yoneda’s lemma and representable functors

Following Grothendieck, we study a scheme X by studying all maps to it! That
schemes are determined by maps into it is a completely formal fact that is true in
every category. This is the Yoneda Lemma: for an object X of a category C, the
contravariant functor

hX : C → Sets, S 7→ Mor(S,X)

recovers the object X itself.

Lemma 0.3.6 (Yoneda Lemma). Let C be a category and X be an object. For every
contravariant functor G : C → Sets, the map

Mor(hX , G)→ G(X), α 7→ αX(idX)

is bijective and functorial with respect to both X and G, where the left hand side
denotes the set of natural transformations hX → G and αX denotes the map
hX(X) = Mor(X,X)→ G(X).

Caution 0.3.7. Throughout this book, we will consistently abuse notation by
conflating an element g ∈ G(X) and the corresponding morphism hX → G, which
we will often write simply as X → G.

Exercise 0.3.8.
(a) Spell out precisely what ‘functorial with respect to both X and G’ means.
(b) Prove Yoneda’s lemma.

Definition 0.3.9 (Representable functors and fine moduli spaces). We say that a
functor F : Sch→ Sets is representable by a scheme if there exists a scheme X and
an isomorphism of functors F ∼→ hX .

When F is a moduli functor representable by a scheme M , we say that M is a
fine moduli space.
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By the Yoneda Lemma (0.3.6), if a functor is representable, then it is representable
by a unique scheme. One of our aims is to understand when a given a moduli functor
F has a fine moduli space, i.e. is representable by a scheme.

Example 0.3.10 (Projective space as a functor). By [Har77, Thm. II.7.1], there is
a functorial bijection

Mor(S,PnZ) ∼=
{

(L, s0, . . . , sn)

∣∣∣∣ L is a line bundle on S globally
generated by s0, . . . , sn ∈ Γ(S,L)

}
/ ∼,

where (L, (si)) ∼ (L′, (s′i)) if there exists t ∈ Γ(S,OS)∗ such that s′i = tsi for all i.
In other words, the functor on the right is representable by the scheme PnZ. The
condition that the sections si are globally generated translates to the condition that
for every x ∈ S, at least one section si(x) ∈ L⊗ κ(t) is non-zero, or equivalently to
the surjectivity of (s0, . . . , sn) : On+1

S → L.

Example 0.3.11 (The Grassmanian functor). As a set, the Grassmanian Gr(k, n)
parameterizing k-dimensional quotients of n-dimensional space.3 But what are
families of k-dimensional quotients over a scheme S? A naive guess might be quotients
q : OnS � OkS but this has no chance to be representable (see Exercise 0.3.25). The
case of projective space suggests we define the Grassmanian functor as

Gr(k, n) : Sch→ Sets

S 7→
{[
OnS � Q

] ∣∣∣∣ Q is a vector bundle of rank k
}
/ ∼

where [OnS
q
� Q

]
∼ [OnS

q′

� Q′
]
if there exists an isomorphism Ψ: Q

∼→ Q′ such that

OnS
q
//

q′   

Q

Ψ

��

Q′

commutes (i.e. q′ = Ψ ◦ q), or equivalently if ker(q) = ker(q′). Pullbacks are defined
in the obvious manner.

We will later show that Gr(k, n) is representable by a scheme projective over
Z (Theorem 1.1.1). The proof of this result is a good illustration of the utility of
the functorial approach and a warmup for the representability of Hilb and Quot
(Theorems 1.1.2 and 1.1.3).

These exercises will give you some practice.

Exercise 0.3.12.
(a) If S is a scheme and E is a vector bundle on S, show that the projectivization

PS(E) := ProjS Sym∗E∨ of E represents the functor

PS(E) : Sch/S → Sets

(T
f−→ S) 7→ {quotients f∗E

q
� L where L is a line bundle on T}/ ∼

where [f∗E
q
� L] ∼ [f∗E

q′

� L′] if ker(q) = ker(q′) (or equivalently there is an
isomorphism α : L→ L′ with q′ = α ◦ q).

3Alternatively, the points could be considered as k-dimensional subspaces but in these notes, we
will follow Grothendieck’s convention of quotients.
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(b) Show that the same holds if E is a finite type quasi-coherent sheaf on S (e.g.
a coherent sheaf if S is noetherian).

Note that there is an isomorphism PnZ ∼= P(On+1
SpecZ) of functors.

Exercise 0.3.13. Provide functorial descriptions of:
(a) An \ 0;
(b) the blowup Blp Pn of Pn at a point;

(c) the normalization X̃ of a reduced scheme X;
(d) SpecS A where A is a quasi-coherent sheaf of algebras on a scheme S; and
(e) ProjR where R is a positively graded ring.

Exercise 0.3.14.
(a) Let X be a scheme and E,F be OX -modules. Show that the functor

HomOX (E,F ) : Sch→ Sets, T 7→ HomOX×T (ET , FT ),

where ET and FT denote the pullbacks of E and F under X × T → T , is
representable by Spec Sym HomOX (E,F )∨.

(b) Let E → F be a homomorphism of coherent sheaves on a noetherian scheme
X. Show that the subfunctor of X (or more precisely of hX = Mor(−, X))
defined by

Sch→ Sets, T 7→ {morphisms T → X such that ET → FT is zero}

is representable by a closed subscheme of X.
(c) Recall that the group Ext1

OX (G,E) classifies extensions 0→ E → F → G→ 0
of OX -modules where two extensions are identified if there is an isomorphism
of short exact sequences inducing the identity map on E and G [Har77, Exer.
III.6.1]. Show that the affine scheme Ext1

OX (G,E) := Spec Sym Ext1
OX (G,E)∨

represents the functor

Sch→ Sets, T 7→ Ext1
OX×T (p∗1G, p

∗
1E)

where p1 : X × T → X.

0.3.4 Universal families
Definition 0.3.15. If F : Sch → Sets is a moduli functor representable by a
scheme X via an isomorphism α : F

∼→ hX of functors, then the universal family
of F is the object U ∈ F (X) corresponding under α to the identity morphism
idX ∈ hX(X) = Mor(X,X).

Suspend your skepticism for a moment and suppose that there actually exists
a scheme Mg representing the moduli functor of smooth curves of genus g (Exam-
ple 0.3.3). Then corresponding to the identity map Mg →Mg is a family of genus g
curves Ug →Mg satisfying the following universal property: for every smooth family
of curves C → S over a scheme S, there is a unique map S → Mg and cartesian
diagram

C //

��

Ug

��

S // Mg.

�
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The map S →Mg sends a point s ∈ S to the curve [Cs] ∈Mg. The universal family
might like something like:

Mg

Ug
C

D

[C]

[D]

Figure 11: Visualization of a (non-existent) universal family over Mg.

Example 0.3.16. The universal family of the moduli functor of projective space
(Example 0.3.10) is the line bundle O(1) on Pn together with the sections x0, . . . , xn ∈
Γ(Pn,O(1)).

Example 0.3.17 (Universal extensions). If X is a scheme with vector bundles E
and G, the universal family for the moduli functor Ext1

OX (G,E) of extensions of
Exercise 0.3.14(c) is an extension 0 → p∗1G → F → p∗1E → 0 of vector bundle on
X × Ext1

OX (G,E) whose restriction to X × {t} is the extension corresponding to
t ∈ Ext1

OX (G,E).

Example 0.3.18 (Classifying spaces in algebraic topology). Let G be a topological
group and Toppara be the category of paracompact topological spaces where mor-
phisms are defined up to homotopy. It is a theorem in algebraic topology that the
functor

Toppara → Sets, S 7→ {principal G-bundles P → S}/ ∼,

where ∼ denotes isomorphism, is represented by a topological space, which we
denote by BG and call the classifying space. The universal family is usually denoted
by EG→ BG. For example, the classifying space BC∗ is the infinite-dimensional
manifold CP∞.

0.3.5 Non-representability of some moduli functors
If F : Sch/C→ Sets is a moduli functor, then an object E ∈ F (C) with a non-trivial
automorphism can prevent the functor F from being representable. This is because
we may glue trivial families using the automorphism to construct a non-trivial family
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E over a scheme S such that every fiber Es (i.e. the pullback of E along SpecC→ S)
is isomorphic to E.

Proposition 0.3.19. Let F : Sch/C→ Sets be a moduli functor. If there is a family
of objects E ∈ F (S) over a variety S such that

(a) the fibers Es are isomorphic for s ∈ S(C); and
(b) the family E is non-trivial, i.e. is not equal to the pullback of an object

E ∈ F (C) along the structure map S → SpecC,

then F is not representable.

Proof. Suppose by way of contradiction that F is represented by a scheme X. By
condition (a), the restriction E := Es is independent of s ∈ S(C) and defines a unique
point x ∈ X(C). As S is reduced, the map S → X factors as S → SpecC x−→ X. This
implies that the family E is the pullback under the constant map S → SpecC x−→ X,
i.e. E is a trivial family, which contradicts condition (b).

Example 0.3.20 (Moduli of elliptic curves). An elliptic curve is a pair (E, p) where
E is a smooth, connected, and projective curve E of genus 1 and p ∈ E(C). A family
of elliptic curves over a scheme S is a pair (E → S, σ) where E → S is smooth proper
morphism with a section σ : S → E such that for every s ∈ S, the fiber (Es, σ(s)) is
an elliptic curve over the residue field κ(s). The moduli functor of elliptic curves is

FM1,1 : Sch→ Sets

S 7→ {families (E → S, σ) of elliptic curves } / ∼,

where (E → S, σ) ∼ (E ′ → S, σ′) if there is a S-isomorphism α : E → E ′ compatible
with the sections (i.e. σ′ = α ◦ σ).

Exercise 0.3.21. Consider the family of elliptic curves defined over A1 \ 0 (with
coordinate t) by

E := V (y2z − x3 + tz3) �
�

//

��

(A1 \ 0)× P2

A1 \ 0

with section σ : A1 \ 0→ E given by t 7→ [0, 1, 0]. Show that (E → A1 \ 0, σ) satisfies
(a) and (b) in Proposition 0.3.19.

Example 0.3.22 (Moduli functor of smooth curves). Let C be a curve with a
non-trivial automorphism α ∈ Aut(C) and let N be the nodal cubic curve, which
we can think of as P1 with the points 0 and ∞ glued together. We can construct
a family C → N by taking the trivial family π : C × P1 → P1 and gluing the fiber
π−1(0) with π−1(∞) via the automorphism α. To show that the moduli functor of
curves is not representable, it suffices to show that C → N is non-trivial.
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0 ∞

α

Figure 12: Family of curves over the nodal cubic obtaining by gluing the fibers over
0 and ∞ of the trivial family over P1 via α. (It would be more illustrative to draw a
Mobius band as the family of curves over the nodal cubic.)

Exercise 0.3.23. Show that C → N is a non-trivial family.

Exercise 0.3.24. Show that the moduli functor of vector bundles over a curve C
is not representable.

0.3.6 Schemes are sheaves

If F : Sch→ Sets is representable by a scheme X, then F is necessarily a sheaf in the
big Zariski topology, that is, for every scheme S, the presheaf on the Zariski topology
of S defined by assigning to an open subset U ⊂ S the set F (U) is a sheaf on the
Zariski topology of S. This is a restatement that morphisms into the fixed scheme
X glue uniquely. The failure to be a sheaf therefore provides another obstruction to
the representability of a given moduli functor F .

Exercise 0.3.25.
(1) Show that the following naive grassmanian functor

F : Sch→ Sets, S 7→ {quotients q : OnS � OkS}/ ∼

is not representable.
(2) Under the usual scaling action of Gm on An+1 \0 with the usual scaling action,

show that the functor S 7→ (An+1 \ 0)(S)/Gm(S) is not a sheaf.

In fact, the presence of non-trivial automorphisms often implies that a given
moduli functor is not a sheaf.

Example 0.3.26. Consider the moduli functor FMg of smooth curves from Exam-
ple 0.3.3. Let {Si} be a Zariski open covering of a scheme S, and suppose that
Ci → Si are families of smooth curves Ci → Si with isomorphisms αij : Ci|Sij

∼→ Cj |Sij
on the intersection Sij := Si ∩ Sj . The requirement that FMg

be a sheaf (when re-
stricted to the Zariski topology on S) implies that the families Ci → Si glue uniquely
to a family of curves C → S. However, we have not required the isomorphisms αi
to be compatible on the triple intersection (i.e. αij |Sijk ◦ αjk|Sijk = αik|Sijk) as is
usual with gluing of schemes [Har77, Exer II.2.12]. For this reason, FMg

fails to be
a sheaf.
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Exercise 0.3.27. Show that the moduli functors of smooth curves and elliptic
curves are not sheaves by explicitly exhibiting a scheme S, an open cover {Si} and
families of curves over Si that do not glue to a family over S.

0.3.7 The yoga of functors
Contravariant functors F : Sch→ Sets form a category Fun(Sch,Sets) where mor-
phisms are natural transformations. This category has fiber products: given mor-
phisms F α−→ G and G′ β−→ G, we define

F ×G G′ : Sch→ Sets

S 7→ {(a, b) ∈ F (S)×G′(S) |αS(a) = βS(b)}

Exercise 0.3.28. Show that F ×G G′ satisfies the universal property for fiber
products in Fun(Sch,Sets).

Definition 0.3.29.
(1) We say that a morphism F → G of contravariant functors is representable by

schemes if for every map S → G from a scheme S, the fiber product F ×G S
is representable by a scheme.

(2) We say that a morphism F → G is an open immersion or that a subfunctor
F ⊂ G is open if for every morphism S → G from a scheme S, F ×G S is
representable by an open subscheme of S.

(3) We say that a set of open subfunctors {Fi} of F is a Zariski open cover if for
every morphism S → F from a scheme S, {Fi ×F S} is a Zariski open cover of
S (and in particular each Fi is an open subfunctor of F ).

Each of these conditions can be checked on affine schemes.

Together with the following exercise, these definitions give a recipe for checking
that a given functor F is representable by a scheme: find a Zariski open cover {Fi}
where each Fi is representable.

Exercise 0.3.30.
(a) Let F : Sch→ Sets be a functor which is a sheaf in the big Zariski topology

and {Fi} be a Zariski open cover of F . Show that if each Fi is representable
by a scheme, then so is F .

(b) Show that a collection of open subfunctors {Fi} of F is a Zariski open cover if
and only if the map

∐
i Fi(k)→ F (k) is surjective for each algebraically closed

field k.
(c) Given morphisms of schemes X → Y and Y ′ → Y , reprove the existence of the

fiber product X ×Y Y ′ in the category of schemes by exhibiting a Zariski open
cover {Fi} of X ×Y Y ′ where each Fi is representable by an affine scheme.

Exercise 0.3.31. Show that a scheme can be equivalently defined as a contravariant
functor F : AffSch→ Sets on the category of affine schemes (or covariant functor
on the category of rings) as follows. Let C be a full subcategory of the category
Fun(AffSch,Sets) of contravariant functors. Extending Definitions 0.3.9 and 0.3.29,
we define a functor F : AffSch → Sets to be representable in C if there exist an
object X ∈ C and a functorial equivalence F (S) = Mor(S,X) for every S ∈ AffSch.
We say that a map F → G of functors from AffSch to Sets is representable by open
immersions in C if for every morphism SpecB → G, the fiber product F ×G SpecB
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is representable by an object X ∈ C which is an open subscheme of SpecB. Finally,
we say that a collection {Fi} of subfunctors of F is a Zariski open C-cover if each
Fi → F is representable by open immersions in C and for each algebraically closed
field k, the map

∐
i Fi(k)→ F (k) is surjective.

(a) Show that a scheme with affine diagonal can be equivalently defined as a
functor F : AffSch→ Sets such that there exists a Zariski open AffSch-cover
{Fi} of F with each Fi representable in AffSch.

(b) Give a similar characterization of separated schemes.
(c) Letting C be the category of schemes with affine diagonal, show that a scheme

can be equivalently defined as a functor F : AffSch → Sets such that there
exists a Zariski open C-cover {Fi} with each Fi representable in C.

Replacing Zariski opens with étale morphisms leads to the definition of an
algebraic space.

0.4 Moduli groupoids
We now change our perspective: rather than specifying when two objects are
identified, we specify how !

One of the most desirable properties of a moduli space is the existence of
a universal family (see §0.3.4) and the presence of automorphisms obstructs its
existence (see §0.3.5). Encoding automorphisms into our descriptions will allow us
to get around this problem.

To define a moduli groupoid, we need to specify
(1) objects; and
(2) a set of equivalences (possibly empty) between any two objects.
Shortly we will combine the functorial worldview of the last section with this

groupoid perspective to define moduli stacks.

0.4.1 Groupoids
A convenient mathematical structure to encode objects and their identifications is a
groupoid.

Definition 0.4.1. A groupoid is a category C where every morphism is an isomor-
phism.

Two groupoids C1 and C2 are equivalent if there is an equivalence of categories
(i.e. a fully faithful and essentially surjective functor) C1 → C2.

Example 0.4.2 (Sets are groupoids). If Σ is a set, the category CΣ, whose objects
are elements of Σ and whose morphisms consist of only the identity morphism, is a
groupoid.

We say that a groupoid C is equivalent to a set Σ if there is an equivalence of
categories C → CΣ.

Example 0.4.3 (Classifying groupoid). If G is a group, the classifying groupoid BG
of G is defined as the category with one object ? such that Aut(?) = Mor(?, ?) = G.

Example 0.4.4. The category FB of finite sets where morphisms are bijections
is a groupoid. The isomorphism classes of FB are in bijection with N while
Aut({1, . . . , n}) = Sn is the permutation group.
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Example 0.4.5 (Projective space). Projective space can be with the moduli
groupoid of lines L ⊂ An+1 through the origin where the only morphisms are the iden-
tity maps. Alternatively, the objects are non-zero linear maps x = (x0, . . . , xn) : C→
Cn+1 and there is a unique morphism x→ x′ if and only if im(x) = im(x′) ⊂ Cn+1

(i.e. there exists a λ ∈ C∗ such that x′ = λx).

0.4.2 Moduli groupoid of orbits

Example 0.4.6 (Moduli groupoid of orbits). Given an action of a group G on a
set X, we define the moduli groupoid of orbits [X/G]4 by taking the objects to be
all elements x ∈ X and by declaring Mor(x, x′) = {g ∈ G |x′ = gx}.

[A1/(Z/2)]

A1

Z/2

A1

[A1/Gm]

Gm {1}

0

Figure 13: Pictures of the scaling actions of Z/2 = {±1} and Gm on A1 over C with
the automorphism groups listed in blue. Note that [A1/Gm] has two isomorphism
classes of objects—0 and 1—corresponding to the two orbits—0 and A1 \ 0—such
that 0 ∈ {1} if the set A1/Gm is endowed with the quotient topology.

Exercise 0.4.7.

(a) Show that the moduli groupoid of orbits [X/G] in Example 0.4.6 is equivalent
to a set if and only if the action of G on X is free.

(b) Show that a groupoid C is equivalent to a set if and only if C → C × C is fully
faithful.

Example 0.4.8. Consider the category C with two objects x1 and x2 such that
Mor(xi, xj) = {±1} for i, j = 1, 2 where composition of morphisms is given by
multiplication. Then C is equivalent BZ/2.

1
-1

x1

1
-1

x2

1
-1

1

-1

1
-1

x
xi x

Figure 14: An equivalence of groupoids

Exercise 0.4.9. In Example 0.4.8, show that there is an equivalence of categories
inducing a bijection on objects between C and either [(Z/2)/(Z/4)] or [(Z/2)/(Z/2×
Z/2)] where the action is given by surjections Z/4→ Z/2 or Z/2× Z/2→ Z/2.

4We use brackets to distinguish the groupoid quotient [X/G] from the set quotient X/G. Later
when G is an algebraic group and X is a scheme, [X/G] will denote the quotient stack.
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Example 0.4.10 (Projective space as a quotient). The moduli groupoid of projective
space (Example 0.4.5) can also be described as the moduli groupoid of orbits
[(An+1 \ 0)/Gm].

We can also consider the quotient groupoid [An+1/Gm], which is equivalent to the
groupoid whose objects are (possibly zero) linear maps x = (x0, . . . , xn) : C→ Cn+1

such that Mor(x, x′) = {t ∈ C∗ |x′i = txi for all i}. In this way, Pn is a subgroupoid
of [An+1/Gm].

Exercise 0.4.11. If a group G acts on a set X and x ∈ X is a point, show that
there is a fully faithful functor BGx → [X/G]. If the action is transitive, show that
it is an equivalence.

A morphisms of groupoids C1 → C2 is by definition a functor. The category
MOR(C1, C2) has functors as objects and natural transformations as morphisms.

Exercise 0.4.12. If C1 and C2 are groupoids, show that MOR(C1, C2) is a groupoid.

Exercise 0.4.13. If H and G are groups, show that there is an equivalence

MOR(BH,BG) =
∐

φ∈Hom(H,G)/G

B
(
CG(imφ)

)
where Hom(H,G)/G denotes equivalence classes of homomorphisms H → G up to
conjugation by G, and CG(imφ) denotes the centralizer of imφ in G.

Exercise 0.4.14. Provide an example of group actions of H and G on sets X
and Y and a map [X/H] → [Y/G] of groupoids that does not arise from a group
homomorphism φ : H → G and a φ-equivariant map X → Y .

0.4.3 Examples of moduli groupoids

Example 0.4.15 (Moduli groupoid of smooth curves). In this case, the objects are
smooth, connected, and projective curves of genus g over C and for two curves C,C ′,
the set of morphisms is defined as the set of isomorphisms

Mor(C,C ′) = {isomorphisms α : C
∼→ C ′}.

Example 0.4.16 (Moduli groupoid of vector bundles on a curve). The objects are
vector bundles E of rank r and degree d, and the morphisms are isomorphisms of
vector bundles.

Example 0.4.17 (Moduli groupoid of unlabelled triangles). Let’s revisit the moduli
Munl of unlabelled triangles up to similarity from Example 0.2.6. Recall that we
have already introduced families of unlabelled triangles and shown that this functor
is not representable (Example 0.3.2).

We define the moduli groupoid of unlabelled triangles up to similarity, denoted
byMunl (note the calligraphic font), where the objects are unlabelled triangles and
the morphisms are similarities. For example, an isosceles triangle and equilateral
triangle have automorphism groups Z/2 and S3.

We can draw essentially the same picture as Figure 6 except we record the
automorphisms.
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Figure 15: Picture of the mod-
uli groupoid Munl with non-
trivial automorphism groups
labelled.

a

b

1

a
+
b =
c

a
=
b

b = c

equilateral

a2 + b2 = c2

S3

Z/2

Z/
2

1/2

1/2 2/3

2/3

There is a functor

Munl →Munl,

from the moduli groupoid to the moduli set, which is an equivalence on isomorphism
classes of objects and collapses all morphisms to the identity. This is a first example
of a coarse moduli space.

Exercise 0.4.18. Recalling the description of the moduli set M lab of labelled
triangles up to similarity from (0.2.1), show that there is a natural action of S3

on the moduli set M lab of labelled triangles up to similarity and that there is an
identificationMunl ∼= [M lab/S3].

Exercise 0.4.19. Define a moduli groupoid of oriented triangles and investigate its
relation to the moduli sets/groupoids of labelled/unlabelled triangles.

For a more detailed exposition of the moduli stack of triangles, see [Beh14].

0.5 Motivation: why the étale topology?

Moduli stacks will be introduced in the next section by combining moduli functors
with groupoids—one needs to specify families of objects over every scheme S (along
with identifications and pullbacks). For such data to define a stack, we will require
that objects and their morphisms glue in the étale topology !

Why is the Zariski topology not sufficient for our purposes? The short answer is
that there are not enough Zariski open subsets and that étale morphisms serve as a
good replacement of analytic open subsets.

0.5.1 What is an étale morphism anyway?

I’ve sometimes been baffled when a student is intimidated by étale morphisms,
especially when she has already mastered the conceptually more difficult notions of
say properness and flatness. One factor could be fact that the definition is buried in
[Har77, Exercises III.10.3-6] and its importance is not highlighted there.
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A1

A1

x2

x

Figure 16: Picture of an étale double cover of A1 \ 0

The geometric picture to have in your mind is a covering space. There are several
ways in which we can formulate an étale morphism f : X → Y of schemes of finite
type over C:

• f is smooth of relative dimension 0 (i.e. f is flat and all fibers are smooth of
dimension 0);

• f is flat and unramified (i.e. for all y ∈ Y (C), the scheme-theoretic fiber Xy is
isomorphic to a disjoint union

∐
i SpecC of points);

• f is flat and ΩX/Y = 0;

• for all x ∈ X(C), the induced map ÔY,f(x) → ÔX,x on completions is an
isomorphism; and

• (assuming in addition that X and Y are smooth) for all x ∈ X(C), the induced
map TX,x → TY,f(x) on tangent spaces is an isomorphism.

We say that f is étale at x ∈ X if there is an open neighborhood U of x such that
f |U is étale. See §A.3.2 for more background.

These characterizations are all equivalent, but this by no means should be clear
to you—some of the proofs are quite involved. Nevertheless, if you can take the
equivalences on faith, it requires very little effort to not only internalize the concept,
but to master its use.

Exercise 0.5.1. Show that f : A1 → A1, x 7→ x2 is étale over A1 \ 0 but is not étale
at the origin. Try to show this for as many of the above characterizations as you
can.

0.5.2 What can you see in the étale topology?

Working with the étale topology is like putting on a better pair of glasses allowing
you to see what you couldn’t before. Or perhaps more accurately, it is like getting
magnifying lenses for your algebraic geometry glasses allowing you to see what you
already could with your differential geometry glasses.

Example 0.5.2 (Reducibility of a node). Consider the plane nodal cubic C defined
by y2 = x2(x − 1) in the plane. While there is an analytic open neighborhood of
the node p = (0, 0) which is reducible, there is no such Zariski open neighborhood.
However, taking a ‘square root’ of x− 1 yields a reducible étale neighborhood. More
specifically, define C ′ = Spec k[x, y, t]t/(y

2 − x3 + x2, t2 − x+ 1) and consider

C ′ → C, (x, y, t) 7→ (x, y)

Since y2 − x3 + x2 = (y − xt)(y + xt), we see that C ′ is reducible.
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Figure 17: After an étale cover, the nodal cubic becomes reducible.

Example 0.5.3 (Étale cohomology). Sheaf cohomology for the Zarisk-topology can
be extended to the étale topology leading to the extremely robust theory of étale
cohomology. For example, for a smooth projective curve C of genus g over C, the étale
cohomology H1(Cét,Z/n) of the finite constant sheaf Z/2 is isomorphic to (Z/n)2g

just like the ordinary cohomology groups, while the sheaf cohomology H1(C,Z/n)
in the Zariski-topology is 0. Finally, we would be remiss without mentioning the
spectacular application of étale cohomology to prove the Weil conjectures.

Example 0.5.4 (Étale fundamental group). Have you ever thought that there
is a similarity between the bijection in Galois theory between intermediate field
extensions and subgroups of the Galois group, and the bijection in algebraic topology
between covering spaces and subgroups of the fundamental group? Well, you’re
in good company—Grothendieck also considered this and developed a beautiful
theory of the étale fundamental group which packages Galois groups and fundamental
groups in the same framework.

Example 0.5.5 (Quotients by free actions of finite groups). If G is a finite group
acting freely on a projective variety X, then there exists a quotient X/G as a
projective variety. The essential reason for this is that every G-orbit (or in fact every
finite set of points) is contained in an affine variety U , which is the complement of
some hypersurface. Then the intersection V =

⋂
g gU of the G-translates is a G-

invariant affine open containing Gx and V/G = Spec Γ(V,OV )G (see Corollary 4.2.7).
These local quotients glue to form X/G.

However, ifX is not projective, the quotient does not necessarily exist as a scheme.
As with most phenomenon for smooth proper varieties that are not-projective, a
counterexample can be constructed by using Hironaka’s examples of smooth, proper
3-folds; [Har77, App. B, Ex. 3.4.1]. There is a smooth, proper 3-fold with a free
action by G = Z/2 such that there is an orbit Gx not contained in any G-invariant
affine open. This shows that X/G cannot exist as a scheme; indeed, if it did, then
the image of x under the finite morphism X → X/G would be contained in some
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affine and its inverse would be an affine open containing Gx. See [Knu71, Ex. 1.3]
or [Ols16, Ex. 5.3.2] for details.

Nevertheless, for every free action of a finite group G on a scheme X, there
does exist a G-invariant étale morphism U → X from an affine scheme, and the
quotients U/G can be glued in the étale topology to construct X/G as an algebraic
space (Corollary 3.1.12). The upshot is that we can always take quotients of free
actions by finite groups. This is a very desirable feature given the ubiquity of group
actions in algebraic geometry but it comes at the cost of enlarging our category from
schemes to algebraic spaces.

Example 0.5.6 (Artin approximation). Artin approximation is a powerful and
extremely deep result, due to Michael Artin, which implies that most properties which
hold for the completion ÔX,x of the local ring is also true in an étale neighborhood
of x. See Theorem A.10.9 for a precise statement. For instance, since the completion
of the local ring at a nodal singularity of a curve is reducible, Artin approximation
implies that there is a reducible étale neighborhood.

0.5.3 Working with the étale topology: descent theory
Another reason why the étale topology is so useful is that many properties of schemes
and their morphisms can be checked on étale covers. In fact, almost every property
that can be checked on a Zariski-open cover {Ui} of scheme X can also be checked
on an étale cover {Ui → X}; here each map Ui → U is étale and

∐
i Ui → U is

surjective. Descent theory is developed in Appendix B and is used to prove just
about everything about algebraic spaces and stacks.

0.6 Moduli stacks
As promised, we now synthesize moduli functors with the groupoid perspective. To
define a moduli stack, we need to specify
(1) families of objects;
(2) how two families of objects are isomorphic; and
(3) how families pull back under morphisms.

Notice the difference from specifying a moduli functor is that rather than specifying
when two families are isomorphic, we specify how.

In other words, we need to specify an assignment

F : Sch→ Groupoids, S 7→ FamS .

taking a scheme S to a groupoid of families of objects over S. But what exactly do
we mean by this? Groupoids form a ‘2-category’ as they have objects (groupoids),
morphisms (functors between groupoids), and 2-morphisms (natural transformations
between functors). How can precisely formulate such an assignment in down-to-earth
terms? Well, we certainly need pullback functors f∗ : FamT → FamS for each
morphism f : S → T . Given a composition S f−→ T

g−→ U of schemes, we should also
have isomorphism of functors (i.e. a 2-morphism) µf,g : (f∗ ◦ g∗) ∼→ (g ◦ f)∗. Should

the isomorphisms µf,g satisfy a compatibility condition under triples S f−→ T
g−→

U
h−→ V ? Yes! This leads to the notion of a pseudo-functor but we won’t spell it

out here; we encourage the reader to work it out (or to look it up [Vis05, Def. 3.10],
[SP, Tag 003N]). We will take a slightly different approach.
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0.6.1 Motivating the definition of a prestack
Instead of trying to define an assignment S 7→ FamS , we will build one massive
category X encoding all of the groupoids FamS which will live over the category
Sch of schemes. Loosely speaking, the objects of X will be a family a of objects
over a scheme S, i.e. a ∈ FamS , and a morphism A→ b between a family a over S
and a family b over T will be the data of a morphism f : S → T together with an
isomorphism a

∼→ f∗b of a and the pullback family of b.
A prestack over Sch is a category X together with functor p : X → Sch, which

we visualize as
X
p

��

a
α //

_

��

b_

��

Sch S
f
// T

where the lower case letters a, b are objects in X and the upper case letters S, T are
schemes. We say that a is over S and that α : a→ b is over f : S → T . Moreover, we
need to require that certain natural axioms hold for p : X → Sch. Loosely speaking,
we require the existence and uniqueness of pullbacks: given a map S → T and
object b ∈ X over T , there should exist an arrow a

α−→ b over f satisfying a suitable
universal property; see Definition 2.3.1.

Given a scheme S, the fiber category X (S) is defined as the category of objects
over S whose morphisms are over the identity. If X is built from the groupoids
FamS as above, then X (S) = FamS .

Example 0.6.1 (Viewing a functor as a prestack). A moduli functor F : Sch→ Sets
can be encoded as a moduli prestack as follows: we define the category XF of pairs
(S, a) where S is a scheme and a ∈ F (S). A map (S′, a)→ (S, a) is a map f : S′ → S
such that a′ = f∗a, where f∗ is convenient shorthand for F (f) : F (S) → F (S′).
Observe that the fiber categories XF (S) are equivalent (even equal) to the set F (S).

Example 0.6.2 (Moduli prestack of smooth curves). The moduli prestack of smooth
curves is the category Mg of families of smooth curves C → S together with the
functor p : Mg → Sch defined by (C → S) 7→ S. A morphism (C′ → S′)→ (C → S)
is the data of maps α : C′ → C and f : S′ → S such that the diagram

C′

��

α // C

��

S′
f
// S

�

is cartesian. Note that in the fiber categoryMg(C), an object is a smooth curve C
and the set of morphisms C → C is identified with the automorphism group Aut(C).

Example 0.6.3 (Moduli prestack of vector bundles). The moduli prestack of vector
bundles on a smooth curve C is the category Bunr,d(C) of pairs (E,S) where S
is a scheme and E is a vector bundle on CS = C ×C S together with the functor
p : Bunr,d(C)→ Sch/C, (E,S) 7→ S. A map (E′, S′)→ (E,S) consists of a map of
schemes f : S′ → S together with an isomorphism E′

∼→ (id×f)∗E

0.6.2 Motivating the definition of a stack
A stack is to a prestack as a sheaf is to a presheaf. The concept could not be more
intuitive: we require that objects and morphisms glue uniquely.
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Example 0.6.4 (Moduli stack of sheaves). Define the category X over Sch of
pairs (E,S) where E is a sheaf of abelian groups on a scheme S, and the functor
p : X → Sch is given by (E,S) 7→ S. A map (E′, S′) → (E,S) in X is a map of
schemes f : S′ → S together with a map E → f∗E

′ of OS′ -modules whose adjoint is
an isomorphism.

You already know that morphisms of sheaves glue: let E and F be sheaves on
schemes S and T , and let f : S → T be a map. If {Si} is a Zariski open cover of S,
then giving a morphism α : (E,S)→ (F, T ) is the same data as giving morphisms
αi : (E|Si , Si) → (F, T ) such that αi|Sij = αj |Sij [Har77, Exer. II.1.15]. You also
know how sheaves glue—it is more complicated than gluing morphisms since sheaves
have automorphisms and given two sheaves, we prefer to say that they are isomorphic
rather than equal. If {Si} is a Zariski open cover of a scheme S, then giving a sheaf E
on S is equivalent to giving a sheaf Ei on Si and isomorphisms φij : Ei|Sij → Ej |Sij
such that φik = φjk ◦ φij on the triple intersection Sijk [Har77, Exer. II.1.22].

In a similar way, we could have considered the stack of O-modules, quasi-coherent
sheaves, or vector bundles, or we could have stacks of sheaves/O-modules/quasi-
coherent sheaves/vector bundles over a given scheme X where an object over a
scheme S is sheaf on X × S.

The definition of a stack (Definition 2.4.1) simply axiomitizes these two natural
gluing concepts.

0.6.3 Motivating the definition of an algebraic stack
In order for a stack to be a geometric object, we need to specify that is locally like a
scheme in a suitable sense. Without such a condition would be like trying to studying
the geometry of an arbitrary ringed spaces (X,OX) or a (possibly non-representable)
functor F : Sch → Sets which is sheaf in the big Zariski topology. If we wish to
utilize our algebraic geometry toolkit (e.g. coherent sheaves, commutative algebra,
cohomology, ...) to study stacks in a similar way that we study schemes, we must
impose an algebraicity condition.

The conditions we impose are quite natural. Here are the definitions in increasing
generality:
(1) A functor X : Sch→ Sets is an algebraic space if objects of X glue uniquely

in the étale topology and there is an étale cover {Ui → X} where each Ui is
an affine scheme.

(2) A stack X → Sch is Deligne–Mumford if there is an étale cover {Ui → X}
where each Ui is an affine scheme.

(3) A stack X → Sch is algebraic if there is a smooth cover {Ui → X} where each
Ui is an affine scheme.

Of course, we need to make precise what étale and smooth covers are. For
{Ui → X} to be an étale cover in (1), we require that for every map T → X
of functors where T is representable by a scheme, the fiber product of functors
(introduced in Exercise 0.3.28) is representable by a scheme Ti such that Ti → T
is étale and

∐
Ti → T is surjective. Replacing ‘étale cover’ with ‘Zariski cover’

(as defined in Definition 0.3.29(3)) would be equivalent to requiring that F is
representable by a scheme by Exercise 0.3.30. Only minor modifications are needed
to define étale/smooth covers {Ui → X} in (2)/(3): for every morphism T → X
from a scheme T , the fiber product Ui ×X T is representable by an algebraic space
Ti such that each Ti → T is étale/smooth and

∐
i Ti → T is surjective. To make

this completely rigorous will require a little more work as we need to make sense
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of fiber products of stacks and properties of morphisms of algebraic spaces. See
Definition 3.1.6 for the precise definition of an algebraic stack.

Algebro-geometric space Type of object Obtained by gluing

Schemes ringed space/
sheaf

affine schemes in the
Zariski topology

Algebraic spaces sheaf affine schemes in the
étale topology

Deligne–Mumford stacks stack affine schemes in the
étale topology

Algebraic stacks stack affine schemes in the
smooth topology

Table 2: Schemes, algebraic spaces, Deligne–Mumford stacks, and algebraic stacks
are obtained by gluing affine schemes.

Why smooth covers? After all the fuss motivating étale morphisms above, you
might be surprised to see that an algebraic stack is smooth-locally a scheme. For
Deligne–Mumford stacks—which turn out to be precisely algebraic stacks with finite
automorphism groups—étale covers are sufficient. But for algebraic stacks like
Bunr,d(C) with infinite automorphism groups , we need smooth covers. For instance,
we would like to be able to form the quotient [SpecC/Gm] (which we will call the
classifying stack BGm) of the trivial action of Gm (or C∗) on a point, and this will
have no étale covers by a scheme.

0.6.4 Examples of moduli stacks

Constructing a smooth cover of a given moduli stack is a geometric problem inherent
to the moduli problem. It can often be solved by ridigifying the moduli problem by
parameterizing additional information. This concept is best absorbed in examples.

Example 0.6.5 (Moduli stack of elliptic curves). An elliptic curve (E, p) is em-
bedded into P2 via OE(3p) such that E is defined by a Weierstrass equation
y2z = x(x−z)(x−λz) for some λ 6= 0, 1 [Har77, Prop. IV.4.6]. Setting U = A1\{0, 1}
with coordinate λ, the family E ⊂ U×P2 of elliptic curves defined by the Weierstrass
equation defines map U →M1,1 which is an étale cover.

Example 0.6.6 (Moduli stack of smooth curves). For a smooth curve C of genus g ≥
2, the line bundle ω⊗3

C is very ample and defines an embedding C ↪→ P(Γ(C,ω⊗3
c )) ∼=

P5g−6. There is a Hilbert scheme H (see Theorem 1.1.2) parameterizing closed
subschemes of P5g−6 with the same Hilbert polynomial as C ⊂ P5g−6, and there is
a locally closed subscheme H ′ ⊂ H parameterizing smooth subschemes such that
ω⊗3
C
∼= OC(1). The universal subscheme over H ′ defines a map H ′ →Mg which is

a smooth cover (see Theorem 3.1.15 for details) and thusMg is an algebraic stack.
We will show that it is Deligne–Mumford in Corollary 3.6.8.

46



Example 0.6.7 (Moduli stack of vector bundles). For every vector bundle E of
rank r and degree d on a smooth curve C, the twist E(m) is globally generated
for sufficiently large m. Taking Nm = h0(C,E(m)), we can view E as a quotient
OC(−m)Nm � E. There is a Quot scheme Qm (see Theorem 1.1.3) parameterizing
such quotients that have the same Hilbert polynomial as E and there is a locally closed
subscheme Q′m ⊂ Q parameterizing vector bundle quotients π : OC(−m)Nm � E
such that the induced map Γ(π ⊗OC(m)) : CNm → Γ(C,E(m)) is an isomorphism.
The universal quotient over Q′m defines a map Q′m → Bunr,d(C) which is smooth
and the collection {Q′m → Bunr,d(C)} for m � 0 defines a smooth cover. This
shows that an Bunr,d(C) is an algebraic stack; see Theorem 3.1.19 for details. It is
not a Deligne–Mumford stack.

0.6.5 Quotient stacks

One of the most important examples of a stack is a quotient stack [X/G] arising
from an action of an algebraic group G on a scheme X. The geometry of [X/G]
couldn’t be simpler: it’s the G-equivariant geometry of X (see §0.6.6).

Similar to how toric varieties provide concrete examples of schemes, quotient
stacks provide both concrete examples useful to gain geometric intuition of general
algebraic stacks and a fertile testing ground for conjectural results. On the other
hand, it turns out that many algebraic stacks are quotient stacks or are at least
locally quotient stacks, and most properties that holds for quotient stacks also holds
for many algebraic stacks.

Quotient prestack: Given an action of an algebraic group G on a scheme X, the
quotient prestack [X/G]pre is the prestack whose fiber category [X/G]pre(S) over a
scheme S is the quotient groupoid (or the moduli groupoid of orbits) [X(S)/G(S)].
This will not satisfy the gluing axioms of a stack; even when the action is free,
the quotient functor Sch → Sets defined by S 7→ X(S)/G(S) is not a sheaf (see
Exercise 0.3.25). How can we make it into a stack? Well, instead of thinking of an
object of [X/G]pre over a scheme S as a morphism f : S → X, let’s think of it as a
trivial G-bundle together with a map to X:

G× S
f̃
//

p2

��

X, (g, s)
� // g · f(s)

S.

Given two maps f1, f2 : S → X, an element of α ∈ G(S) with f2 = α · f1 is the same
data as an isomorphism of trivial G-bundles G × S → G × S, (g, s) 7→ (gα(s), s);
this is because any such isomorphism must be G-equivariant and commute with
the structure maps to S. From this perspective, it is even more clear that [X/G]pre

is not stack even when X is a point: given a Zariski cover {Si} of a scheme S,
trivial G-bundles G× Si → Si together with isomorphisms over Si ∩ Sj satisfying a
cocycle condition will glue to a principal G-bundle P → S but it will not necessarily
be trivial. This suggests that we should define objects of a quotient stack to be
principal G-bundles (Definition C.2.1).

Quotient stack: We define the quotient stack [X/G] as the category over Sch/C
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whose objects over a C-scheme S are diagrams

P

��

f
// X

S

where P → S is a principal G-bundle and f : P → X is a G-equivariant morphism.

A morphism (P ′ → S′, P ′
f ′−→ X)→ (P → S, P

f−→ X) is the data of a commutative
diagram

P ′

��

ϕ
//

f ′

##

P

��

f
// X

S′
g
// S

�

where the left square is cartesian.
There is an object of [X/G] over X given by the diagram

G×X

p2

��

σ // X

X,

where σ denotes the action map, and this defines a map X → [X/G]. The map
X → [X/G] is a principal G-bundle even if the action of G on X is not free. Let’s
pause to appreciate that:

The map X → [X/G] is a principal G-bundle even if the action
of G on X is not free.

In particular, the map X → [X/G] is smooth and thus [X/G] is algebraic (see
also Theorem 3.1.9). At the expense of enlarging our category from schemes to
algebraic stacks, we are able to (tautologically) construct the quotient [X/G] as a
‘geometric space’ with desirable properties.

Example 0.6.8 (Classifying stack). We define the classifying stack of an algebraic
group G as the category BG := [SpecC/G] of principal G-bundles P → S. The
projection SpecC → BG is not only a principal G-bundle; it is the universal
principal G-bundle. Given any other principal G-bundle P → S, there is a unique
map S → BG and a cartesian diagram

P

��

// SpecC

��

S // BG.

�

Example 0.6.9 (Quotients by finite groups). Quotients by free actions of finite
groups exist as algebraic spaces! See Corollary 3.1.12.

Exercise 0.6.10. What is the universal family over the quotient stack [X/G]?
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Moduli stacks can often be described as quotient stacks, and these descriptions
can be leveraged to establish properties of the moduli stack.

Example 0.6.11 (Moduli stack of smooth curves as a quotient). Reexamining
Example 0.6.6, we see that the embedding of a smooth curve C via |ω⊗3

C | : C ↪→ P5g−6

depends on a choice of basis Γ(C,ω⊗3
C ) ∼= C5g−5 and therefore is only unique up

to a projective automorphism, i.e. an element of PGL5g−5 = Aut(P5g−6). The
algebraic group PGL5g−5 acts on the schemeH ′ parameterizing smooth tricanonically
embedded curves such thatMg

∼= [H ′/PGL5g−6].

Example 0.6.12 (Moduli stack of smooth curves as a quotient). For the moduli
stack of vector bundles (Example 0.6.7), the presentation of a vector bundle E as a
quotient OC(−m)Nm � E depends on a choice of basis Γ(C,E(m)) ∼= CNm . The
algebraic group PGLNm−1 acts on the scheme Q′m and there is an identification

Bunr,d(C) ∼=
⋃
m�0

[Q′m/PGLNm−1]

.

0.6.6 Geometry of a quotient stack
While the definition of the quotient stack [X/G] may appear abstract, its geometry
is very familiar. The table below provides a dictionary between the geometry of
a quotient stack [X/G] and the G-equivariant geometry of X. The stack-theoretic
concepts on the left-hand side will be introduced later.

Geometry of [X/G] G-equivariant geometry of X

C-point x ∈ [X/G] orbit Gx of C-point x ∈ X (with x the image
of x under X → [X/G])

automorphism group Aut(x) stabilizer Gx
function f ∈ Γ([X/G],O[X/G]) G-equivariant function f ∈ Γ(X,OX)G

map [X/G]→ Y to a scheme Y G-equivariant map X → Y

line bundle G-equivariant line bundle (or G-linearization)

quasi-coherent sheaf G-equivariant quasi-coherent sheaf

tangent space T[X/G],x normal space TX,x/TGx,x to the orbit

coarse moduli space [X/G]→ Y geometric quotient X → Y

good moduli space [X/G]→ Y good GIT quotient X → Y

0.7 Constructing projective moduli spaces
Our motivation for algebraic stacks was to ensure that a given moduli problemM
is representable with a universal family. While many geometric questions can be
studied (and arguably should be studied) on the moduli stackM itself, it is often
very convenient to make a trade-off: by sacrificing the existence of a universal family,
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we can sometimes construct a more familiar geometric space, ideally a projective
variety. This allows us to utilize the much larger toolkit of projective geometry (e.g.
birational geometry, intersection theory, Hodge theory, ...) to study the moduli
problem.

We highlight two approaches to construct projective moduli spaces:
(1) Geometric Invariant Theory (GIT), and
(2) Intrinsic construction of coarse/good moduli spaces.
There is a beautiful interplay between the intrinsic and extrinsic approaches.

Ideas from GIT have inspired techniques in each of the six steps of the intrinsic
approach, and conversely the intrinsic approach sheds light back on GIT. GIT is
also deeply intertwined with 19th century invariant theory, and determining the GIT
semistable locus is an interesting and important problem on its own. It is valuable
to keep both approaches in mind.

0.7.1 GIT approach

Outline of the GIT strategy

(A) Express the moduli stackM as a substack

M⊂ [X/G],

where G is reductive and X ↪→ P(V ) is G-equivariantly
embedded into the projectivization of a G-representation V .

(B) Show that a point x ∈ X is GIT semistable if and only if
x ∈M, or in other words thatM = [Xss/G].

For Step A, there are often natural ways to rigidify the moduli problem by
parameterizing additional data. For smooth curves, we can parameterize a basis
of Γ(C,Ω⊗3

C ) along with a curve C to obtain a tricanonical embedding C ↪→ P5g−6

(Example 0.6.11), or we can parameterize a basis of Γ(C,Ω⊗kC ) for the kth canonical
embedding C ↪→ P(2k−1)(g−1)−1. For vector bundles on a smooth curve, we can
parameterize a basis of Γ(C,E(m)) along with a vector bundle E, after making
a choice of a sufficiently large integer m. The rigidified moduli problem should
have a compactification which is represented by a projective variety X—which is
Hilb and Quot in our two examples—and the choice of additional data should be
governed by an action of a group G. For the GIT approach to succeed, we need
that G is reductive and thatM is a substack of [X/G]. Finally, we need to choose a
G-equivariant embedding X ↪→ P(V ) where V is a finite dimension G-representation,
or equivalently choose a G-linearization of an ample line bundle on X.

Step B is the hardest: we must show that M is precisely the open substack
of [X/G] of GIT semistable points. Using the Hilbert–Mumford Criterion we can
translate the problem to the following: a point x ∈ X represents an object of the
moduli problem M if and only if Hilbert–Mumford index µ(x, λ) ≥ 0 for every
one-parameter subgroup λ : Gm → G. This often reduces the goal to a tractable
(but often still daunting) combinatorial problem.

The GIT quotient M := Xss//G is necessarily projective. One beautiful feature
of GIT is that even if the moduli stack M is not compact, the GIT strategy
provides a compactification! If M has only finite automorphisms or equivalently
there are no strictly semistable points, then Xss → M is a geometric quotient
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and M = [Xss/G] → M is a coarse moduli space. In the presence of infinite
automorphisms, Xss →M is a good quotient andM→M is a good moduli space.

The GIT approach is covered in detail in §6.6. We sketch the GIT construction of
Mg in §§5.8.4 and present a complete GIT construction of Bunr,d(C) in Chapter 7.

0.7.2 Intrinsic approach

However I do not claim at all that [GIT] should be avoided, but only that
sometimes it may be good to have an alternative.

Faltings [Fal93]

Six steps toward projective moduli

(1) Algebraicity: Express the moduli stackM as a substack

M⊂ X

of a larger moduli stack X . Define an object x ∈ X to be
semistable if it is in M; this allows us to think of M as
the semistable locus X ss. Show that X is an algebraic stack
locally of finite type over C.

(2) Openness of semistability: Show that semistability is an
open condition, i.e. M = X ss ⊂ X is an open substack.

(3) Boundedness of semistability: Show that semistability
is bounded, i.e. M = X ss is of finite type over C.

(4) Semistable reduction: Show that M satisfies the exis-
tence part of the valuative criterion for properness.

(5) Existence of a moduli space: Show that there is a
fine/coarse/good moduli spaceM→M where M is a sepa-
rated algebraic space.5

(6) Projectivity: Show that a tautological line bundle onM
descends to an ample line bundle on M , i.e. M is projective.

GIT magically solves all these steps at once! In Step A of the GIT approach,
expressing the moduli stackM as a substack [X/G] already implies ‘boundedness.’
Since GIT semistability is always an open condition, the identification in Step B
ofM with the semistable locus [Xss/G] gives ‘openness of semistability’ and thus
‘algebraicity’ ofM. Strikingly, GIT also implies each of the other steps: ‘semistable
reduction,’ ‘existence of a moduli space’, and ‘projectivity.’

Step 1 (Algebraicity). Many moduli stacks have natural enlargements. The
stackMg of smooth curves and the stackMg of stable curves are both contained in
the stack of all curves. The stack of semistable vector bundles on a smooth curve is
contained in the stack of all vector bundles or even the stack of all coherent sheaves.
It is usually easier to first show that the enlargement X is an algebraic stack, and
then use Steps 2 and 3 to conclude thatM itself is algebraic.

5The calligraphic fontM denotes the stack while the Roman font M denotes the space. This
convention will be followed throughout the text.
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To get started, we need to define the stacks M and its enlargement X—this
entails specifying families of objects along with pullbacks and identifications. To
check that X is algebraic requires finding a smooth cover U → X by a scheme. In
many cases, we can even show that X is identified with a quotient stack [U/G] in
which case U → [U/G] provides a presentation. Alternatively, it is often possible
to use Artin’s Criteria (Theorem D.7.4) to establish algebraicity; this essentially
amounts to verifying local properties of the moduli problem and in particular requires
an understanding of the deformation and obstruction theory.

Step 2 (Openness of semistability). This translates to the following condition:
for every family E of objects of X over a scheme S, the subset

{s ∈ S | Es is semistable}, (0.7.1)

where Es is the pullback of E along Specκ(s)→ S, is an open subset of S. This is
precisely what it means for the inclusionM = X ss ↪→ X to be representable by open
immersions: for every map S → X (corresponding to the family E), the fiber product
M×X S (which is identified set-theoretically with (0.7.1)) is an open subscheme of
S. This step ensures thatM is also an algebraic stack locally of finite type over C.

Step 3 (Boundedness of semistability). By boundedness, we mean that the
moduli stackM is of finite type over C. Since algebraicity implies thatM is locally
of finite type over C, boundedness translates into quasi-compactness ofM. More
concretely, boundedness is equivalent to the existence of a scheme Z of finite type
over C and a family of objects E over Z such that every object E ofM is isomorphic
to Ez for some (not necessarily unique) z ∈ Z.

For example,Mg is bounded but the stack of all proper curves of genus g and
the stack

∐
gMg of all smooth curves (of any genus) are not bounded. For vector

bundles, the stack Bunss
r,d(C) of semistable vector bundles of fixed rank and degree is

bounded. The stack of all vector bundles Bunr,d(C) of fixed rank and degree is not
bounded, nor is the stack of semistable vector bundles of arbitrary rank and degree.

Step 4 (Semistable reduction). The existence part of the valuative criterion
for properness is the assertion that for every DVR R (which you can think of as
local model of a smooth curve) with fraction field K (or punctured curve) then every
object E× over K extends to a family of objects E over R after possibly replacing R
with an extension of DVRs. In other words, every diagram

SpecK
E× //

��

M

SpecR,

E

;;

(0.7.2)

has an extension after replacing R with an extension. If the extension E over R is
also unique, then we say thatM satisfies the valuative criterion for properness, and
this implies properness (Theorem 3.8.5) and in particular separatedness. Arguably
the usefulness of valuative criteria in algebraic geometry is best witnessed in moduli
theory.

The moduli stack of smooth curves is not compact and does not satisfy the
existence part of the valuative criterion.

52



0 1 λ

Figure 18: The family of elliptic curves y2z = x(x− z)(x− λz) degenerates to the
nodal cubic over λ = 0, 1.

Projective varieties are of course compact and satisfy the valuative criterion. If
there’s any hope to construct a projective moduli space, then the moduli stack also
better satisfy the existence part of the valuative criterion. Properness ofMg was
first proven by Deligne and Mumford in their influential paper [DM69]. We prove
semistable reduction in characteristic 0 in §5.5.

For the moduli of vector bundles, semistable reduction was first proved by
Mumford and Seshadri as a consequence of the GIT construction [Ses67]. An
intrinsic geometric argument was later proved by Langton [Lan75]. Note that unlike
stable curves, the stack Bunss

r,d(C) is not separated as there may exist several non-
isomorphic extensions of a vector bundle on CK to CR. Nevertheless, the moduli
stack Bunss

r,d(C) satisfies a weaker notion of separatedness called S-completeness.

Step 5 (Existence of a moduli space). We would like to construct an algebraic
space that is the best possible approximation of the moduli stack. This step depends
on the automorphisms of the moduli problem:

• No automorphisms: in this case, the moduli stackM is already an algebraic
space M , or in other words M is a fine moduli space.
• Finite automorphisms: we must show thatM is separated or in other words

thatM satisfies the uniqueness part (in additional to the existence part) of the
valuative criterion. The Keel–Mori theorem (Theorem 4.3.11) then establishes
the existence of a coarse moduli space M→M where M is a proper algebraic
space. The map M → M induces a bijection of C-points and satisfies the
universal property that any other mapM→ Y to an algebraic space factors
uniquely through M .
• Reductive automorphisms : we must show thatM is Θ-complete an S-complete—

these are valuative criteria about extending Gm-equivariant families of objects
over a punctured surface which are introduced in Section 6.7.2. Given these
properties, Theorem 6.7.1 yields a good moduli space M→M where M is a
proper algebraic space. The mapM→M is no longer a bijection of C-points
as it identifies points whose closures intersect in an analogous way to the orbit
closure equivalence relation in GIT. But M → M does induce a bijection
between closed C-points ofM (sometimes called polystable objects) and the
C-points of M , and it also satisfies the universal property for maps to algebraic
spaces.
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Step 6 (Projectivity). This is usually the hardest step. It requires a solid
understanding of the geometry of the moduli problem and sometimes relies on
sophisticated techniques in birational geometry. Kollár introduced a strategy in
[Kol90] to verify projectivity for moduli stacks of varieties and applied it to verify
the projectivity of Mg. We cover Kollár’s method in §5.8. Faltings constructed
projective moduli spaces of vector bundles in [Fal93] without using the theory of
GIT, and we borrow several of his ideas in our construction in Chapter 7 .
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Chapter 1

Hilbert and Quot schemes

We prove that the Grassmanian, Hilbert and Quot functors are representable by
projective schemes. These results serve as the backbone of many results in moduli
theory and more widely algebraic geometry. In particular, they are essential for
establishing properties about the moduli stacks Mg of stable curves and Vss

r,d of
vector bundles over a curve. While the reader could safely treat these results as
black boxes (and we encourage some readers to do this), it is also worthwhile to dive
into the details. We follow Mumford’s simplification [Mum66] of the Grothendieck’s
original construction of Hilbert of Quot schemes [Gro61b]. Specifically, we exploit the
theory of Castelnuovo–Mumford regularity (Section 1.3) and flattening stratifications
(Theorem A.2.14), which are interesting results on their own with wide-ranging
applications outside moduli theory.

1.1 The Grassmanian, Hilbert and Quot functors

1.1.1 The main results

The representability theorems below are formulated for a strongly projective mor-
phism X → S of noetherian schemes, i.e. there exists a closed immersion X ↪→ PS(E)
over S where E is a vector bundle on S. This is a stronger condition than the
projectivity of X → S which only requires that E is a coherent sheaf [EGA, §II.5],
[SP, Tag 01W8]. On the other hand, the definition of projectivity in [Har77, II.4]
requires that X embeds into projective space PnS over S.

Theorem 1.1.1. Let S be a noetherian scheme and V be a vector bundle of rank n.
For an integer 0 < k < n, the functor

GrS(k, V ) : Sch/S → Sets

(T
f−→ S) 7→

{
vector bundle quotients VT = f∗V → Q of rank k

}
is represented by a scheme strongly projective over S.

If S = SpecZ and V = OnS , then GrS(k, V ) is equal to the functor Gr(k, n)
defined in ??. In addition, when k = 1, the Grassmanian GrS(1, V ) is identified with
the projectivization PS(V ) of V as discussed in Exercise 0.3.12. For arbitrary S, we
sometimes denote GrS(k, n) := GrS(k,OnS) and we sometimes drop the subscript S
when we are working over a fixed base such as S = Spec k or S = SpecZ.
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In the formulation of the following two theorems, we will use the convention that
if X → S and T → S a morphisms of schemes, then XT := X ×S T . Similarly, if
F is a sheaf on X, then FT denotes the pullback of F under XT → X. If s ∈ S is
a point, then Xs := X ×S Specκ(s) and Fs := F |Xs = FSpecκ(s). If X → S is a
projective morphism, OX(1) is relatively ample and s ∈ S is a point, the Hilbert
polynomial of Fs is

PFs(z) = χ(Xs, Fs(z)),

where Fs(z) = Fs ⊗OXs(z). It is a fact that this defines a polynomial PFs ∈ Q[z]
(c.f. [Har77, Exer III.5.2]]); for z � 0, we have PFs(z) = h0(Xs, Fs(z)).

Theorem 1.1.2. Let X → S be a strongly projective morphism of noetherian
schemes and OX(1) be a relatively ample line bundle on X. For every polynomial
P ∈ Q[z], the functor

HilbP (X/S) : Sch/S → Sets

(T → S) 7→

 subschemes Z ⊂ XT flat and finitely presented
over T such that Zt ⊂ Xt has Hilbert
polynomial P for all t ∈ T


is represented by a scheme strongly projective over S.

Theorem 1.1.3. Let π : X → S be a strongly projective morphism of noetherian
schemes, OX(1) be a relatively ample line bundle on X, and F be a coherent sheaf
on X which is the quotient of π∗(W )(q) for a vector bundle W on S and an integer
q. For every polynomial P ∈ Q[z], the functor

QuotP (F/X/S) : Sch/S → Sets

(T → S) 7→


quasi-coherent and finitely presented
quotients FT → Q on XT such that Q is
flat over T and Q|Xt on Xt has
Hilbert polynomial P for all t ∈ T


is represented by a scheme strongly projective over S.

The Grassmanian and the Hilbert scheme are special cases of the Quot scheme:
GrS(k, V ) ∼= QuotP (V/S/S) where P (z) = k is the constant polynomial and
HilbP (X/S) = QuotP (OX/X/S).

Remark 1.1.4.
(1) In the definition of the Grassmanian and Quot functor above, two quotients

VT
q−→ Q and VT

q′−→ Q′ are identified if ker(q) = ker(q′) as subsheaves of VT ,
or equivalently there exists an isomorphism Q

α−→ Q′ such that the composition

VT
q−→ Q

α−→ Q′ is equal to VT
q′−→ Q′. In the Hilbert functor, two subschemes

of XT are identified if they are equal as subschemes (or equivalently their ideal
sheaves are equal as subsheaves of OXT ).

(2) The definitions HilbP (X/S) and QuotP (F/X/S) depend on the relatively
ample line bundle OX(1) but we have suppressed this from the notation.

(3) When T is noetherian, the conditions that Z be finitely presented and Q be of
finite presentation in the definitions of HilbP (X/S) and QuotP (F/X/S) are
superfluous.
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(4) If we do not fix P , then Hilb(X/S) and Quot(F/X/S) are representable by
schemes locally of finite type, and there are decompositions

Hilb(X/S) =
∐
P

HilbP (X/S) and Quot(F/X/S) =
∐
P

QuotP (F/X/S);

these functorial decompositions follows from the flatness of the quotient Q and
the local constancy of the Hilbert polynomial (Proposition A.2.4).

(5) Suppose that S satisfies the resolution property, i.e. every coherent sheaf is
the quotient of a vector bundle. This is satisfied if S has an ample line bundle
or if S is regular. Then a projective morphism X → S is necessarily strongly
projective. Moreover, if F is a coherent sheaf on X, then π∗π∗(F (q))→ F (q)
is surjective for q � 0 and choosing a surjection W � π∗(F (q)) from a
vector bundle W on S, we have a surjection π∗(W (−q)) 7→ F . Theorem 1.1.3
therefore implies that QuotP (F/X/S) is strongly projective over S if X → S
is projective and F is coherent.

Caution 1.1.5. We will abuse notation by using HilbP (X/S), QuotP (F/X/S) and
GrS(k, V ) to denote both the functor and the scheme that represents it.

1.1.2 Strategy of proof
In §1.2, we show that GrS(k, V ) is representable by a projective scheme by using
the functorial Plücker embedding GrS(k, V )→ P(

∧k
V ) which over an S-scheme T

sends a quotient VT → Q to the line bundle quotient
∧k

VT →
∧k

Q.
In §1.3, we introduce Castelnuovo–Mumford regularity and exploit Mumford’s re-

sult on Boundedness of Regularity (Theorem 1.3.8) to show that under the hypotheses
of Theorem 1.1.3, then for d� 0, the morphism of functors

QuotP (F/X/S)→ GrS(P (d), π∗F (d))

[FT � Q] 7→ [πT,∗(FT (d))→ πT,∗(Q(d))],
(1.1.1)

defined over an S-scheme T , is well-defined. Note that for a field-valued point
s : Speck→ S a quotient [Fs 7→ Q] is mapped to [H0(Xs, Fs(d))→ H0(Xs, Q(d))].

In fact, we show that the above functor is representable by locally closed immer-
sions (Proposition 1.4.1). This is established by reducing to the special case where
X = PS(V ) and F = π∗W where V and W are vector bundles on S; this is where
Boundedness of Regularity (Theorem 1.3.8) is applied.

Since GrS(P (d), π∗F (d)) is representable by a projective scheme over S (The-
orem 1.1.1), this already establishes the representability and quasi-projectivity of
QuotP (F/X/S). Finally, we establish that QuotP (F/X/S) is proper over S (Propo-
sition 1.4.2) by checking the valuative criterion which implies that QuotP (F/X/S)
is projective over S.

1.2 Representability and projectivity of the Grass-
manian

The Grassmanian provides a warmup to the functorial approach of constructing
projective moduli spaces in these notes and is also used in the proof of the rep-
resentability of Hilb and Quot. Given its importance, we present a slow-paced
expository account of the representability and projectivity of the Grassmanian. We
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focus first on the Grassmanian Gr(k, n) over Z parameterizing k-dimension quotients
of a trivial vector bundle of rank n; see ??. The proof of the projectivity and
representability of the relative Grassmanian GrS(k, V ) is shown in §1.2.3.

1.2.1 Representability by a scheme

In this subsection, we show that Gr(k, n) is representable by a scheme (Propo-
sition 1.2.3). Our strategy will be to find a Zariski open cover of Gr(k, n) by
representable subfunctors; see Definition 0.3.29. Given a subset I ⊂ {1, . . . , n} of
size k, let GrI ⊂ Gr(k, n) be the subfunctor where for a scheme S, Gr(k, n)I(S) is the
subset of Gr(k, n)(S) consisting of surjections OnS

q
� Q such that the composition

OIS
eI−→ OnS

q
� Q

is an isomorphism, where eI is the canonical inclusion.

Lemma 1.2.1. For each I ⊂ {1, . . . , n} of size k, the functor GrI is representable
by affine space Ak×(n−k)

Z

Proof. Wemay assume that I = {1, . . . , k}. We define a map of functors φ : Ak×(n−k) →
GrI where over a scheme S, a k × (n− k) matrix

f =
(
fi,j
)

1≤i≤k , 1≤j≤n−k

of global functions on S is mapped to the quotient
1 f1,1 · · · f1,n−k

1 f2,1 · · · f2,n−k
. . .

...
1 fk,1 · · · fk,n−k

 : OnS → OkS . (1.2.1)

The injectivity of φ(S) : Ak×(n−k)(S)→ GrI(S) follows from the fact that any
two quotients written in the form of (1.2.1) which are equivalent in GrI are necessarily
defined by the same equations. To see surjectivity, let [OnS

q−→ Q] ∈ GrI(S) where
by definition OIS

eI−→ OnS
q
� Q is an isomorphism. The tautological commutative

diagram

OnS
q
//

(q◦eI)−1◦q   

Q

(q◦eI)−1

��

OIS

shows that [OnS
q
� Q] = [OnS

(q◦eI)−1◦q
� OIS ] ∈ Gr(k, n)(S). Since the composition

OIS
eI−→ OnS

(q◦eI)−1

� OIS is the identity, the k×n matrix corresponding to (q◦eI)−1 ◦q
is necessarily of the same form as (1.2.1) for functions fi,j ∈ Γ(S,OS). Therefore
φ(S)({fi,j}) = [OnS

q
� Q] ∈ Gr(k, n)(S).

Lemma 1.2.2. {GrI} is a Zariski open cover of Gr(k, n) where I ranges over all
subsets of size k.
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Proof. For a fixed subset I, we first show that GrI ⊂ Gr(k, n) is an open subfunctor.
To this end, we consider a scheme S and a morphism S → Gr(k, n) corresponding to
a quotient q : OnS → Q. Let C denote the cokernel of the composition q◦eI : OIS → Q.
Notice that if C = 0, then q ◦ eI is an isomorphism. The fiber product

FI //

��

S

[OnS
q
�Q]

��

GrI // Gr(k, n)

�

of functors is representable by the open subscheme U = S \ Supp(C) (the reader is
encouraged to verify this claim). Note that if S is not noetherian, then Supp(C) ⊂ S
is still closed as C is finitely presented as a quasi-coherent sheaf.

To check the surjectivity of
∐
I FI → S, let s ∈ S be a point. Since κ(s)n

q⊗κ(s)
�

Q⊗ κ(s) is a surjection of vector spaces, there is a non-zero k × k minor, given by a

subset I, of the k × n matrix q ⊗ κ(s). This implies that [κ(s)n
q⊗κ(s)
� Q⊗ κ(s)] ∈

FI(κ(s)).

Lemmas 1.2.1 and 1.2.2 together imply:

Proposition 1.2.3. The functor Gr(k, n) is representable by a scheme.

Exercise 1.2.4. Show that Gr(k, n) is an integral scheme of finite type over Z.

Exercise 1.2.5. Use the valuative criterion of properness to show that Gr(k, n)→
SpecZ is proper.

1.2.2 Projectivity of the Grassmanian

We show that the Grassmanian scheme Gr(k, n) is projective (Proposition 1.2.6) by
explicitly providing a projective embedding. The Plücker embedding is the map of
functors

P : Gr(k, n)→ P(
∧k
OnSpecZ)

[OnS
q
� Q] 7→ [

∧k
OnS →

∧k
Q]

defined above over a scheme S. As both sides are representable by schemes, the
morphism P corresponds to a morphism of schemes via Yoneda’s lemma.

Proposition 1.2.6. The morphism P : Gr(k, n)→ P(
∧kOnSpecZ) of schemes is a

closed immersion. In particular, Gr(k, n) is a strongly projective scheme over Z.

Proof. A subset I ⊂ {1, . . . , n} corresponds to a coordinate xI on P(
∧kOnSpecZ), and

we set P(
∧kOnSpecZ)I to be the open locus where xI 6= 0. Note that P(

∧kOnSpecZ)I ⊂
P(
∧kOnSpecZ) is the subfunctor parameterizing line bundle quotients

∧kOnS → L

such that the composition OS
eI−→
∧kOnS → L (where the first map is the inclusion

of the Ith term) is an isomorphism, or in other words P(
∧kOnSpecZ)I ∼= Gr(1,

(
n
k

)
){I}

viewing {I} as the corresponding subset of {1, . . . ,
(
n
k

)
} of size 1. Using these
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functorial descriptions, one can check that there is a cartesian diagram of functors

Gr(k, n)I
PI //

��

P(
∧kOnSpecZ)I

��

Gr(k, n)
P // P(

∧kOnSpecZ).

�

Since {P(
∧kOnSpecZ)I} is a Zariski open cover, it suffices to show that each PI : Gr(k, n)I →

P(
∧kOnSpecZ)I is a closed immersion.
For simplicity, assume that I = {1, . . . , k}. Under the isomorphisms Gr(k, n)I ∼=

Ak×(n−k)
Z of Lemma 1.2.1 and P(

∧kOnSpecZ)I ∼= A(nk)−1

Z , the morphism PI corre-
sponds to the map

Ak×(n−k)
Z → A(nk)−1

Z

assigning a k × (n − k) matrix A = {xi,j} to the element of A(nk)−1

Z whose Jth
coordinate, where J ⊂ {1, . . . , n} is a subset of length k distinct from I, is the
{1, . . . , k} × J minor of the k × n block matrix

1 x1,1 · · · x1,n−k
1 x2,1 · · · x2,n−k

. . .
...

1 xk,1 · · · xk,n−k

 .

The coordinate xi,j on Ak×(n−k)
Z is the pull back of the coordinate corresponding to

the subset {1, · · · , î, · · · , k, k+j} (see Figure 1.1). This shows that the corresponding
ring map is surjective thereby establishing that PI is a closed immersion.

Figure 1.1: The minor obtained by removing the ith column and all columns
k + 1, . . . , n other than k + j is precisely xi,j .

Exercise 1.2.7. For a field k, let Gr(k, n)k be the k-scheme Gr(k, n) ×Z k, and
p ∈ Gr(k, n)k be the point corresponding to a quotient Q = kn/K. Show that there
is a natural bijection of the tangent space

Tp Gr(k, n)k
∼→ Homk(K,Q).

with the vector space of k-linear maps K → Q.

Exercise 1.2.8. Provide an alternative proof of the projectivity of Gr(k, n) as
follows.
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(a) Show that the functor P : Gr(k, n)→ P(
∧kOnSpecZ) is injective on points and

tangent spaces.
(b) Use a criterion for being a closed immersion (c.f. [Har77, Prop. II.7.3]) to

show that P : Gr(k, n)→ P(
∧kOnSpecZ) is a closed immersion.

(Alternatively, you could show that P : Gr(k, n) → P(
∧kOnSpecZ) is a proper

monomorphism and conclude that Gr(k, n) is projective over Z.)

1.2.3 Relative version
We now prove the relative version of the representability and strong projectivity of
the Grassmanian.

Proof of Theorem 1.1.1. If V is a vector bundle over S of rank n, there is the relative
Plücker embedding

P : GrS(k, V )→ PS(
∧k

V )

[VT
q
� Q] 7→

[∧k
VT →

∧k
Q
] (1.2.2)

defined above over a S-scheme T . This is a morphism of functors over S. Since
PS(
∧k

V ) is projective over S, it suffices to show that this morphism is representable
by closed immersions. This property can be checked Zariski-locally: if U ⊂ S is an
open subscheme where V is trivial, then the base change of GrS(k, V )→ PS(

∧k
V )

over U is the Plücker embedding GrU (k,OnU ) → PS(
∧kONU ) which is a closed

immersion (Proposition 1.2.6).

Since the Grassmanian functor is representable, there is a universal quotient
OGrS(k,V ) ⊗S V → Quniv; here OGrS(k,V ) ⊗S V denotes the pullback of V under
the structure morphism GrS(k, V )→ S. Under the Plücker embedding (1.2.2), the
pullback of O(1) is identified with det(Quniv), which we sometimes call the Plücker
line bundle. Thus, we obtain:

Corollary 1.2.9. The determinant det(Quniv) of the universal quotient is a very
ample line bundle on GrS(k, V ).

Remark 1.2.10. For projective space Pn = Gr(1, n), the universal quotient yields
an exact sequence 0 → ΩPn(1) → On+1

Pn → OPn(1) → 0, which is the dual of the
Euler sequence [Har77, Ex. 8.20.1] twisted by OPn(1).

1.3 Castelnuovo–Mumford regularity
The Cartan–Serre–Grothendieck theorem states that if F is a coherent sheaf on a
projective variety (X,OX(1)), then for d� 0

(1) F (d) is globally generated;
(2) Hi(X,F (d)) = 0 for i > 0; and
(3) the multiplication map

H0(X,F (d))⊗H0(X,O(p))→ H0(X,F (d+ p))

is surjective for all p ≥ 0.
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Castelnuovo–Mumford regularity provides a quantitative measure of the size of d
necessary so that the twist F (d) has the three above desired cohomological properties
and in particular that the Hilbert polynomial χ(X,F (d)) of F evaluated at d agrees
with h0(X,F (d)).

1.3.1 Definition and basic properties
Definition 1.3.1. Let F be a coherent sheaf on projective space Pn over a field k.
For an integer m, we say that F is m-regular if

Hi(Pn, F (m− i)) = 0

for all i ≥ 1.
The regularity of F is the smallest integer m such that F (m) is m-regular.

While the requirement that the ith cohomology of the (m− i)th twist vanishes
may appear mysterious at first, this definition is very convenient for induction
arguments on the dimension n as indicated for instance by the following result.

Lemma 1.3.2. Let F be an m-regular coherent sheaf on Pn over a field k. If H ⊂ Pn
is a hyperplane avoiding the associated points of F , then F |H is also m-regular.

Proof. The hypotheses imply that over an affine open subscheme U ⊂ Pn, the defining
equation of H is a nonzerodivisor for the module Γ(U,F ). Thus F (−1)

H−→ F is
injective and for an integer i > 0 we have a short exact sequence

0→ F (m− i− 1)→ F (m− i)→ F |H(m− i)→ 0

inducing a long exact sequence on cohomology

· · · → Hi(Pn, F (m− i))→ Hi(H,F |H(m− i))→ Hi+1(Pn, F (m− i− 1))→ · · ·

If F is m-regular, then Hi(Pn, F (m− i)) = Hi+1(Pn, F (m− i− 1)) = 0. It follows
that Hi(H,F |H(m− i)) = 0 for all i > 0, and thus F |H is also m-regular.

Remark 1.3.3. It follows from the definition of regularity that if F is m-regular,
then F (d) is (m− d)-regular. We will show in Lemma 1.3.6 that if F is m-regular,
it also d-regular for all d ≥ m.

Exercise 1.3.4.
(a) Show that O(d) is (−d)-regular on Pn.
(b) Show that the structure sheaf of a hypersurface H ⊂ Pn of degree d is (d− 1)-

regular.
(c) Show that the structure sheaf of a smooth curve C ⊂ Pn of genus g is (2g− 1)-

regular.

Exercise 1.3.5. Let F be a coherent sheaf on Pn resolved by a long exact sequence
of coherent sheaves. Show that if each Fi is (m+ i)-regular, then F is m-regular.

· · · → F2 → F1 → F0 → F → 0

Another advantage of regularity is the following lemma due to Castelnuovo.

Lemma 1.3.6. Let F be an m-regular coherent sheaf on Pn.
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(1) For d ≥ m, F is d-regular.
(2) The multiplication map

H0(Pn, F (d))⊗H0(Pn,O(k))→ H0(Pn, F (d+ k))

is surjective if d ≥ m and k ≥ 0.
(3) For d ≥ m, F (d) is globally generated and Hi(Pn, F (d)) = 0 for i ≥ 1.

Proof. If k→ k′ is a field extension, then flat base change implies that Hi(Pnk , F )⊗k
k′ = Hi(Pnk′ , F ⊗k k′). As k → k′ is faithfully flat, the assertions (1)–(3) can be
checked after base change. We can thus assume that k is algebraically closed and in
particular infinite.

For (1) and (2), we will argue by induction on n with the base case of n = 0 being
clear. If n > 0, since k is infinite, we may choose a hyperplane H ⊂ Pn avoiding the
associated points of F . Since the restriction F |H is m-regular (Lemma 1.3.2) on
H ∼= Pn−1, the inductive hypothesis implies that (1) and (2) hold for F |H .

We prove (1) by using induction also on d. The base case d = m holds by
hypothesis. For d > m, the short exact sequence 0→ F (d− i− 1)→ F (d− i)→
F |H(d− i)→ 0 induces a long exact sequence on cohomology

· · · → Hi(Pn, F (d− i− 1))→ Hi(Pn, F (d− i))→ Hi(H,F |H(d− i))→ · · ·

For i > 0, the first term vanishes by the induction hypothesis on d (F is (d − 1)-
regular so Hi(Pn, F (d− 1− i)) = 0) and the third term vanishes by the inductive
hypothesis on n (F |H is m-regular by Lemma 1.3.2 and thus d-regular by the
inductive hypothesis on n so Hi(H,F |H(d− i)) = 0). Thus, the second term vanishes
and we have established (1).

To show (2), we use induction on k in addition to n. We denote the multiplication
map by

µd,k : H0(Pn, F (d))⊗H0(Pn,O(k))→ H0(Pn, F (d+ k)).

While the base case k = 0 is clear, the inductive argument will require us to directly
establish the case k = 1. To this end, we consider the commutative diagram

H0(Pn, F (d))⊗H0(Pn,O(1))
νd⊗res

//

µd,1

��

H0(H,F |H(d))⊗H0(H,OH(1))

��

H0(Pn, F (d))
α //

id⊗H
44

H0(Pn, F (d+ 1))
νd+1

// H0(H,F |H(d+ 1)).

(1.3.1)

As the map α is given by multiplication by H ∈ H0(Pn,O(1)), α factors through
the the map id⊗H defined by v 7→ v ⊗H. It follows that im(α) ⊂ im(µd,1). Since
H1(Pn, F (d)) = 0 by (2), the restriction map νd : H0(Pn, F (d)) → H0(H,F |H(d))
is surjective. Likewise, since H1(Pn,O) = 0, res : H0(Pn,O(1))→ H0(H,OH(1)) is
surjective. We conclude that the top horizontal arrow is surjective. The inductive
hypothesis applied to H = Pn−1 implies that the right vertical arrow is surjective.
Therefore, the composition νd+1 ◦ µd,1 is surjective and it follows that im(µd,1)
surjects onto H0(H,F |H(d+ 1)). By exactness of the bottom row, we have that

H0(Pn, F (d+ 1)) = im(µd,1) + ker(β) = im(µd,1) + im(α) = im(µd,1),

which shows that µd,1 is surjective.
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If k > 1, we consider the commutative square

H0(Pn, F (d))⊗H0(Pn,O(k − 1))⊗H0(Pn,O(1)) //

µd,k−1⊗id

��

H0(Pn, F (d))⊗H0(Pn,O(k))

µd,k

��

H0(Pn, F (d+ k − 1))⊗H0(Pn,O(1))
µd+k−1,1

// H0(Pn, F (d+ k)).

The left vertical map and bottom horizontal arrow are surjective by the inductive
hypothesis applied to k − 1 and k = 1, respectively. It follows that µd,k is surjective.

To show (3), we know that for k � 0, F (d + k) is globally generated, i.e.
γF (d+k) : H0(Pn, F (d+k))⊗OPn → F (d+k) is surjective. Consider the commutative
square

H0(Pn, F (d))⊗H0(Pn,O(k))⊗OPn
µd,k⊗id

//

γF (d)⊗id

��

H0(Pn, F (d+ k))⊗OPn

γF (d+k)

��

F (d)⊗
(
H0(Pn,O(k))⊗OPn

) id⊗γO(k)
// F (d)⊗O(k).

Since top horizontal arrow is surjective by (1), the composition from the top left
to the bottom right is surjective. Given the nature of the bottom horizontal map,
we see that γF (d) must be surjective (indeed, if V = im(γF (d)) ⊂ F (d), then
im(id⊗γO(k) ◦ γF (d) ⊗ id) = V ⊗O(k)). Finally, to see the vanishing of the higher
cohomology of F (d) observe that for each i > 0, the sheaf F is (d+ i)-regular by (2)
and thus Hi(Pn, F (d)) = 0.

One easy consequence of (1) is that if F is m-regular, then the restriction map

νd : : H0(Pn, F (d))→ H0(H,F |H(d))

is surjective for all d ≥ m. Indeed, (1) implies that F is also d-regular and the
surjectivity follows from the vanishing of H1(Pn, F (d− 1)). The following lemma—
which will be used in the proof of Theorem 1.3.8—shows that we can still arrange
for the surjectivity of νd under weaker hypotheses.

Lemma 1.3.7. Let F be a coherent sheaf on Pn and H be a hyperplane avoiding
the associated points of F . If F |H is m-regular and νd is surjective for some d ≥ m,
then νp is surjective for all p ≥ d.

Proof. By staring at the square in diagram (1.3.1), we see that the top arrow νd⊗res
is surjective (as both νd and res are surjective) and the vertical right multiplication
morphism is surjective (by applying Lemma 1.3.6(2) to the m-regular sheaf F |H).
The statement follows.

1.3.2 Regularity bounds
We now turn to the following bound on the regularity of subsheaves of the trivial
vector bundle established by Mumford in [Mum66, p.101].

Theorem 1.3.8 (Boundedness of Regularity). For every pair of non-negative inte-
gers r and n, and for every polynomial P ∈ Q[z], there exists an integer m0 with the
following property: for every field k, every subsheaf F ⊂ OrPnk with Hilbert polynomial
P is m0-regular.
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Proof. As in the proof of Lemma 1.3.6, we can assume that k is infinite. We will
argue by induction on n. The base case of n = 0 holds as every sheaf F on P0 is
m-regular for every integer m.

For n ≥ 1 and a subsheaf F ⊂ OrPn with Hilbert polynomial P , we can choose
a hyperplane H ⊂ Pn avoiding all associated points of OrPn/F . This ensures that
Tor1
OPn

(OH ,OrPn/F ) = 0 and that the short exact sequence 0 → F → OrPn →
OrPn/F → 0 restricts to a short exact sequence

0→ F |H → OrH → OrH/F → 0. (1.3.2)

As H ∼= Pn−1, this will allow us to apply the inductive hypothesis to F |H ⊂ OrH .
On the other hand, since F ⊂ OrPn is torsion-free, we have a short exact sequence

0→ F (−1)
H−→ F → F |H → 0, (1.3.3)

and the Hilbert polynomial of F |H is χ(F |H(d)) = χ(F (d)) − χ(F (d − 1)) =
P (d)− P (d− 1). In particular, the Hilbert polynomial of F |H only depends on P
and the inductive hypothesis applied to F |H ⊂ OrH gives an integer m1 such that
F |H is m1-regular.

For m ≥ m1 − 1, since Hi(H,F |H(m)) = 0 for all i ≥ 1, we have a long exact
sequence

0→ H0(Pn, F (m− 1))→ H0(Pn, F (m))→ H0(H,F |H(m))→
H1(Pn, F (m− 1))→ H1(Pn, F (m))→ 0. (1.3.4)

For i ≥ 2, we also have isomorphisms Hi(Pn, F (m− 1))→ Hi(Pn, F (m)), and since
Hi(Pn, F (d)) vanishes for d� 0, we can conclude that Hi(Pn, F (m− 1)) = 0.

To handle H1, we use the inequalities h1(Pn, F (m1)) ≥ h1(Pn, F (m1 + 1)) ≥
· · · , which eventually stabilize to 0. We claim that in fact that the inequalities
h1(Pn, F (m1)) > h1(Pn, F (m1 + 1)) > · · · are strict until they become 0. To
see this, we observe that there is an equality h1(Pn, F (m − 1)) = h1(Pn, F (m))
for m ≥ m1 if and only if νm : H0(Pn, F (m)) → H0(H,F |H(m)) is surjective. If
h1(Pn, F (m − 1)) = h1(Pn, F (m)) for some m ≥ m1, then νm is surjective. Since
F |H is m1-regular, we may apply Lemma 1.3.7 to conclude that νm′ is surjective for
all m′ ≥ m, which in turn implies that h1(Pn, F (m′)) is constant for m′ ≥ m, and
therefore zero. This establishes the claim. Setting m2 = m1 + 1 + h1(Pn, F (m1)),
we see that h1(Pn, F (m2 − 1)) = 0 and that F is m2-regular.

We now show that m2 is bounded above by a constant m0 independent of F .
Since F ⊂ OrPn , we have that h0(Pn, F (d)) ≤ rh0(Pn,O(d)) = r

(
n+d
n

)
for any d ≥ 0.

Using the vanishing of hi(Pn, F (m1)) for i ≥ 2, we have

h1(Pn, F (m1)) = h0(Pn, F (m1))− χ(F (m1))

≤ r
(
n+m1

n

)
+ P (m1).

Thus, defining m0 := m1 + 1 + r
(
n+m1

n

)
+ P (m1), we have that m2 ≤ m0.

Remark 1.3.9. The above proof establishes in fact a stronger statement. In order
to formulate the result, we recall that every numerical polynomial P ∈ Q[z] (i.e.
P (d) ∈ Z for integers d� 0) of degree n can be uniquely written as

P (d) =

n∑
i=0

ai

(
d

i

)
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for ai ∈ Z; this follows from a straightforward inductive argument (c.f. [Har77,
Prop. I.7.3]). For non-negative integers r and n, there exists a polynomial Λr,n ∈
Z[x0, . . . , xn] with the following property: for every field k, every subsheaf F ⊂ OrPnk
with Hilbert polynomial P (d) =

∑
i=0 ai

(
d
i

)
is m0-regular for m0 = Λr,n(a0, . . . , an).

Remark 1.3.10 (Optimal bounds). Although Mumford’s result on Boundedness
of Regularity (Theorem 1.3.8) provides an explicit bound and is sufficient for
many applications including the construction of the Quot scheme as well as for
other applications, there is a more optimal bound established by Gotzmann: for
a projective scheme X ⊂ PN over a field k with Hilbert polynomial P , there are
unique integers λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1 such that P can be expressed as

P (d) =

(
d+ λ1 − 1

λ1 − 1

)
+

(
d+ λ2 − 2

λ2 − 1

)
+ · · ·+

(
d+ λr − r
λr − 1

)
,

and the ideal sheaf IX of X is r-regular. See [Got78], [Gre89], [Gre98, §3] and
[BH93, §4.3].

Exercise 1.3.11. Let C ⊂ Pn be a curve of degree d and genus g. Show that
Gotzmann’s bound implies that the ideal sheaf IC of C is (

(
d
2

)
+ 1− g)-regular. Can

you compare this to the bound given by the proof of Theorem 1.3.8, i.e. can you
compute Λ1,n(1− g, d) for an explicit polynomial satisfying Theorem 1.3.8?

Remark 1.3.12. It was shown in [GLP83] that the ideal sheaf IC of an integral,
non-degenerate curve C ⊂ PN of degree d is (d−N + 2)-regular. It is conjectured
more generally that the ideal sheaf of a smooth, non-degenerate projective variety
X ⊂ PN of dimension n and degree d is (d− (N − n)) + 1)-regular; see [GLP83] and
[EG84].

Corollary 1.3.13. Let π : X → S be a strongly projective morphism of noetherian
schemes and OX(1) be a relatively ample line bundle on X. Let F be quotient sheaf
of π∗(W )(q) for some vector bundle W on S and integer q. Let P ∈ Q[z] be a
polynomial. There exists an integer m0 satisfying the following property for every
d ≥ m0: for every morphism f : T → S inducing a cartesian square

XT
fT //

πT

��

X

π

��

T
f
// S

and every finitely presented quotient Q = FT /K flat over S such that every fiber Qt
on Xt has Hilbert polynomial P , then
(1) πT,∗Q(d) is a vector bundles of rank P (d)

(2) the comparison maps f∗π∗Q(d)→ πT,∗f
∗
TQ(d), f∗π∗F (d)→ πT,∗f

∗
TF (d) and

f∗π∗K(d)→ πT,∗f
∗
TK(d) are isomorphisms;

(3) R1πT,∗K(d) = 0 for i > 0; and
(4) the adjunction maps π∗TπT,∗Q(d)→ Q(d), π∗TπT,∗FT (d)→ FT (d) and π∗TπT,∗K(d)→

K(d) are surjective.

Proof. For (2), since π : X → S is strongly projective, there is a closed immersion
i : X ↪→ PS(V ) where V is a vector bundle on S. Since the statement is local on S
(and S is quasi-compact), we may assume that S is affine and that V is the trivial
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vector bundle of rank n+ 1. We are given a surjection π∗(W )(q)� F , and if Q is a
quotient of i∗F with Hilbert polynomial P , then Q(−q) is a quotient of π∗W with
Hilbert polynomial P ′ where P ′(z) = P (z + d). We can therefore replace (F,X, P )
with (π∗(W ),PS(V ), P ′). In particular, for every field-valued point s : Speck→ S,
PS(V )s ∼= Pnk and Fs ∼= OkPnk where rk(V ) = n+ 1 and rk(W ) = k.

By Boundedness of Regularity (Theorem 1.3.8), there exists an integer m0

depending on n, r and P such that for every every field-valued point s : Speck→ S,
the kernel Ks is m0-regular. As Ks is also (m0 + 2)-regular (Lemma 1.3.6) and
Fs ∼= OkPnk is (m0 +1)-regular (in fact, it is 0-regular), it follows that Qs is m0-regular
(Exercise 1.3.4). By Lemma 1.3.6, for d ≥ m0 + 2, Ks(d), Fs(d) and Qs(d) are each
globally generated with vanishing higher cohomology. Since K, F and Q are flat
over S, statements (1)–(3) follow from applying Cohomology and Base Change in
the form of Corollary A.7.7. For (4), to verify the surjectivity of the adjunction
map π∗TπT,∗K(d)→ K(d) (and likewise for FT and Q), it suffices to check that the
restriction

(π∗TπT,∗K(d))|Xt → Kt(d) (1.3.5)

is surjective one each fiber Xt over t ∈ T . Using (2), we have identifications

(π∗TπT,∗K(d))|Xt ∼= π∗t (πT,∗K(d)⊗ κ(t)) ∼= π∗t πt,∗Kt(d),

where πt : Xt → Specκ(t) and thus (1.3.5) corresponds to the adjunction map
π∗t πt,∗Kt(d)→ Kt(d), which we know is surjective as Kt(d) is globally generated.

1.4 Representability and projectivity of Hilb and
Quot

In this section, we prove the representability and projectivity of Quot (Theorem 1.1.3)
and as a consequence we obtain the same for the Hilbert scheme (Theorem 1.1.2).

As before, π : X → S is a strongly projective morphism of noetherian schemes,
OX(1) is a relatively ample line bundle on X, F is a quotient sheaf of π∗(W )(q)
for some vector bundle W on S and integer q, and P ∈ Q[z] is a polynomial. Our
strategy is to use the morphism of functors

QuotP (F/X/S)→ GrS(P (d), π∗F (d))

[FT � Q] 7→ [πT,∗FT (d)→ πT,∗Q(d)],

defined above over an S-scheme T . For d � 0, Corollary 1.3.13 implies that the
above morphism is well-defined: indeed part (1) shows that πT,∗Q(d) is a vector
bundle of rank P (d), part (2) shows the pullback of the coherent sheaf π∗F (d) under
T → S is identified with πT,∗FT (d), and part (3) shows that R1πT,∗K(d) = 0 which
implies the surjectivity of πT,∗FT (d)→ πT,∗Q(d).

1.4.1 QuotP (F/X/S)→ GrS(P (d), π∗F (d)) is a locally closed im-
mersion

Proposition 1.4.1. Let π : X → S be a strongly projective morphism of noetherian
schemes, OX(1) be a relatively ample line bundle on X, and F be a coherent sheaf
on X which is the quotient of π∗(W )(q) for a vector bundle W on S and an integer
q. For d� 0, the morphism QuotP (F/X/S)→ GrS(P (d), π∗F (d)) is representable
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by locally closed immersions, i.e. for every morphism T → GrS(P (d), π∗F (d)) from
a scheme, the fiber product

T ×GrS(P (d),π∗F (d)) QuotP (F/X/S)

is representable by a locally closed subscheme of T .

Proof. We first reduce to the special case that X = PS(V ) and F = π∗W for trivial
vector bundles V and W . Let i : X ↪→ PS(V ) be a closed immersion where V is a
vector bundle on S. The morphism of functors QuotP (F/X/S)→ GrS(P (d), π∗F (d))
is defined over S and its base change to an open subscheme U ⊂ S is identified
with the morphism QuotP (FU/XU/U)→ GrS(P (d), πU,∗FU (d)). Since the property
of being a locally closed immersion is Zariski-local on the target, the statement is
Zariski-local on S. We may therefore assume that S is affine and that V is the
trivial vector bundle of rank n+ 1.

First, observe that since there is an isomorphism of functors

QuotP (F/X/S)→ QuotP (i∗F/PS(V )/S),

we may replace (F,X) with (i∗F,PS(V )). Next using the surjection π∗(W )(q)� F ,
we obtain a morphism of functors

QuotP (F/PS(V )/S)→ QuotP
′
(π∗W/PS(V )/S)

[FT → Q] 7→ [(π∗W )T → F (−q)T → Q(−q)],

defined over an S-scheme T , where P ′(z) = P (z − q). We claim that this morphism
is representable by closed immersions. This claims boils down to the statement
that for an S-scheme T and quotient π∗W (q)T � Q, there is a closed subscheme
Z ⊂ T such that a morphism U → T factors through Z if and only if the restriction
π∗W (q)U � GU factors through FU . Defining K = ker(π∗W (q)T → FT ) and
considering the diagram

0 // K //

$$

π∗W (q)T //

����

FT // 0

G,

we see that the claim is satisfied by taking Z ⊂ T to be vanishing scheme of the
morphism K → G (see Exercise 0.3.14(b)).

Finally, using that π∗(π∗W (d)) = W ⊗ Symd V , we have a commutative diagram

QuotP (F/PS(V )/S)
� � //

��

QuotP
′
(π∗W/PS(V )/S)� _

��

GrS(P (d), π∗F (d)) // GrS(P ′(d),W ⊗ Symd V ).

By the above claim, the top horizontal map is a closed immersion. As
GrS(P (d), π∗F (d)) and GrS(P ′(d),W ⊗Symd V ) are projective (Theorem 1.1.1), the
bottom horizontal map is projective and in particular separated. If the proposition
holds for QuotP

′
(π∗W/PS(V )/S) and the right vertical map is a locally closed

immersion, then the left vertical map is also a closed immersion by the cancellation
property.

68



We now handle the special case. We first claim that QuotP (F/X/S)→ GrS(P (d),W⊗
Symd V ) is a monomorphism, i.e.

QuotP (F/X/S)(T )→ GrS(P (d), π∗F (d))(T )

is injective for each scheme T . To see this, observe that if FT = Q/K is a quotient
with Hilbert polynomial P , then Corollary 1.3.13 implies that there is a map of
short exact sequences

0 // π∗TπT,∗K(d)

��

// π∗TπT,∗FT (d)

��

// π∗TπT,∗Q(d)

��

// 0

0 // K(d) // FT (d) // Q(d) // 0

where the vertical maps are surjections. Thus FT (d)→ Q(d) can be recovered from
πT,∗FT (d) → πT,∗Q(d) by taking the cokernel of the composition π∗TπT,∗K(d) →
π∗TπT,∗FT (d)→ FT (d).

Let T → GrS(P (d),W ⊗ Symd V ) be a morphism determined by a vector bundle
quotient γ : πT,∗FT (d) = WT ⊗Symd VT → G of rank P (d). Define Q as the quotient
sheaf of FT with the property that FT (d)� Q(d) is identified with the cokernel of
ker(π∗T γ)→ π∗TπT,∗FT (d)→ FT (d). The fiber product

Z //

��

T

��

QuotP (F/X/S) // GrS(P (d),W ⊗ Symd V )

is identified with the subfunctor of T (or more precisely the subfunctor of MorS(−, T ))
consisting of morphisms T ′ → T such that QT ′ is flat over T ′ with Hilbert polynomial
P (in other words, a map T ′ → T factors through Z if and only if QT ′ is flat
over T ′ with Hilbert polynomial P ). By Existence of Flattening Stratifications
(Theorem A.2.14), Z is representable by a locally closed subscheme of T .

1.4.2 Valuative Criterion for Quot

In order to establish that Quot is projective, it will be sufficient to know that it is
proper.

Proposition 1.4.2. For every projective morphism X → S of noetherian schemes,
relatively ample line bundle OX(1), coherent sheaf F on X and polynomial P ∈ Q[x],
the functor QuotP (F/X/S) satisfies the valuative criterion for properness, i.e. for
every DVR R over S with fraction field K, every flat coherent quotient FK → Q× on
XK with Hilbert polynomial P extends uniquely to a flat coherent quotient FR → Q
on XR with Hilbert polynomial P .

Remark 1.4.3. In other words, the proposition implies that for every commutative
diagram

SpecK //

��

QuotP (F/X/S)

��

SpecR //

77

S,

of solid arrows, there is a unique dotted arrow filling in the diagram. See §3.8 for a
further discussion of the valuative criterion for functors and stacks.
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Proof. If we write j : XK ↪→ XR as the open immersion, we define Q as the image
of the composition FR → j∗FK → j∗Q

× (where the first map is given by the
adjunction FR → j∗j

∗FR = j∗FK). Since Q is a subsheaf of j∗Q×, it is torsion
free over R and thus flat (as R is a DVR). (Locally, if S = SpecB is affine and
U = SpecA ⊂ X is an affine open, then we can write F |U = M̃ for a finitely
generated A-module M and we have a quotient M ⊗BK → N× of A⊗BK-modules
where Q×|UK = Ñ×. Then Q = Ñ where N is the A ⊗B R-module defined by
N := im(M ⊗B R→M ⊗B K → N×). Since the R-module N is a subsheaf of the
K-module N×, we see that N is torsion free and thus flat.) Finally, since Q if flat
over R and SpecR is connected, its Hilbert polynomial is constant.

Remark 1.4.4. For HilbP (X/S), the argument translates into the following: the
unique extension of a closed subscheme Z× ⊂ XK is the scheme-theoretic image
Z = im(Z× → XK ↪→ XR). The scheme Z is flat over R as all associated points
live over the generic point of SpecR.

1.4.3 Projectivity
The proof of the main theorem of this section (Theorem 1.1.3) follows from the
following proposition.

Proposition 1.4.5. Let π : X → S be a strongly projective morphism of noetherian
schemes, OX(1) be a relatively ample line bundle on X, and F be a coherent sheaf
on X which is the quotient of π∗(W )(q) for a vector bundle W on S and an integer
q. For d � 0, the morphism QuotP (F/X/S) → GrS(P (d), π∗F (d)) is a closed
immersions.

Proof. For d� 0, the morphism

QuotP (F/X/S)→ GrS(P (d), π∗F (d))

is a locally closed immersion of schemes defines over S (Proposition 1.4.1). Since
QuotP (F/X/S) is proper over S (Proposition 1.4.2), this map is a closed immer-
sion. Since GrS(P (d), π∗F (d)) is strongly projective over S (Theorem 1.1.1), so is
QuotP (F/X/S).

Consider the diagram

X ×S QuotP (F/X/S)

p1

ww

p2

��

X

π

''

QuotP (F/X/S) �
�

//

��

GrS(P (d), π∗F (d))

g

ttS

As QuotP (F/X/S) represents the Quot functor, there is a universal quotient p∗1F →
Quniv on X ×S QuotP (F/X/S). For d � 0, we also have the universal quotient
g∗π∗F (d)→ Quniv on GrS(P (d), π∗F (d)) and a composition of closed immersions

QuotP (F/X/S)
� � // GrS(P (d), π∗F (d))

� � // PS(
∧P (d)

(π∗F (d)))

[FT � Q]
� // [πT,∗FT (d)→ πT,∗Q(d)]

� //
[∧P (d)

(πT,∗FT (d))→
∧P (d)

(πT,∗Q(d))
]
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The pullback of O(1) on PS(
∧P (d)

(π∗F (d))) pulls back to the Plücker line bundle
det(Quniv) (Corollary 1.2.9) which in turn pulls back to det

(
p2,∗(Quniv(d))

)
on

QuotP (F/X/S). We obtain:

Corollary 1.4.6. For d� 0, the line bundle det
(
p2,∗(Quniv(d))

)
is very ample on

QuotP (F/X/S).

Exercise 1.4.7.
(a) Show that if S is a noetherian scheme and V is a coherent sheaf on S, then

functor GrS(k, V ) defined analogously to Theorem 1.1.1 is represented by a
scheme projective (but not necessarily strongly projective) over S.

(b) Show that if X → S is a projective morphism of noetherian scheme and F is
a coherent sheaf on X flat over S, then QuotP (F/X/S)→ GrS(P (d), π∗F (d))
is well-defined for d� 0 and QuotP (F/X/S) is projective over S.

1.4.4 Generalizations

If π : X → S is a strongly quasi-projective morphism of noetherian schemes (i.e.
there is a locally closed immersion X ↪→ PS(V ) where V is a vector bundle on S),
OX(1) is a relatively ample line bundle, F is a coherent sheaf on X which is a
quotient of π∗(W )(q) for a vector bundle W on S and integer q, and P ∈ Q[z] is a
polynomial, we can modify the functors of Hilb and Quot as follows:

HilbP (X/S) : Sch/S → Sets

(T → S) 7→

 subschemes Z ⊂ XT flat, proper and finitely
presented over T such that Zt ⊂ Xt

has Hilbert polynomial P for all t ∈ T


QuotP (F/X/S) : Sch/S → Sets

(T → S) 7→


quasi-coherent quotients FT → Q on XT

of finite presentation with proper support
over T such that Q|Xt on Xt

has Hilbert polynomial P for all t ∈ T


Then HilbP (X/S) and QuotP (F/X/S) are represented by strongly quasi-projective

schemes over S; see [Gro61b, §4], [AK80] or [FGI+05, §5.6]
If X → S is merely a separated morphism of noetherian schemes, then one can

define functors Hilb(X/S) and Quot(F/X/S) as above dropping the condition on
the Hilbert polynomial P . These functors are representable by algebraic spaces
separated and locally of finite type over S; see [Art69b, Thm. 6.1]1 and [SP, Tag
09TQ]. Examples of Hironaka produce smooth proper (but not projective) 3-folds
X over C such that HilbP (X/S) is not a scheme.

There are further variants and generalizations:

• Vistoli’s Hilbert stack parameterizing finite and unramified morphisms to a
separated scheme X (or stack) [Vis91].

1As pointed out in [Art74, Appendix], the representability is not true without the separated
hypothesis on X → S.
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• Alexeev and Knutson’s moduli of branch varieties parameterizing finite mor-
phisms from a geometrically reduced proper scheme to a separated scheme X
[AK10].

• If X → S is not separated, then Hall and Rydh show that there is an algebraic
stack locally of finite type over S parameterizing quasi-finite morphism Z → X
from a proper scheme [HR14].

Exercise 1.4.8 (Schemes of morphisms). For projective morphisms X → S and
Y → S of noetherian schemes, consider the functor

MorS(X,Y ) : Sch/S → Sets

(T → S) 7→ MorT (XT , YT )

assigning an S-scheme T to the set of T -morphisms XT → YT . By using a suitable
Hilbert scheme HilbP (X×S Y/X) parameterizing graphs X ⊂ X×S Y of morphisms
X → Y , show that MorS(X,Y ) is representable by a projective scheme over S. Can
we weaken the hypothesis on X and Y ?

1.5 An invitation to the geometry of Hilbert schemes

In this section, we work over an algebraically closed field k.
The Hilbert polynomial P (z) =

∑d
i=0 aiz

i of a projective scheme X ⊂ Pn
encodes invariants of X. For instance, dimX is the degree d of P and degX
is normalized leading coefficient d!ad. Applying Riemann–Roch in the case of a
smooth curve C ⊂ Pn gives P (z) = deg(C)z + (1 − g) and for a surface S ⊂ Pn
gives P (z) = 1

2 (zH · (zH −K)) + (1 − pa) where H is a hyperplane divisor, K is
the canonical divisor and pa = 1 − χ(OS) is the arithmetic genus. In arbitrary
dimension, Hirzebruch–Riemann–Roch implies that P (z) =

∫
X

ch(OX(z))td(X),
where ch(OX(z)) is the Chern character and td(X) the Todd class.

1.5.1 Local properties

Exercise 1.5.1. Let X be a projective scheme over a field k and F be a coherent
sheaf on X.
(a) Let p ∈ QuotP (F/X/k) be the point corresponding to a quotient Q = F/K.

Show that Tp QuotP (F/X/k) ∼= HomOX (K,Q). This generalizes the exercise
computing the tangent space of the Grassmanian (Exercise 1.2.7).

(b) Conclude that if p ∈ HilbP (X/k) is a point corresponding to a closed subscheme
Z ⊂ X defined by a sheaf of ideals I, then Tp HilbP (X/k) ∼= H0(Z,NZ/X)
where NZ/X is the normal sheaf HomOZ (IZ/I

2
Z ,OZ).

1.5.2 Hilbert scheme of hypersurfaces and linear subspaces

A hypersurface H ⊂ Pn of degree d has Hilbert polynomial

P (z) = χ(OPn(z))− χ(OPn(z − d)) =

(
n+ z

n

)
−
(
n+ z − d

n

)
(coming from the exact sequence 0 → OPn(−d) → OPn → OH → 0). We claim
that HilbP (Pn) ∼= P(Γ(Pn,O(d))). We encourage the reader to show this and in
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particular establish that every subscheme Z ⊂ Pn with Hilbert polynomial P is a
hypersurface.

Similarly, a linear subspace L ⊂ Pn of dimension k has Hilbert polynomial
P (z) =

(
z+k
k

)
and HilbP (Pn) = Gr(k + 1, n+ 1).

1.5.3 Hilbert scheme of points on a curve
If C is a smooth projective curve, then the Hilbert scheme of n points Hilbn(C)
(viewing n as the constant polynomial) is a smooth irreducible projective variety
isomorphic to the symmetric product

Symn C := C × · · · × C︸ ︷︷ ︸
n

/Sn,

where Sn acts by permuting the factors. The quotient exists as a projective variety
since C × · · · × C is projective; see Exercise 4.2.8.

1.5.4 Hilbert scheme of points on a surface
If S is a smooth irreducible projective surface, then the Hilbert scheme of n points
Hilbn(S) is a smooth irreducible projective variety [Fog68]. See also [Nak99a] and
[Mac07, §4]. There is a birational morphism

Hilbn(S)→ Symn(S) := S × · · · × S︸ ︷︷ ︸
n

/Sn,

of projective varieties. The symmetric product Symn(S) is not smooth for n > 1 and
this provides a resolution of singularities. For an unordered collection of (possibly
non-distinct) points (p1, . . . , pn) ∈ Symn(S), the fiber consists of all possible scheme
structures on {p1, . . . , pn} of length n.

When n = 1, Hilb1(S) = S. For n = 2 and the points p1 and p2 are equal, there
is a P1 of scheme structures given by k[x, y]/(x2, xy, y2, ay − bx) (with coordinates
such that p1 = p2 = 0) parameterized by their “tangent direction" [a : b] ∈ P1. In
this case, Hilb2(S)→ Sym2(S) is the blow-up of the diagonal S ↪→ Sym2(S) given
by p 7→ (p, p). In fact, for n > 2, the map Hilbn(S)→ Symn(S) is a blow-up along
some ideal sheaf [Hai98] but the description of the ideal sheaf is more complicated.

When X is of arbitrary dimension, Hilbn(X) is smooth at (reduced) closed
subschemes Z ⊂ X consisting of n distinct smooth points of X. If X is reduced,
there is an open subscheme of Hilbn(X) dimension ndim(X) parameterizing n
distinct smooth points. Another result of Fogarty is that Hilbn(X) is connected
as long as X is connected [Fog68]. Moreover, for every projective scheme X, there
is an irreducible component Hilbn(X), called the “good component," that can be
identified with the blow-up of Symn(S) along some ideal sheaf [ES14].

1.5.5 Twisted cubics
The Hilbert scheme Hilb3z+1(P3) consists of the union of two smooth rational
irreducible components H and H ′ of dimensions 12 and 15 intersecting transversely
along a smooth rational subvariety of dimension 11 [PS85].

The locus H is the closure of the locus H0 consisting of twisted cubics, i.e. rational
smooth curves in P3 of degree 3. Each twisted cubic can be represented by a map
P1 → P3 given by the line bundle OP1(3) and a choice of basis of Γ(P1,OP1(3)),
and this representation is unique up to automorphisms of P1. All such curves are
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projectively equivalent, i.e. differ by an automorphism of P3, so we see that H0

is identified with the homogeneous space Aut(P3)/Aut(P1) = SL4 / SL2, which is
smooth and irreducible of dimension 12. The locus H0 is not proper as it includes
families such as P1 ↪→ P3 given by [x, y] 7→ [x3, x2y, xy2, ty3] parameterized by t ∈ A1

whose limit is a singular curve C0 supported on a nodal cubic in V (w) = P2 (where
w is the 4th coordinate) but with an embedded point at the node; see [Har77, Ex.
9.8.4].

The locus H ′ is the closure of the locus H ′0 consisting of subschemes C t {p}
where C is a smooth cubic curve contained in a hyperplane H and p ∈ P3 \ C. To
count the dimension, observe that the choice of hyperplane H ∈ P(H0(P3,O(1)))
is given by 3 parameters, the choice of plane cubic C ∈ P(H0(H,OH(3))) is given
by 9 parameters and the point p ∈ P3 \ C is given by 3 parameters. The locus H ′0
is smooth and irreducible of dimension 15. Again, the locus H ′0 is not proper and
its closure contains the limits of for instance degenerating the point p to lie on the
curve whose limit can be curves like C0.

The intersection H∩H ′ consists of plane, singular cubic curves with an embedded
point at the singular point. This locus contains curves such as C0 above but it also
contains even more degenerate curves such as a triple line with an embedded point.
Every curve C ∈ H ∩H ′ is in fact projectively equivalent to the curve defined by
V (xz, yz, z2, q(x, y, w)) where q(x, y, w) is a homogeneous cubic polynomial with a
singular point at (0, 0, 1). This depends on 11 parameters.

1.5.6 Non-emptiness

The Hilbert scheme HilbP (Pn) is non-empty if and only if the Hilbert polynomial P
can be written as as

P (z) =

(
z + λ1 − 1

λ1 − 1

)
+

(
z + λ2 − 2

λ2 − 1

)
+ · · ·+

(
z + λr − r
λr − 1

)
, (1.5.1)

integers λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1. This is a result of Hartshorne [Har66b, Cor. 5.7]
The necessity of this condition was already mentioned in Remark 1.3.10 in the
context of Gotzmann’s bounds on regularity.

1.5.7 Connectedness

Hartshorne’s Connectedness Theorem asserts that the Hilbert scheme HilbP (Pn)
is connected for every Hilbert polynomial P [Har66b]. More generally, for every
connected noetherian scheme S, HilbP (PnS/S) is connected.

The strategy of the argument is to show that every closed subscheme Z ⊂ Pn
degenerates to a subscheme V (I) defined by a monomial ideal. This reduces the
question to the combinatorial question of connecting any two monomial ideals by
a family over A1. This turns out to be a purely deformation and combinatorial
question or as Hartshorne writes: “It also appears that the Hilbert scheme is never
actually needed in the proof.”

See also [Mac07, §3].

1.5.8 Murphy’s Law

Murphy’s Law for Hilbert Schemes: There is no geometric possibility so
horrible that it cannot be found generically on some component of the
Hilbert scheme. [HM98, p.18]
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The first pathology was exhibited by Mumford: there is an irreducible component
of Hilb14z−23(P3) which is generically non-reduced [Mum62]. Ellia—Hirschowitz—
Mezzetti show that the number of irreducible components in Hilbaz+b(P3) is not
bounded by a polynomial in a, b [EHM92].

Murphy’s Law was made precise by Vakil [Vak06]: for every scheme X finite
type over Z and point x ∈ X, there exists a point q = [Z ⊂ Pn] ∈ HilbP (Pn) of some
Hilbert scheme and an isomorphism

ÔX,p[[x1, . . . , xs]] ∼= ÔHilbP (Pn),q[[y1, . . . , yt]]

for integers s, t. In other words, if we introduce the equivalence relation on pointed
schemes (Z, z) generated by (Z, z) ∼ (Z ′, z′) if there exists a smooth pointed
morphism (Z ′, z′)→ (Z, z), then (X, p) is equivalent to to (HilbP (Pn), q).

In fact, it can be arranged that the Hilbert scheme parameterizes smooth curves
in Pn for some n, or that it parameterizes smooth surfaces in P5 (resp. surfaces
in P4). It turns out that various other moduli spaces also satisfy Murphy’s Law:
Kontsevich’s moduli space of maps, moduli of canonically polarized smooth surfaces,
moduli of curves with linear systems and the moduli space of stable sheaves.

1.5.9 Smoothness

Despite Murphy’s Law, many Hilbert schemes are in fact smooth. We’ve seen before
that the Hilbert scheme of points on a smooth surface is smooth. Moreover, it is
not hard to see that the Hilbert scheme HilbP (Pn/k) of projective space over a field
is smooth at every complete intersection Z ⊂ Pn (despite the obstruction space
H1(Z,NZ/X) being potentially non-zero).

A theorem of Skjelnes–Smith [SS20] states that the Hilbert scheme HilbP (Pn) is
smooth if and only if P (z) can be written as (1.5.1) for a partition λ = (λ1, . . . , λr)
of integers satisfying λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1 such that one of the seven condition
holds:
(1) n = 2;
(2) λr ≥ 2;
(3) λ = (1) or λ = (nr−2, λr−1, 1) = (n, . . . , n︸ ︷︷ ︸

r−2

, λr−1, 1) where r ≥ 2 and n ≥

λr−1 ≥ 1;
(4) λ = (nr−s−3, λs+2

r−s−2, 1) where r − s ≥ s ≥ 0 and n− 1 ≥ λr−s−2 ≥ 3;
(5) λ = (nr−s−5, 2s+4, 1) where r − 5 ≥ s ≥ 0;
(6) λ = (nr−3, 1s) where r ≥ 3;
(7) λ = (n+ 1) or r = 0.

Notes

Grothendieck established both the representability and projectivity of
QuotP (F/PnA/SpecA) where F is coherent sheaf on PnA and A is a noetherian ring
[Gro61b, Thm. 3.2]. Our exposition follows Grothendieck’s strategy deviating in only
our use of Mumford–Castelnuovo regularity to establish boundedness. Grothendieck’s
original approach established the boundedness of QuotP (F/PnA/ SpecA) by reducing
it to the case when F = OX and relying on Chow’s result on the boundedness of
reduced, pure-dimensional subscheme Y ⊂ X of fixed degree. We have followed
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Mumford’s argument for Boundedness of Regularity (Theorem 1.3.8) in [Mum66]
which Mumford applies to construct the Hilbert scheme of curves on a surface
(but applies equally to QuotP (F/PnA/ SpecA)). Our formulation of Theorem 1.1.3
using the strong projectivity of X → S follows [AK80, Thm. 2.6]. This chapter
follows closely the excellent expositions of [Mum66, §14-15], [FGI+05, §6], [Kol96,
§1], [Laz04a, §1.8], and [AK80, §2].
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Chapter 2

Sites, sheaves, and stacks

2.1 Grothendieck topologies and sites
We would like to form a topology on a scheme where étale morphisms replace Zariski
open subsets. This doesn’t quite make sense using the conventional notion of a
topological space so we instead adapt our definitions. Grothendieck topologies and
stacks were introduced in [SGA4]. Our exposition closely follows [Art62], [FGI+05,
Part 1], [Ols16, §2], and [SP, Tag 00UZ].

Definition 2.1.1 (Sites). A Grothendieck topology on a category S consists of the
following data: for each object X ∈ S, there is a set Cov(X) consisting of coverings
of X, i.e. collections of morphisms {Xi → X}i∈I in S. We require that:
(1) (identity) If X ′ → X is an isomorphism, then (X ′ → X) ∈ Cov(X).
(2) (restriction) If {Xi → X}i∈I ∈ Cov(X) and Y → X is a morphism, then the

fiber products Xi ×X Y exist in S and the collection {Xi ×X Y → Y }i∈I ∈
Cov(Y ).

(3) (composition) If {Xi → X}i∈I ∈ Cov(X) and {Xij → Xi}j∈Ji ∈ Cov(Xi) for
each i ∈ I, then {Xij → Xi → X}i∈I,j∈Ji ∈ Cov(X).

A site is a category S with a Grothendieck topology.

Example 2.1.2 (Topological spaces). If X is a topological space, let Op(X) denote
the category of open sets U ⊂ X. There is a unique morphism U → V if and only if
U ⊂ V . We say that a covering of U (i.e. an element of Cov(U)) is a collection of
open immersions {Ui → U}i∈I such that U =

⋃
i∈I Ui. This defines a Grothendieck

topology on Op(X).
In particular, if X is a scheme, the Zariski-topology on X defines a site XZar,

called the small Zariski site on X

The most important sites for us will be the small and big étale sites.

Example 2.1.3 (Small étale site). If X is a scheme, the small étale site on X is the
categoryXét of étale morphisms U → X such that a morphism (U → X)→ (V → X)
is simply an X-morphism U → V (which is necessarily étale). In other words, Xét

is the full subcategory of Sch /X consisting of schemes étale over X. A covering of
an object (U → X) ∈ Xét is a collection of étale morphisms {Ui → U} such that∐
i Ui → U is surjective.
Later we will introduce the small étale site Xét of an algebraic space or Deligne–

Mumford stack (Definition 4.1.1) and use it to define sheaves on X .
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Big sites
Example 2.1.4 (Big topological site). Let Top be the category of topological spaces.
A covering of U ∈ Top is a collection of open subspaces {Ui ↪→ U}i∈I such that
U =

⋃
i∈I Ui.

The big étale site is the most frequently used site in these notes. It is used to
define the most central notions in this book: an algebraic space is a sheaf on Schét

that is étale locally a scheme (Definition 3.1.2) while an algebraic stack is a stack
over Schét that is smooth-locally a scheme (Definition 3.1.6).

Example 2.1.5 (Big étale site). The big étale site is the category Sch where a
covering of a scheme U is a collection of étale morphisms {Ui → U} in Sch such
that

∐
i Ui → U is surjective. We denote this site as Schét.

The following sites will be less important for us than the étale sites.

Example 2.1.6 (Big Zariski site). Replacing étale morphisms in Example 2.1.5
with open immersions defines the big Zariski site SchZar.

Example 2.1.7 (Big fppf site). An fppf morphism of schemes is by definition a
surjective and flat morphism locally of finite presentation; see also Definition A.2.18.
The big fppf site Schfppf is the category Sch of schemes where a covering {Ui → U}
is a collection of morphisms such that

∐
i Ui → U is fppf, i.e. each Ui → U is flat

and locally of finite presentation, and
∐
i Ui → U is surjective.

Example 2.1.8 (Lisse-étale site). On a scheme X, the lisse-étale site Xlis-ét is the
category of schemes smooth over X where morphisms in Xlis-ét are (not necessarily
smooth) morphisms of schemes over X. A covering {Ui → U} of an X-scheme U is
a collection of X-morphisms such that

∐
i Ui → U is surjective and étale.

We will later introduce the lisse-étale site of an algebraic stack (Definition 6.1.1)

Instead of defining the above sites on the category Sch of schemes, one can define
the sites AffSchZar, AffSchét, AffSchfppf and AffSchlis-ét on the category of affine
schemes with the same coverings. These variants sometimes appear in the literature.

Example 2.1.9 (Localized categories and sites). If S is a category and S ∈ S,
define the category S/S whose objects are maps T → S in S. A morphism (T ′ →
S) → (T → S) is a map T ′ → T over S. If S is a site, S/S is also a site where a
covering of T → S in S/S is a covering {Ti → T} in S.

Applying this construction to a scheme S yields the big Zariski, étale, fppf and
fpqc sites (Sch/S)Zar, (Sch/S)ét, (Sch/S)fppf and (Sch/S)fpqc.

Example 2.1.10 (Grothendieck topolgoies on the category of affine schemes). A
variant of the big sites introduced above on the category Sch of all schemes are the
sites AffSchZar, AffSchét, AffSchfppf and AffSchlis-ét

2.2 Presheaves and sheaves
Recall that ifX is a topological space, a presheaf of sets onX is simply a contravariant
functor F : Op(X) → Sets on the category Op(X) of open sets. The sheaf axiom
translates succinctly into the condition that for each covering U =

⋃
i Ui, the

sequence
F (U)→

∏
i

F (Ui)⇒
∏
i,j

F (Ui ∩ Uj)
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is exact (i.e. is an equalizer diagram), where the two maps F (Ui)⇒ F (Ui ∩ Uj) are
induced by the two inclusions Ui ∩ Uj ⊂ Ui and Ui ∩ Uj ⊂ Uj . Also note that the
intersections Ui ∩ Uj can also be viewed as fiber products Ui ×X Uj .

2.2.1 Definitions
Definition 2.2.1 (Presheaves). A presheaf on a category S is a contravariant functor
S → Sets.

Remark 2.2.2. If F : S → Sets is a presheaf and S f−→ T is a map in S, then the
pullback F (f)(b) of an element b ∈ F (T ) is sometimes denoted as f∗b or b|S .

Definition 2.2.3 (Sheaves). A sheaf on a site S is a presheaf F : S → Sets such
that for every object S and covering {Si → S} ∈ Cov(S), the sequence

F (S)→
∏
i

F (Si)⇒
∏
i,j

F (Si ×S Sj) (2.2.1)

is exact, where the two maps F (Si)⇒ F (Si ×S Sj) are induced by the two maps
Si ×S Sj → Si and Si ×S Sj → Si.

Remark 2.2.4. The exactness of (2.2.1) means that it is an equalizer diagram:
F (S) is precisely the subset of

∏
i F (Si) consisting of elements whose images under

the two maps F (Si)⇒ F (Si ×S Sj) are equal.

Exercise 2.2.5. Let F be a presheaf on Sch.
(a) Show that F is a sheaf on Schét (resp. Schfppf , Schfpqc) if and only if for every

surjective étale (resp. fppf, fpqc) morphism S′ → S of schemes, the sequence
F (S) → F (S′) ⇒ F (S′ ×S S′) is exact. Hint: Given a covering {Si → S},
consider the map

∐
i Si → S.

(b) Show that F is a sheaf on Schét if and only if

(i) F is a sheaf in the big Zariski topology SchZar; and
(ii) or every étale surjective morphism S′ → S of affine schemes, the sequence

F (S)→ F (S′)⇒ F (S′ ×S S′) is exact.

Proposition 2.2.6. If X → S is a morphism of schemes, then MorS(−, X) : Sch/S →
Sets is a sheaf on (Sch/S)fpqc and therefore also a sheaf on (Sch/S)ét.

Proof. By Exercise 2.2.5, it suffices to show that if T ′ → T is an fpqc morphism
over schemes over S, then the sequence

MorS(T,X)→ MorS(T ′, X)⇒ MorS(T ′ ×T T ′, X)

is exact. This follows from fpqc descent for morphisms of schemes (Proposition B.2.1).

2.2.2 Morphisms and fiber products
A morphism of presheaves or sheaves is by definition a natural transformation.
By Yoneda’s lemma (Lemma 0.3.6), if X is a scheme and F is a presheaf on
Sch, a morphism α : X → F (which we interpret as a morphism of presheaves
Mor(−, X)→ F ) corresponds to an element in F (X), which by abuse of notation
we also denote by α.
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Exercise 2.2.7. Recall from Proposition 2.2.6 that a scheme can be viewed as a
sheaf in the big fpqc topology.

(a) Show that a surjective étale (resp. fppf, fpqc) morphism of schemes is an
epimorphism sheaves on Schét (resp. Schfppf , Schfpqc).

(b) Show that a surjective smooth morphism of schemes is an epimorphism sheaves
on Schét.

Given morphisms F α−→ G and G′ β−→ G of presheaves on a category S, define the
presheaf F ×G G′ by (F ×G G′)(S) = F (S)×G(S) G

′(S), i.e.

F ×G G′ : S → Sets

S 7→ {(a, b) ∈ F (S)×G′(S) |αS(a) = βS(b)} .
(2.2.2)

Exercise 2.2.8.

(a) Show that (2.2.2) is a fiber product F×GG′ in Pre(S). (This is a generalization
of Exercise 0.3.28 but the same proof should work.)

(b) Show that if F , G and G′ are sheaves on a site S, then so is F ×G G′. In
particular, (2.2.2) is also a fiber product F ×G G′ in Sh(S).

2.2.3 Sheafification

Theorem 2.2.9 (Sheafification). Let S be a site. The forgetful functor Sh(S) →
Pre(S) admits a left adjoint F 7→ F sh, called the sheafification.

Proof. A presheaf F on S is called separated if for every covering {Si → S} of an
object S, the map F (S) →

∏
i F (Si) is injective (i.e. if sections glue, they glue

uniquely). Let Pre(S) and Sh(S) be the categories of presheaves and shaves, and
let Presep(S) ⊂ Pre(S) be the full subcategory of separated presheaves. We will
construct left adjoints

Sh(S) �
�

// Presep(S) �
�

//

sh2

vv

Pre(S).

sh1

vv

For F ∈ Pre(S), we define sh1(F ) by S 7→ F (S)/ ∼ where a ∼ b if there exists a
covering {Si → S} such that a|Si = b|Si for all i.

For F ∈ Presep(S), we define sh2(F ) by

S 7→
{(
{Si → S}, {ai}

) ∣∣∣∣where {Si → S} ∈ Cov(S) and ai ∈ F (Si)
such that ai|Sij = aj |Sij for all i, j

}
/ ∼

where ({Si → S}, {ai}) ∼ ({S′j → S}, {a′j}) if ai|Si×SS′j = a′j |Si×SS′j for all i, j. The
details are left to the reader.

Remark 2.2.10 (Topos). A topos is a category equivalent to the category of sheaves
on a site. Two different sites may have equivalent categories of sheaves, and the
topos can be viewed as a more fundamental invariant. While topoi are undoubtedly
important in moduli theory, they will not play a role in these notes.
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2.2.4 Effective descent for sheaves
Proposition 2.2.11 (Effective Descent). Let P be one of the following properties of
morphisms of schemes: open immersion, closed immersion, locally closed immersion,
affine, quasi-affine or separated and locally quasi-finite. Let X → Y be a surjective
smooth (resp. fppf) morphism of schemes. Let F be a sheaf on (Sch/Y )ét (resp,
(Sch/Y )fppf). Consider the fiber product

FX

��

// X

��

F // Y

�

of sheaves. If FX is a scheme and FX → X has P, then F is a scheme and F → Y
has P.

Proof. As FX is the pullback of F , there is a canonical isomorphism α : p∗1FX →
F ∗2QX on X ×Y X satisfying the cocycle condition p∗23α ◦ p∗12α = p∗13α. By Proposi-
tion B.3.1, there exists a morphism of schemes W → Y satisfying P that pulls back
to FX → X. There is an induced injective morphism F →W of sheaves over Y that
pulls back to an isomorphism under X → Y . Since X → Y is smooth and surjective
(resp. fppf), it is an epimorphism of sheaves (Exercise 2.2.7) and it follows that
F →W is an epimorphism, thus isomorphism of sheaves.

2.3 Prestacks
In ??, we motivated the concept of a prestack on a category S as a generalization of
a presheaf S → Sets. By trying to keep track of automorphisms, we were naively
led to consider a ‘functor’ F : S → Groupoids but decided instead to package this
data into one large category X over S parameterizing pairs (a, S) where S ∈ S and
a ∈ F (S).

2.3.1 Definition of a prestack
Let S be a category and p : X → S be a functor of categories. We visualize this data
as

X
p

��

a
α //

_

��

b_

��

S S
f
// T

where the lower case letters a, b are objects of X and the upper case letters S, T are
objects of S. We say that a is over S and α : a→ b is over f : S → T .

Definition 2.3.1 (Prestacks). A functor p : X → S is a prestack over a category S
if
(1) (pullbacks exist) for every diagram

a //
_

��

b_

��

S // T

of solid arrows, there exist a morphism a→ b over S → T ; and
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(2) (universal property for pullbacks) for every diagram

a //
$$

_

��

b //
_

��

c_

��

R // S // T

of solid arrows, there exists a unique arrow a → b over R → S filling in the
diagram.

Caution 2.3.2. When defining and discussing prestacks, we often simply write X
instead of X → S. In most examples it is clear what the functor X → S is. When
necessary, we denote the projection by pX : X → S.

Moreover, when defining a prestack X , we often only define the objects and
morphisms in X , and we leave the definition of the composition law to the reader.

Remark 2.3.3. Axiom (2) above implies that the pullback in Axiom (1) is unique
up to unique isomorphism. We often write f∗b or simply b|S to indicate a choice of
a pullback.

Definition 2.3.4 (Fiber categories). If X is a prestack over S, the fiber category
X (S) over S ∈ S is the category of objects in X over S with morphisms over idS .

Exercise 2.3.5. Show that the fiber category X (S) is a groupoid.

Caution 2.3.6. Our terminology is not standard. Prestacks are usually referred to
as categories fibered in groupoids. In the literature (c.f. [FGI+05, Part 1], [Ols16])
a prestack is sometimes defined as a category fibered in groupoids together with
Axiom 2.4.1(1) of a stack.

It is also standard to call a morphism b → c in X cartesian if it satisfies the
universal property in Axiom 2.4.1(2) and p : X → S a fibered category if for every
diagram as in Axiom 2.4.1(1), there exists a cartesian morphism a→ b over S → T .
With this terminology, a prestack (as we’ve defined it) is a fibered category where
every arrow is cartesian, or equivalently where every fiber category X (S) is a
groupoid.

2.3.2 Examples

Example 2.3.7 (Presheaves are prestacks). If F : S → Sets is a presheaf, we can
construct a prestack XF as the category of pairs (a, S) where S ∈ S and a ∈ F (S). A
map (a′, S′)→ (a, S) is a map f : S′ → S such that a′ = f∗a, where f∗ is convenient
shorthand for F (f) : F (S) → F (S′). Observe that the fiber categories XF (S) are
equivalent (even equal) to the set F (S). We will often abuse notation by conflating
F and XF .

Example 2.3.8 (Schemes are prestacks). For a scheme X, applying the previous
example to the functor Mor(−, X) : Sch→ Sets yields a prestack XX . This allows
us to view a scheme X as a prestack and we will often abuse notation by referring
to XX as X.

Example 2.3.9 (Prestack of smooth curves). We define the prestackM over Sch as
the category of families of smooth curves C → S, i.e. smooth and proper morphisms
C → S (of finite presentation) of schemes such that every geometric fiber is a
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connected curve. A map (C′ → S′)→ (C → S) is the data of maps α : C′ → C and
f : S′ → S such that the diagram

C′

��

α // C

��

S′
f
// S

�

is cartesian.
The prestackMg is the defined as the full subcategory ofM consisting of families

of smooth curves C → S where every geometric fiber has genus g. Note that the
fiber categoryMg(k) over a field k is the groupoid of smooth connected projective
complex curves C of genus g such that MorMg(k)(C,C

′) = IsomSch/k(C,C ′).

Exercise 2.3.10. Verify thatM andMg are prestacks.

Example 2.3.11 (Prestack of coherent sheaves and vector bundles). Let C be a
fixed smooth connected projective curve over an algebraically closed field k. We
define the prestack Coh(C) over Sch/k where objects are pairs (E,S) where S is a
scheme over k and E is a coherent sheaf on CS = C ×k S flat over S. A morphism
(E′, S′) → (E,S) consists of a map of schemes f : S′ → S together with a map
E → (id×f)∗E

′ of OCS -modules whose adjoint is an isomorphism (i.e. for every
choice of pullback (id×f)∗E, the adjoint map (id×f)∗E → E′ is an isomorphism).

The substack Bun(C) ⊂ Coh(C) is the full subcategory consisting of pairs (E,S)
such that E is a vector bundle (i.e. locally free sheaf of finite rank). For each integers
r ≥ 0 and d, the full subcategories Cohr,d(C) ⊂ Coh(C) (resp. Bunr,d(C) ⊂ Bun(C))
are defined to contain only coherent sheaves (resp. vector bundles) of rank r and
degree d.

Exercise 2.3.12. Verify that Coh(C), Bun(C), Cohr,d(C) and Bunr,d(C) are
prestacks.

Let G → S be an fppf affine group scheme. A principal G-bundle over an
S-scheme T is a scheme P with an action of G via σ : G×S P → P such that P → T
is a G-invariant fppf morphism and

(σ, p2) : G×S P → P ×T P, (g, p) 7→ (gp, p)

is an isomorphism.

Example 2.3.13 (Classifying stack). Let G→ S be a smooth affine group scheme.
A principal G-bundle over an S-scheme T is a scheme P with an action of G via
σ : G×S P → P such that P → T is a G-invariant fppf morphism and (σ, p2) : G×S
P → P ×T P, (g, p) 7→ (gp, p) is an isomorphism. Equivalently, there is an étale
cover T ′ → T such that P ×T T ′ is G-equivariant isomorphic to the trivial principal
G-bundle G×T (Proposition C.2.4). See §C.2 for a further discussion with examples.

We define the classifying stack BG of G as the prestack over Sch/S where objects
are principal G-bundles P → T and a morphism (P ′ → T ′)→ (P → T ) is the data
of a G-equivariant morphism P ′ → P such that

P ′

��

// P

��

T ′ // T
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is cartesian. We show in Example 2.4.8 that BG is a stack over (Sch/S)ét. See §??
for motivation of the above definition.

Definition 2.3.14 (Quotient prestacks and stacks). Let G→ S be a smooth affine
group scheme acting on a scheme U over S. We define the quotient prestack [U/G]pre

as the category over Sch/S where the fiber category over an S-scheme T is the
quotient groupoid [U(T )/G(T )] whose objects are elements u ∈ U(T ). A morphism
from u′ ∈ U(T ′) to u ∈ U(T ) is the data of a map f : T ′ → T and an element
g ∈ G(T ′) such that u′ = γ · (u ◦ f).

We define the quotient stack [U/G] as the prestack (which is shown to be a stack
in Example 2.4.9) over Sch/S whose objects over an S-scheme T are diagrams

P

��

// U

T

where P → T is a principal G-bundle and P → U is a G-equivariant morphism
of schemes. A morphism (P ′ → T ′, P ′ → U) → (P → T, P → U) consists of a
morphism T ′ → T and a G-equivariant morphism P ′ → P of schemes such that the
diagram

P ′

��

//
''

P

��

// U

T ′ // T

�

is commutative and left square is cartesian.

Classifying stacks and quotient stacks for non-smooth or non-affine group schemes
are discussed in Definitions 6.2.7 and 6.2.8.

Exercise 2.3.15. Verify that [U/G]pre and [U/G] are prestacks over Sch/S.

2.3.3 Morphisms of prestacks
Definition 2.3.16.
(1) A morphism of prestacks f : X → Y is a functor f : X → Y such that the

diagram

X

pX
��

f
// Y

pY
��

S

strictly commutes, i.e. for every object a ∈ Ob(X ), there is an equality
pX (a) = pY(f(a)) of objects in S.

(2) If f, g : X → Y are morphisms of prestacks, a 2-morphism (or 2-isomorphism)
α : f → g is a natural transformation α : f → g such that for every object
a ∈ X , the morphism αa : f(a)→ g(a) in Y (which is an isomorphism) is over
the identity in S. We often describe the 2-morphism α schematically as

X
f
''

g

77�� α Y.
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(3) We define the category MOR(X ,Y) whose objects are morphisms of prestacks
and whose morphisms are 2-morphisms.

(4) A 2-commutative diagram (which we often call simply a commutative diagram)
is a diagram

X ×Y Y ′

g′

��

f ′
//

�� α

Y ′

g

��

X
f

// Y

together with a 2-isomorphism α : g ◦ f ′ ∼→ f ◦ g′.
(5) A morphism f : X → Y of prestacks is a monomorphism (resp. epimorphism,

isomorphism) if f is fully faithful (resp. essentially surjective, equivalence of
categories).

Exercise 2.3.17. Show that every 2-morphism is an isomorphism of functors, or in
other words that MOR(X ,Y) is a groupoid.

Exercise 2.3.18. Let f : X → Y be a morphism of prestacks over a category S.
(a) Show that f is a monomorphism if and only if fS : X (S) → Y(S) is fully

faithful for every S ∈ S.
(b) Show that f is an isomorphism if and only if there exists a morphism g : Y → X

and 2-isomorphisms g ◦ f ∼→ idX and f ◦ g ∼→ idY .

A prestack X is equivalent to a presheaf if there is a presheaf F and an isomorphism
between X and the stack XF corresponding to F (see Example 2.3.7).

Exercise 2.3.19. Show that G acts freely on U (i.e. the action map (σ, p2) : G×S
U → U ×S U is a monomorphism) if and only if [U/G]pre (resp. [U/G]) is equivalent
to a presheaf. We often denote these presheaves by (U/G)pre and U/G.

2.3.4 The 2-Yoneda lemma

Recall that Yoneda’s lemma (Lemma 0.3.6) implies that for a presheaf F : S → Sets
on a category S and an object S ∈ S, there is a bijection Mor(S, F )

∼→ F (S), where
we view S as a presheaf via Mor(−, S). We will need an analogue of Yoneda’s lemma
for prestacks. First we recall that an object S ∈ S can also be viewed as a prestack
over S, which we also denote by S, whose objects over T ∈ S are morphisms T → S
and a morphism (T → S)→ (T ′ → S) is an S-morphism T → T ′.

Lemma 2.3.20 (The 2-Yoneda Lemma). Let X be a prestack over a category S
and S ∈ S. The functor

MOR(S,X )→ X (S), f 7→ fS(idS)

is an equivalence of categories.

Proof. We will construct a quasi-inverse Ψ: X (S)→ MOR(S,X ) as follows.
On objects: For a ∈ X (S), we define Ψ(a) : S → X as the morphism of prestacks

sending an object (T
f−→ S) (of the prestack corresponding to S) over T to a choice

of pullback f∗a ∈ X (T ) and a morphism (T ′
f ′−→ S) → (T

f−→ S) given by an
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S-morphism g : T ′ → T to the morphism f ′∗a→ f∗a uniquely filling in the diagram

f ′∗a //
%%

��

f∗a //
_

��

a_

��

T ′
g
// T

f
// S,

using Axiom (2) of a prestack.
On morphisms: If α : a′ → a is a morphism in X (S), then Ψ(α) : Ψ(a′)→ Ψ(a)

is defined as the morphism of functors which maps a morphism T
f−→ S (i.e. an

object in S over T ) to the unique morphism f∗a′ → f∗a filling in the diagram

f∗a′ //

��

f∗a

��
a′

α // a

over

T

f

��

S

using again Axiom (2) of a prestack.
We leave the verification that Ψ is a quasi-inverse to the reader.

We will use the 2-Yoneda lemma, often without mention, throughout these notes
in passing between morphisms S → X and objects of X over S.

Example 2.3.21 (Quotient stack presentations). Consider the prestack [U/G] in
Definition 2.3.14 arising from a group action σ : G×S U → U . The object of [U/G]
over U given by the diagram

G×S U

p2

��

σ // U

U

corresponds via the 2-Yoneda lemma (Lemma 2.3.20) to a morphism U → [U/G].

Exercise 2.3.22.
(a) Show that there is a morphism p : U → [U/G]pre and a 2-commutative diagram

G×S U
σ //

p2

��
�
 α

U

p

��

U
p
// [U/G]pre

(b) Show that U → [U/G]pre is a categorical quotient among prestacks, i.e. for
every 2-commutative diagram

G×S U
σ //

p2

��
�
 α

U

ϕ

��

p

��

U
p
//

ϕ

//

[U/G]pre

�� τ

Z
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of prestacks, there exists a morphism χ : [U/G]pre → Z and a 2-isomorphism
β : ϕ

∼→ χ ◦ p which is compatible with α and τ (i.e. the two natural transfor-
mations ϕ ◦ σ β◦σ−−→ χ ◦ p ◦ σ χ◦α−−→ χ ◦ p ◦ p2 and ϕ ◦ σ τ−→ ϕ ◦ p2

β◦p2−−−→ χ ◦ p ◦ p2

agree.

2.3.5 Fiber products

We discuss fiber products for prestacks and in particular prove their existence. Recall
that for morphisms X → Y and Y ′ → Y of presheaves on a category S, the fiber
product can be constructed as the presheaf mapping an object S ∈ S to the fiber
product X(S) ×Y (S) Y

′(S) of sets. Essentially the same construction works for
morphisms X → Y and Y ′ → Y of prestacks but since we are dealing with groupoids
rather than sets, the fiber category over an object S ∈ S should be the fiber product
X (S)×Y(S) Y ′(S) of groupoids.

The reader may first want to work on Item (a) and Exercise 2.3.28 on fiber
products of groupoids as they not only provide a warmup to fiber products of
prestacks but motivate its construction.

Construction 2.3.23. Let f : X → Y and g : Y ′ → Y be morphisms of prestacks
over a category S. Define the prestack X ×Y Y ′ over S as the category of triples
(x, y′, γ) where x ∈ X and y′ ∈ Y ′ are objects over the same object S := pX (x) =
pY′(y

′) ∈ S, and γ : f(x)
∼→ g(y′) is an isomorphism in Y(S). A morphism

(x1, y
′
1, γ1)→ (x2, y

′
2, γ2) consists of a triple (f, χ, γ′) where f : pX (x1) = pY′(y

′
1)→

pY′(y
′
2) = pX (x2) is a morphism in S, and χ : x1

∼→ x2 and γ′ : y′1
∼→ y′2 are mor-

phisms in X and Y ′ over f such that

f(x1)
f(χ)
//

γ1

��

f(x2)

γ2

��

g(y′1)
g(γ′)

//// g(y′2)

commutes.
Let p1 : X ×YY ′ → X and p2 : X ×YY ′ → X denote the projections (x, y′, γ) 7→ x

and (x, y′, γ) 7→ y′. There is a 2-isomorphism α : f ◦ p1
∼→ g ◦ p2 defined on an

object (x, y′, γ) ∈ X ×Y Y ′ by α(x,y′,γ) : f(x)
γ−→ g(y′). This yields a 2-commutative

diagram

X ×Y Y ′

p1

��

p2 // Y ′

g

��

X
f

// Y

@Hα (2.3.1)

Theorem 2.3.24. The prestack X ×Y Y ′ together with the morphisms p1 and p2

and the 2-isomorphism α as in (2.3.1) satisfy the following universal property: for
every 2-commutative diagram
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T

q2 ..

q1 00

X ×Y Y ′

p2

??

p1 ��

KS
τ

Y ′
g

��

X
f

??
Y

KS
α

with 2-isomorphism τ : f ◦ q1
∼→ g ◦ q2, there exist a morphism h : T → X ×Y Y ′ and

2-isomorphisms β : q1 → p1 ◦h and γ : q2 → p2 ◦h yielding a 2-commutative diagram

T

q2 ..

q1 00

h // X ×Y Y ′

p2

??

p1 ��
⇑β

⇓γ

Y ′
g

��

X
f

??
Y

KS
α

such that

f ◦ q1

f(β)
//

τ

��

f ◦ p1 ◦ h

α◦h
��

g ◦ q2

g(γ)
// g ◦ p2 ◦ h

commutes. The data (h, β, γ) is unique up to unique isomorphism.

Proof. We define h : T → X ×Y Y ′ on objects by t 7→
(
q1(t), q2(t), f(q1(t))

τt−→
g(q2(t))

)
and on morphisms as (t

Ψ−→ t′) 7→ (pT (Ψ), q1(Ψ), q2(Ψ)). There are
equalities of functors q1 = p1 ◦ h and q2 = p2 ◦ h so we define β and γ as the identity
natural transformation. The remaining details are left to the reader.

Definition 2.3.25. We say that a 2-commutative diagram

X ′

��

//

|� α

Y ′

��

X // Y

is cartesian if it satisfies the universal property of Theorem 2.3.24. We often write a
cartesian diagram of stacks as

X ′

��

// Y ′

��

X // Y

�

where the existence of the 2-isomorphism α is implicit.
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2.3.6 Examples of fiber products

In this section, the reader is asked to verify several convenient fiber product diagrams.
To get started, it is instructive to first compute fiber products of groupoids (rather
than prestacks).

Exercise 2.3.26.

(a) If C f−→ D and D′ g−→ D are morphisms of groupoids, define the groupoid C×DD′
whose objects are triples (c, d′, δ) where c ∈ C and d′ ∈ D′ are objects, and
δ : f(c)

∼→ g(d′) is an isomorphism in D. A morphism (c1, d
′
1, δ1)→ (c2, d

′
2, δ2)

is the data of morphisms γ : c1
∼→ c2 and δ′ : d′1

∼→ d′2 such that

f(c1)
f(γ)
//

δ1

��

f(c2)

δ2

��

g(d′1)
g(δ′)

// // g(d′2)

commutes. Formulate a university property for fiber products of groupoids
and show that C ×D D′ satisfies it.

(b) If f : X → Y and g : Y ′ → Y are morphisms of prestacks over a category S,
show that for every S ∈ S, the fiber category (X ×Y Y ′)(S) is a fiber product
X (S)×Y(S) Y ′(S) of groupoids.

The following foreshadows analogous cartesian diagrams associated to quotient
stacks.

Exercise 2.3.27.
(a) Let G be a group acting on a set U via σ : G× U → U . Let [U/G] denote the

quotient groupoid (Exercise 0.4.7) with projection p : U → [U/G]. Show that
there are cartesian diagrams

G× U σ //

p2

��

U

p

��

U
p
// [U/G]

� and

G× U
(σ,p2)

//

��

U × U

p×p
��

[U/G]
∆ // [U/G]× [U/G].

�

(b) Recall from Example 0.4.3 that the classifying groupoid BG of a group G is
the category with one object ∗ with Mor(∗, ∗) = G. If x ∈ U , show that there
is a morphism BGx → [U/G] of groupoids and a cartesian diagram

Gx //

��

U

p

��

BGx // [U/G].

�

(See Proposition 3.5.16 and Remark 3.5.19 for the analogous diagrams for
algebraic stacks.)

(c) Let φ : H → G be a homomorphism of groups. Show that there is an induced
morphism BH → BG of groupoids and that BH ×BG pt ∼= [G/H].
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(d) If K / G is a normal subgroup with quotient Q = G/K, show that there is a
cartesian diagram

Q //

��

BK

��

// pt

��

pt // BG //

�

BQ

�

.

The following exercise is essential for working with quotient stacks and in
particular is used to verify the algebraicity of quotient stacks (Theorem 3.1.9).

Exercise 2.3.28.

(a) Let G→ S be a smooth affine group scheme acting on a scheme U over S via
σ : G×S U → U . Let [U/G] be the quotient stack (Definition 2.3.14). Show
that there are cartesian diagrams

G×S U
σ //

p2

��

U

p

��

U
p
// [U/G]

� and

G×S U
(σ,p2)

//

��

U ×S U

p×p
��

[U/G]
∆ // [U/G]×S [U/G].

�

(b) Show that if P → T is a principal G-bundle and P → U is a G-equivariant
map, there is a morphism T → [U/G], unique up to unique isomorphism, and
a cartesian diagram

P //

��

U

��

T // [U/G].

�

(We will later see that [U/G] is an algebraic stack and that U → [U/G]
is principal G-bundle (Theorem 3.1.9). Therefore the principal G-bundle
U → [U/G] with the identity map U → U is the universal family over [U/G],
corresponding to the identity map [U/G]→ [U/G].

As with schemes, the following diagram is utilized extensively. As we will see in
§3.2.2, the diagonal is used to define stabilizers and the inertia stack.

Exercise 2.3.29 (Magic Square). Let X be a prestack. Show that for every
morphism a : S → X and b : T → X , there is a cartesian diagram

S ×X T //

��

S × T

a×b
��

X ∆ // X × X .

�

Properties of the diagonal are used to define separation conditions on algebraic
stacks (see §3.3.3) and translate into properties of Isom presheaves.

Exercise 2.3.30 (Isom presheaves). Let X be a prestack over a category S.
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(a) For S ∈ S, recall from Example 2.1.9 that S/S denotes the category whose
objects are morphisms T → S in S and whose morphisms are S-morphisms.
Show that for objects a and b of X over S that the functor

IsomX (S)(a, b) : S/S → Sets

(T
f−→ S) 7→ MorX (T )(f

∗a, f∗b),

where f∗a and f∗b are choices of a pullback, defines a presheaf on S/S.
(b) Show that there is a cartesian diagram

IsomX (S)(a, b) //

��

S

(a,b)

��

X ∆ // X × X .

�

(c) Show that the presheaf AutX (T )(a) = IsomX (T )(a, a) is naturally a presheaf
in groups.

(d) Show that X is equivalent to a sheaf if and only if the diagonal X → X ×X is
a monomorphism.

Exercise 2.3.31. If n ≥ 2, show that [An/Gnm] ∼= [A1/Gm]× · · · × [A1/Gm]︸ ︷︷ ︸
n times

.

Exercise 2.3.32.
(a) Show that if H → G is a morphism of smooth affine group schemes over a

scheme S, there is an induced morphism of prestacks BH → BG over Sch/S.
(b) Show that BH ×BG S ∼= [G/H].
(c) If 1 → K → G → Q → 1 is an exact sequence of smooth affine algebraic

groups over a field k, show that there is a cartesian diagram

Q //

��

BK

��

// Speck

��

Speck // BG //

�

BQ.

�

2.4 Stacks
A stack over a site S is a prestack X such that objects and morphisms glue uniquely
in the Grothendieck topology of S (see Definition 2.4.1). Verifying a given prestack
is a stack reduces to a descent condition on objects and morphisms with respect to
the covers of S. The theory of descent is discussed in Section B.1 and is essential
for verifying the stack axioms.

2.4.1 Definition of a stack
Definition 2.4.1 (Stacks). A prestack X over a site S is a stack if the following
conditions hold for all coverings {Si → S} of an object S ∈ S:
(1) (morphisms glue) For objects a and b in X over S and morphisms φi : a|Si → b

such that φi|Sij = φj |Sij as displayed in the diagram
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a|Sij

??

��

a|Si

��

φi

  

a|Sj

??

φj

==
a // b over Sij

??

��

Si

��

Sj

??
S,

there exists a unique morphism φ : a→ b with φ|Si = φi.
(2) (objects glue) For objects ai over Si and isomorphisms αij : ai|Sij → aj |Sij , as

displayed in the diagram

ai|Sij
αij−−→ aj |Sij

??

��

ai

��

aj

?? a
over Sij

??

��

Si

��

Sj

?? S

satisfying the cocycle condition αjk|Sijk ◦ αij |Sijk = αik|Sijk on Sijk, then
there exists an object a over S and isomorphisms φi : a|Si → ai such that
αij ◦ φi|Sij = φj |Sij on Sij .

Remark 2.4.2. There is an alternative description of the stack axioms analogous
to the sheaf axiom of a presheaf F : S → Sets, i.e. that F (S) →

∏
i F (Si) ⇒∏

i,j F (Si ×S Sj) is exact for coverings {Si → S}. Namely, by adding an additional
layer corresponding to triple intersections, the stack axiom translates to the ‘exactness’
of

X (S) //
∏
i X (Si)

//
//
∏
i,j X (Si ×S Sj)

//

//
//
∏
i,j,k X (Si ×S Sj ×S Sk).

Exercise 2.4.3. Show that Axiom (1) is equivalent to the condition that for all
objects a and b of X over S ∈ S, the Isom presheaf IsomX (S)(a, b) (see Exercise 2.3.30)
is a sheaf on S/S.

A morphism of stacks is a morphism of prestacks.

Exercise 2.4.4 (Fiber product of stacks). Show that if X → Y and Y ′ → Y are
morphisms of stacks over a site S, then X ×Y Y ′ is also a stack over S.

2.4.2 First examples of stacks

Example 2.4.5 (Sheaves and schemes are stacks). Recall that if F is a presheaf
on a site S, we can construct a prestack XF over S as the category of pairs (a, S)
where S ∈ S and a ∈ F (S) (see Example 2.3.7). If F is a sheaf, then XF is a stack.
We often abuse notation by writing F also as the stack XF .

Since schemes are sheaves on Schét (Proposition 2.2.6), a scheme X defines a
stack over Schét (where objects over a scheme S are morphisms S → X), which we
also denote as X.
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Example 2.4.6 (Stack of sheaves). Let Sheaves be the prestack over Sch whose
objects are pairs (T, F ) where T is a scheme and F is a sheaf on the Zariski topology
of T . A morphism (T, F )→ (T ′, F ′) is the data of a morphism f : T → T ′ of schemes
and a morphism f∗F → F ′ of sheaves on T ′ such that the adjoint F → f−1F ′ is an
isomorphism. Because sheaves and their morphisms glue in the Zariski topology
([Har77, Exer. II.1.15 and 22]), X is a stack over the big Zariski site SchZar. The
full subcategories QCoh and Bun of Sheaves parameterizing quasi-coherent sheaves
and vector bundles are also stacks over SchZar.

Exercise 2.4.7.
(1) Formulate and prove a more general statement for sheaves over an arbitrary

site.
(2) Use fppf descent to show that the prestack QCoh (resp. Bun), parameterizing

pairs (T, F ) where T is a scheme and F is a quasi-coherent sheaf on T (resp.
vector bundle on T ), is a stack over Schfppf .

Example 2.4.8 (Classifying stacks). Let G→ S be a smooth affine group scheme.
The classifying prestack BG is the category over Sch/S classifying principal G-
bundles P → T (see Example 2.3.13). We claim that BG is a stack over (Sch/S)ét.
Axiom (1) holds as morphisms to schemes glue uniquely in the étale topology
(Proposition B.2.1). For Axiom (2), if {Ti → T} is an étale covering, (Pi → Ti, Pi →
U) are objects over Ti, and αij : Pi × TiTij → Pj ×Tj Tij satisfying the cocycle
condition αjk ◦αij = αik on Tijk, then the existence of a principal G-bundle P → T
follows from Effective Descent for Principal G-bundles (Proposition C.2.5) and the
existence of P → U follows from étale descent for morphisms of schemes (B.2.1).

Example 2.4.9 (Quotient stacks). Let G → S be a smooth affine group scheme
acting on a scheme U over S. Let [U/G] be the prestack defined in Definition 2.3.14;
an object over an S-scheme T is a diagram

P

��

// U

T

where P → T is a principal G-bundle and P → U is a G-equiariant morphism of
schemes. The prestack [U/G] is a stack over (Sch/S)ét, which we call the quotient
stack. Axiom (1) holds by étale descent for morphisms of schemes (B.2.1). Axiom
(2) holds because in the étale topology principal G-bundles glue uniquely (as seen in
the previous example) and morphisms of schemes do also (B.2.1).

Example 2.4.10 (Stack of schemes over SchZar). Define Schemes as the prestack
over Sch consists of morphisms T → S of schemes where a morphism (T → S)→
(T ′ → S′) consists of morphisms T → T ′ and S → S′ of schemes such that the two
compositions T → S′ agree. The projection map takes T → S to S. Since schemes
glue in the Zariski topology [Har77, Exer. II.2.12], Schemes is a stack over SchZar.
However, Schemes is not a stack over Schét. Schemes can be glued to algebraic
spaces in the étale topology and there is a stack of algebraic spaces over Schét; see
Exercise 4.4.14.

2.4.3 Moduli stack of curves
Let Mg denote the prestack of families of smooth curves C → S of genus g; see
Example 2.3.9.
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Proposition 2.4.11 (Moduli stack of smooth curves). If g ≥ 2, thenMg is a stack
over Schét.

Proof. Axiom (1) translates to: for families of smooth curves C → S and D → S of
genus g and commutative diagrams

CSij

��

// CSi

��

//

fi

##
C

��

f
// D

��

Sij // Si //

�

S

�

of solid arrows for all i, j (i.e. morphisms fi : CSi → D such that fi|CSij = fj |CSij ),
there exists a unique morphism filling in the diagram (i.e. fi = f |CSi ). The existence
and uniqueness of f follows from étale descent for morphisms (Proposition B.2.1).
The fact that f is an isomorphism also follows from étale descent (Proposition B.4.1).

Axiom (2) is more difficult: we must show that given diagrams

Ci|Sij

##

αij
//

%%
Cj |Sij

��

// Cj
πj

��

// C

��

Sij // Sj //

�

S

�

for all i, j where πi : Ci → Si are families of smooth curves of genus g and αij : Ci|Sij →
Cj |Sij are isomorphisms satisfying the cocycle condition αjk ◦ αij = αik, there
is family of smooth curves C → S and isomorphisms φi : C|Si → Ci such that
αij ◦ φi|CSij = φj |CSij .

We will use the following property of families of smooth curves (see Proposi-
tion 5.1.9): for a family of smooth curves π : C → S, ω⊗3

C/S is relatively very ample
on S (as g > 2) and F := π∗ω

⊗3
C/S is a vector bundle of rank 5(g − 1). In particular,

ω⊗3
C/S yields a closed immersion C ↪→ P(F ) over S.
Therefore, if we set Ei = (πi)∗(ωCi/Si), there is a closed immersion Ci ↪→ P(Ei)

over Si. The isomorphisms αij induce isomorphisms βij : Ei|Sij → Ej |Sij satisfying
the cocycle condition βjk ◦ βij = βik on Sijk. Descent for quasi-coherent sheaves
(Proposition B.1.3) implies there is a quasi-coherent sheaf E on S and isomorphisms
Ψi : E|Si → Ei such that βij ◦Ψi|Sij = Ψj |Sij . It follows again from descent that E
is in fact a vector bundle (Proposition B.4.3). Pictorially, we have

P(Eij) // P(Ei) // P(E)

Ci|Sij
, �

;;

��

// Ci

��

//
, �

;;

C

��

- 

;;

Sij // Si // S.

Since the preimages of Ci ⊂ P(Ei) and Cj ⊂ P(Ej) in P(Eij) are equal, it follows
from descent for closed subschemes (Proposition B.3.1) that there exists C → S and
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isomorphisms φi such that αij ◦ φi|CSij → φj |CSij . Since smoothness and properness
are étale-local property on the target (Proposition B.4.1), C → S is smooth and
proper. The geometric fibers of C → S are connected genus g curves since the
geometric fibers of Ci → Si are.

Exercise 2.4.12.
(a) Show that the prestack M0 is a stack on Schét isomorphic to BPGL2 over

SpecZ.
(b) Show that the moduli stackM1,1, whose objects are families of elliptic curves

(see Example 0.3.20) is a stack on Schét.
(c) Is the prestackM1, whose objects over a scheme S are smooth families C → S

of genus 1 curves, a stack over Schét?

2.4.4 Moduli stack of coherent sheaves and vector bundles
Let C be a smooth connected projective curve over an algebraically closed field
k, and fix integers r ≥ 0 and d. Recall from Example 2.3.11 that Cohr,d(C) (resp.
Bunr,d(C)) denotes the prestack over Sch/k consisting of pairs (E,S) where S is a
k-scheme and E is a coherent sheaf on CS flat over S (resp. vector bundle on CS)
of rank r and degree d.

Proposition 2.4.13. For all integers r and d with r ≥ 0, Cohr,d(C) and Bunr,d(C)
are stacks over (Sch/k)ét.

Proof. Axioms (1) is precisely descent for morphisms of quasi-coherent sheaves
(Proposition B.1.3(2)) while Axiom (2) is descent for quasi-coherent sheaves (Propo-
sition B.1.3(1)) coupled with the fact that the property of a quasi-coherent sheaf
being a coherent sheaf (resp. vector bundle) is étale-local (Proposition B.4.3).

2.4.5 Stackification
Given a presheaf F on a site S, there is a sheafification F → F sh which is a left
adjoint to the inclusion, i.e. Mor(F sh, G)→ Mor(F,G) is bijective for every sheaf G
on S (Theorem 2.2.9). Similarly, there is a stackification X → X st of a prestack X
over S.

Theorem 2.4.14 (Stackification). If X is a prestack over a site S, there exists a
stack X st, which we call the stackification, and a morphism X → X st of prestacks
such that for every stack Y over S, the induced functor

MOR(X st,Y)→ MOR(X ,Y) (2.4.1)

is an equivalence of categories.

Proof. As in the construction of the sheafification (see the proof of Theorem 2.2.9),
we construct the stackification in stages. Most details are left to the reader.

First, given a prestack X , we can construct a prestack X st1 satisfying Axiom (1)
and a morphism X → X st1 of prestacks such that

MOR(X st1 ,Y)→ MOR(X ,Y)

is an equivalence for all prestacks Y satisfying Axiom (1). Specifically, the objects
of X st1 are the same as X , and for objects a, b ∈ X over S, T ∈ S, the set of
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morphisms a → b in X st1 over a given morphism f : S → T is the global sections
Γ(S, IsomX (S)(a, f

∗b)sh) of the sheafification of the Isom presheaf (Exercise 2.3.30).
Second, given a prestack X satisfying Axiom (1), we construct a stack X and a

morphism X → X st of prestacks such that (2.4.1) is an equivalence for all stacks Y.
An object of X st over S ∈ S is given by a triple consisting of a covering {Si → S},
objects ai of X over Si, and isomorphisms αij : ai|Sij → aj |Sij satisfying the cocycle
condition αjk|Sijk ◦ αij |Sijk = αik|Sijk on Sijk. Morphisms(

{Si → S}, {ai}, {αij}
)
→
(
{Tµ → T}, {bµ}, {βµν}

)
in X st over S → T are defined as follows: first consider the induced cover {Si×STµ →
S}i,µ and choose pullbacks ai|Si×STµ and bµ|Si×STµ . A morphism is then the data
of maps Ψiµ : ai|Si×STµ → bµ|Si×STµ for all i, µ which are compatible with αij and
βµν (i.e. Ψjν ◦ αij = βµν ◦Ψiµ on Sij ×T Tµν).

Exercise 2.4.15. Show that stackification commutes with fiber products: if X → Y
and Z → Y are morphisms of prestacks, then (X ×Y Z)st ∼= X st ×Yst Zst.

Exercise 2.4.16. Let G→ S be a smooth affine group scheme acting on a scheme
U over S. Recall from Definition 2.3.14 that the quotient prestack [U/G]pre and
quotient stack [U/G] denote the prestacks over Sch/S classifying trivial principal
G-bundles (resp. principal G-bundles) P → T and G-equivariant maps P → U .
(a) Show that [U/G]pre satisfies Axiom (1) of a stack over (Sch/S)ét.
(b) Show that the [U/G] is isomorphic to the stackification of [U/G]pre over

(Sch/S)ét, and that [U/G]pre → [U/G] is fully faithful.

Exercise 2.4.17. Extending Exercise 2.3.22, show that U → [U/G] is a categorical
quotient among stacks.
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Chapter 3

Algebraic spaces and stacks

3.1 Definitions of algebraic spaces and stacks
What are algebraic spaces, Deligne–Mumford stacks and algebraic stacks? After
giving their definitions, we will verify the algebraicity of quotient stacks [U/G], the
moduli stack of curvesMg and the moduli stack of vector bundles Bunr,d(C).

3.1.1 Algebraic spaces
Definition 3.1.1 (Morphisms representable by schemes). A morphism X → Y of
prestacks (or presheaves) over Sch is representable by schemes if for every morphism
T → Y from a scheme, the fiber product X ×Y T is a scheme.

If P is a property of morphisms of schemes (e.g. surjective or étale), a morphism
X → Y of prestacks representable by schemes has property P if for every morphism
T → Y from a scheme, the morphism X ×Y T → T of schemes has property P.

Definition 3.1.2. An algebraic space is a sheaf X on Schét such that there exist a
scheme U and a surjective étale morphism U → X representable by schemes.

The map U → X is called an étale presentation. Morphisms of algebraic spaces
are by definition morphisms of sheaves. Every scheme is an algebraic space.

3.1.2 Deligne–Mumford stacks
Definition 3.1.3 (Representable morphisms). A morphism X → Y of prestacks (or
presheaves) over Sch is representable if for every morphism T → Y from a scheme
T , the fiber product X ×Y T is an algebraic space.

If P is a property of morphisms of schemes which is étale-local on the source
(e.g., surjective, étale, or smooth), we say that a representable morphism X → Y
of prestacks has property P if for every morphism T → Y from a scheme and étale
presentation U → X ×Y T by a scheme, the composition U → X ×Y T → T has
property P.

Definition 3.1.4. A Deligne–Mumford stack is a stack X over Schét such that there
exist a scheme U and a surjective, étale, and representable morphism U → X .

The morphism U → X is called an étale presentation. Morphisms of Deligne–
Mumford stacks are by definition morphisms of stacks. Every algebraic space is a
Deligne–Mumford stack via Example 2.3.7.
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Remark 3.1.5. If the diagonal of X is separated and quasi-compact, then it is in
fact representable by schemes and every presentation U → X is representable by
schemes; see Corollary 4.4.8.

3.1.3 Algebraic stacks

Definition 3.1.6. An algebraic stack is a stack X over Schét such that there exist
a scheme U and a surjective, smooth, and representable morphism U → X .

The morphism U → X is called a smooth presentation. Morphisms of algebraic
stacks are by definition morphisms of prestacks. Every scheme, algebraic space, or
Deligne–Mumford stack is also an algebraic stack.

Caution 3.1.7. The definitions above are not standard as most authors also add a
representability condition on the diagonal. They are nevertheless equivalent to the
standard definitions: we show in Theorem 3.2.1 that the diagonal of an algebraic
space is representable by schemes and that the diagonal of an algebraic stack is
representable.

Exercise 3.1.8 (Fiber products). Show that fiber products exist for algebraic
spaces, Deligne–Mumford stacks and algebraic stacks

3.1.4 Algebraicity of quotient stacks

If G → S is a smooth affine group scheme acting on an algebraic space U over a
base scheme S, the quotient stack [U/G] is algebraic and U → [U/G] is a principal
G-bundle (Theorem 3.1.9).

Since we want to allow for the case that U is not a scheme, we need to generalize
a few definitions. An action of a smooth affine group scheme G→ S on an algebraic
space U → S is a morphism σ : G ×S U → U satisfying the same axioms as in
Definition C.1.7, and we define as in Definition 2.3.14 the quotient stack [U/G] as
the stackification of the prestack [U/G]pre, whose fiber category over an S-scheme T
is the quotient groupoid [U(T )/G(T )]. Objects of [U/G] over an S-scheme T are
principal G-bundles P → T and G-equivariant morphisms T → U . Since morphisms
to algebraic spaces glue uniquely in the étale topology (by definition), the argument
of Example 2.4.9 extends to show that [U/G] is a stack. Using Definition 3.1.3, the
morphism U → [U/G] is a principal G-bundle if for every morphism T → X from
a scheme T , the algebraic space U ×X T with the induced G-action is a principal
G-bundle over T .

Theorem 3.1.9 (Algebraicity of Quotient Stacks). If G → S is a smooth affine
group scheme acting on an algebraic space U → S, the quotient stack [U/G] is an
algebraic stack over S such that U → [U/G] is a principal G-bundle and in particular
surjective, smooth and affine.

Proof. If T → [U/G] is a morphism from an S-scheme corresponding to a principal
G-bundle P → T and a G-equivariant map P → U , there is a cartesian diagram

P //

��

U

��

T // [U/G]
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(see Exercise 2.3.28). This shows that U → [U/G] is a principal G-bundle. If U ′ → U
is an étale presentation by a scheme, then U ′ → U → [U/G] provides a smooth
presentation.

Corollary 3.1.10. If G→ S is a smooth affine group scheme, then the classifying
stack BG = [S/G] is algebraic.

Example 3.1.11. In this example, we use the alternative geometric descriptions of
principal G-bundles from §C.2.2 to give alternative descriptions of classifying stacks.
The classifying stack BGm (resp. BGLn) is the stacks over Sch whose objects are
pairs (S, V ) consisting of a scheme S and a line bundle V (resp. vector bundle of
rank n) V on S. Objects of the classifying stack BPGLn over a scheme S can be
described equivalently as either principal PGLn-bundles, Brauer–Severi schemes, or
Azumaya algebras over S.

Over a field k of char(k) 6= 2, recall that for a non-degenerate quadratic form q
on an n-dimensional vector space V , the orthogonal group O(q) is the subgroup of
GL(V ) containing matrices preserving q. For two different non-degenerate forms q
and q′, thenBO(q) ∼= BO(q′) as both classifying rank n vector bundles equipped with
non-degenerate quadratic forms even though O(q) and O(q′) may be non-isomorphic.

Corollary 3.1.12. If G is a finite group acting freely on an algebraic space U , then
the quotient sheaf U/G is an algebraic space.

Proof. Since the action is free, the quotient stack [U/G] is equivalent to a sheaf,
which we denote by U/G (see Exercise 2.3.19). Theorem 3.1.9 implies that U/G
is an algebraic stack and that U → U/G is a principal G-bundle so in particular
finite, étale, surjective and representable by schemes. Taking U ′ → U to be an
étale presentation by a scheme, the composition U ′ → U → U/G yields an étale
presentation of U/G.

Remark 3.1.13. This resolves the troubling issue from Example 0.5.5 where we
saw that the quotient of a finite group acting freely on a scheme need not exist as a
scheme. In addition, it shows that the category of algebraic spaces itself is closed
under taking quotients by free actions of finite groups so that we don’t need to
enlarge our category even more.

Exercise 3.1.14. Let G→ S be a smooth affine group scheme acting on S-schemes
X and Y .
(a) Show that a G-equivariant morphism X → Y induces a morphism [X/G]→

[Y/G] of algebraic stacks.
(b) Show that [X/G]→ [Y/G] is induced by a G-equivariant morphism if and only

if [X/G]→ [Y/G] is a morphism over BG.

3.1.5 Algebraicity of Mg

The main reason thatMg is an algebraic stack is quite simple: every smooth con-
nected projective curve C is tri-canonically embedded C ↪→ P5g−6 by the very ample
line bundle ω⊗3

C and the locally closed subscheme H ′ ⊂ HilbP (P5g−6) parameterizing
smooth families of tri-canonically embedded curves provides a smooth presentation
H ′ →Mg.

Theorem 3.1.15 (Algebraicity of the stack of smooth curves). If g ≥ 2, thenMg

is an algebraic stack over SpecZ.
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Proof. As in the proof thatMg is a stack (Proposition 2.4.11), we will use Properties
of Families of Smooth Curves (5.1.9): for a family of smooth curves p : D → S,
ω⊗3
D/S is relatively very ample on S and p∗(ω⊗3

D/S) is a vector bundle of rank 5(g− 1).
It follows that ω⊗3

D/S defines a closed immersion D ↪→ P(p∗(ω
⊗3
D/S)) over S. By

Riemann–Roch, the Hilbert polynomial of a fiber Ds ↪→ P5g−6
κ(s) is given by

P (n) := χ(ODs(n)) = deg(ω⊗3n
Ds ) + 1− g = (6n− 1)(g − 1).

Let
H := HilbP (P5g−6

Z /Z)

be the (projective) Hilbert scheme parameterizing closed subschemes of P5g−6 with
Hilbert polynomial P (Theorem 1.1.2). Let C ↪→ P5g−6 ×H be the universal closed
subscheme and let π : C → H be the projection. We claim that there is a unique
locally closed subscheme H ′ ⊂ H consisting of points h ∈ H satisfying
(a) Ch → Specκ(h) is smooth and geometrically connected; and
(b) Ch ↪→ P5g−6

κ(h) is embedded by the complete linear series ω⊗3
Ch/κ(h).

(c) denote C′ = C ×H H ′, the line bundles ω⊗3
C′/H′ and OCH′ (1) differ by a pullback

of a line bundle from H ′.
Moreover, if T → H is a morphism schemes such that (a)–(c) hold for the family
CT → T , then T → H factors through H ′.

Since the condition that a fiber of a proper morphism (of finite presentation)
is smooth is an open condition on the target (Corollary A.3.10), the condition on
H that Ch is smooth is open. Consider the Stein factorization [Har77, Cor. 11.5]
C → H̃ = SpecH π∗OC → H where C → H̃ has geometrically connected fibers
and H̃ → H is finite. Since the kernel and cokernel of OH → π∗OC have closed
support (as they are coherent), H̃ → H is an isomorphism over an open subscheme
of H, which is precisely where the fibers of C → H are geometrically connected. In
summary, the set of h ∈ H satisfying (a) is an open subscheme of H, which we will
denote by H1.

The relative canonical sheaf ωC1/H1
of the family C1 := CH1

→ H1 is a line
bundle. By Proposition A.7.16, there exists a locally closed subscheme H2 ↪→ H1

such that a morphism T → H1 factor through H2 if and only if ωC1/H1
|CT and

OC(1)|CT differ by the pullback of a line bundle on T . In particular, (c) holds and for
every h ∈ H2, there is an isomorphism ω⊗3

Ch/κ(h)
∼= OCh(1). To arrange (b), consider

the restriction of the universal curve π2 : C2 := CH2 → H2. There is a canonical map
α : H0(P5g−6

Z ,O(1)) ⊗ OH2 → π2,∗OC2(1) of vector bundles of rank 5g − 5 on H2

whose fiber over a point h ∈ H2 is the map αh : H0(P5g−6
κ(h) ,O(1))→ H0(Ch,OCh(1)) ∼=

H0(Ch, ω⊗3
Ch/κ(h)). The closed locus defined by the support of coker(α) is precisely

the locus where αh is not an isomorphism (as the vector bundles have the same
rank). The subscheme H ′ = H2 \ Supp(coker(α)) satisfies (a)–(c) along with the
universal property.

The group scheme PGL5g−5 = Aut(P5g−6
Z ) over Z acts naturally on H: if

g ∈ Aut(P5g−6
S ) and [D ⊂ P5g−6

S ] ∈ H(S), then g · [D ⊂ P5g−6
S ] = [g(D) ⊂ P5g−6

S ].
The closed subscheme H ′ ⊂ H is PGL5g−5-invariant and we claim that Mg

∼=
[H ′/PGL5g−5]. This establishes the theorem since [H ′/PGL5g−5] is algebraic (The-
orem 3.1.9).

Consider the morphism H ′ → Mg defined by the restriction C′ → H ′ of the
universal family of the Hilbert scheme. This is the morphism which forgets the

100



embedding, i.e. assigns a closed subscheme D ⊂ P5g−6
S to the family D → S. This

morphism is PGL5g−5-invariant and descends to a morphism [H ′/PGL5g−5]pre →
Mg of prestacks. We claim that this map is fully faithful. To see this, observe that
for a family p : D → S in H ′ defined by a closed subscheme D ⊂ P5g−6

S , by (c) there
is an isomorphism OD(1) ∼= ω⊗3

D/S ⊗ p
∗M for a some line bundle M on S, and by

(b), the canonical map

H0(P5g−6
Z ,O(1))⊗OS → p∗OD(1) ∼= p∗(ω

⊗3
D/S ⊗ p

∗M) ∼= p∗ω
⊗3
D/S ⊗M

is an isomorphism. Every automorphism of D → S induces an automorphism of ω⊗3
D/S

and thus an automorphism of p∗ω⊗3
D/S ⊗M , which in turn induces an automorphism

of P5g−6
S preserving D. SinceMg is a stack (Theorem 3.1.9), the universal property

of stackification yields a morphism [H ′/PGL5g−5]→Mg; this map is fully faithful
since [H ′/PGL5g−5]pre → [H ′/PGL5g−5] is fully faithful (Exercise 2.4.16). It
remains to check that [H ′/PGL5g−5] → Mg is essentially surjective. For this, it
suffices to check that if p : D → S is a family of smooth curves, then there exists an
étale cover {Si → S} such that each DSi is in the image of H ′(Si)→Mg(Si). Since
ω⊗3
D/S defines a closed immersion D ↪→ P(p∗ω

⊗3
D/S) over S and p∗ω⊗3

D/S is locally free
of rank 5g − 5, we may simply take {Si} to be a Zariski open cover (and thus étale
cover) where the restriction of p∗ω⊗3

D/S is free.

Remark 3.1.16. The entire stackM of smooth curves (as defined in Example 2.3.9)
is also algebraic sinceM =

∐
gMg.

Exercise 3.1.17. LetM1,1 be the stack over Sch where an object over a scheme S
is a family of elliptic curves over S, i.e. a pair (E → S, σ) where E → S is smooth
proper morphism with a section σ : S → E such that for every s ∈ S, the fiber
(Es, σ(s)) is an elliptic curve over the residue field κ(s).
(a) Show thatM1,1 is an algebraic stack over Z.
(b) Use the Weierstrass form y2 = x3 + ax+ b (see [Sil09, §3.1]) to show that if

we invert the primes 2 and 3, there is an isomorphism

M1,1 ×Z Z[1/6] ∼= [(A2 r V (∆))/Gm],

where the action is given by t · (a, b) = (t4a, t6b) and ∆ is the discriminant
4a3 + 27b2.

(c) Define a stable elliptic curve over a field k as a pair (E, p) consisting of a
projective curve E of arithmetic genus 1 with at worst nodal singularities and
a rational point p ∈ E(k). Over a scheme S, a family of stable elliptic curves
over S is a proper flat E → S and a section σ : S → E such that every fiber is
a stable elliptic curves. DenotingM1,1 as the stack over Sch classifying stable
elliptic curves, show that

M1,1 ×Z Z[1/6] ∼= [(A2 r 0)/Gm]

with the same action as above.

Exercise 3.1.18. An n-pointed family of genus 0 curves is proper, flat, and finitely
presented morphism X → S of schemes with n sections σ1, . . . , σn : S → X such that
for every geometric point s : Speck→ S, the geometric fiber X ×S k is a smooth
genus 0 curve and σ1(s), . . . , σn(s) ∈ X(k) are distinct.
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(a) Show that the prestack M0,n parameterizing n-pointed families of genus 0
curves is a stack over Schét.

(b) Show thatM0,0
∼= BPGL2.

Hint: Use Exercise C.2.14 to show that X → S is a Brauer–Severi scheme
(i.e. there exists an étale cover S′ → S such that X ×S S′ ∼= P1

S′), and use the
correspondence between Brauer–Severi schemes and principal PGL2-torsors
(Exercise C.2.13).

(c) Show thatM0,1
∼= BU2 where U2 ⊂ PGL2 is the two-dimensional subgroup of

upper triangular matrices.
(d) Show thatM0,2

∼= BGm.
(e) Show thatM0,3

∼= SpecZ.
(f) Show that for n > 3, M0,n

∼= (P1 \ {0, 1,∞})n−3 \∆ where ∆ is the closed
subscheme where at least two of the n− 3 points are equal.

3.1.6 Algebraicity of Bunr,d(C)

Theorem 3.1.19 (Algebraicity of the stack of vector bundles). Let C be a smooth,
connected, and projective curve over a field k, and let r and d be integers with r ≥ 0.
The stacks Cohr,d(C) and Bunr,d(C) are algebraic stack over Speck.

Proof. For every vector bundle E on C of rank r and degree d, by Serre vanishing
E(m) is globally generated and H1(C,E(m)) = 0 for m� 0. In particular,

Γ(C,E(m))⊗OC � E(m) (3.1.1)

is surjective which by construction induces an isomorphism on global sections. By
Riemann–Roch, the Hilbert polynomial of E is

P (n) = χ(E(n)) = deg(E(n)) + rk(E(n))(1− g) = d+ rn+ r(1− g).

For each integer m, consider the substack Cm ⊂ Cohr,d(C) parameterizing
coherent sheaves E on C such that (3.1.1) is surjective and induces an isomorphism
of global sections, and h0(C,E(m)) = P (m) (or equivalently H1(C,E(m)) = 0).
This is an open substack. Indeed, given scheme S and a coherent sheaf E on CS flat
over S, consider the diagram

C × S
p1

||

p2

##
C S.

A simple application of Cohomology and Base Change (see Proposition A.7.9) implies
that the locus of points s ∈ S such that H1(C,Es(m)) = 0 is open and that over
this locus we have that R1p2,∗E(m) = 0 and that p2,∗E(m) is a vector bundle whose
construction commutes with base change. The morphism p∗2p2,∗E(m)→ E(m) thus
also commutes with base change and fails to be surjective on the closed subset given
by the support of its cokernel.

For each m, consider the Quot scheme

Qm := QuotP (OC(−m)P (m)/C/k)

parameterizing quotients OC(−m)P (m) � F with Hilbert polynomial P (Theo-
rem 1.1.3). Consider the subset Q′m consisting of quotients q : OC(−m)P (m) → F
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such that H0(q(m)) : H0(C,OC)P (m) → H0(C,F (m)) is an isomorphism. Note that
since we have specified the Hilbert polynomial, this implies that H1(C,F (m)) = 0.
The subset Q′m is an open subscheme; its complement is given by the support of
the cokernel of p2,∗OP (m)

C×Qm → p2,∗(Em(m)) where OC×Qm(−m)P (m) → Em is the
universal quotient on C ×Qm.

The Quot scheme Qm inherits a natural action from GLP (m) such that Q′m is
invariant. The morphism Q′m → Cm, defined by [OC(−m)P (m) � F ] 7→ F , factors
to a yield a morphism Ψpre : [Q′m/GLP (m)]

pre → Cm of prestacks. The map Ψpre

is fully faithful since every automorphism of a vector bundle F on C × S induces
an automorphism of p2,∗F (m) = OP (m)

S , i.e. an element of GLP (m)(S), and this
element acts on OC(−m)P (m) preserving the quotient F .

Since Cohr,d(C) is a stack (Proposition 2.4.13), there is an induced morphism
Ψ: [Q′m/GLP (m)]→ Cm of stacks which is also fully faithful (Exercise 2.4.16) and
by construction essentially surjective. We conclude that Cm = [Q′m/GLP (m] and
that

Cohr,d(C) =
⋃
m

[
Q′m/GLP (m)

]
.

The algebraicity of Cohr,d(C) follows from the algebraicity of quotient stacks (The-
orem 3.1.9) and the algebraicity of Bunr,d(C) follows as the property of being a
vector bundle is an open condition.

Remark 3.1.20. Note that the entire stack of coherent sheaves and vector bundles
are also algebraic since

Coh(C) =
∐
r,d

Cohr,d(C) and Bun(C) =
∐

r, dBunr,d(C)

Note also that while Bunr,d(C) itself is not quasi-compact (Definition 3.3.20), the
proof establishes that every quasi-compact open substack of Bunr,d(C) is a quotient
stack.

Exercise 3.1.21. Modify the above argument to show that Coh(X) is an algebraic
stack if X is a projective scheme over k.

3.1.7 Desideratum

We will develop the foundations of algebraic spaces and stacks in the forthcoming
chapters but it is worth first highlighting some of the most important results.

3.1.7.1 The importance of the diagonal

When overhearing others discussing algebraic stacks, you may have wondered what’s
all the fuss about the diagonal? Well, I’ll tell you—the diagonal encodes the
stackiness!

First and foremost, the diagonal X → X×X of an algebraic stack is representable
and the diagonal X → X × X of an algebraic space is representable by schemes
(Theorem 3.2.1).

The stabilizer Gx of a field-valued point x : SpecK → X is defined as the
sheaf AutX (K)(x) = AutX (K)(x, x) and is identified with the fiber product X ×X×X
SpecK by Exercise 2.3.30. By Representability of the Diagonal, the stabilizer Gx is
representable by a group algebraic space over K. We later show that Gx is in fact
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a group scheme of finite type over K (Corollary 4.4.28). See §3.2.2 for a further
discussion of stabilizers.

For schemes (resp. separated schemes), the diagonal is an immersion (resp.
closed immersion). For algebraic stacks, the diagonal is not necessarily even a
monomorphism as the fiber over (x, x) : SpecK → X × X , or in other words the
stabilizer Gx, may be non-trivial. Properties of the diagonal in fact characterize
algebraic spaces and Deligne–Mumford stacks: an algebraic stack is an algebraic
space (resp. Deligne–Mumford stack) if and only if X → X → X is a monomorphism
(resp. unramified)—see Theorems 3.6.4 and 3.6.5. An equivalent characterization is
given by properties of the stabilizer groups as in the table below:

Type of space Property of the diagonal Property of stabilizers

algebraic space monomorphism trivial

Deligne–Mumford stack unramified reduced finite groups1

algebraic stack arbitrary arbitrary

Table 3.1: Characterization of algebraic spaces and Deligne–Mumford stacks

As a consequence of these characterizations, we will generalize Corollary 3.1.12:
the quotient of a free action of a smooth algebraic group on an algebraic space exists
as an algebraic space (Corollary 3.6.7). We will also be able to establish thatMg is
Deligne–Mumford (Corollary 3.6.8) rather than just algebraic (Theorem 3.1.15).

We now summarize additional important properties of algebraic spaces, Deligne–
Mumford stacks and algebraic stacks. The reader may also wish to consult Chapter 0
for a brief recap of the trichotomy of moduli spaces.

3.1.7.2 Properties of algebraic spaces

• If R⇒ U is an étale equivalence relation of schemes, the quotient sheaf U/R
is an algebraic space (Theorem 3.4.11).

• If X is a quasi-separated algebraic space, there exists a dense open subspace
U ⊂ X which is a scheme (Theorem 4.4.1).

• If X → Y is a separated and quasi-finite morphism of noetherian algebraic
spaces, then there exists a factorization X ↪→ X̃ → Y where X ↪→ X̃ is an
open immersion and X̃ → Y is finite (Zariski’s Main Theorem). In particular,
X → Y is quasi-affine.

3.1.7.3 Properties of Deligne–Mumford stacks

• If R ⇒ U is an étale groupoid of schemes, the quotient stack [U/R] is a
Deligne–Mumford stack (Theorem 3.4.11).

• If X is a Deligne–Mumford stack and x ∈ X (k) is a field-valued point, there
exists an étale neighborhood [Spec(A)/G] → X of x where G is a finite
group, which can be arranged to be the stabilizer of x (Local Structure of
Deligne–Mumford Stacks, Theorem 4.2.11).

1If the diagonal is not quasi-compact, the stabilizers will only be discrete and reduced.
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• If X is a separated Deligne–Mumford stack, there exists a coarse moduli
space X → X where X is a separated algebraic space (Keel-Mori Theorem,
Theorem 4.3.11).

• If X is a Deligne–Mumford stack (e.g. algebraic space), there exists a scheme
U and a finite morphism U → X (Le Lemme de Gabber, Theorem 4.5.1).

3.1.7.4 Properties of algebraic stacks

• If R ⇒ U is a smooth groupoid of schemes, the quotient stack [U/R] is an
algebraic stack (Theorem 3.4.11).

• If X is an algebraic stack of finite type over an algebraically closed field k with
affine diagonal, every point x ∈ X (k) with linearly reductive stabilizer has an
affine étale neighborhood [Spec(A)/Gx] → X of x where G is a finite group
(Local Structure of Algebraic Stacks).

• Let X be an algebraic stack of finite type over an algebraically closed field k of
characteristic 0 with affine diagonal. If X is S-complete and Θ-complete, there
exists a good moduli space X → X where X is a separated algebraic space of
finite type over k.

Notes

Deligne–Mumford and algebraic stacks were first introduced in [DM69] and [Art74]—
and in both cases referred to as algebraic stacks—with conventions slightly different
than ours. Namely, [DM69, Def. 4.6] assumed in addition to the existence of an étale
presentation that the diagonal is representable by schemes (which is automatic if
the diagonal is separated and quasi-compact). On the other hand, [Art74, Def. 5.1]
assumed in addition to the existence of a smooth presentation that the stack is locally
of finite type over an excellent Dedekind domain. The term Artin stack—which we
refrain from using—is sometimes reserved for stacks that satisfy Artin’s axioms (e.g.
algebraic stacks locally of finite type over an excellent scheme with quasi-compact
and separated diagonal).

We follow the conventions of [Ols16] and [SP] with the exception that we work
over the site Schét while [SP] works over Schfppf . These two sites give equivalent
notions of algebraic stacks [SP, Tag 076U].

3.2 Representability of the diagonal

3.2.1 Representability

Theorem 3.2.1 (Representability of the Diagonal).
(1) The diagonal of an algebraic space is representable by schemes.
(2) The diagonal of an algebraic stack is representable.

Proof. Let X be an algebraic space and U → X be an étale presentation. Define
the scheme R := U ×X U . If T → X ×X is a morphism from a scheme, we need to
show that the sheaf QT = X ×X×X T is in fact a scheme. Since U → X is étale,
surjective and representable by schemes, so is U × U → X ×X. The base change of
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T → X ×X by U × U → X ×X is a scheme T ′ which is surjective étale over T . In
the cartesian cube

QT ′ //

��

}}

T ′

��

{{

R //

��

U × U

��

QT //

}}

T

{{

X // X ×X,

(3.2.1)

QT is a sheaf on Schét while QT ′ is a scheme. Since R→ U × U is a separated and
locally quasi-finite morphism of schemes, so is QT ′ → T ′. (If X had quasi-compact
diagonal, then by Zariski’s main theorem R→ U × U is quasi-affine and thus so is
QT ′ → T ′.) Since QT is a sheaf in the étale topology that pulls back to a scheme
QT ′ separated and locally quasi-finite over T ′, we may apply Effective Descent
(Proposition 2.2.11) to conclude that QT is a scheme.

If X is an algebraic stack and U → X is a smooth presentation, we may imitate
the above argument. The fiber product R := U ×X U is an algebraic space. If
T → X × X is morphism from a scheme, its base change along U × U → X × X
yields an algebraic space T1 which is surjective smooth over T . Choose an étale
presentation T2 → T1. Then T2 → T is a surjective smooth morphism of schemes
which has a section after an étale cover T ′ → T (Proposition A.3.5). The composition
T ′ → T2 → T1 → U ×U provides a lift of T → X ×X . We obtain a diagram similar
to (3.2.1) but where the left and right squares are not necessarily cartesian. The
morphism QT ′ → QT is étale, surjective and representable by schemes (as T ′ → T
is). Choosing an étale presentation V → QT ′ of the algebraic space QT ′ , the
composition V → QT ′ → QT yields an étale presentation showing that QT is an
algebraic space.

Corollary 3.2.2.
(1) Every morphism from a scheme to an algebraic space is representable by

schemes.
(2) Every morphism from a scheme to an algebraic stack is representable.

Proof. This follows directly from Representability of the Diagonal (Theorem 3.2.1)
and the cartesian diagram

T1 ×X T2
//

��

T1 × T2

��

X // X × X .

�

associated to any two maps T1 → X and T2 → X from schemes to an algebraic
stack.

Exercise 3.2.3.
(a) If X → Y is a representable morphism of algebraic stacks (e.g. a morphism of

algebraic spaces), then X → X ×Y X is representable by schemes.
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(b) If X → Y is a morphism of algebraic stacks, then X → X ×YX is representable.

Exercise 3.2.4. Show that the diagonal of a morphism X → Y of algebraic stacks
is locally of finite type.

3.2.2 Stabilizer groups and the inertia stack
Now that we know that the diagonal is representable, we can discuss its properties.
One of the most important features of the diagonal is that it encodes the stabilizer
groups.

Definition 3.2.5 (Stabilizers). If X is an algebraic stack and x : SpecK → X
is a field-valued point, the stabilizer of x is defined as the group algebraic space
Gx := AutX (K)(x).

By Exercise 2.3.30, we can identify Gx with the fiber product

Gx := AutX (K)(x) //

��

SpecK

(x,x)

��

X ∆ // X × X .

�

The sheaf Gx is representable by an algebraic space over K by Representability of
the Diagonal (Theorem 3.2.1). The stabilizer Gx is a group algebraic space, i.e. an
algebraic space Gx with multiplication, inverse and identity morphisms satisfying
Definition C.1.1 (or equivalently a group object in the category of algebraic spaces).
In fact, Gx is actually a group scheme locally of finite type as long as the diagonal
of X is quasi-separated (Corollary 4.4.28).

Remark 3.2.6. Let G be a group scheme over a field k acting on a k-scheme U
via σ : G× U → U , and let u ∈ U(k). The stabilizer of the image of u in [U/G] is
the usual stabilizer group scheme, i.e. the fiber product of (σ, p2) : G× U → U × U
along (u, u) : Speck→ U × U .

Exercise 3.2.7.
(a) Show that the stabilizer of a field-valued point of a fiber product of algebraic

stacks is the fiber product of stabilizers, i.e. for x′ ∈ (X ×Y Y ′)(k), then
Gx′ = Gx ×Gy Gy′ where x, y and y′ are the images of x′.

(b) Let f : X → Y be a morphism of algebraic stacks and x ∈ X (k) be a field
valued point. Show that the fiber of the diagonal X → X ×Y X over the point
(x, x, id) ∈ (X ×Y X )(k) is identified with ker(Gx → Gy). What is the fiber of
the diagonal over an arbitrary field-valued point of X ×Y X ?

Exercise 3.2.8. Let X be a (resp. quasi-separated) Deligne–Mumford stack. An
algebraic stack is quasi-separated if for every morphism (a, b) : S → X ×X from a
scheme, the fiber product IsomX (S)(a, b)

∼= X ×∆,X×X ,(a,b) X is quasi-compact over
S; see also Definition 3.3.10.
(a) For a field-valued point x ∈ X (k), show that Gx is a separated (resp. finite)

étale group scheme over k.
Hint: First show that Gx is an etale group algebraic space over k. If k = k, use
that a section of the structure morphism Gx → Speck is an open immersion
to give an open covering of Gx by schemes. Apply Proposition C.1.6 to
conclude that Gx is separated. For the general case, apply Effective Descent
(Proposition 2.2.11).
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(b) If k is algebraically closed, show that Gx is the discrete and reduced (resp.
finite and reduced) group scheme corresponding to the abstract group Gx(k).

(c) Show that the diagonal of X is unramified.
We will see later that these properties characterize Deligne–Mumford stacks; see
Theorem 3.6.4.

Varying the point x of X , the stabilizer group varies and naturally forms a family.
In fact, we’ve already seen this: if a : T → X is an object, then IsomX (T )(a) → S
is a group algebraic space such that the fiber over a point s ∈ S is the stabilizer
of the restriction a|Specκ(s) of a to Specκ(s). Applying this to the identity map
idX : X → X yields the construction of the inertia stack.

Definition 3.2.9 (Inertia stack). The inertia stack of an algebraic stack X is the
fiber product

IX //

��

X

��

X // X × X .

�

In the relative setting of a morphism X → Y of algebraic stacks, the relative inertia
stack is IX/Y := X ×X×YX X .

The fiber of IX → X over a field-valued point x : SpecK → X is precisely the
stabilizer Gx. We can therefore think of IX as a group scheme (or really group
algebraic space) over X incorporating all of the stabilizers of X . If we let (Sch /X )ét

be the big étale site of schemes over X , then IX can be viewed as a sheaf of groups
on (Sch /X )ét where IX (a) = AutS(a) for a ∈ X (S). If a′ → a is a morphism over
S′ → S, there is a natural pullback functor α∗ : AutS(a) → AutS′(a

′) defined as
follows: for β ∈ AutS(a), the image α∗(β) is the unique dotted arrow (provided by
Axiom (2) of the definition of a prestack (2.3.1)) making the diagram

a′
α∗(β)

//

β◦α

&&
a′

α
// a (3.2.2)

commute. Note that if α : α→ α is an isomorphism over the identity, then α∗(β) =
α−1 ◦ β ◦ α is conjugation by α.

Exercise 3.2.10. Let G→ S be a group scheme acting on a scheme U → S, and
let X = [U/G] be the quotient stack. Show that there is a cartesian diagram

SU //

��

U

��

IX // X

�

where SU → U is the stabilizer group scheme, i.e. the fiber product of the action
map G× U → U × U and the diagonal U → U × U .

Example 3.2.11. The inertia class of the classifying stack BGm is IBGm
∼= Gm ×

BGm. Similarly, if we let Gm act on Gm × A1 via the product of the trivial and
the scaling action and we let V (x(t − 1)) ⊂ Gm × A1 be the Gm-invariant closed
subscheme, then I[A1/Gm]

∼= [V (x(t− 1))/Gm].
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Exercise 3.2.12. If G is a smooth affine algebraic group, show that the inertia
stack of BG is the quotient [G/G] where G acts on itself via conjugation.

Exercise 3.2.13. Let G be a finite group acting on a scheme U , and let X = [U/G].
Show that the inertia stack IX is isomorphic to

IX =
∐
g∈G

[Ug/C(g)]

where C(g) is the centralizer of G and Ug := {x ∈ U | gx = x} (or alternatively
the fiber product of the diagonal U → U × U and the map U → U × U defined by
x 7→ (x, gx)).

Exercise 3.2.14. Let f : X → Y be a morphism of algebraic stacks.
(1) Show that there are morphisms IX/Y → IX → IY ×Y X of algebraic stacks

over X such that the induced morphisms on the fibers over a field-valued
point x ∈ X (k) correspond to a left exact sequence 1→ Kx → Gx → Gf(x) of
algebraic groups.

(2) Show that there is a cartesian diagram

IX //

��

IY ×Y X

��

X // X ×Y X .

�

Hint: An object of IY ×Y X over a scheme S is a quadruple (y, α, x, β) where
y ∈ X (S), α : y

∼→ y, x ∈ X (S), and β : y
∼→ f(x). On the other hand, an object of

X ×Y X over S is a triple (x1, x2, γ) where x1, x2 ∈ X (S) and γ : f(x1)
∼→ f(x2).

Define IY ×Y X → X ×Y X on fiber categories by (y, α, x, β) 7→ (x, x, β ◦ α ◦ β−1).
Construct a map IX (S) to the fiber product of X (S) and (IY ×Y X )(S) over (X ×Y
X )(S), and show that it is an equivalence.

3.3 First properties

3.3.1 Properties of morphisms
Recall that a morphism of prestacks X → Y over Schét is representable by schemes
(resp. representable) if for every morphism T → Y from a scheme, the base change
X ×Y T is a scheme (resp. algebraic space); see Definitions 3.1.1 and 3.1.3. Both
notions are clearly stable under base change. Morphisms representable by schemes
are also clearly stable under composition and the following lemma shows the same
for representable morphisms.

Lemma 3.3.1.
(1) If X → Y is a representable morphism of sheaves on Schét and Y is an

algebraic space, then X is an algebraic space.
(2) The composition of representable morphisms is representable.

Proof. For the first statement, if V → Y is an étale presentation, then the base
change XV → X is a morphism of algebraic spaces which is étale, surjective and
representable by schemes. Letting U → XV be an étale presentation, then the
composition U → XV → X is étale, surjective and representable by schemes and
thus X is an algebraic space. The second statement follows from the first.

109



Definition 3.3.2. Let P be a property of morphisms of schemes.
(1) If P is stable under composition and base change and is étale-local (resp.

smooth-local) on the source and target, a morphism X → Y of Deligne–
Mumford stacks (resp. algebraic stacks) has property P if for all étale (resp.
smooth) presentations (equivalently there exist presentations) V → Y and
U → X ×Y V yielding a diagram

U // X ×Y V //

��

V

��

X // Y,

�

the composition U → V has P.
(2) A morphism X → Y of algebraic stacks representable by schemes has property
P if for every morphism T → Y from a scheme, the base change X ×Y T → T
has P.

(3) A morphism X → Y of algebraic stacks is an isomorphism, open immersion,
closed immersion, locally closed immersion, affine, or quasi-affine if it is
representable by schemes and has the corresponding property in the sense of
(2).

The properties of flatness, smoothness (resp. smoothness of relative dimension n),
surjectivity, locally of finite presentation, and locally of finite type are smooth-local
on the source and target. By (1), these properties extend to morphisms of algebraic
stacks. Likewise, étaleness and unramifiedness are étale-local on the source and
target, and thus extend to morphisms of Deligne–Mumford stacks. These properties
are stable under composition and base change.

Representable morphisms and each class of morphisms in (3) are smooth local
on the target. They are even fppf local but we won’t be able to show this until §6.2.

Proposition 3.3.3. Let P be one of the following properties of morphisms of
algebraic stacks: representable, isomorphism, open immersion, closed immersion,
locally closed immersion, affine, or quasi-affine. Consider a cartesian diagram

X ′ //

��

Y ′

��

X // Y

�

of algebraic stacks where Y ′ → Y is smooth and surjective. Then X → Y has P if
and only if X ′ → Y ′ has P.

Proof. We will show the (⇐) implications as the other directions are clear. For
representability, we may assume that Y , Y ′ and X ′ are schemes and we need to show
that X is an algebraic space. It suffices to show that the ever automorphism α : a→ a
of an object a over a scheme T is trivial. The base change T ′ of a : T → X by
X ′ → X is a scheme since it’s also identified with T ×Y Y ′. Since smooth morphisms
étale locally have sections (Corollary A.3.6), there is an étale cover g : T̃ → T that
factors through T ′. The automorphism α defines a section of AutT (a) over T . Since
AutT (a) is a sheaf on (Sch/T )ét and g∗α = id, we have that α = id.

For the other properties, we already know that X → Y is representable and it
thus suffices to assume that Y, Y ′ and X ′ are schemes and that X is an algebraic
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space. Fortunately we can apply Effective Descent (Proposition 2.2.11) to conclude
that X is a scheme and that X → Y has property P.

Example 3.3.4. If G→ S is a smooth affine group scheme acting on an algebraic
space U → S, then [U/G] → S is flat (resp. smooth, surjective, locally of finite
presentation, locally of finite type) if and only if U → S is. In particular, using
the quotient stack presentations in the proofs of Theorems 3.1.15 and 3.1.19, we
conclude thatMg is locally of finite type over Z and Bunr,d(C) is locally of finite
type over k.

Exercise 3.3.5. Assume that X → Y is a surjective and smooth morphism of
algebraic stacks. If T → Y is a morphism from a scheme, show that there exists an
étale cover T ′ → T such that XT ′ → T ′ has a section.

3.3.2 Properties of algebraic spaces and stacks

Definition 3.3.6 (Properties of algebraic spaces and stacks). Let P be a property
of schemes which is étale (resp. smooth) local. We say that a Deligne–Mumford stack
(resp. algebraic stack) X has property P if for an étale (resp. smooth) presentation
(equivalently for all presentations) U → X , the scheme U has P.

The properties of being locally noetherian, reduced or regular are smooth-local.

Example 3.3.7. Let G→ S be a smooth affine group scheme acting on a scheme
U over S. Then [U/G] is locally noetherian, reduced or regular if and only if U is.

Definition 3.3.8 (Substacks). If X is an algebraic stack, a substack Z ⊂ X is closed
(resp. open, locally closed) if the induced morphism Z → X is a closed immersion
(resp. open immersion, locally closed immersion).

Exercise 3.3.9. For an action of a smooth affine group scheme G→ S on a scheme
U over S, show that there is an equivalence between closed (resp. open) substacks
of [U/G] and G-invariant closed (resp. open) subschemes of U .

3.3.3 Separation properties

Separation properties for algebraic stacks are defined in terms of the diagonal.

Definition 3.3.10.
(1) A morphism of algebraic stack X → Y has affine diagonal (resp. quasi-affine

diagonal, separated diagonal) if the diagonal X → X ×YX is affine (resp. quasi-
affine, separated). An algebraic stack X has affine diagonal (resp. quasi-affine
diagonal, separated diagonal) if X → SpecZ does.

(2) A morphism of algebraic stack X → Y is quasi-separated if the diagonal
X → X ×Y X and second diagonal X → X ×X×YX X are quasi-compact. An
algebraic stack X is quasi-separated if it is quasi-separated over SpecZ.

(3) A representable morphism X → Y of algebraic stacks is separated if the
morphism X → X ×Y X , which is representable by schemes (Exercise 3.2.3),
is proper.

Conditions on the diagonal translate to conditions on the Isom sheaves since the
base change of X → X × X by a morphism (a, b) : S → X × X from a scheme S
is identified with IsomX (S)(a, b) (see Exercise 2.3.30), which is an algebraic space
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by Representability of the Diagonal (Theorem 3.2.1(2)). In particular, X has
affine diagonal if and only if every algebraic space IsomX (S)(a, b) is a scheme affine
over S. Every algebraic stack with affine or quasi-affine diagonal is necessarily
quasi-separated.

Lemma 3.3.11. Let S be an affine scheme and G → S be a smooth affine group
scheme acting on an algebraic space U over S. If U has affine diagonal (resp. has
quasi-affine diagonal), then so does [U/G].

Proof. Recall that we established that [U/G] is an algebraic stack in Theorem 3.1.9.
Representability of the Diagonal (Theorem 3.2.1(2)) implies that [U/G]→ [U/G]×S
[U/G] is a representable morphism. Using the cartesian diagram

G×S U //

��

U ×S U

��

[U/G] // [U/G]×S [U/G].

�

Since G is affine, so is the composition G×S U → U ×S U
p1−→ U . The statement

follows from the cancellation law and descent.

The condition of having affine diagonal is satisfied by most moduli problems
(except for exampleM1).

Example 3.3.12. The moduli stacksMg and Bunr,d(C) have affine diagonal and
are thus quasi-separated. The statement forMg follows from the above lemma and
the quotient presentationMg = [H ′/PGL5g−5] in the proof of Theorem 3.1.15 as
H ′ is locally closed subscheme of a projective Hilbert scheme. We will show later
thatMg is separated or in other words that the diagonal ofMg is a finite morphism.

Similarly in Theorem 3.1.19, we expressed every quasi-compact open substack of
Bunr,d(C) as a quotient stack [Q′/PGLN ] where Q′ is a locally closed subschemes
of a projective Quot scheme. To see that Bunr,d(C) has affine diagonal, it suffices to
show that the base change of the along a morphism SpecA→ Bunr,d(C)×Bunr,d(C)
is affine. But such a morphism factors through U × U for some quasi-compact open
substack U ⊂ Bunr,d(C) and we know that U has affine diagonal.

Remark 3.3.13. A quasi-separated Deligne–Mumford stack has finite and reduced
stabilizer groups (see Exercise 3.2.8).

For morphisms of schemes, the definition of separatedness above agrees with the
usual notation as the diagonal of a morphism of schemes is a closed immersion if and
only if it is proper. We postpone the definition of separatedness for non-representable
morphisms until Definition 3.8.1.

Example 3.3.14. The non-separated union A∞
⋃

A∞\0 A∞ is a typical example of
a non-quasi-separated scheme. For algebraic spaces and stacks, there are additional
pathologies coming from actions of non-quasi-compact group schemes. For instance,
[A1/Z] is a non-quasi-separated algebraic space (see Example 3.9.22) while BZ is a
non-quasi-separated algebraic stack (see Example 3.9.21).

Exercise 3.3.15. An action of an algebraic group G over a field k on an algebraic
space U is called proper if the action map

Ψ: G× U → U × U, (g, u) 7→ (gu, u)

is proper.
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(a) Show that the action of G on U is proper if and only if [U/G] is separated.
(b) For u ∈ U(k), let Ψu : G→ U be the map defined by g 7→ gu (viewing Ψ as a

morphism over U via the projections on the second component, then Ψu is
the fiber of Ψ over u). Show that the following are equivalent:

(i) Ψu : G→ U is proper,
(ii) u : Speck→ [U/G] is proper,
(iii) Gu ⊂ U is closed and Gu is proper.

Hint: To show that (i) or (ii) implies (iii), replace U with the reduced orbit
Gu, use Generic Flatness (3.3.30) to show that Speck→ [U/G] is faithfully
flat, and then use fppf descent.

3.3.4 The topological space of a stack
We can associate a topological space |X | to every algebraic stack X .

Definition 3.3.16 (Topological space of an algebraic stack). If X is an algebraic
stack, we define the topological space of X as the set |X | consisting of field-valued mor-
phisms x : SpecK → X . Two morphisms x1 : SpecK1 → X and x2 : SpecK2 → X
are identified in |X | if there exists field extensions K1 → K3 and K2 → K3 such
that x1|SpecK3 and x2|SpecK3 are isomorphic in X (K3). A subset U ⊂ |X | is open if
there exists an open substack U ⊂ X such that U = |U|.

A morphism of stacks X → Y induces a continuous map |X | → |Y|.

Exercise 3.3.17. Show that if X is an algebraic stack and U ⊂ |X | is an open
subset, then there exists a reduced closed substack Z ↪→ X such that |Z| = |X | \ U .

Example 3.3.18. The topological space of the quotient stack |[A1
k/Gm]| with the

standard scaling action consists of two points with representatives x0 : Spec k
0−→

A1 → [A1/Gm] and x1 : Spec k
1−→ A1 → [A1/Gm]. In particular, the inclusion of

the generic point Speck(x)→ A1 → [A1/Gm] is equivalent to x1.

While the stabilizer groupGx depends on the choice of representative x : Speck→
X of x ∈ |X |, its dimension—which we denote by dimGx—is independent of this
choice. Similarly, the properties of being smooth, unramified, affine, finite, and
reduced are also independent of this choice.

Exercise 3.3.19. Let x ∈ |X | be a point of an algebraic stack with two representa-
tives x1 : Speck1 → X and x2 : Speck2 → X .
(1) Show that the stabilizer group Gx1

is smooth (resp. étale, unramified, affine,
finite) if and only if Gx2

is.
(2) Show that dimGx1

= dimGx2
.

(3) If X is Deligne–Mumford and both k1 and k2 are algebraically closed, show that
the abstract discrete groups corresponding to Gx1 and Gx2 (see Exercise 3.2.8)
are isomorphic.

As a consequence of the above exercise, it makes sense to say that x ∈ |X | has
smooth (resp. étale, unramified, affine, finite) stabilizer. For a Deligne–Mumford
stack X , we define the geometric stabilizer of x as the discrete group G = Gx(k)
where x : Speck→ X is a geometric point representing x.

We can now define topological properties of algebraic stacks and their morphisms.

113



Definition 3.3.20. We say that an algebraic stack X is quasi-compact, connected,
or irreducible if |X | is, and we say that X is noetherian if it is locally noetherian,
quasi-compact and quasi-separated.

Exercise 3.3.21. Show that an algebraic stack X is quasi-compact if and only if
there exists a smooth presentation SpecA→ X and that a quasi-separated algebraic
stack X is noetherian if and only if there exists a smooth presentation SpecA→ X
where A is a noetherian ring.

Example 3.3.22. The moduli stack Mg is noetherian and in particular quasi-
compact. This follows from the above exercise using the quotient presentation
Mg = [H ′/PGL5g−5] from Theorem 3.1.15. However, Bunr,d(C) is not quasi-
compact.

Exercise 3.3.23.
(a) Show that a morphism X → Y of algebraic stacks is surjective if and only if
|X | → |Y| is surjective.

(b) Show that if X → Y and Y ′ → Y are morphisms of algebraic stacks, then
|X ×Y Y ′| → |X | ×|Y| |Y ′| is surjective.

Exercise 3.3.24. If X is a quasi-compact and locally noetherian algebraic stack,
show that |X | is a noetherian topological space.

Exercise 3.3.25. Since the property of being universally open for a morphism of
schemes is smooth-local on the source and target, we can define universally open
morphisms of algebraic stacks using Definition 3.3.2(1). This property includes
faithfully flat morphisms locally of finite presentation.
(a) If f : X → Y is a universally open morphism of algebraic stacks, show that

f(|X |) ⊂ |Y| is open and conclude that for every morphism Y ′ → Y of algebraic
stacks, the map |X ×Y Y ′| → |Y ′| is open.

Hint: Show that the image is identified with the open substack V ⊂ Y, whose
objects over a scheme T consist of morphisms T → Y such that XT → T is
surjective.

(b) Show that if U → X is a smooth presentation of an algebraic stack, then a set
Σ ⊂ |X | is open (resp. closed) if and only if its preimage in U is.

Definition 3.3.26. A morphism X → Y of algebraic stacks is quasi-compact if for
every morphism SpecB → Y, the fiber product X ×Y SpecB is quasi-compact. We
say that X → Y is of finite type if X → Y is locally of finite type and quasi-compact.

Example 3.3.27. The moduli stackMg is finite type over Z. On the other hand,
Bunr,d(C) is locally of finite type over k but not of finite type.

Remark 3.3.28. A quasi-compact morphism X → Y induces a quasi-compact
morphism |X | → |Y| on topological spaces. The converse is true if Y is quasi-
separated but not in general, e.g. Speck→ BkZ (see Example 3.9.21).

Exercise 3.3.29.
(a) Let f : X → Y be a quasi-compact morphism of algebraic stacks. For a point

x ∈ |X |, show that f({x}) = {f(x)}.
(b) Generalize Chevalley’s criterion to algebraic stacks: if f : X → Y is a morphism

of algebraic stacks locally of finite presentation, then the image f(|X |) ⊂ |Y|
is constructible.
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(c) Show an open morphism f : X → Y of algebraic stacks (i.e. |X | → |Y| is
open) satisfies the following lifting property: if x ∈ |X | is a point, then every
specialization y′  f(x) lifts to a specialization x′  x. Show that the
converse is true for morphisms locally of finite presentation.

(d) If X is a quasi-separated algebraic stack, show that |X | is a sober topological
space, i.e. every irreducible closed subset has a unique generic point.

Exercise 3.3.30 (Generic Flatness). Generalize Theorem A.2.11 to algebraic stacks:
if X → Y is a finite type morphism of algebraic stacks with Y reduced, then there
exists a dense open substack U ⊂ Y such that the base change XU → U is flat and
of presentation.

Exercise 3.3.31. Extend the characterization of locally of finite presentation mor-
phisms given in Proposition A.1.3 to algebraic stacks: a morphism f : X → Y of
algebraic stacks is locally of finite presentation if and only if for every directed
system {SpecAλ}λ∈I of affine schemes over Y, the natural map

colimλ MORY(SpecAλ,X )→ MORY(Spec(colimλAλ),X )

is bijective.

3.3.5 Quasi-finite and étale morphisms

A morphism of schemes is locally quasi-finite if it is locally of finite type and every
fiber is discrete. Since this property is étale-local on the source and target, we can
extend this property to morphisms of algebraic spaces using Definition 3.3.2.

Definition 3.3.32.

(1) A representable morphism X → Y of algebraic stacks is locally quasi-finite
if for every morphism T → Y from a scheme, the algebraic space X ×Y T is
locally quasi-finite over T .

(2) A morphism X → Y of algebraic stacks is locally quasi-finite if is locally of
finite type, the diagonal X → X ×Y X is locally quasi-finite and for every
morphism Speck → Y from a field, the topological space |X ×Y Speck| is
discrete.

(3) A morphism X → Y of algebraic stacks is quasi-finite if it is locally quasi-finite
and quasi-compact.

To understand condition (2), recall that the diagonal X → X ×Y X is always a
representable morphism (Exercise 3.2.3). The diagonal is quasi-finite (resp. locally
quasi-finite) if and only if for every field-valued point x ∈ X (k) with image y ∈ Y(k),
the kernel ker(Gx → Gy) of the induced map of stabilizer groups is finite (resp.
discrete); see Exercise 3.2.7. In particular, if Y is a scheme, the diagonal is quasi-
finite if and only if all stabilizers of Y are finite. For instance, if G is a finite group
scheme over a field k (e.g. µp), then BG → Speck is quasi-finite. On the other
hand, BGm → Speck is not quasi-finite despite that |BGm| is a single point.

For morphisms of schemes, the property of being étale or unramified is also
étale-local on the source and target. We can therefore use Definition 3.3.2 to extend
the definition of étale and unramified to morphisms of Deligne–Mumford stacks.
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Definition 3.3.33. A morphism X → Y of algebraic stacks is étale (resp. unrami-
fied) if for every morphism T → Y from a scheme, the fiber product X ×Y T is a
Deligne–Mumford stack2 such that X ×Y T → T is étale (resp. unramified).

While étale morphisms are smooth and locally quasi-finite, the converse is
not true, e.g. Bkµµµp → Speck over a characteristic p field k (see Exercise 6.2.11).
Similarly, étale morphisms are smooth of relative dimension 0, but again the converse
doesn’t hold, e.g. [A1

k/Gm]→ Speck over a field k. We will later establish that every
separated, quasi-finite and representable morphism is quasi-affine (Proposition 4.4.5).

3.4 Equivalence relations and groupoids
Definition 3.4.1. An étale (resp. smooth) groupoid of schemes is a pair of schemes
U and R together with étale (resp. smooth) morphisms s : R→ U called the source
and t : R → U called the target, and a composition morphism c : R ×s,U,t R → R
satisfying:
(1) (associativity) the following diagram commutes

R×s,U,t R×s,U,t R
c×id

//

id×c
��

R×s,U,t R

c

��

R×s,U,t R
c // R,

(2) (identity) there exists a morphism e : U → R (called the identity) such that
the following diagrams commute

U

e

��

id

��

id

��

U R
soo t // U

R
e◦s,id

//

id
$$

R×s,U,t R

c

��

R
e◦t,id
oo

id
zz

R,

(3) (inverse) there exists a morphism i : R→ R (called the inverse) such that the
following diagrams commute

R
i //

s
��

R
i //

t

��

R

s
��

U

R
s //

(i,id)

��

U

e

��

R×s,U,t R
c // R

R
t //

(id,i)

��

U

e

��

R×s,U,t R
c // R.

We will often denote this data as s, t : R⇒ U .
If (s, t) : R → U × U is a monomorphism, then we say that s, t : R ⇒ U is an

étale (resp. smooth) equivalence relation.
If U and R are algebraic spaces, and the source, target and composition are

morphisms of algebraic spaces, we obtain the notion of an étale (resp. smooth)
groupoid of algebraic spaces and similarly an étale (resp. smooth) equivalence relation
of algebraic spaces.

2A morphism X → Y of algebraic stacks such that each fiber product X ×Y T is Deligne–
Mumford is called relatively Deligne–Mumford or simply DM. A morphism X → Y satisfying the
weaker condition that the diagonal X ×Y X is locally quasi-finite is called quasi-DM. See [SP, Tag
04YW].
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We can view R as a scheme of relations on U : a point r ∈ R specifies a relation
on the points s(r), t(r) ∈ U , which we sometimes write as s(r) r−→ t(r). For every
scheme T , the morphisms R(T ) ⇒ U(T ) define a groupoid of sets, i.e. there is
composition morphism R(T )×s,U(T ),t R(T )→ R(T ) satisfying axioms analogous to
(1)–(3). We can think of an element r ∈ R(T ) as specifying a relation u r−→ v between
elements u, v ∈ U(T ). The composition morphism composes relations u r−→ v and

v
r′−→ w to the relation u r◦r′−−→ w while the identity morphism takes u ∈ U(T ) to

u
id−→ u and the inverse morphism takes u r−→ v to v r−1

−−→ u. When R ⇒ U is an
equivalence relation, the morphism R(T )→ U(T )× U(T ) is injective and there is
thus at most one relation between any two elements of U(T ).

Definition 3.4.2 (Orbits and stabilizers). Let R ⇒ U be a smooth groupoid of
algebraic spaces, and let x : Speck→ U be a field-valued point. The stabilizer Gx
of x is defined as the fiber product of (s, t) : R→ U ×U by (x, x) : Speck→ U ×U .
The orbit OR(x) is defined as the set s(t−1(u)) ⊂ U .

Remark 3.4.3. Assuming that U is defined over k and that x ∈ U(k), then the
k-points of Gx are relations ρ : x

∼→ x in R(k) while the orbit OR(x) consists of
points y ∈ U such that there exists a relation x ∼→ y in R.

Exercise 3.4.4. Show that the identity and inverse morphism are uniquely deter-
mined.

Example 3.4.5. If G→ S is an étale (resp. smooth) group scheme with multiplica-
tion µ : G×S G→ G acting on a scheme U over S via multiplication σ : G×U → U ,
then

p2, σ : G×S U ⇒ U

is an étale (resp. smooth) groupoid of schemes. The inverse G×S U → G×S U is
given by (g, u) 7→ (g−1, gu) and the composition is

(G×S U)×σ,U,p2
(G×S U)→ G×S U,

(
(g′, u′), (g, u)

)
7→ (g′g, u).

where u′ = gu. Here (g, u) is a T -valued point of G×S U and can be viewed as the
relation u→ gu.

The following identifies projections in the groupoid with maps arising from the
group action:

U ×[U/G] U ×[U/G] U

p12

��

p13

��

p23

��

∼ // G×S G×S U

id×σ
��

µ×id

��

p23

��

U ×[U/G] U

p1

��

p2

��

∼ // G×S U

p2

��

σ

��

U

��

U

[U/G].

The identification U ×[U/G] U
∼→ G ×S U is given by u2 ×g u1 7→ (g, u1) where

u2 ×g u1 is shorthand notation for the triple (u2, u1, g) (with u2 = gu1) defining
an element of the fiber product. Similarly U ×[U/G] U ×[U/G] U

∼→ G×S G×S U is
given by u3 ×g2

u2 ×g1
u1 7→ (g2, g1, u1).
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More generally, the n-fold fiber product (U/[U/G])n of U over [U/G] is iden-
tified with Gn−1 × U via un ×gn−1

un−1 · · · ×g1
u1 7→ (gn−1, . . . , g1, u1). Under

these identifications, the projection pk̂ : (U/[U/G])n+1 → (U/[U/G])n forgetting
the kth term is identified with that map Gn × U → Gn−1 × U taking an element
(gn, . . . , g1, u1) to (gn−1, . . . , g1, u1) for k = 1, to (gn, . . . , gk+1, gkgk−1, gk−2, . . . ,
g1, u1) for k = 2, . . . , n and to (gn, . . . , g2, g1u1) for k = n+ 1.

Example 3.4.6. Let X be a Deligne–Mumford stack (resp. algebraic stack) and
U → X be an étale (resp. smooth) presentation which we assume is not only
representable but representable by schemes. Define the scheme R := U ×X U , the
source morphism s = p1 : R → U , the target morphism t = p2 : R → U and the
composition morphism (s ◦ p1, t ◦ p2) : R ×s,U,t R→ R := U ×X U . This gives the
structure of an étale (resp. smooth) groupoid R ⇒ U . If X is an algebraic space,
then R⇒ U is an étale equivalence relation.

Choosing different presentation yields different groupoids which are equivalent
under a notion called Morita equivalence; we will not use this notion in these notes.

3.4.1 Algebraicity of the quotient of a groupoid
Definition 3.4.7 (Quotient stack of a smooth groupoid). Let s, t : R ⇒ U be a
smooth groupoid of algebraic spaces. Define [U/R]pre to be the prestack whose
objects are morphisms T → U from a scheme T . A morphism (S

a−→ U)→ (T
b−→ U)

is the data of a morphism of schemes f : S → T and an element r ∈ R(S) such that
s(r) = a and t(r) = f ◦ b.

Define [U/R] to be the stackification of [U/R]pre in the big étale topology Schét.
If in addition R⇒ U is an equivalence relation, then [U/R] is isomorphic to a

sheaf (Exercise 3.4.8) and we denote it as U/R.

The fiber category [U/R]pre(T ) is the groupoid whose objects are U(T ) and
morphisms areR(T ). The identity morphism id : U → U defines a map U → [U/R]pre

and therefore a map p : U → [U/R].

Exercise 3.4.8. Let R⇒ U be a smooth groupoid of algebraic spaces. Show that
[U/R] is equivalent to a sheaf if and only if R⇒ U is an equivalence relation.

Exercise 3.4.9. Extend Exercise 2.3.28 to show that if s, t : R ⇒ U is a smooth
groupoid of algebraic spaces, the following diagrams are cartesian:

R
s //

t

��

U

p

��

U
p
// [U/R]

� and

R
(s,t)

//

��

U × U

p×p
��

[U/R]
∆ // [U/R]× [U/R].

�

Exercise 3.4.10. Let R ⇒ U be a smooth groupoid of algebraic spaces and
x : Spec k → U be a field-valued point. Show that the stabilizer of x as defined
in Definition 3.4.2 is identified with the stabilizer of Speck→ [U/R] as defined in
Definition 3.2.5.

Theorem 3.4.11.
(1) If R⇒ U is an étale (resp. smooth) groupoid of algebraic spaces. Then [U/R]

is a Deligne–Mumford stack (resp. algebraic stack) and U → [U/R] is an étale
(resp. smooth) presentation.
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(2) If R⇒ U be an étale equivalence relation of schemes, then U/R is an algebraic
space and U → U/R is an étale presentation.

Remark 3.4.12. In Corollary 4.4.11, we show that in fact the quotient U/R of an
étale equivalence relation of algebraic spaces is an algebraic space, establishing that
one doesn’t obtain new algebro-geometric objects by considering sheaves which are
étale locally algebraic spaces. This result is delayed until §4.4 as it takes more work
to show that the diagonal of U/R is representable by schemes.

More generally, if R⇒ U is an fppf groupoid (resp. fppf equivalence relation) of
algebraic spaces, then [U/R] is an algebraic stack [SP, Tag 06FI] (resp. U/R is an
algebraic space [SP, Tag 04S6]). See also [Art74, Thm. 6.1] and [LMB00, Thm. 10.1].

Proof. For (1), we will show that U → X := [U/R] is representable, surjective and
smooth. Let T → X be a morphism from a scheme T . It follows from the definition
of [U/R] as the stackification of [U/R]pre that there exists an étale cover T ′ → T
and a commutative diagram

T ′

��

// U

��

T // X .

In the commutative cube

UT ′ //

��

}}

T ′

��

~~

R //

��

U

��

UT //

}}

T

~~

U // X

(3.4.1)

the front, back, top and bottom squares are cartesian where UT is a sheaf and UT ′
is a scheme. Since T ′ → T is a surjective étale morphism representable by schemes,
so is UT ′ → UT . This establishes that UT is an algebraic space. By descent UT ′ is
surjective and étale over T .

For (2), it suffices to show that the diagonal of the quotient sheaf X := U/R
is representable by schemes. Indeed, this implies that U → X is representable by
schemes via the argument of Corollary 3.2.2 and étale descent implies that U → X
is étale and surjective. Let T → X ×X be a morphism from a scheme and consider
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the cartesian cube

QT ′ //

��

}}

T ′

��

{{

R //

��

U × U

��

QT //

}}

T

{{

X // X ×X,

(3.4.2)

as in (3.2.1). Since R→ U × U is separated and locally quasi-finite, so is QT ′ → T ′.
Effective Descent (Proposition B.3.1) implies that sheaf QT is a scheme.

As a consequence, we see that the affine hypothesis in Theorem 3.1.9 asserting
the algebraicity of the quotient stack [X/G] and classifying stack BG is superfluous.

Exercise 3.4.13. Show that if X is an algebraic stack (resp. algebraic space) and
U → X is a smooth presentation, then X is isomorphic to the quotient stack [U/R]
(resp. quotient sheaf U/R) of the étale groupoid (resp. equivalence relation) R⇒ U
where R = U ×X U .

3.4.2 Inducing and slicing presentations

We provide here to useful techniques to build new presentations from given ones.
First, let X = [X/H] be a quotient stack of a smooth algebraic group H acting

on a scheme X over k and H ⊂ G be an inclusion of algebraic groups. Then H
acts freely on G×X via h · (g, x) = (gh−1, hx) and we let G×H X be the algebraic
space quotient (G × X)/H. When H is finite, this quotient exists by definition
of an algebraic space and is affine (resp. quasi-projective, projective) when X is
by Theorem 4.3.6 (resp. Exercise 4.2.8). In the non-finite case, it follows from
Corollary 3.6.7 G×H X is an algebraic space if X is noetherian. There is an action
of G on G×H X via g · (g′, x) = (gg′, x).

Exercise 3.4.14. Show that [X/H] ∼= [(G×H X)/G].

The second method is sometimes referred to as slicing a groupoid. Let U → X
be a smooth presentation of an algebraic stack with the corresponding groupoid
s, t : R = U ×X U ⇒ U . If g : U ′ → U is a morphism, we define the restriction of
R⇒ U along U ′ → U to be the groupoid R|U ′ ⇒ U ′ defined by the fiber product

R|U ′
(t′,s′)
//

��

U ′ × U ′

��

R
(t,s)
// U × U

�

Exercise 3.4.15.
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(a) Show that R|U ′ fits into a cartesian diagram

R|U ′ //

��

R×s,U U ′ //

��

U ′

g

��

U ′ ×U,t R

��

// R
s //

t

��

U

��

U ′
g

// U // [U/R]

Assume in addition that U ′ ×U,t R→ R
s−→ U is étale (resp. smooth).

(2) Show that R|U ′ ⇒ U ′ is an étale (resp. smooth) groupoid.
(3) Show that there is an open immersion [U ′/R|U ′ ]→ [U/R].
(4) Show that [U ′/R|U ′ ]→ [U/R] is an isomorphism if and only if for every every

point u ∈ U , there exists a pont u′ ∈ U and a relation u→ g(u′) in R.

3.5 Dimension, tangent spaces, and residual gerbes

3.5.1 Dimension

Recall that the dimension dimX of a scheme X is the Krull dimension of the
underlying topological space while the dimension dimxX at a point x ∈ X is the
minimum dimension of open subsets containing x (which is in general distinct from
dimOX,x). We now extend these definitions to algebraic spaces and stacks.

Definition 3.5.1.
(1) Let X be a noetherian algebraic space and x ∈ |X|. We define the dimension

of X at x to be
dimxX = dimu U ∈ Z≥0 ∪∞

where U → X is an étale presentation and u ∈ U is a preimage of x.
(2) Let X be a noetherian algebraic stack with smooth presentation U → X and

corresponding smooth groupoid s, t : R⇒ U , and let u ∈ U be a preimage of
x ∈ |X |. We define the dimension of X at x to be

dimx X = dimu U − dime(u)Ru ∈ Z ∪∞

where Ru is the fiber of s : R→ U over u and e : U → R denotes the identity
morphism in the groupoid.

(3) If X is a noetherian algebraic space or stack, we define the dimension of X to
be

dimX = sup
x∈|X|

dimx X ∈ Z ∪∞.

Proposition 3.5.2. The definition of the dimension dimx X of a noetherian alge-
braic stack X at a point x ∈ |X | is independent of the presentation U → X and of
the choice of preimage u of x.

Proof. The definition of the dimension of an algebraic space at a point is clearly
well defined as étale morphisms have relative dimension 0.

121



If U → X is a smooth presentation (with U a scheme) and u ∈ U is a preimage
of x with residue field κ(u), then the fiber Ru is is identified with the fiber product

Ru //

��

R
t //

s

��

U

��

Specκ(u) // U // X ,

and is a smooth algebraic space over κ(u).
If U ′ → X is a second presentation and u′ ∈ U ′ a preimage of x, then define the

algebraic space U ′′ := U ×X U ′. Observe that there is a cartesian diagram

U ′′u

��

// U ′′ //

��

U ′

��

Specκ(u) // U // X

(3.5.1)

where the fiber U ′′u is identified with R′u′ . By Exercise 3.5.3 applied to U ′′ → U , we
have the identity

dimu′′ U
′′ = dimu U + dimu′′ U

′′
u = dimu U + dime′(u′)R

′
u′ . (3.5.2)

Choose a representative SpecL→ U ′′ in |U ′′| mapping to u and u′. Note that the
compositions Specκ(u) → U → X , Specκ(u′) → U ′ → X and SpecL → U ′′ → X
all define the same point x ∈ |X |. Let R ⇒ U and R′ ⇒ U ′ be the corresponding
smooth groupoids, and set R′′u′′ = U ′′ ×X SpecL.

We need to show that

dimu U − dime(u)Ru = dimu′ U
′ − dime′(u′)R

′
u′

and by symmetry between U and U ′, it suffices to show that

dimu U − dime(u)Ru = dimu′′ U
′′ − dime′′(u′′)R

′′
u′′

where e′′(u′′) ∈ |R′′u′′ | is the image of the map SpecL → R′′u′′ = U ′′ ×X SpecL
defined by the identity automorphism of u′′. By (3.5.2), this is in turn equivalent to

dime′′(u′′)R
′′
u′′ = dime(u)Ru + dime′(u′)R

′
u′

This last fact follows from the cartesian cube

R′′u′′
//

��

yy

R′u′ ×κ(u′) L

��

yy
U ′′ //

��

U ′

��

Ru ×κ(u) L //

yy

SpecL

yy
U // X .

and properties of dimension (see Exercise 3.5.3).
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Exercise 3.5.3.
(a) Show that the analogue of Proposition A.3.11 holds for algebraic spaces; that

is, if X → Y is a smooth morphism of noetherian algebraic spaces, and if
x ∈ |X| is a point with image y ∈ |Y |, then

dimx(X) = dimy(Y ) + dimx(Xy).

(b) If X and X ′ are noetherian algebraic spaces over a field k with k-points x and
x′, show that

dim(x,x′)X ×k X
′ = dimxX + dimx′ X

′.

(c) Let X be a noetherian algebraic space over a field k and k → L be a field
extension. Set XL = X ×k L. If x′ ∈ |XL| is a point with image x ∈ |X |, show
that dimx′ X ×k L = dimx X .

Example 3.5.4. If U is a scheme of pure dimension with an action of an affine
algebraic group G (which is necessarily of pure dimension) over a field k, then

dim[U/G] = dimU − dimG.

In particular, the classifying stack has dimension dimBG = −dimG and we see
that the dimension may be negative!

3.5.2 Tangent spaces
The dual numbers is the ring k[ε] := k[ε]/ε2 defined over a field k.

Definition 3.5.5. If X is an algebraic stack and x : Spec k → X , we define the
Zariski tangent space or simply the tangent space of X at x as the set

TX ,x :=

2-commutative diagrams

Speck
x

##

� _

����

Speck[ε]
τ //
s{α

X


/
∼

or in other words the set of pairs (τ, α) where τ : Speck[ε] → X and α : x
∼→ τ |k.

Two pairs are equivalent (τ, α) ∼ (τ ′, α′) if there is an isomorphism β : τ
∼→ τ ′ in

X (k[ε]) compatible with α and α′, i.e. α′ = β|Spec k ◦ α

Proposition 3.5.6. If X is an algebraic stack with affine diagonal and x ∈ X (k),
then TX ,x is naturally a k-vector space.

Proof. Scalar multiplication of c ∈ k on (τ, α) ∈ TX ,x is defined as the composition
Speck[ε] → Speck[ε]

τ−→ X where the first map is defined by ε 7→ cε and with the
same 2-isomorphism α.

To define addition, we will show that there is an equivalence of categories

X (k[ε1]×k k[ε2])→ X (k[ε1])×X (k) X (k[ε2]) (3.5.3)

or in other words that

Speck �
�

//
� _

��

Speck[ε1]� _

��

Speck[ε2] �
�

// Spec(k[ε1]×k k[ε2])
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is a pushout among algebraic stacks with affine diagonal (see §A.8). Once this is
established, we define addition of (τ1, α1) and (τ2, α2) by the composition Speck[ε]→
Spec(k[ε1] ×k k[ε2]) → X where the first map is defined sending both (ε1, 0) and
(0, ε2) to ε.

Choose a smooth morphism (U, u) → (X , x) from an affine scheme U . Since
X has affine diagonal U → X is an affine morphism. Let SpecA0 = Speck×X U ,
SpecA1 = Speck[ε1]×X U and SpecA2 = Speck[ε2]×X U . Since Spec(A1×AA2) is
clearly the pushout of SpecA0 ↪→ SpecA1 and SpecA0 ↪→ SpecA2 in the category
of affine schemes, there are unique morphisms Spec(A1×AA2)→ Spec(k[ε1]×kk[ε2])
and Spec(A1 ×A A2)→ U completing the diagram

SpecA0
//

��

xx

SpecA2

��

tt

Speck //

��

Speck[ε1]

��

τ1

��

SpecA1
//

xx

Spec(A1 ×A A2)

tt
''

Speck[ε2] //

τ2 00

Spec(k[ε1]×k k[ε2])

**

U

wwX

By the Flatness Criterion over Artinian Rings (Proposition A.2.3), we see that the
map Spec(A1 ×A A2) → Spec(k[ε1] ×k k[ε2]) is faithfully flat. By repeating this
argument on U ×X U , one argues that the Spec(A1 ×A A2)→ U descends uniquely
providing the desired dotted arrow.

Exercise 3.5.7. Show that TX ,x is naturally a representation of Gx which is given
set-theoretically by: g · (τ, α) = (τ, g ◦ α) for g ∈ Gx and (τ, α) ∈ TX ,x.

Example 3.5.8. Consider a smooth, connected, and projective curve [C] ∈Mg(k)
defined over k of genus g ≥ 2. Deformation theory (Proposition D.1.11) implies that
TMg,[C] = H1(C, TC). Since deg TC < 0, H0(C, TC) = 0 and Riemann–Roch implies

dimTMg,[C] = dim H1(C, TC) = −χ(TC) = −(deg TC + (1− g)) = 3g − 3.

Example 3.5.9. Let C be a smooth, connected, and projective curve over k and E ∈
Bunr,d(C)(k) be a vector bundle on C of rank r and degree d. Deformation theory
(Proposition D.1.15) implies that TBunr,d(C),[E] = Ext1

OC (E,E) = H1(C,E⊗E∨). By
Riemann–Roch, χ(E ⊗E∨) = r2(1− g). Since dim Aut(E) = dimk HomOC (E,E) =
H0(C,E ⊗ E∨), we compute that

dimTBunr,d(C),[E] = dim Ext1
OC (F, F ) = dim Aut(F ) + r2(g − 1).

Exercise 3.5.10. Show that Proposition 3.5.6 remains true without the affine
diagonal condition.

Remark 3.5.11. Suppose that A→ A′ and A→ A′′ are homomorphisms of artinian
local rings such that A� A′ is surjective. If X is an algebraic stack, then the above
argument extends to show that

X (A1 ×A0
A2)→ X (A1)×X (A0) X (A2) (3.5.4)
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is an equivalence of categories. This condition is usually referred as homogeneity. The
conditions (RS1)–(RS2) in Rim–Schlessinger’s Criteria (Theorem D.3.11) are weaker
versions of homogeneity which ensure the existence of a formal miniversal deformation
space, and also appear in Artin’s Axioms for Algebraicity (Theorem D.7.4).

More generally, (3.5.4) holds if A→ A′ and A→ A′′ are arbitrary ring homomor-
phisms with A� A′ surjective which shows that the Ferrand pushout SpecA′×AA′′
(see Section A.8) is a pushout in the category of algebraic stacks.

3.5.3 Residual gerbes

Attached to every point x ∈ X of a scheme, there is a residue field κ(x) and a
monomorphism Specκ(x) → X with image x. The residual gerbe will provide us
with an analogous property for algebraic stacks. Note that the existence of non-trivial
stabilizers prevents field-valued points from being monomorphisms (e.g. BG for a
finite group G).

Definition 3.5.12. Let X be an algebraic stack and x ∈ |X | be a point. We say
that the residual gerbe at x exists if there is a reduced noetherian algebraic stack Gx
and a monomorphism Gx ↪→ X such that |Gx| is a point mapping to x. If it exists,
we call Gx the residual gerbe at x.

In Lemma 6.2.49 we show that the residual gerbe Gx is unique while in Proposi-
tion 6.2.50 we show that Gx is a gerbe over a field κ(x) (called the residue field).
These two results justify the terminology: Gx is the residual gerbe.

Showing the existence of residual gerbes is fairly straightforward in the case of a
finite type point. While this result suffices for most of our purposes, we will prove
later that residual gerbes exist for any point of a quasi-separated algebraic stack
in Proposition 6.2.50: this result is postponed to later as we will utilize the Fppf
Criterion for Algebraicity (Theorem 6.2.1).

Definition 3.5.13. A point x ∈ |X | in an algebraic stack is of finite type if there
exists a representative Speck→ X locally of finite type.

Remark 3.5.14. If X is a noetherian scheme, a point x ∈ X is of finite type if and
only if x ∈ X is locally closed. Slightly more generally, a morphism Speck → X
with image x is of finite type if and only if the image x ∈ X is locally closed
and κ(x)/k is a finite extension. Indeed, to see the nontrivial (⇒) implication,
we replace X with {x}, and since Speck → X is of finite type with dense image,
Generic Flatness (A.2.11) implies that Speck→ X is fppf and thus its image is open.
Shortly we will establish an analogous property for points of noetherian algebraic
stacks (Proposition 3.5.16).

An example of a finite type point of a scheme that is not closed is the generic
point of a DVR. However, if X is a scheme of finite type over a field k, then every
finite type point is in fact a closed point. The analogous fact is not true for algebraic
stacks of finite type over k, e.g. Speck 1−→ [A1/Gm] is an open finite type point.

Exercise 3.5.15. Let X be an algebraic stack.
(a) Show that a point x ∈ |X | is of finite type if and only if there exists a scheme

U , a closed point u ∈ U , and a smooth morphism (U, u)→ (X , x).
(b) Show that any algebraic stack (resp. quasi-compact algebraic stack) has a

finite type point (resp. closed point).
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Proposition 3.5.16. If X is noetherian and x ∈ X is a finite type point, then the
residual gerbe Gx exists at x and is a regular algebraic stack, and the morphism
Gx ↪→ X is a locally closed immersion.

If in addition X is of finite type over a field k and x ∈ X (k) has an affine smooth
stabilizer Gx, then Gx = BGx.

Proof. After replacing X with {x}, we may assume that X is reduced and x ∈ |X |
is dense. Let Speck → X be a finitely presented representative of x. By Generic
Flatness (Exercise 3.3.30), Speck → X is flat and therefore its image—which is
x ∈ |X |—is open (Exercise 3.3.25). The corresponding open substack Gx ⊂ X is the
residual gerbe. Since Speck→ Gx is fppf and the property of being regular descends
under fppf morphisms (Proposition B.4.4), Gx is regular.

For the addendum, there is a monomorphism of prestacks BGpre
x → X : for a

k-scheme T , there is a unique object of BGpre
x over T , and this object gets mapped to

the composition T → Speck x−→ X . Similarly, a morphism over T ′ → T corresponds
to a map T ′ → Gx and this gets mapped to the corresponding morphism in X . Under
stackification, this induces a monomorphism BGx → X . By the same argument
as above, BGx ↪→ X is locally closed. As Gx and BGx are reduced locally closed
substacks, they must be equal.

Exercise 3.5.17. Show that if X is an algebraic stack and x ∈ X is a finite type
point such that the stabilizer is unramified (i.e. the stabilizer group scheme of any
representative is unramified), then the residual gerbe Gx exists and is regular, and
Gx ↪→ X is locally of finite type.

Corollary 3.5.18. Let x ∈ |X | be a finite type point of a noetherian algebraic stack
X . If (U, u)→ (X , x) is a smooth morphism from a scheme U with u ∈ U a finite
type point, then there is a cartesian diagram

O(u) �
�

//

��

U

��

Gx �
�

// X

� (3.5.5)

where O(u) is identified set-theoretically with the orbit s(t−1(u)) of the induced
groupoid s, t : R := U ×X U ⇒ U .

Remark 3.5.19. If X = [U/G] is the quotient stack of an affine algebraic group
over a field k acting on a noetherian k-scheme U and u ∈ U(k), there is a cartesian
diagram

Gu �
�

//

��

U

��

BGx
� � // [U/G].

�

We recover the familiar fact that orbit Gu ↪→ U is locally closed (Algebraic Group
Facts C.3.1(7)).

Corollary 3.5.20. A finite type point x ∈ |X| of a noetherian algebraic space
has a residue field κ(x), i.e. there is a field κ(x) and a locally closed immersion
Specκ(x) ↪→ X with image x.
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Exercise 3.5.21. Let X be a noetherian algebraic stack and x ∈ |X | be a finite
type point with smooth stabilizer. Let x : Speck → X be a representative of x.
Show that dimGx = −dimGx.

3.6 Characterization of Deligne–Mumford stacks

3.6.1 Existence of minimal presentations
Theorem 3.6.1 (Existence of Minimal Presentations). Let X be a noetherian
algebraic stack and let x ∈ |X | be a finite type point with smooth stabilizer Gx.
Then there exist a scheme U with a closed point u ∈ U and a smooth morphism
(U, u)→ (X , x) of relative dimension dimGx from a scheme U such that the diagram

Specκ(u) �
�

//

��

U

��

Gx �
�

// X

�

is cartesian.
In particular, if Gx is finite and reduced, there is an étale morphism (U, u)→

(X , x) from a scheme.

Proof. Let (U, u) → (X , x) be a smooth morphism of relative dimension n from
a scheme U such that u ∈ U is a finite type point. From Proposition 3.5.16, the
residual gerbe Gx at x exists and is regular of dimension −dimGx (Exercise 3.5.21).
We obtain a cartesian diagram

O(u) �
�

//

��

U

��

Gx �
�

// X .

�

It follows that O(u) is a regular scheme of dimension c := n−dimGx. Let f1, . . . , fc ∈
OO(u),u be a regular sequence generating the maximal ideal at u. After replacing U
with an open affine neighborhood of u, we may assume that each fi is a global function
on U . We can consider the closed subscheme W := V (f1, . . . , fc) which by design
intersects O(u) transversely at U , i.e. W ∩O(u) = Specκ(u) scheme-theoretically.

By inductively applying a version of the local criterion for flatness (Corol-
lary A.2.8) to the smooth groupoid U ×X U ⇒ U at a preimage of u and the
applying smooth descent, we conclude that the composition W ↪→ U → X is flat
at u. Since Gx is smooth, so is Specκ(u)→ Gx. For flat morphisms, smoothness is
a property that can be checked on fibers and thus (again arguing on R ⇒ U and
using descent) W → X is smooth at u. The statement follows after replacing W
with an open neighborhood of u.

Remark 3.6.2. A smooth presentation p : U → X is called a miniversal at u ∈ U(k)
if TU,u → TX ,p(u) is an isomorphism of k-vector spaces. We will see that the above
presentations are miniversal in Proposition 3.7.3.

If the stabilizer Gx is not smooth, there are two candidates for ‘minimal presen-
tations’. There still exists a miniversal presentation (U, u)→ (X , x), but its relative
dimension is equal to the dimension of the Lie algebra of Gx (rather than dimGx)
and the fiber product Gx ×X U may be positive dimensional. For example, Bµµµp is
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an algebraic stack in characteristic p (Proposition 6.2.9) and it can be realized as
the quotient of Gm acting on itself via t · x = tpx; here Gm → Bµµµp is a a miniversal
presentation. On the other hand, there is an fppf (but not smooth) morphism
(U, u)→ (X , x) such that Gx ×X U ∼= Specκ(u). In particular, if X has quasi-finite
diagonal, then there is an fppf and quasi-finite morphism (U, u)→ (X , x). In our
example, the map Speck→ Bµµµp is such a presentation.

Exercise 3.6.3. If X is a (possibly non-noetherian) algebraic stack and x ∈ X is a
finite type point with unramified stabilizer, show that there is an étale morphism
(U, u)→ (X , x) from a scheme U where u ∈ U is a closed point.
Hint: Replicate the argument above using Exercise 3.5.17.

3.6.2 Equivalent characterizations

Theorem 3.6.4 (Characterization of Deligne–Mumford Stacks). Let X be an alge-
braic stack. The following are equivalent:
(1) the stack X is a Deligne–Mumford;
(2) the diagonal X → X ×X is unramified; and
(3) every point of X has a finite and reduced stabilizer group.

Proof. The equivalence (2) ⇐⇒ (3) is essentially the definition of unramified:
since the diagonal X → X ×X is always locally of finite type (Exercise 3.2.4), it is
unramified if and only if every geometric fiber (which is either empty or isomorphic
to a stabilizer) is discrete and reduced. It is not hard to see that a Deligne–Mumford
stack has unramified diagonal (Exercise 3.2.8). For the converse, Existence of
Minimal Presentations (Theorem 3.6.1 and Exercise 3.6.3) shows that for every finite
type point x ∈ X , there is an étale morphism U → X from a scheme whose image
contains x. Thus X is Deligne–Mumford.

See [LMB00, Thm 8.1] and [SP, Tag 06N3].

Theorem 3.6.5 (Characterization of Algebraic Spaces). Let X be an algebraic stack
whose diagonal is representable by schemes. The following are equivalent:
(1) the stack X is an algebraic space;
(2) the diagonal X → X ×X is a monomorphism; and
(3) every point of X has a trivial stabilizer.

Remark 3.6.6. We will remove the pesky hypothesis that ∆X is representable by
schemes in Theorem 4.4.10.

Proof. Condition (2) is equivalent to the condition that X is a sheaf. The implication
(1) ⇒ (2) follows from the definition of an algebraic space. For the converse, if
X is a sheaf, then Theorem 3.6.1 implies that there exists a surjective, étale, and
representable morphism U → X from a scheme. Since ∆X is representable by
schemes, so is U → X .

The equivalence (2) ⇐⇒ (3) follows from the fact that a group scheme of finite
type is trivial if and only if every fiber is trivial (Proposition C.1.6).

Corollary 3.6.7. Let G→ S be a smooth and affine group scheme over a scheme
S. Let U be an algebraic space over S with an action of G. Then
(1) [U/G] is Deligne–Mumford ⇐⇒ every point of U has a discrete and reduced

stabilizer group ⇐⇒ the action map G× U → U × U is unramified.
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(2) [U/G] is an algebraic space ⇐⇒ every point of U has a trivial stabilizer group
⇐⇒ the action map G× U → U × U is a monomorphism.

Corollary 3.6.8. If g ≥ 2, Mg is a Deligne–Mumford of finite type over Z with
affine diagonal.

Proof. It only remains to show thatMg is Deligne–Mumford and by Theorem 3.6.4
it suffices to show that for every smooth, connected and proper curve C over k
that G = Aut(C) is discrete and reduced, or in other words that the dimension
of the Lie algebra dimTG,e = 0. The vector space TG,e is identified with the
automorphism group of the trivial first order deformation of C. Deformation theory
(Proposition D.2.6) implies that TG,e = H0(C, TC), but this vector space is zero since
the degree of TC = Ω∨C is 2− 2g < 0.

3.7 Smoothness and the Infinitesimal Lifting Crite-
ria

We state and prove the Infinitesimal Lifting Criteria (Theorem 3.7.1) which provides
an extremely useful functorial criteria to check that moduli stacks are smooth. We
apply this criteria to establish that the moduli stacks Mg of smooth curves and
Bunr,d(C) of vector bundles are smooth (Propositions 3.7.4 and 3.7.5)

3.7.1 Infinitesimal Lifting Criteria

Since flatness and smoothness are smooth-local properties on the source and target,
we have the notions of smoothness and flatness for arbitrary morphisms of algebraic
stacks (Definition 3.3.2). Since étaleness and unramifiedness are étale-local on the
source and smooth-local on the target, we can make sense of étale or unramified
morphisms of algebraic stacks; see Definition 3.3.33.

The following criteria will be our means for establishing that moduli stacks are
smooth.

Theorem 3.7.1 (Infinitesimal Lifting Criteria for Unramifed/Étale/Smooth Mor-
phisms). Let f : X → Y be a finite type morphism of noetherian algebraic stacks.
Consider 2-commutative diagrams

SpecA0
//

� _

��

X

f

��

SpecA //

;;

Y,

(3.7.1)

of solid arrows where A→ A0 is a surjection of artinian local rings with residue field
k such that ker(A→ A0) ∼= k and Speck ↪→ SpecA0 → X is a finite type point.

Then
(1) f is unramified if and only if for every 2-commutative diagram (3.7.1), any

two liftings are isomorphic.
(2) f is étale if and only if for every 2-commutative diagram (3.7.1), there exists

a lifting which is unique up to unique isomorphism.
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(3) f is smooth if and only if for every 2-commutative diagram (3.7.1), there exists
a lifting.

Remark 3.7.2. To be explicit, a lifting of a 2-commutative diagram

S
x //

g

��
|� α

X

f

��

T
y
// Y,

(3.7.2)

is the data of a morphism x̃ : T → X as pictured

S
x //

g

��

KS
β

�� γ

X

f

��

T
y
//

x̃

??

Y,

together with 2-morphisms β : x̃ ◦ g ∼→ x and γ : f ◦ x̃ ∼→ y such that

f ◦ x̃ ◦ g
g∗γ

oo

f(β)
__

f ◦ x
α

��
y ◦ g

commutes. A morphism (x̃, β, γ)→ (x̃′, β′, γ′) of liftings is a 2-morphism Θ: x̃→ x̃′

such that β = β′ ◦ (Θ ◦ g) and γ = γ′ ◦ f(Θ).
We can also interpret liftings using the map Ψ: X (T ) → X (S) ×Y(S) Y(T ) of

groupoids. The 2-commutativity of (3.7.2) defines an object (x, y, α) ∈ X (S)×Y(S)

Y(T ) and the category of liftings is the fiber category over this object, e.g. a
lifting is an object x̃ ∈ X (T ) together with an isomorphism Ψ(x̃) → (x, y, α).
For instance, the existence of a lifting translates to the essential surjectivity of
X (T )→ X (S)×Y(S) Y(T ).

Proof. We handle the smooth case and leave the remaining cases to the reader. We
first show that smoothness implies formally smoothness, i.e. every 2-commutative
diagram (3.7.1) has a lifting. By replacing X with X ×Y SpecA and Y with SpecA,
we may assume that Y is affine and we need to show that a section over SpecA0

X

��

SpecA0
� � //

99

SpecA

]]

extends to a section over SpecA.
If X is a scheme, then the existence of a lifting is provided by the Infinitesimal

Lifting Criterion for Smoothness (A.3.1) for schemes. If X = X is an algebraic
space, we may choose a étale presentation U → X from a scheme. Since U → X
is representable by schemes, it is formally smooth and we may lift SpecA0 → X
to SpecA0 → U . The composition U → X → SpecA is a smooth morphism
of schemes, thus formally smooth, and we can lift the section over SpecA0 to
a section over SpecA. In general, if X is an algebraic stack, we can choose a
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smooth morphism U → X from an algebraic space and a lifting Speck → U of
Speck ↪→ SpecA0 → X (Proposition 4.2.15). Since we’ve already shown that smooth
representable morphisms are formally smooth, there is a lifting SpecA0 → U of
SpecA0 → X . Now U → X → SpecA is a smooth morphism of schemes so we see
that there is a section extending SpecA0 → U .

Conversely, if X → Y is formally smooth, then choose smooth presentation
V → Y and U → X ×Y V . By the above argument, U → X ×Y V is formally smooth.
Since X ×Y V → V is formally smooth, so is the composition U → X ×Y V . But as
U → V is a morphism of schemes, it is formally smooth (Smooth Equivalences A.3.1).
Since smoothness is a smooth-local property on the source and target, we obtain
that X → Y is smooth.

See also [LMB00, 4.15(ii)] and [SP, Tag 0DP0].

As a first application, we see that the presentations produced by Existence of
Minimal Presentations (Theorem 3.6.1) are in fact miniversal, and that the dimension
of a smooth algebraic stack can be computed in terms of its tangent space and
stabilizer.

Proposition 3.7.3. Let X be a noetherian algebraic stack and x ∈ |X | be a finite
type point with smooth stabilizer. Let f : (U, u) → (X , x) be a smooth morphism
from a scheme such that Gx×X U ∼= Specκ(u). Then U → X is miniversal at u, i.e.
TU,u → TX ,f(u) is an isomorphism of κ(u)-vector spaces.

In particular, if X is a smooth over a field k and x ∈ X (k) is a point with smooth
stabilizer. Then

dimx X = dimTX ,x − dimGx.

Proof. Surjectivity of TU,u → TX ,f(u) follows from the Infinitesimal Lifting Criterion
(Theorem 3.7.1). Let k = κ(u). Injectivity follows from the fact that

Speck �
�

//

��

U

��

Gx �
�

// X

is cartesian. Indeed, if τ : Speck[ε]→ U is an element of TU,u mapping to 0 ∈ TX ,f(u),
then by the definition of the residual gerbe, the composition Speck[ε] → U → X
factors through Gx and therefore also factors through the fiber product Speck. We
conclude that τ = 0.

For the last statement, Existence of Minimal Presentations (Theorem 3.6.1)
produces a smooth morphism (U, u) → (X , x) miniversal at u and whose relative
dimension is equal to dimGx. Therefore dimx X = dimu U − dimGx but since U is
smooth at u, we have dimu U = dimTU,u = dimTX ,x.

3.7.2 Smoothness of moduli stacks

The Infinitesimal Lifting Criterion for Smoothness combined with deformation theory
allows us to verify the smoothness of a moduli problem and to compute its dimension.

Proposition 3.7.4. For g ≥ 2, the Deligne–Mumford stack Mg is smooth over
SpecZ of relative dimension 3g − 3.
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Proof. Let Speck → Mg be a morphism from a field k corresponding to smooth
projective and connected curve C → Speck. Consider a diagram

Speck

[C]

**
// SpecA0

//
� _

��
�	 α

Mg

f

��

SpecA // SpecZ,

(3.7.3)

where A → A0 is surjection of artinian local rings with residue field k such that
k = ker(A → A0). The map SpecA0 → Mg corresponds to a family of curves
C0 → SpecA0 and a cartesian diagram

C

��

� � // C0

��

� � // C

��

Speck �
�

// SpecA0
� � // SpecA

of solid arrows: a lifting of the diagram (3.7.3) corresponds to a family C → SpecA
extending C0 → SpecA0. By Proposition D.2.6, there is cohomology class obC ∈
H2(C, TC) such that obC = 0 if and only if there exists a lifting. Since C is a
curve, H2(C, TC) = 0. Finally, deformation theory gives the identification TMg,[C] =
H1(C, TC) which has dimension 3g− 3 by Riemann–Roch (see Example 3.5.8). Since
dim Aut(C) = 0, we conclude that dim[C]Mg = 3g − 3.

Proposition 3.7.5. The algebraic stack Bunr,d(C) is smooth over Speck of dimen-
sion r2(g − 1).

Proof. Let [F ] ∈ Bunr,d(C)(k) be a vector bundle on C of rank r and degree d. Let
A → A0 be a surjection of artinian local rings with residue field k such that k =
ker(A→ A0). We need to check that every vector bundle F0 on CA0

that restricts to
F extends to a vector bundle F on CA. By deformation theory (Proposition D.2.15),
there is an element obF ∈ Ext2

OC (F, F ) such that obF = 0 if and only if there
exists an extension. Since C is a smooth curve, Ext2

OC (F, F ) = H2(Ck, F ⊗ F∨) = 0.
Deformation theory also provides an identification TBunr,d(C),[F ] = Ext1

OC (F, F ) and
a Riemann–Roch calculation yields dim Ext1

OC (F, F ) = dim Aut(F ) + r2(g − 1) (see
Example 3.5.9). Therefore dim[F ] Bunr,d(C) = dim Ext1

OC (F, F ) − dim Aut(F ) =
r2(g − 1).

3.8 Properness and the valuative criterion

With some care, we define separatedness and properness for morphisms of algebraic
stacks. Recall from Definition 3.3.10 that we say a representable morphism X → Y
of algebraic stacks is separated if the diagonal X → X ×Y X (which is representable
by schemes) is proper.

Definition 3.8.1.
(1) A morphism X → Y of algebraic stacks is universally closed if for every

morphism Y ′ → Y of algebraic stacks, the morphism X ×Y Y ′ → Y ′ induces a
closed map |X ×Y Y ′| → |Y ′|.
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(2) A representable morphism X → Y of algebraic stacks is proper if it is universally
closed, separated and of finite type.

(3) A morphism X → Y of algebraic stacks is separated if the representable
morphism X → X ×Y X is proper.

(4) A morphism X → Y of algebraic stacks is proper if it is universally closed,
separated and of finite type.

Remark 3.8.2. Notice that we have not defined properness by requiring the diagonal
is a closed immersion as with schemes. Indeed, the diagonal of a morphism of algebraic
stacks is not a monomorphism. For schemes or algebraic spaces, the diagonal is
proper if and only if it is a closed immersion; this follows from the fact that proper
monomorphisms of schemes are closed immersions.

Remark 3.8.3. The property of being universally closed is smooth-local on the
target. We thus have equivalences: X → Y is universally closed ⇐⇒ |X×YT | → |T |
is closed for all maps T → Y from affine schemes ⇐⇒ for a smooth presentation
V → Y, the base change X ×Y V → V is universally closed.

Remark 3.8.4. Recall that the stabilizer Gx of a field-valued point x : Speck→ X
is given by the cartesian diagram

Gx //

��

Speck

(x,x)

��

X // X × X .

If X is a separated algebraic stack over a scheme S, then Gx is a proper group
algebraic space over k. If an addition X has affine diagonal, then the stabilizer
group Gx is proper and affine, thus finite. Since Bunr,d(C) has affine diagonal
(Example 3.3.12) and infinite automorphism groups, we see that Bunr,d(C) is not
separated.

We now state the valuative criteria using the notion of liftings defined formally
in Remark 3.7.2. For moduli problems, the valuative criterion translates to the
geometric question whether a family of objects over a punctured curve extend to the
entire curve. We will apply the valuative criterion later to verify thatMg is proper
(Theorem 5.5.3) and that Bunss

r,d is universally closed.

Theorem 3.8.5 (Valuative Criteria for Universally Closed/Separated/Proper Mor-
phisms). Let f : X → Y be a finite type morphism of noetherian algebraic stacks
with separated diagonals. Consider a 2-commutative diagram

SpecK //

��
�� α

X

f

��

SpecR // Y

(3.8.1)

where R is a DVR with fraction field K. Then

(1) f is proper if and only if for every diagram (3.8.1), there exists an extension
R → R′ of DVRs with the map K → K ′ on fraction fields having finite
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transcendence degree and a lifting unique up to unique isomorphism

SpecK ′ //

��

SpecK //

��

X

f

��

SpecR′ //

55

SpecR // Y.

(3.8.2)

(2) f is separated if and only if every two liftings of a diagram (3.8.1) are uniquely
isomorphic.

(3) f has separated diagonal if and only if every lifting of a diagram (3.8.1) has
no non-trivial automorphisms.

(4) f is universally closed if for every diagram (3.8.1), there exists an extension
R → R′ of DVRs with the map K → K ′ on fraction fields having finite
transcendence degree and a lifting as in (3.8.2).

Remark 3.8.6. See also [LMB00, Thm. 7.10], [SP, Tags 0CLV and 0CLY] and
[Fal03, §4].

We modify the proof of the valuative criterion for schemes (see §A.4). The
starting point is the following lifting criterion for closed morphisms generalizing
Lemma A.4.1.

Lemma 3.8.7. Let f : X → Y be a quasi-compact morphism of algebraic stacks.
Then f is closed if and only for every point x ∈ |X |, every specialization f(x) y0

lifts to a specialization x x0.

Proof. The statement is equivalent to the equality that f({x}) = {f(x)} (Exer-
cise 3.3.29(a)).

To compare specializations to maps from DVRs, we have the following analogue
of Proposition A.4.2.

Proposition 3.8.8. If f : X → Y is a finite type morphism of noetherian schemes,
x ∈ |X | and f(x) y0 is a specialization, then there exists a diagram

SpecK //

��

X

f

��

x_

��

SpecR // Y f(x) // y0.

where R is a DVR with fraction field K, the image of SpecK → X is x and
SpecR→ Y realizes the specialization f(x) y0. In particular, every specialization
x  x0 in a noetherian algebraic stack is realized by a map SpecR → X from a
DVR.

Proof. Let V → Y be a smooth presentation and let v0 ∈ V be a preimage of y0.
Since V → Y is smooth, it is an open morphism (Exercise 3.3.25) and thus there
exists a specialization v  v0 over f(x)  y0 (Exercise 3.3.29(c)). Let x′ ∈ |XV |
be a preimage of v ∈ V and x ∈ |X |. Let U → XV be a smooth presentation and
u ∈ U be a preimage of x′. Applying Proposition A.4.2 to the morphism U → V of
schemes with u 7→ v and the specialization v  v0 gives the desired diagram.
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Proof of Theorem 3.8.5. We first show that the universally closed valuative criterion
implies the others. The double diagonal ∆∆f

: X ×X×YX X is separated and finite
type. Thus f has separated diagonal if and only if ∆∆f

universally closed, and the
existence of a lift for ∆∆f

translates to the condition that every lift for f has only
trivial automorphisms. Assuming f has separated diagonal, then f is separated if
and only if the diagonal ∆f : X → X ×Y X is universally closed (as ∆f is finite
type), and the existence of a lift for ∆f translates to the condition that any two
lifts for f are isomorphic.

Suppose that the valuative criterion for universally closedness holds and that
f : X → Y is not universally closed. Since the property of a morphism of algebraic
stacks being closed can be checked smooth-locally on the target, we can assume that
Y = Y is a scheme and that there exists a morphism T → Y from a scheme such that
fT : XT → T is not closed. We will reduce to the case that T → Y is a finite type
morphism. By Lemma 3.8.7, there exists z ∈ |XT | and a specialization fT (z) t0
which doesn’t lift to a specialization z  z0. This implies that Z = {z} ⊂ XT has
trivial intersection with the fiber (XT )t0 . If p : X → X is a smooth presentation,
then the preimage Z of Z under XT → XT does not meet the fiber (XT )t0 . Applying
Lemma A.4.6 implies that after replacing T with an open neighborhood of t0, the
morphism T → Y factors through a finite type morphism T ′ → Y via g : T → T ′

and that there exists a closed subscheme Z ′ ⊂ XT ′ with trivial intersection with
the fiber (XT ′)g(t0) such that im(Z ↪→ XT → XT ′) ⊂ Z ′. Letting z′ ∈ |XT ′ | be
the image of z ∈ |XT |, we have that z′ maps to g(fT (z)) ∈ T ′ and that there is
a specialization g(fT (z))  g(t0) which does not lift to a specialization of z′. By
Lemma 3.8.7, this shows that XT ′ → T ′ is also not closed.

For a finite type morphism T → Y, the base change XT → T is a finite type
morphism of noetherian algebraic stacks which also satisfies the valuative criterion. It
therefore suffices to show that f : X → Y is closed. By Lemma 3.8.7, we need to show
that given a point x ∈ |X |, every specialization f(x) y0 lifts to a specialization
x x0. By Proposition 3.8.8, there exists a diagram (3.8.1) such that SpecR→ Y
realizes f(x) y0 with a lift SpecK → X whose image is x. The valuative criterion
implies the existence of a lift SpecR → X which in turn yields a specialization
x x0 lifting f(x) y0.

Conversely, assume that f : X → Y is universally closed and that we are given
a diagram (3.8.1). By replacing Y with SpecR and X with X ×Y SpecR, we may
assume that Y = SpecR and that we have a diagram

SpecK
x //

��

X

{{

SpecR

By replacing X with {x}, we may assume that X is integral with generic point x.
Since X → SpecR is closed, there exists a specialization x  x0 mapping to the
specialization of the generic point to the closed point in SpecR. As SpecK → X is
quasi-compact, Proposition 3.8.8 implies there exists a DVR R′ with fraction field
K ′ and a commutative diagram

SpecK ′ //

��

SpecK

��

SpecR′ // X
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such that SpecR′ → X realizes the specialization x  x0. As SpecR′ → SpecR
is surjective, we see that R → R′ is an extension of DVRs and that SpecR′ → X
provides a lift of the given diagram.

Remark 3.8.9. In the valuative criterion for algebraic stacks, it is necessary to
allow extensions R→ R′. Indeed, consider X = BCZ/2 and the DVR R = C[x](x)

with fraction field K = C(x). If we let Z/2 act on SpecC(y) via (−1) · y = −y,
then SpecC(y)→ SpecC(x) defined by x 7→ y2 is a Z/2-torsor (corresponding to a
morphism SpecK → X ) that does not extend to a Z/2-torsor over SpecR.

Exercise 3.8.10.
(a) Show that if X is Deligne–Mumford stack over a field k that is not an algebraic

space, then there exists a map SpecK → X that does not extend to a map
SpecR→ X , where R is a DVR with fraction field K.

(b) Show that for a representable morphism X → Y of finite type of noetherian
algebraic stacks, the valuative criterion for universally closed (resp. separated,
proper) holds without requiring an extension of DVRs.

See Remark 5.5.5 for an explicit example illustrating the necessity of extensions in
the valuative criterion forMg. On the other hand, for Bunr,d(C) it is not necessary
to allow for extensions of DVRs.

Exercise 3.8.11.
(a) If G is a finite group, show that BZG→ SpecZ is proper.
(b) Show that BZGm → SpecZ is universally closed but not separated.

Try to give two arguments for each part—one using the definitions and the other
using the valuative criterion.

Exercise 3.8.12. Show thatM1,1 is separated over SpecZ.

We later show thatMg (and more generallyMg,n) is proper over SpecZ and
that Bunr,d(C)ss is universally closed over a field k.

3.9 Further examples
In this section, we provide examples of algebraic spaces, Deligne–Mumford stacks
and algebraic stacks.

3.9.1 Examples of algebraic spaces
Example 3.9.1. As discussed in Example 0.5.5, there exists a smooth proper
complex 3-fold U with a free of Z/2-action such that there is an orbit not contained
in an affine open subscheme. The quotient sheaf U/(Z/2) is an algebraic space
(Corollary 3.1.12) which is not a scheme.

Example 3.9.2 (The bug-eyed cover). Let k be field of char(k) 6= 2. Let Z/2 = {±1}
act on the non-separated affine line U = A1

⋃
A1\0 A1 over k by swapping the origins

and by (−1) · x = −x for x 6= 0. Since the orbit of an origin is not contained in an
affine, the quotient sheaf U/(Z/2) is not representable by a scheme; it is however an
algebraic space (Corollary 3.1.12).

For an alternative description, let Z/2 = {±1} act on A1 with multiplication
σ : Z/2×A1 → A1 defined by −1 · x = −x. If we remove the non-identity element of
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the stabilizer of the origin, we obtain a scheme R = (Z/2× A1) \ {(−1, 0)} and an
equivalence relation σ, p2 : R⇒ A1. The algebraic space quotient A1/R is isomorphic
to U/(Z/2) (Exercise 3.9.3(a)) For another way to see that X = A1/R is not a
scheme, observe that the diagonal X → X ×X is not a locally closed immersion as
there is a cartesian diagram

(A1 \ 0) t {0} //

��

A1

��

x_

��

R
(σ,p2)

//

��

A1 × A1

��

(x,−x)

X // X ×X.

Exercise 3.9.3.
(a) Show that X = A1/R is isomorphic to U/(Z/2).
(b) Show that there is a universal homeomorphism X → A1 which is ramified over

the origin.
(c) Show that every map to a scheme X → Z factors through X → A1. (In other

words, while A1 may be the categorical quotient of U by Z/2 (or equivalently
the category quotient of R ⇒ A1) in the category of schemes, it is distinct
from the algebraic space quotient.

(d) Consider the SL2 action on Vd = Symd k2, the space of homogeneous polyno-
mials in x and y of degree d. Let W ⊂ V1 × V4 be the reduced locally closed
subscheme defined as the set (L,F ) such that L 6= 0 and F is the square of a
homogeneous quadratic with discriminant 1. Show that the induced SL2-action
on W is free (i.e. SL2×W →W ×W is a monomorphism) and that quotient
sheaf W/SL2 is an algebraic space isomorphic to A1/R and U/(Z/2).
While the descriptions of X as A1/R and U/(Z/2) may seem pathological, this
exercise shows that in fact this algebraic space arises also as a quotient of a
quasi-affine variety by SL2.

Example 3.9.4. Let Z/2 = {±1} act on A1
C via conjugation over SpecR. Note that

the action defined over R of Z/2 on SpecC is free, and therefore the product action
of Z/2 on A1

C = A1
R ×R C (which is trivial on the first factor) is also free. Defining

R = (Z/2×A1
C) \ {(−1, 0)}, show that there is an equivalence relation σ, p2 : R⇒ U

such that the algebraic space X = A1
C/R is not a scheme. (The quotient X looks

like A1
R except that the origin has residue field C. )

3.9.2 Examples of stacks with finite stabilizers
In characteristic 0, each of the following examples are Deligne–Mumford stacks.

Example 3.9.5 (Classifying stacks). If G is a abstract finite group scheme over a
field k, then the classifying stack BG of G is the stack defined as the category of
pairs (T, P ) where T is a scheme and P → T is a G-torsor (Definition 2.3.14). Then
BG is a smooth and proper algebraic stack over k of dimension 0. Properness follows
from the fact the base change of BG → BG × BG by the smooth presentation
Speck → BG × BG is the finite morphism G → Speck, and smoothness follows
because smoothness is a smooth-local property on the source and S → BG is a
smooth presentation).
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Example 3.9.6 (Weighted projective stacks). For a tuple of positive integers
(d0, . . . , dn), let Gm act on An+1 via t · (x0, . . . , xn) = (td0x0, . . . , t

dnxn). We define
the weighted projective stack as

P(d0, . . . , dn) = [(An+1 \ 0)/Gm].

If the di are all 1, then we recover projective space Pn; otherwise, P(d0, . . . , dn) is
not an algebraic space.

More generally, if R is a finitely generated positively graded k-algebra, we can
define stacky proj as ProjR = [(Spec(R) \ 0)/Gm], where Gm acts such that the
weight of xi is the same as its degree.

For example, over Z[1/6] the stack of stable elliptic curvesM1,1 is isomorphic to
P(4, 6) by Exercise 3.1.17(c).

Exercise 3.9.7.
(a) If k is a field of characteristic p, show that P(d0, . . . , dn) is a Deligne–Mumford

stack if and only if p doesn’t divide each di.
(b) Classify all the points of P(3, 3, 4, 6) that have non-trivial stabilizers.
(c) We say that an algebraic stack X has generically trivial stabilizer if there exists

a dense open substack U ⊂ X which is an algebraic space. Provide conditions
for when P(d0, . . . , dn) has generically trivial stabilizer.

(d) Show that there is a bijective morphism P(d0, . . . , dn) to weighted projective
space Proj k[x0, . . . , xn], where xi has degree di. (This is an example of a
coarse moduli space.)

Example 3.9.8. Suppose char(k) 6= 2. Let Z/2 act on A2
k via −1 ·(x, y) = (−x,−y).

Show that [A2
k/(Z/2)] is a smooth algebraic stack over a field k and that there is

a proper and bijective morphism [A2
k/(Z/2)]→ Y where Y is the singular variety

Speck[x2, xy, y2] defined by the Z/2-invariants of Γ(A2
k,OA2

k
).

Example 3.9.9 (Stacky curves). A stacky curve is a one-dimensional Deligne—
Mumford stack of finite type over a field k.

Exercise 3.9.10. If d1 and d2 are relatively prime positive integers, show that
P(d1, d2) is a smooth and proper stacky curve with generically trivial stabilizer.

Exercise 3.9.11. We say that a stacky curve X over k is nodal if there exists a
étale presentation U → X from a nodal curve (equivalently every étale presentation
is a nodal curve); see Definition 5.2.1. Show that a nodal stacky curve has abelian
stabilizers.

Example 3.9.12 (Root gerbes). Let X be a scheme and L be a line bundle.
This data determines a morphism [L] : X → BGm. Let r : BGm → BGm be the
morphism induced from the rth power map r : Gm → Gm, where t 7→ tr; alternatively
r : BGm → BGm is defined functorially on objects by the assignment L 7→ L⊗r. For
a positive integer r, define the rth root gerbe of X and L as the fiber product

r
√
L/X //

��

BGm

r

��

X
[L]
// BGm.

�
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Example 3.9.13 (Root stacks). Let X be a scheme, L be a line bundle, and
s ∈ Γ(X,L) be a section. This data determines a morphism [L, s] : X → [A1/Gm]
(see Example 3.9.16). Let r : [A1/Gm]→ [A1/Gm] be the morphism induced from
the map r : A1 → A1, given by x 7→ xr, which is equivariant under r : Gm → Gm;
alternatively r : [A1/Gm] → [A1/Gm] is defined functorially by (L, s) 7→ (L⊗r, sr).
For a positive integer r, define the rth root stack of X and L along s as the fiber
product

r
√

(L, s)/X //

��

[A1/Gm]

r

��

X
[L,s]

// [A1/Gm].

�

Observe that if s = 0 is the zero section, then there is an identification of r
√

(L, 0)/X

with the root gerbe r
√
L/X of the previous example.

Exercise 3.9.14. Let S be a scheme and r be an integer invertible in Γ(S,OS).
(This hypothesis ensures that µµµr,S → S is an étale group scheme; it will be removed
in Exercise 6.2.37.)
(a) Show that r

√
L/X has the equivalent description as the category of tuples

(T
f−→ X,M,α) where f : T → X is a morphism from a scheme, M is a line

bundle on T and α : M⊗r → f∗L is an isomorphism.
(b) Show that r

√
(L, s)/X has the equivalent description as the category of triples

(T
t−→ X,M,α, t) where f : T → X is a morphism from a scheme, M is a line

bundle on T , α : M⊗r → f∗L is an isomorphism, and t ∈ Γ(T,M) is a section
such that α(t⊗r) = f∗s.

(c) If X = SpecA is an affine scheme over S and L = OX is trivial, show that

r
√
L/X ∼= [X/µµµr] and r

√
(L, s)/X ∼= [Spec

(
A[x]/(xr − s)

)
/µµµr]

where µµµr acts trivially on X and acts on Spec
(
A[x]/(xr − s)

)
via t · x = tx.

(d) Show that the fiber of r
√
L/X → X at a point x ∈ X is isomorphic to Bµµµr,κ(x).

(e) Show that r
√

(L, s)/X → X is an isomorphism over Xs = {s 6= 0} and that
the fiber over a point x ∈ X is isomorphic to Bµµµr,κ(x). and a banded µµµr-gerbe
over the vanishing V (s) ⊂ X of s.

(You will show later in Exercise 6.2.37 that r
√
L/X → X and the restriction of

r
√

(L, s)/X → X along V (S) are banded µµµr-gerbes.))

3.9.3 Examples of algebraic stacks
Example 3.9.15. The classifying stack BGLn over SpecZ classifies vector bundles
of rank n. When n = 1, BGm = BGL1 classifies line bundles. The stack BGLn is
a universally closed and smooth algebraic stack over SpecZ of relative dimension
−n2 with affine diagonal. However, BGLn is not separated nor Deligne–Mumford.

Example 3.9.16. If Gm acts on A1 over Z via scaling, the quotient stack [A1/Gm]
whose objects over a scheme T are pairs (L, s) where L is a line bundle on T and
s ∈ Γ(T, L). The stack [A1/Gm] is an algebraic stack universally closed and smooth
over SpecZ of relative dimension 0 with affine diagonal. The stack [A1/Gm] is not
separated nor Deligne–Mumford
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Over a field k, [A1/Gm] has two points—one open and one closed—
corresponding to the two Gm-orbits (see Figure 13). There is an open immer-
sion and closed immersion

Speck ↪→ [A1/Gm]←↩ BGm.

The morphism [A1/Gm]→ Speck identifies the two orbits and is an example of a
good moduli space.

Example 3.9.17. Working over a field k, let Gm act on A2 via t · (x, y) = (tx, t−1y).
The quotient stack X = [A2/Gm] is a smooth algebraic stack. An object of X
over a scheme T is a triple (L, s, t) where L is a line bundle on T , s ∈ Γ(T, L)
and t ∈ Γ(T, L−1). The complement X \ 0 of the origin is isomorphic to the non-
separated affine line. There is a morphism X → A1 defined by (x, y) 7→ xy, which is
an isomorphism over A1 \ 0 and identifies the three orbits defined by xy = 0.

Example 3.9.18 (Toric stacks). A fan Σ on a lattice L = Zn defines a toric variety
X(Σ), i.e. a normal separated variety with an action of Gnm such that there is a
dense orbit with trivial stabilizer; see [Ful93].

Meanwhile a stacky fan is a pair (Σ, β) where Σ is a fan on a lattice L and
β : L → N is a homomorphism of lattices. As L and N are lattices (i.e. finitely
generated free abelian groups), the Z-linear duals define tori TL := D(L∨) and
TN := D(N∨) (Example C.1.11) where TL is a torus for the toric variety X(Σ). The
map β induces a homomorphism Tβ : TL → TN , naturally identifying β with the
induced map on lattices of 1-parameter subgroups. We can then define Gβ = ker(Tβ)
and the toric stack

X(Σ, β) := [X(Σ)/Gβ ].

Example 3.9.19 (Picard schemes and stacks). If X is a scheme over a field k, the
Picard functor of X and Picard stack of X are defined as the sheaf Pic(X) and stack
Pic (X) on Schét by

Pic(X) = sheafification of T 7→ Pic(XT )

Pic (X)(T ) = {groupoid of line bundles L on XT }

A morphism (T, L)→ (T ′, L′) in Pic (X) is the data of a morphism f : T → T ′ of
schemes and an isomorphism α : L→ f∗L′ (or more precisely a morphism f∗L→ L′

whose adjoint is an isomorphism).
If X is proper over a field k, then Pic(X) is a proper scheme and the tensor

product of line bundles provides it with the structure of a group scheme, hence an
abelian variety. Moreover, Pic (X) is a smooth algebraic stack over k and there
morphism Pic (X)→ Pic(X) such that the fiber over a line bundle L is isomorphic
to BGm. The tensor product of line bundles provides Pic (X) with the structure of
a group stack, a notion which we will not spell out precisely.

Gerbes provide another important example of algebraic stacks but we postpone
our treatment until §6.2.5.

3.9.4 Pathological examples
Exercise 3.9.20. If G→ S is a smooth and affine group scheme acting on a scheme
U over S, then the quotient stack [U/G] is algebraic (Theorem 3.1.9). More generally
if G → S is only assumed smooth, show that [U/G] is algebraic by identifying it
with the algebraic stack quotient of the smooth groupoid G× U ⇒ U .

In particular, the classifying stack BG = [S/G] is algebraic.
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Example 3.9.21. Consider the constant group scheme Z over SpecZ associated to
the abstract discrete group Z. Then BZ is a non-quasi-separated smooth algebraic
stack of dimension 0.

Example 3.9.22. Here we provide an example of a non-quasi-separated algebraic
space which is not a scheme. Let k be a characteristic 0 field. Let Z act on A1 over k
via n · x = x+ n for x ∈ A1 and n ∈ Z. Then X = A1/Z is an algebraic space which
is not quasi-separated (as the action map Z× A1 → A1 × A1 is not quasi-compact).

If X were a scheme, then there would exist a non-empty open affine subscheme
U = SpecA ⊂ X. Since p : A1 → X is an étale presentation, we can compute A as
the subring of Z-invariants Γ(p−1(U),OA1)Z, which the reader can check consists
of only the constant functions, i.e. A = k. As X is obtained by gluing such affine
schemes, it follows that X = Spec k, a contradiction.

The algebraic space X = A1/Z provides a counterexample to many facts that
hold for all schemes and quasi-separated algebraic spaces but fail for all algebraic
spaces (e.g. see Exercise 3.9.23).

Similarly, one can consider the algebraic space quotient A1
C/Z

2 where (a, b) · x =
x+ a+ ib. While the analytic quotient C/Z2 of this action is an elliptic curve over
C, the algebraic space quotient is a non-quasi-separated algebraic space that is not
a scheme.

Exercise 3.9.23. Let X = A1/Z be the algebraic space defined above.
(a) Show that X is locally noetherian and quasi-compact but not noetherian.
(b) Show that the generic point Speck(x)→ A1 → X is fixed under the Z-action.
(c) Show that Speck(x)→ X does not factor through a monomorphism SpecL→

X for a field L. (In other words, the generic point of X does not have a residue
field.)

Example 3.9.24 (Deligne–Mumford stacks with non-separated diagonal). Let
G→ S be a finite group scheme. If H ⊂ G is a subgroup scheme over S, then G/H
is separated if and only if H ⊂ G is closed. For instance, taking G = Z/2×A1 → A1

and the subgroup H = G \ {−1, 0}, the quotient Q = G/H is the non-separated
affine line and is a group scheme over A1 which is trivial away from the origin and
where the fiber over 0 is Z/2. In this case, BA1Q is a Deligne–Mumford stack with
non-separated diagonal; however, X is quasi-compact and quasi-separated (i.e. X ,
the first diagonal ∆X and second diagonal ∆∆X are quasi-compact).
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Chapter 4

Geometry of Deligne–Mumford
stacks

4.1 Quasi-coherent sheaves and cohomology

4.1.1 Sheaves

The small étale site of a Deligne–Mumford stack can be defined analogously to the
small étale site of a scheme (Example 2.1.3).

Definition 4.1.1. If X is a Deligne–Mumford stack, the small étale site of X is the
category Xét of schemes étale over X . A covering of an X -scheme U is a collection
of étale morphisms {Ui → U} over X such that

∐
i Ui → U is surjective.

We can therefore discuss sheaves of abelian groups on Xét and their morphisms.
We denote Ab(Xét) as the category of abelian sheaves on Xét. For an abelian sheaf
F on Xét, the sections over an étale X -scheme U are denoted by F (U) or Γ(U,F );
you should remember that this group depends not only on U but the structure
morphism U → X .

Example 4.1.2 (Structure sheaf). The structure sheaf OX on a Deligne–Mumford
stack is defined by OX (U) = Γ(U,OU ) on an étale X -scheme U .

Example 4.1.3 (Differentials). If X is a Deligne–Mumford stack over a scheme S,
the relative sheaf of differentials ΩX/S is defined by ΩX/S(U) = Γ(U,ΩU/S).

Example 4.1.4 (Hodge bundle). Define the sheaf H onMg (for g ≥ 2) as follows:
for every étale morphism U →Mg from a scheme corresponding to a family C → U
of smooth curves, we set H(U) = Γ(C,ΩC/U ). We will see later that H is a coherent
OMg -module which is locally free of rank g, i.e. a vector bundle.

While a sheaf F on Xét by definition only has sections defined on étale X -schemes,
one can extend the definition to a Deligne–Mumford stack U étale over X . Choose
étale presentations U → U and R→ U ×U U by schemes and define

F (U) := Eq(F (U)⇒ F (R)).

One checks that this is independent of the choice of presentation. In particular, it
makes sense to discuss global sections Γ(X , F ) := F (X ) over the identity id : X → X .
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Exercise 4.1.5. If F is an abelian sheaf on a Deligne–Mumford stack X , show that
Γ(X , F ) = HomAb(Xét)(Z, F ) where Z is the constant sheaf. If F is an OX -module,
show that Γ(X , F ) = HomOX (OX , F ).

Given a morphism f : X → Y of Deligne–Mumford stacks, there are functors

Ab(Xét)

f∗
,,

Ab(Yét)

f−1

ll

where f∗F (V ) := F (V ×Y X ) and f−1G is the sheafification of the presheaf

U 7→ lim
V→Y,U→V×YX

G(V ),

with the limit is taken over the category of pairs of étale morphisms V → Y
and U → V ×Y X (i.e. étale morphisms V → Y and a choice of factorization
of U → X → Y through V → Y). Note that when f : X → Y is étale, then
f−1G(U) = G(U) for an étale X -scheme.

Exercise 4.1.6. Show that f−1 is left adjoint to f∗.

Exercise 4.1.7. If X is a Deligne–Mumford stack, define instead the site Xét′ as
the category of algebraic spaces over X where coverings are étale coverings. Show
that the categories of sheaves on Xét and Xét′ are equivalent.

4.1.2 OX -modules
On a Deligne–Mumford stack X , the structure sheaf OX is a ring object in Ab(Xét)
and we define:

Definition 4.1.8. If X is a Deligne–Mumford stack, a sheaf of OX -modules (or
simply an OX -module) is a sheaf F on Xét which is a module object for OX in the
category of sheaves, i.e. for every étale X -scheme U , F (U) is an OX (U)-module and
the module structure is compatible with respect to restriction along étale morphisms
V → U of X -schemes.

We denote Mod(OX ) for the category of OX -modules. Given two OX -modules
F and G, we can define the tensor product F ⊗G := F ⊗OX G as the sheafification
of the OX -module given by (U → X ) 7→ F (U → X ) ⊗OX (U→X ) G(U → X ). The
Hom sheaf H omOX (F,G) has sections HomOU (F |U , G|U ) over an étale morphism
f : U → X from scheme, where F |U = f−1F denotes the restriction of F to Uét.

Given a morphism f : X → Y of Deligne–Mumford stacks, there are functors

Mod(OX )

f∗
,,

Mod(OY)

f∗
mm

where for an OX -module F , f∗F is the pushforward as sheaves and is naturally
an OY -module. For an OY -module G, since there is a morphism f−1OY → OX of
sheaves of rings in Xét and f−1G is a f−1OY -module, it makes sense to define the
pullback OX -module

f∗G := f−1G⊗f−1OY OX .

Exercise 4.1.9. Show that f∗ is left adjoint to f∗.

Exercise 4.1.10. Show that Mod(OX ) is an abelian category.
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4.1.3 Quasi-coherent sheaves
Let F be an OX -module on a Deligne–Mumford stack X . For an étale X -scheme
U , we have the restriction F |U to the étale site of U and the further restriction
F |UZar

restricted to the Zariski topology of U . Note that when X is a scheme, OX
could refer to the structure sheaf either in Xét or XZar. If there is a possibility for
confusion, we write either OXZar

or OXét
.

Definition 4.1.11. Let X be a Deligne–Mumford stack. An OX -module F is
quasi-coherent if
(1) for every étale X -scheme U , the restriction F |UZar is a quasi-coherent OUZar-

module, and
(2) for every étale morphism f : U → V of étale X -schemes, the natural morphism

f∗(F |VZar
)→ F |UZar

is an isomorphism.
A quasi-coherent F on X is a vector bundle (resp. vector bundle of rank r, line

bundle) if F |UZar
is for every morphism U → X from a scheme.

If in addition X is locally noetherian, we say F is coherent if F |UZar is coherent
for every morphism U → X from a scheme.

We denote by QCoh(X ) and Coh(X ) (in the noetherian setting) the categories
of quasi-coherent and coherent sheaves. The condition on F being a vector bundle,
line bundle or coherent (in the noetherian setting) are étale local (Proposition B.4.3)
and thus it suffices to check the condition on an étale presentation.

Examples 4.1.12. The structure sheaf OX is a line bundle which is coherent when
X is locally noetherian. For a Deligne–Mumford stack X over a scheme S, the
relative sheaf of differentials ΩX/S of Example 4.1.3 is quasi-coherent since for an
étale morphisms f : U → V of étale X -schemes, f∗ΩV/S → ΩU/S is an isomorphism;
it is a vector bundle when X → S is smooth.

ForMg (with g ≥ 2), the Hodge bundle H of Example 4.1.4 is a vector bundle
of rank g. This follows from Proposition 5.1.9(2): for a smooth family π : C → V
of genus g curves corresponding to a Mg-scheme V , the construction of π∗ΩC/V
commutes with the base change along a map f : U → V , i.e. f∗(π∗ΩC/V )

∼→
πU,∗ΩCU/U ), which shows quasi-coherence of H. Moreover, π∗ΩC/V is a vector
bundle on V of rank g, which shows that H is also a vector bundle of rank g.

Example 4.1.13. If G is a finite group viewed as a group scheme over a field k,
a quasi-coherent sheaf on BG corresponds to a representation V of G. If G acts
on an affine k-scheme SpecA, a quasi-coherent sheaf on [SpecA/G] is the data of
an A-module M equipped with a group homomorphism G → EndA(M). These
descriptions follow from Exercise 4.1.16(1).

Exercise 4.1.14 (Equivalent definition). There is a general definition of a quasi-
coherent module on a site S with a sheaf of rings O (see [SGA4 1

2 ] and [SP, Tag
03DL]): an O-module F is quasi-coherent if for every object U ∈ S, there is a
covering {Ui → U} such that the restriction F |Ui to the localized site S/Ui has a
free presentation

O⊕JUi → O
⊕I
Ui
→ F |Ui → 0.

Show the definition of quasi-coherence above for a Deligne–Mumford stack X agrees
with this general definition on the ringed site (Xét,OX ).

The following exercise tells us that the notion of quasi-coherence is consistent
when the usual one when X is a scheme.
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Exercise 4.1.15. Let X be a scheme and F be an OXZar -module.

(a) Define a presheaf Fét on Xét as follows: for an étale map f : U → X from a
scheme, set Fét(U) = Γ(U, f∗F ). Show that Fét is a sheaf of OXét

-modules
and that the assignment F 7→ Fét defines an exact functor Mod(OXZar

) →
Mod(OXét

).
(b) Show that if F is a quasi-coherent OXZar -module, then Fét is a quasi-coherent
OXét

-module, and that F 7→ Fét is an equivalence of categories between quasi-
coherent OXZar

-modules and quasi-coherent OXét
-modules. See also [SP, Tag

03DX].

Exercise 4.1.16 (Groupoid and functorial perspectives). Let X be a Deligne–
Mumford stack.

(1) Let U → X is an étale presentation from a scheme U . If G is a quasi-coherent
sheaf on U and α : p∗1G

∼→ p∗2G is an isomorphism on R := U ×X U satisfying
the cocycle condition p∗23α ◦ p∗12α = p∗13α, show that G descends to a unique
quasi-coherent sheaf on X .

(2) If F is a quasi-coherent sheaf on X and f : S → X is a morphism from a
scheme, then show that (f∗F )|SZar

is a quasi-coherent sheaf on S.

Given a groupoid presentation R ⇒ U of X , (1) gives an equivalence between
quasi-coherent sheafs on X and quasi-coherent sheaves on U with descent datum.
Meanwhile, (2) above allows us to think of a quasi-coherent sheaf F on X as the data
of a quasi-coherent sheaf FS for every map S → X and compatible isomorphisms
f∗FT → FS for every map f : S → T over X . For instance, the Hodge bundle on
Mg is the data of the sheaf π∗ΩC/S for every smooth family of curves π : C → S

4.1.4 Pushforwards and pullbacks

Exercise 4.1.17 (Pushforward–Pullback Adjunction). Let f : X → Y be a mor-
phism of Deligne–Mumford stacks.

(a) Show that if G is a quasi-coherent OY -module, then f∗G is quasi-coherent.

Assume in addition that f is quasi-compact and quasi-separated.

(b) Show that if F is a quasi-coherent OX -module, then f∗F is quasi-coherent.
(c) Show that the functors

QCoh(X )

f∗
,,

QCoh(Y)

f∗
mm

are adjoints (with f∗ the right adjoint).

Exercise 4.1.18. Let G be a finite group and k be a field.

(a) Under the composition Speck p−→ BkG
π−→ Speck, show that for aG-representation

V , π∗V = V G where V G is the subspace of G-invariants and p∗V = V for-
getting the G-action, and that for a k-vector space W , π∗W = W with the
trivial G-action and p∗W = W ⊗ p∗k where p∗k is the regular representation
Γ(G,OG).
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(b) Given an action of G an an affine k-scheme SpecA, consider the diagram

SpecA
p
// [SpecA/G]

π //

q

��

SpecAG

BG

and recall from Example 4.1.13 that a quasi-coherent sheaf on [SpecA/G] is an
A-module M with a group homomorphism G→ EndA(M). Provide explicit
descriptions of the functors p∗, p∗, π∗, π∗, q∗ and q∗ on quasi-coherent sheaves.

Exercise 4.1.19 (Flat Base Change). Consider a cartesian diagram

X ′
g′
//

f ′

��

X

f

��

Y ′
g
// Y

�

of Deligne–Mumford stacks, and let F be a quasi-coherent sheaf on X. If g : Y ′ → Y
is flat and f : X → Y is quasi-compact and quasi-separated, the natural adjunction
map

g∗f∗F → f ′∗g
′∗F

is an isomorphism.

Exercise 4.1.20. Let X be a noetherian Deligne–Mumford stack. Prove the
following two statements:
(a) Every quasi-coherent sheaf on X is a directed colimit of its coherent subsheaves.
(b) If U ⊂ X is an open substack, then every coherent sheaf on U extends to a

coherent sheaf on X .
This exercise extends [Har77, Exer II.5.15] from schemes to Deligne–Mumford stacks;
see also [LMB00, Prop. 15.4], [Ols16, Prop. 7.1.11] and [SP, Tag 01PD].

4.1.5 Quasi-coherent constructions
A quasi-coherent OX -algebra on a Deligne–Mumford stack is a quasi-coherent OX -
module with the compatible structure of a ring object in Ab(Xét). We define the
relative spectrum SpecX A as the stack whose objects over a scheme S consists of a
morphism f : S → X and a morphism f∗A → OS of OS-algebras.

Exercise 4.1.21. Show that SpecX A is an algebraic stack affine over X .

Example 4.1.22 (Reduction). Let X be a Deligne-Mumford stack and let Ored
X

be the sheaf of OX -algebras where Ored
X (U) = Γ(U,OU )red for an étale X -scheme

U . Then Ored
X is a quasi-coherent OX -algebra and Xred := SpecX Ored

X defines the
reduction of X .

Example 4.1.23 (Normalization). Let X be an integral Deligne-Mumford stack
and let A be the sheaf of OX -algebras whose sections over an étale morphism U → X
from a scheme is the normalization of Γ(U,OU ). Since normalization commutes
with étale extensions (Proposition A.5.4), A is a quasi-coherent OX -algebra. The
normalization of X is defined as X̃ := SpecX A.
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Exercise 4.1.24. Let f : X → Y be a quasi-compact and quasi-separated morphism
of Deligne–Mumford stacks.
(a) Show that there is factorization f : X → Spec f∗OX → Y.
(b) Show that f is affine if and only if X → Spec f∗OX is an isomorphism.
(c) Show that f is quasi-affine if and only if X → Spec f∗OX is an open immersion.

Exercise 4.1.25. Use Exercise 4.1.20 to show that every quasi-coherent sheaf of
algebras on a noetherian Deligne–Mumford stack is a directed colimit of finite type
subalgebras.

4.1.6 Cohomology

We develop a cohomology theory for abelian sheaves on Deligne–Mumford stacks.
Despite utilizing the cohomology of quasi-coherent sheaves on schemes throughout
these notes, we surprisingly have little need for cohomology on algebraic spaces
and Deligne–Mumford stacks and many of the results here are included only for
completeness.

Existence of enough injective objects is shown analogously to the case of schemes
[Har77, Prop. 2.2].

Lemma 4.1.26. If X is a Deligne–Mumford stack, the categories Ab(Xét) and
Mod(OX ) have enough injectives. If in addition X is quasi-separated, then QCoh(X )
has enough injectives.

Proof. Recall that a functor R : A → B between abelian categories with an exact left
adjoint L preserves injectives: for an injective I in A, we have that HomB(−, R(I)) =
HomA(L(−), I) is exact.

By taking Λ to be the constant sheaf Z or the structure sheaf OX , the first
statement will follow if we show that the category Mod(Λ) of Λ-modules has enough
injectives for every sheaf of rings Λ on Xét. Let F be a Λ-module and let U → X be
an étale presentation. For each u ∈ U , we have a map ju : {u} ↪→ U → X from a
point and the stalk Fu = j−1

u F is an Λu-module. Choose an inclusion Fu ↪→ Iu into
an injective Λu-module. Adjunction gives a map F → ju,∗Iu, where ju,∗ is injective
since j−1

u is exact. By taking the product, we obtain an injection F →
∏
u∈U ju,∗Iu

into an injective Λ-module.
For the final statement, let F ∈ QCoh(X ) and let p : U =

∐
i SpecAi → X be

an étale presentation. Choose an injection p∗F ↪→ I into an injective quasi-coherent
OU -module. The composition F ↪→ p∗p

∗F ↪→ p∗I is injective and since p∗ is exact,
p∗I is injective.

Remark 4.1.27. The above argument for the existence of enough injectives in
Mod(OX ) extends to the category of O-modules in any ringed site with enough
points (see [Ols16, Thm. 2.3.2]) and is even true in any ringed site [SP, Tag 01DP].
The category of quasi-coherent sheaves on an arbitrary Deligne–Mumford stack (or
even algebraic stack) is a Grothendieck abelian category [SP, Tag 0781] and any
such category has enough injectives [Gro57], [SP, Tag 079H].

Definition 4.1.28 (Cohomology). Let X be a Deligne–Mumford stack and F a
sheaf of abelian groups on Xét. The cohomology group Hi(Xét, F ) is defined as the
ith right derived functor of the global sections functor Γ: Ab(Xét)→ Ab.

Given a morphism f : X → Y of Deligne–Mumford stacks, the higher direct image
Rif∗F is defined as the ith right derived functor of f∗ : Ab(Xét)→ Ab(Yét).
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The following is a key input to the development of quasi-coherent cohomology.

Theorem 4.1.29. For a quasi-coherent OXét
-module F on an affine scheme X,

Hi(Xét, F ) = 0 for all i > 0.

We will prove this using Čech cohomology. Čech cohomology in the étale topology
is defined similarly to the case of the Zariski topology [Har77, III.4] replacing
intersections Ui0 ∩ · · · ∩ Uin with fiber products Ui0 ×X · · · ×X Uin and considering
all (possibly non-distinct) indices i0, . . . , in in any order.

Definition 4.1.30 (Čech cohomology). Given an étale covering U = {Ui → X}i∈I
of a Deligne–Mumford stack and an abelian sheaf F on Xét, the Čech complex of F
with respect to U is Č•(U , F ) where

Čn(U , F ) =
∏

(i0,...,in)∈In+1

F (Ui0 ×X · · · ×X Uin)

with differential

dn : Čn(U , F )→ Čn+1(U , F ), (si0,...,in) 7→
( n+1∑
k=0

(−1)kp∗
k̂
si0,...,îk,...,in

)
(i0,...,in+1)

where pk̂ : Ui0×X · · ·×X Uin → Ui0×X · · ·×X Ûik×X · · ·×X Uin is the map forgetting
the kth component (with indexing starting at 0). The Čech cohomology of F with
respect to U is

Ȟi(U , F ) := Hi(Č•(U , F )).

The following is a standard result in Čech cohomology whose proof for sites is
analogous to topological spaces. It is often referred to as Cartan’s criterion; see
[God58, II.5.9.2], [Mil80, Prop. 2.12], [SP, Tag 03F9] or [Ols16, Prop. 2.3.15].

Lemma 4.1.31. Let X be a Deligne–Mumford stack and let F be an abelian sheaf
on Xét. Suppose Cov′(X ) ⊂ Cov(X ) is a subset of coverings of X such that ev-
ery covering of X has a refinement in Cov′(X ). If for every covering U ∈ Cov′,
Ȟi(U , F ) = 0 for i > 0, then Hi(Xét, F ) = 0.

With these preliminaries, we can prove Theorem 4.1.29.

Proof of Theorem 4.1.29. Let X = SpecA, F = M̃ be a quasi-coherent OX -module
and Fét be the corresponding quasi-coherent OXét

-module (Exercise 4.1.15). The
set of étale coverings of the form U = {SpecB → SpecA} is sufficient to refine any
other covering. For the covering U , faithful flat descent (Exercise B.1.2) implies that
there is a long exact sequence

0→M →M ⊗A B →M ⊗A B ⊗A B →M ⊗A B ⊗A B ⊗A B → · · · ,

which is identified with the Čech complex Č•(U , F ). This shows that Ȟi(U , F ) = 0
for i > 0 and thus Lemma 4.1.31 implies that Hi(Xét, Fét) = 0.

As with ordinary topological spaces [Har77, Exer. III.4.11], Čech cohomology
can be computed using a covering with vanishing cohomology; see for instance [SP,
Tag 03F7].

Lemma 4.1.32. Let F be an abelian sheaf on Xét and (Ui → X )i∈I an étale
covering. If Hi(Uj0 ×U · · · ×U Ujn , F ) = 0 for all i > 0, n ≥ 0 and j0, . . . , jn ∈ I,
then Ȟi(U , F ) = Hi(Xét, F ).
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On a scheme with affine diagonal, both the étale and Zariski cohomology of a
quasi-coherent sheaf can be computed on every affine open covering. We thus obtain:

Proposition 4.1.33. Let X be a scheme with affine diagonal. Let F be a quasi-
coherent OX-module and let Fét denote the corresponding quasi-coherent OXét

-module
(see Exercise 4.1.15). Then Hi(X,F ) = Hi(Xét, Fét) for all i.

Remark 4.1.34. The same result holds in the lisse-etale or fppf topology and
without the affine diagonal hypothesis; see [SP, Tag 03DW] and [Mil80, Prop. 3.7].

Of course, in addition to being convenient to develop the theory of cohomology,
Čech cohomology is also an extremely effective tool to compute cohomology groups.
We have the following consequence of Theorem 4.1.29 and Lemma 4.1.32.

Proposition 4.1.35. Let X be a Deligne–Mumford stack with affine diagonal and
F be a quasi-coherent sheaf. If U = {Ui → X} is an étale covering with each Ui
affine, then Hi(Xét, F ) = Ȟi(U , F ).

To compare cohomologies computed in Ab(Xét), Mod(OX ) and QCoh(X ), we
have.

Proposition 4.1.36. Let X be a Deligne–Mumford stack.
(1) If F is an OX -module, then the cohomology Hi(Xét, F ) of F as an abelian

sheaf agrees with the ith right derived functor of Γ: Mod(OX )→ Ab.
(2) If X has affine diagonal and F is a quasi-coherent sheaf on X , then the

cohomology Hi(Xét, F ) of F as an abelian sheaf agrees with the ith right derived
functor of Γ: QCoh(X )→ Ab.

For a morphism f : X → Y of Deligne–Mumford stacks (resp. quasi-compact mor-
phism of Deligne–Mumford stacks with affine diagonals), then (1) (resp. (2)) holds
also for the higher direct images Rif∗F of an OX -module (resp. quasi-coherent sheaf):
it can be computed as the ith right derived functor of f∗ : Mod(OX ) → Mod(OY)
(resp. f∗ : QCoh(X )→ QCoh(Y)).

Proof. For (1), we need to show that an injective object in Mod(OX ) is acyclic
in Ab(Xét). This uses a standard technique in Čech cohomology. We need some
notation: given an étale covering U = {Ui → X}i∈I , we set Ui := Ui0 ×X · · · ×X Uin
with structure morphism ji : Ui → X . There is a chain complex ZU,• of presheaves
on X defined by

ZU,n :=
⊕

i∈In+1

ji,!Z

where Z denotes the constant presheaf and ji,!Z is the presheaf whose sections over
an X -scheme V are

⊕
MorX (V,Ui)

Z. The differentials of ZU,• are the alternating
sums of the natural maps. This complex of presheaves is exact in positive degrees
and has the property that for every presheaf F

Č(U , F ) = MorPAb(Xét)(ZU,•, F ) = MorPMod(OX )(ZU,• ⊗Z OX , F ),

where morphisms are computed in the categories PAb(Xét) and PMod(OX ) of
presheaves. If F ∈ Mod(OX ) is injective, then it is also injective as a presheaf of OX -
modules. It follows that Č(U , F ) is exact in positive degrees and thus Ȟi(U , F ) = 0
for i > 0. Therefore Lemma 4.1.31 implies that Hi(Xét, F ) = 0. For more details,
see [SP, Tag 03FD] or [Ols16, Cor. 2.3.16].
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For (2), let F ∈ QCoh(X ) be an injective object. Let p : U =
∐
i SpecAi → X be

an étale presentation and choose an injection p∗F ↪→ G into an injective object G ∈
QCoh(U). Then pushforward p∗G is injective (as the right adjoint p∗ is exact) and
we have an inclusion F ↪→ p∗p

∗F ↪→ p∗G of injectives which splits. It thus suffices
to show that p∗G is acyclic in Ab(Xét). Since X has affine diagonal, p : U → X is an
affine morphism. By descent and Flat Base Change (Exercise 4.1.19), p∗ is exact on
the category of quasi-coherent sheaves. It follows that Hi(Xét, p∗G) = Hi(Uét, G) = 0
by Theorem 4.1.29.

It follows from (2) that for a scheme X with affine diagonal and for a quasi-
coherent sheaf F , we have that Hi(X,F ) = Hi(Xét, Fét).

Example 4.1.37 (Group cohomology). Let G be a finite group viewed as a group
scheme over a field k, and let V be a G-representation. The group cohomology
Hi(G,V ) is defined as the ith right derived functor of Rep(G) → Vectk, V 7→ V G.
Since Hi(BGét, Ṽ ) can be computed in QCoh(BG) (Proposition 4.1.36(2)) where
Ṽ is the corresponding quasi-coherent sheaf on BG and there is an equivalence
Repk(G) ∼= QCoh(BG), we have the identification

Hi(G,V ) ∼= Hi(BGét, Ṽ ).

The Čech complex of Ṽ on BG corresponding to V with respect to the étale cover
U = {Speck→ BG} has terms

Čn(U , V ) := Ṽ ((Speck/BG)n+1) ∼= Γ(G,OG)⊗n ⊗ V.

To describe the differentials, let µk : Gn+1 → Gn for k = 0, . . . , n be defined
by sending (g1, . . . , gn+1) to (g1, . . . , gn) for k = 0 and to (g1, . . . , gk−1, gkgk+1,
gk+2, . . . , gn+1) for k = 1, . . . , n. Let σ : V → Γ(G,OG) ⊗ V be the coaction
map. The projection pk̂ : (Speck/BG)n+2 → (Speck/BG)n+1 is identified with
µn+1−k ⊗ id for k = 0, . . . n and id⊗σ for k = n+ 1 (see Example 3.4.5). Thus the
differentials in Č•(U , V ) are described by

dn : Γ(G,OG)⊗n ⊗ V →Γ(G,OG)⊗(n+1) ⊗ V

f ⊗ v 7→
n∑
k=0

(−1)kµ∗n+1−k(f)⊗ v + (−1)n+1f ⊗ σ(v)

In low degrees, we have d0(v) = v − σ(v) and d1(f1, v) = f1 ⊗ 1⊗ v − µ∗(f1)⊗ v +
f1 ⊗ σ(v) where µ = µ1 is group multiplication G×G→ G.

Since G is finite, there is an identification Γ(Gn,OGn)⊗ V ∼= Map(Gn, V ) with
set-theoretic maps, where a map φ : Gn → V is identified with

∑
g∈Gn egφ(g) where

eg denotes the function which is 1 on g but otherwise 0. Thus the Čech complex
Č•(U , V ) can be equivalently described as

0→ V
d0

−→ Map(G,V )
d1

−→ Map(G2, V )
d2

−→ · · · (4.1.1)

where the differential dn is defined by the formula

(dnφ)(g1, . . . , gn+1) = φ(g1, . . . , gn)+
n∑
k=1

(−1)n+1−kφ(g1, . . . , gk−1, gkgk+1, . . . , gn+1) + (−1)n+1g1φ(g2, . . . , gn)
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for φ ∈ Map(Gn, V ). The complex (4.1.1) is sometimes referred to as the bar
resolution (except that the differential dn is usually multiplied by (−1)n+1), and is
an effective means to compute group cohomology. In low degrees, d0(v)(g) = v − gv
and d1(φ)(g1, g2) = φ(g1)− φ(g1g2) + g1φ(g2).

Exercise 4.1.38. If X is a Deligne–Mumford stack and Fi is a directed system
of abelian sheaves in Xét, show that colimi Hi(Xét, Fi) → Hi(Xét, colimi Fi) is an
isomorphism.

Remark 4.1.39 (Comparison of topologies). One can also define the fppf coho-
mology groups Hi(Xfppf , F ) of an abelian sheaf on the small fppf site of X . There
are some cases when this agrees with the small étale cohomology. For instance,
if G → S is a smooth, commutative, and quasi-projective group scheme, then
Hi(Sét, G) = Hi(Sfppf , G) [Mil80, Thm. 3.9]. For Gm, there are identifications
Pic(X) = H1(XZar,O∗X) = H1(Xét,Gm) = H1(Xfppf ,Gm) for a scheme X (Hilbert’s
Theorem 90, [Mil80, Prop. 4.9]).

On the other hand, if X is a smooth scheme over C and G is a finite abelian
group, then the classical complex cohomology Hi(X(C), G) agrees with the étale
cohomology Hi(Xét, G) of the constant sheaf associated to G [Mil80, Thm. 3.12].

Exercise 4.1.40 (Forms of group schemes). Let G be an algebraic group over a
field k. We say that a group scheme H → Speck is a form of G if there is an
isomorphism Gk

∼= Hk. We call G the trivial form of G.
(a) Show the algebraic group H = SpecR[x, y]/(x2 + y2 − 1) over R, with the

group structure induced from the embedding H ⊂ SL2 given by

(x, y) 7→
(
x y
−y x

)
,

is a non-trivial form of Gm,R.
(b) Assume that char(k) 6= 2. Recall the orthogonal groups O(q) defined in

Exercise C.2.16 for a non-degenerate quadratic form q on an n-dimensional
vector space V . Show that every O(q) is a form of the subgroup On ⊂ GLn of
orthogonal matrices.

(c) If G is smooth and commutative, show that forms of G are classified by
H1((Sch/k)ét,Aut(G)).

Remark 4.1.41 (Other cohomology theories). See §6.1.6 for the development of
sheaf cohomology on an algebraic stack. See §6.1.7 for a discussion of the Chow
group of an algebraic stack, and §6.1.8 for a discussion of de Rham and singular
cohomology.

4.2 Quotients by finite groups and the local struc-
ture of Deligne–Mumford stacks

Quotient stacks [SpecA/G] of an affine scheme by a finite group are particularly
nice class of Deligne–Mumford stacks. Their geometry is the G-equivariant geometry
of SpecA. In this section, we show that the natural map [SpecA/G] → SpecAG

is universal for maps to algebraic spaces (Theorem 4.3.6) and that every Deligne–
Mumford stack is étale locally isomorphic to a quotient stack of the form [SpecA/G]
(Theorem 4.2.11).
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4.2.1 Quotients by finite groups
Definition 4.2.1 (Geometric quotients). If G is a finite group acting on an algebraic
space U , a G-invariant morphism U → X is a geometric quotient if
(1) for every algebraically closed field k, the map U → X induces a bijection

U(k)/G
∼→ X(k), and

(2) U → X is universal for G-invariant maps to algebraic spaces, i.e. , every
G-invariant map U → Y to an algebraic space factors uniquely as

U

��   

X // Y.

If π : U → X is a geometric quotient, we often write X = U/G. In the case that
G acts freely on U (i.e. the action map G× U → U × U is a monomorphism), then
we have already defined the algebraic space quotient U/G and the map U → U/G is
a geometric quotient.

If a finite group G acts on an affine scheme SpecA, then G also acts on the ring
A. We define the invariant ring as

AG = {f ∈ A | g · f = f for all g ∈ G}.

We will show shortly that SpecA→ SpecAG is a geometric quotient (Theorem 4.2.6).

Example 4.2.2. Assume char(k) 6= 2. Let G = Z/2 acts on A1 = Speck[x]
via −1 · x = −x, then k[x]G = k[x2]. The geometric quotient is the map A1 =
Speck[x]→ Speck[x2] = A1 sending p to p2.

Let G = Z/2 acts on A2 = Speck[x, y] via −1·(x, y) = (−x,−y). Then k[x, y]G =
k[x2, xy, y2] and the geometric quotient is A2 → A2/G = Speck[x2, xy, y2]. By
setting A = x2, B = xy and C = y2, the invariant ring can be identified with
k[A,B,C]/(B2 −AC) so the quotient A2/G is a cone over a conic and in particular
singular.

Lemma 4.2.3. If G is a finite group acting on an affine scheme SpecA, then
AG → A is integral. If A is finitely generated over a noetherian ring R, then
AG → A is finite and AG is finitely generated over R.

Proof. To see that AG → A is integral, for every element a ∈ A the product∏
g∈G(x−ga) ∈ AG[x] is polynomial with invariant coefficients which has a as a root.

If R is noetherian and R→ A is of finite type, then AG → A is also of finite type.
As AG → A is integral, it is finite (c.f. [AM69, Cor. 5.2]). Since R is noetherian, we
may conclude by the Artin–Tate Lemma (c.f. [AM69, Prop. 7.8]) that R→ AG is of
finite type.

The invariant ring is compatible with flat base change.

Lemma 4.2.4. Let G be a finite group acting on an affine scheme SpecA. If AG →
B is a flat ring homomorphism, then G acts on the affine scheme Spec(B ⊗AG A)
and B = (B ⊗AG A)G.

Proof. By definition, the invariant ring is the equalizer

0→ AG → A
p1−−⇒
p2

∏
g∈G

A
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where p1(f) = (f)g∈G and p2(f) = (gf)g∈G. Since AG → B is flat, we have that

0→ B → A⊗AG B
p1−−⇒
p2

∏
g∈G

A⊗AG B

is also exact and we conclude that B = (B ⊗AG A)G.

Exercise 4.2.5. Let AG → B be a ring homomorphism and consider the commuta-
tive diagram

SpecB ⊗AG A

��

//

uu

SpecA

��

Spec(B ⊗AG A)G // SpecB // SpecAG.

�

(a) Show that Spec(B ⊗AG A)G → SpecB is an integral homeomorphism.
(b) If |G| is invertible in A, show that B → (B ⊗AG A)G is an isomorphism.
(c) Provide an example where B → (B ⊗AG A)G is not an isomorphism.

Theorem 4.2.6. If G is a finite group acting on an affine scheme SpecA, then
SpecA→ SpecAG is a geometric quotient. If A is finitely generated over a noethe-
rian ring R, then AG is also finitely generated over R.

Proof. Consider the commutative diagram

U = SpecA

π̃

((��

X = [U/G]
π // X = SpecAG.

Since π̃ is integral and dominant, it is surjective. To see that π̃ is injective on
G-orbits of geometric points, let k be an algebraically closed field and x, x′ ∈ U(k)
with π̃(x) = π̃(x′) ∈ X(k). The base change U×X Speck = Spec(A⊗AG k) inherits a
G-action and the G-orbits Gx,Gx′ ⊂ U ×X AG are closed subschemes. If Gx 6= Gx′,
then the orbits are disjoint and there exists a function f ∈ A⊗R k with f |Gx = 0

and f |Gx′ = 1. Then f̃ =
∏
g∈G gf ∈ (A ⊗AG k)G is a G-invariant function with

f ′(x) = 0 and f ′(x′) = 1. But this implies that π̃(x) 6= π̃(x′) ∈ X(k), which is a
contradiction.

The map π̃ : U → X is universal for G-invariant maps to algebraic spaces if and
only if π : X = [U/G]→ X is universal for maps to algebraic spaces. In other words,
we need to show that if Y is an algebraic space, then the natural map

Map(X,Y )→ Map(X , Y ) (4.2.1)

is bijective. We note that this is immediate when Y is affine as Γ(X ,OX ) = Γ(X,OX)
and the case when Y is a scheme can be reduced to this case without much effort:
if g : X → Y is a map, an affine covering Yi of Y induces an open covering Xi =
X \ π(X \ g−1(Yi)) of X, and g restricts to a map π−1(Xi) → Yi which factors
uniquely through Xi since π∗OX = OX ; see also [GIT, §0.6]. We need to work
harder to handle the case that Y is an algebraic space.

For the injectivity of (4.2.1), let h1, h2 : X → Y be two maps such that h1 ◦ π =
h2 ◦ π. Let E → X be the equalizer of h1 and h2, i.e. the pullback of the diagonal
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Y → Y × Y along (h1, h2) : X → Y × Y . The equalizer E → X is a monomorphism
and locally of finite type. By construction π : X → X factors through E → X
and since π is universally closed and schematically dominant (i.e. OX → π∗OX
is injective), so is E → X. As every universally closed and locally of finite type
monomorphism is a closed immersion (see Corollary A.5.5 and Remark A.5.6), we
conclude that E → X is an isomorphism.

For the surjectivity of (4.2.1), let g : X → Y be a map. We claim that the
question is étale-local on X. Indeed, if V → X is an étale cover and h : V → Y is
a morphism such that the two compositions V ×X X → V

h−→ Y and V ×X X →
X g−→ Y agree, then by the injectivity of (4.2.1) applied to the good moduli space
V ×X V ×X X → V ×X V , the two compositions V ×X V ⇒ V

h−→ Y agree and
thus h : V → Y descends to a morphism h : X → Y . Étale descent also implies the
commutativity of g = h ◦ π.

Since X is quasi-compact, we may assume that Y is quasi-compact as g : X → Y
factors through a quasi-compact open algebraic subspace of Y . Let Y ′ → Y be an
étale presentation from an affine scheme and let X ′ := X ×Y Y ′. We claim that
after replacing X with an étale cover V → X and X with the base change X ×X V ,
there is a section s : X → X ′ of X ′ → X in the commutative diagram

X ′ //

g′

��

X
s
ww π //

g

��

X

~~

Y ′ // Y.

�

The surjectivity of (4.2.1) follows from this claim: since X and Y ′ are affine,

the equality Γ(X,OX) = Γ(X ,OX ) implies that X s−→ X ′ g′−→ Y ′ factors through
π : X → X via a morphism X → Y ′. The composition X → Y ′ → Y yields the
desired dotted arrow above.

We claim that limit methods allows us to reduce to the case that X = SpecAG

is the spectrum of a strictly henselian local ring. Indeed, for a closed point u of
U := SpecA over x ∈ |X |, the strict henselization Xsh := Osh

X,π(x) is the limit
limiXi over all affine étale neighborhoods Xi → X of π(x). The base change
U sh := U ×X Xsh is the limit of the affine schemes Ui := U ×X Xi. We also set
X sh := X ×X Xsh = [U sh/G] and Xi := X ×X Xi = [Ui/G]. Since X ′ → X is locally
of finite presentation, the natural map

colimi MorX (Xi,X ′)→ MorX (X sh,X ′)

is an equivalence; this follows from Exercise 3.3.31 using that MorX (X sh,X ′) is the
equalizer of MorX (U sh,X ′) ⇒ MorX (G × U sh,X ′) and similarly for the left-hand
side. A section of X ′ ×X X sh → X sh is determined by a map X sh → X ′ over X .
This map extends to a morphism Xi → X ′ for some i which gives us the desired
section.

Let κ be the residue field of AG. As AG → A is finite, A = A1 × · · · × Ar is
a product of strictly henselian local rings each finite over AG (Proposition A.9.6).
If u ∈ SpecA1 ⊂ SpecA is a closed point, then SpecA1 is Gu-invariant and the
orbit Gu is in bijection with the r connected components of SpecA. There is an
isomorphism X ∼= [SpecA1/Gu]; this can be verified directly by for instance slicing
the groupoid G × SpecA ⇒ SpecA by SpecA1 ↪→ SpecA (as in Exercise 3.4.15).
We may thus replace X = [SpecA/G] with [SpecA1/Gu] and we can assume that
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there is a unique closed point u ∈ SpecA which is set-theoretically fixed by G.
As Y ′ → Y is representable by schemes, we can write X ′ = [U ′/G] for a scheme
U ′. Let u′ ∈ U ′ be a preimage of u ∈ SpecA. As A is strictly henselian and
the G-equivariant morphism U ′ → U is the base change of the étale morphism
Y ′ → Y , we see that κ(u′) = κ(u) and Gu′ = Gu = G, and moreover the stabilizers
act trivially on the residue fields. Again using that A is strictly henselian, there
is a unique section s : SpecA → U ′ with s(u) = u′ (Proposition A.9.3). This
section is G-invariant because for every g ∈ G, both s ◦ g and g ◦ s are sections of

U ′ → SpecA
g−1

−−→ SpecA with u′ 7→ u and thus the sections agree. It follows that s
descends to a section X = [SpecA/G]→ [U ′/G] = X ′ of X ′ → X . This finishes the
proof that SpecA→ SpecAG is a geometric quotient.

The final statement follows from Lemma 4.2.3.

Corollary 4.2.7. Let G be a finite group acting freely on an affine scheme U =
SpecA, then the algebraic space quotient U/G is isomorphic to SpecAG.

Exercise 4.2.8. Let R be a noetherian ring. Let G be a finite group acting on a
scheme U projective (resp. quasi-projective, quasi-affine) over a ring R. Show that
there exists a geometric quotient U → U/G such that U/G is a projective (resp.
quasi-projective, quasi-affine) scheme over R.

Exercise 4.2.9. Suppose that G is a finite group acting on an affine scheme SpecA
of finite type over a noetherian ring R. If x ∈ SpecA is a closed point, show that
there is an isomorphism

ÂGx ∼= ÂG

between the Gx-invariants of the completion at SpecA at x and the completion of
SpecAG at the image of x.

The following exercise generalizes Theorem 4.3.6 from quotients of finite groups
to quotients of finite flat groupoids.

Exercise 4.2.10. Let s, t : R ⇒ U be a finite flat groupoid of affine schemes,
and define AR ⊂ A as the subring of R-invariants, i.e. the subring of elements
a ∈ A such that s∗a = t∗a ∈ Γ(R,OR). Show that U → X := SpecAR induces a
bijection U(k)/R(k)

∼→ X(k) for every algebraically closed field k and that U → X
is universal for R-invariant maps to algebraic spaces. Moreover, show that if A is
finitely generated over a noetherian ring, then so is AR.

4.2.2 The Local Structure Theorem

We show that a Deligne–Mumford stack X near a point x is étale locally the quotient
stack [SpecA/Gx] of an affine scheme by the stabilizer group scheme. Conceptually,
this tells us that just as schemes (resp. algebraic spaces) are obtained by gluing
affine schemes in the Zariski-topology (resp. étale-topology), Deligne–Mumford
stacks are obtained by gluing quotient stacks [SpecA/G] in the étale topology.1
Practically, this allows one to reduce many properties of Deligne–Mumford stacks to
quotient stacks [SpecA/G]. We will take advantage of this local structure in order
to construct a coarse moduli space (Theorem 4.3.11).

1Of course, Deligne–Mumford stacks are also étale locally schemes but the étale neighborhoods
([SpecA/Gx], w)→ (X , x) produced by Theorem 4.2.11 preserve the stabilizer group at w.
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The geometric stabilizer of a point x of a Deligne–Mumford stack X is the
abstract group defined as the stabilizer of any geometric point Speck → X with
image x.

Theorem 4.2.11 (Local Structure Theorem of Deligne–Mumford Stacks). Let X
be a separated Deligne–Mumford stack and x ∈ X be a point with geometric stabilizer
Gx. There exists an affine étale morphism

f : ([SpecA/Gx], w)→ (X , x)

where w ∈ [SpecA/Gx] such that f induces an isomorphism of geometric stabilizer
groups at w.

Proof. Choose a field-valued point Speck→ X representing x. Let (U, u)→ (X , x)
be an étale representable morphism from an affine scheme, and let d be the degree
over x, i.e. the cardinality of Speck×X U . Since X is separated, U → X is affine.
Define the affine scheme

(U/X )d := U ×X · · · ×X U︸ ︷︷ ︸
d times

.

For a scheme S, a morphism S → (U/X )d corresponds to a morphism S → X and d
sections s1, . . . , sd of US := U ×X S → S.

Let (U/X )d0 be the quasi-affine subscheme (U/X )d which is the complement of
all pairwise diagonals, i.e. a map S → (U/X )d0 corresponds to S → X and n sections
s1, . . . , sn : S → US which are disjoint (meaning that the intersection of si and sj is
empty for i 6= j). There is an action of Sd on (U/X )d by permuting the sections
and (U/X )d0 ⊂ (U/X )d is an Sd-equivariant open subscheme. By the correspondence
between principal Sd-bundles and finite étale covers of degree d (Exercise C.2.8), an
object of the quotient stack [(U/X )d0/Sd] over a scheme S corresponds to a diagram

Z �
�

//

  

US //

��

U

��

S // X

�

where Z ↪→ US is a closed subscheme and Z → S is finite étale of degree d. Let
w ∈ [(U/X )d0/Sd](k) be the point corresponding to Z = Speck×X U . There is an
induced representable morphism [(U/X )d0/Sd]→ X and a commutative diagram

(U/X )d0
� � //

��

(U/X )d

��

[(U/X )d0/Sd]

''

U

��

X

Set W := (U/X )d0. The morphism [W/Sd] → X is étale and representable, and
induces an isomorphism of stabilizer groups at w.

By quotienting out by Gx ⊂ Sd instead, the morphism [W/Gx] → X which is
also étale and representable, and induces an isomorphism of stabilizer groups at w.
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Letting W ′ ⊂W be an affine open subscheme containing w, we may replace W with
the Gx-invariant affine open subscheme

⋂
g∈Gx g ·W

′.
It remains to show that [W/Gx]→ X is affine. Since X is separated, its diagonal

is affine and the morphism W → X from the affine scheme W is affine. The fiber
product

[W/Gx]×X W //

��

W

��

[W/Gx] // X

�

is affine over [W/Gx] and thus isomorphic to a quotient stack [SpecB/Gx]. On the
other hand, since [W/Gx] → X is representable, the quotient stack [SpecB/Gx]
is an algebraic space and the action of Gx on SpecB is free. By Corollary 4.2.7,
[SpecB/Gx] is isomorphic to the affine scheme SpecBGx . By étale descent [W/Gx]→
X is affine.

See also [LMB00, Thm. 6.2].

Exercise 4.2.12. Suppose that X is a Deligne–Mumford stack with quasi-affine
diagonal. (In Corollary 4.4.8, we will show that if the diagonal of a Deligne–Mumford
stack is separated and quasi-compact, then it is quasi-affine.) Let x ∈ X be a point
with geometric stabilizer Gx. Modify the above argument to show that there
is a quasi-affine and étale morphism f : ([SpecA/Gx], w) → (X , x) inducing an
isomorphism of geometric stabilizer groups at w.

Exercise 4.2.13. Let X be a Deligne–Mumford stack. Show that X is isomorphic
to a quotient stack [U/G] where U is an affine scheme (resp. scheme, algebraic space)
and G is a finite group if and only if there exists a finite étale morphism V → X
from an affine scheme (resp. scheme, algebraic space).
Hint: If V → X is a finite étale cover of degree d, consider the associated principal
Sd-torsor V ×X · · · ×X V︸ ︷︷ ︸

d times

\∆→ X ; see Exercise C.2.8.

Proposition 4.2.14. If R ⇒ U is a finite étale equivalence relation of affine
schemes, then the algebraic space quotient U/R is an affine scheme.

Proof. By Exercise 4.2.13, the algebraic space U/R is isomorphism to V/G for the free
action of a finite group G on an affine scheme V = SpecB. Theorem 4.3.6 shows that
V/G→ SpecBG is universal for maps to algebraic spaces and thus an isomorphism.
Alternatively, this follows from Exercise 4.2.10: if U = SpecA, then U/R→ SpecAR

is universal for maps to algebraic spaces and thus an isomorphism.

With a similar technique to the proof of Theorem 4.2.11, we can prove the
following useful result asserting the existence of presentations with a lift of a given
field-valued point.

Proposition 4.2.15. If X is an algebraic stack with separated and quasi-compact
diagonal and x ∈ X (k) is a field-valued point, then there exists a smooth morphism
U → X from an affine scheme and a point u ∈ U(k) over x.

Proof. Let U → X be a smooth presentation and consider the fiber product

Ux //

��

U

��

Speck x // X .

�
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Since X is quasi-separated, so is Ux. If u ∈ Ux is any closed point, then the inclusion
Specκ(u)→ Ux of the residue field (Proposition 3.5.16) is a closed immersion and
k→ κ(u) is a finite separable extension of fields. Let d = [κ(u) : k]. Following the
notation of the proof of Theorem 4.2.11, if we set V := (U/X )d0 and consider the
smooth morphism [V/Sd] → X . As Specκ(u) → Speck is finite étale of degree d,
the closed immersion Specκ(u) ↪→ Ux defines a k-point v of [V/Sd]. This gives a
commutative diagram

[V/Sd]

��

Speck x //

v
::

X .

By choosing a faithful representation Sd ⊂ GLn, we can write [V/Sd] ∼= [V ′/GLn]
where V ′ = V ×Sd GLn. Then v : Speck → [V ′/GLn] corresponds to a principal
GLn-bundle P → Speck and a GLn-equivariant map P → V ′. Since principal
GLn-bundles are in bijection to vector bundles (Exercise C.2.11), P is the trivial
principal GLn-bundle and there is a section Speck → P . The composition V ′ →
[V ′/GLn] → X is smooth and the composition Speck → P → V ′ is a lift of x. It
remains to show that we can arrange that V ′ is affine.

To show that we can arrange that V ′ is affine, we will use the fact that a quasi-
separated algebraic space has quasi-affine diagonal; this is proved in Corollary 4.4.8
and relies on only the basic theory of quasi-coherent sheaves and Proposition 4.2.14.
The above argument reduces the claim to the case that X is an algebraic space.
Choose an étale map U → X from an affine scheme such that the image contains x.
As the diagonal of X is quasi-affine, the map U → X is quasi-affine. Repeating the
argument in the proof, we observe that V = (U/X )d0 is a quasi-affine scheme with a
free action of Sd. The quotient V/Sd is a quasi-affine scheme (Exercise 4.2.8) and
we can simply choose an affine open neighborhood containing the k-point v.

See also [LMB00, Thm. 6.3].

4.3 Coarse moduli spaces and the Keel–Mori Theo-
rem

The goal of this section is to establish the Keel–Mori Theorem: every separated
Deligne–Mumford stack X of finite type over a noetherian scheme admits a separated
coarse moduli space π : X → X (see Theorem 4.3.11). One can view this theorem
as a way to remove the stackiness of a Deligne–Mumford stack; at the expense
of sacrificing universal properties of X (e.g. existence of a universal family), one
can replace X with an algebraic space without changing the underlying topological
space.

We will later apply this theorem to show that the Deligne–Mumford stackMg

parameterizing stable curves admits a coarse moduli space π : Mg →Mg where Mg

is a separated algebraic space, which we later show to be proper and then finally
projective.

To prove Theorem 4.3.11, we will apply the Local Structure Theorem (4.2.11)
to construct étale neighborhoods [Spec(Ai)/G]→ X and show that the geometric
quotients Spec(AGi ) glue in the étale topology to a coarse moduli space of X .
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4.3.1 Coarse moduli spaces
We begin with the definition:

Definition 4.3.1. A morphism π : X → X from an algebraic stack to an algebraic
space is a coarse moduli space if
(1) for every algebraically closed field k, the induced map X (k)/∼ → X(k), from

the set of isomorphism classes of objects of X over k, is bijective, and
(2) π is universal for maps to algebraic spaces, i.e. every map X → Y to an

algebraic space factors uniquely as

X

π

��   

X // Y.

Remark 4.3.2. If G is a finite group acting on an algebraic space U , then
[U/G] → X is a coarse moduli space if and only if U → X is a geometric quo-
tient (Definition 4.2.1).

Remark 4.3.3. In practice, we desire coarse moduli spaces with additional proper-
ties of π : X → X as otherwise it is difficult to work with this notion. For instance,
it is not true that this notion is stable under étale base change (or even open immer-
sions) or that π∗OX = OX . However, we emphasize that the Keel–Mori Theorem
produces a coarse moduli space π : X → X with the additional properties: (a) it is
stable under flat base change, (b) π∗OX = OX , (c) π is proper (and in particular
separated!) and (d) π is a universal homeomorphism.

Lemma 4.3.4. Let π : X → X be a coarse moduli space such that for every étale
morphism X ′ → X from an affine scheme, the base change X ×X X ′ → X ′ is a
coarse moduli space. Then the natural map OX → π∗OX is an isomorphism.

Proof. As π is universal for maps to algebraic spaces, we have that Map(X,A1)→
Map(X ,A1) is bijective or in other words Γ(X,OX) ∼= Γ(X ,OX ). For every étale
map X ′ → X, the base change X ′ = X×XX ′ → X ′ is also a coarse moduli space and
thus Γ(X ′,OX′) ∼= Γ(X ′,OX ′). This shows that OX → π∗OX is isomorphism.

The property that a given map is a coarse moduli space can be checked étale
locally.

Lemma 4.3.5. Let π : X → X be a morphism to an algebraic space. Suppose that
there is an étale covering {Xi → X} such that X ×X Xi → Xi is a coarse moduli
space for each i. Then π : X → X is a coarse moduli space.

Proof. Axiom (1) of a coarse moduli space is a condition on geometric fibers and can
thus be checked étale locally while Axiom (2) follows from the fact that algebraic
spaces are sheaves in the étale topology.

Theorem 4.3.6. If G is a finite group acting on an affine scheme SpecA, then
π : [SpecA/G]→ SpecAG is a coarse moduli space. Moreover,
(1) the base change of π along a flat morphism X ′ → SpecAG of algebraic spaces

is a coarse moduli space,
(2) the natural map X → π∗OX is an isomorphism, and
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(3) if A is finitely generated over a noetherian ring R, then AG is finitely generated
over R and π is a proper universal homeomorphism.

Proof. We’ve already seen that π : [SpecA/G]→ SpecAG is a coarse moduli space
(Theorem 4.3.6). To see (3), it suffices by Lemma 4.3.5 to consider flat morphisms
Y ′ → Y from an affine scheme. But in this case, the base change X ×Y Y ′ is
isomorphic to a quotient stack [SpecB/G] and Lemma 4.2.4 implies that Y ′ ∼=
SpecBG. It follows that X ×Y Y ′ → Y ′ is a coarse moduli space. Part (2) follows
directly from (1) by Lemma 4.3.4. For (3), we’ve already seen that AG is finitely
generated over R and that AG → A is finite (Lemma 4.2.3). Since π is bijective
and universally closed, its set-theoretic inverse is continuous, and thus π is a
homeomorphism. The base change of π along a morphism SpecB → SpecAG

factors as [Spec(B ⊗AG A)/G]→ Spec(B ⊗AG A)G → SpecB where the first map is
a homeomorphism by the above argument and the second is a homeomorphism by
Exercise 4.2.5. We conclude that π is a universal homeomorphism.

4.3.2 Descending étale morphisms to quotients

Proposition 4.3.7. Let G be a finite group and f : SpecA → SpecB be a G-
equivariant morphism of affine schemes of finite type over a noetherian ring R. Let
x ∈ SpecA be a closed point. Assume that

(a) f is étale at x and
(b) the induced map Gx → Gf(x) of stabilizer group schemes is bijective.

Then there is an open affine neighborhood W ⊂ SpecAG of the image of x such that
W → SpecAG → SpecBG is étale and π−1

A (W ) ∼= W ×SpecBG [SpecB/G], where
πA : [SpecA/G]→ SpecAG.

Remark 4.3.8. In other words, after replacing SpecAG with an affine neighborhood
W of πA(x) and SpecA with π−1

A (W ), it can be arranged that the diagram

[SpecA/G]

πA

��

f
// [SpecB/G]

πB

��

SpecAG // SpecBG

(4.3.1)

is cartesian where both horizontal maps are étale.
Condition (b) can be tested on a field-valued point Speck→ SpecA representing

x (e.g. the inclusion of the residue field).

In the proof of the Keel–Mori Theorem (Theorem 4.3.11), the above proposition
will be applied in the following form.

Corollary 4.3.9. Let G be a finite group and f : SpecA → SpecB be a G-
equivariant morphism of affine schemes of finite type over a noetherian ring R.
Assume that for every closed point x ∈ SpecA,

(a) f is étale at x and
(b) the induced map Gx → Gf(x) of stabilizer group schemes is bijective.

Then SpecAG → SpecBG is étale and (4.3.1) is cartesian.
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Proof of Proposition 4.3.7. Set y = f(x). We first claim that the question is étale
local around πB(y) ∈ SpecBG. Indeed, if Y ′ → Y := SpecBG is an affine étale
neighborhood of πB(y), we let X ′,X ′ and Y ′ denote the base changes of X :=
SpecAG, X := [SpecA/G], and Y := [SpecB/G]. By Lemma 4.2.4, we know that
Y ′ ∼= [SpecB′/G] with Y ′ ∼= SpecB′G and similarly for X ′ and X ′. If the result
holds after this base change, there is an open neighborhood W ′ ⊂ X ′ containing a
preimage of πA(x) such that W ′ ↪→ X ′ → Y ′ is étale and such that the preimage
of W ′ in X ′ is isomorphic to W ′ ×Y ′ Y ′. Taking W as the image of W ′ under
X ′ → SpecAG and applying étale descent yields the desired claim.

We now claim that this allows us to assume that BG is strictly henselian. To
see this, let Y sh = SpecOsh

Y,πB(y) and Xsh, X sh and Ysh be the base changes of
X, X and Y along Y sh → Y . Suppose U sh ⊂ Xsh is an open affine subscheme of
the unique point in Xsh over x and the closed point of Y sh such that U sh → Y sh

is étale with π−1
X sh(U sh) ∼= U sh ×Y sh Ysh. Then Y = limλ Yλ is the limit of affine

étale neighborhood Yλ → Y of y and we set Xλ, Xλ and Yλ to be the base changes
of X, X and Y along Yλ → Y . By Proposition A.6.4, the morphism U sh → Xsh

descends to Uη → Xη for some η. Setting Uλ = Uη ×Xη Xλ for λ > η, it follows
from Proposition A.6.7 that for λ� 0 (a) Uλ → Xλ is an open immersion, (b) the
composition Uλ → Xλ → Yλ is étale, and (c) π−1

Xλ (Uλ) ∼= Uλ ×Yλ Yλ (by arguing on
the étale presentations of X and Y).

Finally, As BG → B is finite (Lemma 4.2.3), B = B1 × · · · ×Br is a product of
strictly henselian local rings (Proposition A.9.6). As in the proof of Theorem 4.3.6, we
may replace [SpecB/G] with [SpecB1/Gy] and [SpecA/G] with [f−1(SpecB1)/G]
to assume that G fixes x and y while acting trivially on the residue fields κ(x) = κ(y).
Thus SpecA→ SpecB has a unique section s : SpecB → SpecA taking y to x. The
section s is necessarily G-invariant (just as in the proof Theorem 4.3.6). Thus s
descends to section of SpecAG → SpecBG which gives our desired open and closed
subscheme W ⊂ SpecAG.

Remark 4.3.10. Here’s a conceptual reason for why we should expect the induced
map of quotients to be étale. For simplicity, assume that R = k is an algebraically
closed field. Let Â and B̂ be the completions of the local rings at x and f(x).
The stabilizers Gx and Gf(x) act on Spec Â and Spec B̂, respectively, and the
map Spec Â → Spec B̂ is equivariant with respect to the map Gx → Gf(x). The
completion ÂG of AG at the image of x is isomorphic to ÂGx (Exercise 4.2.9) and
similarly B̂G = B̂Gf(x) . Since f is étale at x, B̂ → Â is an isomorphism and since
Gx → Gf(x) is bijective, the induced map B̂G → ÂG is an isomorphism which shows
that SpecAG → SpecBG is étale at the image of x.

4.3.3 The Keel–Mori Theorem

We now state and prove the Keel–Mori Theorem.

Theorem 4.3.11. Let X be a Deligne-Mumford stack separated and of finite type
over a noetherian algebraic space S. Then there exists a coarse moduli space π : X →
X with OX = π∗OX such that
(1) X is separated and of finite type over S,
(2) π is a proper universal homeomorphism, and
(3) for every flat morphism X ′ → X of algebraic spaces, the base change X ×X

X ′ → X ′ is a coarse moduli space.
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Remark 4.3.12. The Keel–Mori Theorem [KM97] holds more generally with the
‘separated’ condition on X → S by the finiteness of the inertia IX → X ; see
Remark 4.3.13. In particular, it holds for algebraic stacks with finite but non-reduced
automorphism groups. The theorem also holds without any noetherian or finiteness
conditions; see [Con05b, Ryd13] and [SP, Tag 0DUK].

Proof. We first handle the case when S = SpecR is affine. The question is Zariski-
local on X : if {Xi} is a Zariski open covering of X with coarse moduli spaces
Xi → Xi, then since coarse moduli spaces are unique (Definition 4.3.1(2)), the Xi’s
glue to form an algebraic space X and a map X → X, which is a coarse moduli
space by Lemma 4.3.5. It thus suffices to show that every closed point x ∈ |X | has
an open neighborhood which admits a coarse moduli space.

By the Local Structure Theorem of Deligne–Mumford Stacks (Theorem 4.2.11),
there exists an affine étale morphism

f :
(
W = [SpecA/Gx], w

)
→ (X , x)

such that f induces an isomorphism of geometric stabilizer groups at w.
We claim that since X is separated, the locus U consisting of points z ∈ |W|,

such that f induces an isomorphism of geometric stabilizer groups at z, is open. To
establish this, we will analyze the natural morphism IW → IX ×X W of relative
group schemes over W as the fiber of this morphism over z ∈ W(k) is precisely the
morphism Gz → Gf(z) of stabilizers. We will exploit the cartesian diagram

IW
Ψ //

��

IX ×X W

��

W // W ×X W;

�

see Exercise 3.2.14. SinceW → X is representable, étale and separated, the diagonal
W →W ×X W is an open and closed immersion and thus so is Ψ. Since IX → X is
finite, so is p2 : IX ×X W →W . Thus p2(|IX ×X W| \ |IW |) ⊂ |W| is closed and its
complement, which is identified with the locus U , is open.

Let πW : W → W = SpecAGx be the coarse moduli space (Theorem 4.3.6).
Choose an affine open subscheme X1 ⊂W containing πW(w). Then X1 = π−1

W (X1)

is isomorphic to a quotient stack [SpecA1/Gx] such that X1 = SpecAGx1 . This
provides an affine étale morphism

g : (X1 = [SpecA1/Gx], w)→ (X , x)

which induces a bijection on all geometric stabilizer groups.
We now show that the open substack X0 := im(f) admits a coarse moduli space.

Define X2 := X1 ×X X1 and X3 := X1 ×X X1 ×X X1. Since g is affine, each Xi is of
the form [SpecAi/Gx] and there is a coarse moduli space πi : Xi → Xi = SpecAGxi .
By universality of coarse moduli spaces, there is a diagram

X3

π3

��

//
//
// X2

π2

��

//
// X1

π1

��

g
// X0 = im(f)

π0

��

X3
//

//
// X2

//
// X1

// X0

(4.3.2)

where the natural squares commute. Since g induces bijection of geometric stabilizer
groups at all points, the same is true for each projection X2 → X1 and X3 → X2.
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Corollary 4.3.9 implies that each map X2 → X1 and X3 → X2 is étale, and the
natural squares of solid arrows in (4.3.2) are cartesian.

The universality of coarse moduli spaces induces an étale groupoid structure
X2 ⇒ X1. To check that this is an étale equivalence relation, it suffices to check that
X2 → X1×X1 is injective on geometric points but this follows from the observation
the |X2| → |X1| × |X1| is injective on closed points. Therefore there is an algebraic
space quotient X0 := X1/X2 and a map X1 → X0. By étale descent along X1 → X0,
there is a map π0 : X0 → X0 making the right square in (4.3.2) commute.

To argue that π : X0 → X0 is a coarse moduli space, we will use the commutative
cube

X2
//

��

}}

X1

��

}}

X1
//

��

X0

��

X2
//

}}

X1

}}

X1
// X0,

where the top, left, and bottom faces are cartesian. It follows from étale descent along
X1 → X0 that the right face is also cartesian and since being a coarse moduli space
is étale local on X0 (Lemma 4.3.5), we conclude that X0 → X0 is a coarse moduli
space. Except for the separatedness, the additional properties in the statement are
étale-local on X0 so they follow from the analogous properties of the coarse moduli
space [Spec(A1)/Gx]→ Spec(AGx1 ) from Theorem 4.3.6. As X0 → X0 is proper, the
separatedness of X0 is equivalent to the separatedness of X0.

Finally, the case when S is a noetherian algebraic space can be reduced to the
affine case by imitating the above argument to étale locally construct the coarse
moduli space of X .

Remark 4.3.13. The more general case when X is an algebraic stack with finite
inertia IX → X (see Remark 4.3.12) is proven in an analogous but more technical
manner. Namely, the use of the Local Structure Theorem for Deligne–Mumford
stacks (Theorem 4.2.11) is replaced by the existence of an étale neighborhoodW → X
around every closed point such that W admits a finite flat presentation V → W
from an affine scheme and the corresponding groupoid R := V ×W V ⇒ V is a
finite flat groupoid of affine schemes. This in turn is proven in an analogous way to
Theorem 4.2.11 where one chooses a quasi-finite and flat surjection U → X and one
replaces the use of [(U/X )d0/Sd]) with a Hilbert stack H whose objects over a scheme
S consists of a morphism S → X and a closed subscheme Z ↪→ US finite and flat
(rather than finite and étale) over S. (Aside: it is also possible to prove this without
reference to a Hilbert scheme by using étale localization of groupoidsand splitting
for groupoids; see [KM97, §4] or [SP, Tags 0DU4 and 04RJ]. Finally, the existence
of a coarse moduli space for quotients [V/R] is proven analogously to Theorem 4.3.6
(see Exercise 4.2.10).

The Local Structure Theorem of Deligne–Mumford Stacks (Theorem 4.2.11) can
also be formulated étale locally on a coarse moduli space:
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Corollary 4.3.14 (Local Structure of Coarse Moduli Spaces). Let X be a Deligne–
Mumford stack of finite type and separated over a noetherian algebraic space S,
and let π : X → X be its coarse moduli space. For every closed point x ∈ |X | with
geometric stabilizer group Gx, there exists a cartesian diagram

[SpecA/Gx] //

��

X

π

��

SpecAGx // X

such that SpecAGx → X is an étale neighborhood of π(x) ∈ |X|.

Proof. This follows from the construction of the coarse moduli space in the proof
of Theorem 4.3.11. Alternatively, it follows from the Local Structure Theorem of
Deligne–Mumford stacks (Theorem 4.2.11) and Exercise 4.3.15

Exercise 4.3.15. Establish the following generalization of Proposition 4.3.7: Let S
be a noetherian algebraic space. Let f : X → Y be a morphism of Deligne–Mumford
stacks separated and of finite type over S and

X

πX

��

f
// Y
πY

��

X // Y

be a commutative diagram where πX : X → X and πY : Y → Y are coarse moduli
spaces. Let x ∈ |X | be a closed point such that
(1) f is étale at x and
(2) the induced map Gx → Gf(x) of geometric stabilizer groups is bijective.

Then there exists an open neighborhood U ⊂ X of πX (x) such that U → X → Y is
étale and πX (U) ∼= U ×Y Y.

Exercise 4.3.16. Let X be a Deligne–Mumford stack of finite type and separated
over a noetherian algebraic space S, and let π : X → X be its coarse moduli space.
Assume that the order of the stabilizer of every geometric point of X is invertible in
S.
(a) Show that the functor π∗ is exact on quasi-coherent sheaves on X .
(b) Show that for every morphism X ′ → X of algebraic spaces, the base change
X ×X X ′ → X ′ is a coarse moduli space (see Exercise 4.2.5).

Exercise 4.3.17. Let X be a Deligne–Mumford stack of finite type and separated
over a noetherian algebraic space S, and let π : X → X be its coarse moduli space.
Show that if X is normal, then so is X.

4.3.4 Examples
Example 4.3.18. Consider the moduli stack M1,1 of elliptic curves over a field
k with char(k) 6= 2, 3. The Weierstrass form y2 = x(x − 1)(x − λ) gives an
isomorphismM1,1

∼= [(A1 \ {0, 1})/S3] (see Exercise 3.1.17) where the S3-orbit of λ
is {λ, 1/λ, 1− λ, 1/(1− λ), λ/(λ− 1), (λ− 1)/λ}. The coarse moduli space is given
by j-invariant

j : M1,1 → A1, λ 7→ 28 (λ2 − λ+ 1)3

λ2(λ− 1)3
.
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Indeed, one can verify k[λ]S3

λ(λ−1) = k[j(λ)].
Alternatively, the Weierstrass form y2 = x3 + ax + b gives an isomorphism

M1,1
∼= [A2

∆/Gm] (see Exercise 3.1.17(b)) where the action is given by t · (a, b) =

(t4a, t6b) and ∆ is the discriminant 4a3 + 27b2. As k[a, b]Gm∆ = k[a3/∆] (noting that
β := b2/∆ is generated by α := a3/∆ under the relation 4α+ 27β = 1), the coarse
moduli spaceM1,1 → A1 is given by (a, b) 7→ a3/∆.

Exercise 4.3.19. Let char(k) 6= 2 and G = Z/2.
(a) Let G act on the non-separated union X = A1

⋃
x 6=0 A1 by exchanging the

copies of A1. The quotient [X/G] is a Deligne–Mumford stack with quasi-finite
but not finite inertia, and in particular non-separated. Show nevertheless that
there is a coarse moduli space [X/G]→ A1.

(b) Let X be the non-separated union A2
⋃
x 6=0 A2. Let G = Z/2 act on X by

simultaneously exchanging the copies of A2 and by acting via the involution
y 7→ −y on each copy. Show that [X/G] does not admit a coarse moduli space.

Example 4.3.20. Consider the action of PGL2 on the scheme Sym4 P1 ∼= (P1)4/S4

(which is the coarse moduli space of [P1)4/S4]) parameterizing four unordered
points in P1. Let X ⊂ [Sym4 P1/PGL2] be the open substack parameterizing tuples
(p1, p2, p3, p4) where at least three points are distinct. Consider the family (0, 1, λ,∞)
with λ ∈ P1. If λ /∈ {0, 1∞}, then we claim that Aut(0, 1, λ,∞) = Z/2× Z/2. To
see this, there is a unique element σ ∈ PGL2 such that σ(0) = ∞, σ(∞) = 0 and
σ(1) = λ which acts on P1 via σ([x, y]) = [y, λ, x] and thus σ(λ) = 1. Similarly, there
is an element interchanging 0 with 1 and λ with ∞ and an element interchanging
0 with λ and 1 with ∞. However, if λ ∈ {0, 1∞}, then Aut(0, 1, λ,∞) = Z/2. We
therefore see that the inertia IX → X while quasi-finite is not finite and that X is
not separated. Nevertheless, the map X → P1 taking (p1, p2, p3, p4) to its cross-ratio
is a coarse moduli space.

4.3.5 Descending vector bundles to the coarse moduli space
We begin with a Nakayama lemma for coherent sheaves.

Lemma 4.3.21. Let X be a Deligne-Mumford stack separated and of finite type
over a noetherian algebraic space S, and let π : X → X be its coarse moduli space.
Let x ∈ |X | be a closed point.
(1) If F is a coherent sheaf on X such that F |Gx = 0, then there exists an open

neighborhood U ⊂ X of π(x) such that F |π−1(U) = 0.
(2) If φ : F → G is a morphism of coherent sheaves (resp. vector bundles of

the same rank) on X such that φ|Gx is surjective, then there exists an open
neighborhood U ⊂ X of π(x) such that φ|π−1(U) is surjective (resp. an isomor-
phism).

Proof. For (1), the support Supp(F ) ⊂ |X | of F is a closed subset (which follows
from using descent along a presentation) and the open set U = X \ π(Supp(F ))
satisfies the conclusion. For (2), apply (1) to the coherent sheaf coker(φ) noting that
a surjection of vector bundles of the same rank is an isomorphism.

Definition 4.3.22. A Deligne–Mumford stack X is tame if for every geometric
point x ∈ X (K), the order of AutX (K)(x) is invertible in Γ(X ,OX ).

Remark 4.3.23. If X is defined over a field k, then this means that the order of
every geometric stabilizer group is prime to the characteristic of k.
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Lemma 4.3.24. Let X be a Deligne-Mumford stack separated and of finite type
over a noetherian algebraic space S, and let π : X → X be its coarse moduli space.
If X is tame, then π∗ is exact.

Proof. The question is étale-local on X: if g : X ′ → X is an étale cover inducing a
cartesian diagram

X ′
g′
//

π′

��

X

π

��

X
g
// X

then by flat base change there is an identification g∗π∗ = π′∗g
′∗ of functors on quasi-

coherent sheaves. Since g∗ is faithfully exact, we see that π∗ is exact if and only π′∗
is. We can therefore use Corollary 4.3.14 to reduce to the case that X = [SpecA/G]
and X = SpecAG, and this case follows from Exercise 4.2.5.

We say that a vector bundle F on X descends to its coarse moduli space π : X → X
if there exists a vector bundle F on X and an isomorphism F ∼= π∗F . Observe that
one necessary condition is that for every field-valued point x : Spec k → X which
induces a commutative diagram

BGx
� � ix //

p

��

X

π

��

Speck �
�

// X,

the pullback i∗xF = p∗(F ⊗ k) is trivial or in other words Gx acts trivially on the
fiber F ⊗ k.

Proposition 4.3.25. Let X be a tame Deligne-Mumford stack separated and of
finite type over a noetherian algebraic space S, and let π : X → X be its coarse
moduli space. A vector bundle F on X descends to a vector bundle on X if and only
if for every field-valued point x : Speck→ X with closed image, the action of Gx on
the fiber F ⊗ k is trivial. In this case, π∗F is a vector bundle and the adjunction
map π∗π∗F → F is an isomorphism.

Remark 4.3.26. The above condition is insensitive to field extensions and equivalent
to the condition that the restriction of F to the residual gerbe is trivial.

Proof. To see that the condition is sufficient, consider the commutative diagram

Gx �
�

//

p

��

X

π

��

Specκ(x) �
�

// X.

We break down the proof into three steps.

Step 1: π∗π∗F → F is surjective. It suffices by Lemma 4.3.21 to show that
(π∗π∗F )|Gx → F |Gx is surjective for every closed point x ∈ |X |. Since F → F |Gx
is surjective and π∗ is exact (Lemma 4.3.24), (π∗π∗F )|Gx → π∗(π∗(F |Gx))|Gx ∼=
p∗p∗(F |Gx) is surjective. The hypotheses imply that the adjunction p∗p∗(F |Gx)→
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F |Gx is an isomorphism and it follows that the composition (π∗π∗F )|Gx → p∗p∗(F |Gx)
∼→

F |Gx is surjective.

Step 2: π∗F is a vector bundle. We can assume that the rank r of F is constant. Since
being a vector bundle is an étale-local property, we can assume that X = SpecA.
The surjection

⊕
s∈Γ(X,π∗F )A→ π∗F pulls back to a surjection

⊕
s∈Γ(X ,F )OX →

π∗π∗F and by Step 1, the composition
⊕

s∈Γ(X ,F )OX → π∗π∗F → F is surjective.
As F |Gx ∼= OrGx is trivial, for each closed point x ∈ |X |, we can find r sections
φ : OrX → F such that φ|Gx is an isomorphism. By Lemma 4.3.21, there exists an
open neighborhood U ⊂ X of π(x) such that φ|π−1(U) is an isomorphism. Thus
π∗φ : OrX → π∗F is an isomorphism over U and we conclude that π∗F is a vector
bundle of the same rank as F .

Step 3: π∗π∗F → F is an isomorphism. Since π∗π∗F → F is a surjection of vector
bundles of the same rank, it is an isomorphism.

Remark 4.3.27. The analogous statement for coherent sheaves is not true. For
example, if the characteristic is not 2, then letting Z/2 on A1 via x 7→ −x, we
have a tame coarse moduli space [A1/(Z/2)]→ A1 = Spec Spec k[x2]. The inclusion
BZ/2 ↪→ [A1/(Z/2)] of 0 is a closed substack and OBZ/2 is a coherent sheave which
does not descend. Observe that in this case, the pullback of the residue field of
0 ∈ A1 is k[x]/x2. This example also illustrated that the fibers of a coarse moduli
space X → X can be non-reduced and larger than the residual gerbe.

When X is not tame, we have the following variant for descending line bundles.

Proposition 4.3.28. Let X be a Deligne-Mumford stack separated and of finite
type over a noetherian algebraic space S, and let π : X → X be its coarse moduli
space. If L is a line bundle on X , then for N sufficiently divisible L⊗N descends to
X.

Proof. To be added.

Example 4.3.29. Show Pic(M1,1) = Z/12 generated by the Hodge bundle (see
Example 4.1.4).

4.4 When are algebraic spaces schemes?

We prove various results providing conditions for an algebraic space to be a scheme.
We show:

• a quasi-separated algebraic space is a scheme on a dense open subspace
(Theorem 4.4.1);

• Zariski’s Main Theorem for algebraic spaces (Theorem 4.4.9);

• an algebraic space separated and locally quasi-finite over a scheme is a scheme
(Corollary 4.4.7);

• if the diagonal of a Deligne–Mumford stack is separated and quasi-compact
diagonal, then the diagonal is quasi-affine (and in particular representable by
schemes) (Corollary 4.4.8);

• an algebraic stack with trivial stabilizers is an algebraic space (Theorem 4.4.10)
generalizing Theorem 3.6.5;
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• Serre’s and Chevalley’s Criteria for Affineness (Theorems 4.4.15 and 4.4.19)
for algebraic spaces;

• if X is a quasi-separated algebraic space locally of finite type over a field k
such that Xk has the property that every finite set of points is contained in an
affine (e.g. Xk is quasi-projective), then X is a scheme (Proposition 4.4.24);
and

• quasi-separated group algebraic spaces locally of finite type over a field are
schemes (Theorem 4.4.25)

We also give applications to the algebraicity of quotients of étale and smooth
equivalence relations (Corollary 4.4.11).

4.4.1 Algebraic spaces are schemes over a dense open

Theorem 4.4.1. Every quasi-separated algebraic space has a dense open subspace
which is a scheme.

Proof. We may assume that X is quasi-compact. Let f : V → X be an étale
presentation with V an affine scheme. Since X is quasi-separated, f : V → X
is quasi-compact and there exists an open algebraic subspace U ⊂ X such that
f−1(U)→ U is finite. By Exercise 4.2.13, U is isomorphic to a quotient stack [V/G]
for the free action of a finite group G on a scheme V . If V1 ⊂ V is a dense affine
open subscheme, then V2 =

⋂
g∈G gV1 is a G-invariant quasi-affine open subscheme

of V and in particular separated. Repeating this argument, we can choose a dense
affine open subscheme V3 ⊂ V2 and now V4 =

⋂
g∈G gV3 is a G-invariant affine open

subscheme. Proposition 4.2.14 implies that V4/G ∼= SpecAG is a dense affine open
algebraic subspace of U .

Remark 4.4.2. See also [Knu71, II.6.7] and [SP, Tag 06NN]. The above result is
not necessarily true if X is not quasi-separated, e.g. A1/Z (Example 3.9.22).

Corollary 4.4.3. An integral quasi-separated algebraic space has a well-defined
fraction field.

Exercise 4.4.4. Let G be a finite group acting on a quasi-separated algebraic space
U . Show that there is a G-invariant affine open subscheme of U .

4.4.2 Zariski’s Main Theorem for algebraic spaces

We now prove Zariski’s Main Theorem for algebraic spaces and Deligne–Mumford
stacks. Its proof relies on the theory of quasi-coherent sheaves. Specifically, we will
use the fact that if f : X → Y is a quasi-compact and quasi-separated morphism
of Deligne–Mumford stacks, then f∗OX is a quasi-coherent sheaf of OY -algebras
(Exercise 4.1.17) and there is a factorization

f : X → SpecY f∗OX → Y.

See §A.5 for a discussion of Zariski’s Main Theorem for schemes. In this section, we
follow [LMB00, Thm. A.2] (see also [SP, Tag 05W7], [Knu71, II.6.15] and [Ols16,
Thm. 7.2.10]).
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Proposition 4.4.5. A separated, quasi-finite and representable morphism
f : X → Y of Deligne–Mumford stacks factors as the composition of an open immer-
sion X ↪→ SpecY f∗OX and an affine morphism SpecY f∗OX → Y. In particular, f
is quasi-affine.

Proof. Since the construction of f∗OX commutes with flat base change on Y, so
does the formation of the factorization f : X → SpecY f∗OX → Y . The statement is
thus étale-local on Y. In particular, we can assume that Y = Y is an affine scheme
and that X = X is an algebraic space. After replacing Y with SpecY f∗OX , we can
assume that f∗OX = OY and we must show that f : X → Y is an open immersion.

Since X is quasi-compact, there is an étale presentation π : U → X from an
affine scheme. Since X is separated, U → X is also separated. As the composition

U
π−→ X

f−→ Y

is a quasi-finite morphism of schemes, we can apply Étale Localization of Quasi-finite
Morphisms (Theorem A.5.1) around every point y ∈ Y : after replacing Y with
an étale neighborhood, we can assume that U = U1 t U2 with U1 → Y finite and
(U2)y = ∅. Then π(U1) is open (as π is étale) and closed (as U1 → Y is finite and
X → Y is separated). Thus X = X1 tX2 with X1 = π(U1) and (X2)y = ∅. This
shows that OY = f∗OX is the product A1 ×A2 of quasi-coherent OX -algebras, and
thus we can also decompose Y as Y1 t Y2 such that y ∈ Y1 and f(Yi) ⊂ Xi for
i = 1, 2. After replacing Y with Y1, the composition U → X → Y is finite and
Lemma 4.4.6 implies that X is affine. Thus X = Y = SpecY f∗OX .

Lemma 4.4.6. Suppose that U → X is a surjective étale morphism of algebraic
spaces and X → Y is a separated morphism of algebraic spaces. If the composition
U → X → Y is finite, so is X → Y .

Proof. The statement is étale-local on Y so we can assume that Y and U are affine.
As X → Y is separated, U → X is also finite. Since X is identified with the
quotient U/R of the finite étale groupoid R := U ×X U ⇒ U of affine schemes,
Proposition 4.2.14 implies that X is affine. As U → Y is proper, so is X → Y . As
X → Y is a proper and quasi-finite morphism of schemes, it is finite (Corollary A.5.5).

Alternatively, the properness of X → Y follows from the properness of U → Y
and we may apply Corollary 4.4.13 to conclude that the proper and quasi-finite
morphism X → Y is finite.

Corollary 4.4.7. A morphism of algebraic spaces which is separated and locally
quasi-finite is representable by schemes. In particular, an algebraic space separated
and locally quasi-finite over a scheme is a scheme.

Proof. It suffices to show that if X → Y = SpecA is a separated and locally quasi-
finite, then X is a scheme. Since being a scheme is a Zariski-local property, we can
assume that X is quasi-compact. Therefore Proposition 4.4.5 applies.

Corollary 4.4.8. The diagonal of a Deligne–Mumford stack with separated and
quasi-compact diagonal is quasi-affine. In particular, a quasi-separated algebraic
space has quasi-affine diagonal.

Proof. The diagonal is separated, quasi-finite and representable and we conclude by
Proposition 4.4.5.

As with the case for schemes, we can refine Proposition 4.4.5 to obtain Zariski’s
Main Theorem.
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Theorem 4.4.9 (Zariski’s Main Theorem). A separated, quasi-finite and repre-
sentable morphism f : X → Y of noetherian Deligne–Mumford stacks factors as the
composition of a dense open immersion X ↪→ Ỹ and a finite morphism Ỹ → X .

Proof. Let A ⊂ f∗OX be the integral closure of OY → f∗OX where the sections
of A over an étale morphism T → Y from a scheme is the integral closure of
Γ(T,OT ) → Γ(X ×Y T,OX×YT ). Since the integral closure is compatible under
étale extensions (Proposition A.5.4), A is a quasi-coherent sheaf of OY -algebras.
Using Exercise 4.1.25, write A = colimAλ as the colimit of finite type OY -algebras.
As Y is quasi-compact, there exists an étale presentation p : U → Y from an
affine scheme. Then the base change XU → U is a separated and quasi-finite
morphism of algebraic spaces, thus a morphism of schemes by Corollary 4.4.7. We
have that p∗A = colim p∗Aλ and by Theorem A.5.3 for λ � 0, the morphism
XU → SpecU p

∗Aλ is an open immersion and SpecU p
∗Aλ → U is finite. By étale

descent, X → SpecU Aλ is an open immersion and SpecY A → Y is finite.

4.4.3 Characterization of algebraic spaces
We now can remove the hypothesis in Theorem 3.6.5 that the diagonal is representable
by schemes.

Theorem 4.4.10 (Characterization of Algebraic Spaces II). For an algebraic stack
X , the following are equivalent:
(1) the stack X is an algebraic space,
(2) the diagonal X → X ×X is a monomorphism, and
(3) every point of X has a trivial stabilizer.

Proof. We only need to show (2) ⇒ (1). As the diagonal of X is a monomorphism,
it is separated and locally quasi-finite. Corollary 4.4.7 implies that the diagonal X
is representable by schemes and thus Theorem 3.6.5 applies.

Corollary 4.4.11.
(1) If X is a sheaf on Schét such that there exists a surjective, étale (resp. smooth),

and representable morphism U → X from an algebraic space, then X is an
algebraic space.

(2) If R⇒ U is an étale (resp. smooth) equivalence relation of algebraic spaces,
then the quotient U/R is an algebraic space.

Remark 4.4.12. The above statement holds with with ‘étale’ replaced with ‘fppf’;
see Theorem 6.2.1 and corollary 6.2.4.

Proof. We first handle the étale case. For (1), by taking an étale presentation of U
by a scheme, we may assume that U is a scheme. Let T → X be a morphism from
a scheme, and we must show that the algebraic space U ×X T is a scheme. Since
U ×X T → U × T is the base change of X → X ×X, it is a monomorphism, thus
separated and locally quasi-finite. By Corollary 4.4.7, U×XT is a scheme. For (2), let
X = U/R be the quotient sheaf. By copying the argument of Theorem 3.4.11(1), we
see that U → X is representable. The statement then follows from (1). Alternatively,
Theorem 3.4.11(1) implies that U/R is an algebraic stack and the statement follows
from Theorem 4.4.10.

In the noetherian and smooth case, the sheaf X in (1) is an algebraic stack by
definiton and the quotient stack [U/R] is an algebraic stack by Theorem 3.4.11.
Theorem 4.4.10 implies that X and [U/R] are algebraic spaces.
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Corollary 4.4.13. A proper and quasi-finite morphism (resp. proper monomor-
phism) of algebraic spaces is finite (resp. a closed immersion).

Proof. Proper and quasi-finite morphisms are representable by schemes. Thus the
statement follows from the corresponding result for schemes (Corollary A.5.5) and
étale descent.

Exercise 4.4.14. Consider the prestack AlgSp over Schét whose objects over a
scheme T are algebraic spaces over T and where morphisms correspond to cartesian
diagrams of algebraic spaces. Show that AlgSp is a stack.

4.4.4 Affineness criteria

Theorem 4.4.15 (Serre’s Criterion for Affineness). Let X be be a quasi-compact
and quasi-separated (resp. noetherian) algebraic space. If the functor Γ(X,−) is
exact on the category of quasi-coherent (resp. coherent) sheaves, then X is an affine
scheme.

Proof. If X is noetherian, then every quasi-coherent sheaf is a colimit of coherent
sheaves (Exercise 4.1.20) and Γ(X,−) commutes with colimits. Assume that Γ(X,−)
is exact on coherent sheaves. Given a surjection p : F � G of quasi-coherent sheaves
on X, write G = colimiGi as a colimit of coherent sheaves and choose coherent
subsheaves Fi ⊂ p−1(Gi) surjecting onto Gi. Then Γ(X,Fi) � Γ(X,Gi) and the
composition colimi Γ(X,Fi)→ Γ(X,F )→ Γ(X,G) = colimi Γ(X,Gi) is surjective.
Thus Γ(X,F ) → Γ(X,G) is surjective and we conclude that Γ(X,−) is exact on
quasi-coherent sheaves.

We show that the canonical morphism π : X → Y := Spec Γ(X,OX) is a proper
monomorphism. This gives the result as Corollary 4.4.13 implies that X → Y is a
closed immersion so that that X is affine and X → Y is an isomorphism. As a first
step, we establish:

Claim: If g : Y ′ → Y is a morphism of algebraic spaces, then the base change
π′ : X ′ := X ×Y Y ′ → Y ′ has the following properties:
(a) π′∗ induces an equivalence of the categories of quasi-coherent sheaves on X ′

and Y ′.
(b) OY ′ → π′∗OX′ is an isomorphism.
(c) X ′ → Y ′ is a homeomorphism.
By Flat Base Change (Exercise 4.1.19), properties (a) and (b) are étale local on

Y ′ so we may assume Y ′ = SpecB. We will show that the adjunction morphisms
G→ π′∗π

′∗G and π′∗π′∗F → F are isomorphisms for quasi-coherent sheaves G and
F and Y ′ and X ′, respectively. For the first adjunction, choose a free presentation
O⊕JY → O⊕JY → g∗G → 0 of G as an OY -module. As π∗ is exact, we have a
morphism of right exact sequences

O⊕JY //

��

O⊕IY //

��

g∗G //

��

0

π∗π
∗(O⊕JY ) // π∗π

∗(O⊕IY ) // π∗π
∗g∗G // 0

The left two vertical arrows are isomorphism since π∗OX = OY . Therefore g∗G→
g∗π∗π

∗G ∼= g∗π
′
∗π
′∗G is an isomorphism. Since g∗ is faithfully exact, G→ π′∗π

′∗G
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is also an isomorphism. We note that property (b) already follows from this fact
by taking G = OY ′ and the fact that affine morphisms are faithfully exact on
quasi-coherent sheaves.

To see the second adjunction, letK and Q be the kernel and cokernel of π′∗π′∗F →
F . As π∗ is exact and g∗ is faithfully exact, we see that π′∗ is exact. Since π′∗π′∗π′∗F →
π′∗F is an isomorphism (using that the first adjunction is an isomorphism), we see
that π′∗K = π′∗Q = 0. It thus suffices to show that for a quasi-coherent sheaf F ′ on
X ′, then F ′ 6= 0 implies π′∗F ′ 6= 0. If x : Speck→ X ′ is a geometric point such that
x∗F 6= 0, then by base changing by the composition π′ ◦ x : Speck→ Y ′, we may
assume that Y ′ = Speck and that x : Speck → X ′ is a section of π′. Since every
k-point of an algebraic space defined over k is a closed point, x : Speck→ X ′ is a
closed immersion and hence F → x∗x

∗F = F ⊗ k is surjective. It follows from the
exactness of π′∗ that π′∗F → F ⊗ k is surjective and hence π′∗F 6= 0. This finishes
the proof of (a) and (b).

To see (c), if y : Speck→ Y is a geometric point, then by (b) Γ(Xy,OXy) = k
as thus the fiber Xy is non-empty. On the other hand, if x, x′ ∈ Xy(k) were distinct
points each necessarily closed, then OXy → O{x,x′} is surjective. Since π∗ is exact,
we also get a surjection k = Γ(Xy,OXy )→ k⊕ k, a contradiction. To see that π′ is
closed, let Z ⊂ X ′ be a closed subspace and q : Z → im(Z) denote the morphism
to its scheme-theoretic image. Then OZ → q∗Oim(Z) is an isomorphism and q∗ is
exact. Applying the surjectivity result above to q, we see that q is surjective and
hence π′(Z) is closed.

With the claim established, we now show that X → Y is a monomorphism
and in particular separated. To see that the diagonal ∆: X → X ×Y X is an
isomorphism, observe that the pushforward of OX×YX → ∆∗X along the first
projection p1 : X ×Y X → X is an isomorphism. Thus (a) applied to p1 shows that
OX×YX → ∆∗X is an isomorphism. Zariski’s Main Theorem (A.5.3) implies that
∆ is an open immersion. Applying (c) to p1 shows that p1 : |X ×Y X| → |X| is
bijective. Hence ∆ must be an isomorphism.

It remains to show that X → Y is of finite type. Let U = SpecA → X be an
étale presentation. Since X is separated, R := U ×X U is a closed subscheme of
U ×Y U = SpecA⊗Γ(X,OX) A. Hence R = SpecB is affine. Letting s and t denote
the two maps A⇒ B, we have a commutative diagram

Γ(X,OX)

??

��

A

��

s

**

A

??

t

55A⊗Γ(X,OX) A
// // B.

Since U → X is étale, t : A→ B is of finite type and there are generators b1, . . . , bn ∈
B over t. For each i, choose a preimage

∑
j aij⊗a′ij ∈ A⊗Γ(X,OX)A of bi. Viewing B

as an A-algebra via t, then
∑
j a
′
ijs(aij) = bi and thus we have elements aij ∈ A such

that s(aij) generate B over t. Then aij ∈ Γ(X, p∗OU ) = A define a homomorphism
OX [zij ] → p∗OU of OX -algebras taking zij to aij . Its pullback via p is identified
with OU [zij ]→ p∗p∗OU ∼= t∗OR, where the last equivalence comes from Flat Base
Change (Exercise 4.1.19), and this map is surjective precisely because s(aij) generate
B over t. By étale descent, OX [zij ] → p∗OU is surjective and therefore so is
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Γ(X,OX)[zij ] → A. Thus Γ(X,OX) → A is of finite type and by étale descent
X → Y is also of finite type.

See also [Knu71, Thm. III.2.5], [Ryd15, Thm. 8.7] and [SP, Tag 07V6].

Corollary 4.4.16. Let X be be a quasi-compact and quasi-separated (resp. noethe-
rian) algebraic space. Then X is an affine scheme if and only if Hi(X,F ) = 0 for
every quasi-coherent (resp. coherent) sheaf F and i > 0.

Proof. If X is affine, then Theorem 4.1.29 establishes the vanishing of quasi-coherent
cohomology. Conversely, the vanishing of quasi-coherent (resp. coherently) cohomol-
ogy implies that Γ(X,−) is exact on the category of quasi-coherent (resp. coherent)
sheaves: if 0→ F1 → F2 → F3 → 0 is exact, then Γ(X,F2)→ Γ(X,F3) is surjective
as H1(X,F1) = 0.

Remark 4.4.17. Given a quasi-compact and quasi-separated morphism f : X → Y
of Deligne–Mumford stacks, the condition that f∗ : QCoh(X )→ QCoh(Y) is exact
is fppf local on Y (see Lemma 6.3.15). Since Rif∗F can be computed in QCoh(X ),
the relative versions of Theorem 4.4.15 and Corollary 4.4.16 also hold: f is affine if
and only if f∗ : QCoh(X )→ QCoh(Y) is exact if and only if Rif∗F = 0 for all i > 0
and F ∈ QCoh(X ).

Proposition 4.4.18. Let X be a noetherian algebraic space. If Xred is a scheme
(resp. quasi-affine, affine), then so is X.

Proof. If Xred is affine, then one uses Corollary 4.4.16 to show that X is affine
exactly as in [Har77, Exer. III.3.1]: if F is a coherent sheaf on X and I ⊂ OX
denotes the nilpotent ideal defining Xred, then one shows the vanishing of Hi(X,F )
using the filtration 0 = INF ⊂ IN−1F ⊂ · · · ⊂ IF ⊂ F , whose factors IkF/Ik+1F
are supported on Xred.

If Xred is quasi-affine, then Xred → Spec Γ(X,OX)red is an open immersion.
Thus X → Spec Γ(X,OX) is an open immersion and X is quasi-affine. If Xred is a
scheme, then every point x ∈ |X| has an open neighborhood U such that Ured is
affine. Thus U is affine and X is a scheme.

Theorem 4.4.19 (Chevalley’s Criterion for Affineness). Let Y be a noetherian
algebraic space and X → Y be a finite surjective morphism of algebraic spaces. If X
is affine, then so is X.

Proof. One can argue as in [Har77, Exer. 4.1] using Corollary 4.4.16.

There is also a cohomological criterion for ampleness generalizing [Har77, Prop.
5.3]:

Exercise 4.4.20. Let X be a proper algebraic space over a noetherian ring. For a
line bundle L on X, show that the following are equivalent:
(1) X is a scheme and L is ample;
(2) for every coherent sheaf F on X, there is an integer n0 such that Hi(X,F ⊗

Ln) = 0 for i > 0 and n ≥ n0.
See also [SP, Tag 0D2W].

The following generalizes [Har77, Exer. III.5.7].

Exercise 4.4.21. Let f : X → Y be a finite surjective morphism of algebraic spaces
proper over a noetherian ring. Let L be a line bundle on Y . If X is a ample and
f∗L is ample, show that Y is a scheme and L is ample.

See also [SP, Tag 0GFB].
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4.4.5 Effective descent along field extensions
Lemma 4.4.22. Let X be a quasi-separated algebraic space locally of finite type
over a field k. If Xk is an affine scheme, then so is X.

Proof. By Chevalley’s Criterion for Affineness (Theorem 4.4.19), it suffices to show
that there is a finite field extension k→ K such that XK is a affine. (Note that the
lemma follows directly from the strengthening of Chevelley’s Criterion to integral
surjective morphisms.)

The algebraic space X is necessarily quasi-compact and we choose an étale
presentation U → X be an affine scheme. We write k = colim kλ as the colimit of
finite field extensions kλ/k. Set Xλ := Xkλ and Uλ = Ukλ . By Flat Base Change
(Exercise 4.1.19), Γ(X,OX)⊗k kλ = Γ(Xλ,OXλ) and Γ(X,OX)⊗k k = Γ(Xk,OXk

).
We have a cartesian diagram

Uk
//

��

Uλ //

��

U

��

Xk
//

∼

��

Xλ
//

��

X

��

Spec Γ(Xk,OXk
) // Spec Γ(Xλ,OXλ) // Spec Γ(X,OX)

Since Uk → Spec Γ(Xk,OXk
) is an étale morphism of schemes, so is Uλ → Spec Γ(Xλ,OXλ)

for λ� 0 (Proposition A.6.7). Thus Xλ → Spec Γ(Xλ,OXλ) is étale for λ� 0. Let
R = U ×X U with base changes Rλ := Rkλ and Rk. Since Rk → Uk×k Uk is a closed
immersion, so is Rλ → Uλ ×kλ Uλ for λ� 0 (Proposition A.6.7) and in particular
Xλ are separated for λ � 0. For λ � 0, since Xλ is étale and separated over a
scheme, Xλ is a scheme (Corollary 4.4.7). We may therefore apply Proposition B.4.4
to X (or Proposition A.6.7 to X → Spec Γ(X,OX)) to conclude that Xλ is affine
for λ� 0.

Proposition 4.4.23. Let X be a quasi-separated algebraic space of finite type over
a field k. If Xk is a scheme, then there exists a finite separable field extension k→ K
such that XK is a scheme.

Proof. Choose an étale presentation U → X be an affine scheme and set R = U×XU .
As in the proof of the previous lemma, we write k = colimkλ with kλ/k finite, and
set Xλ := Xkλ , Uλ = Ukλ and Rλ = Rkλ .

Let V ⊂ Xk be an open affine subscheme. We claim that for λ � 0, there
exists an open subscheme Vλ ⊂ Xλ such that Z = Uλ ×kλ k. Indeed, the preimage
V ′ ⊂ Uk of V has the property that its two preimages in Rk are equal. Using
Proposition A.6.4 and Proposition A.6.7, for λ � 0 there is an open subscheme
V ′λ ⊂ Uλ with V ′ = V ′λ ×kλ k such that the two preimages of V ′λ in Rλ are equal. By
étale descent, V ′λ descends to the desired closed subscheme Vλ ⊂ Uλ.

Lemma 4.4.22 implies that Vλ is a scheme. By covering Xk with finitely many
affines and choosing λ sufficiently large, we obtain a finite field extension K = kλ of
k such that Xλ is a scheme. If ks ⊂ K be the separable closure of k, then XK → Xks

is a finite universal homeomorphism and by Chevalley’s Theorem for Affineness
(Theorem 4.4.19), the image of an affine subscheme XK in Xks is also affine. We
conclude that Xks is a scheme.

With an additional condition on Xk, we can conclude that X is a scheme.
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Proposition 4.4.24. Let X be a quasi-separated algebraic space locally of finite type
over a field k. If Xk is a scheme such that every finite set of k-points is contained
in an affine (e.g. Xk is quasi-projective), then X is a scheme.

Proof. We may assume that X is quasi-compact. We will show that every closed
point x ∈ X has an affine open neighborhood. Let Spec l ↪→ X be the inclusion of
the residue field of x (Corollary 3.5.20) and let ks be the separable closure of the
finite field extension k→ l. We have a cartesian diagram∐n

i=1 SpecAi
� � //

��

Xk
//

��

Speck

��

Spec l �
� x // X // Speck

where Ai is a artinian local k-algebra where n is the degree of the separable closure
κs ⊂ l of k; here we are using that ks ⊗k k =

∏n
i=1 k and that Spec l → Specks is

a finite universal homeomorphism. The hypotheses on Xk ensure that there is an
affine open subscheme U ⊂ Xk containing the images of each SpecAi.

By Proposition 4.4.23, there is a finite field extension k→ K such that XK is
a scheme. After enlarging K, we can arrange that U descends to an affine open
subscheme U ′ ⊂ UK by using Proposition A.6.4 to descend the morphism U → X,
Proposition A.6.7 to arrange that it is an open immersion and Proposition B.4.4
to arrange affineness. Observe that U ′ contains all preimages of x under XK → X.
By taking the normal closure of K, we can assume K is normal over k. Let
G = Aut(K/k) so that KG is a purely inseparable field extension of k. Then G acts
on XK freely such that XK/G = XKG .

The intersection of the translates of U ′ by elements of G is a G-invariant quasi-
affine variety U ′′. Choosing an affine in U ′′ containing all of the preimages of x
and intersecting again the translates of G, we obtain a G-invariant affine V ⊂ XK

containing the preimages of x. Then the quotient V/G is an affine subscheme of
XKG containing the unique preimage of x (Theorem 4.3.6). Letting W be the image
of V/H under the finite universal homeomorphism XKG → X, Chevelley’s Criterion
for Affineness (Theorem 4.4.19) implies that W is an affine neighborhood of x.

4.4.6 Group algebraic spaces are schemes
Every quasi-separated group algebraic space over a field k is a scheme. When k is
algebraically closed, this follows easily from Theorem 4.4.1 as we know there is a
dense open that is a scheme and we can translate this around by rational points.
The general case relies on Proposition 4.4.24.

Theorem 4.4.25. A quasi-separated group algebraic space G locally of finite type
over a field k is a scheme.

Remark 4.4.26. If G is not quasi-separated, then the above corollary does not
hold, e.g. G = Ga/Z over k (Example 3.9.22).

Note that Proposition 4.4.18 implies that the result also holds over an Artinian
base. Over a general base scheme, the statement is not true; see [Ray70, Lem. X.14].

Proof. Assume first that k is algebraically closed. There is a non-empty open
subscheme U of G (Theorem 4.4.1) with a point h ∈ U(k). For every g ∈ G(k), left
multiplication by gh−1 defines an isomorphism G

∼→ G and the image gh−1U of U
is a scheme containing g.
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The general case follows from Proposition 4.4.24 using that Gk is a scheme with
the property that every finite set of points is contained in an affine (Lemma 4.4.27).

See also [Art69b, Lem. 4.2] and [SP, Tag 0B8D].

Lemma 4.4.27. Every group scheme G locally of finite type over an algebraically
closed field k has the property that every finite set of k-points is contained in an
affine open subscheme.

Proof. Let g1, . . . , gn ∈ G(k). We first use induction on n to assume that all of the
elements gi are in the same connected component. If not, we can write G = W1tW2

with r points in W1 and n− r points in W2 for 0 < r < n. By induction, there are
affine opens U1 ⊂W1 and U2 ⊂W2 containing the r and n− r points, respectively.
Then U1 t U2 is an affine containing each gi.

By translating by g−1
1 , we may assume that g1, . . . , gn ∈ G0(k). Let U ⊂ G0

be affine open neighborhood of the identity. Since G0 is irreducible (C.3.1(5)),
Ug−1

1 ∩ · · · ∩ Ug−1
n is non-empty and contains a closed point h. Since h ∈ Ug−1

i ,
each gi is contained in the affine open h−1U .

See also [SP, Tag 0B7S]. It is also true that every group scheme of finite type
over a field is quasi-projective [SP, Tag 0BF7].

Corollary 4.4.28. Let X be an algebraic stack with quasi-separated diagonal. Then
the stabilizer of every field-valued point is a group scheme locally of finite type.

Proof. By Exercise 3.2.4 the diagonal of X is locally of finite type. As the stabilizer
is the base change of the diagonal, the statement follows from Theorem 4.4.25.

4.5 Finite covers of Deligne–Mumford stacks
The goal of this section is to prove the following theorem asserting that Deligne–
Mumford stacks have finite covers by schemes.

Theorem 4.5.1 (Le Lemme de Gabber). Let X be a Deligne-Mumford stack sep-
arated and of finite type over a noetherian scheme S. Then there exists a finite,
generically étale, and surjective morphism Z → X from a scheme Z.

By applying Chow’s Lemma (c.f [Har77, Exer. II.4.10]) to Z, we obtain:

Corollary 4.5.2. There exists a projective, generically étale, and surjective mor-
phism Z → X from a scheme Z quasi-projective over S.

See also [LMB00, Thm. 16.6 and Cor. 16.6.1], [Del85], [Vis89, Prop. 2.6], [Ols16,
Thm. 11.4.1] and [SP, Tag 09YC] (for the case of algebraic spaces). More generally,
every separated algebraic stack of finite type over S has a proper cover by a quasi-
projective scheme [Ols05].

We provide two arguments, each which uses normalization to construct a finite
cover.

Proof 1 (following [LMB00, Thm. 16.6]):
By replacing X with the disjoint union of the irreducible components with their

reduced stack-structure, we may assume that X is irreducible and reduced. Every
étale presentation U → X is separated, quasi-finite and representable and thus factors
as the composition of an open immersion U ↪→ X̃ and a finite morphism X̃ → X by
Zariski’s Main Theorem (4.4.9). After replacing X with X̃ , we may assume that X
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has a dense open subscheme. If p : U → X is an étale presentation, there is therefore
a dense open subscheme V ⊂ X such that p−1(V ) → V is finite étale of degree
d. We may choose a finite étale covering V ′ → V such that p−1(V ) ×V V ′ → V ′

is a trivial étale covering; indeed as in Proposition A.3.12, we may take V ′ to be
the complement of all pairwise diagonals in (V ′/V )d = V ′ ×V · · · ×V V ′︸ ︷︷ ︸

d

. Applying

Zariski’s Main Theorem (Theorem 4.4.9) to the composition V ′ → V ↪→ X gives a
finite surjective morphism X̃ → X restricting to V ′ → V . Thus after replacing X
with X̃ , we may assume that there is an étale presentation U → X which over a
dense open subscheme j : V ↪→ X is a trivial étale covering, i.e. there is a cartesian
diagram ∐d

i=1 V

��

� � j
′
// U

p

��

V �
� j

// X .
We will construct a finite surjective morphism Z → X from a scheme which is

an isomorphism over V . Let A ⊂ j∗OX be integral closure of OX → j∗OX . Then
π∗A is the integral closure of OU in j′∗OtV = p∗j∗OV (Proposition A.5.4). The
idempotent ei ∈ Γ(U, j′∗OtV ) = Γ(tV,OtV ), defining the ith copy of V , is integral
over OU and thus defines a global section ei ∈ Γ(U, p∗A). Now write A = colimλ Cλ
as a filtered colimit of finite type OX algebra (Exercise 4.1.25). Since A is integral
over OX , each Cλ is a finite OX -algebra. For λ� 0, we have ei ∈ Γ(U, p∗Aλ). The
Deligne–Mumford stack Z := SpecX Aλ is finite over X and we claim that Z is a
scheme. To see this, consider the cartesian diagram

Z ′ //

��

U

p

��

Z // X

noting that Z ′ is a scheme since it is finite over U . Each idempotent ei defines a
global sections of Z ′ and thus yield a decomposition Z ′ =

∐d
i=1 Z

′
i. Each morphism

Z ′i → Z is étale, separated and birational, thus an open immersion. Since Z ′ → Z is
surjective, the collection of Z ′i defines an open covering of Z and it follows that Z is
a scheme.

Proof 2 (following [Vis89, Prop. 2.6]):
We first use limit methods to reduce to the case that S is of finite type over Z

in order to ensure that normalizations are finite. By Noetherian Approximation
(Proposition A.6.2), we may write S = limλ Sλ as the limit of schemes with affine
transition maps where each Si is of finite type over Z. Let U → X be an étale
presentation and set R = U×X U ⇒ U be the corresponding étale groupoid equipped
with source, target, identity and compositions morphisms s,t,i and c. There exists
an index 0 and schemes U0 and R0 of finite type over S0 such that U = U0 ×S0

S
and R = R0 ×R0

S (Proposition A.6.4(2)). For λ ≥ 0, set Uλ = U0 ×S0
Sλ and

Rλ = R0 ×S0
Sλ. For λ� 0, there are morphisms sλ, tλ : Rλ → Uλ, iλ : Rλ → Rλ

and cλ : Rλ×tλ,Uλ,sλRλ → Rλ that base change to s,t,i and c (Proposition A.6.4(1)).
Finally, for λ� 0, the morphisms sλ and tλ are étale, and Rλ → Uλ×Sλ Rλ is finite
(Proposition A.6.7). It follows that Rλ ⇒ Uλ defines an étale groupoid of schemes
and that the quotient stack Xλ := [Uλ/Rλ] is a Deligne–Mumford stack separated
and of finite type over Sλ such that X ∼= Xλ ×Sλ S. A finite, generically étale cover

178



of Xλ by scheme will pullback to a finite, generically étale cover of X by a scheme.
This finishes the reduction.

By replacing X with the disjoint union of the irreducible components with their
reduced stack-structure, we may assume that X is irreducible and reduced. Let X̃
be the normalization of X (Example 4.1.23). Then X̃ → X is finite and so after
replacing X with X̃ , we may assume that X is also normal.

Let X → X be the coarse moduli space (Theorem 4.3.11) and let U → X be
an étale presentation. As X is normal, so is X (Exercise 4.3.17). We can write
U =

∐
i Ui as the disjoint union of integral affine schemes Ui; each morphism Ui → X

is étale and in particular quasi-finite and dominant.
Each field extension Frac(X)→ Frac(Ui) of fraction fields is finite, and we let F

be a finite normal extension of Frac(X) containing each Frac(Ui). The normalization
Y → X of X in F is finite; here X is an algebraic space and the normalization
is well-defined by Proposition A.5.4. Meanwhile, by the universal property of the
normalization Y → X, the normalization Yi of Ui in F admits a morphism Yi → Y
over X. As Yi → Y is separated, quasi-finite and birational, it is an open immersion.

The automorphism group G = Aut(F/Frac(X)) acts on Y over X and for each
pair α = (i, σ) of an integer i and σ ∈ G, we set Yα = σ(Yi). We claim that
Y =

⋃
α Yα. To see this, we first show that G acts transitively on the fibers of

Y → X. The fixed field FG is a purely inseparable field extension of Frac(X)
and the normalization X ′ → X of X in FG is a universal homeomorphism. Thus
to see that G acts transitively on the fibers, we may assume that Frac(X) → F
is a Galois extension. We may also assume that X = SpecA and Y = SpecB
with B the integral closure of A in F . Then G acts on B and we have inclusions
A ⊂ BG ⊂ FG = Frac(X). Since A is normal and BG is integral over A, we see that
A = BG. By Theorem 4.3.6, [SpecA/G] → SpecB is a coarse moduli space and
it follows that G acts transitively on the fibers of SpecA→ SpecB. To prove the
claim, observe that since

∐
i Yi →

∐
i Ui → X is surjective, each point x ∈ X has a

preimage y ∈ Yi for some i. Since G acts transitively on the fibers,
⋃
Yα contains

the fiber of Y → X over x.
The claim implies that Y is a scheme and that Y → X factors through X

Zariski-locally on Y . Indeed, each Yα is separated and quasi-finite over Ui and thus
a scheme by Corollary 4.4.7. Each Yα → X factors via sα : Yα → Ui → X . After
replacing X with Y and X with X ×X Y , we may assume that we have a coarse
moduli space X → X with X a scheme and an open covering X =

⋃
Xα together

with a commutative diagram
X

��

Xα

sα

==

� � // X

for each α. We will show that after replacing X with a finite cover, the sections
sα glue to a global section s. Such a section is necessarily finite since X is Deligne–
Mumford and this then finishes the proof as X → X is a finite surjective morphism
from a scheme.

To show that the sections glue, we first claim that the diagonal ∆X : X → X×XX
is étale. This is a Zariski local question on X so we may assume that there is a
section s : X → X of π : X → X. Then s : X → X is a dominant and unramified
(since ∆X is unramified) morphism of normal Deligne–Mumford stacks and thus
étale (Proposition A.3.13). It follows that ∆X : X → X ×X X is étale (and also that
π : X → X is étale).
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Since the diagonal X → X ×X X is finite and étale, the scheme Jα,β :=
IsomXα,β

(sα|Xα,β , sα|Xα,β ) of isomorphisms is finite and étale over Xα,β := Xα∩Xβ .
We may choose a finite étale cover Vα,β → Xα,β trivializing Jα,β → Xα,β (see
Proposition A.3.12). By Zariski’s Main Theorem (A.5.3), Vα,β → X factors as an
open immersion Vα,β ↪→ X̃ and a finite morphism X̃ → X. After replacing X with
X̃, we may assume that Jα,β → Xα,β is trivial.

The intersection
⋂
αXα is non-empty and we may choose a geometric point

x : Speck→
⋂
αXα. All objects in the fiber Xx(k) of X → X over x are isomorphic.

We may therefore choose an object t ∈ Xx(k) and isomorphisms µα : t
∼→ x∗sα for

each α. This allows us to define isomorphisms φα,β : x∗sα
µ−1
α−−→ t

µβ−−→ x∗sβ . It is
readily checked that the isomorphisms φα,β satisfy the cocycle φα,γ = φβ,γ ◦ φα,β .
Each φα,β defines a lift Speck→ Jα,β of x : Speck→ Xα,β which extends uniquely
to a section λα,β : Xα,β → Jα,β . The triple intersections Xα∩Xβ ∩Xγ are connected
and since the φα,β satisfy the cocycle condition, so does λα,β . The isomorphisms
λα,β between sα|Xα,β and sα|Xα,β therefore glue to a global section of X → X.

Exercise 4.5.3. Let X be a normal algebraic space of finite type over a noetherian
scheme S. Show that there is a normal scheme U with an action of a finite group G
such that X is the quotient of U by G, i.e. [U/G]→ X is a coarse moduli space.

Hint: After reducing to the case that X is integral, choose a finite, generically étale
and surjective morphism U → X from a scheme. Let K be the Galois closure of
the finite separable field extension Frac(U)/Frac(X). Then take U to be the integral
closure of X in K (which is finite over X as K/Frac(X) is separable) and take
G = Gal(K/Frac(X)). See also [LMB00, Cor. 16.6.2].
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Chapter 5

Moduli of stable curves

5.1 Review of smooth curves

5.1.1 Curves
A curve over a field k is a one-dimensional scheme C of finite type over k. Proper
curves are projective; this can be reduced to the case of smooth curves [Har77,
Prop. I.6.7]. More generally, every one-dimensional separated algebraic space is a
quasi-projective scheme; see [SP, Tags 0ADD and 09NZ].

If C is a proper curve over a field k, we define the arithmetic genus of C or
simply the genus of C as

g(C) = 1− χ(C,OC),

which is equal to h1(C,OC) if C is geometrically connected and reduced.
For a connected, reduced, and projective curve C over an algebraically closed field

k, the degree of a very ample line bundle L on C is defined as the number of zeros
(counted with multiplicity) of any section of L. In other words, if C ↪→ Pn is the
projective embedding defined by L, then degL = dimk Γ(C ∩H,OC∩H), where H is
any hyperplane and C∩H is the scheme-theoretic intersection. Any line bundle on C
can be written as difference of two very ample line bundles: if M is very ample on C,
thenM ′ := L⊗Mn is very ample for n� 0, and L ∼= M ′⊗ (M⊗n)∨. In this way, we
also see that L = OC(D) for a divisor D =

∑
ni
pi supported on the smooth locus of

C, i.e. each pi ∈ C is a smooth point. Note that deg(L⊗M) = degL+ degM , and
that if C =

⋃
i Ci denotes the irreducible decomposition, then degL =

∑
i degL|Ci .

Theorem 5.1.1 (Riemann–Roch). Let C be a connected, reduced, and projective
curve of genus g over an algebraically closed field k. If L is a line bundle on C, then

χ(C,L) = degL+ 1− g.

Proof. We can write L = OC(D) for a divisor D supported on the smooth locus.
Since Riemann–Roch holds for OC , it suffices by adding and subtracting points to
show that Riemann–Roch holds for OC(D) if and only if it holds for OC(D + p) for
a smooth point p ∈ C(k). This follows by consider the short exact sequence

0→ OC(D)→ OC(D + p)→ κ(p)→ 0

and the identity χ(C,OC(D+ p)) = χ(C,OC(D)) + 1. See also [Har77, Thm IV.1.3,
Exer. IV.1.9] and [Vak17, Exers. 18.4.B and S].
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5.1.2 Smooth curves
We review some basic properties of smooth curves which we will later generalize to
nodal curves. If C is a smooth curve, then the sheaf of differentials ΩC is a line
bundle. Serre Duality states ΩC is in fact a dualizing sheaf on C; this is a deep
result that is in indispensable in the study of curves.

Theorem 5.1.2 (Serre Duality for Smooth Curves). If C is a smooth projective
curve over a field k, then ΩC is a dualizing sheaf, i.e. there is a linear map
tr : H1(C,ΩC)→ k such that for every coherent sheaf F , the natural pairing

HomOC (F ,ΩC)×H1(C,F)→ H1(C,ΩC)
tr−→ k

is perfect.

Proof. See [Har77, Cor. III.7.12].

Remark 5.1.3. The pairing being perfect means that the HomOC (F ,ΩC) is
identified with the dual H1(C,F)∨. If F is a vector bundle, HomOC (F ,ΩC) ∼=
H0(C,F∨ ⊗ ΩC) and Serre Duality gives an isomorphism

H0(C,F∨ ⊗ ΩC) ∼= H1(C,F)∨.

Taking F = ΩC , we see that H1(C,ΩC) ∼= H0(C,OC)∨ and in particular that the
trace map tr : H1(C,ΩC) → k is an isomorphism if C is geometrically connected
and reduced.

Combining the above version of Riemann–Roch (5.1.1) with Serre Duality leads
to the more powerful version of Riemann–Roch.

Theorem 5.1.4 (Riemann–Roch II). Let C be a smooth, connected, and projective
curve of genus g over an algebraically closed field. If L is a line bundle on C, then

h0(C,L)− h0(C,ΩC ⊗ L∨) = degL+ 1− g.

Remark 5.1.5. This is often written in divisor form as h0(C,L)− h0(C,K − L) =
degL+ 1− g where K denotes a canonical divisor, i.e. ΩC = OC(K).

Like Riemann–Roch, Riemann–Hurwitz (5.7.2) plays an essential role in the study
of smooth curves. Riemann–Hurwitz informs us on how the sheaf of differentials
behaves under finite morphisms of smooth curves; the statement is postponed until
our discussion of branched covers.

5.1.3 Positivity of divisors on smooth curves
The following consequence of Riemann–Roch provides a useful criteria to determine
whether a given line bundle is base point free (equivalently globally generated),
ample, or very ample.

Corollary 5.1.6. Let C be a connected, smooth, and projective curve over an
algebraically closed field k, and let L be a line bundle on C.
(1) if degL < 0, then h0(C,L) = 0;
(2) if degL > 0, then L is ample;
(3) if degL ≥ 2g, then L is base point free; and
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(4) if degL ≥ 2g + 1, then L is very ample.

Proof. See [Har77, Cor. IV.3.2].

Remark 5.1.7. If g > 1, we can use Riemann–Roch and Serre Duality to compute
that: (a) h0(C,ΩC) = h1(C,OC) = g, (b) h1(C,ΩC) = h0(C,OC) = 1 and (c)
ΩC has degree 2g − 2 and is thus ample on C. Similarly, if k > 1, we have: (a)
h0(C,Ω⊗kC ) = (2k − 1)(g − 1), (b) h1(C,Ω⊗kC ) = 0 and (c) Ω⊗kC has degree 2k(g − 1)
and is very ample if k ≥ 3. Note that ΩC is not very ample precisely when C is
hyperelliptic. On the other hand, if g = 1 then ΩC ∼= OC , and if g = 0 then C = P1

and ΩC = O(−2).

5.1.4 Families of smooth curves

Definition 5.1.8. A family of smooth curves (of genus g) over a scheme S is a
smooth and proper morphism C → S of schemes such that every geometric fiber is a
connected curve (of genus g).

Recall that the relative sheaf of differentials ΩC/S is a line bundle on C such that
for every geometric point s : Speck→ S, the restriction ΩC/S |Cs is identified with
ΩCs . More generally, for every morphism T → S of schemes, the pullback of ΩC/S to
C ×S T is canonically isomorphic to ΩC×ST/T . We now show that for k ≥ 3, the kth
relative pluricanonical sheaf Ω⊗kC/S is relatively very ample, and that its pushforward
is a vector bundle on S.

Proposition 5.1.9 (Properties of Families of Smooth Curves). Let π : C → S be a
family of smooth curves of genus g ≥ 2.

(1) π∗OC = OS;
(2) The pushforward π∗(Ω⊗kC/S) is a vector bundle of rank

r(k) :=

{
g if k = 1
(2k − 1)(g − 1) if k > 1.

whose construction commutes with base change (i.e. for a morphism f : T → S
of schemes, f∗π∗(Ω⊗kC/S) ∼= πT,∗(Ω

⊗k
CT /T )).

(3) R1π∗Ω
⊗k
C/S is isomorphic to OS if k = 1 and zero otherwise.

(4) For k ≥ 3, Ω⊗kC/S is relatively very ample.

Proof. Items (1)–(3) follows from Cohomology and Base Change (A.7.5) as detailed
in Proposition A.7.8. For (4), observe that for every point s ∈ S, the fiber Ω⊗kC/S ⊗
κ(s) = Ω⊗kCs is very ample by Corollary 5.1.6 as deg Ω⊗kCs = k(2g − 2) > 0. Since
H1(Cs,Ω⊗kCs ) = 0, we may apply Proposition E.2.1 to conclude that Ω⊗kC/S is relatively
very ample.

Remark 5.1.10. In particular, (4) above implies that every family of smooth curves
is projective.

It is also true that the relative sheaf of differentials ΩC/S is a relative dualizing
sheaf, i.e. satisfies a relative version of Serre Duality; see [Liu02, §6.4].
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5.2 Nodal curves

5.2.1 Nodes
Definition 5.2.1 (Nodes). Let C be a curve over a field k.

• If k is algebraically closed, we say that p ∈ C(k) is a node if there is an
isomorphism ÔC,p ∼= k[[x, y]]/(xy).
• If k is an arbitrary field, we say that a closed point p ∈ C is a node if there

exists a node p ∈ Ck over p.

We say that C is a nodal curve (or has at-worst nodal singularities) if C has pure
dimension one and every closed point is either smooth or nodal.

Figure 5.1: A node of a curve over C viewed algebraically (left hand side) or
analytically (right hand side).

Example 5.2.2.
(1) The curves Speck[x, y]/(xy) and Speck[x, y]/(y2− x2(x+ 1)) have nodes at 0.
(2) The curve C = SpecR[x, y]/(x2 + y2) has a node at 0. Since the quadratic

form x2 + y2 does not split into linear factors, the completion ÔC,0 is not
isomorphic to R[[s, t]]/(st).

(3) The curve SpecQ[x, y]/(x2−2)(y2−3) has a node at the point p defined by the
maximal ideal (x2 − 2, y2 − 3). Note that unlike the previous example where
the node 0 is a rational point, the node p in this example is not a rational
point and the field extension Q→ κ(p) has degree 4.

5.2.2 Equivalent characterizations of nodes
Recall that the singular locus Sing(C) of C is defined scheme-theoretically as the
first fitting ideal of ΩC (see §A.3.6): locally if C = V (f1, . . . , fm) ⊂ An, then
Sing(C) is defined by the vanishing of all (n− 1)× (n− 1) minors of the Jacobian
matrix J = (

∂fj
∂xi

); note that if C = V (f) ⊂ A2 is a plane affine curve, then
Sing(C) = V (∂f∂x ,

∂f
∂y ). We will also use properties of local complete intersections as

discussed in §A.3.8.

Proposition 5.2.3. Let C be a pure dimension one curve over a field k, and let
p ∈ C be a closed point. The following are equivalent:
(1) p ∈ C is a node;
(2) C is a local complete intersection at p, and Sing(C) is unramified over k at

p ∈ Sing(C);
(3) k → κ(p) is separable, OC,p is reduced, dimmp/m

2
p = 2, and there is a

nondegenerate quadratic form q ∈ Sym2 mp/m
2
p mapping to 0 in m2

p/m
3
p;
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(4) k→ κ(p) is separable and ÔC,p ∼= κ(p)[[x, y]]/(q) where q is a nondegenerate
quadratic form; and

(5) there exist a finite separable field extension k→ k′ and a point p′ ∈ Ck′ such
that ÔCk′ ,p

′ ∼= k′[[x, y]]/(xy)

Proof. Assuming (1), let p ∈ Ck be a node over p and let Sing(C) ⊂ C be the
scheme-theoretic singular locus. Then Sing(C)×k k = Sing(Ck) and the preimage of
Sing(Ck) under Spec ÔCk,p

→ Ck is Sing(Spec ÔCk,p
) by properties of fitting ideals

(see §A.3.6). Since ÔCk,p
∼= k[[x, y]]/(xy), Sing(Spec ÔCk,p

) = V (x, y) = Speck.
Therefore Sing(C)→ Speck is unramified at p. Since ÔCk,p

is a complete intersection,
C is a local complete intersection at p (Proposition A.3.15). This gives (2).

Assuming (2), since Sing(C) is unramified at p, the field extension k → κ(p)
is separable and there is an open neighborhood U ⊂ C of p such that Sing(U) =
Sing(C)∩U = {p}. In particular, C and OC,p are generically reduced. On the other
hand, since C is a local complete intersection, OC,p is a dimension 1 Cohen–Macaulay
local ring and thus has no embedded primes. It follows that OC,p is reduced. Using
that C is a local complete intersection, we can write ÔC,p = R/(f1, . . . , fn−1) where
R = κ(p)[[x1, . . . , xn]]. Since Sing(C) is unramified at p, the (n−1)×(n−1) minors of
the Jacobian matrix

(
∂fj
∂xi

)
i,j

generate the maximal ideal m = (x1, . . . , xn) ⊂ ÔC,p.

If ∂fj
∂xi
∈ R is a unit for some i and j, then the sequence x1, . . . , x̂i, xn, fj also

generates m/m2. We may use Lemma A.10.15 to change coordinates by replacing
the generators x1, . . . , xn with x1, . . . , x̂i, xn, fj . By eliminating fj , this allows us
to write R = κ(p)[[x1, . . . , x̂i, xn]]/(f1, . . . , f̂j , . . . , fn−1). After finitely many such
replacements, we can assume that ∂fj

∂xi
∈ m for every i, j. This implies that every

(n− 1)× (n− 1) minor is in mn−1, but since these minors generate m, we must have
that n = 2. Therefore, ÔC,p = κ(p)[[x, y]]/(f) with f = f2 + f3 + · · · and each fi
homogeneous of degree i. Since the partials fx and fy generate (x, y), the quadratic
form q := f2 ∈ Sym2 m/m2 must be nondegenerate. This gives (3).

Assuming (3), we have that dimκ(p) m
d/md+1 = 2 for every d ≥ 1 since q maps

to 0 in m2/m3. A choice of elements x0, y0 ∈ m mapping to a basis in m/m2

induces a surjection κ(p)[[x, y]] → ÔC,p (Lemma A.10.15). Since OC,p is reduced,
so is ÔC,p (see Remark B.4.5). Therefore, we may use that κ(p)[[x, y]] is a UFD to
conclude that the kernel κ(p)[[x, y]]→ ÔC,p is generated by an element f expressed
as a product of distinct irreducible elements. Thus ÔC,p ∼= κ(p)[[x, y]]/(f) where
the quadratic component q = ax2 + bxy + cy2 of f is a nondegenerate quadratic
form. We claim that we can modify our choice of coordinates x0, y0 ∈ m so that
q(x0, y0) = 0 ∈ ÔC,p, or in other words that f = q. We will show inductively
that for each N , there exists elements xi, yi ∈ mi+1 for i = 0, . . . , N such that
q(x0 + · · ·+xN , y0 + · · ·+yN ) ∈ mN+3. Since ÔC,p is complete, this would enable us
to replace x0 and y0 with

∑
i xi and

∑
i yi and conclude that ÔC,p ∼= κ(p)[[x, y]]/(q).

Supposing that we’ve already chosen x′ = x0 + · · ·+ xN−1 and y′ = y0 + · · ·+ yN−1,
then for every xN and yN ∈ mN+1, we have that

q(x′ + xN , y
′ + yN ) = q(x′, y′) + (2ax0 + by0)xN + (bx0 + 2cy0)yN mod mN+3

The nondegeneracy of q = ax2 + bxy + y2 implies that 2ax0 + by0 and bx0 + 2cy0

are linearly independent. Since dimκ(p) m
N+2/mN+3 = 2, we may choose xN and

yN such that Q(x′ + xN , y
′ + yN ) ∈ mN+3. This completes (4).
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Assuming (4) and using that q is nondegenerate, we may choose a degree 2
separable field extension κ(p)→ k′ such that q splits as a product of a linear forms.
Thus ÔC,p ⊗k k′ ∼= k′[[x, y]]/(xy), yielding (5). Finally, (5) clearly implies that p is a
node.

See also [SP, Tags 0C49, 0C4D and 0C4E].

Exercise 5.2.4. Show that Speck[x, y]/(f) has a node at 0 if and only if f(0) =

fx(0) = fy(0) = 0 and the Hessian det

(
fxx(0) fxy(0)
fyx(0) fyy(0)

)
is nonzero.

Exercise 5.2.5. Let C be a pure dimension 1 reduced curve over a field k with
normalization π : C̃ → C. Show that p ∈ C is a node if and only if k → κ(p) is
separable, (π∗OC̃/OC)⊗ κ(p) = 1, and

∑
π(q)=p[κ(q) : κ(p)]sep = 2.

Hint: Identify (π∗OC̃/OC) ⊗ κ(p) with the quotient Ã/A where A = ÔC,p and
Ã is its normalization, using that normalization commutes with completion (see
Remark B.4.5). To show (⇐), use that Ã is a product of complete DVRs to derive
the structure of A. See also [SP, Tag 0C4A].

Remark 5.2.6. The quantity (π∗OC̃/OC)⊗ κ(p) is referred to as the δ-invariant
of p, and the sum

∑
π(q)=p[κ(q) : κ(p)]sep is referred to as the number of geometric

branches over p. A cusp k[[x, y]]/(y2 − x3) has δ-invariant one but has only one
geometric branch.

[?]

Proposition 5.2.7 (Local Structure of Nodes). Let C be a curve over a field k. If
p ∈ C is a node, then there exist a finite separable field extension k→ k′ and étale
neighborhoods

(U, u)

{{ ((

(C, p) (Spec k′[x, y]/(xy), 0).

(5.2.1)

Proof. Using the characterization of nodes from Proposition 5.2.3(5), there is a finite
separable field extension k→ k′ such that ÔC,p ⊗k k′ ∼= k′[[x, y]]/(xy). The result is
now a consequence of Artin Approximation (Corollary A.10.13).

We will prove a more general statement in Theorem 5.2.18 regarding the local
structure of families of nodal curves.

Exercise 5.2.8. Provide a proof of the Local Structure of Nodes (5.2.7) without
appealing to Artin Approximation.

Hint: Use that the normalization of a strict henselization Osh
C,p has two components

to find an affine étale neighborhood (SpecR, u)→ (C, p) of p with R̃ = R1×R2. Use
the exact sequence 0 → R → R1 × R2 → κ(u) → 0 to construct elements x, y ∈ R
mapping to (1, 0), (0, 1) ∈ R1 ×R2, and argue that κ(u)[x, y]/(xy)→ R is étale.
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5.2.3 Genus formula

Proposition 5.2.9 (Genus Formula). Let C be a connected, nodal, and projective
curve over an algebraically closed field k with δ nodes and ν irreducible components.
Let Ci denote the ith irreducible component with normalization C̃i with genus g(C̃i).
The genus g of C satisfies

g =

ν∑
i=1

g(C̃i) + δ − ν + 1.

Proof. Let p1, . . . , pδ ∈ C denote the nodes of C. We claim that the normalization
π : C̃ → C induces a short exact sequence

0→ OC → π∗OC̃ →
⊕
i

κ(pi)→ 0.

It suffices to verify this étale-locally around a node pi ∈ C, and so by the Local
Structure of Nodes (5.2.7), we can assume that C = Speck[x, y]/(xy). In this case,
C̃ = Spec(k[x]× k[y]) and the sequence above corresponds to 0 → k[x, y]/(xy) →
k[x]× k[y]→ k→ 0. Alternatively, normalization commutes with completion and a
direct calculation as above shows that if A := ÔC,p ∼= k[[x, y]]/(xy), then Ã/A ∼= k;
see also Exercise 5.2.5.

The short exact sequence induces a long exact sequence on cohomology

0→ H0(C,OC)︸ ︷︷ ︸
1

→ H0(C̃,OC̃)︸ ︷︷ ︸
ν

→ ⊕iκ(pi)︸ ︷︷ ︸
δ

→ H1(C,OC)︸ ︷︷ ︸
g

→ H1(C̃,OC̃)︸ ︷︷ ︸∑
i g(C̃i)

→ 0

where the labels underneath indicate the dimension. The statement follows.

Figure 5.2: An example of a nodal curve of genus 14.

Remark 5.2.10. Notice that δ− ν + 1 is precisely the number of connected regions
bounded by the curve C as in Figure 5.2. Thus, the genus of a nodal curve can be
easily computed from the picture by summing the geometric genera of the irreducible
components and adding the number of bounded regions.
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5.2.4 The dualizing sheaf
Since a nodal curve C over a field k is a locally a complete intersection, C is Gorenstein
and there is a dualizing line bundle ωC with a trace map trC : H1(C,ωC)

∼→ k; see
[Har77, III.7.11] or [Ser88, §IV]. In other words, for every coherent sheaf F , the
natural pairing

HomOC (F , ωC)×H1(C,F)→ H1(C,ωC)
tr−→ k

is perfect.
Due to its importance in the study of stable curves, we now provide an explicit

description of ωC below in the case that k is algebraically closed. Let Σ := Csing be
the singular locus and U = C \Σ. Let π : C̃ → C be the normalization of C, and let
Σ̃ and Ũ be the preimages of Σ and U as in the diagram

Ũ �
�

//

∼

��

C̃

π

��

Σ̃? _oo

��

U
� � // C Σ.?

_oo

(5.2.2)

Let Σ = {z1, . . . , zn} be an ordering of the points and π−1(zi) = {pi, qi}. Since C̃ is
smooth, the sheaf of differentials ΩC̃ is a dualizing sheaf and is a line bundle. There
is a short exact sequence

0→ ΩC̃ → ΩC̃(Σ̃)→ OΣ̃ → 0 (5.2.3)

obtained by tensoring the sequence 0 → OC̃(−Σ̃) → OC̃ → OΣ̃ → 0 with ΩC̃(Σ̃).
As ΩC̃(Σ̃)|Ũ = ΩŨ , we can interpret sections of ΩC̃(Σ̃) as rational sections of ΩC̃

with at worst simple poles along Σ̃. Evaluating (5.2.3) on an open Ṽ ⊂ C̃ yields

0 // Γ(Ṽ ,ΩC̃) // Γ(Ṽ ,ΩC̃(Σ̃)) //

s 7→ (resy(s))

//
⊕

y∈Ṽ ∩Σ̃ κ(y),
(5.2.4)

where the last map takes a rational section s ∈ Γ(Ṽ ∩ Ũ ,ΩC̃) to the tuple whose
coordinate at y ∈ Ṽ ∩ Σ̃ is the residue resy(s) of s at y.

Definition 5.2.11. Let C be a nodal curve C over an algebraically closed field k.
Using the notation of (5.2.2) and (5.2.4), we define the subsheaf ωC ⊂ π∗ΩC̃(Σ̃)
by declaring that sections along V ⊂ C consist of rational sections s of ΩC̃ along
π−1(V ) with at worst simple poles along Σ̃ such that for every node zi ∈ V ∩Σ with
preimages pi, qi ∈ π−1(V ),

respi(s) + resqi(s) = 0.

The definition implies that ωC sits in the following two exact sequences:

0 // ωC // π∗ΩC̃(Σ̃)

s 7→ (respi(s) + resqi(s))

//
⊕

zi∈Σ k // 0 (5.2.5)

0 // π∗ΩC̃
// ωC

s 7→ (respi(s))

//
⊕

zi∈Σ k // 0 (5.2.6)
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Example 5.2.12 (Local calculation). Let C = Speck[x, y]/(xy). Then C̃ = A1tA1

with coordinates x and y respectively. The singular locus of C is Σ = {0} with
preimage Σ̃ = {p, q} consisting of the two origins. Then Γ(C̃,ΩC̃) = Γ(A1,ΩA1)×
Γ(A1,ΩA1) and (dxx ,−

dy
y ) is a rational section with opposite residues at p and q. In

fact, every section of Γ(C,ωC) is of the form(
f(x)

dx

x
, g(y)

−dy
y

)
= (f(x) + g(y)− f(0)) · (dx

x
,
−dy
y

)

for polynomials f(x) and g(y) such that f(0) = g(0), which is precisely the condition
for (f, g) ∈ Γ(C̃,OC̃) to descend to a global function f(x) + g(y)− f(0) ∈ Γ(C,OC).
In other words, ωC ∼= OC with generator (dxx ,−

dy
y ).

Example 5.2.13. Let C be the nodal projective plane cubic and P1 → C be
the normalization with coordinates [x : y] such that 0 and ∞ are the fibers of
the node. Observe that the rational differential η := dx

x = −dyy on P1 satisfies
res0 η + res∞ η = 0. It is easy to see that every local section of ωC is a multiple of η
or in other words that η : OC → ωC is an isomorphism.

Exercise 5.2.14. Let C be a connected, nodal, and projective curve over an
algebraically closed field k.
(a) Show that if π : C ′ → C is an étale morphism, then π∗ωC ∼= ωC′ .

Hint: Use the fact that normalization commutes with étale base change.
(b) Conclude that ωC is a line bundle.
(c) Show that ωC is a dualizing sheaf.

Hint: Reduce to the case of a smooth curve by considering the normalization.
(d) If T ⊂ C is a subcurve with complement T c := C \ T , show that

ωC |T = ωT (T ∩ T c).

Exercise 5.2.15. Let C be a connected, nodal, and projective curve over an
algebraically closed field k. Let C̃ → C be the normalization and Σ̃ ⊂ C̃ the set of
preimages of nodes. Show that there is an identification

HomOC̃ (ΩC̃(Σ̃),OC̃) ∼= HomOC (ΩC ,OC),

or in other words that regular vector fields on C correspond to regular vector fields
on C̃ vanishing at the preimages of nodes.

5.2.5 Nodal families

Recall that the relative singular locus Sing(C/S) of a morphism C → S with dimension
one fibers is defined as the first fitting ideal of ΩC/S ; see Definition A.3.14. Syntomic
morphisms are fppf morphisms whose fibers are local complete intersections; see
§A.3.8.

Proposition 5.2.16. Let C → S be an fppf morphism of schemes and s ∈ S a point
such that the fiber Cs has pure dimension one. A point p ∈ Cs is a node if and only if
C → S is syntomic at p and the relative singular locus Sing(C/S)→ S is unramified
at p.
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Proof. The conditions that C → S is syntomic at p and Sing(C)→ S is unramified
at p are conditions on the fibers over s. Since Sing(C/S)s = Sing(Cs), the result
follows from the equivalence of (1)-(4) of Proposition 5.2.3.

The above characterization allows us to show that the property of being a nodal
family descends under limits (Definition A.6.6).

Lemma 5.2.17. The following property of morphisms of schemes descends under
limits: an fppf morphism such that every fiber is a pure dimension one nodal curve.

Proof. From Descending Properties of Morphisms under Limits (A.6.7), we know
that the properties of being fppf, syntomic, unramified, and having connected
pure one-dimensional fibers descend under limits. Since the relative singular locus
commutes with base change, the result follows from Proposition 5.2.16.

A family of nodal curves is a proper fppf morphism C → S of schemes such that
every geometric fiber Cs is a connected nodal curve.

5.2.6 Local structure of nodal families

Recall that if C → S is a family of smooth curves, then every point p ∈ C over s ∈ S
is étale locally isomorphic to relative affine space of dimension one. More precisely,
there is a commutative diagram

(C, p)

��

(C′, p′)? _
op
oo ét //

��

(S′ ×Z A1
Z, (s

′, 0))

ww

(S, s) (S′, s′)? _
op
oo

where the left horizontal maps are open immersions, the right map is étale map,
and S′ ×Z A1

Z = A1
S′ → S′ is the base change of A1

Z → SpecZ; see Proposition A.3.5.
We now give a local structure of a family of nodal curves generalizing the Local
Structure of Nodes (5.2.7).

Theorem 5.2.18 (Local Structure of Nodal Families). Let π : C → S be an fppf
morphism such that every geometric fiber is a curve. Let p ∈ C be a node in a fiber
Cs. There is a commutative diagram

(C, p)

��

(C′, p′)étoo ét //

��

(SpecA[x, y]/(xy − f), (s′, 0))

tt

(S, s) (SpecA, s′)
étoo

(5.2.7)

where each horizontal map is étale and f ∈ A is a function vanishing at s′.

Remark 5.2.19. In other words, every family of nodal curves is étale locally on
the source and target the base change of the morphism

SpecZ[x, y, t]/(xy − t)→ SpecZ[t]

by a map SpecA→ SpecZ[t] induced by a function f ∈ A.
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Proof 1 (local-to-global).

Step 1: Reduce to the case where S is of finite type over Z. Use limit methods and
Lemma 5.2.17.

Step 2: Reduce to the case where ÔCs,p ∼= κ(s)[[x, y]]/(xy). By Proposition 5.2.3,
there is a finite separable field extension κ(s) → k′ and a point p′ ∈ Cs ×κ(s) k′
whose completion is isomorphic to k′[[x, y]]/(xy). Letting (S′, s′)→ (S, s) be an étale
morphism such that there is an isomorphism κ(s′) ∼= k′ over κ(s), we replace S with
S′.

Step 3: Show that ÔC,p ∼= ÔS,s[[x, y]]/(xy − f̂) where f̂ ∈ m̂s ⊂ ÔS,s. We claim that
there exists elements xn, yn ∈ ÔC,p and fn ∈ ÔS,s for n ≥ 0 which are compatible
(i.e. xn+1 ≡ xn(mod mn+1

p ), yn+1 ≡ yn(mod mn+1
p ), and fn+1 ≡ fn(mod mn+1

s ))
and such that there is an isomorphism

(OS,s/mn+1
s )[[x, y]]/(xy − fn)

∼→ OC,p/mn+1
s OC,p (5.2.8)

induced by the map sending x and y to the images of xn and yn. The condition that
the map (5.2.8) is an isomorphism is equivalent to xnyn − fn ∈ m̂n+1

s ÔC,p.
We will prove this by induction. The base case n = 0 is handled by Step 2.

Assuming the claim holds for n, write

xnyn − fn =
∑
i

aibi with ai ∈ m̂n+1
s and bi ∈ ÔC,p.

Since xn and yn generate the maximal ideal of p in the fiber Cs, and since κ(s) = κ(p),
we may find a′i ∈ ÔS,s and b′i, b′′i ∈ ÔC,p such that

bi − (xnb
′
i + ynb

′′
i + a′i) ∈ m̂sÔC,p.

We then define

xn+1 = xn −
∑
i

aib
′′
i , yn+1 = yn −

∑
i

aib
′
i, fn+1 = fn +

∑
i

aia
′
i,

and check that

xn+1yn+1 − fn+1 = (xn −
∑
i

aib
′′
i )(yn −

∑
i

aib
′
i)− (fn +

∑
i

aia
′
i)

= (xnyn − fn)− xn
∑
i

aib
′
i − yn

∑
i

aib
′′
i −

∑
i

aia
′
i +
∑
i,j

aiajb
′′
i b
′
j

=
∑
i

aibi − xn
∑
i

aib
′
i − yn

∑
i

aib
′′
i −

∑
i

aia
′
i +
∑
i,j

aiajb
′′
i b
′
j

=
∑
i

ai︸︷︷︸
m̂n+1
s

(bi − xnb′i − ynb′′i − a′i)︸ ︷︷ ︸
m̂sÔC,p

+
∑
i,j

aiaj︸︷︷︸
m̂

2(n+1)
s

b′′i b
′
j

is an element of m̂n+2
s ÔC,p. Setting x̂ = limn xn, ŷ = limn yn ∈ ÔC,p, and f̂ =

limn fn ∈ m̂s, we see that the map ÔS,s[[x, y]]/(xy − f̂)→ ÔC,p, defined by x 7→ x̂
and y 7→ ŷ, is an isomorphism.

Step 4: Construct the desired étale neighborhoods. Step 3 provides a diagram

Spec ÔS,s ×S C

''

Spec ÔS,s[x, y]/(xy − f̂)

vv

Spec ÔS,s.

191



such that the points (s, p) ∈ Spec ÔS,s ×S C and (s, 0) ∈ Spec ÔS,s[x, y]/(xy − f̂)

have isomorphic completion, where s denotes also the closed point of Spec ÔS,s. A
consequence of Artin Approximation (Corollary A.10.13) implies that there are étale
morphisms

(U, u)

))vv

(Spec ÔS,s ×S C, (s, p)) (Spec ÔS,s[x, y]/(xy − f̂), (s, 0))

(5.2.9)

defined over Spec ÔS,s. After replacing S with an open affine neighborhood of s, we
can assume that S = SpecA is affine. By Neron–Popescu (A.10.4), we may write
ÔS,s = colimBλ as a directed colimit of smooth A-algebras. Set Sλ = SpecBλ,
Cλ = C ×S Sλ, and Uλ = U ×S Sλ. For λ� 0, f̂ ∈ ÔS,s is the image of an element
fλ ∈ Bλ, and the pullbacks of x and y to Γ(U,OU ) are the pullbacks of elements in
Γ(Uλ,OUλ) under U → Uλ. This yields a commutative diagram

Uλ

))yy
Cλ

%%

SpecBλ[x, y]/(xy − fλ)

uu

Sλ = SpecBλ

which base changes to (5.2.9) under Spec ÔS,s → Sλ. Since étaleness descends under
limits (A.6.7), the maps Uλ → Cλ and Uλ → SpecBλ[x, y]/(xy − fλ) are étale for
λ� 0. Letting uλ = (u, sλ) ∈ Uλ, we have a commutative diagram

(C, p)

��

(Uλ, uλ)
smoo ét //

��

(SpecBλ[x, y]/(xy − fλ), (sλ, 0))

tt

(S, s) (SpecBλ, sλ)
smoo

This gives our desired diagram (5.2.7) except that the left horizontal arrows are
smooth rather than étale. Since smooth maps étale locally have sections (Corol-
lary A.3.6), there is an étale map (SpecA, s′) → (S, s) and a map (SpecA, s′) →
(Sλ, sλ) over S. The result follows from setting C′ := Uλ×Sλ SpecA and p′ = (uλ, s

′).
See also [SP, Tag 0CBY].

Proof 2 (avoiding Artin Approximation/Neron–Popescu). We can reduce to the case
where S is of finite type over Z by Lemma 5.2.17. By Proposition 5.2.16, we may
replace C with an open neighborhood of p such that C → S is syntomic and
Sing(C/S) → S is unramified. After replacing C and S with open neighborhoods,
we may also assume that C and S are affine, and that the geometric fibers of C → S
are connected with at most two irreducible components. We may choose an closed
immersion S ↪→ AnZ and apply Proposition A.3.16 to find a syntomic morphism
C′ → AnZ extending C → S. The fiber C′s has a node at p and after replacing C → S
with C′ → AnZ, we may assume that the base S is regular. By the étale local structure
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of unramified morphisms (Proposition A.3.7), after replacing C and S with étale
neighborhoods, we can arrange that Sing(C/S) ↪→ S is a closed immersion.

We claim that after replacing S with an open neighborhood of s, we can arrange
that Sing(C/S) = S or Sing(C/S) is defined by a nonzerodivisor f ∈ Γ(S,OS).
This holds over the completion of S at s by Step 3 in the first proof above: since
ÔC,p ∼= ÔS,s[[x, y]]/(xy−f̂) where f̂ ∈ m̂s, Sing(C/S)×SSpec ÔS,s = V (f̂). The claim
then follows from using fppf descent along Spec ÔS,s → SpecOS,s and properties
of the ideal sheaf I defining Sing(C/S). Indeed, if f̂ = 0, then Is = 0 and hence
I is zero in an open neighborhood of s. If f̂ is a nonzerodivisor, then Is is a line
bundle (by Proposition B.4.3) and hence I is defined by a nonzerodivisor in an open
neighborhood of s.

If Sing(C/S) = S, we first claim that after replacing C with an étale neighborhood,
we can arrange that C is the scheme-theoretic union C1∪C1 of closed subschemes such
that Sing(C/S) = C1 ∩ C2. The normalization Z̃ → SpecOh

C,p of the henselization
is a finite morphism, and since normalization commutes with completion (see
Remark B.4.5), there are two preimages in Z̃ of the unique closed point. By properties
of the henselization (Proposition A.9.6), Z̃ is the disjoint union Z̃ = Z̃1 q Z̃2.
Therefore SpecOhC,p is the union of the (closed) images of Z̃1 and Z̃2. This establishes
the claim. After replacing C with an open neighborhood, we can arrange that C1
and C2 are defined by global functions g1, g2 ∈ B := Γ(C,OC) on C with g1g2 = 0.
Letting S = SpecA, the ring map A[x, y]/(xy)→ B, defined by x 7→ g1 and y 7→ g2,
induces a morphism C → SpecA[x, y]/(xy) over S. This map is étale at p since it
induces an isomorphism of completions at p.

If Sing(C/S) = V (f) with f ∈ A := Γ(S,OS), then the argument above shows
that C ×A (A/f) is the scheme-theoretic union Z1 ∪ Z1 of effective Cartier divisors
such that Sing(C/S) = Z1 ∩ Z2. After replacing C with an open neighborhood,
we can write each Zi = V (gi) for global functions gi ∈ B := Γ(C,OC). As the
restrictions of g1g2 and f define the same closed subscheme of Spec ÔC,p, we have
that f = ug1g2 for a unit u ∈ B after replacing C with an open neighborhood.
The ring map A[x, y]/(xy − f) → B, defined by x 7→ ug1 and y 7→ g2, induces a
morphism C → SpecA[x, y]/(xy) over S; this map is étale at p since it induces an
isomorphism of completions at p.

One direct consequence of this local structure theorem is that if C → S is an fppf
morphism such every fiber is a pure dimension one curve, then the locus C≤nod ⊂ C
of points which are smooth or nodal is open. And if we add a properness condition
on C → S, then π(C \ C≤nod) ⊂ S is closed and therefore the locus of points s ∈ S
such that Cs is a nodal curve is the open subscheme S \ π(C \ C≤nod). This will be
applied later to conclude that the stack parameterizing families of nodal curves is
an open substack of the stack of all curves.

Corollary 5.2.20. If C → S is a proper fppf morphism of schemes such that every
geometric fiber is a curve, then the locus of points s ∈ S such that Cs is nodal is
open.

5.3 Stable curves

Stable curves were introduced in unpublished joint work by Mayer and Mumford
[MM64].
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5.3.1 Definition and equivalences
An n-pointed curve is a curve C over a field k together with an ordered collection
of k-points p1, . . . , pn ∈ C; we call the pi ∈ C marked points. A point q ∈ C of an
n-pointed curve is called special if q is a node or a marked point.

Definition 5.3.1 (Stable curves). An n-pointed geometrically connected, nodal,
and projective curve (C, p1, . . . , pn) over a field k is stable if
(1) p1, . . . , pn ∈ C are distinct smooth points,
(2) every smooth rational subcurve P1 ⊂ C contains at least 3 special points, and
(3) C is not of genus 1 without marked points.

Remark 5.3.2. Note that there are no n-pointed stable curves of genus g if (g, n) ∈
{(0, 0), (0, 1), (0, 2), (1, 0)} or equivalently 2g − 2 + n ≤ 0. We will often impose the
condition that 2g − 2 + n > 0 in order to exclude these special cases.

Figure 5.3: The curves in the top row are stable while those in the second row are
not.

Definition 5.3.3 (Semistable and prestable curves). An n-pointed geometrically
connected, nodal, and projective curve (C, p1, . . . , pn) over a field k is called

• semistable if Definition 5.3.1(1) and (3) hold, and (2) is replaced with the
condition that every smooth rational subcurve P1 ⊂ C contains at least 2
(rather than 3) special points, and

• prestable Definition 5.3.1(1) holds, i.e. p1, . . . , pn are distinct smooth points of
C.

In the unpointed case, a curve is prestable curve if it is nodal.
An automorphism of a stable curve (C, p1, . . . , pn) is an automorphism α : C

∼→ C
such that α(pi) = pi. We denote by Aut(C, p1, . . . , pn) the (abstract) group of
automorphisms. Recall also that if C is a geometrically connected, smooth, and
projective curve of genus g ≥ 2, then Aut(C) is finite [Har77, Exer. III.2.5].

Proposition 5.3.4. Let (C, p1, . . . , pn) be an n-pointed prestable curve. The fol-
lowing are equivalent:
(1) (C, p1, . . . , pn) is stable,
(2) Aut(C, p1, . . . , pn) is finite, and
(3) ωC(p1 + · · ·+ pn) is ample.
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Proof. The equivalence (1)⇐⇒ (2) follows from Exercise 5.3.5 and the observation
that the only way a smooth prestable n-pointed curves (C, pi) can have a positive
dimensional automorphism group is if C = P1 with n ≤ 2 or if C is a genus 1 curve
with n = 0.

To see the equivalence with (3), we will use the fact that for a subcurve T ⊂ C,
we have ωC |T = ωT (T ∩ T c) (Exercise 5.2.14). If π : C̃ → C is the normalization,
then ωC(p1 + · · ·+ pn) is ample if and only if π∗

(
ωC(p1 + · · ·+ pn)

)
is ample if and

only if for each irreducible component T ⊂ C,

ωC(p1 + · · ·+ pn)|T = ωT (
∑
pi∈T

pi + (T ∩ T c))

is ample. This latter condition holds precisely if each P1 ⊂ C̃ contains at least three
points that lie over nodes or marked points.

Exercise 5.3.5. Let (C, p1, . . . , pn) be an n-pointed prestable curve such that the
points pi are distinct and smooth. Let π : C̃ → C be the normalization of C, p̃i ∈ C̃
be the unique preimage of pi, and q̃1, . . . , q̃m ∈ C̃ be an ordering of the preimages of
nodes.
(a) Show that (C, pi) is stable if and only if every connected component of

(C̃, {p̃i}, {q̃i}) is stable.
(b) Show that the automorphism group scheme Aut(C, pi) is an algebraic group.

(c) Show that Aut(C, pi) is naturally a closed subgroup of Aut(C̃, {p̃i}, {q̃i})
with the same connected component of the identity (i.e. Aut(C, pi)

0 =

Aut(C̃, {p̃i}, {q̃i})0).

(d) Provide an example where Aut(C, pi) 6= Aut(C̃, {p̃i}, {q̃i}).

5.3.2 Positivity of ωC
Exercise 5.3.6. If (C, p1, . . . , pn) is an n-pointed prestable curve of genus g, and
let L := ωC(p1 + · · ·+ pn).
(a) If (C, pi) is semistable, show that L⊗k is base point free for k ≥ 2,
(b) If (C, pi) is stable, show that L⊗k is very ample for k ≥ 3 and that H1(C, (ωC(p1+
· · ·+ pn))⊗k) = 0 for k ≥ 2.

Hint: For (b), show that the global sections of L⊗k separate points and tangent
vectors. In other words, show that the maps

H0(C,L⊗k)→
(
L⊗k ⊗ κ(x)

)
⊕
(
L⊗k ⊗ κ(y)

)
H0(C,L⊗k)→ L⊗k ⊗OC,x/m2

x

are surjective. Establish this by using Serre Duality and a case analysis on whether
x, y are smooth or nodal. See also [DM69, Thm. 2], [ACG11, Lem. 10.6.1], [SP,
Tag 0E8X], and [Ols16, Prop. 13.2.17].

Exercise 5.3.7. If C is the nodal union C1 ∪ C2 of genus i and g − i curves along
a single node p = C1 ∩ C2, show that ωC has a base point at p.

5.3.3 Families of stable curves

Definition 5.3.8.
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(1) A family of n-pointed nodal curves is a flat, proper, and finitely presented
morphism C → S of schemes with n sections σ1, . . . , σn : S → C such that
every geometric fiber Cs is a (reduced) connected nodal curve.

(2) A family of n-pointed stable curves (resp. semistable curves, prestable curves)
is a family C → S of n-pointed nodal curves such that every geometric fiber
(Cs, σ1(s), . . . , σn(s)) is stable (resp. semistable, prestable).

In a family of n-pointed nodal curves, marked points may lie at the nodes; this
is the not the case for prestable (and thus also for semistable and stable) curves.

If C → S is a family of prestable curves, then C → S is locally a complete
intersection morphism and thus there is a relative dualizing line bundle ωC/S that
is compatible with base change T → S and in particular restricts to the dualizing
line bundle ωCs on every fiber of C → S; see [Har66c] or [Liu02, §6.4]. Note also
that since the geometric fibers are stable curves, the image of each σi is a divisor
contained in the smooth locus and we can form the line bundle ωC/S(σ1 + · · ·σn).

We have the following generalization of Proposition 5.1.9 which is proven in the
same way but using the very ampleness of third tensor power of ωC(p1 + · · ·+ pn)
in Exercise 5.3.6.

Proposition 5.3.9 (Properties of Families of Stable Curves). Let (C → S, {σi})
be a family of n-pointed stable curves of genus g, and set L := ωC/S(

∑
i σi). If

k ≥ 3, then L⊗k is relatively very ample and π∗L
⊗k is a vector bundle of rank

(2k − 1)(g − 1) + kn.

In particular, stable n-pointed families are projective morphisms.

Proposition 5.3.10 (Openness of Stability). Let (C → S, {σi}) be a family of
n-pointed nodal curves. The locus of points s ∈ S such that (Cs, {σi(s)}) is stable is
open.

Proof. The locus in S where σ1(s), . . . , σn(s) are distinct and smooth is open. We
may thus assume that (C → S, {σi}) is a family of prestable n-pointed curves.

Argument 1: since Aut(C/S, σ1, . . . , σn) → S is a group scheme of finite pre-
sentation, upper semicontinuity implies that the locus of points s ∈ S such that
Aut(Cs, σ1(s), . . . , σn(s)) is finite is open. By the equivalence Proposition 5.3.4(2),
this open subset is identified with the stable locus.

Argument 2: the locus of points s ∈ S such that ωC/S(
∑
i σi)|Cs ∼= ωCs(

∑
i σi(s))

is ample is open (Proposition E.2.1). By the equivalence Proposition 5.3.4(3), this
open subset is identified with the stable locus.

5.3.4 Deformation theory of stable curves
If C is smooth curve over a field k, then every first order deformation is locally
trivial (Proposition D.1.8) and the set Def(C) of isomorphism classes of first order
deformations is naturally in bijection with H1(C, TC) (Proposition D.1.11). Moreover,
automorphisms, deformations, and obstructions of higher order deformations are
classified by Hi(C, TC) for i = 0, 1, 2 (Proposition D.2.6).

Nodal singularities on the other hand have first order deformations that are
not locally trivial, e.g. Speck[x, y, ε]/(xy − ε) → Speck[ε] is non-locally trivial
deformation of C = Speck[x, y]/(xy). In this section, we classify automorphisms,
deformations and obstructions of nodal curves (Proposition 5.3.11), describe first
order deformations of a nodal curve in terms of the pointed normalization and
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the singularities (Proposition 5.3.13), and then compute the dimensions of the
groups classifying automorphisms, deformations, and obstructions of a stable curve
(Proposition 5.3.14).

Proposition 5.3.11. Let (C, pi) be a prestable curve over a field k. Let A′ � A
be a surjection of artinian local k-algebras with residue field k. Suppose that J =
ker(A′ → A) satisfies mA′J = 0. If C → SpecA is a family of nodal curves such
that C ∼= C ×A k, then
(1) The group of automorphisms of a deformation C′ → SpecA′ of C → SpecA

over A′ is bijective to Ext0
OC (ΩC(

∑
i pi),OC ⊗k J).

(2) If there exists a deformation of C → SpecA over A′, then the set of isomorphism
classes of all such deformations is a torsor under Ext1

OC (ΩC(
∑
i pi),OC ⊗k J).

(3) There is an element obC ∈ Ext2
OC (ΩC(

∑
i pi),OC ⊗k J) with the property that

there exists a deformation of C → SpecA over A′ if and only if obC = 0.

Proof. Since nodal curves are generically smooth and local complete intersections,
the unpointed case follows from Proposition D.2.11. We leave the generalization to
n-pointed curves to the reader.

Lemma 5.3.12. Let (C, pi) be a prestable curve over a field k. Let q1, . . . , qs ∈ C
be the nodes of C. Let (C̃, pi, q

′
j , q
′′
j ) be the pointed normalization where π : C̃ → C

is the normalization and π−1(qj) = {q′j , q′′j }. There is a convergent spectral sequence

Hp(C,E xtqOC (ΩC(
∑
i pi),OC))⇒ Extp+qOC (ΩC(

∑
i pi),OC).

such that the induced exact sequence of low-degree terms is identified with

0→ H1(C,H omOC (ΩC(
∑
i pi),OC))→ Ext1

OC (ΩC(
∑
i pi),OC)→⊕

j

Ext1
ÔC,qj

(ΩÔC,qj
, ÔC,qj )→ 0. (5.3.1)

Moreover, Ext1
ÔC,qj

(ΩÔC,qj
, ÔC,qj ) = k for each i and Ext2

OC (ΩC(
∑
i pi),OC) = 0.

Proof. For simplicity, we handle only the case without marked points, i.e. n = 0. As
HomOC (ΩC ,−) is the composition Γ ◦H omOC (ΩC ,−) of left exact functors, there
is a Grothendieck spectral sequence with E2-page

Ep,q2 = Hp(C,E xtqOC (ΩC ,OC))

which converges to Extp+qOC (ΩC ,OC) (c.f [Wei94, Thm. 5.8.3]). Since dimC = 1, we
have that Ep,q2 = 0 if p ≥ 2. We can thus draw the E2 page as:
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The associated exact sequence of low-degree terms is

0→ E1,0
2 → Ext1

OC (ΩC ,OC)→ E0,1
2 → E2,0

2 = 0.

As ΩC is locally free away from the nodes, E xt1OC (ΩC ,OC) is a zero-dimensional sheaf
supported only at the nodes of C. This shows that E1,1

2 = H1(C,E xt1OC (ΩC ,OC)) =
0 and

E0,1
2 = H0(C,E xt1OC (ΩC ,OC)) =

⊕
j

Ext1
OC,qj

(ΩC,qj ,OC,qj ) =
⊕
j

Ext1
ÔC,qj

(ΩÔC,qj
, ÔC,qj )

where we’ve used that Ω̂C,qj
∼= ΩÔC,qj

. This gives the exact sequence (5.3.1).

Similarly, E xt2OC (ΩC ,OC) is a zero-dimensional sheaf supported only at the
nodes and we have identifications

E0,2
2 = H0(C,E xt2OC (ΩC ,OC)) =

⊕
j

Ext2
ÔC,qj

(ΩÔC,qj
, ÔC,qj )

Write ÔC,qj = k[[x, y]]/(xy) and consider the locally free resolution

0→ ÔC,qj

(
y
x

)
−−→ Ô⊕2

C,qj

(dx,dy)−−−−→ ΩÔC,qj
→ 0.

This allows us to compute that Ext1
ÔC,qj

(ΩÔC,qj
, ÔC,qj ) = coker(Ô⊕2

C,qj

(x,y)−−−→ ÔC,qj ) =

k and Ext2
ÔC,qj

(ΩÔC,qj
, ÔC,qj ) = 0. As E0,2

2 = E1,1
2 = E2,0

2 = 0, we have Ext2
OC (ΩC ,OC) =

0.

Proposition 5.3.13. Let (C, pi) be an n-pointed prestable curve. Let q1, . . . , qs ∈ C
be the nodes of C. Let (C̃, pi, q

′
j , q
′′
j ) be the pointed normalization where π : C̃ → C

is the normalization and π−1(qj) = {q′j , q′′j }. There is an exact sequence

0→ Def lt(C, pi)→ Def(C, pi)→
⊕
j

Def(ÔC,qj )→ 0 (5.3.2)

and identifications

Def lt(C, pi) ∼= Def(C̃, pi, q
′
j , q
′′
j ) ∼= H1(C̃, TC̃(−

∑
i pi −

∑
j(q
′
j + q′′j )))

Def(C, pi) ∼= Ext1
OC (ΩC(

∑
i pi),OC)

Def(ÔC,qj ) ∼= Ext1
ÔC,qj

(Ω1
ÔC,qj

, ÔC,qj ) ∼= k.

Under these identifications, (5.3.2) corresponds to short exact sequence (5.3.1).

Proof. For simplicity, we handle again the case without marked points. The identi-
fication Def lt(C) ∼= H1(C, TC) was given in Proposition D.1.11. If C ′ → Speck[ε]
is a locally trivial first order deformation of C, each node qj : Speck→ C extends
to a section q̃j : Speck[ε] → C whose image is contained in the relative singular
locus of C over k[ε]. The pointed normalization of C along the sections q̃j is a first
order deformation of the (possibly disconnected) pointed normalization (C̃, q′j , q

′′
j ).

This gives a map Def lt(C)→ Def(C̃, q′j , q
′′
j ). The inverse is provided by gluing the
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sections of a first order deformation (C̃ ′, σ̃′j , σ̃
′′
j ) of (C̃, q′j , q

′′
j ) along nodes; more

precisely, the deformation C ′ is obtained as the pushout (see Theorem A.8.1)

∐
j(Speck[ε]q Speck[ε])

��

q′jqq
′′
j
// C̃ ′

��∐
j Speck[ε] // C ′.

For the second bijection, if C ′ → Speck[ε] is a first order deformation, then the
ideal sheaf I defining C ↪→ C ′ is the pullback of the ideal (ε) ⊂ k[ε]. Since (ε) ∼= k
as k[ε]-modules, we see that I/I2 = I ∼= OC . The right exact sequence

I/I2 → Ω1
C′ → Ω1

C → 0 (5.3.3)

is left exact at every smooth point of C. Since C is generically smooth, the map
OC ∼= I/I2 → Ω1

C′ is generically injective, and since OC is a line bundle, the
map is in fact injective. The sequence (5.3.3) is therefore exact and defines an
extension class in Ext1

OC (ΩC ,OC) (see [Har77, Exer. III.6.1]). The reader is left
to verify that this defines a bijection. A similar argument gives the bijection
Def(ÔC,qj ) ∼= Ext1

ÔC,qj
(Ω1
ÔC,qj

, ÔC,qj ), and Lemma 5.3.12 gives the identification

with k.
See also [DM69, Prop. 1.5] and [ACG11, §11.3].

Recall that automorphisms, deformations, and obstructions of a nodal curve
(C, pi) are classified by ExtiOC (ΩC(

∑
i pi),OC) for i = 0, 1, 2 (Proposition 5.3.11).

Proposition 5.3.14. Let (C, p1, . . . , pn) be an n-pointed stable curve of genus g
over k. Then

dimk ExtiOC (ΩC(
∑
i pi),OC) =

{
0 if i = 0, 2

3g − 3 + n if i = 1

Proof. We may assume k = k and for simplicity we handle the case that there are
no marked points. Let π : C̃ → C be the normalization, Σ ⊂ C be the set of nodes
of C, and Σ̃ = π−1(Σ). The vanishing of Ext2 was established in Lemma 5.3.12.
For Ext0, we will use the identification HomOC̃ (ΩC̃(Σ̃),OC̃) ∼= HomOC (ΩC ,OC) of
Exercise 5.2.15. Since the pointed normalization (C̃, Σ̃) is smooth and each connected
component is stable (Exercise 5.3.5), the degree of the restriction of TC̃(−Σ̃) to
each connected component of C̃ is strictly negative. Thus, HomOC̃ (ΩC̃(Σ̃),OC̃) =

H0(C̃, TC̃(−Σ̃)) = 0.
To compute Ext1, Proposition 5.3.13 implies that there is an exact sequence

0→ H1(C̃, TC(−Σ̃)→ Ext1
OC (ΩC ,OC)→

⊕
j

Ext1
ÔC,qj

(ΩÔC,qj
, ÔC,qj )→ 0

and the identification Ext1
ÔC,qj

(ΩÔC,qj
, ÔC,qj ) = k. We write C̃ =

∐ν
i=1 C̃i as a

union of its connected components and define Σ̃i = C̃i ∩ Σ̃. Using that ΩC̃i is a line
bundle, we compute using Serre Duality and Riemann–Roch that

h1(C̃i, TC̃i(−Σ̃i)) = h0(C̃i,Ω
⊗2

C̃i
(Σ̃i)) = 3g(C̃i)− 3 + |Σ̃i|.
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Thus

dimk Ext1
OC (ΩC ,OC) = h1(C̃, TC̃(−Σ̃)) + |Σ|

=

ν∑
i=1

(
3g(C̃i)− 3 + |Σ̃i|

)
+ |Σ|

= 3
( ν∑
i=1

g(C̃i)− ν + |Σ|
)

= 3g − 3

,

where we’ve used the Genus Formula (5.2.9) g =
∑ν
i=1 g(C̃i)− ν + |Σ|+ 1.

Remark 5.3.15 (Consequences of deformation theory). In Theorem 5.4.8, we will
use deformation theory to argue thatMg,n is a smooth Deligne–Mumford stack of
dimension 3g − 3 + n. Here’s the central idea:

• Ext0: We’ve already seen that a stable curve (C, pi) has finitely many automor-
phism (Proposition 5.3.4). The vanishing of Ext0 implies that an n-pointed
stable curve (C, pi) has no infinitesimal automorphisms, i.e. that the Lie alge-
bra of the automorphism group scheme Aut(C, pi) is trivial. Since Aut(C, pi) is
of finite type, it must be finite and discrete. Once we know that the algebraicity
of the stackMg,n, we use the Characterization of Deligne–Mumford Stacks
(3.6.4) to conclude thatMg,n is Deligne–Mumford.

• Ext1: Since Ext1 parametrizes isomorphism classes of deformations of (C, pi), it
is identified with the Zariski tangent space ofMg,n at the point corresponding
to (C, pi). The computation of Ext1 therefore implies thatMg,n has relative
dimension 3g − 3 + n over SpecZ.

• Ext2: The vanishing of Ext2 implies that there are no obstructions to deforming
C. The Infinitesimal Lifting Criterion (Theorem 3.7.1) implies thatMg,n is
smooth over SpecZ.

5.3.5 Stabilization of rational tails and bridges

Definition 5.3.16 (Rational tails and bridges). Let (C, p1, . . . , pn) be an n-pointed
prestable curve over an algebraically closed field k. We say that a smooth genus 0
subcurve E ⊂ C is

• a rational tail if E ∩Ec = 1 (where Ec = C \ E), and E contains no marked
points;

• a rational bridge if either E ∩ Ec = 2 and E contains no marked points, or
E ∩ Ec = 1 and E contains one marked point.
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Figure 5.4: (A) features a rational tail while (B) and (C) feature rational bridges.

From the definition of stability (Definition 5.3.1), we see that if (C, p1, . . . , pn) is
not stable and (g, n) 6= (1, 0), then C necessarily contains a rational tail or bridge.
Note that C can also contain a chain of rational tails or bridges of arbitrary length.
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Figure 5.5: Examples of chains of rational tails and bridges

Suppose that C → ∆ = SpecR is a family of nodal curves over a DVR R with
algebraically closed residue field k such that the generic fiber C∗ is smooth. If
E ∼= P1 ⊂ C′0 is a smooth rational subcurve in the central fiber, then E2 = −E · Ec;
indeed this follows from 0 = E · C0 = E ·E +E ·Ec. Thus if E is rational tail (resp.
rational bridge without a marked point), then E2 = −1 (resp. E2 = −2).
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Figure 5.6: In (A) (resp. (B)), the exceptional component E meets the rest of the
curve at one point (resp. two points) and E2 = −1 (resp. E2 = −2).

Definition 5.3.17. Assume 2g − 2 + n > 0. The stabilization of an n-pointed
prestable curve (C, p1, . . . , pn) of genus g over a field k is the curve (Cst, p′1, . . . , p

′
n)
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where Cst is the curve obtained by contracting all rational bridges and tails Ei and
p′i are the images of pi under the contraction morphism C → Cst.

Remark 5.3.18. The contraction of a rational tail E ⊂ C or a rational bridge
with a marked point is the curve Ec = C \ E. The contraction of a rational bridge
E ⊂ C without a marked point can be constructed as follows: since E · Ec =
dimk Γ(E ∩Ec,OE∩Ec = 2, the scheme-theoretic intersection E ·Ec is isomorphic to
either Speck× k or Speck′ for a degree 2 separable field extension. The contraction
C ′ is defined as the pushout Ec qE∩Ec Speck (see §A.8). A local calculation shows
that the contraction C ′ has a node at the image of Speck→ C ′.

44

a f

si a
Figure 5.7: Examples of stabilizations

Exercise 5.3.19. Let (C, p1, . . . , pn) be an n-pointed prestable curve over a field k.
(a) Show that the stabilization morphism π : C → Cst is the unique morphism

such that (Cst, π(p1), . . . , π(pn)) is stable, π∗OC = OCst , and R1π∗OC = 0.
See also [SP, Tag 0E7Q].

(b) If (C, pi) is semistable and L := ωC(
∑
i pi), show that Cst ∼= Proj

⊕
d≥0 H0(C,L⊗4d))

and that ωC(
∑
i pi)

∼= π∗ωCst(
∑
i p
′
i).

Hint: Use Exercise 5.3.6 to show that L⊗4 is base point free. Show that the
multiplication map

H0(C,L⊗2)⊗H0(C,L⊗d)→ H0(C,L⊗(d+2)

is surjective for d ≥ 4 to conclude that
⊕

d≥0 H0(C,L⊗4d) is finitely generated.
See also [ACG11, Cor. 10.6.4].

The construction of the stabilization extends to families of nodal curves.

Proposition 5.3.20 (Stabilization of a Prestable Family). Let (C → S, σ1, . . . , σn)
be a family of n-pointed prestable curves of genus g. Assume 2g − 2 + n > 0. Then
there exists a unique morphism π : C → Cst over S such that
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(1) (Cst → S, {σ′i}) is an n-pointed family of stable curves of genus g where
σ′i = π ◦ σi;

(2) for each s ∈ S, (Cs, {σi(s)})→ (Cst
s , {σ′i(s)}) contracts all rational bridges and

tails; and
(3) OCst = π∗OC and R1π∗OC = 0 and this remains true after base change by a

morphism S′ → S of schemes;
(4) If C → S is a family of semistable curves, then ωC/S(

∑
i σi) is the pullback of

the relatively ample line bundle ωCst/S(
∑
i σ
′
i).

Proof. TO ADD. See [SP, Tag 0E7B] or [ACG11, Prop. 10.6.7].

5.4 The stack of all curves

5.4.1 Families of arbitrary curves

In this subsection, we redefine a curve over a field k to mean a scheme C of finite
type over k of dimension 1 (rather than pure dimension 1). The genus of C is defined
as g(C) = 1− χ(C,OC).

Remark 5.4.1. The reason we allow for non-pure dimensional and non-connected
curves is that they may arise as deformations of connected pure one-dimensional
curves; without this relaxation, the stack of all curves would fail to be algebraic.
For instance, consider a rational normal curve P1 ↪→ P3 embedded via [x, y] 7→
[x3, x2y, xy2, ty3] for every t 6= 0. As t→ 0, these curves degenerate in a flat family
to a non-reduced curve C0 which is supported along a plane nodal cubic and has an
embedded point at the node; see [Har77, Ex. 9.8.4]. On the other hand, the curve
C0 deforms to the disjoint union of a plane nodal cubic and a point in P3.

A family of curves over a scheme S is a flat, proper and finitely presented
morphism C → S of algebraic spaces such that every fiber is a curve.

A family of n-pointed curves is a family of curves C → S together with n sections
σ1, . . . , σn : S → C (with no condition on whether they are distinct or land in the
relative smooth locus of C over S).

Remark 5.4.2. While every pure one-dimensional separated algebraic space over
a field is in fact a scheme, in the relative setting the total family C may not be a
scheme. There are examples of a family of prestable genus 0 curves [Ful10, Ex. 2.3]
and a family of smooth genus 1 curves [Ray70, XIII 3.2] where the total family is
not a scheme. Therefore, if we wish define a stack of all curves, then in order to
satisfy the decent condition, we better allow for the case that the total family is not
a scheme. In the stable case however there is no difference: if C → S is a family of
curves (with C an algebraic space) such that every geometric fiber is stable, then
ωC/S is relatively ample (Proposition 5.3.9) and C → S is projective; in particular,
C is a scheme.

Proposition 5.4.3. If C → S is a family of curves over a scheme S, there exists
an étale cover S′ → S such that CS′ → S′ is projective.

Vague sketch. Approach 1: Local to global
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For a point s ∈ S, define Sn = SpecOS,s/mn+1
s and Ŝ = Spec ÔS,s. Consider

the cartesian diagram

Cs = C0

��

� � // C1

��

� � // · · · Ĉ

��

// C

��

Specκ(s) = S0
� � // S1

� � // · · · Ŝ // S

Case 1: Cs → Specκ(s). Since separated one-dimensional algebraic spaces are
schemes and that proper one-dimensional schemes are projective, there exists an
ample line bundle L0 on C0.
Case 2: Cn → Sn. The obstruction to deforming a line bundle Ln on Cn to Ln+1

on Cn+1 lives in H2(C0,OC0) and thus vanishes as dim C0 = 1. Thus there exists a
compatible sequence of line bundles Ln on Cn. Since ampleness is an open condition
in families and L0 is ample, Ln is also ample.
Case 3: Ĉ → Ŝ with Ŝ noetherian. Use Grothendieck’s Existence Theorem:
Coh(ĉC)→ lim←−Coh(Cn) is an equivalence of categories. The classical case is when
Ĉ → Ŝ is a proper morphism of schemes. Chow’s Lemma for Algebraic Spaces
implies that there exists a projective birational morphism C′ → Ĉ of algebraic spaces
such that C′ → Ŝ is projective. This allows one to reduce Grothendieck’s Existence
Theorem for Ĉ → Ŝ to C′ → Ŝ using devissage similar to how the proper case of
schemes is reduced to the projective case.

As a result, we can extend the sequence of line bundle Ln to a line bundle L̂ on
Ĉ which is ample (using again that ampleness is an open condition in families).
Case 4: S is of finite type over Z. For every closed point s ∈ S, apply Artin
Approximation to the functor

Sch/S → Sets, (T → S) 7→ Pic(CT )

to obtain an étale neighborhood (S′, s′) → (S, s) of s and a line bundle L′ on
CS′ extending L0. By openness of ampleness, we can replace S′ with an open
neighborhood of s′ such that L′ is relatively ample over S′.
Case 5: S is an arbitrary scheme. Apply Noetherian Approximation.

Approach 2: Explicitly extend an ample line bundle
The idea here is to use geometric methods to extend a line bundle Ls on Cs

to a line bundle on C. If we assume in addition that every fiber of C → S is
generically reduced (and thus also generically smooth), then we may follow the
argument of [Ols16, Cor. 13.2.5]. Choose smooth points p1, . . . , pn ∈ Cs such that
every irreducible one-dimensional component of Cs contains at least one of the pi’s.
Our hypothesis imply that the relative smooth locus C0 of C → S surjects onto S. As
smooth morphisms étale locally have sections, there is an étale neighborhood S′ → S
of s and sections σi : S′ → C0 extending pi. The line bundle L′ := OCS′ (σ1 + · · ·+σn)
extends the ample line bundle Ls := OCs(p1 + · · ·+ pn). By openness of ampleness
in families, L′ is relatively ample over S′ in an open neighborhood of s′.

(An alternative argument that works without any restrictions is presented in
[Hal13, Lem. 1.2] (based on ideas in [SGA4 1

2 , IV.4.1]) where one first uses Noetherian
approximation and étale localization to reduce to S = SpecR where R is an excellent
strictly henselian local ring. One can then reduce to the case where C is a scheme
by appealing to the fact that there exists a finite surjection C′ → C from a scheme
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and the fact that C satisfies the Chevalley-Kleiman property (i.e. every finite set
of points is contained in an open affine) if and only if C′ does. Using deformation
theory as above, one can further reduce to the case where C is reduced. Finally, one
attempts to explicitly extend an ample line bundle on Cs by extending a function
f ∈ Γ(U,OCs) to a function defined on an open neighborhood of s ∈ C so that it
defines an effective Cartier divisor.)

Remark 5.4.4. Raynaud gives an example of a family of smooth g = 1 curves over
an affine curve which is Zariski-locally projective but not projective [Ray70, XIII
3.1]. The examples in Remark 5.4.2 are not even Zariski-locally projective.

5.4.2 Algebraicity of the stack of all curves
Definition 5.4.5. LetMall

g,n denote the category over Schét whose objects over a
scheme S consists of families of curves C → S and n sections σ1, . . . , σn : S → C.
A morphism (C′ → S′, σ′1, . . . , σ

′
n)→ (C → S, σ1, . . . , σn) is the data of a cartesian

diagram

C′

��

g
// C

��

S′
f
//

σ′i

AA

S

σi

@@

such that g ◦ σ′i = σi ◦ f .

As a stepping stone to the algebraicity ofMall
g,n, we first show that the diagonal

is representable.

Lemma 5.4.6. The diagonalMall
g,n →Mall

g,n ×Mall
g,n is representable.

Proof. For simplicity, we handle the case when n = 0. Let S be a scheme and
S →Mall

g ×Mall
g be a morphism corresponding to families of curves C1 → S and

C2 → S. Considering the cartesian diagram

IsomS(C1, C2) //

��

S

��

Mall
g

//Mall
g ×Mall

g ,

we need to show that IsomS(C1, C2) is an algebraic space. By Proposition 5.4.3,
there exists an étale cover S′ → S such that CS′ → S′ is projective. Since
IsomS(C1, C2) ×S S′ = IsomS′(C1,S′ , C2,S′), the morphism IsomS′(C1,S′ , C2,S′) →
IsomS(C1, C2) is representable, surjective and étale. We may thus assume that C1
and C2 are projective over S.

We will use the following fact from scheme theory: if X → Y is a morphism of
schemes each proper over S, there exists an open subscheme S0 ⊂ S such that for
every map T → S of schemes XT

∼→ YT is an isomorphism if and only if T → S
factors through S0 ⊂ S.

Consider the inclusion of functors:

IsomS(C1, C2) ⊂ MorS(C1, C2) ⊂ HilbS(C1 ×S C2)

where the second inclusion assigns to a morphism C1
α−→ C2 the graph C1

Γα
↪→ C1×S C2

(and is similarly defined on T -valued points). The first inclusion is a representable
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open immersion by the above fact. Analyzing the second inclusion, we see that
a subscheme [Z ⊂ C1 ×S C2] ∈ HilbS(C1 ×S C2)(S) is in the image of element of
Mor(C1, C2)(S) if and only if the composition Z ↪→ C1×S C2

p1−→ C1 is an isomorphism
(and similarly for T -valued points). Therefore, the above fact also establishes that
the second inclusion is a representable open immersion.

Theorem 5.4.7. Mall
g,n is an algebraic stack locally of finite type over SpecZ.

Sketch.

• Suffices to show the n = 0 case: Mall
g,1 is the universal family overMall

g and
more generallyMall

g,n+1 is the universal family overMall
g,n. (We will see that

the same holds forMg but this is a more remarkable fact since an n-pointed
stable curve can become unstable if a marked point is forgotten.)

• Mall
g is a stack over Schét: Suppose S′ → S is an étale cover of schemes,

C′ → S′ is a family of curves, and α : p∗1C′ → p∗2C′ is an isomorphism over
S′×S S′ satisfying the cocycle condition. The quotient of the étale equivalence
relation

R′ := p∗1C′
p1 //

p2◦α
// C′

is an algebraic space C := C′/R and C → S is a family of curves such that
CS′ ∼= C′.

• It to suffices show that for all projective curves C0 over a field k, there exists
a representable, smooth morphism U →Mall

g from a scheme with [C0] in the
image. Choose an embedding C0 ↪→ PN such that h1(C0,OC0(1)) = 0, and let
P (t) be its Hilbert polynomial.

• Let H := HilbP (PNZ /Z) be the Hilbert scheme, which is projective over Z by
Theorem 1.1.2. Considering the universal family

C �
�

//

��

PNH

~~

H,

there is a point h0 ∈ H(k) such that Ch0
= C0 as closed subschemes of PNk .

Cohomology and Base Change implies that there exists an open neighborhood
H ′ ⊂ H of h0 such that for all s ∈ H ′, h1(Cs,OCs(1)) = 0.

• Consider the morphism

H ′ →Mall
g , [C ↪→ Pn] 7→ [C],

which is representable by Lemma 5.4.6 and the fact that representability of
the diagonal implies that every morphism from a scheme is representable (see
the argument of Corollary 3.2.2).

• Claim: H ′ →Mall
g is smooth.

We will use the Infinitesimal Lifting Criterion (Theorem 3.7.1)—even though
we don’t yet knowMall

g is algebraic, we may still use this criterion as we know
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that H ′ →Mall
g is representable so it suffices to show for all maps S →Mall

g

from a scheme, the induced morphism H ′S → S is a smooth morphism of
algebraic spaces. We need to check that for all surjections A→ A0 of artinian
local rings with residue field k such that k = ker(A→ A0) and for all diagrams

Speck
[C⊂PNk ]

��%%

SpecA0

[C0⊂PNA0
]
//

� _

��

H ′

f

��

SpecA

[C⊂PNA ]

::

[C]
//Mall

g

(5.4.1)

of solid arrows, there exists a dotted arrow. The existence of a dotted arrow
in the above diagram is equivalent to the existence of a dotted arrow in the
below diagram

PNk PNA0
PNA

��

C

��

� � //
, �

::

C0

��

� � //
, �

99

C

��

- 

;;

Speck �
�

// SpecA0
� � // SpecA

of solid arrows: a lifting of the diagram (3.7.3) corresponds to a family C →
SpecA extending C0 → SpecA0. By Proposition D.2.6, there is a cohomology
class ob ∈ H2(C, TC) such that ob = 0 if and only if there exists a lifting.
Since C is a curve, H2(C, TC) = 0.

• Use deformation theory to extend C0 ↪→ PNA0
to C ↪→ PNA . We will use the

simplifying assumption that C is a complete local intersection; the general
case is handled by more advanced deformation theory (see [Hal13, Prop. 4.2]).
This implies that the ideal sheaf I defining C ↪→ PNk is cut out locally by a
regular sequence and that I/I2 is a vector bundle on C fitting into an exact
sequence

0→ I/I2 → ΩPNk |C → ΩC → 0.

Applying HomOC (−,OC) gives a long exact sequence where the relevant terms
for us are

HomOC (I/I2,OC)→ Ext1
OC (ΩC ,OC)→ Ext1

OC (ΩPNk |C ,OC) = H1(C, TPNk |C).

The first term classifies embedded deformations of C0 ↪→ PNA0
over A0 to

C′ ↪→ PNA over A while the second term classifies deformations of C0 over A0 to
C′ over A. The boundary map HomOC (I/I2,OC)→ Ext1

OC (ΩC ,OC) assigns
an embedded deformation [C′ ↪→ PNA ] to [C′].
Finally, we have the restriction of the Euler sequence to C

0→ OC → OC(1)⊕(N+1) → TPN |C → 0.
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Since H2(C,OC) = 0 (as dimC = 1) and H1(C,OC(1)) = 0 (as [C] ∈ H ′),
we conclude that H1(C, TPN |C) = 0. Thus, our given deformation [C] ∈
Ext1

OC (ΩC ,OC) maps to 0 in H1(C,OC(1)), and thus is the image of an
embedded deformation [C ↪→ PNA ] ∈ HomOC (I/I2,OC).

5.4.3 Algebraicity ofMg,n: openness and boundedness of sta-
ble curves

Consider the inclusions of prestacks

Mg,n ⊂Mg,n ⊂Mpre
g,n ⊂M≤nodal

g,n ⊂Mall
g,n (5.4.2)

M≤nodal
g,n ) denotes the full subcategory of Mall

g,n consisting of n-pointed families
(C → S, σ1, . . . , σn) of stable curves (resp. semistable, prestable, and nodal curves).

• By Theorem 5.4.7,Mall
g,n is an algebraic stack locally of finite type over SpecZ.

• M≤nodal
g,n ⊂ Mall

g,n is an open substack: this is equivalent to showing that
C π−→ S is a family of curves (with C possibly an algebraic space) then the locus
{s ∈ S | Cs is nodal} ⊂ S is open. This is established in Corollary 5.2.20 when
C is a scheme by relying on the Local Structure of Nodes (Theorem 5.2.18). In
general, we can choose an étale cover g : C′ → C by a scheme and use the fact
that a point p ∈ C is node in its fiber Cπ(p) if and only if a preimage p′ ∈ C′ of
p is a node in its fiber C′π(p).

• Mpre
g,n ⊂ M≤nodal

g,n is an open substack: for a family (C → S, {σi}) of nodal
curves, the locus {s ∈ S | σi(s) are disjont and smooth} is open.
• Mg,n ⊂Mpre

g,n is an open substack: this was shown in Proposition 5.3.10. The
condition that a prestable curve (C → S, {σi}) is stable is equivalent to the
ampleness of ωC/S(σ1 + · · ·σn), and ampleness is an open condition on S.

• Mg,n ⊂ Mg,n is an open substack: the condition that a stable curve (C →
S, {σi}) is smooth is an open condition on S.

It follows that each prestack featured in (5.4.2) is an algebraic stack locally of
finite type over SpecZ.

Theorem 5.4.8. If 2g−2 +n > 0, thenMg,n is a quasi-compact Deligne–Mumford
stack smooth over SpecZ of relative dimension 3g − 3 + n.

Proof. To show the boundedness ofMg,n (i.e. finite typeness or equivalently quasi-
compactness) , we will appeal to the fact that if (C, p1, . . . , pn) is an n-pointed
stable curve over a field k, then the third power of the twist of the dualizing
sheaf (ωC/k(p1 + · · · pn)

)⊗3 is very ample (Exercise 5.3.6). Let P (t) be the Hilbert
polynomial of C ↪→ PNbase embedded via (ωC/k(p1 + · · · pn)

)⊗3; this is independent
of [C, {pi}] ∈Mg,n. Consider the closed subscheme

H ⊂ HilbP (PNZ /Z)× (PN )n

of an embedded curve and n points (C ↪→ PN , p1, . . . , pn) such that pi ∈ C. There
is a forgetful functor

H →Mall
g,n [C ↪→ PN , p1, . . . , pn] 7→ (C, p1, . . . , pn).
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Since HilbP (PNZ /Z) is a projective scheme (Theorem 1.1.2) and in particular quasi-
compact and the image of |H| → |Mall

g,n| containsMg,n, we conclude thatMg,n is
quasi-compact.

At this point, we’ve shown thatMg,n is an algebraic stack of finite type over
SpecZ. We now invoke each part of Proposition 5.3.14 characterizing automorphisms,
deformations and obstructions of stable curve exactly as in the proof of the analogous
fact forMg (Proposition 3.7.4). Indeed, Ext0

OC (ΩC(
∑
i pi),OC) = 0 implies that the

Lie algebra of Aut(C, {pi}) is trivial and thus that Aut(C, {pi}) is a finite and reduced
group scheme. By the Characterization of Deligne–Mumford stacks (Theorem 3.6.4),
we conclude that Mg,n is Deligne–Mumford. Since Ext2

OC (ΩC(
∑
i pi),OC) = 0,

there are no obstructions to deforming stable curves and the Infinitesimal Lifting
Criterion (Theorem 3.7.1) implies thatMg,n is smooth over SpecZ. Finally, since
dimk Ext1

OC (ΩC(
∑
i pi),OC) = 3g − 3 + n and there is a bijection of this Ext group

with the Zariski tangent space of [C, {pi}] ∈Mg,n×ZK, we see thatMg,n → SpecZ
has relative dimension 3g − 3 + n.

Exercise 5.4.9. Show thatMg,n is algebraic by explicitly presenting it as a quotient
stack of a locally closed subscheme of the Hilbert scheme.
Hint: Follow the proof of Theorem 3.1.15.

5.5 Stable reduction: properness of Mg,n

In the section, we discuss stable reduction of curves. Following the exposition of
[HM98, §3.C], we give a complete proof in characteristic 0 relying on the birational
geometry of surfaces and specifically the existence of embedded resolutions for curves
on surfaces (see §E.1).

Theorem 5.5.1 (Stable Reduction). Let R be a DVR with fraction field K, and
set ∆ = SpecR and ∆∗ = SpecK. If (C∗ → ∆∗, s∗1, . . . , s

∗
n) is a family of n-pointed

stable curves of genus g, then there exists a finite cover ∆′ → ∆ of spectrums of DVRs
and a family (C′ → ∆′, s′1, . . . , s

′
n) of stable curves extending C∗ ×∆∗ ∆′∗ → ∆′∗.

Remark 5.5.2. This theorem was first established in [DM69] by embedding the
generic fiber into its Jacobian and reducing the statement to semistable reduction
for abelian varieties, which had been established in [SGA7-I, SGA7-II]. Interestingly,
Gieseker also established this theorem by using GIT rather than the geometry of
families of curves over a DVR [Gie82]. Later arguments due to Artin–Winters
[AW71] and Saito [Sai87] follow essentially the strategy outlined below. See [SP,
Tag 0C2Q] or Remark 5.5.8 for more background.

After introducing the basic strategy to establish Stable Reduction in Section 5.5.1,
we prove Stable Reduction (Theorem 5.5.1) in characteristic 0 in Section 5.5.3. We
also illustrate in Sections 5.5.4 and 5.5.5 how one can explicitly compute the stable
limit of a given family C∗ → ∆∗ of stable curves: while the proof of Stable Reduction
offers a strategy, additional care and techniques are needed to get an explicit handle
on the stable limit. Finally, in Section 5.5.6, we prove the uniqueness of the stable
limit (Proposition 5.5.15) in arbitrary (possibly mixed) characteristic. This implies
the properness ofMg,n via the Valuative Criterion for Properness (Theorem 3.8.5).

Theorem 5.5.3. If 2g−2 +n > 0, the Deligne–Mumford stackMg,n is proper over
SpecZ.
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By applying the Keel–Mori Theorem (4.3.11), we obtain:

Corollary 5.5.4. If 2g−2+n > 0, there exists a coarse moduli spaceMg,n →Mg,n

where Mg,n is an algebraic space proper over SpecZ.

5.5.1 Basic strategy

We provide the basic strategy to exhibit the existence of stable reduction for a given
family C∗ → ∆∗ of stable curves. For simplicity of notation, we assume that there
are no marked points, i.e. n = 0.

Throughout, we use the notation: ∆ = SpecR for a DVR R, ∆∗ = SpecK with
K the fraction field of R, t ∈ R uniformizer, and 0 = (t) ∈ SpecR the unique closed
point.

Step 0: Reduce to the case where C∗ → ∆∗ is smooth. If C∗ has k nodes, then possibly
after a finite extension of K we can arrange that each node is given by a K-point
pi ∈ C∗(K). Let (C̃∗, p̃1, . . . , p̃2k) be the pointed normalization. By induction on the
genus g (relying on stable reduction for 2k-pointed curves of genus < g), we perform
stable reduction on each connected component and then take the nodal union along
sections. After possibly an extension of K (and R), this produces a family of curves
C → ∆ extending C∗ → ∆∗.

Step 1: Find some flat extension C → ∆.
Using that ω⊗3

C∗/∆∗ is very ample (Proposition 5.3.9), we may embed C∗ as a
closed subscheme of P5g−6 ×∆∗. The scheme-theoretic image C of C∗ ↪→ P5g−6 ×∆
is flat over ∆ using the Flatness Criterion over Smooth Curves (Proposition A.2.2)
and the fact the closure doesn’t introduce any embedded points in the central fiber.
Thus we have a proper flat family of curves C → ∆ extending C∗ → ∆∗. (This is the
same argument that establishes the valuative criterion for properness of the Hilbert
scheme.)

Step 2: Use Embedded Resolutions to find a resolution of singularities C̃ → C so that
the reduced central fiber (C̃0)red is nodal.

Applying Embedded Resolutions (Theorem E.1.2), there is a finite sequence of
blow-ups at closed points of C0 yielding a projective birational morphism

C̃ //

��

C

��

∆

such that C̃ is regular, C̃ → ∆ is a (flat) family of curves and such that the preimage
C̃0 of C0 has set-theoretic normal crossings, i.e. (C̃0)red is nodal. Replace C with C̃.

Step 3: Take a ramified base extension ∆′ = SpecR→ SpecR = ∆ by t 7→ tm such
that the central fiber of the normalization of C ×∆ ∆′ becomes reduced and nodal.

We will explain the details of this step in Section 5.5.3. This step is where we
will use the characteristic 0 assumption. Replacing C with the normalization C̃′ of
C̃′ = C ×∆ ∆′, we may assume that C → ∆ is a prestable family (i.e. nodal family)
of curves with C regular.
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Step 4: After taking the minimal model C̃min → C, contract all rational tails and
bridges in the central fiber.

In other words, we take the stable model of the family C̃min → ∆ as in Proposi-
tion 5.3.20. Alternatively as we argue in Section 5.5.3, one can explicitly contract
the rational tails (smooth rational −1 curves) and rational bridges (smooth rational
−2) curves.

Remark 5.5.5. Add example showing why we must allow for extensions of DVRs.

5.5.2 Semistable reduction

In Step 4 above, if we stop after contracting only rational tails (and not the rational
bridges), i.e. the smooth rational −1 curves, then we obtain a family C → ∆ of
semistable curves such that C is regular (by Theorem E.1.5). This is called Semistable
Reduction, an important variant of Stable Reduction.

Theorem 5.5.6 (Semistable Reduction). Let R be a DVR with fraction field K,
and set ∆ = SpecR and ∆∗ = SpecK. If C∗ is a smooth projective curve over
∆∗, there exists a cover ∆′ → ∆ of spectrums of DVRs and a family C′ → ∆′ of
semistable curves extending C∗ ×∆∗ ∆′∗ → ∆′∗ such that C′ is regular.

5.5.3 Proof of stable reduction in characteristic 0

Proof of Theorem 5.5.1 in characteristic 0. Following Steps 0-2 in the basic strategy
discussed in Section 5.5.1, we may assume that C → ∆ is a generically smooth family
of stable curves such that the reduced central fiber (C0)red is nodal and C is regular.

Step 3: Perform a base change ∆′ → ∆ such that the normalization of the total
family C ×∆ ∆′ has a reduced and nodal central fiber. Around every point p ∈ C0, we
can choose local coordinates x, y (either étale locally or formally locally at p) such
that the morphism C → ∆ can be described explicitly as follows (??):

• If p ∈ (C0)red is a smooth point, then (x, y) 7→ xa and the multiplicity of the
irreducible component of C0 containing p is a.

• If p ∈ (C0)red is a separating node (i.e. C0 \ p is disconnected), then (x, y) 7→
xayb and the two components of C0 containing p have multiplicities a and b.

• If p ∈ (C0)red is a non-separating node, then (x, y) 7→ xaya and the components
of C0 containing p has multiplicity a.

Let m be the least common multiple of the multiplicities of the irreducible
components of C0. Let ∆′ = SpecR → SpecR = ∆ be defined by t 7→ tm where t
denotes a uniformizing parameter. Let C′ := C ×∆ ∆′ and C̃′ be its normalization
Let ρ be a primitive mth root of unity. If p ∈ (C0)red is a smooth point, then
C′ locally around the unique preimage of p is defined by xa = tm which factors
as
∏a−1
i=0 (x − ρitm/a). Thus p ∈ C has a preimages in C̃′ and each preimage is

locally defined by x = ρitm/a and is thus a smooth point in the central fiber C̃′0. If
p ∈ (C0)red is a node defined by xayb, then one computes that each preimage of p is
locally defined by tk = xy (see Exercise 5.5.7) and thus is a reduced and nodal point
in C̃′0. Note that if k > 1, then C̃′ has an Ak−1-singularity at the preimage.

We now replace C with C̃′. At the expense of introducing singularities into the
total family, we have arranged the central fiber to be reduced and nodal.
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Step 4: Take a minimal resolution of C and contract curves with negative self-
intersection. Let C′ → C be a Minimal Resolution (Theorem E.1.1) which replaces
each Ak-singular with a chain of bk2 c rational curves. At this stage C′ → ∆ is a
prestable family of curves, i.e. a proper flat family of reduced nodal curves, such
that the total family C′ is regular. The central fiber C′0 however may not be stable.

If C′0 is not stable, then it contains either a rational tail or bridge as in Figure 5.6.
Each rational tail E has self-intersection −1 can be blown down by Castelnuovo’s
Contraction Theorem (E.1.5). Contracting all rational tails yields a projective
birational morphism C′ → C′min, which is the Minimal Model (Corollary E.1.7).
Replacing C with C′min, we obtain a semistable family C → ∆ of curves such that
the total family C is regular.

Finally, we apply the stabilization construction (Proposition 5.3.20) to obtain a
morphism C → Cst contracting each rational bridge and where Cst → ∆ is a stable
family of curves. We note that Cst is precisely the relative canonical model of C
(Proposition 5.3.20(4)). Alternatively, one can realize this final step by iteratively
contracting each rational bridge E since each such subcurve satisfies E2 = −2.
Indeed, a version of Castelnuovo’s Contraction Theorem is valid even if E2 < −1
(the only difference is that the contracted surface may not be regular) and the
contraction yields a family of stable curves.

Exercise 5.5.7. Let a, b,m be positive integers such that both a and b divide m.
Let X = Speck[x, y, t]/(tm − xayb) and X̃ → X be its normalization. Show that
each preimage of the origin is locally defined by tk = xy, and in particular is a
reduced and nodal point in the fiber over t = 0.

Remark 5.5.8. The above argument fails if the residue field of R has positive
characteristic p. Indeed, in Step 3, if any of the multiplicities of the components of
the central fiber are divisible by p, then the extension SpecR → SpecR given by
t 7→ tm is not tamely ramified and the base change C×∆ ∆′ may remain non-reduced.

A different approach is therefore needed in positive characteristic. The approach
of [AW71] starts as above by taking a resolution of singularities C of some family
of curves over R extending C∗. One then chooses an extension K → K ′ (and a
corresponding extension R → R′ of DVRs) such that C∗ has a K ′-point and such
that the l-torsion Pic(C∗K′)[l] ∼= (Z/lZ)2g for a sufficiently large prime l 6= p. This
magically forces the central fiber of C ×R R′ to be reduced and nodal! See [AW71]
or [SP, Tag 0E8C].

5.5.4 First examples

In these examples ∆ = SpecR where R is a DVR with uniformizing parameter t.

Example 5.5.9 (Nodal elliptic curves). Consider the family of elliptic curves
(C∗ → ∆∗, σ) defined by the equation y2z = x(x − z)(x − tz) in P2 × ∆ and the
section σ(t) = [0, 1, 0]. The stable limit in M1,1 as t → 0 is the nodal cubic
y2z = x2(x− z); see Figure 18.

Example 5.5.10 (Colliding marked points). Let C be a smooth curve and consider
the constant family C = C × ∆. Let p ∈ C be a k-point and σ1 : ∆ → C be the
constant section t 7→ p. Suppose that σ2 : ∆ → C is another section meeting σ1

transversely at (p, 0) ∈ C as shown below:
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Figure 5.8:

To obtain the stable limit, we simply blowing up the surface at (p, 0). The stable
limit is the nodal union of C and P1 at p.

For a more involved example of colliding points, consider again the constant
family C ×∆ with sections locally defined by (σ1, σ2, σ3) = (t2,−t2, 4t).

I Hip

t NII

Htt HII

Figure 5.9:

After blowing up twice, the sections become disjoint but the central fiber is
unstable as the exceptional component E1

∼= P1 only has one node and one marked
point. The stable limit is obtained by contracting E1.

Example 5.5.11 (A node degenerating to a cusp). Consider a smooth curve C
with two points p, q ∈ C. Gluing p and q yields a nodal curve. Now if we fix p and
slide q toward p, we have a family of nodal curves C∗ → C \ p as in Figure 5.10.
For instance, this family could be defined locally by y2 = x3 + tx2 in which case we
have an extension C → C where the central fiber Cp (given by t = 0) has a cusp. We
would like to compute the stable limit.

I Hip

t NII

Hii HII I

Figure 5.10: What is the stable limit of the above nodal degeneration?

In this case, the base curve is C itself but it would be no different to work
over SpecOC,p. The pointed normalization of the family C∗ extends to a family
C × C → C with the diagonal section ∆ and the constant section Γp = {p} × C.
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Figure 5.11: Recipe for computing the stable reduction

We first find the stable limit of the pointed normalization exactly as in Exam-
ple 5.5.10: we blowup so that the strict transforms ∆̃ and Γ̃p become disjoint. We
then glue the sections ∆̃ and Γ̃p to obtain a family C → C of nodal curves where the
central fiber is the nodal union of C and a rational nodal curve at the point p ∈ C.

The above examples are too simple to reveal the general stable reduction proce-
dure as no base changes were needed.

5.5.5 Explicit stable reduction

The biggest challenge in explicitly computing the stable limit of a family C∗ → ∆∗

following the basic strategy of Section 5.5.1 is in Step 3: computing the normalization
C̃′ of the family C′ = C ×∆ ∆′ obtained by base changing C → ∆ along a ramified
cover ∆′ → ∆ defined by t 7→ tm. It is often simpler to factor ∆′ → ∆ as a
composition of prime order base changes and use the following observation.

Proposition 5.5.12. Let C → ∆ be a generically smooth, proper and flat family
such that (C0)red is nodal. As a divisor on C, we may write C0 =

∑
aiDi where ai

is the multiplicity of the irreducible component Di. Let ∆′ → ∆ be defined by t 7→ tp

where p is prime, and set C′ := C ×∆ ∆′ with normalization C̃′. Then C̃′ → C is a
branched cover ramified over

∑
(ai mod p)Di.

Example 5.5.13 (Stable Reduction of an A2k+1-singularity). Suppose C → ∆ is a
generically smooth family degenerating to a A2k+1-singularity in the central fiber
such that the local equation around the singular point is y2 = x2k+1+t. In particular,
the total family C is smooth. Figure 5.12 provides a pictorial representation of the
stable reduction procedure.
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Figure 5.12: Recipe for computing the stable limit of a A2k+1-singularity. The
altered components in each step are colored in red while the green numbers indicate
the multiplicity of the component.

We are already given a flat limit C → ∆ so may begin with Step 2.

Step 2: Repeatedly blow-up to find a resolution of singularities C̃ → C so that the
reduced central fiber (C̃0)red is nodal.

We repeatedly blow up the (reduced) singular point in the central fiber. To keep
track of the local equations, we will always use local coordinates x, y on the original
surface and x̃, ỹ on the new surface. In one chart of the blowup, x̃ = x, ỹ = y/x with
exceptional divisor x̃ = 0 while in the other chart, x̃ = x/y, ỹ = y with exceptional
divisor ỹ = 0.

For the first blow up, the preimage of y2 − x2k+1 in the chart x̃ = x, ỹ = y/x
is given by x̃2(ỹ2 − x̃2k−1) and in the other chart by ỹ2(1 − x̃2k+1ỹ2k−1). The
exceptional divisor E1 has multiplicity 2.

For the second blow up, the preimage of x2(y2−x2k−1) in the chart x̃ = x, ỹ = y/x
is given by x̃4(ỹ2 − x̃2k−3) and in the other chart by x̃2ỹ4(1− x̃2k−1ỹ2k−3) (where x̃
defines E1 and ỹ defines E2). The new exceptional divisor E2 has multiplicity 4.

After k blow ups, one obtains a surface with local equation x2k(y2 − x) at the
singular point in the central fiber. The equation y2 − x defines the normalization
C̃0 of the original central fiber and x defines the exceptional divisor Ek which has
multiplicity 2k. There is a chain of nodally attached exceptional divisors Ek, . . . , E1

such that the multiplicity of Ei is 2i.
Blowing up again, the strict transform of x2k(y2− x) in the chart x̃ = x/y, ỹ = y

becomes x̃2kỹ2k+1(ỹ − x̃) where x̃ defines Ek, ỹ defines the new exceptional divisor
F which has multiplicity 2k + 1, and ỹ − x̃ defines C̃0.

Blowing up one final time, the strict transform of x2ky2k+1(y − x) in the chart
x̃ = x, ỹ = y/x becomes x̃4k+2ỹ2k+1(ỹ − 1) where x̃ defines the new exceptional
divisor G which has multiplicity 4k+2, ỹ defines F and ỹ−1 defines C̃0. In particular,
the (non-reduced) central fiber is set-theoretically nodal.
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Step 3: Perform a base change ∆′ → ∆ such that the normalization of the total
family C ×∆ ∆′ has a reduced and nodal central fiber.

We begin by base changing by ∆′ → ∆, t 7→ t2k+1 and normalizing. For this
analysis, we assume that 2k + 1 is prime but one can inductively apply the same
process to a prime factorization of 2k + 1 and obtain the same result in the end; the
only difference is in the numerics of the multiplicities of the exceptional components
Ei but these can be resolved in the last step in the same way.

By applying Proposition 5.5.12, the new surface is a degree 2k+ 1 cover ramified
over C̃0 +

∑
iEi as the other components of the central fiber have multiplicities

divisible by 2k + 1. The preimage G′ of G is 2k + 1 degree cover of P1 ramified
over two points, each with ramification index 2k. By Riemann–Hurwitz, the genus
g(G′) of G′ satisfies 2g(G′)− 2 = (2k + 1)(g(P1)− 2) +R and since the ramification
divisor R has degree 2(2k), we see that g(G′) = 0. Meanwhile, the preimage of F is
the disjoint union of 2k + 1 smooth rational curves F1, . . . , F2k+1. Over ∆, the new
special fiber is

(2k + 1)C̃0 + (4k + 2)G′ + (2k + 1)
∑
i

Fi + (2k + 1)
∑
i

2iEi

which over ∆′ becomes C̃0 + 2G′ +
∑
i Fi +

∑
i 2iEi

We now base change by ∆′ → ∆, t 7→ t2 and normalize. By Proposition 5.5.12,
the new surface is a 2 : 1 cover ramified over C̃0 +

∑
i Fi. The preimage H of G′ ∼= P1

is a 2 : 1 cover ramified over 2k + 2 points, with one of those points being the node
H ∩ C̃0. Thus G′ is a hyperelliptic curve of genus g attached to C̃0 at a ramification
point (otherwise known as a Weierstrass point). The new central fiber over ∆′

becomes reduced except for the components Ei which have multiplicity i.
Finally, we inductively base change and normalize by the ramified covers defined

by t 7→ tk, . . . , t 7→ t2 so that the central fiber becomes reduced and nodal.

Step 4: Contract rational tails in the central fiber.
The exceptional components Fi are smooth rational −1 curves which we can

contract. We then inductive contract E1, E2, . . . , Ek (note that while E1 is a −1
curve, E2 is a −2 curve but becomes a −1 curve once E1 is contracted). In the end,
we obtain a reduced central fiber which is the nodal union of the normalization C̃0
of the original central fiber and a hyperelliptic genus k curve H. The node in H is a
ramification point of the 2 : 1 cover H → P1 while the node in C̃0 is the preimage of
the singular point of C0.

The above example begs the following questions:

• Precisely which hyperelliptic curve H appears in the stable limit?

• How does the stable limit depend on the choice of degeneration? By calculating
the deformation space of a A2k+1-singularity, one sees that every degeneration
can be written locally as y2 = x2k+1+a2k−1(t)x2k−1+· · ·+a0(t) for polynomials
a2k−1, . . . , a0. In other words, we are asking how does the stable limit depend
on ai(t). In particular, what happens when the total family of the surface is
singular (e.g. y2 = x2k+1 + t2)?

These questions are addressed in detail in [HM98, §3.C] in the case of a cusp y2 = x3

(i.e. k = 1). The reader is also encouraged to refer to loc. cit. for additional
examples of stable reduction and other aspects of this story.

Exercise 5.5.14. Work out the stable reduction of a smooth family of curves
degenerating to an A2k+2-singularity with local equation y2 = x2k+2 + t.
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5.5.6 Separatedness of Mg,n

We now show that the stable limit is unique. The following proposition establishes via
the Valuative Criterion for Separatedness (Theorem 3.8.5) thatMg,n is separated.

Proposition 5.5.15. Let R be a DVR with fraction field K, and set ∆ = SpecR
and ∆∗ = SpecK. If (C → ∆, σ∗1 , . . . , σ

∗
n) and (D → ∆, τ∗1 , . . . , τ

∗
n) are families

of n-pointed stable curves, then every isomorphism α∗ : C∗ → D∗ over ∆∗ with
τ∗i = α∗ ◦ σ∗i of the generic fibers as pictured

C∗ α∗ //

!!

D∗

��

C α //

��

D

��

∆∗
� � // ∆

extends to a unique isomorphism α : C → D over ∆ with τi = α ◦ σi.

Proof. We will prove the case when there are no marked points (n = 0) and the
generic fiber C∗ ∼= D∗ is smooth over ∆∗. We leave the general case to the reader.

Let C̃ → C and D̃ → D be the minimal resolutions (Theorem E.1.1). Let

Γ ⊂ C̃ ×∆ D̃ be the closure of the graph C∗ (id,α∗)−−−−→ C∗ ×∆∗ D∗ of α∗ and let Γ̃→ Γ
be the minimal resolution. We have a commutative diagram

Γ̃

�� ��

C̃

��

D̃

��

C

  

D

~~

∆.

(5.5.1)

Since Γ̃→ C̃ and Γ̃→ C̃ are birational morphisms of smooth projective surfaces over
∆ and the relative dualizing sheaves are line bundles, we have identifications of the
pluricanonical sections

Γ(C̃, ω⊗k
C̃/∆

) ∼= Γ(Γ̃, ω⊗k
Γ̃/∆

) ∼= Γ(D̃, ω⊗k
D̃/∆

)

for each non-negative integer k; see [Har77, Thm. II.8.19]. Furthermore, we know
that C and D are the stable models of C̃ and C̃ obtained by contracting rational tails
and bridges (Proposition 5.3.20). Thus we have an isomorphism

C ∼= Proj
⊕
k

Γ(C̃, ω⊗k
C̃/∆

) ∼= Proj
⊕
k

Γ(D̃, ω⊗k
D̃/∆

) ∼= D

extending α∗ : C∗ → D∗.

Remark 5.5.16. We can also argue more explicitly using our understanding of the
birational geometry of surfaces. First, notice that the local structure of the surface
C or D around a node z in the central fiber is of the form xy = tn+1, where t ∈ R is

217



a uniformizer (Theorem 5.2.18). This is an An-surface singularity and in particular
normal, and its preimage under the resolution C̃ → C is a chain E1 ∪ · · · ∪ En of
rational bridges with E2

i = −2. By construction, there are no smooth rational
−1 curves in the fibers of C̃ → C and D̃ → D, and since C and D are families of
stable curves, they have no rational tails and thus no smooth rational −1 curves.
We conclude that C̃ and D̃ are birational smooth surfaces over ∆ with no smooth
rational −1 curves whose generic fibers C∗ and D∗ are isomorphic.

By the Structure Theorem of Birational Morphisms of Surfaces (Theorem E.1.3),
both Γ̃ → C̃ and Γ̃ → D̃ are the compositions of finite sequences of blow-ups at
closed points. Since Γ̃ is minimal over Γ, there are no smooth rational −1 curves in
Γ̃ that get contracted under both Γ̃→ C̃ and Γ̃→ D̃.

We now claim that Γ̃→ C̃ and Γ̃→ D̃ are isomorphism. Suppose for instance
that Γ̃ → C̃ is not an isomorphism. Then there is a smooth rational −1 curve
E ⊂ Γ̃ not contracted under Γ̃ → D̃ and let ED̃ ⊂ D̃ be its image. On the one
hand, since blowing up only decreases the self-intersection number (indeed, if we
write the pre-image of ED̃ in Γ̃ as E + F , then the projection formula implies that
E2
D̃

= E · (E + F ) = E2 + E · F ), we have that E2
D ≥ E2 = −1. The Hodge

Index Theorem for Exceptional Curves (Theorem E.1.4) implies however that the
self-intersection of ED̃ must be negative, and we conclude that E2

D̃
= −1. On the

other hand, since ED̃ is not a smooth rational −1 curve, ED̃ must be a singular
curve and one of the blow-ups in the composition Γ̃→ D̃ must be along a singular
point of ED̃. But this implies that exceptional locus F of Γ̃→ D̃ intersects E with
multiplicity at least 2 so that E2

D̃
≥ E2 + 2, a contradiction.

We finish the proof as before by observing that both C and D are the stable
models of C̃ ∼= D̃. Since the stable model is unique (Proposition 5.3.20), there is an
isomorphism C ∼→ D extending C∗ ∼→ D∗.

5.6 Gluing and forgetful morphisms

5.6.1 Gluing morphisms

Proposition 5.6.1. There are finite morphisms of algebraic stacks

Mi,n ×Mg−i,m →Mg,n+m−2(
(C, p1, . . . , pn), (C ′, p′1, . . . , p

′
m)
)
7→ (C ∪ C ′, p1, . . . , pn−1, p

′
1, . . . , p

′
m).

(5.6.1)

and

Mg−1,n →Mg,n−2

(C, p1, . . . , pn) 7→ (C/pn−1 ∼ pn , p1, . . . , pn−2).
(5.6.2)
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Figure 5.13: (A) is an example of (5.6.1) while (B) is an example of (5.6.2)

Remark 5.6.2. To simplify the notation, we chose to write only the case of gluing
the nth marked point pn and the mth marked point p′m curve in (5.6.1), and likewise
only case of gluing the pn−1 and pn in (5.6.2). Clearly the same holds for the gluing
of any two marked points.

Sketch. To simplify the notation, we will establish the proposition in the following
two cases:
(a) In (5.6.1), we assume n = m = 1.
(b) In (5.6.2), we assume n = 2.

Note that once we establish the existence of the morphisms of algebraic stacks, it
follows from Stable Reduction (Theorem 5.5.1) that the morphisms are proper. By
inspection, they are clearly representable and have finite fibers and thus follows that
the morphisms are finite.

Case (a): Let (C π−→ S, σ) and (C′ π′−→ S, σ′) be two families of 1-pointed stable
curves over a scheme S.

Argument 1 (pushout construction): Consider the pushout diagram

S

σ′

��

σ // C

��

C′ // C̃

which exists by Ferrand’s Theorem on the Existence of Pushouts (Theorem A.8.1).
We claim that C̃ → S is a family of stable curves. First, note that C̃ → S is proper as
there is a finite cover C t C′ → C with C t C′ proper over S. One can use properties
of pushouts to show that C̃ → S is flat (missing details). It remains to chose that
the geometric fibers of C̃ → S are stable curves and in particular nodal.

For every point s ∈ S, since σ(s) is a smooth point of C, there is an étale
neighborhood SpecA[x] → C of σ(s) which pulls back to an étale neighborhood
SpecA→ S of s. Since an étale morphism from an affine scheme extend over closed
immersions (missing reference), there is an étale neighborhood SpecA[y] → C′ of
σ′(s) which also pulls back to SpecA→ S. The geometric pushout of [SpecA[x]←
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SpecA→ SpecA[y]] is SpecA[x, y]/(xy), and we have a commutative cube

SpecA

��

uu

� � // SpecA[y]
ss

��

SpecA[x]

��

� � // SpecA[x, y]/(xy)

��
S �
�

//

tt

C
ssC′ �

�
// C̃

We see by Proposition A.8.5 that SpecA[x, y]/(xy)→ C̃ is an étale neighborhood
of the image of s. This shows that C̃ → S is nodal along S and since C̃ is either
isomorphic to C or C′ outside S, we see that C̃ → S is a nodal family of curves.
Finally one checks (missing details) that C̃s is identified with the nodal union Cs and
Cs′ , which is stable.

Argument 2 (Proj construction): We know that ωC(σ) is ample. There is a surjection
ωC(σ)→ Oσ1 and for each k ≥ 0, the pushforward of the surjection (ωC(σ))⊗k → Oσ1

under π : C → S is π∗(ωC(σ)⊗k)→ OS .We have a similar construction for π′ : C′ → S,
and we can consider the fiber product of quasi-coherent OS-modules

Ak //

��

π∗(ωC(σ)⊗k)

��

π∗(ωC′(σ
′)⊗k) // OS

One checks that A :=
⊕

k≥0Ak is a finitely generated quasi-coherent OS-algebra
and that C̃ := ProjS A is a family of stable curves over S such that C̃s is the nodal
union Cs of Cs′ .

Case (b): Let (C → S, σ1, σ2) be a 2-pointed family of stable curves over a scheme
S.

Argument 1 (pushout construction): We use the pushout diagram

S t S

��

σ1tσ2 // C

��

S // C̃

By the étale local properties of pushouts (Proposition A.8.5), the local structure of
C̃ is determined by the pushout diagram

SpecA×A
(0,1)

//

��

SpecA[t]

��

SpecA // SpecA×A×A A[t].

The subalgebra A×A×A A[t] ⊂ A[t] consists of functions f ∈ A[t] such that f(0) =
f(1) ∈ A. The elements x := t2 − 1 and y := t3 − t generate A ×A×A A[t] as an
A-algebra and since x and y satisfy y2 = x2(x + 1), we see that A ×A×A A[t] ∼=
A[x, y]/(y2 − x2(x+ 1)).
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Argument 2 (Proj construction): One defines C̃ := ProjS
⊕

k≥0Ak where Ak is
defined as the fiber product

Ak //

��

OS

∆

��

π∗(ωC(σ1)⊗k) t π∗(ωC(σ2)⊗k) // OS t OS .

5.6.2 Boundary divisors of Mg

Define the closed substacks

δ0 = im(Mg−1,2 →Mg)

δi = im(Mi,1 ×Mg−i,1 →Mg)

where i = 1, . . . , bg/2c.
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Figure 5.14: Examples of stable curves in the boundary.

Once we show that Mg is dense in Mg, it will follow that δ0 and δi are the
closure of the locus of curves with a single node as featured in (A) and (B) of
Figure 5.14.

To see that δ0 and δi are divisors inMg, we can do a simple dimension count.
As Mg−1,2 → Mg and Mi,1 ×Mg−i,1 → Mg are finite morphisms, we compute
that dim δ0 = dimMg−1,2 = 3(g− 1)− 3 + 2 = 3g− 4 and that dim δi = dimMi,1 +
dimMg−i,1 = (3i− 3 + 1) + (3(g − i)− 3 + 1) = 3g − 4.
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By analyzing the formal deformation space of a stable curve, one can show that
more is true: δ = δ0 ∪ · · · ∪ δb g2 c is a normal crossings divisor.

5.6.3 The forgetful morphism
Proposition 5.6.3. There is a morphism of algebraic stacks

Mg,n →Mg,n−1

(C, p1, . . . , pn)
)
7→ (Cst, p1, . . . , pn−1).

where (Cst, p1, . . . , pn−1) is the stable model of (C, p1, . . . , pn−1).

Figure 5.15: In (A), the nth point is simply forgotten. In (B), if pn is forgotten,
then the curve is no longer stable and we must contract the rational bridge.

Proof. If (C → S, σ1, . . . , σn) is an n-pointed family of stable curves, then if we forget
the nth section, the (n− 1)-pointed family (C → S, σ1, . . . , σn−1) may not be stable.
However, we have already constructed the stable model (Cst → S, σ1, . . . , σn−1) in
Proposition 5.3.20.

5.6.4 The universal family Mg,1 →Mg

Let Ug →Mg be the universal family: this is a proper and flat morphism of algebraic
stacks whose geometric fibers are genus g curves. (The existence of the universal
family follows from applying descent and the 2-Yoneda Lemma (Lemma 2.3.20) to
the identity morphism id : Mg →Mg.) Objects of Ug over a scheme S correspond
to a family of stable curves C → S and a section σ : S → C (that may land in the
relative singular locus).

There is a morphism of algebraic stacks

Mg,1 → Ug

sending (C → S, σ) to (Cst → S, σst) where π : C → Cst is the stabilization of C → S
(see Proposition 5.3.20) and σst = π ◦ σ. This yields a commutative diagram

Mg,1
//

""

Ug

��

Mg,
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whereMg,1 →Mg is the forgetful morphism of Proposition 5.6.3.

Figure 5.16: In Example (A), Mg,1 → Ug sends (C, p) to itself while in Example
(B), the morphism sends (C, p) to the curve (C ′, p′) obtained by contracting the
rational bridge.

Proposition 5.6.4. The morphism Mg,1 → Ug is an isomorphism over Mg. In
other words, the morphismMg,1 →Mg, which forgets the marked point and stabilizes
the curve, is the universal family.

Proof. TO ADD

Exercise 5.6.5. Show that the above arguments can be modified to show that
Mg,n+1 →Mg,n is a universal family.

5.7 Irreducibility

In this section, we show that the algebraic stackMg,n is irreducible over an alge-
braically closed field k. After reviewing properties of branched coverings in §5.7.1,
we provide the classical topological argument due to Clebsch and Hurwitz in the late
19th century establishing irreducibility of Mg in characteristic 0 (Theorem 5.7.12).
We then provide a purely algebraic argument for the irreducibility ofMg,n (Theo-
rem 5.7.15) by using admissible covers to show that every smooth curves degenerates
to a singular stable curve and induction on the genus to show that the boundary
δ = Mg \ Mg is connected. Finally, in §5.7.4, we provide the arguments from
the seminal papers from 1969 of Deligne and Mumford [DM69] and Fulton [Ful69]
which establish the irreducibility of Mg,n in positive characteristic (where Fulton’s
argument has the restriction p > g + 1) by reduction to characteristic 0.

We begin with a few remarks regarding the relations between the connectedness/
irreducibility ofMg,n,Mg, and their coarse moduli spaces. SinceMg,n is a smooth
algebraic stack, its irreducibility is equivalent to its connectedness. Moreover, since
Mg,n+1 →Mg,n is the universal family (Proposition 5.6.4) and in particular has
connected fibers, it suffices to verify the connectedness of Mg. We thus have
equivalences

Mg,n irreducible ⇐⇒ Mg,n connected

⇐⇒ Mg connected

⇐⇒ Mg connected and dense inMg
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Finally, we note that since the coarse moduli space Mg,n → Mg,n induces a
homeomorphism |Mg,n|

∼→ |Mg,n| on topological spaces, each statement above can
be equivalently stated in terms of the coarse moduli space.

5.7.1 Branched coverings
If f : C → D is a finite separable morphism of smooth connected curves and P ∈ C(k)
with image Q, then the ramification index eP is the integer e such that under the
map OD,Q → OC,P a uniformizer t 7→ use maps to a unit times the eth power of
a uniformizer. We say that f is ramified at P if eP > 1, tamely ramified at P if
chark = 0 or char(k)6 | ep, and unramified at P if eP = 1.

There is a short exact sequence on differentials

0→ f∗ΩD → ΩC → ΩC/D → 0. (5.7.1)

Indeed, the sequence above is always right exact. Since f∗ΩD and ΩC are line
bundles, injectivity for the left map is equivalent to the map being non-zero. However,
K(D)→ K(C) is separable so ΩC/D ⊗K(C) = ΩK(C)/K(D) = 0, and thus f∗ΩD →
ΩC is non-zero at the generic point. Examining the sequence above at the stalks at
a point P ∈ C(k), the differential dt maps to d(useP ) = euseP−1ds+ seP du. If f is
tamely ramified at p, then (ΩC/D)P ∼= OC,p〈ds〉/(seP−1ds) and length(ΩC/D)P =
dim ΩC/D ⊗ κ(p) = eP − 1.

If f is ramified at P , then the scheme-theoretic fiber over f(P ) at P is isomorphic
to Specκ(P ), and thus this agrees with the definition of unramified in Unramified
Equivalences A.3.4. Moreover, since f is flat, f is unramified at P if and only if f is
étale at P .

Definition 5.7.1. Let k be an algebraically closed field.
(1) A branched covering is a finite separable morphism f : C → D of smooth

connected curves over k.
(2) A simply branched covering is a branched covering such that

• there is at most one ramification point in every fiber, and

• every ramification point P ∈ C(k) is tamely ramified with ramification
index eP = 2.

Figure 5.17: Examples of branched coverings over P1: (A) is simply branched while
(B) and (C) are not. While the picture may suggest that the source curve C is not
smooth, C is in fact smooth over the base field k. However, the map C → P1 is not
smooth and the pictures above are designed to reflect the singularities of C over P1.

Theorem 5.7.2 (Riemann–Hurwtiz). If f : C → D is a branched covering and
R =

∑
P∈C(k) length(ΩC/D)P · P is the ramification divisor on C, then ΩC

∼=
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f∗ΩD ⊗OC(R) and

2g(C)− 2 = deg(f)(2g(D)− 2) + degR.

In particular, f : C → P1 is simply branched, then it is ramified over 2g + 2d − 2
distinct points.

Proof. This follows directly from the exact sequence (5.7.1). See also [Har77, Prop.
IV.2.3]

Example 5.7.3. For a local model of a branched cover, consider the map f : A1 →
A1 defined by x 7→ xn. The relative sheaf of differentials is ΩA1/A1 = k[x]〈dx〉/(nxn−1dx)
and thus if char(k) does not divide n, then f : A1 → A1 is étale over A1 and ramified
at 0 with index n− 1.

Exercise 5.7.4. Show that every branched covering is étale locally isomorphic to
A1 → A1, x 7→ xn around a branched point of index n− 1.

Lemma 5.7.5. Let C be a smooth, connected, and projective curve of genus g over
an algebraically closed field k of characteristic 0. If L is a line bundle of degree
d ≥ g + 1, then for a general linear series V ⊂ H0(C,L) of dimension 2, C V−→ P1 is
simply branched.

Proof. We proceed with a dimension count. Since h0(C,L) = d+1−g, the dimension
of the Grassmanian Gr(2,H0(L)) of 2-dimensional subspaces is 2(d− g − 1). Since
char(k) = 0, every finite morphism C → P1 is automatically separable. Thus, if
C

V−→ P1 is not simply branched, then one of the following three conditions must
hold:
(a) V has a base point;
(b) there exists a ramification point with index > 2; or
(c) there exists 2 ramification points in the same fiber.

We handle only case (b) and leave the other cases to the reader. There must exist a
section s ∈ V vanishing to order 3 at a point p ∈ C, i.e. s ∈ H0(C,L(−3p)). The
dimension of V ∈ Gr(2,H0(L)) having a branched point at p ∈ C with index at least
3 can be calculated as

dimPH0(L(−3p)) + dimP(H0(L)/〈s〉) = 2d− 2g − 4.

Varying p ∈ C, the locus of all V ∈ Gr(2,H0(L)) failing condition (b) is thus
2d− 2g − 3 = dim Gr(2,H0(L))− 1.

For a branched cover C → P1, we denote by Aut(C/P1) = 1 the group of
automorphisms C → C over P1.

Lemma 5.7.6. If C → P1 is a simply branched cover of degree d > 2 in characteristic
0, then Aut(C/P1) is trivial.

Proof. Every automorphism C → C over P1 must fix the 2g+2d−2 branched points
but this contradicts the classical result of Mayer which asserts that there are no
non-trivial automorphisms of a smooth curve fixing more than 2g + 2 points.

The above lemma shows that there are no stacky issues that arises when defining
moduli spaces of simply branched covering. We define

Hd,b := {C → P1 simply branched covering of degree d over b points}
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as the moduli space of simply branched coverings where

b = 2g + 2d− 2.

The moduli space Hd,b can be defined either as a topological space (if k = C) or
as an algebraic space; we leave the details to the reader. Denoting Symb P1 \∆ as
the variety of b unordered distinct points in P1 (which can also be written as the
complement Pb \∆ of the discriminant hypersurface), we have a diagram

Hd,b

}} %%

Mg Symb P1 \∆

(5.7.2)

where a simply branched covering [C → P1] gets mapped to [C] under Hd,b →Mg

and the b branched points under Hd,b → Symb P1 \∆.

Lemma 5.7.7. In characteristic 0, the morphism Hd,b → Symb P1 \∆ is finite and
étale.

Proof. We only establish étaleness. It is straightforward to see thatHd,b → Symb P1\
∆ is a topological covering space. Consulting Figure 5.18, given a branched covering
f : C → P1 and a branched point p ∈ C, we can choose an analytic open neighborhood
U ⊂ P1 around f(p) such that f−1(U)→ U is isomorphic to an open neighborhood
of C→ C, x 7→ xn. For every other point q′ ∈ U , we can construct a branched cover
C ′ → P1 which outside U is the same as C → P1 and over U is locally isomorphic
to x 7→ xn but centered over q′ (rather than f(p)).

Figure 5.18:

For an algebraic argument, it suffices to show that for a covering f : C → P1

simply branched over p1, . . . , pb, the map

Def(C
f−→ P1)→ Def({pi}bi=1 ⊂ P1)

on first order deformation spaces is bijective. There is an identification Def(C
f−→

P1) = H0(C,Nf ) where Nf sits in a short exact sequence

0→ TC → f∗TP1 → Nf → 0.
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On cohomology, this induces a short exact sequence

0→ H0(C, f∗TP1)→ H0(C,Nf )→ H1(C, TC)→ 0.

Riemann–Roch allows us to compute h0(C, f∗TP1) = 2d+ 1− g and h1(TC) = 3g− 3,
and thus dim Def(C

f−→ P1) = h0(C,Nf ) = 2d + 2g − 2 = b is the same as the
dimension of Def({pi}bi=1 ⊂ P1). We leave the remaining details to the reader.

5.7.1.1 Relation between algebraic and topological branched coverings

The Clebsch–Hurwitz argument below relies on the following correspondence between
topological, analytic, and algebraic branched coverings. (Topological and analytic
coverings can be defined analogously to algebraic coverings—to be added.) This can
be viewed as a version of the Riemann Existence Theorem.

Proposition 5.7.8. Over C, there are natural bijections

{C → P1 algebraic branched coverings} ←→ {C → P1 topological branched coverings}
←→ {C → P1 analytic branched coverings}

Proof. An algebraic branched covering is clearly topological and if C → P1 is a
topological covering, then the holomorphic structure on P1 induces naturally a
holomorphic structure on C such that C → P1 is analytic. The Riemann Existence
Theorem implies than every holomorphic branched covering is in fact algebraic.

5.7.1.2 Monodromy actions

Let C → P1 be a (topological) branched covering over C and B ⊂ P1 its ramification
locus. Choose a base point p ∈ P1 \B. The monodromy action of π1(P1 \B, p) on
the fiber π−1(p) is defined as follows: for γ ∈ π1(P1 \B, p) and q ∈ π−1(p), then the
path γ : [0, 1]→ P1 lifts uniquely to a path γ̃ : [0, 1]→ C such that γ̃(0) = q and the
action is defined by γ · q = γ̃(1).

Figure 5.19:

We now summarize some of the key properties of the monodromy action.

Proposition 5.7.9. Let B ⊂ P1 be a finite subset, p ∈ P1 \B be a point, and d > 0
a positive integer. There is a natural bijection between topological branched coverings
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C → P1 of degree d and group homomorphisms ρ : π1(X \ B, x) → Sd such that
im(ρ) ⊂ Sd is a transitive subgroup. Here two branched covers C → P1 and C ′ → P1

are equivalent if there is an isomorphism C → C ′ over P1, and two homomorphisms
ρ, ρ′ : π1(X \B, x)→ Sd are equivalent if they differ by an inner automorphism of
Sd, i.e. ∃h ∈ Sd such that ρ′ = h−1ρh.

Moreover, if we let σ1, . . . , σb be simple loops around the b distinct points of
B, then π1(P1 \B, x) = 〈σi|σ1 · · ·σb = 1〉, and under this correspondence a simply
branched cover corresponds to a homomorphism π1(X \B, p)→ Sd such that each
σi maps to a transposition.

Remark 5.7.10. Recall that by definition in a branched covering C → P1, the curve
C is necessarily connected. This is the reason for the condition above that im(ρ) ⊂ Sd
is transitive: every group homomorphism ρ : π1(X \ B, x) → Sd corresponds to a
possibly non-connected branched covering C → P1, and C is connected if and only
if im(ρ) ⊂ Sd is transitive.

Remark 5.7.11. Like with Riemann–Hurwitz, the fact that the base is P1 plays
no role: the above proposition holds for arbitrary branched covers of smooth curves
(except for the explicit description of π1).

5.7.2 The Clebsch–Hurwitz argument

We now provide the classical argument due to Clebsch [Cle73] and Hurwitz [Hur1891]
thatMg is connected over C. For a modern treatment, see [Ful69, §1]. This argument
uses a single non-algebraic input, namely Riemann’s Existence Theorem in the form
of Proposition 5.7.8. There are of course other non-algebraic approaches, e.g. using
Teichmüller theory.

By taking d ≥ g + 1, we know that every smooth, connected, and projective
complex curve C of genus g admits a map C → P1 which is a covering simply
branched over b = 2d+ 2g − 2 points (Lemma 5.7.5). This shows that the map

Hd,b →Mg, [C → P1] 7→ [C]

is surjective, where Hd,b is the moduli space of coverings C → P1 simply branched
over b points. The connectedness of Hd,b thus implies the connectedness ofMg.

Theorem 5.7.12 (Clebsch, Hurwitz). Hd,b is connected.

Proof. We will use the diagram

Hd,b

}}

β

%%

Mg Symb P1 \∆

where Hd,b →Mg is surjective (Lemma 5.7.5) and β : Hd,b → Symb P1 \∆ is finite
and étale (Lemma 5.7.7).

For every finite set B = {p1, . . . , pb} ⊂ P1 of b = 2d+2g−2 points and p ∈ P1\B,
the fundamental group π1(P1 \B, p) = 〈σi|σ1 · · ·σb = 1〉 acts on the fiber π−1(p) of
a simply branched covering π : C → P1. Similarly, π1(Symb P1 \∆, B) acts on the
fiber Hd,B := β−1(B) of β : Hd,b → Symb P1 \∆. Using Proposition 5.7.9, we have
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bijections

Hd,b = β−1(B) = {coverings C → P1 simply branched over B}

= {group homomorphisms π1(P1 \B, p) ρ−→ Sd such that
im(ρ) ⊂ Sd is transitive and each ρ(σi) is a transposition}

= {(τ1, . . . , τb) ∈ (Sd)
b | each τi is a transposition and τ1 · · · τb = 1}.

The connectedness of Hd,b is equivalent to the transitivity of the action of
π1(Symb P1 \ ∆, B) on the fiber Hd,B. The strategy of proof is to find loops in
Symb P1 \∆ that act on (τ1, . . . , τb) ∈ Hd,B in a prescribed way and to find enough
loops so that we can show that each orbit contains the element

τ ∗ :=
(

(12), (12), (13), (13), . . . , (1 d− 1), (1 d− 1)︸ ︷︷ ︸
2(d−2)

, (1d), (1d), · · · , (1d)︸ ︷︷ ︸
2g+2

)
.

Figure 5.20:

Referring to Figure 5.20, we define the loop

Γi : [0, 1]→ Symb P1 \∆

t 7→ (p1, . . . , pi−1, γi(t), γ
′
i(t), pi+2, . . . , pb).

One checks that

Γi · (τ1, . . . , τb) = (τ1, . . . , τi−1, τ
−1
i τi+1τi, τi, τi+2, . . . , τb)

and that for every element (τ1, . . . , τb) ∈ Hd,B , there exists a sequence Γi1 , . . . ,Γik
of loops such that τ ∗ = Γi1Γi2 · · ·Γik · (τ1, . . . , τb). We leave the details of this
combinatorial problem to the reader.

5.7.3 Irreducibility using admissible covers
We now give a completely algebraic argument of the irreducibility ofMg in charac-
teristic 0. The main idea is to show that every smooth curve of genus g degenerates
in a one-dimensional family to a singular stable curve (Proposition 5.7.13) and
to show the connectedness of δ = Mg \Mg using the inductive structure of the
boundary and explicitly the gluing maps of Proposition 5.6.1. The most challenging
aspect of this argument is in degenerating a smooth curve to a singular stable curve.
To achieve this, we will use the theory of admissible covers. We follow the treatment
in Fulton’s appendix of the paper [HM82] by Harris and Mumford that introduced
admissible covers as a means to compute the Kodaira dimension of Mg.
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Proposition 5.7.13. Let C be a smooth, connected, and projective curve of genus
g over an algebraically closed field k of characteristic 0. There exists a connected
curve T with points t1, t2 ∈ T and a family C → T of stable curves such that Ct1 ∼= C
and Ct2 is a singular stable curve.

Proof. By Lemma 5.7.5, for d� 0 there exists a finite covering C → P1 of degree d
simply branched over b = 2g + 2d− 2 distinct points p1, . . . , pb ∈ P1. This defines
a b-pointed stable curve G = [P1, {pi}] ∈ M0,n. By Lemma 5.7.7, we may assume
that G ∈M0,n is general. Since M0,n is connected, G degenerates to the b-pointed
rational curve (D0, q1, . . . , qb) which is the nodal union of a chain of b− 2 P1’s where
q1, q2 lie on the first P1, q3 on the second P1, and so on with qb−1, qb lying on the
last P1; see Figure 5.21.

Figure 5.21:

In other words, there is a DVR R with fraction field K and a map ∆ = SpecR→
M0,n corresponding to a b-pointed stable family (D → ∆, σi) such that the generic
fiber (D∗, σ∗i ) is isomorphic to G = (P1, {gi}) and the special fiber to (D0, {qi}). We
have a simply branched covering C∗ → ∆∗ which fits into a diagram

C∗

��

� � // C

��

D∗ �
�

//

��

D

��

∆∗
� � // ∆

and extends to a finite morphism C → D by taking C as the integral closure of OD
in K(C∗).
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Figure 5.22:

Purity of the branch locus implies that the ramification of C → D is a divisor
when restricted to the relative smooth locus of C → D. Therefore, the central fiber
C0 → D0 is ramified over σ1(0), . . . , σb(0) and possibly over irreducible components
of D0 (where C0 may be non-reduced). As in the proof of stable reduction, after a
suitable base change ∆→ ∆, t 7→ tm and replacing C with the normalization C×∆ ∆,
we can arrange that C0 → D0 is ramified only over σi(0) and possibly over nodes of
D0. By an analysis of possible extensions C → D, one can show that C0 is a nodal
curve (missing details). Therefore C → ∆ is a family of nodal curves.

Since C0 necessarily has nodes, we are done if C0 is a stable curve! Otherwise,
we can contract rational tails and bridges to obtain the stable model Cst → ∆
(Proposition 5.3.20). We must check that Cst

0 is not smooth. Let T ⊂ Cst
0 be a

smooth irreducible component. Applying Riemann–Hurwitz to the induced morphism
T → P1 ⊂ D0 shows that 2g(T ) − 2 = −2d + R where R is the degree of the
ramification divisor on T . If the component P1 ⊂ D0 is a rational tail (i.e. is either
the first or last P1 in the chain), then R ≤ 2 + (d− 1) as T → P1 is simply ramified
over the two marked points and has index at worst d − 1 over the node. On the
other hand, if P1 ⊂ D0 is a rational bridge, then R ≤ 1 + 2(d− 1). In either case,
we have R ≤ 2d − 1 and 2g(T ) − 2 ≤ −2 + (2d − 1) = 1 which establishes that
g(T ) = 0. We’ve shown every smooth irreducible component of Cst

0 is rational which
immediately implies that Cst

0 is singular.

Proposition 5.7.14. If we assume that Mg′,n′ is irreducible for all g′ < g, then
the boundary δ =Mg \Mg is connected.

Proof. We write δ = δ0 ∪ · · · ∪ δbg/2c where δ0 = im(Mg−1,2 → Mg) and δi =

im(Mi,1 ×Mg−i,1 →Mg) as defined in §5.6.2 using the gluing maps from Proposi-
tion 5.6.1. The hypotheses imply that δ0 and δi are connected (and even irreducible).
But on the other hand, the boundary divisors δi intersect! Namely, for every
i, j = 0, . . . , bg/2c, the intersection δi ∩ δj contains curves as in Figure 5.23.
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Figure 5.23:

Theorem 5.7.15. Mg,n is irreducible.

Proof. SinceMg,n is smooth (Theorem 5.4.8), the irreducibility ofMg,n is equiva-
lent to its connectedness. SinceMg,n+1 →Mg,n is the universal family (Proposi-
tion 5.6.4) and in particular has connected fibers, it suffices to verify the connectedness
of Mg. Since every smooth curve degenerates to a stable singular curve in the
boundary δ =Mg \Mg (Proposition 5.7.13) and the boundary δ itself is connected
(Proposition 5.7.14) by induction on g, we obtain thatMg is connected.

Remark 5.7.16 (Admissible Covers). The above argument was motivated by the
theory of admissible covers as introduced by Harris and Mumford [HM82]. Admissible
covers are a generalization of simply branched covers C → P1 where the source and
target curve are allowed to have nodal singularities. The main goal is to extend the
map Hd,b →Mg taking [C → P1]→ [C] to a map Hd,b →Mg over the boundary
where Hd,b also has a moduli interpretation.

An admissible cover of degree d over a stable b-pointed genus 0 curve (B, p1, . . . , pb)
is a morphism f : C → B such that
(a) f−1(Bsm) = Csm and Csm → Bsm is simply branched of degree d over the

points pi, i.e. each ramification index is 2 and there is at most one ramification
point in every fiber; and

(b) for every node q ∈ B and every node r ∈ C over q, the local structure (either
formally or étale) of C → B at r is of the form k[x, y]/(xy) → k[x, y]/(xy)
defined by (x, y) 7→ (xm, ym) for some m.

This definition extends to families of admissible covers and the stackHd,b parameteriz-
ing admissible covers of degree d branched over b points is a proper Deligne–Mumford
stack.

The total space C of an admissible cover need not be stable. Nevertheless, using
the contraction morphism (Proposition 5.3.20), there is a morphism Hd,b → Mg

sending an admissible cover [C → B] to the stable model Cst of C. There is also a
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finite morphism Hd,b → M0,n sending [C → B] to (B, {pi}) where pi ∈ B are the
branched points. To summarize, there is a diagram

Hd,b

}} ""

Mg M0,n

extending the uncompactified diagram (5.7.2).
The argument of Proposition 5.7.13 can be rewritten in this language. For

d � 0, given a smooth curve [C] ∈ Mg, we choose a preimage [C → P1] ∈ Hd,b
(Lemma 5.7.5). By Lemma 5.7.7, we can assume that the branched points g1, . . . , gb ∈
P1 are general. Since M0,n is connected, there is a map ∆ = SpecR→M0,n (where
R is a DVR) such that the generic point maps to (P1, {gi}) and the closed points
maps to the b-pointed stable curve (D0, q1, . . . , qb) of Figure 5.21. SinceHd,b →M0,n

is finite, we may use the valuative criterion to lift ∆→M0,n to ∆→ Hd,b such that
the image of the generic point is [C → P1]. The composition ∆→ Hd,b →Mg gives
the desired degeneration.

5.7.4 Irreducibility in positive characteristic: Deligne–Mumford
and Fulton’s arguments

The year 1969 was a remarkable year for mathematics in part due to the seminal
contributions of Deligne and Mumford’s paper [DM69] and Fulton’s paper [Ful69].
The papers provided independent arguments for the irreducibility of Mg in positive
characteristic (where Fulton’s argument has the restriction that p > g + 1). Both
papers relied on the connectedness of Mg over C and the time, there was no
purely algebraic argument; the algebraic argument establishing Theorem 5.7.15 used
admissible covers and became available only in 1982. The connectedness of Mg

over C is a classical result. Clebsch and Hurwitz’s arguments in the 19th century
(featured in Theorem 5.7.12) used the Hurwitz space of branched covers and used
on a single non-algebraic input, namely the Riemann’s Existence Theorem. There
are of course other non-algebraic arguments, e.g. using the Teichmüller space.

5.7.4.1 Deligne–Mumford’s first argument

The first argument appearing [DM69] is very similar in spirit to the argument in
§5.7.3. As with most results, there are many approaches to construct a proof and
the first approach in [DM69, §3] reflects the state of technology at the time.

For a field k of characteristic p, the argument for irreducibility of Mg ×Z k
proceeds along three steps:

Step 1: There is no proper connected component of Mg ×Z k.
Let W (k) be the Witt vectors for k; W (k) is a noetherian complete local ring

whose generic point η has characteristic 0 and whose closed point 0 has residue field
is k. (For example, W (Fp) = Zp is the ring of p-adics.) We now use the existence
of a quasi-projective coarse moduli space Mg → Mg over W (k) as established
in [GIT]. (Although appearing in the definitive book on GIT, this would not be
viewed as a “GIT construction" today as it relies on some ad hoc techniques and
doesn’t use the Hilbert–Mumford criterion. Indeed, the standard GIT toolkit only
became available in positive characteristic in 1975 after Haboush resolved Mumford’s
conjecture [Hab75] and in the relative setting in 1977 after Seshadri’s paper [Ses77].)
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Choosing a projective compactification Mg ⊂ X over W (k), the connectedness
of the generic fiber of Mg → SpecW (k) ensures that the generic fiber of Xη is also
connected. The scheme Mg is normal as GIT quotients (or alternatively coarse
moduli spaces) preserve normality. By taking the normalization of X, we can assume
that X is also normal. Zariski’s connectedness theorem implies that the number of
connected components in a fiber Xw is independent of w ∈W (k). Thus, X0 is also
connected.

Suppose Y ⊂Mg×W (k)k is a proper connected component. Then Y ⊂Mg×W (k)

k ⊂ X0 is an open subscheme; but it’s also a closed subscheme since Y is proper.
Since X0 is connected, we conclude that Y = Mg ×W (k) k is proper and irreducible.
To obtain a contradiction, denote by Ag,k the moduli of principally polarized g-
dimensional abelian varieties over k and consider the morphism

Θ: Mg ×W (k) k→ Ag,k, C 7→ Jac(C)

assigning to a smooth curve C its Jacobian Jac(C). The properness of Mg ×W (k) k
implies that the image would be a closed but there are explicit examples where the
closure of the image of Θ contains products of lower dimensional Jacobians.

Step 2: There is no connected component of Mg ×Z k consisting entirely of smooth
curves.

Let Mg,1, . . . ,Mg,r be the connected components of Mg. For each i, Step 1
implies that Mg,i is not proper. Let ∆ = Speck[[t]] and ∆∗ = Speck((t))→Mg,i :=
Mg ∩Mg,i be a morphism that does not extend to ∆. By Stable reduction, after
possibly replacing ∆ with a finite extension, ∆∗ → Mg,i extends to a morphism
∆→Mg. This shows that Mg,i \Mg,i is non-empty.

Step 3: The boundary δ = Mg \Mg is connected.

Note that Steps 1 and 2 show that every smooth curve degenerates to a singular
stable curve (Proposition 5.7.13). This step proceeds precisely as in Proposition 5.7.14
but without using the formalism of the moduliMg,n of n-pointed stable curves and
the gluing morphisms.

5.7.4.2 Deligne–Mumford’s second argument

The stack Mg of stable curves is smooth and proper over SpecZ. Zariski’s con-
nectedness theorem implies that for every smooth and proper morphism X → Y
of schemes, the number of connected components of a geometric fiber is a locally
constant function on Y . (In fact, for a flat and proper morphism X → Y , this
function is lower semi-continuous and it is enough for the fibers of X → Y to be
geometrically normal in order to show constancy.) This fact extends to morphisms
of algebraic stacks. Applying this fact to the morphismMg → SpecZ, we see that
the connectednessMg ×Z C implies the connectedness of every geometric fiber. In
[DM69, §5], the connectedness ofMg ×Z C is argued by relating it to the moduli
of Teichmüller structures of level n and the connectedness of the Teichmüller space
[Man39].
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5.7.4.3 Fulton’s argument

In [Ful69], Fulton defines the Hurwitz scheme Hd,b of simply branched covers over
Z and shows that there is a diagram

Hd,b

}} %%

Mg Symb P1 \∆

defined over Z. He shows that the map Hd,b → Symd P1 \ ∆, taking a simply
branched cover to its branch locus, is étale. Moreover, if all primes p ≤ g + 1 are
inverted, then Hd,b → Symd P1 \ P1 is finite; examples are given where is not finite
over primes p ≤ g + 1. Fulton then establishes a “reduction theorem” allowing him
to deduce the connectedness of Hd,b ×Z Fp from Hd,b ×Z C for primes p > g + 1.

5.8 Projectivity

In this section, we prove that the coarse moduli space Mg,n is projective (The-
orem 5.8.14). We follow the approach introduced by Kollár in [Kol90] partially
building on ideas of Viehweg (see [Vie95]). We will primarily focus on the unpointed
coarse moduli space Mg as this will be enough to deduce the projectivity of Mg,n.

To introduce the general strategy to establish projectivity, we need to introduce
some terminology. Let π : Ug →Mg be the universal family and for each integer
k ≥ 1 define the kth pluri-canonical bundle as the vector bundle

π∗(ω
⊗k
Ug/Mg

) (5.8.1)

onMg. Its rank r(k) can be computed via Riemann–Roch:

r(k) :=

{
g if k = 1
(2k − 1)(g − 1) if k > 1.

(5.8.2)

We obtain line bundles onMg by taking the determinant

λk := detπ∗(ω
⊗k
Ug/Mg

).

These provide natural candidates of line bundles onMg that descend to ample line
bundles on Mg.

Strategy for projectivity: Show that for k � 0, a positive power of λk
descends to an ample line bundle on the coarse moduli space Mg.

Outline of this section: In §5.8.1, we prove Kollar’s Criterion for ampleness
(Theorem 5.8.5). In §5.8.2, we setup the application of Kollár’s Criterion to Mg by
establishing Proposition 5.8.13: projectivity ofMg follows from (a) Stable Reduction
(Theorem 5.5.1) and (b) the nefness of π∗(ω⊗kC/T ) for a family of stable curves C → T

over a smooth projective curve and for k � 0 (Theorem 5.8.17). In §5.8.3, we prove
this nefness statement which finishes the proof of projectivity. Finally, in §5.8.4, we
compare this argument to the GIT construction of Mg.
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5.8.1 Kollár’s criteria
In this section, we prove Kollár’s Criterion for projectivity (Theorem 5.8.5), which
we will apply to show that λk is ample on Mg for k � 0. We first extend ampleness
criteria of §E.2.5 to proper algebraic spaces and in particular establish that the
Nakai–Moishezon criterion still holds (Theorem 5.8.4).

Lemma 5.8.1. Let X be a proper Deligne-Mumford stack with coarse moduli space
X → X. Suppose that L is a line bundle on X satisfying
(a) L is semiample (i.e. LN is base point free for some N > 0); and
(b) for every map f : T → X from a proper integral curve such that f(T ) ⊂ |X | is

not a single point, degL|T > 0.
Then for some N > 0, L⊗N descends to an ample line bundle. In particular, X is
projective.

Remark 5.8.2. Lemma E.2.16 handles the case when X is a scheme. Even though
we won’t actually quote this lemma, it provides a basic technique which underlies
many ampleness arguments, e.g. the Nakai-Moishezon criterion.

Proof. For N sufficiently divisible, consider the diagram

X

&&��

X // P(H0(X , LN )).

Property (a) implies that X → P(H0(X , LN )) is well-defined and (b) implies that it
doesn’t contract curves. The universal property for coarse moduli spaces gives the
existence of the factorization X → P(H0(X , LN )), which also doesn’t contract curves.
Thus X → P(H0(X , LN )) is quasi-finite and proper (as both X and projective space
are proper), and thus finite by Zariski’s Main Theorem. It follows that the pullback
M of O(1) under X → P(H0(X , LN )) is ample; moreover, the pullback of M under
X → X is L⊗N .

Remark 5.8.3. The semiampleness condition in (a) can be very challenging to
verify in practice. Keep in mind that in the GIT approach, semiampleness is hard-
coded into the definition of semistability (see Remark 5.8.22). If G is a reductive
group acting linearly on projective space P(V ) and L = O(1) is the corresponding
G-line bundle on [P(V )/G], then a nonzero vector v ∈ V is in the stable base
locus of L (i.e. s(v) = 0 for all s ∈ Γ([P(V )/G], L⊗d) and d > 0) if and only if
0 ∈ Gv ⊂ V if and only if there exists a one-parameter subgroup λ : Gm → G such
that limt→0 λ(t) · v = 0. This latter equivalence is the Hilbert–Mumford criterion
and can sometimes be verified combinatorially.

On the other hand, in Kollár’s Criterion, the existence of sufficient sections of
the line bundle follows from the bigness of suitable vector bundles.

Theorem 5.8.4 (Nakai–Moishezon Criterion). If X is a proper algebraic space, a
line bundle L is ample if and only if for all irreducible closed subvarieties Z ⊂ X,
c1(L)dimZ · Z > 0

Proof. By Le Lemme de Gabber (Theorem 4.5.1), there exists a finite surjection
f : X ′ → X from a scheme X, and L is ample if and only if f∗L is ample (Ex-
ercise 4.4.21). The statement then follows for the Nakai–Moishezon Criterion for
schemes (Theorem E.2.18).
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Let X be a proper algebraic space over k. Let W → Q be a surjection of vector
bundles of rank w and q. Suppose that W has structure group G→ GLw. There is
a classifying map

X → [Gr(q,kw)/G]

x 7→ [W ⊗ κ(x)� Q⊗ κ(x)]

which is well-defined because a choice of isomorphism W ⊗κ(x) ∼= κ(x)w of the fiber
of W over x is well-defined up to the structure group G. Thus, the image of x is
identified with the quotient [κ(x)w ∼= W ⊗ κ(x)� Q⊗ κ(x)] ∈ Gr(q,kw).

For simplicity, we state the following criteria in characteristic 0. The criteria
first appears in [Kol90, Lem. 3.9] with improvements from [KP17, Thm. 4.1].

Theorem 5.8.5 (Kollár’s Criterion). Let X be a proper algebraic space over a field
k of characteristic 0. Let W � Q be a surjection of vector bundles of rank w and q,
where W has structure group G→ GLw. Suppose that
(a) The classifying map X(k)→ Gr(q,kw)(k)/G(k) has finite fibers; and
(b) W is nef.

Then detQ is ample.

Remark 5.8.6. Condition (a) is equivalent to the map |X| → |[Gr(q,kw)/G]| on
topological spaces having finite fibers. This set-theoretic condition is weaker than the
quasi-finiteness1 of X → [Gr(q,kw)/G], as the latter condition also requires that for
every x ∈ X(k) only finitely many elements of G(k) leave ker(W ⊗κ(x)→ Q⊗κ(x))
invariant (or equivalently that the image of x in [Gr(q,kw)/G] has finite stabilizer.)
In fact, Condition (a) is equivalent to quasi-finiteness of the projection morphism
im(X → X × [Gr(q,kw)/G]) → [Gr(q,kw)/G] from the scheme-theoretic image of
the graph of the classifying map; it is this property that we will use in the proof.

Remark 5.8.7. An easy case of this theorem is when W is the trivial vector bundle
so that there is a reduction of structure group to the trivial group G = {1}. In this
case, the classifying map X → Gr(q,kw) is quasi-finite by condition (a) and proper
since both X and Gr(q,kw) are proper. Thus X → Gr(q,kw) is finite and det(Q) is
ample as its the pullback of the ample line bundle on Gr(q,kw) defining the Plücker
embedding.

Note that in the above theorem, we do not require that the image of X lands in
the G-stable locus of Gr(q,kw). However, if this is true, then we have a commutative
diagram

X //

&&

[Gr(q,kw)ss/G]

��

Gr(q,kw)//G

where Gr(q,kw)//G denotes the projective GIT quotient. Since the image of X
lands in the stable locus, X → Gr(q,kw)//G is quasi-finite; as it’s also proper, we
conclude that it’s finite. Moreover, we obtain ampleness of (detQ)w ⊗ (detW )−q,
the pullback of the ample line bundle Gr(q,kw)//G coming from GIT. This is a
stronger ampleness statement than merely the ampleness of detQ.

1Recall that a morphism f : X → Y of algebraic stacks is quasi-finite if |X | → |Y| has finite
fibers and the relative inertia IX/Y is quasi-finite (or equivalently for every field-valued point
x ∈ X (K) the morphism AutX (K)(x)→ AutY(K)(f(x)) has finite cokernel).
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Remark 5.8.8. The nefness of det(Q) is an immediate consequence of the nefness
of W as det(Q) =

∧q
Q is a quotient of

∧q
W , which is nef by Proposition E.2.27.

The proof will proceed by reducing the ampleness of detQ to its bigness, which in
turn is established by using the quasi-finiteness and nefness to express detQ as the
sum of an effective line bundle and a big and globally generated line bundle.

Proof of Theorem 5.8.5. We will verify the Nakai–Moishezon criterion: for each
irreducible subvariety Z ⊂ X, we verify that det(Q)|Z is big. Since both conditions
(a) and (b) also hold for Z and the restrictions W |Z � Q|Z , it suffices to verify that
if X is an integral scheme with W � Q satisfying (a) and (b), then det(Q) is big.

The property of bigness (unlike ampleness) is conveniently invariant under
birational maps (and we desire this flexibility because in the proof of Proposition 5.8.9
below, we will make a series of reductions where we perform blowups to resolve
the indeterminacy locus of certain rational maps). In fact, for a generically quasi-
finite and proper morphism f : Y → X of integral schemes, the projection formula
implies that det(f∗Q)dimY = deg(f) det(Q)dimX > 0 and thus det(Q) is big if and
only if f∗(detQ) is big. By Le Lemme de Gabber (Corollary 4.5.2), there exists
a projective, generically quasi-finite and surjective morphism f : Y → X from a
projective integral scheme. By taking the normalization, we can assume that Y is
normal. The theorem therefore follows from the bigness of f∗(detQ), which is the
conclusion of the following proposition.

Proposition 5.8.9. Let Y be a normal projective integral scheme over a field k
of characteristic 0. Let W � Q be a surjection of vector bundles of rank w and q,
where W has structure group G→ GLw. Suppose that
(a′) The classifying map Y (k)→ Gr(q,kw)(k)/G(k) generically has finite fibers;
(b) W is nef.

Then detQ is big.

Remark 5.8.10. Condition (a′) means that there is a non-empty open subscheme
U ⊂ Y such that U(k)→ Gr(q,kw)(k)/G(k) has finite fibers.

Note that the difference in the hypotheses between Theorem 5.8.5 and Propo-
sition 5.8.9 is that we relaxed the condition on the classifying map from having
finite fibers to generically having finite fibers but now we assume that Y is already
projective (in addition to being normal and integral). Also the conclusion is weaker
in that it asserts the bigness of det(Q) rather than the ampleness.

Proof.

Step 1: Use the universal basis map to lift the classifying map to a morphism
P \∆→ Gr(q,kw) where P ⊂ PY ((W∨)⊕w) is a closed subscheme and ∆ ⊂ P is a
divisor.

Define P̃ := PY ((W∨)⊕w) as the projective space of matrices whose columns
belong to W , and let π̃ : P̃ → Y denote the projection. There is a universal basis
map

O⊕w
P̃
→ π̃∗W ⊗OP̃(1) (5.8.3)

defined by the isomorphisms

H0(P̃, π̃∗W ⊗OP̃(1)) ∼= H0(Y, π̃∗(π̃
∗W ⊗OP̃(1))) ∼= H0(Y,W ⊗ (W∨)⊕w).

The universal basis map (5.8.3) restricts to an isomorphism on the complement P̃\∆

where ∆ ⊂ P̃ is the divisor of matrices with determinant 0, and thus provides a
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trivialization of (π̃∗W ⊗OP̃(1))|P̃\∆. Note also that there is a natural PGLw action

on P̃ which is free on P̃ \∆ and such that π̃ : P̃ \∆→ Y is a PGLw-torsor and fits
into the cartesian diagram

P̃ \∆ //

��

Gr(q,kw)

��

// Speck

��

Y // [Gr(q,kw)/PGLw] // B PGLw .

We can also consider the fiber product with respect to the G-action

P \∆ := Y ×[Gr(q,kw)/G] Gr(q,kw).

The inclusion P \∆ ↪→ P̃ \∆ is a closed immersion and we define P ⊂ P̃ to be the
closure of P \ ∆, where we abuse notation by using the same symbol ∆ for the
divisor in P̃ and its intersection in P. One way to see that P \∆ = Y ×BG Speck ↪→
Y ×B PGLw Speck = P̃ \∆ is a closed immersion is to realize it as the base change of
the diagonal BG→ BG×B PGLw BG; here we use that BG→ B PGLw is separated
(it is in fact even affine since G is reductive). Alternatively, one can view P ⊂ P̃ as
the closure of a generic G-orbit in P̃.

In summary, we have a cartesian diagram

P \∆ //

π

��

Gr(q,kw)

��

� � // P(
∧q kw)

��

Y // [Gr(q,kw)/G] �
�

// [P(
∧q kw)/G]

where the right hand square is given by the Plücker embedding. The map P\∆→ Y

extends to a map π : P → Y (i.e. the composition P ↪→ P̃ π̃−→ Y ). The map
P \∆→ Gr(q,kw) is defined by the restriction of the composition

O⊕wP → π∗W ⊗OP(1)→ π∗Q⊗OP(1) (5.8.4)

of the universal basis map (5.8.3) with the quotient π∗W → π∗Q. The image of
(5.8.4) may not be locally free and thus the rational map P 99K Gr(q,kw) may not
be defined everywhere.

Step 2: Blowup P in order to extend the map P \∆→ Gr(q,kw).
(Note that if (5.8.4) is surjective, then P \∆→ Gr(q,kw) extends to a morphism

P→ Gr(q,kw) such that the pullback of the Plücker line bundle is π∗(detQ)⊗OP(q).)
We blowup the image ideal sheaf of (5.8.4) (more precisely, if I ⊂ π∗(detQ)⊗

OP(q) denotes the image subsheaf of (5.8.4), we blowup I ⊗ (π∗(detQ)⊗OP(q))∨ ⊂
OP). This yields a map g : P′ → P which is an isomorphism over P \∆ and such
that P \∆ → Gr(q,kw) extends to a morphism γ : P′ → Gr(q,kw). This yields a
commutative diagram

P′

g

��

γ

&&

π′

��

P //

π

��

Gr(q,kw)

��

Y // [Gr(q,kw)/G].
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The effective divisor E ⊂ P′ satisfies

g∗(π∗(detQ)⊗OP(q)) ∼= γ∗OGr(q,kw)(1)⊗OP′(E). (5.8.5)

where OGr(q,kw)(1) denotes the Plücker line bundle.

Step 3: Use the generic quasi-finiteness to show that γ∗(OGr(q,kw)(m))⊗ π′∗H∨ is
effective for some m > 0, where H is a ample line bundle on Y .

(Note that under the stronger assumption that the classifying map Y →
[Gr(q,kw)/G] is generically quasi-finite, then γ : P′ → Gr(q,kw) is also generically
quasi-finite. Thus γ∗OGr(q,kw)(1) is big and Kodaira’s Lemma (Proposition E.2.9)
immediately gives the desired statement.)

Let Z be the scheme-theoretic image of the graph Y → Y × [Gr(q,kw)/G] of
the classifying map. The hypothesis that Y (k)→ Gr(q,kw)(k)/G(k) is generically
quasi-finite implies that Z → [Gr(q,kw)/G] is generically quasi-finite. Consider the
commutative diagram

P′
p

""

γ

))

P \∆
?�

OO

//

π

��

Z ′ �
�

//

γ′

,,

��

Y ×Gr(q,kw)

��

// Gr(q,kw)

��

Y // Z �
�

// Y × [Gr(q,kw)/G] // [Gr(q,kw)/G]

where the squares are cartesian and where Z ′ is the scheme-theoretic image of
P \∆ → Y × Gr(q,kw) (and also of P′ → Y × Gr(q,kw)). We see that γ′ : Z ′ →
Gr(q,kw) is also generically quasi-finite and it follows that γ′∗(OGr(q,kw)(1)) is
big. If we denote by H ′ the pullback of H to Z ′, then by Kodaira’s Lemma
(Proposition E.2.9), γ′∗(OGr(q,kw)(m))⊗H ′∨ is effective on Z for some m > 0. Its
pullback p∗(γ′∗(OGr(q,kw)(m))⊗H ′∨) ∼= γ∗(OGr(q,kw)(m))⊗ π′∗H∨ is also effective.

Step 4: Pushforward a section to construct a map π∗OP(mq)∨ → (detQ)⊗m ⊗H∨.
Using (5.8.5), we see that

γ∗(OGr(q,kw)(m))⊗ π′∗H∨ ∼= π′∗((detQ)⊗m ⊗H∨)⊗ g∗OP(mq)⊗OP′(−mE)

⊂ π′∗((detQ)⊗m ⊗H∨)⊗ g∗OP(mq))

∼= g∗
(
π∗((detQ)⊗m ⊗H∨)⊗OP(mq)

)
and therefore we may choose a non-zero section

OP′ → g∗
(
π∗((detQ)⊗m ⊗H∨)⊗OP(mq)

)
.

Pushing forward under g : P′ → P and using the projection formula gives a non-zero
section

OP → π∗((detQ)⊗m ⊗H∨)⊗OP(mq)

and pushing forward again under π : P→ Y gives a non-zero section

OY → (detQ)⊗m ⊗H∨ ⊗ π∗OP(mq)

which we rearrange as

π∗OP(mq)∨ → (detQ)⊗m ⊗H∨. (5.8.6)
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Step 5: Show that the nefness of W implies the nefness of π∗OP(mq)∨.
We compare π∗OP(mq) to π∗OP̃(mq) ∼= Symmq((W∨)⊕w) (and their duals) under

the closed immersion P ↪→ P̃ (where we are using π to denote both projections
P→ Y and P̃→ Y ). For m� 0, the map π∗OP̃(mq)→ π∗OP(mq) is surjective and
dualizes to an inclusion

(π∗OP(mq))∨ ↪→ (π∗OP̃(mq))∨ ∼= Symmq((W )⊕w)

of vector bundles on Y . Since W is nef, so is Symmq((W )⊕w) (Proposition E.2.27)
and therefore so is (π∗OP(mq))∨ (Proposition 5.8.11).

Step 6: Conclude that detQ is big.
(Note that if (5.8.6) is surjective, the line bundle quotient N := (detQ)⊗m⊗H∨

is nef. Thus (detQ)⊗m ∼= H ⊗N is written as the sum of an ample and nef divisor,
which is necessarily big.)

Blowing up the image ideal sheaf of (5.8.6), we obtain a birational morphism
s : Y ′ → Y and a quotient line bundle s∗π∗OP(mq)∨ � N ⊂ s∗(detQ)⊗m ⊗ s∗H∨
which is nef. As N is nef and s∗H is big and globally generated, the sub-line bundle
s∗H ⊗ N ⊂ s∗(detQ)⊗m is big. The difference of s∗(detQ)⊗m and s∗H ⊗ N is
effective. Since the sum of a big and globally generated line bundle is big, we can
conclude that s∗(detQ)⊗m is big, which in turn implies that detQ is big.

The proof above used the following property of nefness of vector bundles comple-
menting the basic results from Section E.2.7.

Proposition 5.8.11. Let X be a scheme of finite type over an algebraically closed
field k of characteristic 0 and W be a vector bundle of rank w. Let G be a reductive
group and suppose that W admits a reduction of the structure group G→ GLw. Let
V ⊂ W be a G-subbundle corresponding a G-invariant subspace kv ⊂ kw. If W is
nef, then so is V .

Proof. In characteristic 0, representations of reductive groups are completely re-
ducible. Therefore kv ⊂ kw has a G-invariant complement kw−v ⊂ kw. Since this
expresses V as a quotient of W , we see that V is nef.

5.8.2 Application to M g

To apply Kollár’s Criterion to Mg, we will make use of multiplication maps between
pluri-canonical bundles and their symmetric products. Given a morphism S →Mg

corresponding to a family of stable curves π : C → S and an integer d ≥ 0, we will
consider the multiplication map

Symd π∗(ω
⊗k
C/S)→ π∗(ω

⊗dk
C/S ). (5.8.7)

For a stable curve C defined over a field k, this multiplication map is

SymdH0(C,ω⊗kC )→ H0(C,ω⊗dkC )

and its kernel consists of degree d equations cutting out the image of C
|ω⊗kC |−−−→ Pr(k)−1.

If k ≥ 3, then ω⊗kC/S is relatively very ample and thus C → S can be recovered from
the kernel of the multiplication map.

Remark 5.8.12. We emphasize here that this construction depends on k and d,
the same two integers which the GIT construction depends on (see Section 5.8.4).
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Proposition 5.8.13. Let g ≥ 2. Assume that

(a) Mg is a proper Deligne–Mumford stack; and
(b) There exists a k0 > 0 such that for every family of stable curves C → T over a

smooth projective curve T , π∗(ω⊗kC/T ) is nef for k ≥ k0.

Then for k � 0 and N sufficiently divisible, the line bundle λ⊗Nk onMg descends to
an ample line bundle on the coarse moduli space Mg. In particular, Mg is projective.

Proof. Consider the universal curve C = Ug over S =Mg. Choose integers k and d
such that

• ω⊗kC/S is relatively very ample and R1π∗ω
⊗k
C/S = 0;

• Every stable curve C
|ω⊗kC |
↪→ Pr(k)−1 is cut out by equations of degree d; and

• π∗(ω⊗kC/S) is nef.

The conditions imply that the multiplication map

W := Symd π∗(ω
⊗k
C/S)� π∗(ω

⊗dk
C/S ) =: Q

is surjective. Let w =
(
r(k)+d−1

d

)
and q = r(dk) be the ranks ofW and Q, respectively.

Note that W has a reduction of the structure group to G := SLr(k). The classifying
map

Mg → [Gr(q,kw)/G]

[C] 7→
[

SymdH0(C,ω⊗kC )︸ ︷︷ ︸
Γ(Pr(k)−1,O(d))

� H0(C,ω⊗dkC )︸ ︷︷ ︸
Γ(C,O(d))

]
is injective as the conditions on d and k imply that the kernel of the multiplication
map uniquely determines C.

Let X → Mg be a finite cover where X is a proper algebraic space (Theo-
rem 4.5.1). By Kollár’s Criterion (Theorem 5.8.5), the pullback of λk to X is ample
for k � 0. By Proposition 4.3.28, for N sufficiently divisible, λ⊗Nk descends to a line
bundle L onMg. Since the pullback of L under the finite morphism X →Mg →Mg

is ample, we conclude by Exercise 4.4.21 that L is ample.

In the next section, we will establish condition (b), the nefness of the pluri-
canonical bundles. This will allow us to conclude:

Theorem 5.8.14. If 2g − 2 + n > 0, then Mg,n is projective.

Proof. It suffices to handle the n = 0 case as Mg,n+1 → Mg,n is the universal
family (Proposition 5.6.4) and is a projective morphism (Proposition 5.3.9). The
fact that λk descends to an ample line bundle on Mg follows from Proposition 5.8.13
as Condition (a) is a consequence of Stable Reduction (see Theorem 5.5.3) while (b)
is Theorem 5.8.17.

Remark 5.8.15. It also possible to show projectivity ofMg,n directly using Kollár’s
Criterion applied to the determinant of π∗(Lk) where L := ωUg,n/Mg,n

(σ1 + · · ·+σn)

and Ug,n →Mg,n is the universal family with sections σ1, . . . , σn.
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Remark 5.8.16. The criteria of Proposition 5.8.13 for ampleness generalizes to
every moduli of polarized varieties (see [Kol90, Thm. 2.6]); this was one of the original
motivations of Kollár’s paper. In recent years, Kollár’s Criterion has been applied in
more and more general settings to establish projectivity, e.g. Hassett’s moduli space
of weighted pointed curves [Has03], the moduli of stable varieties of any dimension
[KP17], and the moduli of K-polystable Fano varieties [CP21, XZ20, LXZ21].

5.8.3 Nefness of pluri-canonical bundles

In this section, we establish that π∗(ω⊗kC/T ) is nef for every k ≥ 2.

Theorem 5.8.17. For family of stable curves C → T over a smooth projective curve
T , π∗(ω⊗kC/T ) is nef for k ≥ 2.

Proof sketch: Let k be the base field.

Step 1: Reduction to characteristic p. Assume that char(k) = 0. Since C and T are
finite type over k, their defining equations only involve finitely many coefficients of k.
Thus there exists a finitely generated Z-subalgebra A ⊂ k and a cartesian diagram

C

��

// C̃

��

T //

��

T̃

��

Speck // SpecA

where C̃ and T̃ are schemes of finite type over A. By possibly enlarging A, we
can arrange that T̃ → SpecA is a smooth and projective family of curves and
that C̃ → T̃ is a family of stable curves. Finally, by restricting along a morphism
SpecR→ SpecA from a DVR such that the images of the closed and generic points
have characteristic p and 0, respectively, we may assume that A is a DVR. Since
nefness is an open condition for such proper flat families (Proposition E.2.28), it
suffices to prove the theorem when char(k) = p > 0.

Step 2: Second reductions. We reduce to the case where
(a) C is a smooth and minimal surface;
(b) C → T is generically smooth; and
(c) the genus of T is at least 2

(details to be added). These conditions imply that C is of general type.

Step 3: Positive characteristic case. Let p = char(k). If π∗(ω⊗kC/T ) is not nef,
then there exists a quotient line bundle π∗(ω⊗kC/T ) � M∨ where d = degM > 0.
Consider the absolute Frobenius morphisms F : C → C and F : T → T which fit into
a commutative diagram

C F //

��

C

��

T
F // T.
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By properties of the dualizing sheaf, we have F ∗π∗(ω⊗kC/T ) = π∗(ω
⊗k
C/T ). Since

degF ∗M = pd, we can apply the Frobenius repeatedly to arrange that d, the degree
of M , is as large as we want. Specifically, we can arrange that M ∼= ω⊗kT ⊗ L where
L is a very ample line bundle on T . (This was the entire point of reducing to
characteristic p: to repeatedly apply the Frobenius to jack-up the degree.)

The surjection π∗(ω⊗kC/T )�M∨ ∼= (ω⊗kT ⊗ L)∨ yields a surjection

π∗(ω
⊗k
C/T )⊗ ω⊗kT ⊗ L� OT

Since h1(T,OT ) ≥ 2, we have h1(T, π∗(ω
⊗k
C/T ) ⊗ ω⊗kT ⊗ L) ≥ 2. Using the Leray

spectral sequence to relate H1(π∗(ω
⊗k
C/T ) ⊗ ω⊗kT ⊗ L) to H1(C, ω⊗kC ⊗ π∗L), one

can show that h1(C, ω⊗kC ⊗ π∗L) ≥ 2 (details omitted). This however contradicts
Bombieri–Ekedahl vanishing in the form of Lemma 5.8.19 with D = π∗L.

Remark 5.8.18. For families of smooth curves, π∗(ωC/T ) is nef; this fact is somewhat
easier and was known earlier. If C → S has no hyperelliptic fibers, then Max Noether’s
theorem on projective normality implies that Symd π∗(ωC/T )→ π∗(ω

⊗d
C/T ) is surjec-

tive. Therefore, the nefness of π∗(ωC/T ) implies the nefness of both Symd π∗(ωC/T )

and the quotient π∗(ω⊗dC/T ) (Proposition E.2.27).

Lemma 5.8.19. Let S be a smooth projective surface over an algebraically closed
field k which is minimal and of general type. Let D be an effective divisor with
D2 = 0. If char(k) 6= 2, then H1(S, ω⊗nS (D)) = 0 for all n ≥ 2. If char(k) = 2, then
h1(S, ω⊗nS (D)) ≤ 1 for all n ≥ 2.

Proof. Bombieri–Ekedahl vanishing (Theorem E.3.1) implies that H1(S,K⊗−nS ) = 0
for all n ≥ 1. The Serre dual of this statement is that H1(S,K⊗nS ) = 0 for all n ≥ 2.
The statement follows from using the short exact sequence

0→ ω⊗nS → ω⊗nS (D)→ ω⊗nS |D → 0

and adjunction (details omitted).

5.8.4 Projectivity via Geometric Invariant Theory
The Geometric Invariant Theory (GIT) construction depends on two integers:

• k, the multiple of the dualizing sheaf used to obtain an embedding C
|ω⊗kC |−−−→

Pr(k)−1. We need k ≥ 3 for ω⊗kC to be very ample for a stable curve C but we
need k ≥ 5 for the GIT construction to yield Mg.

• d, the degree of the equations that we use to embed the Hilbert scheme of
k-canonically embedded curves into a Grassmanian. We need d� 0 to obtain
an embedding of the Hilbert scheme.

Assuming that k ≥ 3, a stable curve C of genus g is pluricanonically embedded
via

C
|ω⊗kC |−−−→ Pr(k)−1

where r(k) = (2k−1)(g−1). Let P (t) = χ(C,ω⊗kt) = (2kt−1)(g−1) be the Hilbert
polynomial of C in Pr(k)−1. Let H ′ ⊂ HilbP (Pr(k)−1) be the locally closed subscheme
of the Hilbert scheme parameterizing stable curves [C ↪→ Pr(k)−1] embedded via
ω⊗kC . Note that PGLr(k) acts naturally on HilbP (Pr(k)−1) and that the subscheme
H ′ is PGLr(k)-invariant.
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Exercise 5.8.20. Extend Theorem 3.1.15 by establishing that:
(a) H ′ ⊂ HilbP (Pr(k)−1 is a locally closed PGLr(k)-invariant subscheme, and

(b) Mg
∼= [H ′/PGLr(k)].

Let H = H ′ ⊂ HilbP (Pr(k)−1 be the closure of H ′. For d � 0, we have an
embedding into the Grassmanian of P (d)-dimensional quotients of Γ(Pr(k)−1,O(d))

H ↪→ Gr(P (d),Γ(Pr(k)−1,O(d))

[C ↪→ Pr(k−1)] 7→
[
Γ(Pr(k)−1,O(d))� Γ(C,O(d))

]
Note that there is a natural identification of this quotient with the multiplication
map

Γ(Pr(k)−1,O(d)) // // Γ(C,O(d))

SymdH0(C,ω⊗kC ) // // H0(C,ω⊗dkC ).

Let OGr(1) be the very ample line bundle on Gr(P (d),Γ(Pr(k)−1,O(d)) obtained via
the Plücker embedding

Gr(P (d),Γ(Pr(k)−1,O(d)) ↪→ P(∧P (d)Γ(Pr(k)−1,O(d))

[Γ(Pr(k)−1,O(d))� Γ(C,O(d))] 7→ [∧P (d)Γ(Pr(k)−1,O(d))� ∧P (d)Γ(C,O(d))];

see Section 1.2. Finally, let Ld = OGr(1)|H be the very ample line bundle on H
obtained by restricting O(1) under the composition

H ↪→ Gr(P (d),Γ(Pr(k)−1,O(d)) ↪→ P(∧P (d)Γ(Pr(k)−1,O(d)) (5.8.8)

As each morphism in (5.8.8) is PGLr(k)-equivariant, the line bundle Ld inherits a
PGLr(k)-linearization.

Definition 5.8.21. A point h ∈ H is said to be GIT semistable with respect to Ld
if there exists an equivariant section s ∈ Γ(H,L⊗Nd )PGLr(k) with N > 0 such that
s(h) 6= 0. The semistable locus Hss consisting of GIT semistable points is an open
PGLr(k)-invariant subscheme.

Remark 5.8.22. Stack-theoretically, the PGLr(k)-linearization Ld defines a line
bundle, which we will also denote by Ld, on the quotient stack [H/PGLr(k)] and
the open substack [Hss/PGLr(k)] is the largest open substack such the restriction
of Ld is semiample. In other words, h ∈ H is GIT semistable if and only h does not
lie in the stable base locus of Ld on [H/PGLr(k)].

Remark 5.8.23. These definitions clearly extend to the action of every algebraic
group G on a projective scheme X embedded G-equivariantly X ↪→ PN by a G-
linearization L. One of the main results of GIT is that if G is reductive, then the
graded ring

⊕
N≥0 Γ(H,L⊗Nd )PGLr(k) is finitely generated and that the morphism

Xss → Xss//G := Proj
⊕
N≥0

Γ(H,L⊗Nd )PGLr(k)

is a good quotient. Note that Xss is precisely the maximal locus where the rational
map X 99K Xss//G is defined.
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The GIT construction of Mg rests on the following difficult theorem:

Theorem 5.8.24. Let k ≥ 5 and d� 0. For h = [C ↪→ Pr(k)−1] ∈ H, the curve C
is a stable if and only if h ∈ H is GIT semistable with respect to Ld.

Remark 5.8.25. This theorem can be established using the Hilbert–Mumford
criteria. It is rather difficult to explicitly exhibit sections of Γ(H,L⊗Nd )PGLr(k)

and the Hilbert–Mumford criteria allows us to verify that a given point h ∈ H is
semistable by checking that for each one-parameter subgroup λ : Gm → PGLr(k),
the Hilbert–Mumford index µ(h, Ld), defined as the weight of Gm on the line in the
affine cone Ar(k) over limt→0 λ(t) · h ∈ H ⊂ Pr(k)−1, is negative. The beauty of the
Hilbert–Mumford criterion is that it magically guarantees the existence of sections
for you! Nevertheless, verifying the Hilbert–Mumford criterion even for a smooth
pluricanonical embedded curve is no easy task.

Given Theorem 5.8.24, we obtain Mg as the projective variety

Mg = Proj Γ(H,L⊗Nd )PGLr(k) .

Remark 5.8.26. As a spectacular corollary of Theorem 5.8.24, one obtains an
alternative proof of Stable Reduction (Theorem 5.5.1) in arbitrary characteristic.
This is perhaps surprising as the GIT argument uses rather little about the geometry
of stable curves and their families.

Remark 5.8.27 (The ample cone). For each k ≥ 5 and d� 0, GIT constructs a
line bundle on onMg which descends to an ample line bundle on Mg. This class
can be expressed as

r(k)λdk − r(dk)λk.

Grothendieck–Riemann–Roch can be used to express each of the line bundles λk
as a linear combination of λ1 and δ, the boundary divisor. The asymptotic limit of
this class as d goes to infinity is proportional to

(12− 4

k
)λ1 − δ.

Taking k = 5, shows that 11.2λ− δ is ample.
However, even more is true! By bootstrapping the positivity deduced from

GIT, Cornalba and Harris showed that aλ− δ is ample if and only if a > 11, thus
determining the ample cone of Mg in the λ1δ-plane of NS1(Mg) [CH88].
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Chapter 6

Geometry of algebraic stacks

6.1 Quasi-coherent sheaves and quotient stacks
We will define quasi-coherent sheaves on an algebraic stack in the same way that we
did for Deligne–Mumford stacks in §4.1 but using the lisse-étale site on X instead of
the small étale site. The entirety of §4.1 on sheaves, OX -modules and quasi-coherent
sheaves remains valid for algebraic stacks (with the same affine diagonal hypotheses).

6.1.1 Sheaves and OX -modules
To develop abelian sheaf theory on an algebraic stack, we use the lisse-étale site.

Definition 6.1.1 (Lisse-étale site). The lisse-étale site Xlis-ét on an algebraic stack
X is the category of schemes smooth over X where morphisms are arbitrary maps
of schemes smooth over X . A covering {Ui → U} is a collection of morphisms such
that

∐
i Ui → U is surjective and étale.

This allows us to discuss sheaves of abelian groups on Xlis-ét and their morphisms.
Extending §4.1.1, we can define sections Γ(U , F ) or F (U) of an abelian sheaf
on an algebraic stack U smooth over X . The structure sheaf OX , defined as
OX (U) = Γ(U,OU ), is a ring object in the abelian category Ab(Xlis-ét). We can
therefore define OX -modules as in Definition 4.1.8 and the abelian category Mod(OX )
of OX -modules. Given a morphism f : X → Y of algebraic stacks, there are adjoint
functors

Ab(Xlis-ét)

f∗
--

Ab(Ylis-ét)

f−1

mm
Mod(OX )

f∗
--

Mod(OY).

f∗
ll

Given two OX -modules F and G, the tensor product F ⊗ G := F ⊗OX G is the
sheafification of U 7→ F (U)⊗OX (U) G(U), and the Hom sheaf H omOX (F,G) is the
sheaf given by U 7→ HomOU (F |U , G|U ), where F |U denotes the restriction of F to
Ulis-ét.

6.1.2 Quasi-coherent sheaves
Following §4.1.3, given an OX -module F on an algebraic stack X and a smooth
X -scheme U , we let F |U be the restriction of F to the lisse-étale site of U and F |UZar

the further restriction to the small Zariski site.
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Definition 6.1.2. Let X be an algebraic stack. An OX -module F is quasi-coherent
if
(1) for every smooth X -scheme U , the restriction F |UZar

is a quasi-coherent OUZar
-

module, and
(2) for every morphism f : U → V of smooth X -schemes, the natural morphism

f∗(F |VZar)→ F |UZar is an isomorphism.
A quasi-coherent sheaf F on X is a vector bundle (resp. vector bundle of rank r,

line bundle) if F |UZar
is for every smooth X -scheme U .

If in addition X is locally noetherian, we say F is coherent if F |UZar is coherent
for every smooth X -scheme U

We denote by QCoh(X ) and Coh(X ) (in the noetherian setting) the categories
of quasi-coherent and coherent sheaves. We encourage the reader to check that the
equivalent formulations of quasi-coherent given in Exercises 4.1.14 to 4.1.16 still hold,
and that the above definition of quasi-coherence is consistent with the definition
of quasi-coherence on a Deligne–Mumford stack (Definition 4.1.11) and with the
usual definition on a scheme. For a quasi-compact and quasi-separated morphism
f : X → Y of algebraic stacks, f∗ and f∗ preserve quasi-coherence (by the same
argument as for Exercise 4.1.17).

Exercise 6.1.3. Let G be an affine algebraic group over a field k. Recall that a
G-representation is a k-vector space with a dual action σ : V → Γ(G,OG) ⊗k V
satisfying two natural compatibility conditions (see §C.1.3).
(a) Show that QCoh(BG) is equivalent to the category Rep(G) ofG-representations.
(b) If SpecA is an affine k-scheme with a G-action, show that a quasi-coherent

sheaf on [SpecA/G] is the data of an A-module M together with a coaction
σ : M → Γ(G,OG)⊗k M over k (i.e. a map of k-vector spaces giving M the
structure of a G-representation) such that multiplication A⊗k M →M is a
map of G-representations. This extends Example 4.1.13 where G is finite.

(c) Considering the diagram

SpecA
p
// [SpecA/G]

π //

q

��

SpecAG

BG,

extend Exercise 4.1.18 by providing descriptions of the functors p∗, p∗, π∗, π∗, q∗
and q∗ on quasi-coherent sheaves.

(d) If U is a k-scheme with an action of G, then a line bundle with a G-action is
a line bundle L on U together with an isomorphism α : σ∗L

∼→ p∗2L satisfying
a cocycle condition p∗23α ◦ (idG×σ)∗α = (µ× idU )∗α; see C.3.2. Show that a
line bundle with a G-action is the same a line bundle on the quotient stack
[U/G].

Example 6.1.4. If G and H are affine algebraic group over a field k such that
BG ∼= BH, then G and H have equivalent categories of representations. For
example, if O(q) and O(q′) are orthogonal groups with respect to non-degenerate
quadratic forms q and q′ on an n-dimensional k-vector space V , then BO(q) ∼=
BO(q′) (see Example 3.1.11), and thus O(q) and O(Q′) have equivalent categories
of representations.
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Recall that one of the first examples we gave of a quasi-coherent sheaf on a
Deligne–Mumford stack was the Hodge line bundle on Mg (Examples 4.1.12) which
we later generalized the pluri-canonical line bundles λk on Mg (see §5.8). These line
bundles played an important role in our argument for the projectivity of Mg and
are equally essential in the study of its geometry. Determinantal line bundles play a
similar role in the study of the moduli stack of vector bundles.

Example 6.1.5 (Determinantal line bundles). Consider the stackM := BunC,r,d
of vector bundles on a smooth connected projective curve C over k. Consider the
diagram

C ×M
p1

{{

p2

$$

C M.

The projection p2 : C ×M→M is representable, projective and smooth of relative
dimension 1. For every vector bundle F on C×M, applying Proposition A.7.10 and
smooth descent shows that the cohomology Rip2,∗F (as defined below) is computed
as a 2-term complex [K0 → K1] of vector bundles and that the line bundle

det Rp2,∗F := det(K0)⊗ det(K1)∨

is well-defined on M. Note that if rkK0 = rkK1, i.e. rk Rp2,∗F = 0, then we
have a map detK0 → detK1 of line bundles and the corresponding map OM →
det(K0)∨ ⊗ det(K1) defines a section of the dual (det Rp2,∗F )∨.

Let Euniv be the universal vector bundle on C ×M. For every vector bundle V
on C, we define the determinantal line bundle

LV :=
(

det Rp2,∗(Euniv ⊗ p∗1V )
)∨
.

associated to V .

Example 6.1.6. If X is an algebraic stack of finite presentation over a scheme S,
then the relative sheaf of differentials ΩX/S on Xlis-ét, defined on a smooth X -scheme
U by ΩX/S(U) = ΩU/S , is not quasi-coherent. This is because for a non-étale map
f : U → V of smooth X -schemes, f∗ΩV/S → ΩU/S is not an isomorphism. This
differs from the Deligne–Mumford case where the sheaf ΩX/S on Xét is quasi-coherent
(Examples 4.1.12). When X is Deligne–Mumford, ΩX/S extends to a quasi-coherent
sheaf on Xlis-ét by defining ΩX/S(U), for a smooth map f : U → X from a scheme,
to be the global sections of the sheaf f∗ΩX/S on Ulis-ét.

Exercises 4.1.19 and 4.1.20 generalize to algebraic stacks.

Proposition 6.1.7 (Flat Base Change). Consider a cartesian diagram

X ′
g′
//

f ′

��

X

f

��

Y ′
g
// Y

�

of algebraic stacks, and let F be a quasi-coherent sheaf on X. If g : Y ′ → Y is flat
and f : X → Y is quasi-compact and quasi-separated, the natural adjunction map

g∗f∗F → f ′∗g
′∗F

is an isomorphism.
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Proposition 6.1.8. Let X be a noetherian algebraic stack. Every quasi-coherent
sheaf on X is a directed colimit of its coherent subsheaves. If U ⊂ X is an open
substack, then every coherent sheaf on U extends to a coherent sheaf on X .

Exercise 6.1.9. Let X → Y be a smooth affine morphism of noetherian algebraic
stacks with affine diagonal.
(1) Show that there is a vector bundle ΩX/Y on X with the property that if

V → Y is a morphism from a scheme, the pullback of ΩX/Y to XV := X ×Y V
is ΩXV /V .

(2) Given a commutative diagram

SpecA0� _

��

f0 // X

��

SpecA

;;

// Y

where A � A0 is a surjection of noetherian rings with square-zero kernel
J , show that the set of liftings is a torsor under HomA0

(f∗0 ΩX/Y , J) and in
particular is non-empty.

(3) Can you weaken the hypotheses?

6.1.3 Quasi-coherent constructions
Extending the constructions of §4.1.5 on a Deligne–Mumford stack to an algebraic
stack X , a quasi-coherent OX -algebra is a quasi-coherent OX -module A with a
compatible structure as a ring object. The relative spectrum SpecX A, defined
as the stack of pairs (f, α) where f : S → X is a morphism from a scheme and
α : f∗A → OS is a map of OS-algebras, is an algebraic stack affine over X . On a
noetherian algebraic stack, every quasi-coherent OX -algebra is a directed colimit of
finite type subalgebras.

The reduction of X is Xred := SpecX Ored
X where Ored

X is the sheaf of OX -
algebras defined by Ored

X (U) = Γ(U,OU )red for a smooth X -scheme U . If X is
integral, the normalization of X is defined as X̃ := SpecX A, where A is the OX -
algebra whose ring of sections over a smooth X -scheme U is the normalization of
Γ(U,OU ); this is well-defined since normalization commutes with smooth base change
(Proposition A.5.4). For a quasi-compact and quasi-separated morphism f : X → Y
of algebraic stacks stacks, there is a factorization f : X → Spec f∗OX → Y. The
morphism f is affine if and only if X → Spec f∗OX is an isomorphism, and quasi-
affine if and only if X → Spec f∗OX is an open immersion.

The proof of Zariski’s Main Theorem (4.4.9) in the case of Deligne–Mumford
stacks extends to algebraic stacks.

Theorem 6.1.10 (Zariski’s Main Theorem). A separated, quasi-finite and repre-
sentable morphism f : X → Y of noetherian algebraic stacks factors as the composi-
tion of a dense open immersion X ↪→ Ỹ and a finite morphism Ỹ → X .

6.1.4 Picard groups
If X is an algebraic stack, we let Pic(X ) denote the set of isomorphism classes of
line bundles on X . It is a abelian group under tensor product.
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Example 6.1.11. If G is an affine algebraic group over a field k, then Pic(BG)
is equivalent to the group of characters G → Gm. For example, Pic(BGm) = Z,
Pic(BGLn) = Z, and Pic(PGLn) = {0}.

Exercise 6.1.12. Let X be a smooth and irreducible algebraic stack over a field k.
(a) If D ⊂ X is a reduced substack with complement U , show that there is a

naturally defined line bundle O(D) (generalizing the usual construction for
schemes) such that O(D)|U ∼= OU .

(b) If V is a vector bundle on X , show that

Pic(A(V )) = Pic(X ) and Pic(P(V )) = Pic(X )× Z.

Exercise 6.1.13. Let Gm acts on An over a field k with weights d1, . . . , dn. Let O(1)
be the line bundle on [An/Gm] corresponding to the projection [An/Gm]→ BGm.
(a) Show that Pic([An/Gm]) ∼= Z generated by O(1).
(b) Show that the restriction Pic([An/Gm]) → Pic(P(d1, . . . , dn)) is an isomor-

phism, where P(d1, . . . , dn) is the weighted projective stack (see Example 3.9.6).
(c) If f ∈ Γ(An,OAn) is a homogenous polynomial of degree d such that V (f) ⊂ An

is reduced, show that O(V (f)) ∼= O(d).

Exercise 6.1.14. Let k be a field with char(k) 6= 2, 3.
(a) Show that Pic(M1,1) = Z.

Hint: Use the descriptionM1,1 = [(A2 r 0)/Gm] of Exercise 3.1.17(c) where
Gm acts with weights 4 and 6. Show that the restriction Pic(A2/Gm]) →
Pic(M1,1) is an equivalence.

(b) Show that Pic(M1,1) = Z/12.

Hint: Show that the restriction Pic(M1,1)→ Pic(M1,1) is surjective and that
the image of O(∆) = O(12) is trivial. Show that the images of O(4) and
O(6) are non-trivial by considering their restrictions to the residual gerbes of
the unique elliptic curves with Z/4 and Z/6 automorphism groups. See also
[Mum65].

6.1.5 Global quotient stacks and the resolution property
Definition 6.1.15. An algebraic stack X is a global quotient stack if there exists
an isomorphism X ∼= [U/GLn] where U is an algebraic space.

In other words, X is a global quotient stack if and only if there is a principal GLn-
bundle U → X from an algebraic space, or equivalently a representable morphism
X → BGLn.

Exercise 6.1.16. Show that a noetherian algebraic stack X is a global quotient
stack if and only if there exists a vector bundle E on X such that for every geometric
point x : Speck→ X with closed image, the stabilizer Gx acts faithfully on the fiber
E ⊗ k.

Hint: Use the correspondence between principal GLn-bundles and vector bundles
from Exercise C.2.11.

Exercise 6.1.17. Let X → Y be a surjective, flat, and projective morphism of
noetherian algebraic stacks. If X is a quotient stack, show that Y is a quotient stack.
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Being a quotient stack is also related to the following notion:

Definition 6.1.18. A noetherian algebraic stack has the resolution property if every
coherent sheaf is the quotient of a vector bundle.

A smooth or quasi-projective scheme over a field has the resolution property.
More generally, a scheme admitting an “ample family” of line bundles has the
resolution property and this implies that every noetherian normal Q-factorial scheme
with affine diagonal has the resolution property [BS03].

Proposition 6.1.19. Let G be an affine algebraic group over a field k acting on
an quasi-projective k-scheme U . Assume that there is an ample line bundle L with
an action of G (e.g. U is quasi-affine and L = OU). Then [SpecA/G] has the
resolution property.

Remark 6.1.20. It is a general fact that every line bundle on a normal scheme
over k has a positive power that has a G-action.

Proof. The line bundle L corresponds to a line bundle L on [U/G] which is relatively
ample with respect to the morphism p : [U/G] → BG. For a coherent sheaf F on
[U/G], the natural map

L−N ⊗ p∗p∗(LN ⊗ F )� F

is surjective for N � 0. The pushforward p∗(LN ⊗ F ) is a quasi-coherent sheaf on
BG, i.e. a G-representation, which we can write as a union of finite dimensional G-
representations Vi (Algebraic Group Facts C.3.1(1)). We therefore obtain a surjection
colimi(L−N ⊗ p∗Vi) � F. Since F is coherent, L−N ⊗ p∗Vi � F is surjective for
i� 0.

An interesting converse was established by Totaro [Tot04] and generalized by
Gross [Gro17].

Theorem 6.1.21. Let X be a quasi-separated normal algebraic stack of finite type
over a field k. Assume that the stabilizer group at every closed point is smooth and
affine. Then the following are equivalent:
(1) X has the resolution property,
(2) X ∼= [U/GLn] with U quasi-affine, and
(3) X ∼= [SpecA/G] with G an affine algebraic group.

In particular, X has affine diagonal.

Remark 6.1.22. While the normal hypothesis on X and smoothness hypothesis
on the stabilizers are unnecessary, the affineness hypothesis on the stabilizers is
necessary, e.g. the classifying stack BE of an elliptic curve has the resolution
property.

Proof. The implications that (2) and (3) imply (1) were established in Proposi-
tion 6.1.19.

To see (3) ⇒ (2), it suffices to find a faithful representation G ↪→ GLN such that
GLN /G is quasi-affine. Indeed, in this case, [SpecA/G] ∼= [(SpecA×GGLN )/GLN ]
(Exercise 3.4.14) and SpecA×G GLN is affine over GLN /G. We begin by choosing
a faithful representation G ⊂ GLn. By Algebraic Group Facts C.3.1(8), there is a
GLn-representation V and a k-point x ∈ P(V ) with stabilizer G. Under the action
of GLn×Gm on A(V ) (where Gm acts via scaling), the stabilizer of a lift x̃ ∈ A(V )
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of x is G. The map (GLn×Gm)/G ↪→ A(V ), defined by g 7→ gx̃, is a locally closed
immersion and thus (GLn×Gm)/G is quasi-affine. Under the natural inclusion
GLn×Gm ↪→ GLn+1, the quotient GLn+1 /(GLn×Gm) is affine (and is sometimes
called the “Steifel manifold”). The composition BG→ B(GLn×Gm)→ BGLn+1 is
quasi-affine and therefore so is GLn+1 /G.

Conversely for (2) ⇒ (3), we may choose a GLn-equivariant open immersion
U ↪→ SpecA into an affine scheme of finite type over k. Indeed, the morphism
p : [U/GLn] → BGLn is quasi-affine and [U/GLn] → SpecBGLn p∗O[U/GLn] is an
open immersion. By writing p∗O[U/GLn] = colimλAλ as a colimit of finite type
OBGLn-algebras, then limit methods imply that [U/GLn] → SpecBGLn Aλ is an
open immersion for λ� 0. Let Z ⊂ SpecA be the reduced complement of U . By
Lemma C.3.2(2), there is a GLn-equivariant morphism f : SpecA→ Ar such that
f−1(0) = Z. This induces an affine morphism U → Ar r 0. The complement Ar \ 0
can be realized as the quotient GLr /H where H ⊂ GLr is the subgroup consisting of
matrices whose last row is (0, . . . , 0, 1); H is identified with the semi-direct product
Gr−1
a o GLr−1. In the GLn-equivariant cartesian diagram

P

��

// GLr

��

U // Ar r 0,

P is affine over GLr, thus affine. We conclude using the equivalent [U/GLn] ∼=
[P/(GLn×H)].

It remains to show (1) ⇒ (2). We first show that X ∼= [U/GLn] with U an
algebraic space. Given a vector bundle E on X of rank n, the frame bundle Frame(E)
is a principal GLn-torsor and X ∼= [Frame(E)/GLn] (Exercise 6.1.16).

For every closed point x ∈ X , let ix : Gx ↪→ X be the inclusion of the residual
gerbe (Proposition 3.5.16). Let κ(x)→ k be a finite field extension trivializing Gx, i.e.
there is a map x̃ : Speck→ X representing x inducing a finite cover p : BGx̃ → Gx.
Since Gx̃ is affine, we can choose a faithful representation W . Using the resolution
property, there is a vector bundle E and a surjection E � (ix◦p)∗W . The associated
frame bundle Frame(E)→ X has trivial stabilizers over x. In other words, the kernel
subgroup SE ⊂ IX of E (i.e. the subgroup stack of the inertia stack parameterizing
elements acting trivially on E) is trivial over x. If F is another vector bundle, then
SE⊕F ⊂ SE is a closed subgroup. Since IX is noetherian, we can inductively enlarge
the vector bundle E so that U := Frame(E) is an algebraic space and X ∼= [U/GLn].

Since X is normal, U is also normal and we may apply Exercise 4.5.3 to conclude
that U is the coarse moduli space of the action of a finite group H acting on a normal
scheme U ′. Let p : U ′ → U be the quotient morphism, and let U ′1, . . . , U ′r be an
affine covering of U ′ with reduced complements Z ′1, . . . , Z ′r. Then F := p∗(

⊕
i IZ′i)

is a coherent sheaf on U . Moreover, since q : U → [U/GLn] is affine, q∗q∗F � F
is surjective and by writing q∗F as a colimit of coherent sheaves, we may find a
coherent sheaf G on X ∼= [U/GLn] and a surjection q∗G → F . Since X has the
resolution property, we see that there is even a vector bundle G and a surjection
q∗G→ F . Since p : U ′ → U is affine, we have a surjection p∗q∗G� p∗F �

⊕
i IZ′i .

Let V = Frame(G) and consider the cartesian diagram

U ′V
//

β

��

UV //

��

V

��

U ′
p
// U

q
// X
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where the horizontal arrows are principal GLn-bundles and the vertical arrows
are GLm-bundles where m = rk(G). Since the pullback of G to V is trivial, the
pullback β∗(

⊕
i IZ′i) is globally generated. This implies that β−1(Z ′i) is defined

by global functions on U ′V and that the complement β−1(U ′i) is covered by affine
opens of the form {f 6= 0} for f ∈ Γ(U ′V ,OU ′V ). This implies that OU ′V is ample
and that U ′V is a quasi-affine scheme. Since β : U ′V → UV is the quotient by a
finite group, UV is also quasi-affine (Exercise 4.2.8). We have thus shown that X ∼=
[UV /(GLn×GLm)]. Under the embedding GLn×GLm ↪→ GLn+m, the quotient
GLn+m /(GLn×GLm) is quasi-affine. Setting W = UV ×(GLn×GLm) GLn+m, we
conclude that X ∼= [W/GLn+m].

6.1.6 Sheaf cohomology
Abelian sheaf cohomology for algebraic stacks can be developed using essentially
the same approach as we used in §4.1.6 for Deligne–Mumford stacks.

Lemma 6.1.23. If X is an algebraic stack, the categories Ab(Xlis-ét) and Mod(OX )
have enough injectives. If in addition X is quasi-separated, then QCoh(X ) has
enough injectives.

Proof. The argument of Lemma 4.1.26 generalizes.

Definition 6.1.24 (Cohomology). Let X be an algebraic stack and F a sheaf of
abelian groups on Xlis-ét. The cohomology group Hi(Xlis-ét, F ) is defined as the ith
right derived functor of the global sections functor Γ: Ab(Xlis-ét)→ Ab.

Given a morphism f : X → Y of algebraic stacks, the higher direct image Rif∗F
is defined as the ith right derived functor of f∗ : Ab(Xlis-ét)→ Ab(Ylis-ét).

Definition 6.1.25 (Čech cohomology). Given a smooth covering U = {Ui → X}i∈I
of algebraic stacks and an abelian sheaf F on Xlis-ét, the Čech complex of F with
respect to U is Č•(U , F ) where

Čn(U , F ) =
∏

(i0,...,in)∈In+1

F (Ui0 ×X · · · ×X Uin)

with differential

dn : Čn(U , F )→ Čn+1(U , F ), (si0,...,in) 7→
( n+1∑
k=0

(−1)kp∗
k̂
si0,...,îk,...,in

)
(i0,...,in+1)

where pk̂ : Ui0×X · · ·×X Uin → Ui0×X · · ·×X Ûik×X · · ·×X Uin is the map forgetting
the kth component (with indexing starting at 0). The Čech cohomology of F with
respect to U is

Ȟi(U , F ) := Hi(Č•(U , F )).

The arguments of Theorem 4.1.29 and Propositions 4.1.33, 4.1.35 and 4.1.36 as
well as Exercise 4.1.38 extend.

Theorem 6.1.26. For a quasi-coherent OXlis-ét
-module F on an affine scheme X,

Hi(Xlis-ét, F ) = 0 for all i > 0.

Proposition 6.1.27. Let X be an algebraic stack with affine diagonal and F be a
quasi-coherent sheaf. If U = {Ui → X} is an étale covering with each Ui affine, then
Hi(Xlis-ét, F ) = Ȟi(U , F ).
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Proposition 6.1.28. If X is a scheme with affine diagonal and F be a quasi-
coherent sheaf, then Hi(X,F ) = Hi(Xlis-ét, Flis-ét) for all i, where Flis-ét is the sheaf
of OXlis-ét

-module defined by Fét(U) = Γ(U, f∗F ) for a smooth map f : U → X from
a scheme.

Similarly, if X is a Deligne–Mumford stack with affine diagonal and F is a
quasi-coherent sheaf, then Hi(X , F ) = Hi(Xlis-ét, Flis-ét) for all i.

Proposition 6.1.29. Let X be an algebraic stack.
(1) If F is an OX -module, then the cohomology Hi(Xlis-ét, F ) of F as an abelian

sheaf agrees with the ith right derived functor of Γ: Mod(OX )→ Ab.
(2) If X has affine diagonal and F is a quasi-coherent sheaf on X , then the

cohomology Hi(Xlis-ét, F ) of F as an abelian sheaf agrees with the ith right
derived functor of Γ: QCoh(X )→ Ab.

For a morphism f : X → Y of algebraic stacks (resp. quasi-compact morphism
of algebraic stacks with affine diagonals), then (1) (resp. (2)) holds also for the
higher direct images Rif∗F of an OX -module (resp. quasi-coherent sheaf): it can
be computed as the ith right derived functor of f∗ : Mod(OX ) → Mod(OY) (resp.
f∗ : QCoh(X )→ QCoh(Y)).

Remark 6.1.30. If X does not have affine diagonal, then the sheaf cohomology
Hi(Xlis-ét, F ) of a quasi-coherent sheaf may differ from the ith right derived functor
of Γ(X ,−) : QCoh(X )→ Ab.

Proposition 6.1.31. If X is an algebraic stack and Fi is a directed system of abelian
sheaves in Xlis-ét, then colimi Hi(X , Fi)→ Hi(X , colimi Fi) is an isomorphism.

6.1.7 Chow groups
Following [Tot99] and [EG98], we introduce the Chow groups of a quotient stack.
Let G be a smooth affine algebraic group over an algebraically closed field k of
dimension g, and let X be an n-dimensional scheme of finite type over k. For each i,
choose an r-dimensional G-representation V such that there is a nonempty open
subscheme U ⊂ A(V ) such that (a) G acts freely on U , (b) the quotient U/G is a
scheme, and (c) codimA(V ) \ U > n− i− g. Such representations exist. We define
the (i− g)th equivariant Chow group of X or equivariantly the ith Chow group of
[X/G] as

CHG
i−g(X) = CHi([X/G]) := CHi+r(X ×G U).

This definition is independent of the choice of representation. The definition is
forced upon us if we desire invariance of Chow groups under vector bundles and
open immersions of high codimension:

X ×G U �
� open

// [(X × A(V ))/G]

vect bdl
��

CHi+r(X ×G U) CHi+r([(X × A(V ))/G])
∼oo

[X/G] CHi([X/G])

∼

OO

If [X/G] is smooth of pure dimension d = n− g, then we define

CHi
G(X) = CHi([X/G]) := CHd−i([X/G])

CH∗G(X) = CH∗([X/G]) :=
⊕
i

CHi((X/G]).
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The intersection product gives a ring structure, and we call CH∗G(X) the equivariant
Chow ring of X and CH∗([X/G]) the Chow ring of [X/G].

Example 6.1.32 (CH∗(BGm)). Let V be the r-dimensional Gm-representation
with equal weights 1. Then Gm acts freely on An\0, and for −1 ≥ i > −r−1, we have
that CHi(BGm) = CHi+r(Pr−1) = Z. It follows that CHi(BGm) = Z for i ≤ −1
and is 0 otherwise. Therefore CHj(BGm) = Z for j ≥ 0, and CH∗(BGm) = Z[x].
More generally, if T ∼= Grm is a rank r torus, then CH∗(BT ) is isomorphic to the
character ring Z[x1, . . . , xr] of T .

We summarize some of the important properties of equivariant Chow groups.

Properties 6.1.33.

(1) (Independent of quotient presentation) If [X/G] ∼= [X ′/G′], then CHG
i (X) ∼=

CHG′

i (X ′), and in particular the definition of CHi([X/G]) is independent of
the quotient presentation. The definition of Chow groups can be extended to
finite type algebraic stacks over k; see [Kre99].

(2) (Vector bundle invariance) If Y → X is G-equivariant and a Zariski-local
affine fibration of relative dimension r (e.g. the total space of a rank r vector
bundle), then CHG

∗ (X) ∼= CHG
∗+r(Y ).

(3) (Excision sequence) If Z ⊂ X = [X/G] is a closed substack with complement
U , then there is a right exact sequence

CH∗(Z)→ CH∗(X )→ CH∗(U)→ 0.

(4) (Comparison with coarse moduli space) If X ∼= [U/G] is a separated Deligne–
Mumford stack with coarse moduli space X, then CH∗(X )⊗Q ∼= CH∗(X)⊗Q.

(5) (Functoriality and self-intersection) Flat morphisms induce pullback maps on
Chow groups while proper morphisms induce pushforward maps. If X = [X/G]
is smooth and i : Z ↪→ X is a smooth substack of pure codimension d, then
there is pullback i∗ : CH∗(X ) → CH∗(Z) given by intersection with Z such
that i∗i∗α = cd(NZ/X ) ∩ α for α ∈ CH∗(Z), where cd is the top Chern class
of the normal bundle.

(6) Let T be a torus acting on a smooth scheme X such that T = T1×T2 is a product
of two tori with T2 acting trivially. Then CH∗T (X) ∼= CH∗T1

(X)⊗ CH∗(BT2).
(7) If G is a connected reductive group with maximal torus T , and X is a smooth

scheme with a G-action, then the Weyl group W = NG(T )/T acts on CH∗T (X)
and CH∗G(X)Q = CH∗T (X)WQ .

Exercise 6.1.34.
(a) Let P(d0, . . . , dn) be the weighted projective stack of Example 3.9.6. Show

that CH∗(P(d0, . . . , dn)) ∼= Z[x]/(d1 · · · dnxn+1).
(b) If char(k) 6= 2, 3, show that CH∗(M1,1) ∼= Z[x]/(12x) and CH∗(M1,1) ∼=

Z[x]/(24x2). (Compare with Exercise 6.1.14).
(c) Let Gm act on Pn with weights d0, . . . , dn. Show that A∗([Pn/Gm]) =

Z[h, t]/p(h, t) where p(h, t) =
∑n
i=0 h

iei(a0t, . . . , ant) and ei is the ith sym-
metric polynomial.

6.1.8 de Rham and singular cohomology
We quickly discuss the de Rham and singular cohomology of an algebraic stack
following [Beh04].

256



Analyticification. If X is a smooth algebraic stack over C with affine diagonal,
there is an analyticification X an, analogous to the analyticification of a finite type
C-scheme, such that X an is a differentiable stack. If U0 → X is a smooth presentation
by a scheme so that X is the quotient of the smooth groupoid U1 := U0×X U0 ⇒ U0,
then Uan

0 → X an is a smooth presentation and X an is the quotient of the Lie groupoid
Uan

1 ⇒ Uan
0 .

De Rham cohomology of a differential stack. Given a differentiable stack X
with a smooth presentation U0 → X , we can define a simplicial manifold U•

· · ·U3 //
//
//
U2 //

// U1
// U0, where Up := U0 ×X · · · ×X U0︸ ︷︷ ︸

p times

(6.1.1)

with maps ∂i : Up → Up−1 forgetting the ith term along with degeneracy maps
si : Up−1 → Up inserting an identity morphism in the ith term. This defines a double
complex Ωq(Up) with differentials given by exterior differentiation d : Ωq−1(Up)→
Ωq(Up) and ∂ :=

∑p
i=0(−1)i∂∗i : Ωq(Up−1) → Ωq(Up). We define the de Rham

complex C•dR(X ) as the total complex

CkdR(X ) :=
⊕
p+q=k

Ωq(Up),

with differential δ : CkdR(X ) → Ck+1
dR (X ) defined by δ(ω) = ∂(ω) + (−1)pd(ω) for

ω ∈ Ωp(Uq). The de Rham cohomology is

Hn
dR(X ) := Hn(C•dR(X )),

and is independent of the choice of presentation. As with the case of smooth
manifolds, there is an identification of Hn

dR(X ) with the sheaf cohomology of the
constant sheaf R on the big smooth site of smooth manifolds over X .

Singular homology/cohomology of a topological stack. For a topological
stack X , one can replicate the constructions of singular homology and cohomology.
Let U0 → X be a presentation and U• be the simplicial topological space as in
(6.1.1). For each p, we have the singular chain complex C•(Up) with differentials
d : Cq(Up)→ Cq−1(Up). This defines a double complex Cq(Up) using the differential
∂ =

∑p
i=0(−1)i∂j : Cq(Up) → Cq(Up−1) induced by the maps ∂i : Up → Up−1. We

define the singular chain complex C•(X ) of X as the total complex

Ck(X ) :=
⊕
p+q=k

Cq(Up)

with the differential δ : Ck(X )→ Ck−1(X ) given by δ(γ) = (−1)p+q∂(γ) + (−1)qd(γ)
for γ ∈ Cq(Up). For an abelian group A, we can therefore define the singular
homology groups of X with coefficients in A as

Hn(X , A) := Hn(C•(X )⊗Z A).

Dualizing, we define the singular cochain complex C•(X ) by Cn(X ) := Hom(Cn(X ),Z)
and the singular cohomology groups of X with coefficients in A as

Hn(X , A) := Hn(C•(X )⊗Z A).

Comparisons.
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• There are pairings Hk(X ,Z) ⊗ Hk(X ,Z) → Z which after tensoring with Q
gives identifications Hk(X ,Q) ∼= Hk(X ,Q)∨.

• If G is a topological group acting on a space U , then the equivariant cohomology
is defined as H∗G(U,A) := H∗(EG×G U,A), where EG is a contractible space
with a free action of G, and there is an identification H∗([U/G], A) = H∗G(U,A).

• For a differential stack X , there is an identification H∗dR(X ) = H∗(X ,R).

• If X is a topological Deligne–Mumford stack (e.g. the topological stack associ-
ated to a separated Deligne–Mumford stack of finite type over C) with coarse
moduli space X → X, then H∗(X ,Q) = H∗(X,Q).

6.2 The fppf topology and gerbes

This section is not essential for the proofs of the two main theorems of this book and is
included for completeness. We prove that algebraic spaces/stacks are sheaves/stacks
in the fppf topology and that quotients by fppf groupoids/equivalence relations are
algebraic. One upshot is that BG is an algebraic stack for any (non-necessarily
smooth) algebraic group, e.g. µµµp in characteristic p.

We also introduce gerbes, a central topic in the theory of stacks. For us, we want
to know that residual gerbes are gerbes (justifying the terminology) and later that
the moduli stack Buns(C)r,d of stable vector bundles is a Gm-gerbe over its coarse
moduli space.

6.2.1 Fppf criterion for algebraicity

Theorem 6.2.1 (Fppf Criterion for Algebraicity).
(1) If X is a sheaf on Schfppf such that there exists an fppf representable morphism

U → X from a scheme, then X is an algebraic space.
(2) If X is a stack over Schfppf such that there exists an fppf representable morphism

U → X from a scheme, then X is an algebraic stack.

Proof. To add.

Algebraic spaces are by definition sheaves in the big étale topology but it turns
out they are also sheaves in the big fppf topology.

Proposition 6.2.2.
(1) An algebraic space X over a scheme S is a sheaf on (Sch/S)fppf .
(2) An algebraic stack X over a scheme S is a stack over (Sch/S)fppf .

Proof. To add.

This allows us to finally prove that many properties of representable morphisms
of algebraic stacks descend in the fppf topology. Smooth descent was established in
Proposition 3.3.3

Proposition 6.2.3. Let P be one of the following properties of morphisms of
algebraic stacks: representable, isomorphism, open immersion, closed immersion,
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locally closed immersion, affine, or quasi-affine. Consider a cartesian diagram

X ′ //

��

Y ′

��

X // Y

�

of algebraic stacks where Y ′ → Y is fppf. Then X → Y has P if and only if X ′ → Y ′
has P.

6.2.2 Fppf equivalence relations and groupoids
If R ⇒ U is an fppf equivalence relation of algebraic spaces, we define U/R as
the sheafification in big fppf topology Schfppf of the presheaf T 7→ U(T )/R(T ).
Likewise, if s, t : R ⇒ U is an fppf groupoid of algebraic spaces, we define [U/R]
as the stackification in Schfppf of the prestack [U/R]pre, whose fiber category over
a scheme T is the category of T -points of U where a morphism from a ∈ U(T ) to
b ∈ U(T ) is an element r ∈ R(R) such that s(r) = a and t(r) = b.

The definitions of U/R and [U/R] are consistent with the quotient of a smooth
equivalence relation or groupoid as defined in Definition 3.4.7 using in the big étale
topology Schét. This is because the sheafification U/R in Schét is an an algebraic
space by Corollary 4.4.11 and thus a sheaf in the fppf topology by Proposition 6.2.2.
Similarly, the stackification [U/R] over Schét is an algebraic stack by Theorem 3.4.11
and thus a stack in the fppf topology by Proposition 6.2.2.

Corollary 6.2.4.
(1) If R⇒ U is an fppf equivalence relation of algebraic spaces, then the quotient

U/R is an algebraic space.
(2) If R⇒ U is an fppf groupoid of algebraic spaces, then the quotient [U/R] is

an algebraic stack.

Proof. To add.

We will now show that a quotient stacks arising from the action of an fppf group
algebraic space is an algebraic stacks; this was shown for the action of a smooth
affine group schemes in Corollary 3.1.10. We first need to generalize the definition
of a principal G-bundle given in Definition C.2.1 for an action by an fppf group
algebraic space.

Definition 6.2.5 (Principal G-bundles). If G→ S is an fppf group algebraic space,
then a principal G-bundle over an S-scheme T is an algebraic space P with an action
of G via σ : G ×S P → P such that P → X is a G-invariant fppf morphism and
(σ, p2) : G×S P → P ×T P is an isomorphism. Morphisms of principal G-bundles
are G-equivariant morphisms of schemes. We say that a principal G-bundle P → T
is trivial if there is a G-equivariant isomorphism P ∼= G× T .

When G→ S is smooth, then every principal G-bundle P → T is trivialized by
the smooth cover P → T and since smooth morphisms étale locally have sections,
there is an étale cover T ′ → T such that PT ′ is trivial.

Remark 6.2.6. It is important to require that P is an algebraic space and not a
scheme since we want principal G-bundles to satisfy descent and to be equivalent
to the notion of a G-torsor (Definition 6.2.12). If G → S is affine, then P is
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automatically a scheme and the above definition thus agrees with Definition C.2.1.
Indeed, P is a sheaf in the fppf topology (Proposition 6.2.2) and if U → P is an
étale presentation, then P → T pulls back under the fppf composition U → P → T
to the affine morphism G ×S U → U . By Effective Descent (Proposition 2.2.11),
P → T is affine and in particular that P is a scheme.

Raynaud provides an example of an abelian variety G and a principal G-bundle
that is not scheme [Ray70, XIII 3.2].

Definition 6.2.7 (Quotient stacks). Let G→ S be an fppf group algebraic space
acting on an algebraic space U over S. We define the quotient stack [U/G] as the
category over Sch/S whose objects over an S-scheme T are diagrams

P

��

// U

T

(6.2.1)

where P → T is a principal G-bundle and P → U is a G-equivariant morphism
of schemes. A morphism (P ′ → T ′, P ′ → U) → (P → T, P → U) consists of a
morphism T ′ → T and a G-equivariant morphism P ′ → P of schemes such that the
diagram

P ′

��

//
''

P

��

// U

T ′ // T

�

is commutative and the left square is cartesian.

Definition 6.2.8 (Classifying stacks). Let G→ S be an fppf group algebraic space.
The classifying stack BG of G is defined as the quotient stack [S/G]. It classifies
principal G-bundles P → T .

Proposition 6.2.9. If G→ S is an fppf group algebraic space acting on an algebraic
space U over S, then the quotient stack [U/G] is an algebraic stack. In particular,
the classifying stack BG is algebraic.

Proof. Given a map T → [U/G] corresponding to an object (6.2.1), there is a
cartesian diagram

P //

��

U

��

T // [U/G]

�

of stacks over Schfppf ; this extends Exercise 2.3.28. As P → T is an fppf morphism
of algebraic spaces, U → [U/G] is an fppf representable morphism. It follows from
Theorem 6.2.1 that [U/G] is an algebraic stack.

Exercise 6.2.10. Let G→ S be an fppf group algebraic space acting on an algebraic
space U over S.
(a) Generalize Exercise 2.4.16 by showing that the stackification of the prestack

[U/G]pre in the fppf topology is [U/G].
(b) Provide an example where the stackification of [U/G]pre in the étale topology

is not isomorphic to [U/G].
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Recalling that µµµn,Z is the subgroup of Gm,Z defined by SpecZ[x]/(xn − 1), we
can now deduce that Bµµµn,Z is an algebraic stack. If k is a field of characteristic p,
then µµµn := µµµn,k is smooth if and only if p doesn’t divide n.

Exercise 6.2.11. Let k be a field.
(a) Exhibit an explicit smooth presentation of Bµµµn.
(b) Show that Bµµµn is equivalent to the stack over (Sch/k)ét whose objects over a

scheme T are pairs (L,α) consisting of a line bundle L on T and a trivialization
α : OT

∼→ L⊗n.
(c) Show that Bµµµn is a smooth and proper algebraic stack of dimension 0.
(d) Show that Bµµµn is a Deligne–Mumford stack if and only if n is prime to the

characteristic.
(e) If x : Speck→ Bµµµn denotes the canonical presentation, compute the tangent

space TBµµµn,x.

6.2.3 Torsors

If G is a sheaf of groups, then a G-torsor is a sheaf of sets locally isomorphic to G.

Definition 6.2.12 (Torsors). Let S be a site and G a sheaf of (not necessarily
abelian) groups on S. A G-torsor on S is a sheaf P of sets on S with a left action
σ : G× P → P of G such that
(1) for every object T ∈ S, there exists a covering {Ti → T} such that P (Ti) 6= 0

for each i, and
(2) the action map (σ, p2) : G× P → P × P is an isomorphism.

If T ∈ S is an object and G is a sheaf of groups on the localized site S/T , then a
G-torsor over T is by definition a G-torsor on the S/T .

Morphisms of G-torsors are G-equivariant morphisms of sheaves. We say that a
G-torsor P is trivial if P is G-equivalently isomorphic to G.

Exercise 6.2.13. Show that Any morphism of G-torsors is an isomorphism.

Example 6.2.14. Let X be a stack over a site S, and let a, b ∈ X be objects over
S ∈ S. The sheaf IsomS(a, b) of isomorphisms is a torsor for Aut(a) under the action
given by precomposition.

Given a morphism f : T ′ → T and a G-torsor P over T , the restriction P |T ′ is
the sheaf on S/T ′ whose whose sections over a T ′-scheme S are P (S); the restriction
P |T ′ is naturally a G-torsor over T ′.

Exercise 6.2.15. Let S be a site with a final object S and G be a sheaf of groups
on S.
(a) Show that Axiom (1) is equivalent to P → S being an epimorphism of sheaves.
(b) If P is a G-torsor, show that S is isomorphic to the quotient sheaf P/G.
(c) Show that a G-torsor P is trivial if and only if there exists a section s : S → P

of the structure morphism P → S.
(d) Show that a sheaf P of sets on S with a left action by G is a G-torsor if and

only if there exist a covering {Si → S} and isomorphisms P |Si ∼= G|Si of
G|Si-torsors.
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Example 6.2.16 (Principal G-bundles). If G→ S is an fppf group scheme, then
there is an equivalence of categories between G-torsors in the fppf topology and
principal G-bundles (as defined in Definition 6.2.5). To see this, first suppose that
P → T is a principal G-bundle over an S-scheme T , i.e. P → T is an fppf morphisms
of algebraic spaces where G is equipped with a free and transitive action of G×S T .
Since algebraic spaces are sheaves in the fppf topology (Proposition 6.2.2), we
may view G ×S T as a sheaf of groups on (Sch/T )fppf and P as a sheaf of sets
on (Sch/T )ét. Since every principal G-bundle is locally trivial in the fppf topology
(Proposition C.2.4), P is a G×S T -torsor on (Sch/T )fppf . Conversely, given a G×S T -
torsor P on (Sch/T )fppf , then by Exercise 6.2.15 there is an fppf cover T ′ → T such
that P ×T T ′ ∼= G ×T T ′. Therefore, P ×T T ′ → P is an fppf morphism from an
algebraic space and Corollary 6.2.4 implies that P is an algebraic space. It follows
that P → T is a principal G-bundle.

If in addition G→ S is smooth, then there is an equivalence of categories between
G-torsors in the étale topology and principal G-bundles. This holds because every
principal G-bundle P → T is étale locally trivial and therefore P is a G×S T -torsor
on (Sch/T )ét.

6.2.4 Gerbes
Gerbes are a 2-categorical generalization of torsors. While torsors are locally
isomorphic to a sheaf of groups G, gerbes are locally isomorphic to classifying stacks
BG.

Definition 6.2.17 (Gerbes). A stack X over a site S is called a gerbe if
(1) for every object T ∈ S, there exists a covering {Ti → T} in S such that each

fiber category X (Ti) is non-empty; and
(2) for objects x, y ∈ X over T ∈ S, there exists a covering {Ti → T} and

isomorphisms x|Ti
∼→ y|Ti for each i.

We say that a gerbe X is trivial if there is a section S → X of X → S. When S
has a final object S, then the triviality of a gerbe X is equivalent to the existence of
an element of X (S).

Example 6.2.18. IfG is a sheaf of groups on a site S, then we extend Definition 6.2.8
by defining the classifying prestack of G as the category BG over S consisting of pairs
(P, T ) where T ∈ S and P is G-torsor over S/T (Definition 6.2.12). A morphism
(P ′, T ′) → (P, T ) is the data of a morphism T ′ → T in S and an isomorphism
P ′ → P |T ′ of G-torsors, where P |T ′ denotes the restriction of P along T ′ → T .

The classifying stack BG is a gerbe over S because every G-torsor over T is
locally isomorphic to the trivial G-torsor G× T .

Exercise 6.2.19 (Gerbes are locally classifying stacks). Let S be a site with a final
object S ∈ S, and let X be a stack over S. Show that X is a gerbe if and only if
there exist a covering {Si → S} and sheaves of groups Gi on S/Si such that there
is an isomorphism X ×S/S S/Si ∼= BGi over S/Si.

Exercise 6.2.20. Let S be a scheme and let X be a gerbe over (Sch/S)fppf . If the
diagonal X → X ×S X is representable, show that X is an algebraic stack.

An important type of gerbe X is one that is banded by a sheaf of groups.
This means that X is equipped with the additional data of a natural isomorphism
G(T )→ AutT (x) for every object x ∈ X (t).
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Definition 6.2.21 (Banded G-gerbes). Let G be an abelian sheaf on a site S. A
stack X over S is a gerbe banded by G (or a banded G-gerbe or simply a G-gerbe) is
a gerbe together with the data of isomorphisms ψx : G|T → AutT (x) of sheaves for
each object x ∈ X (T ). We require that for each isomorphism α : x

∼→ y over T , the
diagram

G|T
ψy

$$

ψx

zz

AutT (x)
Innα // AutT (y).

(6.2.2)

commutes, where Innα(τ) = ατα−1. The data of the isomorphisms ψx is called the
band of X .

A morphism of banded G-gerbes is a morphism of stacks compatible with the
bands.

Remark 6.2.22. Here’s another way to think about a band of a gerbe. Let XS be
the restricted site whose underlying category is X and where a covering of a ∈ X (S)
is a covering of S. Then the inertia stack IX = X ×X×X X is a sheaf of groups on
XS : for a ∈ X (S), we have IX (a) = IsomS(a). The compatibility condition (6.2.2)
ensures that there is an isomorphism ψ : G|X → IX of sheaves on XS .

Example 6.2.23 (The trivial banded gerbe). If G is an abelian sheaf on a site S,
then the classifying stack BG of Example 6.2.18 is a banded G-gerbe, which we refer
to as the trivial banded G-gerbe.

Exercise 6.2.24 (Band associated to a gerbe). Let S be a site with a final object
S. Let X be an abelian gerbe over S, i.e. a gerbe X such that AutT (a) is abelian
for every object a ∈ X (T ). Show that there is a sheaf of groups G on S such that X
is banded by G.

Hint: Use Axiom (1) of a gerbe to find a covering {Xi → X} and elements ai ∈
X (Xi). Use Axiom (2) to glue the sheaves Gi := AutXi(ai) to a sheaf G.

6.2.5 Algebraic gerbes

Attached to any algebraic stack Y is the big fppf site (Sch /Y)fppf of schemes over Y :
the underlying category of (Sch /Y)fppf is Y and a covering of an object y ∈ Y(T ) is
a covering of T . Moreover, if X → Y is a morphism of algebraic stacks, then X is a
stack over (Sch /Y)fppf thanks to Proposition 6.2.2.

Definition 6.2.25 (Gerbes). A morphism X → Y of algebraic stacks is a gerbe if
X is a gerbe over the big fppf site (Sch /Y)fppf .

We say that an algebraic stack X is a gerbe if there exists a morphism X → X
to an algebraic space which is a gerbe.

Proposition 6.2.26. Let X → Y be a morphism of algebraic stacks.

(1) The morphism X → Y is a gerbe if and only if there exist an fppf morphism
V → Y from a scheme and an fppf group algebraic space G → V such that
X ×Y V ∼= BG.

(2) If X → Y is a gerbe, then X → Y is a smooth morphism.
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Proof. The second statement follows from the first since BG→ V is a smooth mor-
phism; indeed smoothness is an fppf local property on the source (Proposition B.4.2).
For (⇒), Exercise 6.2.19 implies that there is an fppf morphism V → Y and a sheaf
of groups G on V such that X ×Y V ∼= BG. Since X ×Y V is an algebraic stack,
it’s diagonal is representable and thus G is an algebraic space. Conversely, suppose
that X ×Y V ∼= BG for an fppf morphism V → Y and an fppf group algebraic space
G → V . To see Axiom (1) of a gerbe, if a ∈ (Sch /Y) is an object over a scheme
T , then VT := V ×Y T → T is an fppf covering and since X ×Y VT ∼= BGVT , there
is an object of X over VT . Similarly for Axiom (2), if x1, x2 ∈ X are objects over
y ∈ Y(T ), then pull backs of x1 and x2 become isomorphic under the fppf covering
VT → T .

Exercise 6.2.27.
(a) Show that an algebraic stack X is a gerbe if and only if IX → X is fppf.
(b) Show that a morphism X → Y of algebraic stacks is a gerbe if and only if
X → Y and X → X ×Y X are fppf.

Exercise 6.2.28. Let G→ S be a commutative, fppf, and affine group scheme.
(1) Show that BG→ S is a banded G-gerbe.
(2) Show that a banded G-gerbe X → Y over S is trivial (i.e. admits a section) if

and only if X ∼= BG×S Y over Y.

6.2.6 Cohomological characterization

The following exercises provide cohomological characterizations of torsors and gerbes
for an abelian sheaf G on the small fppf site Sfppf of a scheme S. If G is represented
by a smooth, commutative, and quasi-projective group scheme, then it turns out that
Hi((Sch/S)fppf , G) = Hi((Sch/S)ét, G) (see Remark 4.1.39) and thus in this case we
can use étale cohomology. For an extra challenge, try to prove these statements for
abelian sheaves over any site. The reader may consult [Gir71] and [Ols16, §12] for
detailed proofs.

Exercise 6.2.29 (Torsors). Let S be a scheme.
(a) If G is an abelian sheaf on Sfppf , show that H1(Sfppf , G) is in bijective corre-

spondence with isomorphism classes of G-torsors.

Hint: Imitate the proof using Čech cohomology that H1(X,O∗X) = Pic(X) for
a scheme X.

(b) Let 0→ G′ → G→ G′′ → 0 be an exact sequence of abelian sheaves on Sfppf ,
and let

0→ H0(Sfppf , G
′)→ H0(Sfppf , G) → H0(Sfppf , G

′′)
δ−→

→ H1(Sfppf , G
′)

α−→ H1(Sfppf , G)
β−→ H1(Sfppf , G

′′)→ · · ·

be the corresponding long exact sequence. Show that under the bijection in
(a), the boundary map δ assigns a section S → G′′ to the G′-torsor defined
by the fiber product G×G′′ S. Show also that α assigns a G′-torsor P ′ to the
quotient P ′ ×G′ G := (P ′ ×G)/G′ while β assigns a G-torsor P to P ×G G′′.

Exercise 6.2.30 (Gerbes). Let S be a scheme.
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(a) If G is an abelian sheaf on Sfppf , show that H2(S, G) is in bijective correspon-
dence with isomorphism classes of G-banded gerbes.

Hint: Let 0 → G → I0 d0

−→ I1 d1

−→ I2 d2

−→ · · · be an injective resolution.
For a cohomology class α ∈ H2(S, G), define a stack Gα over S as follows.
Choose τ ∈ Γ(S, I2) with d2(τ) = 0 such that the image of τ in H2(S, G) is
α. Define Gα as the category of pairs (S, σ) consisting of an object S ∈ S and
a section σ ∈ Γ(S, I1) with d1(σ) = τ |S. A morphism (S′, σ′)→ (S, σ) is the
data of a morphism f : S′ → S and an element ρ ∈ Γ(S′, I0) with boundary
d0(ρ) = σ′− f∗(σ). Show that Gα is a G-banded gerbe and that the assignment
α 7→ Gα gives the stated bijection.

Let 0→ G′ → G→ G′′ → 0 be an exact sequence of abelian sheaves on Sfppf , and
let

· · · → H1(Sfppf , G
′′)

δ−→ H2(Sfppf , G
′)

α−→ H2(Sfppf , G)
β−→ H2(Sfppf , G

′′)→ · · ·

be the corresponding long exact sequence.
(b) Show that under the bijection in (a), the boundary map δ assigns a G′′-torsor

P ′′ → S to the gerbe of trivializations GP ′′ . The objects of the prestack GP ′′
over an S-scheme T is a pair (P, α) consisting of a G-torsor P → T and a
trivialization α : P ×G G′′ ∼= P ′′ ×S T of G′′-torsors. Morphisms in GP ′′ are
morphisms of G-torsors compatible with the trivializations.

(c) Suppose that G′, G and G′′ are represented by commutative and affine algebraic
groups over a field k. Show that if P ′′ → S is a G′′-torsor, then GP ′′ is identified
with both the quotient stack [P ′′/G] and the fiber product of BG→ BG′′ and
the map S → BG′′ corresponding the G′′-torsor P ′′.

Exercise 6.2.31 (Group structure). If G is an abelian sheaf on the small fppf site
Sfppf of a scheme S, show that the group laws of H1(Sfppf , G) and H2(Sfppf , G) can
be described geometrically as follows:
(a) The product of two G-torsors P1 and P2 is the contracted product P1 ∧G P2

defined as the sheaf quotient (P1 × P2)/G where h · (p1, p2) = (h−1p1, hp2)
with the G-action specified by g · (p1, p2) = (gp1, p2) = (p1, gp2). The inverse
of a G-torsor P is the sheaf P with the inverted G-action: g · p = g−1p.

(b) The product of two banded G-gerbes (X1, ψ1,x) and (X2, ψ2,x) is the contracted
product X1∧GP2, which is defined as the rigidification (X1×X2)(G (see Propo-
sition 6.2.42) of the product X1×X2 along the subgroup (ψ1, ψ2) : G|X1×X2

→
IX1×X2

defined by the bands ψ1 and ψ2. The inverse (X , ψx)−1 = (X , ψ−1
x )

inverts the band.

6.2.7 Examples of gerbes
Exercise 6.2.32. Show that there is a non-trivial isomorphism

α : B(Z/2)× (A1 r 0)→ B(Z/2)× (A1 r 0)

of trivial banded Z/2-gerbes over A1 which glues to a non-trivial banded Z/2-gerbe
over P1.

Exercise 6.2.33. Let 1 → K → G → Q → 1 be a short exact sequence of affine
algebraic groups over k such that K is commutative. Show that BG → BQ is a
banded K-gerbe which is trivial if and only if the sequence splits.
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Exercise 6.2.34. Assume that char(k) 6= 2, 3. Recall from Exercise 3.1.17(c) that
the moduli stack of stable elliptic curves has a quotient descriptionM1,1 = P(4, 6) :=
[(A2 r 0)/Gm] where Gm acts with weights 4 and 6.

(a) Show that the j-line π : M1,1 → A1 is a trival banded Z/2-gerbe over A1 \
{0, 1728}.

Hint: Construct a family of elliptic curves over A1
k\{0, 1728} via the Weierstrass

equation

y2z + xyz = x3 − 36

t− 1728
xz2 − 1

t− 1728
z3,

where t is the coordinate on A1, where the discriminant ∆ = t2/(t− 1728)3.
See [Sil09, Prop. III.1.4(c)].

(b) Consider the map M1,1 = P(4, 6) → P(2, 3) induced the homomorphism
Gm → Gm, t 7→ t2; note that P(2, 3) is the banded Z/2-gerbe obtained by
rigidifying along the hyperelliptic involution (see Proposition 6.2.42), and
the restriction along P(2, 3) \ {0, 1728,∞} is tje gerbe from (a). Show that
M1,1 → Y is non-trivial.

Hint: If it’s trivial, show that there are torsion line bundles contradicting that
Pic(M1,1) = Z from Exercise 6.1.14(a).

(c) Show that the rigidificationM1,1 → P(2, 3) \∞ is also non-trivial.

Hint: If it’s trivial, show that M1,1 has three 2-torsion line bundles contra-
dicting that Pic(M1,1) = Z/12 from Exercise 6.1.14(b).

(d) For g ≥ 2, let Hg ⊂Mg be the closed substack classifying hyperelliptic curves.
Show that the rigidification Hg → Y along the hyperelliptic involution is a
non-trivial banded Z/2-gerbe.

Exercise 6.2.35. Show that Pic (X) is a banded Gm-gerbe over Pic(X).

Exercise 6.2.36.

(a) Show that every gerbe X over an algebraic space that is étale locally isomorphic
to BZ/2 is in fact banded by Z/2.

(b) Give an example of a gerbe over an algebraic space that is étale locally
isomorphic to BGm but that is not banded by Gm.

Hint: Consider the classifying stack of a form of Gm (see Exercise 4.1.40).

Exercise 6.2.37 (Root gerbes and stacks revisited). Recall that root gerbes and
stacks were introduced in Examples 3.9.12 and 3.9.13.

(a) Since we now know how to construct quotient stacks by actions of µµµr over any
base scheme S, show that Exercise 3.9.14 still holds without the condition that
r is invertible in Γ(S,OS).

(b) Given a scheme X, a line bundle L, and a section s ∈ Γ(X,L), show that
r
√
L/X → X and the restriction of r

√
(L, s)/X → X along V (s) are banded

µµµr-gerbe.
(c) Show that r

√
L/X → X is trivial if and only if L has an rth root.

(d) Consider an exact sequence 1 → µr → Gm → Gm → 1 and a Gm-torsor P ′′
corresponding to a line bundle L′′. Show that r

√
L/X is isomorphic to the

gerbe of trivializations GP ′′ defined in Exercise 6.2.30(b).
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Remark 6.2.38 (Banded µn-gerbes over P1). Over an algebraically closed field k,
isomorphism classes of banded µn-gerbes over P1 are in bijection with Z/nZ. To see
this, observe that the exact sequence 1→ µn → Gm

n−→ Gm → 1 induces an exact
sequence on cohomology

H1(P1
ét,Gm)

n−→ H1(P1
ét,Gm)→ H2(P1

ét, µn)→ H2(P1
ét,Gm).

Since H1(P1
ét,Gm) = Pic(P1

ét) = Z, we can use the fact that H2(P1
ét,Gm) = 0 to

conclude that H2(P1
ét, µn) = Z/nZ. The image of a line bundle O(d) is equivalent

to the root stack n
√
O(d)/P1, and this gerbe is trivial if and only if n divides d.

The gerbe n
√
O(1)/P1 is isomorphic to the quotient stack [(A2 r 0)/Gm] where

t · (x, y) = (tnx, tny).

Exercise 6.2.39 (Azumaya algebras). An Azumaya algebra of rank r2 over a
noetherian scheme X is a (possibly non-commutative) associative OX -algebra A
which is coherent as an OX -module and such that there is an étale covering X ′ → X
where A ⊗OX OX′ is isomorphic to the matrix algebra Mr(OX). We say that A
is trivial if it is isomorphic to Mr(OX). By Exercise C.2.15, Azumaya algebras
are in bijection with principal PGLn-bundles (which are also in bijection with
Brauer–Severi schemes).

Let A be an Azumaya algebra over a noetherian scheme X of rank r2.
(a) Define the gerbe of trivializations of A as the stack GA over (Sch/X)ét where

an object over a X-scheme T is a pair (E,α) consisting of a vector bundle E
on T of rank r and a trivialization α : EndOX (E)

∼→ A⊗OX OT . Morphisms in
GA(T ) are isomorphisms of vector bundles compatible with the trivializations.
Show that GA → X is a banded Gm-gerbe.

(b) Identify GA with the gerbe of trivializations GPA defined in Exercise 6.2.30(b)
with respect to the PGLn-torsor PA and the surjection GLn → PGLn.

(c) The exact sequence 1 → Gm,X → GLr,X → PGLr,X → 1 of sheaves on Xét

induces a boundary map H1(Xét,PGLr)→ H2(Xét,Gm). Show that the image
of the PGLr-torsor PA corresponding to A under this boundary map is the
class of GA.

(d) Show that A is trivial if and only if GA is trivial.
(e) Use the quarternions to construct a non-trivial Gm-torsor over SpecR.

Remark 6.2.40 (Brauer groups). Two Azumaya algebras A and A′ on a noetherian
scheme X are similar if there exist vector bundles E and E′ on X such that
A⊗OX EndOX (E) ∼= A⊗OX EndOX (A′). This defines an equivalence relation and
the Brauer group of X is the set Br(X) of equivalence classes of Azumaya algebras.
The set Br(X) becomes a group under the operators [A] · [A′] = [A ⊗ A′] and
[A]−1 = [Aop] (where Aop is the opposite algebra with same elements and addition
as A but with multiplication reversed: a ·Aop

b = b ·A a).
The exact sequence 1 → Gm,X → GLr,X → PGLr,X → 1 induces a boundary

map H1(Xét,PGLr)→ H2(Xét,Gm). Viewing H1(Xét,PGLr) as the set of Azumaya
algebras of rank r2 and H2(Xét,Gm) as the set of banded Gm-gerbes, the boundary
map assigns an Azumaya algebra A to the gerbe of trivializations GA. The element
[GA] ∈ H2(Xét,Gm) is torsion and annihilated by r. Two Azumaya algebras A and
A′ (of possibly different rank) are similar if and only if GA ∼= GA′ , and thus there is
an injective map

Br(X) ↪→ Br′(X) := H2(Xét,Gm)tors, A 7→ GA,
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into the cohomological Brauer group Br′(X). See [Mil80, §IV.2] and [Gro68] for
additional background.

Grothendieck asked whether Br(X) ↪→ Br′(X) is surjective? This is known in
some cases. The strongest result is due to Gabber: if X admits an ample line bundle
[dJ03]. It is however open in general, even for smooth separated schemes over a
field.

Exercise 6.2.41. Let X be a noetherian scheme and X → X be a banded Gm-gerbe
corresponding to a cohomology class [X ] ∈ H2(Xét,Gm).
(a) Show that the following are equivalent:

(i) There exists an Azumaya algebra A on X such that X ∼= GA, i.e. [X ] is
in the image of Br′(X)→ Br(X),

(ii) X is a global quotient stack, and
(iii) there exists a 1-twisted vector bundle E on X , i.e. a vector bundle E

such that for every field-valued point Speck→ X , the Gm-representation
corresponding to the pullback of E under BGx → X decomposes as a
direct sum of one-dimensional representations of weight one.

(b) Let X be a normal separated surface over C such that H2(X,Gm) contains a
non-torsion element α; for an example, see [Gro68, II.1.11.b]. Conclude that
the banded Gm-gerbe corresponding to α is not a global quotient stack.

(c) Let Y = SpecC[x, y, z]/(xy−z2). Show that there is a non-trivial involution α
of (Y r0)×B(Z/2) such that the stack X , obtained by gluing the trivial banded
Z/2-gerbes over Y along α, is a banded Z/2-gerbe over the non-separated
union Y

⋃
Yr0 Y which is not a global quotient stack.

See also [EHKV01].

6.2.8 Rigidification

Proposition 6.2.42. Let X be an algebraic stack such that IX → X is fppf. Let X
be the sheaf on Schfppf defined by the sheafification of the functor assigning a scheme
S to the set of isomorphism classes X (S)/ ∼ of objects. Then X is an algebraic
space and X → X is a gerbe.

Proof. To show that X is an algebraic space, it suffices to show that X → X is
a smooth representable morphism. In this case, a smooth presentation U → X
induces a smooth presentation U → X and it follows from Corollary 4.4.11 (or
Theorem 6.2.1) that X is an algebraic space. As gerbes are smooth morphisms, it
suffices to show that for every morphism S → X from a scheme, the fiber product
X ×X S → S is a gerbe. By construction, there is an fppf cover S′ → S and a
morphism a′ : S′ → X lifting the composition S′ → S → X. Since the property of
being a gerbe is fppf local, after replacing S with S′, we may assume that S → X
lifts to a map a : S → X . We claim that there is an isomorphism

Ψ: X ×X S → BAutS(a).

An object of the fiber product X ×X S consists of a pair (f, a′) where f : T → S

is a map of schemes and b ∈ X (T ) such that T → S → X and T
b−→ X → X

agree. Define Ψ(f, b) as the principal AutS(a)-bundle IsomT (f∗a, b). Observe that
Ψ(f, f∗a) maps to the trivial bundle.
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Since X ×X S and BAutS(a) are both stacks in the fppf topology, we may verify
that Ψ is essentially surjective fppf locally: if P → T is a principal AutS(a)-bundle,
then there is a fppf cover T ′ → T such that P ×T T ′ is the trivial bundle, which
we’ve seen is in the essential image. Similarly, we may verify that Ψ is fully faithful
fppf locally. Let (f, b), (f ′, b′) ∈ (X ×X S)(T ). Since the objects f∗a, b, b′ ∈ X (T )
map to the same T -valued point of X, by the construction of X there is an fppf
cover T ′ → T such that there pullbacks become isomorphic. By replacing T with T ′,
we may assume that f∗a ' b ' b′ are isomorphic. In this case, the full faithfulness
claim is clear as both Ψ(f, b) and Ψ(f, b′) are trivial bundles.

Alternatively, we may construct X directly. Let U → X be a smooth presentation
and R ⇒ U the corresponding smooth groupoid. The stabilizer groupoid scheme
SU = R×U×U U = IX ×X U is fppf over U . There is an fppf equipvalence relation
SU ×U R⇒ R where one arrow is given by composition and the other is projection.
By Corollary 6.2.4, the fppf quotient R′ := R/(SU ×U R) is an algebraic space.
There is an induced fppf equivalence relation R′ ⇒ U and X is isomorphic to the
fppf quotient U/R′.

See also [LMB00, Cor. 10.8] and [SP, Tags 06QD and 06QJ].

We now consider a more general situation. If X is an algebraic stack, then
the inertia stack IX can be viewed as a group scheme over the big étale site
(Sch /X )ét of X . As a group functor, IX assigns an object a ∈ X (S) to the group
AutS(a), and a morphism α : a′ → a over S′ → S to the natural pullback map
α∗ : AutS(a) → AutS′(a

′) (see (3.2.2)). Given a : S → X , there is a canonical
isomorphism IX ×X S ∼= AutS(a) of group schemes over S.

Suppose that H ⊂ IX is a closed subgroup scheme over X such that H → X
is fppf. This is equivalent to requiring that for every a ∈ X (S), there is a closed
subgroup scheme Ha ⊂ AutS(a) which is fppf over S and such that if a′ → a is
a morphism over S′ → S, the canonical isomorphism AutS′(a

′) ∼= AutS(a) ×S S′
restricts to an isomorphism Ha′ ∼= Ha ×S S′. If α : a

∼→ a is an automorphism over
the identity, then the canonical isomorphism α∗ : AutS(a)→ AutS(a) is conjugation
by α. In particular, Ha ⊂ AutS(a) is a normal group scheme.

Frequently in applications when X is defined over scheme S, the closed subgroup
H ⊂ IX is obtained by the pullback of a fppf group scheme H → S, i.e. H = H×SX .

Definition 6.2.43 (Rigidification). Let X be an algebraic stack and H ⊂ IX be
an fppf closed subgroup scheme over X . The rigidification X(H is defined as the
stackification in Schfppf of the prestack with the same objects as X and where the
set of morphisms beteen b ∈ X (T ) and a ∈ X (S) over f : T → S is defined as
Mor(b, a) = MorX (T )(b, f

∗a)/H(T ).
If X is defined over S and H = H ×S X is the base change of an fppf group

scheme H → S, then we write X(H := X(H.

One can think of the subgroup H as giving an action of BH on X and the
rigidification X(H as the quotient X/BH.

Example 6.2.44. If IX → X is fppf, then we can take H = IX and the rigidification
X( IX is the algebraic space X constructed in Proposition 6.2.42.

Proposition 6.2.45. Let X be an algebraic stack and H ⊂ IX be an fppf closed
subgroup scheme over X . The rigidification X(H is an algebraic stack such that
(1) the natural morphism π : X → X(H is a gerbe;
(2) for every object a ∈ X (S), the natural map AutS(a)→ AutS(π(a)) is surjective

with kernel H(S);
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(3) a morphism f : X → Y factors uniquely through X(H if and only if for every
object a ∈ X (S), the composition H(S) ⊂ ker(AutX (S)(a)→ AutY(S)(f(a)));
and

(4) if H is a commutative group scheme, then H descends to an fppf group scheme
H → X such that X → X is banded H-gerbe. If in addition X is defined over
a scheme S and H = H ×S X is the pullback of a commutative fppf group
scheme H → S, then X → X is a banded H-gerbe.

Proof. To show that X is algebraic, it suffices to show that π : X → X( H is a
smooth representable morphism: if U → X is a smooth presentation, then so is the
composition U → X → X(H. If g : S → X(H, then by the definition of X(H as
the stackification, there is an fppf cover S′ → S such that S′ → S → X(H lifts to a
map a′ : S′ → X . By replacing S with S′, we may assume that g : S → X(H lifts
to a morphsm a : S → X .

We claim that there is an isomorphism

Ψ: X ×X(H S → BHa.

Since Ha → S is fppf, the classifying stack BHa is algebraic (Proposition 6.2.9)
and smooth over S′ (Proposition B.4.2), and the isomorphism Ψ would imply that
X → X(H is smooth and representable. An object of X ×X(H S consists of a triple
(f, b, α) where f : T → S, b ∈ X(T ), and α : g ◦ f ∼→ π ◦ b. Define Ψ(f, b, α) as
the principal Ha-bundle T ×IsomT (f∗a,b)/Ha IsomT (fa, b). Noting that Ψ(f, f∗a, id)
is the trivial bundle, the proof that Ψ is an isomorphism follows exactly as in
Proposition 6.2.42. The remaining statements are left to the reader.

See also [ACV03, Thm. 5.1.5], [AGV08, §C], [Rom05, §5], and [AOV08, §A].

Exercise 6.2.46.
(a) If H is a commutative group scheme over S, show that BH(H ∼= S.
(b) Let G→ S be an fppf group scheme acting on a S-scheme U . Suppose that

H ⊂ G is a central commutative fppf subgroup scheme acting trivially on U .
Show that [U/G](H ∼= [U/(G/H)].

Exercise 6.2.47. Let X → S be an smooth, integral, and separated Deligne–
Mumford stack over a scheme S. Let SpecK → X be a representative of the generic
point. Show that the closure H ⊂ IX of generic fiber IX ×X K of the interia is a
closed étale subgroup scheme and that the rigidification X(H is a smooth, integral,
and separated Deligne–Mumford stack over S with generically trivial inertia.

Exercise 6.2.48. Let X be an algebraic stack over a scheme S, H → S be an
fppf group scheme, and H ×S X ⊂ IX a closed subgroup scheme. Show that the
rigidification X( H can be given the moduli interpretation where an object over
a scheme S is a pair (G, f) where G → S is a banded H-gerbe and f : G → X
is an H-equivariant morphism (i.e. for every object a ∈ G(T ) over an S-scheme
T , the composition H(T )

∼→ AutT (a) → AutT (f(a)) agrees with the inclusion
H(T ) ↪→ AutT (f(a)) given by the subgroup H ×S X ⊂ IX .

6.2.9 Residual gerbes revisited
Given an algebraic stack X and x ∈ |X |, recall from Definition 3.5.12 that the
residual gerbe at x (if it exists) is a reduced noetherian algebraic stack Gx with a
monomorphism Gx ↪→ X such that |Gx| is a point mapping to x. We’ve already
shown that the residual gerbe at a finite type point exists (Proposition 3.5.16).
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We can now prove that residual gerbes are unique.

Lemma 6.2.49. Let X be a noetherian algebraic stack and x ∈ |X | be a point. If
the residual gerbe at x exists, it is unique.

Proof. To add.

We now establish the existence of residual gerbes at all points and moreover
show that they are in fact gerbes.

Proposition 6.2.50. If X is a noetherian algebraic stack and x ∈ |X | is a point,
then the residual gerbe Gx exists and is a gerbe over a field κ(x), called the residue
field of x.

Proof. To add.

If X is a quasi-separated algebraic stack of finite type over a field k and x ∈ X (k),
then Gx = BGx (Proposition 3.5.16). More generally, we have:

Exercise 6.2.51. Let X be a noetherian algebraic stack and x ∈ |X | be a finite
type point.
(1) For any representative x : Speck→ X of x, there is a cartesian diagram

BkGx

��

// Gx �
�

//

��

X

Speck // Specκ(x).

�

(2) If the stabilizer of x is smooth, show that there is a finite separable extension
κ(x)→ k and a representative of x over k.

Exercise 6.2.52. Let C ⊂ P2
k be a non-split quadric over a field k, and let k→ k′

be a quadratic extension such that C ×k k′ ∼= P1
k′ . Let D ⊂ C be a divisor of degree

6 and let X → P1
k′ be the double cover ramified over D×k k′. Show that the residual

gerbe of [X] ∈M2 is non-trivial and has residue field k.

To give some context for the above exercise, the rigidificationM2 → Y of the
hyperelliptic involution is a non-trivial banded Z/2-gerbe (see Exercise 6.2.34(d)).
Restricting to the locus of curves whose only non-trivial automorphism is the
hyperelliptic involution, we have a coarse moduli space M◦2 → M◦2 . The above
exercise implies that even the fibers ofM◦2 → M◦2 over (non-algebraically closed)
residue fields may be non-trivial banded Z/2-gerbes.

6.3 Affine Geometric Invariant Theory and good
moduli spaces

Good moduli spaces capture the stack-intrinsic properties of quotients that appear
in Geometric Invariant Theory (GIT). In the affine case, GIT concerns the action
of a linearly reductive group on an affine scheme. Recall that an affine algebraic
group G over a field k is linearly reductive if the functor Rep(G)→ Vectk, taking a
G-representation V to its G-invariants V G, is exact. Examples include:

• finite discrete groups G whose order is not divisible by char(k) (Maschke’s
Theorem (C.4.4));
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• tori Gnm and diagonalizable group schemes (Proposition C.1.13); and
• reductive algebraic groups (e.g. GLn, SLn and PGLn) in char(k) = 0 (Theo-

rem C.4.7).

See §C.4 for further equivalences, properties, and a discussion of linearly reductive
groups.

Given an action of G on an affine k-scheme SpecA, the inclusion AG ↪→ A
induces a commutative diagram

SpecA

��

π̃

&&

[SpecA/G]
π // SpecAG.

Let’s observe the following two properties of π : [SpecA/G]→ SpecAG:
(1) Γ([SpecA/G],O[SpecA/G]) = AG; this follows from the definition of global

sections.
(2) The functor π∗ : QCoh([SpecA/G]) → QCoh(SpecAG) is exact. This holds

because functor π∗ takes a quasi-coherent OX -module M̃ , corresponding to an
A-module M with a G-action, to M̃G (Exercise 6.1.3) and is therefore exact
by the defining property of linear reductivity.

In this case, following terminology of Mumford and Seshadri, we say that SpecA→
SpecAG is a good quotient or GIT quotient, and SpecAG is sometimes denoted
as (SpecA)//G. See §6.6 for a more general discussion of good quotients and the
projective case of GIT.

6.3.1 Good moduli spaces
The definition of a good moduli space is inspired by properties of GIT quo-
tients and specifically properties of the morphisms π : [SpecA/G]→ SpecAG and
π : [Xss/G] → Xss//G := Proj

⊕
d≥0 Γ(X,OX(d))G, where G is linearly reductive

and X ⊂ P(V ) is a G-invariant closed subscheme of a projectivized G-representation.

Definition 6.3.1 (Good moduli spaces). A quasi-compact and quasi-separated
morphism π : X → X from an algebraic stack X to an algebraic space X is a good
moduli space if
(1) OX → π∗OX is an isomorphism, and
(2) π∗ : QCoh(X )→ QCoh(X) is exact.

Example 6.3.2 (Basic example: affine GIT). If G is a linearly reductive group over
a field k acting on an affine k-scheme SpecA, then [SpecA/G]→ SpecAG is a good
moduli space.

Example 6.3.3 (Concrete examples). If Gm acts on An over a field k via t ·
(x1, . . . , xn) = (tx1, . . . , txn), then [An/Gm] → Speck is a good moduli space.
Observe that a nonzero k-point [An/Gm] is not closed and contains 0 in its closures, or
in other words every Gm-orbit contains 0 in its closure. Note that [An/Gm]\0 = Pn−1.

If Gm acts on A2 via t · (x, y) = (tx, t−1y), then [A2/Gm] → Speck[xy] = A1

is a good moduli space. The fiber over a 6= 0 ∈ A1 under the good quotient
A2 → A1 is the hyperbola xy = a in A2 and the fiber under the good moduli space
[A2/Gm]→ A1 is the point Speck ∼= [V (xy − a)/Gm). The fiber over the origin is
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the union of the three orbits {(x, 0)|x 6= 0} ∪ {(0, y)|y 6= 0} ∪ {0, 0} in A2. Note that
[A2/Gm] \ 0 = A1

⋃
A1\0 A1 is the non-separated affine line

Example 6.3.4 (Tame coarse moduli spaces). If X is a separated Deligne–Mumford
stack of finite type over a noetherian scheme S, then the Keel–Mori Theorem (4.3.11)
implies that there exists a coarse moduli space π : X → X. We say that the coarse
moduli space X → X is tame if every automorphism group has order prime to the
characteristic, i.e. invertible in Γ(S,OS). A tame coarse moduli space is a good
moduli space. Indeed, this will follow from the fact that the property of being a
good moduli space is local on the base in the étale topology (Lemma 6.3.20) and the
Local Structure of Coarse Moduli Spaces (4.3.14). If X has quasi-finite stabilizers,
then in fact every good moduli space π : X → X is a coarse moduli space and π is
separated; see Proposition 6.3.28.

The goal of this section is to establish the following theorem.

Theorem 6.3.5. Let π : X → X be a good moduli space where X is a quasi-separated
algebraic stack defined over an algebraic space S. Then
(1) π is surjective and universally closed;
(2) For closed substacks Z1,Z2 ⊂ X , im(Z1 ∩ Z2) = im(Z1) ∩ im(Z2). For

geometric points x1, x2 ∈ X (k), π(x1) = π(x2) ∈ X(k) if and only if {x1} ∩
{x2} 6= ∅ in |X ×S k|. In particular, π induces a bijection between closed points
in X and closed points in X;

(3) If X is noetherian, so is X. If X is of finite type over S and S is noetherian,
then X is of finite type over S and π∗ preserves coherence, i.e. for F ∈ Coh(X ),
π∗F ∈ Coh(X); and

(4) If X is noetherian, then π is universal for maps to algebraic spaces.

Remark 6.3.6. In (2), the images and intersections are taken scheme-theoretically.
Note that since π is closed, the set-theoretic image of a closed substack Z is identified
with the topological space of its scheme-theoretic image im(Z). If I ⊂ OX is the
sheaf of ideals defining Z, the image im(Z) is defined by π∗I ⊂ π∗OX = OX .

In the case of affine GIT where we have a good moduli space π : [SpecA/G]→
SpecA and a good quotient π̃ : SpecA→ SpecAG, this theorem translates to:

Corollary 6.3.7 (Affine GIT). Let G be a linearly reductive algebraic group over
an algebraically closed field k. Then π̃ : U = SpecA → U//G := SpecAG satisfies:
Then
(1) π̃ is surjective and for every G-invariant closed subscheme Z ⊂ U , im(Z) ⊂

U//G is closed. The same holds for the base change T → U//G by a morphism
from a scheme;

(2) For closed G-invariant closed subschemes Z1, Z2 ⊂ U , im(Z1∩Z2) = im(Z1)∩
im(Z2). In particular, for x1, x2 ∈ X(k), π̃(x1) = π̃(x2) if and only if
Gx1 ∩Gx2 6= ∅ and π̃ induces a bijection between closed G-orbits of k-points
in U and k-points of U//G.

(3) If A is noetherian, so is AG. If A is finite generated over k, then AG is also
finitely generated over k and for every finitely generated A-module M with a
G-action, MG is a finitely generated AG-module; and

(4) If A is noetherian, then π̃ is universal for G-invariant maps to algebraic
spaces.
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Remark 6.3.8. If Z ⊂ U = SpecA is defined by a G-invariant ideal I, then (1)
implies that π(Z) is defined by IG ⊂ AG. If Z1, Z2 are defined by G-invariant ideals
I1, I2 ⊂ A, then (2) implies that (I1 + I2)G = IG1 + IG2 . In particular, if Z1 and
Z2 are disjoint, then so are im(Z1) and im(Z2) and we can write 1 = f1 + f2 with
f1 ∈ IG1 and f2 ∈ IG2 ; the function f1 restricts to 0 on Z1 and 1 on Z2. We see that
G-invariant functions separate disjoint G-invariant closed subschemes.

Remark 6.3.9 (Hilbert’s 14th problem). Hilbert’s 14th problem asks when the
invariant ring AG is finitely generated. While it is not true for every group G,
Hilbert showed it is true when G is linearly reductive—this is what (3) above asserts.
Hilbert’s original argument in [Hil1890] is so elegant and played such an important
role in the development of modern algebra that we reproduce it here. Our proof of
Theorem 6.3.5(3)—while similar in spirit—will not be as explicit.

Let f1, . . . , fn be k-algebra generators of A and let V ⊂ A be a finite dimensional
G-invariant subspace containing each fi (Algebraic Group Facts C.3.1(1)). Then
we have a surjection Sym∗ V = k[x1, . . . , xm] � A of k-algebras with G-actions
and we set I = ker(k[x1, . . . , xm] → A). Since G is linearly reductive, AG =
(k[x1, . . . , xm]/I)G = k[x1, . . . , xm]G/IG and we can assume that A = k[x1, . . . , xm]
is the polynomial ring so that AG is a graded k-algebra whose degree 0 component
is k. It therefore suffices to show that the ideal J+ :=

∑
d>0A

G
d ⊂ AG is finitely

generated since its generators will then generate AG as a k-algebra.
Hilbert first showed that every ideal in A = k[x1, . . . , xn] is finitely generated—

this is what is referred to today as Hilbert’s Basis Theorem and was developed
by Hilbert precisely to make this argument. It follows that J+A ⊂ A is finitely
generated by homogenous invariants f1, . . . , fn ∈ AG. We will show that they also
generate J+ as an ideal in AG. For f ∈ AGd , we can write

f =

n∑
i=1

figi (6.3.1)

with gi ∈ A a homogeneous (not necessarily invariant) function of degree d− deg fi
(with gi = 0 if deg fi > d). Since G is linearly reductive, there is a k-linear map
R : A→ AG called the Reynolds operator (see Remark C.4.6) which is the identity
on AG, respects the grading and satisfies R(xy) = xR(y) for x ∈ AG and y ∈ A.
Applying R to (6.3.1) shows that f = R(f) =

∑
i fiR(gi) with R(gi) ∈ AG and thus

f lies in the ideal in AG generated by the fi.1
Hilbert gave a constructive proof of this theorem in [Hil1893] which required the

development of the Syzygy Theorem, the Nullstellensatz, a version of Noether nor-
malization, and a version of the Hilbert–Mumford criterion. We strongly encourage
you to read [Hil1890] and [Hil1893] (or Hilbert’s translated lecture notes [Hil93]).

Remark 6.3.10 (Reductivity in positive characteristic). In characteristic p, every
smooth linear reductive group is an extension of a torus by a finite group prime to
the characteristic. In particular, GLn is not linearly reductive (see Example C.4.8).
In characteristic p, there are the following variant notions for an affine algebraic
group G over an algebraically closed field k:
(1) G is reductive if G is smooth and every smooth, connected, unipotent and

normal subgroup of G is trivial, and
1For an alternative argument that AG is noetherian, linear reductivity can be used to show

that JA ∩ AG = J for every ideal J ⊂ AG (see Lemma 6.3.22(5)). If J1 ⊂ J2 ⊂ · · · ⊂ AG is an
ascending chain of ideals, then the ascending chain J1A ⊂ J2A ⊂ · · · ⊂ A terminates which implies
that the original sequence J1 = J1A ∩AG ⊂ J2 = J2A ∩AG ⊂ · · · ⊂ AG also terminates.

274



(2) G is geometrically reductive if for every surjection V →W of G-representations
and w ∈WG, there exists n > 0 such that wp

n

is in the image of Sympn V →
SympnW .

It is a deep theorem due to Haboush [Hab75] that these notions are equivalent
when G is smooth. See also §C.4.2-C.4.3 for further properties, equivalences and
discussion.

Geometric reductivity (sometimes called semi-reductivity) was introduced by
Mumford in [GIT, preface] in an effort to extend GIT—originally developed for
linearly reductive groups—to reductive groups in positive characteristic. Indeed, it is
precisely the geometric reductivity property that yield the same geometric properties
that we saw for affine GIT quotients by linearly reductive groups: if G is geometrically
reductive acting on an affine k-scheme SpecA, then π̃ : SpecA→ SpecAG satisfies
Corollary 6.3.7(1)-(4) (with the exception that the noetherianness of A does not
necessarily imply the noetherianess of AG). The arguments are not substantially
more complicated than the linearly reductive case. See [Nag64], [MFK94, App. 1.C],
[New78, §3], [Dol03, §3.4], [Spr77, §2] and [DC71, §2].

Likewise, the notion of a good moduli space can be extended to characterize
quotients by geometrically reductive groups: in [Alp14], a quasi-compact and quasi-
separated morphism π : X → X, from an algebraic stack to an algebraic space,
is called an adequate moduli space if (1) OX → π∗OX is an isomorphism and (2)
for every surjection A → B of quasi-coherent OX -algebras, then every section s
of π∗(B) over a smooth morphism SpecA → Y has a positive power that lifts
to a section of π∗(A)). An adequate moduli space satisfies Theorem 6.3.5(1)-(4)
(except again for the noetherian implication). If G is geometrically reductive, then
π : [SpecA/G] → SpecAG is an adequate moduli space. In characteristic 0, an
adequate moduli space is necessarily good.

In this book, we restrict to linearly reductive groups and good moduli spaces
since the proofs of the basic properties are more elementary in this case and probably
best seen first. In addition, there is currently no analogue of the Local Structure
Theorem for Algebraic Stacks (6.5.1) around points with reductive stabilizers.

6.3.2 Cohomologically affine morphisms
The exactness condition on the pushforward π∗ in the definition of a good moduli
space (Definition 6.3.1(2)) is a non-representable analogue of affineness.

Definition 6.3.11 (Cohomologically affine). A quasi-compact and quasi-separated
morphism f : X → Y of algebraic stacks is cohomologically affine if

f∗ : QCoh(X )→ QCoh(Y)

is exact. A quasi-compact and quasi-separated algebraic stack X is cohomologically
affine if X → SpecZ is.

Example 6.3.12. An affine algebraic group G over a field k is linearly reductive
(Definition C.4.1) if and only if BG is cohomologically affine.

Remark 6.3.13. By Serre’s Criterion for Affineness (4.4.15), an algebraic space is
cohomologically affine if and only if it is an affine scheme. An algebraic stack X
with affine diagonal is cohomologically affine if and only if Hi(X , F ) = 0 for all i > 0
and every quasi-coherent sheaf F ; this follows because the cohomology Hi(X , F ) can
be computed in QCoh(X ) for such stacks X by Proposition 6.1.29(2). This is not
true for algebraic stacks with non-affine diagonal, e.g. BE for an elliptic curve E.
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Likewise, a morphism f : X → Y of algebraic stacks, with both X and Y having
affine diagonal, is cohomologically affine if and only if Rif∗(F ) = 0 for all i > 0
and every quasi-coherent sheaf F . If in addition f is representable, then f is
cohomologically affine if and only if it is affine (see Corollary 6.3.16 below).

Remark 6.3.14 (Noetherian case). If X is noetherian, then a quasi-compact, quasi-
separated morphism f : X → Y is cohomologically affine if and only if f∗ : Coh(X )→
QCoh(Y) is exact. This holds because every quasi-coherent sheaf is a colimit
of coherent sheaves (Proposition 6.1.8) and f∗ commutes with colimits. Since
cohomology also commutes with colimits (Proposition 6.1.31), a morphism f : X → Y
of noetherian algebraic stacks, both with affine diagonal, is cohomologically affine if
and only if Rif∗(F ) = 0 for all i > 0 and every coherent sheaf F .

Lemma 6.3.15. Consider a cartesian diagram

X ′
g′
//

π′

��

X

π

��

Y ′
g
// Y.

of algebraic stacks.
(1) If g is faithfully flat and π′ is cohomologically affine, then π is cohomologically

affine.
(2) If Y has quasi-affine diagonal (e.g. a quasi-separated algebraic space) and π is

cohomologically affine, then π′ is cohomologically affine.

Proof. For (1), by Flat Base Change (6.1.7) there is an equivalence g∗π∗ ' π′∗g′∗ of
functors defined on categories of quasi-coherent sheaves. Since π′∗ and g′∗ are exact
and g∗ is faithfully exact, π∗ is exact.

For (2), we first show that if g is quasi-affine and π is cohomologically affine, then
π′ is also cohomologically affine. It suffices to handle the cases that g is an open
immersion and g is affine. If g is an open immersion and F ′ � G′ is a surjection
in QCoh(X ′), we define G = im(g′∗F

′ → g′∗G
′). Note that g′∗G ∼= G′. Since π∗

is exact, π∗g′∗F � π∗G. If we apply g∗ and use the identifies g∗π∗ ' π′∗g
′∗ and

g′∗g′∗ ' id, we obtain a surjection π′∗F ′ � π′∗g
′∗G ∼= π′∗G

′. On the other hand, if
g is affine then g∗ is faithfully exact. Since π∗ and g′∗ are are exact, the identity
g∗π
′
∗ ' π∗g′∗ implies that π′∗ is also exact. To show (2), we may assume that Y and

Y ′ are quasi-compact and we can choose a smooth presentation Y = SpecA→ Y,
which will be quasi-affine (since Y has quasi-affine diagonal). Then the base change
XY → Y of π along Y → Y is cohomologically affine. To check that the base change
X ′Y → Y ′Y is cohomologically affine, it suffices by (1) to check this after base changing
by a smooth presentation Y ′ = SpecA′ → Y ′ ×Y Y but this holds as Y ′ → Y is
affine. Since X ′Y → Y ′Y is cohomologically affine so is π′ : X ′ → Y ′ by invoking (1)
again.

Corollary 6.3.16. Let f : X → Y be a representable and cohomologically affine
morphism of algebraic stacks where Y has quasi-affine diagonal, then f is affine.

Proof. Under the hypotheses, both affine and cohomologically affine morphisms
descend under faithfully flat morphisms and we can reduce to the case where X is
an algebraic space and Y is an affine scheme which is Serre’s Criterion for Affineness
(4.4.15).
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6.3.3 Properties of linearly reductive groups
Recall that an affine algebraic group G over a field k is linearly reductive if the
functor Rep(G)→ Vectk, defined by V 7→ V G, is exact (Definition C.4.1). This is
equivalent to the map BG→ Speck being cohomologically affine.

Proposition 6.3.17. Let 1 → K → G → Q → 1 be an exact sequence of affine
algebraic groups over a field k. Then G is linearly reductive if and only if both K
and Q are.

Proof. We will use the cartesian diagram

Q //

��

BK

��

// Speck

��

Speck // BG //

�

BQ

�

of Exercise 2.3.32(c). To see (⇒), note that BK → BG is affine by descent since
Q is affine. Therefore the composition BK → BG → Speck is cohomologically
affine and K is linearly reductive. If V is a Q-representation, then its pullback
under q : BG → BQ is the G-representation induced by the projection G → Q
and in particular K acts trivially. On the other hand, the pushforward of a G-
representation W under q : BG → BQ is the Q-representation WK . Thus, the
adjunction V → q∗q

∗V is an isomorphism and Γ(BQ,−) = Γ(BG, q∗−) is exact.
For the converse, descent (Lemma 6.3.15(2)) implies that BG→ BQ is cohomo-

logically affine and thus so is the composition BG→ BQ→ Speck.

Proposition 6.3.18. Let H be a linearly reductive algebraic group over an alge-
braically closed field k. If H acts freely on an affine scheme U over k, then the
algebraic space quotient U/H is affine.

Proof. The algebraic space U/H and the good quotient SpecAH are both universal
for maps to algebraic spaces Theorem 6.3.5(4). Alternatively, the composition
U/H → BH → Speck is an affine morphism followed by a cohomologically affine
morphism. It follows from Serre’s Criterion for Affineness (4.4.15) that U/H is
affine.

In particular, if H is a linearly reductive subgroup of an affine algebraic group
G, then the quotient G/H is affine. Matsushima’s Theorem provides a converse.

Proposition 6.3.19 (Matsushima’s Theorem). Let G be a linearly reductive group
over an algebraically closed field k.
(1) A subgroup H of G is linearly reductive if and only if G/H is affine.
(2) Given an action of G on an algebraic space U of finite type over k and a

k-point u ∈ U with stabilizer Gu, then Gu is linearly reductive if and only if
the orbit Gu is affine.

Proof. Part (2) follows from (1) since Gu = G/Gu. For (1), the (⇒) implication
follows from Proposition 6.3.18. For the converse, consider the cartesian diagram

G/H //

��

Speck

��

BH // BG.

�

If G/H is affine, then by smooth descent BH → BG is affine and therefore BH →
BG→ Spec k is cohomologically affine, i.e. H is linearly reductive.
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6.3.4 First properties of good moduli spaces
Lemma 6.3.20. Consider a cartesian diagram

X ′
g′
//

π′

��

X

π

��

X ′
g
// X

�

of algebraic stacks where X and X ′ are quasi-separated algebraic spaces.
(1) If g is faithfully flat and π′ is a good moduli space, then π is a good moduli

space.
(2) If π is a good moduli space, so is π′.
(3) For F ∈ QCoh(X ) and G ∈ QCoh(X), the adjunction map π∗F ⊗ G →

π∗(F⊗π∗G) is an isomorphism. In particular, the adjunction map G ∼→ π∗π
∗G

is an isomorphism.
(4) For F ∈ QCoh(X ), then the adjunction map g∗π∗F

∼→ π′∗g
′∗F is an isomor-

phism.
(5) For a quasi-coherent sheaf of ideals J ⊂ OX , the natural map J → π∗(π

−1J ·
OX ) is an isomorphism.

Proof. If g : X ′ → X is flat, then the pullback of the natural map OX → π∗OX
under g is the map OX′ → π′∗OX ′ . Thus (1) and the case of (2) when g is flat
follows from Lemma 6.3.15 and descent. Note that since X ′ is quasi-separated, it
has quasi-affine diagonal (Corollary 4.4.8).

Before proving the general case of (2), we first prove (3). Choose an étale
presentation U → X with U the disjoint union of affine schemes. Since the base
change πU : XU → U is a good moduli space (by the flat case of (2)) and the
adjunction map id→ π∗π

∗ pulls back to the adjunction map id→ πU,∗π
∗
U , we may

assume that X = SpecA is affine. If G2 → G1 → G→ 0 is a free presentation, then
the projection maps π∗F ⊗Gi → π∗(F ⊗ π∗Gi) are isomorphisms. Since π∗F ⊗−
and π∗(F ⊗ π∗−) are right exact, we have a commutative diagram

π∗F ⊗G2
//

��

π∗F ⊗G1
//

��

π∗F ⊗G //

��

0

π∗(F ⊗ π∗G2) // π∗(F ⊗ π∗G1) // π∗(F ⊗ π∗G) // 0

Since the left two vertical maps are isomorphisms, so is the right one.
For (2), we must show that OX′ → π′∗OX ′ is an isomorphism as Lemma 6.3.15(2)

already established that π′∗ is exact. We can assume that X and X ′ are affine. In
this case, g∗ is faithfully exact so it suffices to show that

g∗OX′ → g∗π
′
∗OX ′ ∼= π∗g

′
∗OX ′ ∼= π∗π

∗g∗OX′ (6.3.2)

is an isomorphism, where the last equivalence uses the identity g′∗π′∗OX′ ∼= π∗g∗OX′
following from the affineness of g. Thus the composition (6.3.2) is the adjunction
isomorphism of (3) applied to F = g∗OX′ .

For (4), we know by Flat Base Change (6.1.7) that (4) is fppf local on X and
X ′ and that it holds when g is flat. We may therefore reduce to when X ′ → X
is a morphism of affine schemes. By factoring X ′ → X as a closed immersion
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followed by a flat morphism, we can further reduce to the case that X ′ ↪→ X is a
closed immersion defined by a quasi-coherent sheaf of ideals J ⊂ OX . We aim to
show that π∗F/Jπ∗F ∼= π∗(F/(π

−1J · OX )F ). Using the exactness of π∗, this is
equivalent to the inclusion Jπ∗F ↪→ π∗((π

−1J · OX )F ) being surjective. The sheaf
(π−1J ·OX )F is the image of π∗J⊗F → F . By the exactness of π∗, the pushforward
π∗((π

−1J · OX )F ) is the image of π∗(π∗J ⊗ F )→ π∗F , but by (3) this is identified
with the image of J ⊗ π∗F → π∗F .

For (5), if Z ⊂ X is the closed subspace defined by J , then the preimage ideal
sheaf π−1J · OX defines the preimage π−1(Z). Exactness of π∗ implies that there is
a commutative diagram of short exact sequences

0 // J //

��

OX //

��

OZ //

��

0

0 // π∗(π
−1J · OX ) // π∗OX // π∗Oπ−1(Z)

// 0.

As X → X and π−1(Z)→ Z are good moduli spaces, the right two vertical arrows
are isomorphisms and therefore so is the left arrow.

Remark 6.3.21. The isomorphism π∗F ⊗ G → π∗(F ⊗ π∗G) in (3) is similar to
the projection formula but holds even if G is not locally free. It holds as long as π
is cohomologically affine.

Lemma 6.3.22. Let π : X → X be a good moduli space with X quasi-separated.

(1) If A is a quasi-coherent sheaf of OX -algebras, then SpecX A → SpecX π∗A is
a good moduli space.

(2) If Z ⊂ X is a closed substack defined by a sheaf of ideals I and imZ ⊂ X is
the scheme-theoretic image, i.e. the closed subspace defined by π∗I ⊂ OX , then
Z → imZ is a good moduli space.

Proof. For (1), since X ×X SpecX π∗A → SpecX π∗A is cohomologically affine by
Lemma 6.3.15 and SpecX A → X ×X SpecX π∗A is affine, it follows that SpecX A →
SpecX π∗A is cohomologically affine and therefore a good moduli space as the
push forward of OSpecX A is OSpecX π∗A by construction. Applying (1) to Z =
SpecX (OX /I) recovers (2) using that π∗(OX /I) = OX/π∗I.

The above lemmas allow us to give quick proofs of the first two parts of Theo-
rem 6.3.5.

Proof of Theorem 6.3.5(1). As X is quasi-separated, so is X. For every field-valued
point x ∈ X(k), consider the base change X ×X Speck. By Lemma 6.3.20(2),
Xx → Speck is a good moduli space and in particular Γ(Xx,OXx) = k. It follows
that Xx is non-empty and that π : X → X is surjective. For a closed substack Z ⊂ X ,
Lemma 6.3.22(2) implies that Z → imZ is a good moduli space and therefore also
surjective. Thus, the set-theoretic image π(Z) is identified with the scheme-theoretic
image imZ and is therefore closed. Since good moduli spaces are stable under base
change, they are universally closed.

Proof of Theorem 6.3.5(2). For two substacks Z1,Z2 ⊂ X defined by ideal sheaves
I1, I2 ⊂ OX , we apply the exact functor π∗ to the short exact sequence 0→ I1 →
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I1 + I2 → I2/I1 ∩ I2 → 0 and surjection I2 → I2/I1 ∩ I2 to obtain a commutative
diagram

π∗I2

(( ((��

0 // π∗I1 // π∗(I1 + I2) // // π∗I2/π∗(I1 ∩ I2) // 0.

It follows that the natural inclusion π∗I1 + π∗I2 → π∗(I1 + I2) is surjective.

6.3.5 Finite typeness of good moduli spaces
We will use the fact that a good moduli space X → X is universally submersive and
show that finite typeness descends under universally submersive morphisms. Recall
from §A.4.3 that a morphism f : X → Y of schemes is universally submersive if f is
surjective and Y has the quotient topology, and these properties are stable under
base change. This notion extends to morphisms of algebraic stacks. Examples of
universally submersive morphisms include fppf morphisms and universally closed
morphisms.

Proposition 6.3.23. Consider a commutative diagram

X

����

Y // S

of noetherian schemes where X → Y is universally submersive. If X → S is of finite
type, then so is Y → S.

Proof. We can assume that S = SpecR and Y = SpecB are affine. Since a
noetherian ring B is of finite type over R if and only if the reductions of the
irreducible components of SpecB are of finite type over R, we can assume that B is
an integral domain.

By Generic Flatness (A.2.11) and Raynaud-Gruson Flatification (A.2.16), there
is a commutative diagram

X̃ //

��

X

f

�� ��

Y ′
g
// Y // S

where X̃ → Y ′ is flat, Y ′ = BlI Y → Y is the blow-up along an ideal I ⊂ B and
X̃ is the strict transform of X, i.e. the closure of (Y ′ \ g−1(V (I))) ×Y X in the
base change Y ′ ×Y X. We claim that X̃ → Y ′ is surjective. As g : Y ′ → Y is
an isomorphism over U = Y \ V (I) and f : X → Y is surjective, we know that
g−1(U) ⊂ Y ′ is contained in the image. If y′ ∈ Y ′ is a point, we can choose a map
SpecR→ Y ′ from a DVR whose generic point maps to g−1(U) and whose special
point maps to y′. Since X → Y is universally submersive, there exists an extension
of DVRs R → R′ and a lift SpecR′ → X (see Exercise A.4.7). The induced map
SpecR′ → X ×Y Y ′ factors through X̃ and we see that y′ is thus in the image of X̃.

Since X is of finite type over S, so is X̃. Using faithfully flat descent, Y ′ → S is
also of finite type. To show that Y → S is of finite type, we may choose generators
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a1, . . . , an ∈ I so that Y ′ =
⋃
i SpecBi where Bi = B〈fj/fi〉 ⊂ K = Frac(B) is the

subalgebra generated by B and the elements fj/fi for j 6= i. Write B =
⋃
λBλ as a

union of its finitely generated R-subalgebras. For λ� 0, each fi ∈ Bλ and we set
Iλ = (f1, . . . , fn) ⊂ Bλ. Since Y ′ is finite type over B, each Bi is finitely generated
over B and thus for λ� 0, we see that in the diagram

Bλ,i� _

��

Bλ〈fj/fi〉 �
�

// Frac(Bλ)� _

��

Bi B〈fj/fi〉 �
�

// Frac(B)

the inclusion Bλ,i ↪→ Bi is surjective. It follows that Y ′ = BlI SpecB = BlIλ SpecBλ
for λ� 0. Considering the composition

gλ : Y ′
g−→ Y = SpecB

pλ−→ SpecBλ,

the push forward of the injectionOY ↪→ g∗OY ′ along pλ yields an inclusion pλ,∗OY ↪→
gλ,∗OY ′ . But gλ,∗OY ′ is a coherent module on SpecBλ and thus so is pλ,∗OY . This
shows that B is a finite Bλ-module and thus finitely generated as an R-algebra.

We apply this proposition to show that good moduli spaces are of finite type.

Proof of Theorem 6.3.5(3). If X is noetherian, if I1 ⊂ I2 ⊂ · · · is an ascending chain
of ideal sheaves of OX , then π−1I1 · OX ⊂ π−1I2 · OX ⊂ is an ascending chain of
ideal sheaves of OX which terminates. By Lemma 6.3.22(5), In = π∗(π

−1In · OX )
and therefore the chain I1 ⊂ I2 ⊂ · · · terminates and X is noetherian.

Assume now that S is noetherian and X is of finite type over S. As X → X is
universally closed (Theorem 6.3.5(1)), it is also universally submersive. Choose a
smooth presentation U → X from a scheme. Since U → X is universally submersive,
so is the composition U → X → X. Since U → S is of finite type and X is
noetherian, Proposition 6.3.23 implies that X → S is also of finite type.

Given a coherent sheaf F on X , to show that the pushforward π∗F is coherent,
we may assume that X = SpecA is affine and that X is irreducible. We first handle
the case when X is reduced. By noetherian induction, we can assume that π∗F is
coherent if Supp(F ) ( X . The maximal torsion subsheaf Ftors ⊂ F has support
strictly contained in X . Using the exact sequence 0 → Ftors → F → F/Ftors → 0
and the exactness of π∗, we see the coherence of π∗(F/Ftors) implies the coherence
of π∗F . In other words, we can assume that F is torsion free. In this case, every
section s : OX → F is injective. We now argue by induction on the dimension of
the vector space ξ∗F where ξ : SpecK → X is a field-valued point whose image is
the generic point. If F has no sections, then π∗F = 0 is coherent. Otherwise, a
section induces a short exact sequence 0→ OX → F → F/OX → 0 and ξ∗(F/OX )
has strictly smaller dimension. By again appealing to the exactness of π∗, we
see that the coherence of π∗(F/OX ) implies the coherence of π∗F . Finally, to
reduce to the reduced case, let I ⊂ OX be the ideal sheaf defining Xred ↪→ X .
Then for some N > 0, we have that IN = 0. By examining the exact sequences
0→ π∗(I

k+1F )→ π∗(I
kF )→ π∗(I

kF/Ik+1F )→ 0 and using that π∗(IkF/Ik+1F )
is coherent (since IkF/Ik+1F is supported on Xred)), we conclude by induction that
π∗F is coherent.
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6.3.6 Universality of good moduli spaces

We now complete the proof of Theorem 6.3.5 by showing that π : X → X is universal
for maps to algebraic spaces. Our argument follows the same logic for coarse moduli
spaces in Theorem 4.3.6.

Proof of Theorem 6.3.5(4). We need to show that every diagram

X

π

��

f

  

X // Y

(6.3.3)

has a unique filling or in other words that the natural map Mor(X,Y )→ Mor(X , Y )
is bijective.

The uniqueness follows as in the proof of Theorem 4.3.6 and uses only that π : X →
X is universally closed, schematically dominant and surjective: if h1, h2 : X → Y
are two fillings of (6.3.3), then π : X → X factors through the equalizer E → X of
h1 and h2. Since E → X is universally closed, locally of finite type, surjective and a
monomorphism, it is an isomorphism.

For existence, the case when Y is affine is easy:

Mor(X,Y ) = Hom(Γ(Y,OY ),Γ(X,OX)) =

Hom(Γ(Y,OY ),Γ(X ,OX )) = Mor(X , Y ).

(Although unnecessary for the argument below, the case when Y is a scheme is
also straightforward: if {Yi} is an affine cover of Y and we set Xi := f−1(Yi) ⊂ X
with complement Zi, then X \ π−1(π(Zi))→ X \ π(Zi) is a good moduli space and
X\π−1(π(Zi)) ⊂ Xi. By the affine case, we have unique factorizationsX\π(Zi)→ Yi
and since

⋂
i π(Zi) = ∅, these maps glue to the desired map X → Y ; see also [GIT,

§0.6].)
For the general case, since X is quasi-compact, the map X → Y factors through

a quasi-compact subspace so we can further assume that Y is quasi-compact. We
can also use étale-descent and limit methods to reduce to the case that X = SpecA
where A is a strictly henselian local ring. This reduction works just as in the
case of coarse moduli spaces (Theorem 4.3.6). Since A is local, there is a unique
closed point x ∈ X ; let Gx ↪→ X be the closed immersion of the residual gerbe
(Proposition 3.5.16).

Let (Y ′ = SpecB, y′) → (Y, f(x)) be an étale presentation. The base change
X ′ := X ×Y Y ′ → X is an étale, separated, surjective and representable morphism.
Let x′ ∈ X ′ be a preimage of x ∈ X and U ′ ⊂ X ′ be a quasi-compact open substack
containing x′.

U ′ �
�

// X ′ //

��

X

π

��

f

��

X

Y ′ // Y

Then U ′ → X is a quasi-finite, separated and representable morphism and Zariski’s
Main Theorem (6.1.10) implies that there is a factorization U ′ → X̃ → X with U ′ ↪→
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X̃ an open immersion and X̃ → X a finite morphism. Writing X̃ = SpecX A for a
coherent sheaf of algebras A, Lemma 6.3.22(1) implies that π̃ : X̃ → X̃ := SpecX π∗A
is a good moduli space and we know from Theorem 6.3.5(3) that π∗A is coherent.
As X̃ → X = SpecA is finite with A henselian, we can write X̃ =

∐
i SpecAi with

each Ai a henselian local ring (Proposition A.9.3). Replace X̃ with the copy of
X̃i := π̃−1(SpecAi) containing x′ and replace U ′ with X̃i ∩U ′. Then X̃ has a unique
closed point which is the point x′ ∈ U ′ and thus the complement X̃ \ U ′ is empty,
i.e. U ′ = X̃ . We conclude that U ′ → X is a finite étale morphism and since it
induces an isomorphism of residual gerbes at x′, the map has degree one; it follows
that U ′ → X is an isomorphism. Since Y ′ is an affine, the morphism X ∼= U ′ → Y ′

factors through a map X → Y ′, and thus f : X → Y factors through the composition
X → Y ′ → Y .

6.3.7 Luna’s Fundamental Lemma

We will apply the following result in our construction of good moduli spaces (The-
orem 6.7.1), to provide refinements of the Local Structure Theorem for Algebraic
Stacks (6.5.1) and in the proof of Luna’s Étale Slice Theorem (6.5.4) but it appears
in many other arguments as well.

Theorem 6.3.24 (Luna’s Fundamental Lemma). Consider a commutative diagram

X ′

π′

��

f
// X

π

��

X ′
g
// X

(6.3.4)

where f : X ′ → X is a separated and representable morphism of noetherian algebraic
stacks, each with affine diagonal, and where π and π′ are good moduli spaces. Let
x′ ∈ X ′ be a point such that
(a) f is étale at x′,
(b) f induces an isomorphism of stabilizer groups at x′, and
(c) x′ ∈ X ′ and x = f(x′) ∈ X are closed points.

Then there is an open neighborhood U ′ ⊂ X ′ of π′(x′) such that U ′ → X is étale
and such that U ′ ×X X ∼= π′−1(U ′).

Remark 6.3.25. This result is really saying two things: (1) g is étale at π′(x′)
and (2) after replacing X ′ with an open neighborhood of π′(x′) the diagram (6.3.4)
is cartesian. In the case of quotients by finite groups, this was established in
Proposition 4.3.7. Luna’s original formulation [Lun73, p. 94] was the case when
X ′ ∼= [SpecA′/G] and X ∼= [SpecA/G] with G linearly reductive and where X ′ → X
is induced by a G-equivariant map SpecA′ → SpecA.

Proof. We will adapt the argument of Theorem 6.3.5(4). Since the question is étale
local on X, limit methods (see the proof of Proposition 4.3.7) allow us to assume
that X = SpecA with A a strictly henselian local ring. If U ′ ⊂ X ′ is the étale locus
of f , then X ′ \ π′−1(π′(X ′ \ U ′)) contains x′ since π′(x′) and π′(X ′ \ U ′) are disjoint
by Theorem 6.3.5(2). We can therefore replace X ′ with X ′ \ π′−1(π′(X ′ \ U ′)) and
assume that f is étale.
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By Zariski’s Main Theorem (6.1.10), we may choose a factorization X ′ → X̃ =

SpecX A → X with X ′ ↪→ X̃ an open immersion and X̃ → X a finite morphism.
Then X̃ → X̃ := SpecX π∗A is a good moduli space and X̃ → X is finite. As
A is henselian, we can write X̃ =

∐
i SpecAi with each Ai a henselian local ring.

If U ′ = SpecAi denotes the connected component containing the image of x′,
then π̃−1(U ′) ⊂ X̃ is an open substack containing a unique closed point, which is
necessarily x′; it follows that X ′ = π−1(U ′). Since X ′ → X is a finite étale morphism
of degree one (as it preserves residual gerbes at x′), we see that f : X ′ → X is an
isomorphism and thus so is g : X ′ → X.

Corollary 6.3.26. With the same hypotheses as Theorem 6.3.24, suppose that f is
étale and that for all closed points x′ ∈ X ′

(a) f(x′) ∈ X is closed, and
(b) f induces an isomorphism of stabilizer groups at x′.

Then g : X ′ → X is étale and (6.3.4) is cartesian.

6.3.8 Finite covers of good moduli spaces

Proposition 6.3.27. Consider a commutative diagram

X ′

π′

��

f
// X

π

��

X ′
g
// X

where X and X ′ are noetherian algebraic stacks with affine diagonal, and π and π′
are good moduli spaces. Assume that
(a) f : X ′ → X is quasi-finite, separated and representable,
(b) f maps closed points to closed points, and
(c) g is finite.

Then f is finite.

Proof. By Zariski’s Main Theorem (6.1.10), there is a factorization X ′ → X̃ =

SpecX A → X with X ′ ↪→ X̃ an open immersion and X̃ → X a finite morphism.
Then X̃ = SpecX π∗A is a finite over X and X̃ → X̃ is a good moduli space. By
replacing X → X with X̃ → X̃, we can assume that f is an open immersion. By
replacing X with the fiber product X ′ ×X X , we can further reduce to the case that
X ′ = X. For every closed point x ∈ X, let x′ ∈ X ′ be the unique closed point over
x. By (b), f(x′) ∈ X is the unique closed point over x. Since X ′ contains all the
closed points of X , f : X ′ → cX is an isomorphism.

Proposition 6.3.28. Suppose X is a noetherian algebraic stack with affine diagonal
and a good moduli space π : X → X. If the diagonal X → X ×X is quasi-finite, then
it is finite (i.e. π : X → X is separated).

Proof. We claim that X ×X X → X is a good moduli space. By Lemma 6.3.15,
the projection p1 : X ×X X → X is cohomologically affine and therefore so is the
composition X ×X X

p1−→ X π−→ X. On the other hand, if U → X is a smooth
presentation, then p1 : U ×X X → U is a good moduli space (Lemma 6.3.20) and in
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particular OU
∼→ p1,∗OU×XX . It follows from descent that OX

∼→ p1,∗OX×XX and
thus OX

∼→ (π ◦ p1)∗OX×XX ; the claim follows.
The diagonal X → X ×X X is a quasi-finite, separated and representable mor-

phism that sends closed points to closed points and induces an isomorphism on
good moduli spaces. Proposition 6.3.27 implies that X → X ×X X is finite. Note
that since X has affine diagonal, the finiteness of the diagonal is equivalent to its
properness.

6.3.9 Descending vector bundles
Proposition 6.3.29. Let X be a noetherian algebraic stack and π : X → X be a
good moduli space. A vector bundle F on X descends to a vector bundle on X if
and only if for every field-valued point x : Speck→ X with closed image, the action
of Gx on the fiber F ⊗ k is trivial. In this case, π∗F is a vector bundle and the
adjunction map π∗π∗F → F is an isomorphism.

Proof. We follow the argument in the case of a tame coarse moduli space (Proposi-
tion 4.3.25). The condition is clearly necessary. To see that the condition is sufficient,
consider the commutative diagram

Gx �
�

//

p

��

X

π

��

Specκ(x) �
�

// X.

We first claim that π∗π∗F → F is surjective. For every closed point x ∈ X ,
the hypotheses imply that p∗p∗(F |Gx) ∼= F |Gx . Applying π∗π∗(−)|Gx to the sur-
jection F → F |Gx and using the exactness of π∗, we obtain that (π∗π∗F )|Gx →
π∗(π∗(F |Gx))|Gx ∼= p∗p∗(F |Gx) ∼= F |Gx is surjective. The claim now follows from
Lemma 6.3.30.

To show that π∗F is a vector bundle, we may assume that X = SpecA is
affine and that the rank r of F is constant. The surjection

⊕
s∈Γ(X,π∗F )A→ π∗F

pulls back to a surjection
⊕

s∈Γ(X ,F )OX → π∗π∗F and by the above claim, the
composition

⊕
s∈Γ(X ,F )OX → π∗π∗F → F is surjective. As F |Gx ∼= OrGx is trivial,

for each closed point x ∈ |X |, we can find r sections φ : OrX → F such that φ|Gx is an
isomorphism. By Lemma 6.3.30, there exists an open neighborhood U ⊂ X of π(x)
such that φ|π−1(U) is an isomorphism. Thus π∗φ : OrX → π∗F is an isomorphism over
U and we conclude that π∗F is a vector bundle of the same rank as F . Finally, since
π∗π∗F → F is a surjection of vector bundles of the same rank, it is an isomorphism.

The case of a good quotient is due to Kempf. See also [KKV89, Prop. 4.2],
[Alp13, Thm. 10.3] and [Ryd20, Thm. B].

Lemma 6.3.30. Let X be a noetherian algebraic stack and π : X → X be a good
moduli space. Let x ∈ |X | be a closed point.
(1) If F is a coherent sheaf on X such that F |Gx = 0, then there exists an open

neighborhood U ⊂ X of π(x) such that F |π−1(U) = 0.
(2) If φ : F → G is a morphism of coherent sheaves (resp. vector bundles of

the same rank) on X such that φ|Gx is surjective, then there exists an open
neighborhood U ⊂ X of π(x) such that φ|π−1(U) is surjective (resp. an isomor-
phism).

Proof. The argument of Lemma 4.3.21 applies.
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6.4 Coherent Tannaka duality and coherent com-
pleteness

We prove a version of Tannaka duality for noetherian algebraic stacks with affine
diagonal (Theorem 6.4.1). We also introduce the notion of an algebraic stack X
being coherently complete along a closed substack X0 (Definition 6.4.4) and show
that certain quotient stacks with a unique closed point are coherently complete
(Theorem 6.4.11). This includes the important examples of [A1/Gm]R and φR
defined in §6.7.2 where R is a complete DVR.

The combined power of Tannaka duality and coherent completeness allows us
to extend compatible maps Xn → Y from the nth nilpotent thickenings of X0 to a
morphism X → Y (Corollary 6.4.8). This technique is used in an essential way in the
proof of the Local Structure Theorem for Algebraic Stacks (6.5.1) and also appears
in many other arguments—it becomes a powerful new addition in our algebraic stack
toolkit.

6.4.1 Coherent Tannaka Duality

A classical theorem of Gabriel [Gab62] states that two noetherian schemes X and
Y are isomorphic if and only if their abstract categories Coh(X) and Coh(Y ) of
coherent sheaves are equivalent, or in other words that a scheme X can be recovered
from the category Coh(X). In representation theory, classical Tannaka duality by
Saavedra Rivano [SR72] (see also Deligne and Milne’s article [DMOS82, Ch. II])
asserts that an affine group scheme G over a field k can be recovered from the tensor
category Repfd(G) of finite dimensional representations and its forgetful functor
Repfd(G)→ Vectk.

Combining these two facts, one might hope than algebraic stack X is recovered
by the tensor category Coh(X ).2 Following a brilliant observation of Lurie [Lur04],
we will not only confirm this expectation, but we will show that in fact a tensor
functor Coh(Y) → Coh(X ) is enough to recover a morphism X → Y of algebraic
stacks.

Theorem 6.4.1 (Coherent Tannaka Duality). For noetherian algebraic stacks X
and Y with affine diagonal, the functor

MOR(X ,Y)→ MOR⊗(Coh(Y),Coh(X )), f 7→ f∗ (6.4.1)

is an equivalence of categories, where MOR⊗(Coh(Y),Coh(X )) denotes the category
of right exact additive tensor functors Coh(Y) → Coh(X ) of symmetric monoidal
abelian categories where morphisms are tensor natural transformations.

Remark 6.4.2. A symmetric monoidal category is a category A endowed with a
bifunctor ⊗ : A×A → A and a unit 1 ∈ A together with associativity isomorphisms
αA,B,C : A⊗ (B⊗C)

∼→ (A⊗B)⊗C, left and right unit isomorphisms lA : 1⊗A ∼→
A
∼→ A and rA : A⊗1

∼→ A, and commutativity isomorphisms sA,B : A⊗B ∼= B⊗A
(with sA,B ◦ sB,A = id) satisfying certain coherence conditions [Mac71, §XI.1]. A
tensor functor F : A → B between symmetric monoidal abelian categories is a functor
equipped with isomorphisms ΦA,B : F (A)⊗F (B)

∼→ F (A⊗B) and ϕ : 1B
∼→ F (1A)

compatible with the isomorphisms αA,B,C , lA, rA and sA,B [Mac71, §XI.2]. A

2The structure as an abelian category is not enough, e.g. Coh(BZ/2) ∼= Coh(Spec k
∐

Spec k)
in char(k) 6= 2.
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tensor natural transformation between tensor functors is a natural transformation of
functors compatible with the isomorphisms ΦA,B and ϕ [Mac71, §XI.2].

A symmetric monoidal abelian category (resp. symmetric monoidal R-linear
abelian category for a ring R) is a symmetric monoidal (resp. R-linear) abelian
category A such that ⊗ : A×A → A is additive (resp. R-linear) in each variable.
A tensor functor is additive or R-linear if the underlying functor is. When X and Y
are defined over a noetherian ring R, then Theorem 6.4.1 induces an equivalence

MORR(X ,Y)
∼→ MOR⊗R(Coh(Y),Coh(X ))

between morphisms over R and right exact R-linear tensor functors.

Proof. Since every quasi-coherent sheaf on a noetherian algebraic stack is a colimit
of its coherent subsheaves (Proposition 6.1.8), every right exact tensor functor
F : Coh(Y) → Coh(X ) extends to a tensor functor F : QCoh(Y) → QCoh(X )
preserving colimits. Likewise every tensor natural transformation between functors
of coherent sheaves extends uniquely to one defined on quasi-coherent sheaves.

Fully faithfulness: Let f, g : X → Y . Choose a smooth presentation p : U → Y where
U is an affine scheme. Since the question is smooth-local on X , after replacing X
with X ×f,Y,p U , we may assume there is a factorization f : X f̃−→ U

p−→ Y . Likewise,
we may assume there is a factorization g : X g̃−→ V

q−→ Y where V is an affine scheme.
Since Y has affine diagonal, p : U → Y is affine and we have identifications

MorY(X , U) ∼= HomOY−alg(p∗OU , f∗OX ) ∼= HomOX−alg(f∗p∗OU ,OX )

Therefore f̃ and g̃ correspond to sections sf̃ : f∗p∗OU → OX and sg̃ : g∗q∗OV → OX .
A 2-isomorphism α : f → g (i.e. a morphism in MOR(X ,Y)) is identified with a
factorization

X
(f̃ ,g̃,α)

//

id
##

U ×X V

π

��

X
which is the same data as a section sα of OX → f∗π∗OU×XV . Letting α∗ : f∗ → g∗

be the image of α under (6.4.1), i.e. the pullback tensor natural transformation, the
section sα can be written as

f∗π∗OU×XV ∼= f∗(p∗OU )⊗ f∗(q∗OV )
id⊗α∗q∗OV−−−−−−−→ f∗(p∗OU )⊗ g∗(q∗OV )

s
f̃
⊗sg̃

−−−−→ OS .

To see the faithfulness of (6.4.1), if α, α′ : f → g are 2-isomorphisms with
α∗ = α′∗, then α∗q∗OV = α′∗q∗OV and therefore the two sections sα and sα′ are
equal and α = α′. For the fullness of (6.4.1), let β : f∗ → g∗ be a tensor natural
transformation. Then id⊗βq∗OV defines a section f∗π∗OU×XV → OS and thus
a 2-isomorphism α : f → g such that βq∗OV = α∗q∗OV . To see that βE = α∗E for
every E ∈ QCoh(Y), note that the factorization g = q ◦ g̃ yields a splitting of
g∗E → g∗(q∗q

∗E). Since f∗ and g∗ commute with direct sums, it suffices to assume
that E = q∗G for G ∈ QCoh(V ). Writing G = colim(O⊕IV → O⊕JV ) as a colimit of
free OV -modules, we can conclude that βq∗G = α∗q∗G since f∗ and g∗ commute with
colimits and q∗ is exact.

Essential surjectivity: Let F : QCoh(Y)→ QCoh(X ) be a tensor functor preserving
colimits.
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The affine case: If X = SpecA and Y = SpecB are noetherian affine schemes, then
we have a map

φ : B ∼= End(OY)
F−→ End(OX ) = A.

We claim that φ is a ring homomorphism and that there is a functorial isomorphism
F (N) = N ⊗B A for N ∈ ModB . For b, b′ ∈ B, consider the commutative diagrams

OY ⊗OY

b⊗b′

��

// OY

bb′

��

OY ⊗OY // OY

F7−→

A⊗A

φ(b)⊗φ(b′)

��

// A

φ(bb′)

��

A⊗A // A

where the horizontal maps correspond to multiplication. The commutativity of
the right square is implied by the fact that F preserves tensor products. This
shows that φ(b)φ(b′) = φ(bb′). For a B-module N , choose a free presentation
B⊕J → B⊕I → N → 0. Since both F and −⊗BA are right exact and preserves direct
sums, applying them to the free presentation yields an identification F (N) ∼= N⊗BA
as both are cokernels of A⊕J → A⊕I . One checks similarly that this identification is
functorial.

Reduction to the case that X is affine: Choose a smooth presentation g : U → X
from an affine scheme and consider the diagram

U ×X U

p2

��

p1

��

U

g

��

g∗◦F

##
X F // Y

where the dashed arrow X // Y is denoting that we have a tensor functor
QCoh(Y)→ QCoh(X ) in the other direction. Assuming that the result holds when
U is affine, there is a morphism h : U → Y and an isomorphism h

∼→ g∗ ◦ F of
functors. By full faithfulness, there is an isomorphism p1 ◦ h

∼→ p2 ◦ h satisfying the
cocycle condition and thus smooth descent implies that there is a unique morphism
f : X → Y with F ' f∗.

Reduction to the case that Y is affine: Let X = SpecA and choose a smooth
presentation q : V = SpecC → Y. Since Y has affine diagonal, q is an affine
morphism. Define B := F (q∗OV ) which is an A-algebra since q∗OV is an OY -
algebra. Consider the diagram

SpecB

��

F ′ // V = SpecC

q

��

SpecA = X F // Y

where F ′ : ModC → ModB is the right exact tensor functor sending M to F (q∗M̃)

(which is a module over B = F (q∗OV ) because q∗M̃ is a q∗OV -module). By the
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affine case, F ′ is induced by a morphism f ′ : SpecB → SpecC. We can extend the
above diagram into

SpecB ⊗A B
f ′′

//

�� ��

V ×Y V

�� ��

SpecB

��

f ′
// V = SpecC

q

��

SpecA = X F // Y.

Since q is affine, V ×Y V is affine and the top square (under either set of projections)
is cartesian.

If we could show that A → B is faithfully flat, we would be done as the full
faithfulness in the affine case would imply that f ′ descends to our desired morphism
f : X → Y . This seems hard to directly check but we do know already that the maps
B ⇒ B ⊗A B are faithfully flat as they correspond to base changes of the smooth
maps V ×Y V ⇒ V . We will show instead that A→ B is universally injective. Since
faithful flatness descends under universal injectivity maps (Proposition A.2.21(4)),
the faithful flatness of A→ B follows from the universal injectivity.

Universal injectivity of A→ B: Recall from Definition A.2.20 that an injective map
of A-modules is called universally injective if it remains injective after tensoring by
every A-module. By Proposition A.2.21(3) this notion is local under faithfully flat
morphisms and thus extends to morphisms F → G of quasi-coherent sheaves on an
algebraic stack.

Since q : V → Y is faithfully flat, OY → q∗OV is universally injective (Propo-
sition A.2.21(1)). We write q∗OV = colimQi as a colimit of coherent subsheaves
(Proposition 6.1.8) and we may assume that each Qi contains the image of OY →
q∗OV . Then OY → Qi is also universally injective and since Qi is coherent, OY → Qi
is a split injection smooth-locally on Y (Proposition A.2.21(2)). Applying F to
OY → q∗OV = colimQi and using that it preserves colimits, we have a factorization

F (Qi)

��

A = F (OY)

44

// B = F (q∗OV ) = colimF (Qi).

It suffices to show that A → F (Qi) is universally injective. We will show in fact
that it is a split injection. As OY → Qi is smooth-locally split, the map on duals
Q∨i → O∨Y = OY is surjective. Applying F , we have a surjection F (Q∨i )→ F (OY) =
A (using right exactness) and we can choose an element λ ∈ F (Q∨i ) mapping to 1.
Under the natural map F (Q∨i )→ F (Qi)

∨, the element λ is sent to a map F (Qi)→ A
which one checks to be a section of the given map A→ F (Qi).

See also [Lur04], [HR19b], [BHL17] and [SP, Tag 0GRR].

Remark 6.4.3 (Relation to classical Tannaka duality). IfG is an affine group scheme
over a field k, then the category C = Repfd(G) of finite dimensional representations is
a symmetric monoidal k-linear category and there is a tensor functor ω : Repfd(G)→
Vectk. For k-algebra R, let ωR denote the composition Repfd(G) → Vectk

−⊗kR−−−−→
ModR and let Aut⊗(ωR) denote the group of tensor natural isomorphisms of ωR.
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Then G is recovered as the functor Aut⊗(ω) on affine k-schemes assigning R to
Aut⊗(ωR) [DMOS82, II.2.8].

On the other hand, Coherent Tannaka Duality for Algebraic Stacks (Theo-
rem 6.4.1) implies that for every noetherian k-algebra R, there is an equivalence of
categories

MORk(SpecR,BG)
∼→ MOR⊗(Rep(G)fd,ModR).

In this way, we see that Rep(G)fd determines BG. To recover G, the fiber functor
ω : Repfd(G) → Vectk corresponds to a morphism p : Speck → BG and G =
Autk(p). For example, if O(q) and O(q′) are orthogonal groups with respect to
non-degenerate quadratic forms q and q′ of the same dimension, then Rep(O(q)) ∼=
Rep(O(q′)) even though O(q) and O(q′) may not be isomorphic; in this case the two
maps Speck→ BO(q) and Speck→ BO(q′) define two different fiber functors on
the same category.

The classical version also provides conditions when the data of (C, ω) is isomorphic
to the category of representations of a group scheme. Namely, we say C is rigid if
for every object of X ∈ C, there is a ‘dual’ X∨ ∈ C, i.e. an object X∨ such that
X∨⊗− : C → C is right adjoint to X⊗− : C → C. If C is a rigid symmetric monoidal
k-linear abelian category with End(1) = k and ω : C → Vectk is an exact faithful
k-linear tensor functor, then Aut⊗(ω) is represented by an affine group scheme G
over k and there is a tensor equivalence C ∼= Repfd(G) under which ω corresponds
to the forgetful functor [DMOS82, II.2.11]. Moreover, G is of finite type over k if
and only if C has a tensor generator.

6.4.2 Coherent completeness
Coherent Tannaka Duality becomes especially powerful when combined with coherent
completeness.

Definition 6.4.4. A noetherian algebraic stack X is coherently complete along a
closed substack X0 if the natural functor

Coh(X )→ lim←−Coh(Xn), F 7→ (Fn)

is an equivalence of categories, where Xn denotes the nth nilpotent thickening of X0

and Fn is the pullback of F to Xn.

Remark 6.4.5. If I ⊂ OX is the coherent sheaf of ideals defining X0, then Xn
is defined by In+1. Letting in : Xn ↪→ Xn+1 denote the natural inclusion, an
object in lim←−Coh(Xn) corresponds to a sequence Fn ∈ Coh(Xn) of coherent sheaves
together with maps αn : in,∗Fn → Fn+1 inducing isomorphism Fn → i∗nFn+1. A
morphism (Fn, αn) → (F ′n, α

′
n) is a sequence of maps φn : Fn → F ′n such that

φn+1 ◦ αn = αn+1 ◦ in,∗φn.

Example 6.4.6. If (R,m) is a complete noetherian local ring, then the Artin–Rees
Lemma [AM69, Prop. 10.9] implies that SpecR is coherent complete along SpecR/m.
The same is true if R = limR/In is a noetherian I-adically complete ring.

Example 6.4.7. Grothendieck’s Existence Theorem (D.4.4) asserts that if X is a
proper scheme over a complete local ring (R,m) and X0 = X ×R R/m, then X is
coherently complete along X0. If X is a proper Deligne–Mumford stack or more
generally a proper algebraic stack over SpecR, the same is true. The result holds
also if R is an I-adically complete noetherian ring. See [Ols05, Thm. 1.4] or [Con05a,
Thm. 4.1].
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Corollary 6.4.8 (Coherent Tannaka Duality). Let X and Y be noetherian algebraic
stacks with affine diagonal. Suppose that X is coherently complete along X0. Then
there is an equivalence of categories

MOR(X ,Y)→ lim←−MOR(Xn,Y), f 7→ (fn),

where fn : Xn → Y denotes the restriction of f to the nth nilpotent thickening Xn of
X0.

Proof. This follows from the equivalences

MOR(X ,Y) ' MOR⊗
(
Coh(Y),Coh(X )

)
(Coherent Tannaka Duality)

' MOR⊗
(
Coh(Y), lim←−Coh

(
Xn
))

(coherent completeness)

' lim←−MOR⊗
(
Coh(Y),Coh

(
Xn
))

' lim←−MOR
(
Xn,Y

)
(Coherent Tannaka Duality).

Remark 6.4.9. If X and Y are defined over a noetherian ring R, then there is an
equivalence MORR(X ,Y)→ lim←−MORR(XnY). This follows in the same way using
the Tannaka duality equivalence between the category of morphisms X → Y over R
and the category of right exact R-linear tensor functors (Remark 6.4.2).

For example, in order to show that there is map SpecA→ Y from the spectrum
of a noetherian I-adically complete ring A, it suffices to construct compatible maps
SpecA/In → Y. This is only easy to see directly if A is local.

Exercise 6.4.10. Let G be an affine algebraic group acting a noetherian separated
algebraic space W over k. Let W0 ⊂ W be a G-invariant closed subspace and let
Wn be its nth nilpotent thickenings. Suppose that [W/G] is coherent complete along
a closed substack [W0/G]. For every noetherian algebraic space X over k with affine
diagonal equipped with an action of G, the natural map on equivariant maps

MorG(W,X)→ lim←−
n

MorG
(
Wn, X

)
is bijective.
Hint: reduce to Corollary 6.4.8 by using that a G-equivariant map W → X corre-
sponds to a morphism [W/G]→ [X/G] over BG, i.e MorG(W,X) = {∗}×Mor([W/G],BG)

Mor([W/G], [X/G]).

6.4.3 Coherent completeness of quotient stacks

The coherent completeness result that we will exploit through the rest of the book
and in particular in the proof of the Local Structure Theorem for Algebraic Stacks
(6.5.1) is the following:

Theorem 6.4.11. Let k be an algebraically closed field and R be a complete noethe-
rian local k-algebra with residue field k. Let G be a linearly reductive group over k
acting on an affine scheme SpecA of finite type over R. Suppose that AG = R and
that there is a G-fixed k-point x ∈ SpecA. Then [SpecA/G] is coherent complete
along the closed substack BG defined by x.
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Example 6.4.12. If Gm acts diagonally on Ar, then [Ar/Gm] is coherent completely
along the origin BGm. In other words a Gm-equivariant coherent sheaf on Ar is equiv-
alent to a compatible family ofGm-equivariant modules over k[x1, . . . , xr]/(x1, . . . , xr)

n+1.

Remark 6.4.13. We have a commutative diagram

BG �
�

// [SpecA/G]×AG k

��

� � // [SpecA/G]

��

Speck �
�

// SpecAG.

�

A formal consequence of the above theorem is that [SpecA/G] is also coherently
complete with respect to the fiber [SpecA/G] ×AG k. This version is analogous
to Grothendieck’s Existence Theorem (6.4.7) but the coherent completeness along
BG is a substantially stronger statement, e.g. for [An/Gm] where the fiber of
[An/Gm]→ Speck is everything.

Proof of Theorem 6.4.11. We need to show that Coh(X )→ lim←−Coh(Xn) is an equiv-
alence of categories, where X = [SpecA/G] and Xn is the nth nilpotent thickening
of BG ↪→ X of the inclusion of the residual gerbe at x.

Full faithfulness: Suppose that F and F ′ are coherent OX -modules, and let Fn and
F ′n denote the restrictions to Xn, respectively. We need to show that

HomOX (F, F ′)→ lim←−HomOX (Fn, F
′
n)

is bijective. Since X has the resolution property (Proposition 6.1.19), we can find a
resolution F2 → F1 → F → 0. by vector bundles. This induces a diagram

0 // HomOX (F, F ′) //

��

HomOX (F1, F
′) //

��

HomOX (F2, F
′)

��

0 // lim←−HomOX (Fn, F
′
n) // lim←−HomOX (F1,n, F

′
n) // lim←−HomOX (F2,n, F

′
n)

with exact rows. We may therefore assume that F is a vector bundle. In this case,

HomOX (F, F ′) = HomOX (OX , F∨ ⊗ F ′)
HomOX (Fn, F

′
n) = HomOX

(
OXn , (F∨n ⊗ F ′n)

)
.

Therefore, we can also assume that F = OX and we are reduced to showing that

Γ(X , F ′)→ lim←−Γ
(
Xn, F ′n

)
(6.4.2)

is an isomorphism. Writing F ′ = M̃ where M is a finitely generated A-module with
an action of G and letting m ⊂ A be the maximal ideal for x, then Γ(Xn, F ′n) =
MG/(mnM)G since G is linearly reductive. We must therefore verify that

MG → lim←−M
G/(mnM)G (6.4.3)

is an isomorphism. To this end, we first show that⋂
n≥0

(
mnM

)G
= 0. (6.4.4)
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or in other words that (6.4.3) is injective. Let N :=
⋂
n≥0 m

nM . The Artin–Rees
lemma [AM69, Prop. 10.9] applied to N ⊂M implies that there exists an integer
c such that mnM ∩N = mn−c(mcM ∩N) for all n ≥ c. Taking n = c+ 1, we see
that N = mN so N ⊗A A/m = 0. Since the support of N is a closed G-invariant
subscheme of SpecA which does not contain x, it follows that N = 0.

Note also that since G is linearly reductive, MG is a finitely generated AG-
module (Corollary 6.3.7(3)). We next establish that (6.4.3) is an isomorphism if
AG is artinian. In this case, {(mnM)G} automatically satisfies the Mittag–Leffler
condition (it is a sequence of artinian AG-modules). Therefore, taking the inverse
limit of the exact sequences 0 → (mnM)G → MG → MG/(mnM)G → 0 and
applying (6.4.4), yields an exact sequence

0→ 0→MG → lim←−M
G/(mnM)G → 0

and shows that (6.4.3) is an isomorphism. To establish (6.4.3) in the general case,
let J = (mG)A ⊆ A and observe that

MG ∼= lim←−M
G/
(
mG
)n
MG ∼= lim←−

(
M/JnM

)G
, (6.4.5)

since G is linearly reductive. For each n, we know that(
M/JnM

)G ∼= lim←−
l

MG/
(
(Jn + ml)M

)G (6.4.6)

using the artinian case proved above. Finally, combining (6.4.5) and (6.4.6) together
with the observation that Jn ⊆ ml for n ≥ l, we conclude that

MG ∼= lim←−
n

(
M/JnM

)G
∼= lim←−

n

lim←−
l

MG/
(
(Jn + ml)M

)G
∼= lim←−

l

MG/
(
mlM

)G
.

Essential surjectivity: The linear reductivity of G implies that every coherent sheaf
F = M̃ on [SpecA/G] decomposes as a direct sum

M =
⊕
ρ∈Γ

M (ρ), (6.4.7)

where Γ denotes the set of isomorphism classes of irreducible representations of G
and M (ρ) is the isotypic component corresponding to ρ; explicitly if Wρ denotes the
irreducible representation corresponding to ρ, then M (ρ) = HomG

k (Wρ,M) ⊗Wρ.
Moreover, the decomposition (6.4.7) is compatible with the A-module structure of
M and the decomposition A =

⊕
ρ∈ΓA

(ρ).
Let us also note that if F = M̃ ∈ Coh(X ) with restrictions Mn = M/mn+1M ,

then applying (6.4.3) toM⊗W∨ρ shows thatM (ρ) = lim←−M
(ρ)
n . By Theorem 6.3.5(3),

we also know that M (ρ) is a finitely generated AG-module. In particular, A(ρ) =
lim←−(A/mn+1)(ρ) is a finitely generated AG-module.

This suggests that if Fn = M̃n is a compatible system of coherent OXn -modules
with Mn =

⊕
ρM

(ρ)
n , we define

M (ρ) := lim←−M
(ρ)
n and M :=

⊕
ρ∈Γ

M (ρ). (6.4.8)
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To see that M is an A-module with a G-action, let ρ, γ ∈ Γ be irreducible represen-
tations and let Λ ⊂ Γ denote the finite set of non-zero irreducible representations
appearingWρ⊗Wγ . Taking limits of the maps A(ρ)

n ⊗(A/mn+1)GM
(γ)
n →

⊕
λ∈ΛM

(λ)
n ,

defines multiplication

A(ρ) ⊗AM (γ) → lim←−
(
A(ρ)
n ⊗(A/mn+1)G M

(γ)
n

)
→ lim←−

(⊕
λ∈Λ

M (λ)
n

) ∼= ⊕
λ∈Λ

M (λ).

Note that we also have M/mn+1M ∼= Mn by construction.
We need to show that the A-module M of (6.4.8) is finitely generated. The

coherent sheaf F0 = M̃0 on X0 = BG is a finite dimensional G-representation and
we can consider the coherent OX -module F0 ⊗OX0

OX or equivalently the A-module
M0 ⊗k A with its natural G-action. Since X is cohomologically affine, the functor

HomOX (F0 ⊗OX0
OX ,−) = Γ(X , (F∨0 ⊗OX0

OX )⊗OX −)

is exact. Apply the functor to the surjection M �M0 induces a map

M0 ⊗k A→M (6.4.9)

which we would like to show is surjective. We do know that the restrictions
M0 ⊗k (A/mn+1)→ Mn are surjective as its cokernel is a coherent module on Xn
not supported at the unique closed point.

As above, we first handle the case that AG is artinian. Since A(ρ) ∼→ lim←−(A/mn)(ρ)

is a finitely generated AG-module, it follows that (A/mn)(ρ) stabilizes to A(ρ) for
n � 0. Since (6.4.9) induces surjections M0 ⊗k (A/mn+1) → Mn, it follows that
the modules M (ρ)

n stabilize to M (ρ)
∞ for n � 0 and that M =

⊕
ρM

(ρ)
∞ is finitely

generated. In the general case, let Xm = SpecAG/(m ∩AG)m+1 and consider the
cartesian diagram

X ×X Xm
� � im //

πm

��

X ×X Xm+1
� � //

πm+1

��

· · · �
�

// X

π

��

Xm
� � jm // Xm+1

� � // · · · �
�

// X.

For each m, we may consider the nth nilpotent thickenings Zm,n of X0 ↪→ X ×X Xm

which are closed substacks Xn. Since Xm is the spectrum of artinian ring, the
restrictions Fn|Zm,n extend to a coherent sheaf Hm = Ñm on X ×X Xm. Moreover,
there is a canonical isomorphism between Hm and the restriction of Hm+1 to
X ×X Xm. By Lemma 6.3.20(4), the adjunction morphism j∗mπm+1,∗

∼→ πm,∗i
∗
m

is an isomorphism on quasi-coherent sheaves. This implies that N (ρ)
m+1 = Γ(X ×X

Xm+1, Hm+1⊗W∨ρ ) restricts to N (ρ)
m and thatM (ρ) = lim←−N

(ρ)
m is a finitely generated

AG-module. By Nakayama’s lemma, the map (6.4.9) is surjective on each ρ-isotypical
component. Thus (6.4.9) is surjective and M is finitely generated.

For an alternative (but similar) argument for essential surjectivity, we first choose
a surjection E � F0 from a vector bundle E on X . For this we can either apply
the resolution property of X (Proposition 6.1.19) or take E = F0 ⊗OX0

OX as
above. Since each Fn+1 → Fn is surjective and HomOX (E,−) = Γ(X , E∨ ⊗OX −)
is exact, we can lift E � F0 to compatible maps E → Fn, each which is surjective
(Nakayama’s lemma). The sequence (ker(En → Fn)) not necessarily an adic sytem
of coherent sheaves on Xn as the restriction ker(En+1 → Fn+1) to Xn may not be
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ker(En → Fn). But we can modify it as follows: For each l ≥ m ≥ n, the images of
ker(El → Fl) in Em stabilize to K ′m for l � m and K ′m/mn+1K ′m stabilize to Kn

for m� n (see also [SP, Tag 087X]). Then (Kn) ∈ lim←−Coh(Xn) is an adic sequence.
Repeating the construction, we can find a vector bundle E′ on X and compatible
surjections E′ → Kn. By full faithfulness, there is a morphism E′ → E extending
the maps E′n → En. Then coker(E′ → E) is a coherent OX extending (Fn).

See also [AHR20, Thm. 1.3] and [AHR19, Thm. 1.6].

Exercise 6.4.14. If S is a noetherian affine scheme, show that [A1/Gm]S is coher-
ently complete along BGm,S .

6.5 Local structure of algebraic stacks

We establish a local structure theorem for algebraic stack around points with linearly
reductive stabilizer. The main theorem (Theorem 6.5.1) implies that quotient stacks
of the form [SpecA/G], where G is a linearly reductive, are the building blocks of
algebraic stacks near points with linearly reductive stabilizers in the similar way to
how affine schemes are the building blocks of schemes and algebraic spaces. When
X is Deligne–Mumford, we’ve already seen an analogous Local Structure Theorem
for Deligne–Mumford Stacks (4.2.11). The local structure theorem will be applied to
construct good moduli spaces in a similar way to how the result for Deligne–Mumford
stacks was used to prove the Keel–Mori Theorem (4.3.11) on the existence of coarse
moduli spaces.

Theorem 6.5.1 (Local Structure Theorem for Algebraic Stacks). Let X be an
algebraic stack of finite type over an algebraically closed field k with affine diagonal.
For every point x ∈ X (k) with linearly reductive stabilizer Gx, there exist an affine
étale morphism

f : ([SpecA/Gx], w)→ (X , x)

which induces an isomorphism of stabilizer groups at w.

Remark 6.5.2. In the case that x ∈ X is a smooth point, then one can say more:
there is also an étale morphism

[SpecA/Gx], w)→ ([TX ,x/Gx], 0)

where TX ,x is the Zariski tangent space equipped as a Gx-representation. This
addendum follows from the proof but also follows from applying Luna’s Étale Slice
Theorem (6.5.4) to [SpecA/Gx]. The upshot is that we can reduce étale local
properties of X to Gx-equivariant properties of TX ,x; for moduli problems this
translates into studying the first order deformation space as a representation under
the automorphism group.

By combining this theorem with Luna’s Fundamental Lemma (6.3.24), we obtain
the following result.

Corollary 6.5.3 (Local Structure for Good Moduli Spaces). Let X be an algebraic
stack of finite type over an algebraically closed field k with affine diagonal. Suppose
that there exists a good moduli space π : X → X. Then for every closed point x ∈ X ,
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there exists an étale neighborhood W → X of π(x) and a cartesian diagram

[SpecA/Gx] //

��

X

π

��

W = SpecAGx // X.

�

Section outline: We first discuss Luna’s Étale Slice Theorem (6.5.4), a beautiful
argument providing an explicit construction of an étale neighborhood in the case
that X is already known to have the form [SpecB/G] with G reductive. The proof
of the Local Structure Theorem (6.5.1) is far less explicit requiring: (1) deformation
theory, (2) coherent completeness, (3) Coherent Tannaka Duality and (4) Artin
Approximation or Equivariant Artin Algebraization.

Letting T = [TX ,x/Gx], deformation theory produces an embedding Xn ↪→ Tn of
the nth nilpotent thickenings of x and 0. The key step in the proof is to show that the
system of closed morphisms {Xn → X} algebraizes. The first step is effectivization:
the fiber product T̂ := T ×T Spec ÔT,π(0), where π : T → T := TX ,x//Gx, is
coherently complete (Theorem 6.4.11). We can thus construct a closed substack
X̂ ↪→ T̂ extending Xn ↪→ T and then apply Coherent Tannaka Duality (6.4.8) to
construct a morphism X̂ → X extending Xn → X .

If x ∈ X is smooth, Artin Approximation over the GIT quotient TX ,x//Gx
produces an étale neighborhood U → TX ,x//Gx such that π−1(U)→ X algebraizes
T̂ → X . In the general case, Artin Approximation cannot handle this final step and
we need to establish an equivariant version of Artin Algebraization (Theorem 6.5.14).

6.5.1 Luna’s Étale Slice Theorem
The local structure theorem was inspired by Luna’s étale slice theorem in equivariant
geometry.

Theorem 6.5.4 (Luna’s Étale Slice Theorem). Let G be a linearly reductive group
over an algebraically closed field k and let X be an affine scheme of finite type over
k with an action of G. If x ∈ X(k) has linearly reductive stabilizer, then there exists
a Gx-invariant, locally closed, and affine subscheme W ⊂ X such that the induced
map

[W/Gx]→ [X/G] (6.5.1)

is affine étale. If in addition the orbit Gx ⊂ X is closed, then there is a cartesian
diagram

[W/Gx]

��

// [X/G]

��

W//Gx // X//G

�

where W//Gx → X//G is also étale.
Moreover, if x ∈ X is a smooth point and if we denote by Nx = TX,x/TGx,x the

normal space to the orbit, then it can be arranged that there is an Gx-invariant étale
morphism W → Nx which is the pullback of an étale map W//Gx → Nx//Gx of GIT
quotients.
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Remark 6.5.5. One can also formulate the statement G-equivariantly: G acts
naturally on the quotient G×Gx W := (G×W )/Gx and there is an identification
[W/Gx] ∼= [(G×GxW )/G] and likewiseW//Gx ∼= (G×GxW )//G (see Exercise 3.4.14).
The morphism (6.5.1) corresponds to an étale G-equivariant morphism G×Gx W →
X.

We also point out that if the orbit Gx is closed, then Matsushima’s Theorem
(6.3.19) implies that the stabilizer Gx is linearly reductive.

The proof will rely on the existence of a Gx-invariant morphism X → TX,x which
we refer to as the Luna map.

Lemma 6.5.6 (Luna map). Let G be a linearly reductive group over an algebraically
closed field k and let X be an affine scheme of finite type over k with an action of G.
If x ∈ X(k) has linearly reductive stabilizer, there exists a Gx-equivariant morphism

f : X → TX,x (6.5.2)

sending x to the origin. If X is smooth at x, then f is étale at x.

Proof. Letting X = SpecA and m ⊂ A be the maximal ideal of x, then m and m/m2

are Gx-representations and we see that Gx acts naturally on the tangent space
TX,x := Spec Sym∗m/m2. Since Gx is linearly reductive, the surjection m→ m/m2

of Gx-representations has a section m/m2 ↪→ m. This induces a Gx-equivariant
ring map Sym∗m/m2 → A and thus a Gx-equivariant morphism f : SpecA→ TX,x
sending x to the origin. If x ∈ X is smooth, then since f induces an isomorphism of
tangent spaces at x, we conclude that f is étale at x (Étale Equivalences A.3.2).

Proof of Theorem 6.5.4. Since X is affine and of finite type, we can choose a finite
dimensional G-representation V and a G-equivariant closed immersion X ↪→ A(V )
(Lemma C.3.2). If W ⊂ A(V ) is an affine Gx-invariant locally closed subscheme such
that [W/Gx]→ [A(V )/G] is étale, then the same is true for W ′ := W ∩X ⊂ X and
[W ′/Gx]→ [X/G]. We can therefore immediately reduce to the case that x ∈ X is
smooth. In this case, there is a Luna map (6.5.6)f : X → TX,x which is Gx-invariant,
étale at x, and with f(x) = 0. The subspace TGx,x ⊂ TX,x is Gx-invariant and again
since Gx is linearly reductive, the surjection TX,x → Nx = TX,x/TGx,x has a section
Nx ↪→ TX,x. We define W as the preimage of Nx under f :

W� _

��

// Nx� _

��

X
f
// TX,x.

�

Since the maps f : [W/Gx]→ [X/G] and g : [W/Gx]→ [Nx/Gx] induce an isomor-
phism of tangent spaces and stabilizer groups at w, they are both étale at x ∈W
(or equivalently the G-equivariant maps G×Gx W → X and G×Gx W → G×Gx Nx
are étale at (id, x)). We have a commutative diagram

[Nx/Gx]

��

[W/Gx]

��

g
oo

f
// [X/G]

��

Nx//Gx W//Gx //oo X//Gx
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where both f and g are étale at x, preserve stabilizer groups at x and map x to closed
points. We can therefore apply Luna’s Fundamental Lemma (6.3.24) to replace W
with a Gx-equivariant, open, and affine neighborhood of x so that the above squares
are cartesian.

When X is already known to be a quotient stack of a normal quasi-projective
scheme, the Local Structure Theorem follows from a direct argument. This case is
sufficient to handle many moduli problems, e.g. Bunss

r,d(C) in characteristic 0.

Exercise 6.5.7. If G is a connected affine algebraic group over an algebraically
closed field k acting on a normal finite type k-scheme X, and x ∈ X(k) has linearly
reductive stabilizer, show that there is a Gx-invariant, locally closed, and affine
subscheme W ↪→ X such that [W/Gx]→ [X/G] is étale.

Hint: Sumihiro’s Theorem on Linearizations (C.3.3) to reduce to the case that
X = P(V ). Choose a homogenous polynomial f not vanishing at x such that P(V )f
is Gx-invariant and then argue as in the proof of Luna’s Étale Slice Theorem by
considering the Gx-equivariant étale map P(V )f → TxP(V ).

6.5.2 Deformation theory

In our proof of the Local Structure Theorem (6.5.1), we will need some deformation
theory of algebraic stacks in the form of the following two propositions.

Proposition 6.5.8. Consider a commutative diagram

W� _

��

f
// X

��

W ′ //

>>

Y

of noetherian algebraic stacks with affine diagonal where X → Y is smooth and affine
and W ′ ↪→W ′ is a closed immersion defined by a square-zero sheaf of ideals J . If
W is cohomologically affine, there exists a lift in the above diagram.

Proof. When W is affine, the statement follows from the Infinitesimal Lifting Crite-
rion (A.3.1). To reduce to this case, let U ′ →W ′ be a smooth presentation with U ′
an affine scheme and set U = U ′ ×W′ W. Since W has affine diagonal, each n-fold
fiber product (U/W)n := U ×W · · · ×W U is affine. We have a commutative diagram

(U/W)2
� _

��

//
// U� _

��

q1 // W� _

��

f
// X

��

(U ′/W ′)2

p2

//

p1 // U ′ //

f ′U

77

W ′ //

f ′

??

Y.

where we have chosen a lift f ′U : U ′ → X . Defining the coherent sheaf F =
f∗(Ω∨X/Y) ⊗ J on W, we know by Exercise 6.1.9 that the set of lifts U ′ → X
is a torsor under Γ(U, q∗1F ) so that any other lift differs from f ′U by an element of
Γ(U, q∗1F ). Because X → Y is representable, to check that f ′U descends to a mor-
phism f ′ : W ′ → X , we need to arrange that f ′U ◦p1 = f ′U ◦p2. Let qn : (U/W)n →W .
The difference f ′U ◦ p1 − f ′U ◦ p2 can be viewed an element of Γ((U/W)2, q∗2F ).
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Since q1 : U →W is a surjective, smooth and affine morphism, there is an exact
sequence of quasi-coherent sheaves

0→ F → q1,∗q
∗
1F → q2,∗q

∗
2F → q3,∗q

∗
3F → · · · ;

see Exercise B.1.2. Since W is cohomologically affine, taking global sections yields
an exact sequence

Γ(U, q∗1F )
d0 // Γ((U/W)2, q∗2F )

d1 // Γ((U/W)3, q∗3F )

s � // p∗1s− p∗2s

s � // p∗12s− p∗13s+ p∗23s.

One checks that d1(f ′U ◦ p1 − f ′U ◦ p2) = 0 so there exists an element s ∈ Γ(U, q∗1F )
with d0(s) = f ′U ◦ p1 − f ′U ◦ p2. After modifying the lift f ′U by s, we see that
f ′U ◦ p1 − f ′U ◦ p2 = 0 so that f ′U descends to f ′ : W ′ → X .

Remark 6.5.9. Alternatively, one can show that the obstruction to this deformation
problem lies in Ext1

OW (f∗ΩX/Y , J) = H1(W, f∗(Ω∨X/Y)⊗J), which vanishes sinceW
is cohomologically affine. The above result holds more generally [Ols06, Thm. 1.5].

Proposition 6.5.10. Let W ↪→ W ′ be a closed immersion of algebraic stacks of
finite type over k with affine diagonal defined by a square-zero sheaf of ideals J . Let
G be an affine algebraic group over k. If W is cohomologically affine, then every
principal G-bundle P → W extends to a principal G-bundle P ′ →W ′.

Proof. Our proof will use smooth descent and the deformation theory of principal G-
bundles over schemes (Exercise D.2.9). Let U ′ →W ′ be a smooth presentation from
an affine scheme and let U :=W ×W′ U ′. Since W has affine diagonal, each n-fold
fiber products (U/W)n = U ×W · · · ×W U is affine and we denote the projection by
qn : (U/W)n →W. By descent theory, the principal G-bundle P → W corresponds
to a principal G-bundle P → U together with an isomorphism α : p∗1P

∼→ p∗2P on
(U/W)2 satisfying the cocycle condition p∗23α ◦ p∗12α = p∗13α on (U/W)3. Letting
F = g ⊗ J be the coherent sheaf on W where g denotes the Lie algebra of G, we
know by Exercise D.2.9 that the deformation theory of q∗nP → (U/W)n with respect
to the closed immersion (U/W)n ↪→ (U ′/W ′)n is controlled by q∗nF .

Since U is affine, we can choose a deformation P ′ → U ′ of P → U . We can
also choose an isomorphism α′ : p∗1P

′ ∼→ p∗2P
′ on (U ′/W ′)2 lifting α where any

other choice of an isomorphism differs by an element of Γ((U/W)2, q∗2F ). The
isomorphism (p∗13α

′)−1 ◦ p∗23α
′ ◦ p∗12α

′ restricts to the identity on (U/W)3 and thus
corresponds to an element Ψ ∈ Γ((U/W)3, q∗3F ). If Ψ = 0, then descent theory
implies that P ′ → U ′ descends to the desired principal G-bundle P ′ →W ′. Since
0→ F → q1,∗q

∗
1F → q2,∗q

∗
2F → · · · is an exact sequence and W is cohomologically

affine, taking global sections gives an exact sequence

Γ((U/W)2, q∗2F )
d2 // Γ((U/W)3, q∗3F )

d3 // Γ((U/W)4, q∗4F )

s � // p∗12s− p∗13s+ p∗23s

s � // p∗123s− p∗134s+ p∗124s− p∗234s.

(6.5.3)
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While Ψ may be nonzero, one can check that d3(Ψ) = 0 and thus there exists an
element s ∈ Γ((U/W)2, q∗2F ) such that d2(s) = Ψ. Thus modifying the isomorphism
α′ by s, we see that we can arrange the cocycle condition to hold.

Remark 6.5.11. The deformation question is equivalent to deforming the morphism
f : W → BG classified by P → W to a morphism W ′ → BG, which is analogous
to Proposition 6.5.8 except that X = BG → Y = Speck is not affine. The
obstruction to deforming a principal G-bundle lies in the group H2(W, g⊗J). When
W → BG is representable, one can see this as a consequence of [Ols06, Thm. 1.5] (see
Remarks D.5.12 and D.7.5): the obstruction lies in Ext1

OW (Lf∗LBG/k, J). Under
the composition Speck p−→ BG → Speck, we have an exact triangle p∗LBG/k →
Lk/k → Lk/BG. Since Lk/k = 0, we obtain that p∗LBG/k = Lk/BG[−1] ∼= g∨[−1] and
LBG/k ∼= g∨[−1], where the Lie algebra g is equipped with the adjoint representation.
Thus Ext1

OW (Lf∗LBG/k, J) = H1(W, f∗g[1] ⊗ J) = H2(W, g ⊗ J). Since W is
cohomologically affine with affine diagonal, this cohomology group is 0 and the
obstruction vanishes.

Here’s a third approach in the case that W = [SpecA/G] where G is linearly
reductive and AG is an artinian k-algebra. Since W is global quotient stack, there
exists a vector bundle E on W such that the stabilizer groups act faithfully on the
fibers (Exercise 6.1.16). Generalizing the deformation theory of vector bundles on
schemes (Proposition D.2.15), the obstruction to deforming E to a vector bundle E′
lies in H2(W,E ndOW (E)⊗J) which vanishes asW is cohomologically affine. Since the
stabilizer groups also act faithfully on the fibers of E′, we have that W ′ ∼= [V ′/GLn]
where V ′ is an algebraic space. Then W ∼= [V/GLn] with Vred = V ′red. Since W
is cohomologically affine and V → W is affine, V is cohomologically affine and
thus affine by Serre’s Criterion for Affineness (4.4.15). It follows that V ′ is also
affine (Proposition 4.4.18). Since Γ(W ′,OW′) is an artinian k-algebra and has no
non-trivial affine étale covers, Luna’s Étale Slice Theorem (6.5.4) implies that we
can arrange that W ′ ∼= [SpecA′/G].

We will also need the following criteria for morphisms to be closed immersions
or isomorphisms.

Lemma 6.5.12. Let f : X → Y be a representable morphism of algebraic stacks
of finite type over an algebraically closed field k with affine diagonal. Assume that
|X | = {x} and |Y| = {y} consist of a single point and that f induces an isomorphism
X0 := BGx with Y0 := BGy. Let mx ⊂ OX and my ⊂ OY be the ideal sheaves
defining X0 and Y0, and let f1 : X1 → Y1 be the induced morphism between the first
nilpotent thickenings of X0 and Y0.
(1) If f1 is a closed immersion, then so is f .
(2) If f1 is a closed immersion and there is an isomorphism

⊕
n≥0 m

n
y/m

n+1
y
∼=⊕

n≥0 m
n
x/m

n+1
x of graded OX0

-modules, then f is an isomorphism.

Proof. Choose a smooth presentation V = SpecB → Y from an affine scheme such
that V ×Y Y0

∼= Speck (Theorem 3.6.1). Then B is a local artinian k-algebra as Y
consists of only one point. The base change U = V ×Y X is an algebraic space and
since Ured = Vred is a point, it follows from Proposition 4.4.18 that U = SpecA with
A a local artinian k-algebra. We can therefore assume that f : SpecA→ SpecB is
a morphism of local artinian schemes.

For (1), we need to show that if B/m2
B → A/m2

A is surjective, so is B → A. We
first claim that the inclusion mBA ↪→ mA is surjective. By Nakayama’s Lemma, it
suffices to show that mBA/mAmBA→ mA/m

2
A is surjective but this follows from the
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hypothesis that the composition mA/m
2
A → mBA/mAmBA→ mA/m

2
A is surjective.

Since B/mB → A/mBA = A/mA is surjective, another application of Nakayama’s
Lemma shows that B → A is surjective. See also [Har77, Lem. II.7.4] for a related
criterion.

For (2), since dimk m
n
B/m

n+1
B = dimk m

n
A/m

n+1
A , the surjections mnB/m

n+1
B →

mnA/m
n+1
A are isomorphisms and it follows that f is an isomorphism.

6.5.3 Proof of the Local Structure Theorem—smooth case

Proof of Theorem 6.5.1—smooth case. Since the k-point x ∈ X is locally closed
(Proposition 3.5.16), by replacing X by an open substack we may assume that x ∈ X
is a closed point. Let I be the coherent sheaf of ideals defining X0 := BGx ↪→ X
and set Xn to be the nth nilpotent thickening defined by In+1. The Zariski tangent
space TX ,x can be identified with the normal space (I/I2)∨ to the orbit, viewed as
a Gx-representation. (Note that when X = [X/G] with G a smooth affine algebraic
group, then TX ,x is identified with the normal space to the orbit TX,x̃/TGx,x̃ for a
point x̃ ∈ X(k) over x.)

Define the quotient stack T = [TX ,x/Gx] and let T0 = BGx be the closed
substack supported at the origin and Tn its nth nilpotent thickenings. We claim
that there are compatible isomorphisms Xn ∼= Tn. Since Gx is linearly reductive,
X0 = BGx is cohomologically affine. By the deformation theory of principal Gx-
bundles (Proposition 6.5.10), we can inductively extending the principal Gx-bundle
Speck → X0 to principal Gx-bundles SpecAn → Xn. This yields isomorphisms
Xn ∼= [SpecAn/Gx] and affine morphisms Xn → BGx. We have a closed immersion
X0 ↪→ T and we can inductively find lifts

Xn� _

��

// T

��

Xn+1

;;

// BGx

since T → BGx is smooth and affine (Proposition 6.5.8). The induced morphism
X1 → T1 is an isomorphism since it is a morphism between deformations BGx ↪→ X1

and BGx ↪→ T1 of the coherent sheaf I/I2 and any such morphism is an isomorphism
(by reducing to Lemma D.1.7 by smooth descent). (In fact, both X1 and T1 are trivial
deformations as they admit retractions to BGx.) Lemma 6.5.12(2) now implies that
the maps Xn → Tn are isomorphisms.

Let π : T → T = TX ,x//Gx be the morphism to the GIT quotient. The fiber
product T̂ := Spec ÔT,π(0) ×T T is a quotient stack of the form [SpecB/G] where
B is of finite type over the noetherian complete local k-algebra BG = ÔT,π(0).
Therefore T̂ is coherently complete along T0 (Theorem 6.4.11) and MOR(T ,X )

∼→
lim←−MOR(Tn,X ) is an equivalence by Coherent Tannaka Duality (6.4.8). It follows
that the morphisms Xn ∼= Tn ↪→ X extend to a morphism T̂ → X filling in the
diagram

Xn ∼= Tn // ))T̂ //

��

((T

��

X

Spec ÔT,π(0)
//

�

T.
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The functor parameterizing isomorphism classes of morphisms

F : Sch /T → Sets, (T ′ → T ) 7→
{
T ′ ×T T → X

}
/ ∼

is limit preserving as X is of finite type over k (see Exercise 3.3.31). The morphism
T̂ → X yields an element of F over Spec ÔT,π(0). By Artin Approximation (A.10.9),
there exist an étale morphism (U, u)→ (T, 0) where U is an affine scheme with a k-
point u ∈ U and a morphism (U×T T , (u, 0))→ (X , x) agreeing with (T̂ , 0)→ (X , x)
to first order. Since U ×T T is smooth at (u, 0) and X is smooth at x, and since
U ×T T → X induces an isomorphism of tangent spaces and stabilizer groups at
(u, 0), the morphism U ×T T → X is étale at (u, 0). Observe that U ×T T is of the
form [SpecA/Gx] for a finitely generated k-algebra A such that U = SpecAGx . We
can arrange that [SpecA/Gx] → X is étale everywhere after replacing U with an
open affine subscheme and SpecA with its preimage. That [SpecA/Gx]→ X can
be arranged to be affine follows from Proposition 6.5.13.

Proposition 6.5.13. Let X be an algebraic stack of finite type over an algebraically
closed field with affine diagonal. Let f : [SpecA/G]→ X be a finite type morphism
with G is a linearly reductive group. If w ∈ SpecA has closed G-orbit and f induces
an isomorphism of stabilizer groups at w, then there exists a G-invariant, affine,
and open subscheme U ⊂ SpecA containing w such that f |[U/G] is affine.

Proof. Set W = [SpecA/G] with π : W → SpecAG. Since f : W → X is quasi-finite
on an open subset U , then {π(w)} and π(W \ U) are disjoint closed subspaces and
choosing an affine open V ⊂ SpecAG \ π(W \ U) containing π(w), we may replace
W with π−1(V ) and we can assume that f : W → X is quasi-finite.

Choose a smooth presentation V = SpecB → X and consider the fiber product

WV
//

��

V = SpecB

��

W = [SpecA/G] // X .

�

Since X has affine diagonal, SpecB → X is affine and therefore WV is cohomo-
logically affine. As WV has quasi-finite diagonal, Proposition 6.3.28 implies that
WV → V is separated and it follows from descent thatW → X is also separated and
that the relative inertia IW/X →W is finite. Since the fiber over w ∈ W is trivial,
there is an open neighborhood U over which the relative inertia is trivial. As in the
first paragraph, we may replace U with an open substack of the form [SpecC/G]
containing w. Since f |U : U → X is a representable and cohomologically affine
morphism, Serre’s Criterion for Affineness (6.3.16) implies that f |U is affine.

6.5.4 Equivariant Artin Algebraization

The smoothness hypothesis of x ∈ X was used above to establish that Tn ∼= Xn
and that U ×T T → X is étale. More critically, it implied that lim←−Γ(Xn,OXn),
which is identified with the Gx-invariants of a miniversal deformation space, is the
completion of a finitely generated k-algebra, namely ÔT,0. If x ∈ X is not smooth,
it seems difficult to directly establish that lim←−Γ(Xn,OXn) is the completion of a
finitely generated k-algebra. Recall that we ran into a similar issue when discussing
Artin Algebraization (D.6.6). When the complete local ring R is known to be the
completion of a finitely generated algebra, then Artin Algebraization is an easy
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consequence of Artin Approximation (see Remark D.6.8). To circumvent this issue
in our general proof of Artin Algebraization, we wrote R = ÔV,v/I where V is a
finite type k-scheme and used Artin Approximation to simultaneously approximate
both the given object over R and the equations defining I. We follow a similar
strategy but this time we proceed G-equivariantly.

We will use the following extension of the notion of formal versality introduced in
Definition D.3.5: for an algebraic stack T̂ with a unique closed point t, a morphism
ξ̂ : T̂ → X of prestacks over Sch is formally versal at t if every commutative diagram

Z //� _

��

T̂

ξ̂

��

Z ′ //

??

X

has a lift, where Z ↪→ Z ′ is a closed immersion of noetherian algebraic stacks with
affine diagonal, |Z| = |Z ′| consists of a single point and the image of Z → T̂ is t.

Theorem 6.5.14 (Equivariant Artin Algebraization). Let k be an algebraically
closed field and R be a complete noetherian local k-algebra with residue field k. Let
T̂ = [SpecB/G] be an algebraic stack of finite type over R = BG, where G is linearly
reductive. Assume that the unique closed point t ∈ T̂ has stabilizer equal to G. If X
is a limit preserving prestack over Sch/k and η : T̂ → X is a morphism of prestacks
formally versal at t, then there exists
(1) an algebraic stack W = [SpecA/G] of finite type over k and a closed point

w ∈ W;
(2) morphisms f : W → X and ϕ : T̂ → W such that in the diagram

T̂
η

  

ϕ

��

W
f
// X

(6.5.4)

the induced morphisms ϕn : T̂n → Wn between the nth nilpotent thickenings
of t and w are isomorphisms, and there exist compatible 2-isomorphisms
ηn
∼→ fn ◦ ϕn.

Moreover, if X is an algebraic stack of finite type over k with affine diagonal, then
it can be arranged that (6.5.4) is commutative and that ϕ induces an isomorphism
T̂ → Ŵ :=W ×W Spec ÔW,π(w), where π : W →W = SpecAG.

Remark 6.5.15. If one takes G to be the trivial group, one recovers the classical
version of Artin Algebraization (D.6.6).

As in the proof of Theorem D.6.6, we will apply Artin Approximation to a well
chosen integer N to construct W such that there are isomorphisms Wn

∼= T̂n for
n ≤ N and such that the Artin–Rees Lemma implies that there are also isomorphisms
Wn
∼= T̂n for n > N . To get control over the constant in the Artin–Rees Lemma, we

need to generalize Definition D.6.3: for a noetherian algebraic stack X with a closed
point x defined by a a sheaf of ideals mx and an integer c ≥ 0, we say that (AR)c
holds at x for a map ϕ : E → F of coherent sheaves on X if

ϕ(E) ∩mnxF ⊆ ϕ(mn−cx E), ∀n ≥ c.
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When X is a scheme, (AR)c holds for all sufficiently large c by the Artin–Rees lemma
and in fact it holds replacing {x} with a closed subscheme. By smooth descent,
(AR)c also holds for algebraic stacks for c� 0.

Proof. The morphism η : T̂ → X and the structure morphism T̂ → BG induce a
morphism T̂ → X ×BG. We let T̂ = SpecR be the GIT quotient of T̂ = [SpecB/G].
Since R is the colimit of its finitely generated k-subalgebras and X ×BG is limit
preserving, limit methods (§A.6) imply that there is a commutative diagram

T̂ //

��

,,

S //

��

X ×BG

��

T̂ // S //

�

Speck

where S = SpecR′ is an affine scheme of finite type over k, S is an algebraic stack
of finite type over S with affine diagonal such that T̂ = T̂ ×S S, and T̂ → X ×BG
factors as T̂ → S → X × BG. Moreover, we can arrange that S → BG is affine.
Let s̃ ∈ S and s ∈ S be the images of t. By possibly adding generators to R′ so
that R′ → R→ R/m2

R is surjective, we can arrange that ÔS,s → R is surjective by
Lemma A.10.15, or in other words that T̂ → Ŝ := Spec ÔS,s is a closed immersion.

Note that T̂ is a closed substack of S ×S Ŝ. By choosing a resolution O⊕r
Ŝ
→

OŜ � R and pulling it back S ×S Ŝ, we obtain a resolution

ker(β)
α

↪−−→ O⊕r
S×S Ŝ

β−−→ OS×S Ŝ � OT̂ . (6.5.5)

Consider the functor F : Sch/S → Sets assigning (U → S) to the set of isomor-
phism classes of complexes

L
α−→ O⊕rS×SU

β−→ OS×SU

of finitely presented quasi-coherent OS×SU -modules. By standard limit arguments,
F is limit preserving. The complex (6.5.5) defines an element (α, β) ∈ F (Ŝ) such
that coker(β) = OT̂ . Let N be an integer such that (AR)N holds for α and β at
(s̃, s).

Artin Approximation (A.10.9) gives an étale neighborhood (S′, s′)→ (S, s) and
an element (α′, β′) ∈ F (S′) such that (α, β) = (α′, β′) in F (OS,s/mN+1

s ). We let
W ↪→ S ×S S′ be the closed substack defined by coker(β′) and set w = (s̃, s′) ∈ W.
Letting Sn, S′n and T̂n be the nth nilpotent thickenings of S, S′ and T̂ at the images
of t ∈ T , we have that T̂ ×T̂ T̂N and W ×S′ S′N are equal as closed substacks of
S ×S SN . This gives (1)-(2) for n ≤ N . In particular, we have an isomorphism
ϕN : T̂N →WN and we let ψN : WN → T̂N be its inverse.

Using that η : T̂ → X is formally versal, we can inductively find compatible lifts
for n ≥ N

Wn
ψn //

� _

��

T̂

η

��

Wn+1
//

ψn+1

77

X .

On the other hand, applying Lemma D.6.4 (generalized to stacks by smooth descent)
on S ×S Ŝ with c = N to the complex (6.5.5) and the restriction of the complex
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defined by (α′, β′), we obtain an isomorphism Grmt OT̂ ∼= Grmw OW of graded OBG-
modules. By Lemma 6.5.12, the induced morphisms ψn : Wn → T̂n are isomorphisms
for all n. As T̂ is coherently complete (Theorem 6.4.11), Coherent Tannaka Duality
(6.4.8) implies that the inverses ϕn = ψ−1

n : T̂n → Wn effectivize to a morphism
ϕ : T̂ → W. This completes (1)-(2).

For the final statement when X is algebraic, we again apply Coherent Tannaka
Duality this time using the coherent completeness of both T̂ and W. By applying
Corollary 6.4.8 to the inverses ψn = ϕ−1

n , we can construct an inverse ψ : Ŵ → T̂ of
ϕ. Thus ϕ : T̂ → Ŵ is an isomorphism. Using the fully faithfulness of Corollary 6.4.8,
there is a 2-isomorphism η → f ◦ϕ extending the given 2-isomorphisms ηn

∼→ fn ◦ϕn
and thus T̂ → Ŵ is a morphism over X .

6.5.5 Proof of the Local Structure Theorem—general case

Proof of Theorem 6.5.1. We may assume that x ∈ X is a closed point. Let T :=
[TX ,x/Gx], let π : T → T = TX ,x//Gx be the morphism to the GIT quotient, and let
T̂ := Spec ÔT,π(0) ×T T . Let T0 = BGx be the closed substack supported at the
origin and Tn its nth nilpotent thickenings.

We will construct compatible closed immersions Xn ↪→ Tn. Since Gx is linearly
reductive, X0 = BGx is cohomologically affine. By deforming the principalGx-bundle
Speck→ X0 using Proposition 6.5.10, we can inductively construct isomorphisms
Xn ∼= [SpecAn/Gx]. By the deformation theory of the smooth and affine morphism
T̂ → BGx (Proposition 6.5.8), we can inductively find lifts

Xn� _

��

// T

��

Xn+1

;;

// BGx.

As in the smooth case, X1 → T1 is an isomorphism. By Lemma 6.5.12(1), each
morphism Xn → Tn is a closed immersion.

If In denotes the ideal sheaf defining Xn ↪→ Tn, then OTn/In is a system of
coherent OTn-modules. Since T̂ is coherently complete (Theorem 6.4.11), there
exists a coherent sheaf of ideals I ⊂ OT̂ such that the surjection OT̂ → OT̂ /I
extends the surjections OTn → OXn . The closed immersion X̂ ↪→ T̂ defined by I
extends the given closed immersions Xn ↪→ Tn yielding a commutative diagram

Xn� _

��

� � //
((X̂� _

��

η
// X

Tn �
�

// T̂ //

��

T

��

Spec ÔT,0 //

�

T.

of solid arrows. Since X̂ is also coherently complete, Coherent Tannaka Duality
(6.4.8) gives a morphism η : X̂ → X extending the above diagram. Since X̂ has the
same nilpotent thickenings of X̂ , the morphism η : X̂ → X is formally versal at 0.
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By Equivariant Artin Algebraization (6.5.14) with G = Gx, we obtain a morphism
f : W = [SpecB/Gx]→ X from an algebraic stack W of finite type over k with a
closed point w ∈ W and a morphism ϕ : X̂ → W over X inducing an isomorphism
X̂ → W ×W Spec ÔW,π(w) where π : W → SpecBGx . Since f : W → X induces
isomorphisms Wn → Xn, f is étale at w. After replacing W with an open substack,
we can arrange that f is étale everywhere. By Proposition 6.5.13, we can also
arrange that f is affine.

See also [AHR20, AHR19, AHLHR22].

6.5.6 The coherent completion at a point

We say that (X , x) is a complete local stack if X is a noetherian algebraic stack with
affine stabilizers and with a unique closed point x such that X is coherently complete
along the residual gerbe Gx. An important example is ([SpecA/G], x) where G is
linearly reductive over an algebraically closed field k, AG is a complete noetherian
local k-algebra with residue field k, A is of finite type over R, and the unique closed
point x is fixed by G (Theorem 6.4.11). For instance, ([An/Gm], 0) is complete local.

The coherent completion of a noetherian algebraic stack X at a point x is a
complete local stack (X̂x, x̂) together with a morphism η : (X̂x, x̂)→ (X , x) inducing
isomorphisms of nth infinitesimal neighborhoods of x̂ and x. If X has affine stabilizers,
then the pair (X̂x, η) is unique up to unique 2-isomorphism by Coherent Tannaka
Duality (6.4.8).

Theorem 6.5.16. Let X be an algebraic stack of finite type over an algebraically
closed field k with affine diagonal. For every point x ∈ X (k) with linearly reductive
stabilizer Gx, the coherent completion X̂x exists. Moreover,
(1) The coherent completion is a quotient stack X̂x = [SpecB/Gx] such that the

invariant ring BGx is the completion of a finite type k-algebra and BGx → B
is of finite type.

(2) Let f : (W, w) → (X , x) be an étale morphism where W = [SpecA/Gx], the
point w ∈ |W| is closed, and f induces an isomorphism of stabilizer groups
at w. Then X̂x =W ×W Spec ÔW,π(w), where π : W →W = SpecAGx is the
morphism to the GIT quotient.

(3) If π : X → X is a good moduli space, then X̂x = X ×X Spec ÔX,π(x).

Proof. The Local Structure Theorem (6.5.1) gives an étale morphism f : (W, w)→
(X , x), whereW = [SpecA/Gx] and f induces an isomorphism of stabilizer groups at
the closed point w. The main statement and Parts (1) and (2) follow by taking X̂x =

W×W Spec ÔW,π(w) and B = A⊗AGx ÂGx . Indeed, X̂x = [SpecB/Gx] is coherently
complete by Theorem 6.4.11. Part (3) follows from (2) using Corollary 6.5.3.

We have the following stacky generalization of the fact that completions determine
the étale local structure of finite type schemes (Corollary A.10.13).

Theorem 6.5.17. Let X and Y be algebraic stack of finite type over an algebraically
closed field k with affine diagonal. Suppose x ∈ X and y ∈ Y are k-points with linearly
reductive stabilizer group schemes Gx and Gy, respectively. Then the following are
equivalent:
(1) There exist compatible isomorphisms Xn → Yn.
(2) There exists an isomorphism X̂x → Ŷy.
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(3) There exist an affine scheme SpecA with an action of Gx, a point w ∈ SpecA
fixed by Gx, and a diagram of étale morphisms

[SpecA/Gx]

f

yy

g

%%
X Y

such that f(w) = x and g(w) = y, and both f and g induce isomorphisms of
stabilizer groups at w.

If, in addition, the points x ∈ X and y ∈ Y are smooth, then the conditions above
are equivalent to the existence of an isomorphism Gx → Gy of group schemes and an
isomorphism TX ,x → TY,y of tangent spaces which is equivariant under Gx → Gy.

Proof. The implications (3) =⇒ (2) =⇒ (1) are immediate. We also have (1) =⇒
(2) by Coherent Tannaka Duality (6.4.8) To show that (2) =⇒ (3), let (W =
[SpecA/Gx], w)→ (X , x) be an étale neighborhood as given by the Local Structure
Theorem (6.5.1). Let π : W →W = SpecAGx denote the good moduli space. Then
X̂x =W ×W Spec ÔW,π(w). The functor

F : Sch /W → Sets, (T →W ) 7→ Hom(W ×W T,Y)

is locally of finite presentation. Artin Approximation (A.10.9) applied to F and
α ∈ F (Spec ÔW,π(w)) provides an étale morphism (W ′, w′)→ (W,w) and a morphism
ϕ : W ′ := W ×W W ′ → Y such that ϕ|W′1 : W ′1 → Y1 is an isomorphism. Since
Ŵ ′w′ ∼= X̂x ∼= Ŷy, it follows that ϕ induces an isomorphism Ŵ ′ → Ŷ by Lemma 6.5.12.
After replacing W ′ with an open neighborhood we thus obtain an étale morphism
(W ′, w′) → (Y, y). The final statement is clear from Luna’s Etale Slice Theorem
(6.5.4).

6.5.7 Applications to equivariant geometry
Sumihiro’s Theorem on Torus Action (C.3.4) asserts that for a normal scheme of
finite type over k with the action of a torus T , every k-point has a T -invariant affine
open neighborhood. If X is not normal, there are not necessarily T -invariant affine
open neighborhoods, e.g. consider nodal cubic X equipped with a Gm-action near
its node x ∈ X. However, there is always a T -equivariant affine étale neighborhood.

Theorem 6.5.18. Let X be an algebraic space locally of finite type over an alge-
braically closed field k with affine diagonal. Suppose that X has an action of an affine
algebraic group G. If x ∈ X(k) has linearly reductive stabilizer, then there exist a
G-equivariant étale neighborhood (SpecA, u)→ (X,x) inducing an isomorphism of
stabilizer groups at u.

If G is a torus, then every point has a G-invariant étale neighborhood (SpecA, u)→
(X,x) inducing an isomorphism of stabilizer groups at u.

Proof. By the Local Structure Theorem (6.5.1), there is an étale neighborhood
([SpecA/Gx], u)→ ([X/G], x) such that w is a closed point and f induces an isomor-
phism of stabilizer groups at w. By Proposition 6.5.13, after replacing SpecA with
a Gx-invariant open affine neighborhood of w, we can arrange that the composition
[SpecA/Gx]→ [X/G]→ BG is affine. Therefore, W := [SpecA/Gx]×[X/G] X is an
affine scheme and W → X is a G-equivariant étale neighborhood of x.

When G is a torus, then any subgroup of G and in particular each stabilizer
group is linearly reductive.
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6.6 Geometric Invariant Theory (GIT)

Geometric Invariant Theory (GIT) was developed by Mumford in [GIT] as a means
to construct quotients and moduli spaces in algebraic geometry. For other expository
accounts, we recommend [New78], [Kra84], [Dol03], [Muk03] and [Stu08].

6.6.1 Good quotients

Let G be an affine algebraic group over an algebraically closed field k acting on
an algebraic space U of finite type over k. In the following cases, we’ve already
established the existence of a geometric quotient U/G (Definition 4.3.1), i.e. a G-
invariant map U → U/G inducing a bijection U(k)/G(k)→ (U/G)(k) and universal
for G-invariant maps to algebraic spaces; in other words [U/G]→ U/G is a coarse
moduli space.

• If G is a (reduced) finite group and the action is free (i.e. the action map
G×U → U×U is a monomorphism), then U/G := [U/G] exists as an algebraic
space of finite type over k (Corollary 3.1.12). This also holds in the non-finite
case: if G is an algebraic group and the action is free, then [U/G] is an algebraic
stack (Proposition 6.2.9) such that [U/G]→ [U/G]× [U/G] is a monomorphism
and therefore U/G := [U/G] is an algebraic space (Theorem 4.4.10).

• If G is finite and U = SpecA is affine, then U/G := SpecAG is a geometric
quotient (Theorem 4.3.6).

• If G is finite and U is projective (resp. quasi-projective, quasi-affine), then
the quotient U/G exists as a projective (resp. quasi-projective, quasi-affine)
k-scheme (Exercise 4.2.8).

• If G is finite and U is separated, then U/G exists as a separated algebraic
space as a consequence of the Keel–Mori Theorem (4.3.11). This also holds
in the non-finite case: if G is an affine algebraic group, the stabilizers of the
action are finite and reduced, and the action map G× U → U × U is proper,
then [U/G] is a separated Deligne–Mumford stack (Theorem 3.6.4) and the
existence of a geometric quotient follows from the Keel–Mori Theorem.

GIT studies the case where G is linearly reductive3 but not necessarily finite.
GIT allows for the possibility of points u ∈ U where the stabilizer Gu may not be
finite and the orbit Gu may not be closed, e.g. Gm acting on A1.

In Corollary 6.3.7, we’ve already considered the affine case of GIT where G is a
linearly reductive algebraic group over an algebraically closed field k acting on an
affine k-scheme SpecA. In this case, we have a commutative diagram

SpecA

��

π̃

))

[SpecA/G]
π // (SpecA)//G := SpecAG

where π : [SpecA/G]→ SpecAG is a good moduli space and π̃ : SpecA→ SpecAG

is a good quotient.

3GIT can be developed in the more general setting of actions by reductive algebraic groups; see
Remark 6.3.10.
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Definition 6.6.1 (Good quotients). Given an action of a linearly reductive algebraic
group G over an algebraically closed field k on an algebraic space U over k, a G-
invariant map π̃ : U → X is a good quotient if
(1) OX → (π∗OU )G is an isomorphism (where (π∗OU )G(V ) = Γ(UV ,OUV )G for

an étale X-scheme V ) and
(2) π̃ is affine.4

The good quotient of U by G is often denoted as U//G = X.

Remark 6.6.2. The map π̃ : U → X is a good quotient if and only if π : [U/G]→ X
is a good moduli space. To see the equivalence, we may assume that X = SpecB is
affine since both properties are étale local (Lemma 6.3.20(1)). For (⇒), U = SpecA
is also affine and B = AG, and thus [SpecA/G]→ SpecAG is a good moduli space.
To see (⇐), observe that since U → [U/G] is affine and π∗ is exact on quasi-coherent
sheaves, the pushforward π̃∗ is exact on quasi-coherent sheaves and thus π̃ is affine
by Serre’s Criterion for Affineness (4.4.15).

Proposition 6.6.3. Let G be a linearly reductive algebraic group over an alge-
braically closed field k acting on an algebraic space U over k. If π̃ : U → X is a good
quotient, then

(1) π̃ is surjective and the image of a closed G-invariant subscheme is closed. The
same holds for the base change T → X by a morphism from a scheme;

(2) for closed G-invariant closed subschemes Z1, Z2 ⊂ U , im(Z1 ∩Z2) = im(Z1)∩
im(Z2). In particular, for x1, x2 ∈ X(k), π̃(x1) = π̃(x2) if and only if
Gx1 ∩Gx2 6= ∅, and π̃ induces a bijection between closed G-orbits in U and
k-points of X;

(3) if U is noetherian, so is X. If U is finite type over k, then so is X, and for
every coherent OU -module F with a G-action, (π∗F )G is coherent; and

(4) π̃ is universal for G-invariant maps to algebraic spaces.

Proof. This follows from Theorem 6.3.5 as [U/G]→ X is a good moduli space.

Remark 6.6.4 (Semistable reduction in GIT). Since [U/G] → X is universally
closed (Theorem 6.3.5(1)), it satisfies the valuative criterion for universally closedness
(Theorem 3.8.5). This translates into the following: for every DVR R over k with
fraction field K and every map SpecR→ X with a lift η : SpecK → U , there exist
an extension R→ R′ of DVRs, an element g′ ∈ G(K ′) over the fraction field of R′,
and a lift in the commutative diagram

SpecK ′

g′·η|K′

&&

��

SpecK
η

//

��

U

π̃

��

SpecR′ //

55

SpecR // X.

In fact, if R = k[[x]], it can be arranged that R→ R′ is finite; see [Mum77, Lem. 5.3]
and [AHLH18, Thm. A.8].

4A good quotient is sometimes defined as an affine G-invariant morphism π̃ : U → X such that
OX

∼→ (π∗OU )G and properties Proposition 6.6.3(1)-(2) holds, c.f. [Ses72, Def. 1.5].
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6.6.2 Projective GIT
Let U be a projective scheme over an algebraically closed field k with an action
of a linearly reductive algebraic group G. Suppose that there is a G-equivariant
embedding U ↪→ P(V ), where V is a finite dimension G-representation; this is
equivalent to giving a very ample line bundle OU (1) with a G-action, i.e. a very
ample G-linearization (see §C.3.2).

Definition 6.6.5. We define the semistable and stable locus as

U ss := {u ∈ U | there exists f ∈ Γ(U,OU (d))G with d > 0 such that f(u) 6= 0},

U s :=

u ∈ U
∣∣∣∣∣∣∣∣∣∣

there exists f ∈ Γ(U,OU (d))G with d > 0 such that
−f(u) 6= 0,
−the orbit Gu ⊂ Uf is closed, and
−the function U → Z, x 7→ dimGx is constant in an open
neighborhood of u5

 .

A point u ∈ U is called semistable (resp. stable) if u ∈ U ss (resp. u ∈ U s).6 The
nullcone N̂ ⊂ A(V ) is by definition the affine cone over U \ U ss: it is set of points u
in the affine cone Û ⊂ A(V ) such that f(u) = 0 for every non-constant G-invariant
polynomial on A(V ).

We stress that the stable and semistable loci depend on the choice ofG-equivariant
embedding U ↪→ P(V ). When U is a normal projective variety, then every line
bundle L has a positive tensor power L⊗n that has a G-linearization by Sumihiro’s
Theorem on Linearizations (C.3.3). For example, O(1) on Pn does not have a
PGLn+1-linearization, but O(n+ 1) does.

Let R =
⊕

d≥0 Γ(U,OU (d)) be the projective coordinate ring. We consider the
map

π̃ : U ss → U ss//G := ProjRG. (6.6.1)

Note that U ss may be empty in which case ProjRG is the empty scheme. If U ss is
non-empty, it is precisely the locus where the rational map ProjR 99K ProjRG is
defined.

Theorem 6.6.6. Let G be a linearly reductive algebraic group over an algebraically
closed field k. Let U ⊂ P(V ) be a G-equivariant closed subscheme where V is a finite
dimension G-representation. Then there is a cartesian diagram

U s �
�

//

��

U ss

π̃
��

� � // U

U s/G �
�

// U ss//G

�

where U s/G ⊂ U ss//G is an open subscheme, the map π̃ of (6.6.1) is a good quotient,
and the restriction π̃|Us : U s → U s/G is a geometric quotient. Moreover, U ss//G is
projective with an ample line bundle L such that π̃∗L ∼= OU (N) for some N .

If in addition the action of G on U has generically finite stabilizers, then the
action of G on U s is proper (i.e. the action map G×U s → U s ×U s is proper) or in
other words [U s/G] is separated.

5Since the function x 7→ dimGx is upper semi-continuous, this condition is automatic if
dimGu = 0.

6In the literature, a point u ∈ U is sometimes called ‘unstable’ if it is not semistable; we avoid
this potentially misleading terminology.
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Proof. Since U is projective, R =
⊕

d≥0 Γ(U,OU (d)) is finitely generated over k.
Thus by Corollary 6.3.7(3), RG is also finitely generated over k and U//G = ProjRG

is projective. As localization commutes with taking invariants, (RG)(f) = (R(f))
G

for every homogeneous element f ∈ RG of positive degree. We thus have a cartesian
diagram

Uf = SpecR(f)
� � //

��

U ss �
�

//

π̃

��

U

Uf//G = (U//G)f
� � // U//G.

�

Since the property of being a good quotient is Zariski local and since the loci (U//G)f
cover U//G, we conclude that π̃ : U ss → U//G is a good quotient. By construction,
U ss//G is projective and there is an integer N such that L := OU//G(N) is an ample
line bundle which pulls back to OU (N)|Uss .

To show that U s → U s/G is a geometric quotient, it suffices to show that every
G-orbit in U s is closed. Since the dimension of the stabilizer increases under orbit
degeneration, it in fact suffices to show that the dimension of the stabilizers in U s is
locally constant. Every point u ∈ U s has by definition an open neighborhood V ⊂ U
such that dimGv = dimGu for all v ∈ V . Since dimG = dimGv + dimGv, we see
that the dimension of the orbit is constant on V . Finally, if there is a dense open
subset of U which has dimension 0 stabilizers, then it follows from the definition
of stability that every u ∈ U s has a finite (possibly non-reduced) stabilizer. Since
[U s/G]→ Us/G is also a good moduli space and [U s/G] has quasi-finite diagonal, it
follows from Proposition 6.3.28 that [U s/G] is separated.

Example 6.6.7. Given Gm acting on P2 via t · [x : y : z] = [tx : t−1y : z], the
semistable locus is the complement of V (xy, z) = {[0 : 1 : 0], [1 : 0 : 0]} and the good
quotient is (P2)ss → Proj k[xy, z] = P1. The fiber over xy = 0 is the union of three
orbits and its complement is the stable locus. Observe that the restriction to z 6= 0
is the good quotient A2 → A1 taking (x, y) 7→ xy while the fiber over z = 0 is the
line at infinity with [0 : 1 : 0] and [1 : 0 : 0] removed.

Example 6.6.8. Consider the diagonal action of SL2 on X = (P1)4 and the SL2-
equivariant Segre embedding

(P1)4 → P15, ([x1 : y1], . . . , [x4 : y4]) 7→ [x1x2x3x4, . . . , y1y2y3y4].

This corresponds to the SL2-linearization of L := O(1)� · · ·�O(1). The invariant
ring

⊕
d≥0 Γ(X,L⊗d) is generated in degree 1 by the generalized cross ratios

I1 = (x1y2 − x2y1)(x3y4 − x4y3)

I2 = (x1y3 − x3y1)(x2y4 − x4y2)

I3 = (x1y4 − x4y1)(x2y3 − x3y2)

with the linear relation I1 − I2 + I3 = 0. The invariant ring is k[I1, I2] and the
quotient Xss// SL2 = P1. The semistable locus Xss consists of tuples where at most
2 points are equal while the stable locus consists of tuples of distinct points.
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Figure 6.1: 4 unordered points up to projective equivalence

An ordered tuple (p1, . . . , p4) of distinct points is mapped to the cross ratio

(p1 − p2)(p3 − p4)

(p1 − p3)(p2 − p4)
.

In particular, two stable tuples are projectively equivalent (i.e. in the same SL2

orbit) if and only if they have the same cross ratio. The complement Xss \ Xs

contains 3 closed orbits: the SL2-orbits of (0, 0,∞,∞), (0,∞, 0,∞), and (0,∞,∞, 0).
Tuples such as (0, 0, 1,∞) or (1,∞, 0, 0) have non-closed SL2-orbits in Xss with
SL2 ·(0, 0,∞,∞) in the orbit closure. See Example 6.6.27 to see the computations of
the stable and semistable locus for the more general case of n ordered points in P1.

Remark 6.6.9 (Symplectic reduction). There is an interesting connection between
GIT and symplectic geometry. Let G is reductive algebraic group over C acting on a
smooth projective variety U ⊂ P(V ) where V is a n+1 dimensional G representation.
Let ω be a symplectic form on U , and let K ⊂ G be a maximal compact subgroup
K and k its Lie algebra. There is a moment map

µ : U → k∨

which is K-equivariant with respect to the coadjoint action on k∨ and satisfies
dµ(x)(ξ) · a = ωx(ξ, vx) for u ∈ U , ξ ∈ TxU , and a ∈ k, where vx is the vector field
on U obtained by the infinitesimal action of K on U . Then

u ∈ U is semistable ⇐⇒ Gu ∩ µ−1(0) 6= ∅

and the inclusion µ−1(0) ↪→ U induces a homeomorphism µ−1(0)/K → U//G. See
[MFK94, §8].

Exercise 6.6.10 (Affine GIT with respect to a character). Let U = SpecA be a finite
type scheme over an algebraically closed field k with an action of an affine algebraic
group G specified by a coaction σ : A→ Γ(G,OG)⊗A. Let χ : G→ Gm = Speck[t]t
be a character. Define the semistable and stable locus as

U ss :=

{
u ∈ U

∣∣∣∣ there exists f ∈ A such that f(u) 6= 0
and σ(f) = χ∗(t)d ⊗ f for d > 0

}

U s :=

u ∈ U
∣∣∣∣∣∣

there exists f ∈ A such that f(u) 6= 0, σ(f) = χ∗(t)d ⊗ f
for d > 0, the orbit Gu ⊂ Uf is closed, and the function
x 7→ dimGx is constant in an open neighborhood of u

 .

Defining U ss//G := Proj
⊕

d≥0Ad where Ad = {f ∈ A | σ(f) = χ∗(t)d ⊗ f}, show
that the conclusion of Theorem 6.6.6 holds except that U ss//G is projective over
AG = A0 (rather than k).
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For example, under the scaling Gm-action on U = An and with respect to the
the identity character χ = id, then U ss = U s = An and the quotient is Pn−1.

Exercise 6.6.11 (Projective GIT over an affine). Let U be a projective scheme
over a finitely generated k-algebra B, where k is an algebraically closed field, and let
G be an affine algebraic group acting on U . Suppose that there is a G-equivariant
embedding U ↪→ PR(E), where E is a vector bundle with a G-action. Defining the
semistable locus U ss and stable locus U s exactly as in Definition 6.6.5, show that the
conclusion of Theorem 6.6.6 holds except that U ss//G is projective over BG (rather
than k).

6.6.3 One-parameter subgroups and limits
If G is an algebraic group over a field k, a one-parameter subgroup is a homomorphism
λ : Gm → G of algebraic groups (that is not required to be injective). If U is a
separated algebraic space over k with an action of G and u ∈ U(k), then we say
that the limit limt→0 λ(t) · u exists if there exists an extension of the diagram

Gm
t7→λ(t)·u

//
� _

��

U

A1

88

Since U is separated, the limit is unique if it exists. If U is proper, then a limit
necessarily exists. For example, if U = P(V ) where V is a finite dimensional
representation and λ is a one-parameter subgroup, then we can choose a basis
of V such that λ(t) · (v1, . . . , vn) = (td1v1, . . . , t

dnvn) with d1 ≤ · · · ≤ dn. If
d = min{di | vi 6= 0}, then limt→0 λ(t) · [v0 : . . . : vn] = [v′0 : . . . : v′n] where v′i = vi
for all i such that di = d and is 0 otherwise.

Given a point u ∈ U such that limt→0 λ(t) · u ∈ U exists, the Gm-equivariant
extension A1 → U induces a morphism [A1/Gm]→ [U/G] of algebraic stacks. The
next proposition asserts that the converse is also true, i.e. such limits characterize
morphism [A1/Gm] → [U/G]. The most important case below is when R is the
algebraically closed field k and the reader is encouraged to keep this case in mind; it
is stated more generally for future use.

Proposition 6.6.12. Let G be a smooth affine algebraic group over an algebraically
closed field k, and let U be a separated algebraic space of finite type over k. For
every complete noetherian local k-algebra R with algebraically closed residue field κ,
MORk(ΘR, [U/G]) is equivalent to the groupoid of pairs (u, λ) consisting of a point
u ∈ U(R) and a one-parameter subgroup λ : Gm → G such that limt→0 λ(t)·u ∈ U(R)
exists. A morphism (u, λ) → (u′, λ′) is an element g ∈ G(R) such that u′ = g · u,
λ′ = gλg−1 and limt→0 λ(t)gλ(t)−1 ∈ G(R) exists.

Under this correspondence, the morphism ΘR → [U/G] sends 1 to u and 0 to
limt→0 λ(t) · u.

Remark 6.6.13. Above the existence of limt→0 λ(t) · u ∈ U(R) means that the
map Gm,R → U , defined by t 7→ λ(t) · u, extends to a map A1

R → U . The extension
is unique as U is separated.

Proof. Given (u, λ), theGm-equivariant mapmu,λ : Gm,R → U defined by t 7→ λ(t)·u
extends to a Gm,R-equivariant map m̃u,λ : A1

R → U ; this induces a morphism of
quotient prestacks fpre

u,λ : [A1
R/Gm] → [U/G] and a morphism of quotient stacks
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fu,λ : ΘR → [U/G]. A 2-isomorphism α : fpre
u,λ → fpre

u′,λ′ corresponds to an element
Γ ∈ G(A1

R) such that m̃u′,λ′ = Γ · m̃u,λ ∈ U(A1
R) and such that for every t ∈

Gm(A1
R), with mt : A1

R → A1
R denoting multiplication by t, λ′(t)Γ = (Γ ◦mt)λ(t) ∈

G(A1
R). On points, the second condition asserts that for p ∈ A1

R, Γ(t(p)p) =
λ′(t(p))Γ(p)λ(t(p))−1. We therefore see that Γ is determined by the element g :=
Γ(1) ∈ G(R), evaluating at 1: SpecR→ A1, such that the map Gm,R → G, taking
t to λ′(t)gλ(t)−1, extends to A1

R → G.
We thus obtain a fully faithful functor

{(u, λ) | lim
t→0

λ(t) · u exists} → MORk(ΘR, [U/G])

(u, λ) 7→ fu,λ.

To see essential surjectivity, let f : ΘR → [U/G] be a morphism. In the fiber
diagram

P

��

// U

��

ΘR
f
// [U/G]

�

P → ΘR is a principal G-bundle. The restriction P|BGm,κ along the unique closed
point 0: BGm,κ → ΘR, corresponds to a Gm-equivariant principal G-bundle P
on Specκ. After choosing an isomorphism P ∼= G, we see that P corresponds
to a one-parameter subgroup λ′ : Gm,κ → Gκ. The one-parameter subgroup λ′

is contained in some maximal torus T ′ of Gκ and all maximal tori are conjugate
(C.3.1(8)-(9)) as κ is algebraically closed. It follows that λ′ is conjugate to the
base change of a one-parameter subgroup λ : Gm → G. On the other hand, every
such λ induces a principal G-bundle Pλ := [(A1

R × G)/Gm] over ΘR. We claim
that there is an isomorphism α : P → Pλ of principal G-bundles. By construction,
we have an isomorphism α0 : P|BGm,κ → Pλ|BGm,κ . Since IsomΘR

(P,Pλ)→ ΘR is
smooth (as it’s a principal G-bundle and G is smooth), we may use deformation
theory (Proposition 6.5.8) to construct compatible isomorphisms αn : P|Xn → Pλ|Xn
over the nilpotent thickenings Xn of 0: BGm,κ ↪→ ΘR. Coherent Tannaka Duality
(6.4.8) coupled with the coherent completeness of ΘR along BGm,κ (Theorem 6.4.11)
implies that the isomorphisms αn extend to an isomorphism α : P → Pλ.

Restricting the composition A1
R × G → Pλ

α−1

−−→ P → U to the identity in G
yields a Gm-equivariant morphism A1

R → U . One checks that this corresponds to
the given map f : ΘR → [U/G] on quotient stacks. Letting u ∈ U(R) be the image
of 1, we see that fu,λ is 2-isomorphic to f .

Remark 6.6.14. Proposition 6.6.12 can be upgraded to a description of the stack
of morphisms from [A1/Gm] to [U/G]. Namely, there is a decomposition

Mor([A1/Gm], [U/G]) ∼=
∐
λ

[U+
λ /Pλ]

where λ varies over conjugacy classes of one-parameter subgroups. See [HL14,
Thm. 1.37].

6.6.4 Cartan Decompositions
It is frequently intractable to show that a point u ∈ U is semistable by explicitly
exhibiting an invariant section s ∈ Γ(U,OU (d))G not vanishing at u. Fortunately,
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there is an alternative—the Hilbert–Mumford Criterion (6.6.23)—which often reduces
the question of whether a point is semistable into a combinatorial question.

The key algebraic input in the proof of the Hilbert–Mumford Criterion is the
Cartan Decomposition, sometimes known as the Iwahori decomposition or the Cartan–
Iwahori–Matsumoto Decomposition. Given a one-parameter subgroup λ : Gm → G,
and a DVR R with fraction field K, we denote by λ|K the image of the composition
SpecK → Gm

λ−→ G where the first map is defined by the k-algebra map k[t]t → K
taking t to a uniformizer in R.

Theorem 6.6.15 (Cartan Decomposition). Let G be a reductive7 Let R be a complete
DVR over k with residue field k and fraction field K. Then for every element
g ∈ G(K), there exists h1, h2 ∈ G(R) and a one-parameter subgroup λ : Gm → G
such that

g = h1λ|Kh2.

Proof. As our proof will utilize that BG is S-complete (Definition 6.7.9), a concept
developed in the next section, we postpone the proof until Proposition 6.7.48. In
fact, we show not only that the theorem holds for reductive groups but that it
characterizes reductivity. See also [IM65, Cor. 2.17], [Ses72, Thm. 2.1] and [BT72,
§4].

Remark 6.6.16 (Equivalent formulation). Let T ⊂ G be a maximal torus. The
above theorem is equivalent to the identity

G(K) = G(R)T (K)G(R).

For (⇒), choose h ∈ G(R) such that hλ|Kh−1 ∈ T (K). Then

g = h1λ|Kh2 = (h1h
−1)︸ ︷︷ ︸

∈G(R)

(hλ|Kh−1)︸ ︷︷ ︸
∈T (K)

(hh2)︸ ︷︷ ︸
∈G(R)

.

Conversely, suppose g = h1th2 for h1, h2 ∈ G(R) and t ∈ T (K). If we write T ∼= Grm
and π ∈ R as the uniformizing parameter, then t = (u1π

d1 , . . . , urπ
dr) for units

ui ∈ R× and integers di ∈ Z. After replacing h1 with h1 · (u1, . . . , ur), we can
write g = h1λ|Kh2 where λ : Gm → T ⊂ G is the one-parameter subgroup given by
t 7→ (td1 , . . . , tdr ).

Remark 6.6.17 (Case of GLn). The Cartan Decomposition for GLn can be estab-
lished by an elementary linear algebra argument. Let g = (gij) ∈ GLn(K). After
performing row and column operations, we can assume that g1,1 = πd has minimal
valuation among the gij , where π ∈ R is a uniformizer. For each k ≥ 2, we write
g1,k = uπe. Now perform the row operations where the nth row rn is exchanged for
rn−uπe−dr1. In this way, we can arrange that g1,k = 0 for k ≥ 2 and by performing
analogous column operations, we can also arrange that gk,1 = 0 for k ≥ 2. The
statement is thus established by induction.

Exercise 6.6.18. Let k be a field.
(a) Let U ⊂ P(V ) be a Gm-equivariant locally closed subscheme where V is

a finite dimensional Gm-representation. Show that [U/Gm] is separated if
and only if U has no Gm-fixed points, or in other words that the diagonal
[U/Gm]→ [U/Gm]× [U/Gm] is finite if and only if it is quasi-finite.

7While we are mainly focused on developing GIT for linearly reductive groups, it turns out that
it is not much more difficult to prove this theorem for reductive groups.
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(b) Let G be a reductive algebraic group acting on an algebraic space U over k.
Show that [U/G] is separated if and only if for every one-parameter subgroup
λ : Gm → G, the corresponding quotient stack [U/Gm] is separated.

Hint: Verify the valuative criterion by applying the Cartan Decomposition.

Remark 6.6.19. Unlike the case of Gm in (a), it is not true [U/G] is separated for
an action of an affine algebraic group G acting linearly on a quasi-projective scheme
U with finite stabilizers. See Exercise 3.9.3(d) for such an example by a free action
of SL2 on a quasi-affine variety.

6.6.5 The Destabilization Theorem
Theorem 6.6.20 (Destabilization Theorem). Let G be a reductive algebraic group
over an algebraically closed field k acting on an affine scheme U of finite type over
k. Given u ∈ U(k), there exists a one-parameter subgroup λ : Gm → G such that
u0 := limt→0 λ(t) · u exists and has closed G-orbit.

Proof. Let R = k[[t]] with fraction field K = k((t)). We can choose an element
g ∈ G(K) and a commutative diagram

SpecK //
� _

��

Gx� _

��

SpecR
g̃

// X

where the top map is given by the composition SpecK
g−→ G→ Gx and such that

y := g̃(0) ∈ Gu0. By the Cartan decomposition, there exists h1, h2 ∈ G(R) and
a one-parameter subgroup λ : Gm → G such that h1g = λ|Kh2. By applying the
general fact that for a ∈ G(R) and b ∈ X(R), (a · b)(0) = a(0) · b(0) to h1 ∈ G(R)
and g̃ ∈ X(R), we obtain that

lim
t→0

λ(t)h2(t) · u = lim
t→0

h1(t)g(t) · u = h1(0) · g̃(0) = h1(0) · y ∈ Gu0. (6.6.2)

We claim that the related but possibly different limit limt→0 λ(t)h2(0) · u exists and
is also contained in the closed orbit Gu0. Once this is established, the theorem
would be established by using the one-parameter subgroup h2(0)−1λh2(0):

lim
t→0

(h2(0)−1λh2(0))(t) · u = h−1
2 (0) · lim

t→0
λ(t)h2(0) · u ∈ Gu0.

First, to see that limt→0 λ(t)h2(0) · u exists, we may apply Lemma C.3.2(1)
below to reduce to the case that X = A(V ) is a G-representation. We may choose
a basis of V ∼= kn such that action of λ-action has weights λ1, . . . , λn. We may
also write h2 · u = (a1, . . . , an) ∈ X(R) with each ai ∈ k[[t]] and further decompose
ai = ai(0) + a′i with a′i ∈ (t). Since

lim
t→0

λ(t)h2(t) · u = lim
t→0

(tλ1(a1(0) + a′1), . . . , tλn(an(0) + a′n)) (6.6.3)

exists, we see that for each i with λi < 0, we must have that ai(0) = 0, which in
turn implies that limt→0 λ(t)h2(0) · u exists.

Finally, to see that this limit lies in Gu0, we may apply Lemma C.3.2(2) to
obtain a G-equivariant map f : X → A(W ) such that f−1(0) = Gu0. We are
thus reduced to showing that limt→0 λ(t)h2(0) · f(x) = 0. By computing the
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limit limt→0 λ(t)h2(t) · f(x) as in (6.6.3), the same argument shows that since
limt→0 λ(t)h2(t) · f(x) = 0, we must also have that limt→0 λ(t)h2(0) · f(x) = 0. See
also [GIT, p. 53] and [Kem78, Thm. 1.4].

Given a one-parameter subgroup λ : Gm → G and a point u ∈ U such that
limt→0 λ(t) ·u exists, the Gm-equivariant map A1 → U extending t 7→ λ(t) ·u defines
a morphism of algebraic stacks fu,λ : [A1/Gm] → [U/G] such that such that the
image of the specialization 1 0 is u u0. Combining this observation with the
above theorem and the Local Structure Theorem (6.5.1) yields:

Corollary 6.6.21. Let X be an algebraic stack of finite type over an algebraically
closed field k with affine diagonal. Let x x0 be a specialization of k-points such that
the stabilizer Gx0

is linearly reductive. Then there exists a morphism [A1/Gm]→ X
representing the specialization x x0.

6.6.6 Hilbert–Mumford Criterion
The stable and semistable locus can often be effectively computed using the Hilbert–
Mumford Criterion. To setup the formulation, let U ⊂ P(V ) be a G-equivariant
closed subscheme where V is a finite dimensional G-representation, and let u ∈ U
be a k-point with a lift ũ ∈ A(V ). Given a one-parameter subgroup λ : Gm → G, we
can choose a basis V ∼= kn such that λ(t) · (v1, . . . , vn) = (td1v1, . . . , t

dnvn). Define
the Hilbert–Mumford index as

µ(u, λ) := max
i,ũi 6=0

−di. (6.6.4)

Equivalently, if u0 = limt→0 λ(t) ·u ∈ P(V ) (which exists since P(V ) is proper), then
Gm fixes u0 and µ(u, λ) is the opposite of the weight of the induced Gm-action on
the line Lu0

⊂ V classified by u0.

Remark 6.6.22. From the definition of the Hilbert–Mumford index, we see that
(a) limt→0 λ(t) · ũ exists if and only if µ(u, λ) ≤ 0,
(b) limt→0 t · ũ = 0 if and only if µ(u, λ) < 0, and
(c) µ(gx, gλg−1) = µ(x, λ).

Theorem 6.6.23 (Hilbert–Mumford Criterion). Let G be a linearly reductive al-
gebraic group over an algebraically closed field k acting on a G-equivariant closed
subscheme U ⊂ P(V ), where V is a finite dimension G-representation. Let u ∈ P(V )
be a k-point with a lift ũ ∈ A(V ). Then

u ∈ U ss ⇐⇒ 0 /∈ Gũ
⇐⇒ lim

t→0
λ(t) · ũ 6= 0 for all λ : Gm → G

⇐⇒ µ(u, λ) ≥ 0 for all λ : Gm → G.

If in addition the action of G on U has generically finite stabilizers, then

u ∈ U s ⇐⇒ Gũ ⊂ A(V ) is closed
⇐⇒ µ(u, λ) > 0 for all non-trivial λ : Gm → G.

Remark 6.6.24. The criterion that is now referred to as the “Hilbert–Mumford
Criterion” was first developed by Hilbert in [Hil1893, § 15-16] and then adapted by
Mumford in [GIT, p. 53]. It holds more generally when G is reductive.
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Proof. For semistability, the (⇒) implication is clear: if 0 ∈ Gũ, then for every
non-constant invariant function,we have that f(ũ) = f(0) = 0; hence u /∈ U ss.
For the converse, if 0 /∈ Gũ, then 0 and Gũ are disjoint closed G-invariant sub-
schemes of A(V ). Therefore their images in A(V )//G = Spec(Sym∗ V ∨)G are disjoint
(Corollary 6.3.7(2)). We may thus find an invariant function f ∈ (Sym∗ V ∨)G with
f(0) = 0 and f(ũ) 6= 0 which we may assume to be homogeneous of positive degree,
i.e f ∈ Symd V ∨ = Γ(P(V ),O(d)) for d > 0. In the second equivalence, (⇒) is again
clear: if there is a λ such that limt→0 λ(t) · ũ = 0, then 0 ∈ Gũ. Conversely, if 0 ∈ Gũ,
Theorem 6.6.20 provides a one-parameter subgroup λ such that the limit of u under
λ is 0. The third equivalence follows from the definition of the Hilbert–Mumford
index (see Remark 6.6.22).

For stability, we may assume that u ∈ U ss; otherwise 0 is in the closure of Gũ and
thus Gũ is not closed. By definition, there is an invariant section f ∈ Γ(U,O(d))G

of positive degree not vanishing at u. After possibly increasing d, we can arrange
that f extends to an invariant section f ∈ Γ(P(V ),O(d))G: this follows from the
exact sequence 0→ IU → OP(V ) → OU → 0 and the vanishing of H1(P(V ), IU (N))
for N � 0. We may thus view f as homogeneous polynomial of degree d on A(V ).
Letting α = f(ũ), we have a commutative diagram

G
Ψũ //

Ψu ##

V (f − α) �
�

//

��

A(V )

P(V )f

where Ψu(g) = g · u and Ψũ(g) = g · ũ. By assumption, we have that dimGu =
dimGũ = 0 so both stabilizers are finite, thus proper. By Exercise 3.3.15(b),
Gu ⊂ P(V )f is closed if and only if Ψu is proper, and Gũ ⊂ A(V ) is closed if and
only if Ψũ is proper. On the other hand, V (f − α)→ P(V )f is proper, and thus Ψu

is proper if and only if Ψũ is. Thus Gu ⊂ Uf is closed if and only if Gũ ⊂ A(V ) is
closed giving the first equivalence. For the second equivalence, if Gũ is not closed,
then there exists a one-parameter subgroup λ : Gm → G such that limt→0 λ(t) · ũ
exists and is not contained in Gũ. This gives a non-trivial λ with µ(u, λ) ≤ 0.
Conversely, if Gũ is closed, then Ψũ is proper and therefore for every non-trivial
λ, the map Gm → A(V ), defined by t 7→ λ(t) · ũ, is also proper. This implies
that limt→0 λ(t)ũ does not exist as otherwise the limit would define an extension
A1 → A(V ) of Gm → A(V ) and applying the valuative criterion

Gm� _

��

Gm

��

A1 //

<<

A(V )

would yield a contradiction. Since the limit doesn’t exist, µ(u, λ) > 0.

We also provide a stack-theoretic formulation. The data of a G-equivariant
embedding U ⊂ P(V ) is classified by a line bundle L on [U/G] such that the
pullback of L under U → [U/G] is very ample. Since the stable and semistable
locus are G-invariant, they define open substacks of [U/G]. The data of point
u ∈ U(k) and a one-parameter subgroup λ : Gm → G up to conjugation is clas-
sified by a map fu,λ : [A1/Gm] → [U/G] such that the induced map BGm

0
↪→

318



[A1/Gm]
fu,λ−−−→ [U/G] → BG is determined by λ. The Hilbert–Mumford index is

µ(u, λ) = −wt(f∗u,λL)|BGm .

Corollary 6.6.25 (Hilbert–Mumford Criterion). Let G be a linearly reductive
algebraic group over an algebraically closed field k acting on a projective k-scheme
U . Let L be a line bundle on [U/G] corresponding to a very ample G-linearization.
Then u ∈ [U/G] is semistable if and only if wt((f∗L)|BGm) ≥ 0 for all maps

f : [A1/Gm]→ [U/G], with f(1) ' u.

If in addition the action of G on U has generically finite stabilizers, then u is stable if
and only if wt((f∗L)|BGm) > 0 for all maps f : [A1/Gm]→ [U/G] such that f(1) ' u
and the induced map Gm → Gf(0) on stabilizers is non-trivial.

Exercise 6.6.26 (Affine Hilbert-Mumford Criterion). Let G be a linearly reductive
group over an algebraically closed field k acting on an affine scheme U = SpecA of
finite type. Let χ : G→ Gm be a character, and let U ss and U s be the semistable
and stable locus with respect to χ as defined in Exercise 6.6.10. For u ∈ U(k), show
that

u ∈ U ss ⇐⇒ for all one-parameter subgroups λ : Gm → G such that
lim
t→0

λ(t) · u exists, 〈χ, λ〉 ≥ 0

If in addition the action of G on U has generically finite stabilizers, show that u ∈ U s

if and only if the same condition holds with strict inequality 〈χ, λ〉 > 0.

Hint: Consider the action of G on U × A1 induced by χ defined by g · (u, z) =
(g ·u, χ(g)−1 · z), and show that u /∈ U ss if and only if G · (u, 1)∩ (U ×{0}) 6= ∅. Use
the Destabilization Theorem (6.6.20) to show that this is equivalent to the existence
of a one-parameter subgroup λ such that

lim
t→0

λ(t) · (u, 1) = lim
t→0

(λ(t) · u, t−〈χ,λ〉) ∈ U × {0}.

6.6.7 Examples
Example 6.6.27. Consider the diagonal action of SL2 on X = (P1)n, and consider
the SL2-equivariant Segre embedding (P1)n → P2n−1 (or equivalently the SL2-
linearization O(1)� · · ·�O(1)). We claim that

Xs = {(p1, . . . , pn) | for all q ∈ P1, #{i | pi = q} < n/2}
Xss = {(p1, . . . , pn) | for all q ∈ P1, #{i | pi = q} ≤ n/2}.

To see this, let (p1, . . . , pn) ∈ X(k) and λ : Gm → SL2 be a one-parameter sub-
group. There exists g ∈ SL2(k) such that gλg−1 = λd0 for some d ∈ Z where

λ0(t) =

(
t−1 0
0 t

)
. We can assume d ≥ 0 as the case d < 0 is handled sim-

ilarly. Since µ(x, λ) = µ(gx, λd0) = dµ(gx, λ0), it suffices to compute µ(gx, λ0).
Since µ(−, λ0) is symmetric with respect to the Sn-action, we can assume that
gx = (0, . . . , 0, pk, . . . , pn) with pk, . . . , pn 6= 0. A coordinate of the Segre embed-
ding is of the form (

∏
i∈Σ xi)(

∏
i/∈Σ yi) for a subset Σ ⊂ {1, . . . , n}, and its weight

is n − 2(#Σ). The coordinate where gx is nonzero with the largest weight is
y1 · · · ykxk+1 · · ·xn with weight 2k − n. Thus µ(gx, λ0) = n− 2k. Therefore, if no
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more than (resp. less than) n/2 of the points pi are the same, then x is semistable
(resp. stable) if and only if n ≥ 2k (resp. n > 2k). Conversely, if more than (resp.
at least) n/2 of the same, then after translating by an element of SL2 and using
the symmetry of the Sn-action, we can write u = (0, . . . , 0, pk, . . . , pn) with k > n/2
(resp. k ≥ n/2) and λ0 = diag(t−1, t) destabilizes u.

If n is odd, then Xss = Xs and Xss → Xss// SL2 is a geometric quotient. If n
is even, the map Xss → Xss// SL2 identifies (p1, . . . , pn) and (q1, . . . , qn) if there is
a subset Σ ⊂ {1, . . . , n} of size n/2 such that pi = pj and qi = qj for all i, j ∈ Σ;
in this case, the unique closed orbit in fiber is the orbit of the n-tuple with 0’s in
positions in Σ and ∞’s elsewhere. The complement Xss \Xs has precisely 1

2

(
n
n/2

)
closed orbits.

A modification of the argument yields the same stable and semistable locus
for the action of PGL2 on (P1)n under the PGL2-linearization O(2) � · · · �O(2).
Since Aut(P1) = PGL2, the quotient Xss// SL2 = Xss//PGL2 can be viewed as a
compactification of the moduli of n ordered points in P1 up to projective equivalence.

Exercise 6.6.28.
(a) Under the action of SL2 on the projectivization P(Γ(P1,O(n))) ∼= Pn of binary

forms of degree n, show that the semistable (resp. stable) locus consists of
binary forms f(x, y) such that every linear factor has multiplicity less than or
equal to (resp. less than) n/2.

(b) Under the SL2-linearization O(a1)� · · ·�O(an) on (P1)n with each ai > 0,
show that the semistable (resp. stable) locus consists of tuples (p1, . . . , pn)
such that for all q ∈ P1(k),

∑
pi=q

ai ≤ (

n∑
i=1

ai)/2

(resp. strict inequality holds).
(c) Under the SLr+1 action on (Pr)n and the SLr+1-linearization O(a1)� · · ·�
O(an) with each ai > 0, show that the semistable (resp. stable) locus consists
of tuples (p1, . . . , pn) such that for every linear subspace W ( Pr

∑
pi∈W

ai ≤
dimW + 1

r + 1

( n∑
i=1

ai)

(resp. strict inequality holds).

Exercise 6.6.29 (Cubic curves). Consider the action of SL3 on the projective space
P(H0(P2,O(3))) of cubic curves in P2. Show that the semistable locus consists of
curves with at worst nodal singularities and that the stable locus consists of smooth
curves.

Remark 6.6.30 (Quartic curves). A more involved calculation shows that under the
SL3 action on P(H0(P2,O(4))), a quartic curve is semistable if and only if it doesn’t
contain a triple point and is not the union of a cubic curve and an inflection tangent
line, and is stable if and only if it has at worst nodal and cuspidal singularities. See
also [Mum77, §1.13].

Remark 6.6.31 (Cubic surfaces). Under the action of SL4 on P(H0(P3,O(3))), a
cubic surface is stable (resp. semistable) if and only if it has finitely many singular
points and the singularities are ordinary double points (resp. ordinary double points
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or rank 2 double points whose axes are not contained in the surface). See [Muk03,
Thm. 7.14] and [Hil1893].

Exercise 6.6.32 (Quiver GIT). A quiver Q = (Q0, Q1) is a directed graph where
Q0 is a finite set of vertices and Q1 is a finite set of arrows; there are source and
target maps s, t : Q1 → Q0. A k-representation of Q consists of a vector space Vi for
every i ∈ Q0 together with linear maps Lα : Vi → Vj for every arrow α : i → j. If
each Vi is finite dimensional with di = dimVi, we say that d = (di) is the dimension
vector of V .

Fix d = (di) and consider the space

R(Q, d) =
∏
α∈Q1

Hom(ks(α),kt(α))

of representations with dimension vector d. This inherits an action of
∏
i GLdi via

(gi) · (Lα) = (gt(α)Lαg
−1
s(α)). The diagonal subgroup Gm ⊂

∏
i GLdi consisting of

tuples (t idkdi ) of scalar matrices for t ∈ Gm is normal and acts trivially. Therefore
the quotient G := (

∏
i GLdi)/Gm also acts on R(Q, d).

For any tuple a = (ai)i∈Q0
of integers such that

∑
i aidi = 0, consider the

character
χa :

∏
i

G→ Gm, (gi) 7→
∏
i

det(gi)
ai .

Use the Affine Hilbert–Mumford Criterion (6.6.26) to show that a representation
V ∈ R(Q, d) is semistable (resp. stable) with respect to χ if and only if for every
subrepresentation W ⊂ V (i.e. subspaces Wi ⊂ Vi such that Lα(Ws(α)) ⊂Wt(α)),∑

i

ai dimWi ≥ 0

(resp. strict inequality holds). See also [Kin94, Prop. 3.1].

Remark 6.6.33 (Cox construction of toric varieties). Let X = X(Σ) be a proper
toric variety with fan Σ ⊂ NR and torus TN , where N is a lattice with dual M .
Letting Σ(1) denote the rays of the fan, the divisors Dρ associated to ρ ∈ Σ(1)
generate the class group. There is a short exact sequence

0→M → ZΣ(1) → Cl(X)→ 0.

The algebraic group G := Hom(Cl(X),Gm) is diagonalizable (hence linearly reduc-
tive) and sits in a short exact sequence

1→ G→ GΣ(1)
m → TN → 1

obtained by applying Hom(−,Gm) to the above sequence. The groupG acts naturally
on AΣ(1).

For a cone σ ∈ Σ, let xσ :=
∏
ρ∈σ(1) xρ. Define the closed subset Z ⊂ AΣ(1) by

the vanishing of the ideal generated by the monomials xσ as σ varies over maximal
dimensional cones; this set can also be described as the union

⋃
C V (xρ | ρ ∈ C)

where the union runs over primitive collections C ⊂ Σ(1), i.e. subsets C such that
C is not contained in σ(1) for any σ ∈ Σ and such that for any C ′ ( C, there exists
σ ∈ Σ with C ′ ⊂ σ(1). This locus Z is G-invariant.

The main theorem here is that X is isomorphic to the good quotient (AΣ(1) \
Z)//G. This is the so-called ‘Cox construction of X’, and it gives X homogeneous
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coordinates in a similar fashion to how An+1 gives homogeneous coordinates for
Pn = (An+1 \ 0)/Gm. When Σ is a simplicial fan, X is a geometric quotient
(AΣ(1) \Z)/G. Moreover, the class group Cl(X) is identified with group of character
X∗(G), and if L is an ample line bundle on X corresponding to a character χ, then
AΣ(1) \ Z is the semistable locus for the action of G on AΣ(1) with respect to the
character χ. See [Cox95] and [CLS11, §5].

Example 6.6.34 (Variation of GIT for Gm-actions). Consider a Gm-action on an
affine scheme X = SpecA of finite type over k. In this example, we will consider
how the GIT quotients (with respect to a character in the sense Exercise 6.6.10)
vary as we vary the character of Gm. There is a bijection Hom(Gm,Gm) ∼= Z and
we write χd(t) = td as the character corresponding to d ∈ Z.

Let A =
⊕

n∈ZAn be the induced grading. There are three cases for the
semistable locus Xss

χd
with respect to the character χd:

(1) d = 0: Xss(0) := Xss
χ0

= X and Xss
χ0
//Gm = SpecA0.

(2) d > 0: Xss(+) := Xss
χd

= X \ V (
∑
n<0An) and Xss

χd
= Proj

⊕
d≥0And is

independent of d; moreover Xss(0) is identified with X+
χd

with respect to the
one-parameter subgroup χd (Exercise 6.6.53).

(3) d < 0: Xss(−) := Xss
χd

= X \V (
∑
n>0An) = X+

χd
and Xss

χd
= Proj

⊕
d≥0A−nd

is independent of d.
There is a commutative diagram

Xss(+)
� � //

��

X

��

Xss(−)

��

? _oo

Xss(+)//Gm // X//Gm Xss(−)//Gmoo

where the vertical maps are good quotients, the top maps are open immersions, and
the bottom maps are projective. The Affine Hilbert–Mumford Criterion (6.6.26)
implies that there are identifications of the stable loci with respect to χ0, χ1,
and χ−1: Xs(0) = X \ (Xss(+) ∩ Xss(−)), Xs(+) = Xss(+) = X \ Xss(−), and
Xs(−) = Xss(−) = X\Xss(+). Therefore, we see that if bothXss(+) andXss(−) are
nonempty, then Xss(+)/Gm → X//Gm and Xss(−)/Gm → X//Gm are isomorphisms
over Xs(0)/Gm, and in particular birational. We also see that if the complements of
Xss(+) and Xss(−) in X each have codimension at least two, then the birational
map Xss(+)//Gm 99K Xss(−)//Gm is an isomorphism in codimension 2 such that
the divisor O(1) (which is relatively ample over X//Gm) pushes forward to a divisor
on Xss(−)//Gm whose dual is relatively ample, i.e. Xss(+)//Gm 99K Xss(−)//Gm is
a flip with respect to O(1).

Remark 6.6.35 (Variation of GIT). Extending the previous example, consider a
projective variety X over k with an action of a linearly reductive group G. Two line
bundles (resp. G-linearizations) L1 and L2 on X are algebraically equivalent (resp.
G-algebraically equivalent) if there is a connected variety T , points t1, t2 ∈ T (k),
and a line bundle (resp. G-linearization) L on X × T such that Li = L|X×{ti}.
The Neron–Severi group NS(X) (resp. G-equivariant Neron–Severi group NSG(X))
of line bundles (resp. G-linearizations) on X up to (G-)algebraic equivalence is
finitely generated. The kernel of NSG(X)R → NS(X) is identified with the rational
character group X∗(G)R. We let EffG(X) ⊂ NSG(X)R be the cone of G-effective
linearizations, i.e. G-linearizations L such that there is a nonzero section of L⊗d) for
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some d > 0 or in other words such that Xss
L 6= ∅. We also let AmpG(X) ⊂ NSG(X)R

be the cone of ample G-linearizations.
The main results of variation of GIT can be formulated as follows. The semistable

locus Xss
L only depends on the G-algebraic equivalence class of L. There is a

polyhedral decomposition of the cone AmpG(X) ∩ EffG(X) defined by codimension
1 walls such that the semistable locus is constant in any open chamber. If L0 is
on a wall while L+ and L− are on opposite adjacent chambers, then there is a
commutative diagram

Xss
L+

� � //

��

Xss
L0

��

Xss
L−

��

? _oo

Xss
L+
//G // Xss

L0
//G Xss

L−
//Goo

where the vertical maps are good quotients, the top maps are open immersions,
and the bottom maps are projective. If Xss

L+
and Xss

L−
are non-empty, the bottom

maps are birational; when the bottom maps are isomorphisms in codimension 2,
then Xss

L+
//G 99K Xss

L−
//G is a flip with respect to the line bundle O(1) on Xss

L+
//G,

which is relatively ample over Xss
L0
//G and which pulls back to L+|Xss

L+
.

See [Tha96] and [DH98].

Remark 6.6.36 (Mori Dream Spaces). There is an interesting connection between
the Mori program and variation of GIT. A normal Q-factorial projective variety X
is a Mori dream space if (1) Pic(X)Q = NS(X)Q, (2) the cone Nef(X) of nef line
bundles is the affine hull of finitely many semiample line bundles, and (3) there are
finitely many birational maps fi : X 99K Xi, which are isomorphisms in codimension
1, to a Q-factorial normal projective variety Xi such that the movable cone Mov(X)
is the union of f−1

i (Amp(Xi)Q); a line bundle is movable if its stable base locus has
codimension at least 2. In other words, X is a Mori dream space if Mov(X) has a
finite wall and chamber decomposition such the projective variety determined by
line bundle is constant within an open chamber.

Equivalently, X is a Mori dream space if Pic(X)Q = NS(X)Q and the Cox ring

Cox(X) :=
⊕

(d1,...,dn)∈Nn
Γ(X,Ld1

1 ⊗ · · · ⊗ Ldnn )

is finitely generated, where L1, . . . , Ln is a basis for Pic(X)Q such that their affine
hull contains Eff(X)Q. If X is a Mori dream space, then X along with each birational
model Xi is a GIT quotient of the semistable locus of Spec(Cox(X)) by the torus
Gnm with respect to a character. Moreover there is an identification of the Mori
chambers of Mov(X) with the variation of GIT chambers for the action of Gnm on
Spec(Cox(X)). See also [HK00].

Example 6.6.37 (Partial desingularization). If U is a smooth variety and U → X
is a geometric quotient by a linearly reductive group, then X necessarily has finite
quotient singularities; this is a consequence of the Local Structure Theorem (4.3.14).
On the other hand, if U → X is a good quotient, then X can have worse singularities.
Nevertheless, there is a canonical procedure to partially resolve the singularities of
X so that they become finite quotient singularities.

Suppose that there is an open subset X ′ ⊂ X such that π0(X ′) → X ′ is a
geometric quotient; this happens for example if U = V ss is the semistable locus with
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respect to the action of G on a projective variety V ⊂ PN and the stable locus V s is
nonempty. Then there is a commutative diagram

Un //

πn

��

Un−1
//

πn−1

��

· · · // U = U0

π0

��

Xn
// Xn−1

// · · · // X = X0

such that:

• Each Ui+1 is a G-invariant open subscheme of the blow-up BlZ Ui, where Z
is a G-invariant smooth closed subscheme whose stabilizers are of maximal
dimension, and Ui+1 ⊂ BlZ Ui is the complement of the strict transform of
π−1
i (πi(Z)). If U = V ss is the semistable locus of a projective variety with

respect to a G-linearization L, then Ui+1 is the semistable locus with respect
to (q∗L)⊗n ⊗ O(−E) for n � 0, where q : BlZ Ui → Ui and E denotes the
exceptional divisor.

• The maps Xi+1 → Xi are projective birational.

• The maps πi : Ui → Xi are good quotients by G, and the map πn : Un → Xn

is a geometric quotient. In particular, Xn has finite quotient singularities.

For a simple example of this procedure in action, consider the Gm-action on A2

with weights 1 and −1. In this case, the quotient A2//Gm ∼= A1 is smooth but it is
not a geometric quotient. The procedure tells us to take the blow-up Bl0 A2 at the
origin and the complement U1 of the strict transform of V (xy). Then Gm-acts with
finite stabilizers on U1 and U1 → A2 is Gm-invariant birational (but neither proper
nor surjective) map inducing an isomorphism U1/Gm → A2//Gm on quotients.

See [Kir85], [Rei89], and [ER21].

6.6.8 Kempf’s Optimal Destabilization Theorem
Given an algebraic group G over an algebraically closed field k, we define X∗(G) as
the set of one-parameter subgroups Gm → G.

Definition 6.6.38. A length ‖−‖ on X∗(G) is a non-negative real-valued function
on X∗(G) which is conjugation invariant, i.e.

∥∥gλg−1
∥∥ = ‖λ‖ for λ ∈ X∗(G) and

g ∈ G(k), and such that for every maximal torus T ⊂ G, there is a positive definite
integral-valued bilinear form (−,−) on X∗(T ) with (λ, λ) = ‖λ‖2 for λ ∈ X∗(T ).

Example 6.6.39. If G = GLn, then any one-parameter subgroup λ is conjugate
to a one-parameter subgroup of the form t 7→ diag(td1 , . . . , tdn) and we can define
‖λ‖ =

√
d2

1 + · · ·+ d2
n.

Example 6.6.40. For every reductive algebraic group G, there is a length ‖−‖
on X∗(G). To see this, let T ⊂ G be a maximal torus and choose a positive
definite integral-valued bilinear form (−,−) on X∗(T ) which is invariant under
the conjugation action of the Weyl group W := N(T )/T . There is a bijection
X∗(G)/G ∼= X∗(T )/W between conjugacy classes of X∗(G) under G and conjugacy
classes of X∗(T ) under W . In other words, for every λ ∈ X∗(G) there exists g ∈ G(k)
such that gλg−1 ∈ X∗(T ), and moreover for any other element g′ ∈ G(k) such that
g′λg′−1 ∈ X∗(T ), then gλg−1 and g′λg′−1 are conjugate under W . It follows that
‖λ‖2 := (gλg−1, gλg−1) is well-defined.
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Let X = SpecA be an affine k-scheme with the action of G and let x0 ∈ X(k)
be a point with closed orbit. For every point x ∈ X(k) with Gx0 ⊂ Gx and a
one-parameter subgroup λ : Gm → G such that limt→0 λ(t) · x exists, we define the
Hilbert–Mumford index of x with respect to λ as

µ(x, λ) = − deg f−1
x,λ(Gx0). (6.6.5)

where fx,λ : A1 → X is the map extending Gm → X, t 7→ λ(t) · x. Note that if
limt→0 λ(t) · x /∈ Gx0, then µ(x, λ) = 0.

Since µ(x, λn) = n·µ(x, λ), it natural to consider the normalized Hilbert–Mumford
index

µ(x, λ)

‖λ‖

as a measure of how quickly λ(t) · x approaches the closed orbit Gx0. The more
negative the normalized Hilbert–Mumford index is, the faster λ(t) · x approaches
Gx0. Kempf proved that there is a one-parameter subgroup minimizing this index
and that it is unique up to conjugation.

Theorem 6.6.41 (Kempf’s Optimal Destabilization Theorem—affine version). Let
G be a reductive algebraic group over an algebraically closed field k with a length
‖−‖ on X∗(G). Let X = SpecA be an affine scheme of finite type over k with
an action of G. Let x0 ∈ X(k) be a point with closed orbit. For every point
x ∈ X(k) with Gx0 ⊂ Gx, there exists a one-parameter subgroup λ0 : Gm → G such
that µ(x, λ0)/ ‖λ0‖ achieves a minimal value M(x) over all λ ∈ X∗(G) such that
limt→0 λ(t) · x ∈ Gx0.

If λ′0 is another such one-parameter subgroup, then P (λ0) = P (λ′0) and λ′0 =
uλ0u

−1 for a unique element x ∈ X(λ0). Every maximal torus T ⊂ Pλ0 contains a
unique indivisible element achieving this minimum value.

Remark 6.6.42. The subgroup Pλ0
= {g ∈ G | limt→0 λ0(t)gλ0(t)−1 exists} is the

parabolic associated to λ0 and Uλ0
= {g ∈ G | limt→0 λ0(t)gλ0(t)−1 = 1} is the

unipotent radical of Pλ0
; see §C.3.3.

In the projective case where there is a G-equivariant embedding X ↪→ P(V ),
we have already defined the Hilbert–Mumford index µ(x, λ) in (6.6.4) as follows:
choosing a basis of V such that Gm acts on A(V ) = An with weights d1, . . . , dn and
a lift x̂ = (u1, . . . , un) ∈ A(V ) of x, then −µ(x, λ) is defined as the smallest di with
ui 6= 0. If limt→0 λ(t) · x̂ exists, then this agrees with the definition in (6.6.5). To
see this, observe that the extension fx̂,λ : A1 → An of the map t 7→ λ(t) · x̂ is the
map t 7→ (tdiui) and f−1

x̂,λ(0) = Speck[t]/(td) where d is the smallest di with ui 6= 0.
The projective version below follows from applying the affine version (Theo-

rem 6.6.41) to a lift x̂ ∈ A(V ) of a non-semistable point x ∈ P(V ). In this case,
the closed orbit in Gx̂ is the fixed point 0. The following theorem also holds for
reductive groups but we restrict to linearly reductive groups as we’ve only discussed
semistability in that context.

Theorem 6.6.43 (Kempf’s Optimal Destabilization Theorem—projective version).
Let G be a linearly reductive algebraic group over an algebraically closed field k with
a length ‖−‖ on X∗(G). Let X ⊂ P(V ) be a G-equivariant closed subscheme where V
is a finite dimensional G-representation. For every non-semistable point x ∈ X(k),
there exists a one-parameter subgroup λ0 : Gm → G such that µ(x, λ0)/ ‖λ0‖ achieves
a minimal value M(x) over all λ ∈ X∗(G).
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If λ′0 is another such one-parameter subgroup, then Pλ0 = Pλ′0 and λ′0 = gλ0g
−1

for a unique element g ∈ X(λ0). Every maximal torus T ⊂ Pλ0
contains a unique

indivisible element achieving this minimum value.

Definition 6.6.44. We call any λ0 satisfying Theorem 6.6.41 or Theorem 6.6.43 a
Kempf optimal destabilizing one-parameter subgroup for x, and we call M(x) the
optimal normalized Hilbert–Mumford index for x.

Proof of Theorem 6.6.41. The proof is simpler when x0 ∈ Gx is a fixed point such as
in the projective version when the closed orbit is 0 ∈ A(V ); the reader is encouraged
to keep this case in mind. By Lemma C.3.2, we may choose finite dimensional
G-representations V and W along with G-equivariant maps

A(V )

X
) 	

i 66

f
((

A(W ),

(6.6.6)

where i : X ↪→ A(V ) is a closed immersion with i(x0) = 0 and f : X → A(W ) is
a morphism with f−1(0) = Gx0. When x0 is a fixed point, we can take f = i in
(6.6.6).

A one-parameter subgroup λ : Gm → G induces Gm-actions on V and W , and
thus gradings V =

⊕
d∈Z Vd and W =

⊕
d∈ZWd. We define

m(i(x), λ) = min{d | the projection of i(x) to Vd is non-zero},
m(f(x), λ) = min{d | the projection of f(x) to Wd is non-zero}.

For any g ∈ G, we have the identitiesm(i(v), λ) = m(i(g·v), gλg−1) andm(f(v), λ) =
m(f(g · v), gλg−1).

It is easy to see that if limt→0 λ(t) · x exists, then µ(x, λ) = −m(f(x), λ), and
that

lim
t→0

λ(t) · x exists ⇐⇒ m(i(x), λ) ≥ 0,

lim
t→0

λ(t) · x ∈ Gx0 ⇐⇒ m(i(x), λ) ≥ 0 and m(f(x), λ) > 0.

By the Destabilization Theorem (6.6.20), there exists λx ∈ X∗(G) such that
m(i(x), λx) ≥ 0 and m(f(x), λx) > 0.

Case of a torus: Let T ⊂ G be a maximal torus containing λx. We can decompose
V =

⊕
χ∈X∗(T ) Vχ as a T -representation where X∗(T ) denotes the set of characters

of T . We define the state of i(x) ∈ V with respect to T to be the set

StateT (i(x)) = {χ ∈ X∗(T ) | the projection of i(x) to Vχ is nonzero}.

Likewise, we have the state StateT (f(x)) ⊂ X∗(T ) of f(x) ∈W with respect to T .
Let 〈−,−〉 be the natural pairing X∗(T ) × X∗(T ) → Z. For a one-parameter

subgroup λ ∈ X∗(T ), we have identifications

m(i(x), λ) = min
χ∈StateT (i(x))

〈χ, λ〉 and m(f(x), λ) = min
χ∈StateT (f(x))

〈χ, λ〉.

We claim that the function λ 7→ m(f(x), λ)/ ‖λ‖ achieves a maximum value on the
set {λ 6= 0 ∈ X∗(T ) |m(i(x), λT ) ≥ 0} at a one-parameter subgroup λT , and that
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any other one-parameter subgroup achieving this minimum is a positive multiple of
λT . This is precisely the conclusion of Lemma 6.6.45 below applied to the lattice
L = X∗(T ) ∼= Zr and the subsets of X∗(T ) ∼= HomZ(L,Z) given by F := StateT (i(x))
and G := StateT (f(x)).

General case: If T ⊂ G is a maximal torus and g ∈ G(k), then there is
an identification X∗(T ) ∼= X∗(gTg−1) given by identifying χ ∈ X∗(T ) with the
character gTg−1 → Gm defined by gtg−1 7→ χ(t). Under this identification,
StateT (i(x)) = StategTg−1(i(gx)). Given a one-parameter subgroup λ ∈ X∗(G),
we’ve seen that m(f(x), λ) = m(f(gx), gλg−1) for g ∈ G(k). We claim that
in fact m(f(x), λ) = m(f(x), pλp−1) for p ∈ Pλ. By symmetry, it suffices to
show that m(f(x), λ) ≤ m(f(x), pλp−1). Interpreting −m(f(x), λ) as the small-
est integer d such that limt→0 t

dλ(t) · f(x) ∈ A(W ) exists, we need to show that
limt→0 t

dpλ(t)p−1 · f(x) ∈ A(W ) exists. This follows from the computation

lim
t→0

(
tdpλ(t)p−1 · f(x)

)
= lim
t→0

(
p ·
(
λ(t)p−1λ(t)−1

)
·
(
tdλ(t)f(x)

))
= p ·

(
lim
t→0

λ(t)p−1λ(t)−1
)
·
(

lim
t→0

tdλ(t)f(x)
)
.

We now show that the function λ 7→ m(f(x), λ)/ ‖λ‖ achieves a minimum value
on

Σ := {λ ∈ X∗(G) |m(i(x), λ) ≥ 0}.

If T is a maximal torus, by the torus case we know that for every g ∈ G(k) there is
a minimum value on each non-empty set X∗(gTg−1) ∩ Σ, and that the minimum
is determined by the subsets of X∗(T ) given by StategTg−1(i(x)) ∼= StateT (i(g−1u))
and StategTg−1(f(x)) ∼= StateT (f(g−1u)). Since these subsets are contained in the
finite set of characters χ with Vχ 6= 0 (resp. Wχ 6= 0), there are only finitely
many minimum values as g ranges over G(k). Since the image of any λ ∈ X∗(G) is
contained in gTg−1 for some g ∈ G(k), it follows that there is a global minimum
value achieved by a one-parameter subgroup λ0 ∈ Σ. We may assume that λ0 is
indivisible, i.e. λ0 cannot be written as a positive multiple of another one-parameter
subgroup.

To establish the uniqueness, we choose a maximal torus T ⊂ G containing λ0.
By the torus case, λ0 ∈ X∗(T ) ∩ Σ is the unique indivisible one-parameter subgroup
achieving the minimal value. For p ∈ Pλ0

, the conjugate one-parameter subgroup
pλ0p

−1 also achieves this minimal value. Since any other maximal torus T ′ ⊂ Pλ0 is
pTp−1 for some p ∈ Pλ0 , we see that X∗(T ′) ∩ Σ also contains a unique indivisible
element achieving the minimum value. Finally, let λ1 ∈ X∗(G) be another indivisible
element achieving the minimum value. The intersection Pλ0

∩Pλ1
contains a maximal

torus T of G (Proposition C.3.7(a)), and we can write λT = p0λ0p
−1
0 = p1λ1p

−1
1 for

p0, p1 ∈ PλT . It follows that Pλ0
= PλT = Pλ1

, and that λ0 and λ1 are conjugate by
a unique element element of UλT (Proposition C.3.7(b)).

See also [Kem78, Thm. 3.4].

The argument above used the following lemma in convex geometry.

Lemma 6.6.45. Let Λ be a finite dimensional lattice, and let F and G be non-empty
finite subsets of Λ∨ = HomZ(Λ,Z). Assume that ΛR = Λ⊗ZR has a positive definite
inner product which is integral valued on Λ. Define

fmin : ΛR → R, λ 7→ min
f∈F

f(λ) and gmin : ΛR → R, λ 7→ min
g∈G

g(λ).
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Suppose that there exists λ ∈ ΛR such that fmin(λ) ≥ 0 and gmin(λ) > 0. Then the
function

CF := {λ 6= 0 ∈ ΛR | fmin(λ) ≥ 0} → R,
λ 7→ gmin(λ)/ ‖λ‖

obtains a maximum value M , and there exists a unique element λ0 ∈ CF ∩ Λ
such that M = gmin(λ0)/ ‖λ0‖ and such that any other element λ ∈ CF ∩ Λ with
M = gmin(λ)/ ‖λ‖ is an integral multiple of λ0.

Proof. The set {λ ∈ CF | gmin(λ) ≥ 1} is closed and convex, and therefore contains
a unique point λ′ closest to the origin. Since gmin(αλ′) = αgmin(λ′) for α ∈ R, we
must have that gmin(λ′) = 1 and that λ′ ∈ CF is the unique point with gmin(λ′) = 1
and gmin(λ′)/ ‖λ′‖ = M .

We now argue that the ray spanned by λ′ contains an integral point. If λ′ is
in the interior of {λ ∈ CF | gmin(λ) ≥ 1}, i.e. f(λ′) > 0 for all f ∈ F and there
is a unique g ∈ G with g(λ′) = 1, then λ′ is the closed point to the origin on the
affine plane defined by g = 1. We claim that λ′ = g∗/〈g∗, g∗〉 where g∗ ∈ ΛR is
the unique point such that 〈g∗, λ〉 = g(λ) for all λ ∈ ΛR. Indeed, the point λ′ is
contained in the plane g = 1, and for any other point λ on this plane, we have
that 〈λ′, λ〉 = 1/〈g∗, g∗〉 = 〈λ′, λ′〉 and the Cauchy–Schwarz inequality implies that
〈λ′, λ′〉2 = 〈λ′, λ〉2 ≤ 〈λ′, λ′〉〈λ, λ〉 so that 〈λ′, λ′〉 ≤ 〈λ, λ〉. Since the inner product
and g take integral values, g∗ ∈ Λ. We then take λ0 to be the unique indivisible
element in the ray spanned by g∗.

To reduce to this case, let f1, . . . , ft ∈ F be the functions satisfying fi(λ′) = 0,
and let g1, . . . , gs ∈ G be the functions satisfying gi(λ′) = gmin(λ′). Since each fi
and gj take integral values, we may restrict to the subspace

W :=

{
λ ∈ ΛR

∣∣∣∣ f1(λ) = · · · = ft(λ) = 0
g1(λ) = · · · = gs(λ)

}
,

and the lattice W ∩ Λ. Then λ′ is in the interior of {λ ∈ CF ∩W | gmin(λ) ≥ 1}
and thus is the closest point to the origin contained in the affine plane define by
g1 = 1.

Corollary 6.6.46. In the setting of Theorem 6.6.41 or Theorem 6.6.43, there is a
unique morphism f : [A1/Gm]→ [X/G] with f(1) ' x and f(0) ' x0.

Proof. By Proposition 6.6.12, a morphism [A1/Gm] → [X/G] is determined by a
one-parameter subgroup λ such that limt→0 λ(t)x ∈ Gx0, and that λ is unique up
to conjugation by Pλ. Since any two Kempf’s worst one-parameter subgroups are
conjugate under Uλ (and thus Pλ), the statement follows.

Example 6.6.47. We revisit the SL2 action on (P1)n with the linearization given
by the Segre embedding (P1)n ↪→ P2n−1 (Example 6.6.27). The non-semistable
consists of tuples x = (p1, . . . , pn) where more than n/2 points are equal. Suppose
that precisely k > n/2 points are equal. Since the Hilbert–Mumford index is
symmetric, we can assume that the first k are equal. If λ : Gm → SL2 is a one-
parameter subgroup, we can choose g ∈ SL2(k) with gλg−1 = λd0 where d ∈ Z and

λ0(t) =

(
t−1 0
0 t

)
. After rescaling the norm, we can assume that ‖λ0‖ = 1. We

also assume that d ≥ 0 as the d < 0 case can be handled similarly. Then

µ(x, λ)

‖λ‖
=
µ(gx, gλg−1)

‖gλg−1‖
= µ(gx, λ0)
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This index is negative if and only if gx = {0, . . . , 0, pk+1, . . . , pn} in which case
µ(gx, λ0) = n−2k. It follows that λ0 (resp. g−1λ0g) is a Kempf optimal destabilizing
one parameter subgroup for gx (resp x). Observe that the parabolic Pλ0

⊂ SL2

of lower triangular matrices is also the stabilizer of 0 ∈ P1, and thus Ggx ⊂ Pλ0
.

For any h ∈ Pλ0
, h−1λ0h (resp. (hg)−1λ0hg) is also a Kempf optimal destabilizing

subgroup for gx (resp. x).

Exercise 6.6.48. Let G be a reductive algebraic group over an algebraically closed
field k with a length ‖−‖ on X∗(G). Let X = SpecA be an affine scheme of finite
type over k with an action of G. Let x0 ∈ X(k) have closed G-orbit. Let x ∈ X(k)
be a point such that Gx0 ⊂ Gx, and let Px be the parabolic determined by Kempf’s
Optimal Destabilization Theorem (6.6.41).
(a) Show that for all g ∈ G(k) that gPxg−1 = Pgx.

Hint: Show that if Px = Pλ for a one-parameter subgroup λ, then Pgx = Pgλg−1 .
(b) Show that Gx ⊂ Px.

Hint: Use that for a parabolic P , NG(P ) = P (Proposition C.3.7).

The following criterion can sometimes be used to check stability/semistability by
computing Hilbert–Mumford indices only for one-parameter subgroups in a fixed
maximal torus.

Exercise 6.6.49 (Kempf–Morrison Criterion). LetG = GL(W ) or SL(W ), whereW
is finite dimensional vector space over an algebraically closed field k of characteristic
0. Let X ⊂ P(V ) be a G-invariant closed subscheme, where V is a finite dimension
G-representation. Let x ∈ X(k). Assume that there is a linearly reductive subgroup
H ⊂ Gx such that W decomposes as a direct sum of distinct H-representations, and
let T ⊂ G be a maximal torus compatible with this decomposition. Show that

x ∈ Xss ⇐⇒ µ(x, λ) ≤ 0 for all λ : Gm → T,

x ∈ Xs ⇐⇒ µ(x, λ) < 0 for all λ : Gm → T.

Hint: If u /∈ Xss, let λ0 : Gm → G be a Kempf optimal destabilization one-parameter
subgroup and 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vk = V be the filtration induced by the parabolic
Pλ0

. Use Exercise 6.6.48 to conclude that each Vi is H-invariant, and use the
hypothesis on the H-representation V to show that each Vi is T -invariant; thus
T ⊂ Pλ0

. Apply Kempf’s Optimal Destabilization Theorem again to find λ in T with
µ(x, λ) < 0. If u /∈ Xs, letting x̂ ∈ A(V ) be a lift of x and x̂0 ∈ Gx̂ be a point with
closed orbit, repeat the above argument using the affine version of Kempf’s Optimal
Destabilization Theorem.

Exercise 6.6.50 (Existence of destabilizing one-parameter subgroups over a perfect
field). Let X be an affine scheme of finite type over a perfect field k, and let G be a
reductive algebraic group over k acting on X. This exercise will show that for every
point x ∈ X(k), there exists a one-parameter subgroup λ : Gm → G defined over k
such that limt→0 λ(t) · x has closed G-orbit. See also [Kem78, §4].
(1) Show that if Gal := Gal(k/k) is the geometric Galois group, then Gal acts on

the set X∗(Gk) of one-parameters subgroups such that X∗(G) = X∗(Gk)Gal.
(2) Show that there exists a length ‖−‖ on X∗(Gk) which is invariant under the

action of Gal.
(3) Show that the subsets {λ ∈ X∗(Gk) | limt→0 λ(t) · x ∈ X(k) exists} and
{λ ∈ X∗(Gk) | limt→0 λ(t) · x ∈ Gkx0} are Gal-invariant where Gkx0 is
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the unique closed orbit in Gku. Moreover, show that if V and W are G-
representations as in (6.6.6), then the functions m(i(x), λ) and m(f(x), λ) are
Gal-invariant.

(4) Generalize Theorem 6.6.41 and Theorem 6.6.43 to the case when k is a perfect
field and x ∈ X(k).

Note in particular that if G has no non-trivial one-parameter subgroups defined over
k, then the G-orbit of any k-point is closed.

Finally we record the following consequence of the proof of Kempf’s Optimal
Destabilization Theorem (6.6.41). This will play a key role in the proof of the HKKN
Stratification (6.6.70).

Proposition 6.6.51. Let G be a reductive algebraic group over an algebraically
closed field k with a length ‖−‖ on X∗(G). Let X = SpecA be an affine scheme of
finite type over k with an action of G with a unique closed orbit Gx0. Fix a maximal
torus T ⊂ G. There are finitely many one-parameter subgroups λ1, . . . , λn ∈ X∗(T )
and numbers M1, . . . ,Mn ∈ R<0 such that for every point x ∈ X(k), there exist a
unique i = 1, . . . , n such that λi is an optimal Kempf one-parameter subgroup for gx
for some g ∈ G, and such that Mi = µ(x, λi)/ ‖λi‖.

Proof. We will use the notation of the proof of Theorem 6.6.41. For x ∈ X(k),
the unique parabolic subgroup of a Kempf optimal destabilization one-parameter
subgroup is determined by the subsets StategTg−1(i(x)) ∼= StateT (i(gx)) ⊂ X∗(T )
and StategTg−1(f(x)) ∼= StateT (f(gx)) ⊂ X∗(T ) as g ranges over G(k). These
subsets are contained in the finite subset of characters χ ∈ X∗(T ) with Vχ 6= 0 or
Wχ 6= 0. Thus there are only finitely many possibilities for an optimal destabilizing
subgroup of T , and the statement follows.

6.6.9 Fixed loci, Gm-actions, and attractor loci

If X is an algebraic space over a field k equipped with an action of an affine algebraic
group G, we define the fixed locus as the functor

XG := MorG(Speck, X) : Sch/k→ Sets

assigning a k-scheme S to the set of G-equivariant maps from S to X, where S is
endowed with the trivial G action.

Theorem 6.6.52. Let X be an algebraic space of finite type over an algebraically
closed field k with affine diagonal equipped with an action of a linearly reductive
algebraic group G. Then
(1) The fixed locus XG is represented by a subscheme of X;
(2) If G is a torus then XG is a closed subscheme.
(3) If X is smooth, so is XG.

Proof. If G is connected and U → X is a G-invariant étale morphism, we claim that

UG �
�

//

��

U

��

XG �
�

// X

� (6.6.7)
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is cartesian. Indeed, suppose S → U is map such that S → U → X is G-invariant.
Let US → S be the base change of U → X by S → X. Since US → S is G-invariant,
it suffices to show that the section j : S → US is G-invariant. As U → X is étale,
j : S → US is an open immersion. Because G is connected, for each point s ∈ S, the
G-orbit Gj(s) ⊂ US is connected and thus contained in S.

For (1), given a fixed point x ∈ XG(k), Theorem 6.5.18 produces a G-invariant
étale neighborhood (U, u)→ (X,x) with U affine and u ∈ UG(k). If G is connected,
then UG → XG is étale and representable by (6.6.7). Thus it suffices to show that
UG is representable. Since U is affine, we can choose a G-equivariant embedding
U ↪→ A(V ) into a finite dimensional G-representation. In this case, A(V )G = A(V G)
and thus UG = U ∩A(V )G is representable. In general, let G0 ⊂ G be the connected
component of the identity, and let g1, . . . , gn ∈ G(k) be representatives of the finitely
many cosets G(k)/G0(k). Then G/G0 acts on XG0 and XG =

⋂
i(X

G0)gi , where
(XG0)gi is identified with the fiber product of the diagonal XG → XG ×XG and
the map XG → XG ×XG given by x 7→ (x, gx).

For (2), every subgroup of G is linearly reductive and Theorem 6.5.18 therefore
produces a G-invariant étale surjective morphism U → X from an affine scheme. As
G is connected, the argument above shows that UG ↪→ U is a closed immersion and
thus by étale descent so is XG ↪→ X.

For (3), if x ∈ XG(k), there is a G-invariant étale morphism (U, u) → (X,x)
from an affine scheme and a G-invariant étale morphism U → TU,u as in the proof
of Luna’s Étale Slice Theorem (see (6.5.2)). Since TGU,u is a linear subspace, it is
smooth. Since UG → XG and UG → TGU,u are étale at u, the statement follows from
étale descent. See also [Ive72, Prop. 1.3] and [Mil17, Thm. 13.1].

Let X be a separated algebraic space of finite type over k equipped with an
action of Gm. Define the attractor locus as the functor

X+ := MorGm(A1, X) : Sch/k→ Sets

assigning a k-scheme S to the set of Gm-equivariant maps from S ×A1 to X, where
Gm acts trivially on S and with the usual scaling action on A1. Evaluation at 0
defines a morphism of functors

ev0 : X+ → XGm .

On k-points, X+(k) is the set of points x ∈ X(k) such that limt→0 t · x exists, and
ev0(x) is this limit. Since X is separated, the limit is unique if it exists. If X is
proper, the limit always exists and X+(k) = X(k). The functorial definition of X+

endows it with an interesting scheme-structure, e.g. when Gm acts on X = P1 via
t · [x : y] = [tx : y], then X+ = A1

∐
{∞}.

Exercise 6.6.53. If X = SpecA is affine, then the Gm-action induces a grading
A =

⊕
d∈AAd. Show that the functors XGm and X+ are representable by the closed

subschemes of X defined by the ideals
∑
d6=0Ad and

∑
d<0Ad.

Example 6.6.54 (Centralizers and parabolics). Let G be an affine algebraic group
over an algebraically closed field k. A one-parameter subgroup λ : Gm → G induces
a Gm-action on G via conjugation t · g := λ(t)gλ(t)−1. Under this action, the
fixed locus GGm = Cλ is identified with the centralizer of λ and the attractor locus
G+
λ = Pλ is identified with the subgroup consisting of elements g ∈ G such that

limt→0 λ(t)gλ(t)−1 exists. The unipotent subgroup Uλ is identified with kernel of
ev0 : Pλ → Cλ.
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When G is reductive, Pλ ⊂ G is a parabolic subgroup or in other words G/Pλ is
projective. See §C.3.3 for more properties of these subgroups.

We say that a map X → Y is an affine fibration (resp. Zariski-local affine
fibration) if there exists an étale (resp. Zariski) cover {Yi → Y } such that X×Y Yi ∼=
AnYi over Yi. Since the transition functions are not required to be linear, this notion
is more general than a vector bundle.

Theorem 6.6.55. Let X be a separated algebraic space of finite type over an
algebraically closed field k equipped with an action of Gm. The functor X+ is
representable by an algebraic space of finite type over k and ev0 : X+ → XGm is an
affine morphism.

Assume in addition that X is smooth (resp. smooth scheme). Then XGm

is also smooth and ev0 : X+ → XGm is an affine fibration (resp. Zariski-local
affine fibration). If x ∈ XGm and TX,x = T>0 ⊕ T0 ⊕ T<0 is the Gm-equivariant
decomposition into nonnegative, zero, and positive weights, then TXi,x = T0 ⊕ T>0,
TFi,x = T0, and Xi → Fi has relative dimension dimT>0.

Proof. If X = SpecA is affine, then XGm and X+ are closed subschemes of X
(Exercise 6.6.53). In the special case that X = A(V ) where V is a finite dimensional
G-representation, then XGm = A(V G) and X+ = A(V≥0) where V≥0 is the direct
sum of the non-negative isotypic components, and moreover ev0 : X+ → XGm is a
relative affine space.

We claim that if U → X is a Gm-invariant étale morphism, then the diagram

U+ ev0 //

��

UGm �
�

//

��

U

��

X+ ev0 // XGm �
�

//

�

X

� (6.6.8)

is cartesian. The right square was verified in the proof of Theorem 6.6.52. For the
left square, we need to show that there exists a unique Gm-equivariant morphism
filling in a Gm-equivariant diagram

Speck× S //

��

U

��

A1 × S //

::

X

(6.6.9)

where S is an affine scheme of finite type over k, and the vertical left arrow is the
inclusion of the origin. For each n ≥ 1, the formal lifting property of étaleness yields
a unique Gm-equivariant map Spec k[x]/xn × S → U such that

Speck× S //

��

U

��

Spec(k[x]/xn)× S //

77

X

commutes. As [A1/Gm]× S is coherently complete along BGm,S (Exercise 6.4.14),
Coherent Tannaka Duality in the form of Exercise 6.4.10 yields a unique Gm-
equivariant morphism A1 × S → U such that (6.6.9) commutes.

Choose a Gm-invariant étale surjective morphism U → X from an affine scheme
(Theorem 6.5.18). Then (6.6.8) implies that U+ → X+ is etale and representable,
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and since U+ is an affine scheme of finite type, it follows thatX+ is an algebraic space
of finite type. Since U+ → UGm is affine, étale descent implies that X+ → XGm is
also affine.

If X is smooth, then XGm is smooth by Theorem 6.6.52. As U is also smooth,
for each u ∈ UGm(k), there is a Gm-equivariant morphism U → TU,u étale at u with
f(u) = 0 (Lemma 6.5.6). Then U+ → T+

U,u is also étale at u. Let V ⊂ U be the
open locus where U+ → T+

U,u is étale. Since V is Gm-equivariant, if v ∈ V Gm , then
ev−1

0 (v) ⊂ V . Choosing an affine subscheme V ′ ⊂ V Gm containing u and replacing
U+ with ev−1

0 (V ′), we may assume that U+ → T+
U,u is everywhere étale. By (6.6.8),

we have a cartesian diagram

T+
U,u

��

U+oo //

��

X+

��

TGm
U,u UGmoo //

�

XGm

� (6.6.10)

where the horizontal arrows are étale. With TX,x = T>0 ⊕ T0 ⊕ T<0, there are
identifications TGm

X,x = T0 and T+
X,x = T>0 ⊕ T0. Since T+

U,u → TGm
U,u a surjection

of vector spaces, U → UGm is a Zariski-local affine fibration. By étale descent,
X → XGm is an affine fibration of relative dimension dimT>0.

If X is a smooth scheme, then by Sumihiro’s Theorem on Torus Actions (C.3.4)
we may choose U =

∐
i Ui → X such that {Ui} is a Gm-invariant affine open covering.

Then (6.6.10) implies that X+ → XGm is a Zariski-local affine fibration.
See also [Dri13, Prop. 1.2.2, Thm. 1.4.2] and [AHR20, Thm. 5.16].

Remark 6.6.56. Another approach to establish the algebraicity of X+ in Theo-
rem 6.6.55 is to show that the stack Mor([A1/Gm],X ), whose objects over a k-scheme
S are morphisms [A1/Gm]S → X , is algebraic when X has affine diagonal. This can
be shown by verifying Artin’s Axioms (D.7.4) where the crucial step is to verify
the effectivity condition (AA5): this follows from the coherent completeness of
[A1/Gm]R, where R is a noetherian local k-algebra, along the unique closed point
(Theorem 6.4.11) together with Coherent Tannaka Duality (6.4.8).

When X = [X/Gm], then a Gm-equivariant morphism A1 → X corresponds to a
morphism [A1/Gm]→ [X/Gm] over BGm (Exercise 3.1.14), and there is a cartesian
diagram

MorGm(A1, X) //

��

Mor([A1/Gm], [X/Gm])

��

Speck // Mor([A1/Gm],BGm).

�

The algebraicity of the stacks of morphisms implies that MorGm(A1, X) is an algebraic
space.

6.6.10 The Białynicki-Birula Stratification
Theorem 6.6.57 (Białynicki-Birula Stratification8). Let X be a separated algebraic
space of finite type over an algebraically closed field k with an action of Gm. Let

8This is frequently referred to as the ‘Białynicki-Birula Decomposition’ as some authors prefer
to reserve the term ‘stratifications’ to decomposisions where each strata has a neighborhood which
is a topologically locally trivial.
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XGm =
∐n
i=1 Fi be the fixed locus with connected components Fi. There exists an

affine morphism Xi → Fi for each i and a monomorphism
∐
iXi → X. Moreover,

(1) If X is proper, then
∐
iXi → X is surjective.

(2) If X is smooth (resp. smooth scheme), then Fi is smooth and Xi → Fi is a
(resp. Zariski-local) affine fibration. If x ∈ Fi and TX,x = Tx,>0⊕Tx,0⊕Tx,<0 is
the Gm-equivariant decomposition into nonnegative, zero, and positive weights,
then TXi,x = Tx,>0 ⊕ Tx,0, TFi,x = Tx,0, and Xi → Fi has relative dimension
dimTx,>0.

(3) The map Xi ↪→ X is a locally closed immersion under any of the following
conditions:

(a) X is affine,
(b) X is a smooth scheme, or
(c) there exists a Gm-equivariant locally closed immersion X ↪→ P(V ) where

V is a Gm-representation (e.g., X is a normal quasi-projective variety).

(4) If X is smooth, irreducible, and quasi-projective, then the stratification X+ =∐
iXi is filterable, i.e. there is an ordering of the indices such that X≥i :=⋃
j≥iXj is closed for each i. If in addition there are finitely many fixed

points {x1, . . . , xn}, then Txi,0 = 0 and Xi = A(Txi,>0) is an affine space; in
particular,

X+ = X≥1 ⊃ X≥2 ⊃ · · · ⊃ X≥n ⊃ ∅

is a cell decomposition, i.e. each X≥i \X≥i−1 = Xi is an affine space.

Proof. By Theorem 6.6.55, X+ is representable and there is affine morphism
ev0 : X+ → XGm of finite type. We define Xi as the preimage ev−1

0 (Fi). Since
X is separated, the inclusion X+ ↪→ X is a monomorphism. This gives the main
statement. If X is proper, then X+ → X is surjective (i.e. (1) holds) as limt→0 t · x
exists for every x ∈ X(k). Statement (2) follows directly from Theorem 6.6.55.

For (3), if X = SpecA and A =
⊕

dAd is the grading induced by the Gm-action,
then X+ is the closed subscheme defined by the ideal

∑
d<0Ad (Exercise 6.6.53)

and in particular affine. If X is a smooth scheme, then there exists a Gm-invariant
affine open cover (Theorem C.3.3). For any point x ∈ X+, let x0 be the image of x
under ev0 : X+ → X0, and choose a Gm-invariant affine open neighborhood U ⊂ X
of x0. This induces a diagram

U+ �
�

//� r

$$

ev−1
1 (U) //
� _

��

U� _

��

X+ ev1 // X.

(6.6.11)

Since U+ → U is a closed immersion (as U is affine) and X+ → X is separated (it is a
monomorphism), U+ → ev−1

1 (U) is a closed immersion. Since U+ = X+×X0U0 (see
(6.6.8)), x ∈ U+ and U+ → X+ is an open immersion. In particular, U+ ⊂ ev−1

1 (U)
is an open and closed subscheme containing x. On the other hand, Xi is smooth and
connected (as Xi → Fi is an affine fibration), and thus irreducible. It follows that
Xi ∩ U+ = Xi ∩ ev−1

1 (U) and that Xi ∩ ev−1
1 (U)→ U is a closed immersion which

in turn implies that Xi → X is a locally closed immersion. The final case (3)(c)
easy reduces to the case of X = P(V ) in which a direct calculation shows that each
Xi is of the form P(W ) \ P(W ′) for linear subspaces W ′ ⊂W ⊂ V . See also [BB73,
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Thm. 4.1], [Hes81, Thm. 4.5,p. 69], [Dri13, Thm. B.0.3], [AHR20, Thm. 5.27], and
[JS21, Thm. 1.5].

For (4), by Sumihiro’s Theorem on Linearizations (C.3.3), we can choose a
G-equivariant locally closed immersion X ↪→ Pn, where Gm acts on Pn via t · [x0 :
. . . : xn] = [td0x0 : . . . : tdnxn] with d0 ≤ · · · ≤ dn. Let D1, . . . , Ds be the distinct
weights and set Ji = {j | dj = Di} so that J1∪· · ·∪Js is a partition of {0, 1, . . . , n}.
Then (Pn)Gm =

⊔s
i=1 Fi where Fi = V (xj | j ∈ Ji). The preimage of Fi under the

morphism ev0 : Pn → (Pn)Gm , given by p 7→ limt→0 t · p, is

Pi := ev−1
0 (Fi) =

{
[x0 : . . . : xn]

∣∣∣∣ xj = 0 for all j ∈ J1 ∪ · · · ∪ Ji−1

xk 6= 0 for some k ∈ Ji

}
,

Moreover, the union

P≥i :=
⋃
j≥i

Pj = V (xk | k ∈ J1 ∪ · · · ∪ Ji−1) ⊂ Pn

is closed. The fixed locus for X is XGm = (Pn)Gm ∩X =
∐
i Fi ∩X. For each i, we

write Fi ∩X =
∐li
j=1 Fij and Pi ∩X =

∐li
j=1Xij as the irreducible decompositions.

Then ev0 : Pn → (Pn)Gm restricts to morphisms ev0 : Xij → Fij . For j 6= k, the
strata Xij and Xik are disjoint, and thus Xij ∩Xik ⊂ P≥i+1 ∩X. It follows that

(P≥i+1 ∩X) ∪Xi1 ∪ · · · ∪Xij ⊂ X

is closed for each j = 1, . . . , s. Ordering the strata as X11, . . . , X1l1 , . . . , Xs1, . . . , Xsl

establishes the claim. See also [Bir76, Thm. 3].

Remark 6.6.58. It is not true in general that Xi ↪→ X is a locally closed immersion.
Based on Hironaka’s example of a proper, non-projective, smooth 3-fold, Sommese
constructed a smooth algebraic space X such that Xi ↪→ X is not a locally closed
immersion [Som82]. On the other hand, Konarski provided an example of a normal
proper toric variety X such that Xi ↪→ X is not a locally closed immersion [Kon82].

Remark 6.6.59 (Morse stratifications). The Białynicki-Birula stratification of X
can be obtained as the Morse stratification corresponding to the non-degenerate
Morse function µ : X → Lie(S1)∨ = R: a point x ∈ X lies in Xi if only if the limit
of its forward trajectory under the gradient flow of µ lies in Fi. See [CS79].

Example 6.6.60. Suppose Gm acts on X = P2 via t · [x : y : z] = [x : ty : t2].
Then XGm = F1

∐
F2

∐
F3 where F1 = {[1 : 0 : 0]}, F2 = {[0 : 1 : 0]}, and

F3 = {[0 : 0 : 1]}, and X1 = {x 6= 0} = A2, X2 = {[0 : y : z] | y 6= 0} = A1 and
X3 = F3.

Let X̃ be the blowup BlpX at the fixed point p = [0 : 1 : 0]. Then Gm acts on the
exceptional divisor E ∼= P1 via t · [u : v] = [u : t2v] with fixed points q1 = [1 : 0] and
q2 = [0 : 1]. The fixed locus X̃Gm contains four points F̃1 = {[1 : 0 : 0]}, F̃2 = {q1},
F̃3 = {q2}, and F̃4 = {[0 : 0 : 1]}. We have that X̃1 = X1

∼= A2, X̃2 = X2
∼= A1 ,

X3 = E \ {q2} ∼= A1, and X̃4 = X4 = F̃4 as illustrated in Figure 6.2. Observe that
X3 \X3 = {q2} is not the union of other strata.

335



Figure 6.2: Białynicki-Birula stratifications for P2 (left) and Blp P2 (right).

Corollary 6.6.61. Let X be a smooth, irreducible, and quasi-projective scheme over
an algebraically closed field k with an action of Gm such that there are only finitely
many fixed points. Then Ai(X) is a free Z-module generated by the closures of the
i-dimensional cells. If in addition k = C, then the cycle map CHi(X)→ HBM

2i (X,Z)
to Borel–Moore homology is an isomorphism and HBM

2i+1(X,Z) = 0.

Remark 6.6.62. When X is compact (e.g. projective), then HBM
2i (X,Z) is ordinary

integral singular homology.

Proof. Theorem 6.6.57(4) implies that X has a cell decomposition and the statement
follows from [Ful98, Ex. 19.1.11]. See also [Bri97, §3.2].

Example 6.6.63 (Chow groups of Hilbn(A2)). Let X = Hilbn(A2) be the Hilbert
scheme of n points; this is a smooth irreducible scheme (see 1.5.4). The natural
action of T = G2

m induces a T -action on X. Under the Gm-action induced by a
one-parameter subgroup Gm → T given by positive weights, the evaluation map
ev0 : X+ → X is surjective, and the Gm-fixed points correspond to subschemes
Z = V (I) ⊂ A2 supported at the origin where I is a monomial ideal. We see that
there are only finitely many Gm-fixed points. We may therefore use Corollary 6.6.61
to compute CH∗(X).

For a monomial ideal I ⊂ R := k[x, y], for each integer i, define

ai := min{j | xiyj ∈ I}

and let r be the largest integer such that ar > 0. Then a0 ≥ . . . ≥ ar is a partition of
n and I = (ya0 , xya1 , . . . , xr+1). We need to compute the dimension of the positive
weight space TI,>0 of the Gm-action on the tangent space

TI = HomR(I,R/I)

of X at the monomial ideal I; see Exercise 1.5.1 for the identification of the tangent
space. To accomplish this, we first argue that

TI =
∑

0≤i≤j≤r

aj−1∑
s=aj+1

(χi−j−1
1 χai−s−1

2 + χj−i1 χs−ai2 ), (6.6.12)

as T = G2
m representations, where χi : T → Gm denotes the one-dimensional

representation giving by (t1, t2) 7→ t−1
i . There are∑

0≤i≤j≤r

2(aj − aj+1) = 2
∑

0≤i≤r

ai = 2n = dimTI
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one-dimensional representations appearing on the right-hand side, and they are
linearly independent. It thus suffices to show that each of them occurs in TI . An
R-module map φ : I → R/I is given by the values φ(xiyai) subject to the relations

φ(xi+1yai) = xφ(xiai) and φ(xiyai−1) = yai−1−aiφ(xiai).

Let 0 ≤ i ≤ j ≤ r and aj+1 ≤ s < aj . Defining

φi,j,s : I → R/I, xlyal 7→
{
xl+j−iyal+s−ai if l ≤ i
0 otherwise

ψi,j,s : I → R/I, xlyal 7→
{
xl+i−j−1yal+s−ai if l ≥ j + 1
0 otherwise,

one checks that φi,j,s and ψi,j,s are R-module maps that are eigenvectors for
χj−i1 χs−ai2 and χi−j−1

1 χai−s−1
2 . Thus (6.6.12) holds.

Choose λ = (λ1, λ2) : Gm → T with λ1 � λ2. Under our sign conventions, a
character χa1χb2 appearing in (6.6.12) has positive weight with respect to λ if a < 0,
or if a = 0 and b < 0. Thus

TI,>0 =
∑

0≤i≤j≤r

aj−1∑
s=aj+1

χi−j−1
1 χai−s−1

2 +

r∑
j=0

aj−1∑
s=aj+1

χj−i1 χs−ai2

and

dimTI,>0 =

( r∑
i=0

r∑
j=i

(aj − aj+1)

)
+

( r∑
j=0

(aj − aj+1)

)

=

( r∑
i=0

ai

)
+ a0 = n+ a0

Since there is a bijection between monomial ideals I ⊂ R = k[x, y] with dimkR/I = n
and partitions a0 ≥ · · · ≥ ar of n, for every d ≥ 0, the number of monomial ideals I
such that dimTI,>0 = d is equal to

P (2n− d, d− n) := # {partitions a1 ≥ · · · ≥ ar of 2n− d with each ai ≤ d− n}.
(6.6.13)

It follows from Corollary 6.6.61 that

dim CHd(Hilbn(A2))Q = P (2n− d, d− n).

See also [ESm87, Thm. 1.1] and [Göt94, §2.2].

Exercise 6.6.64 (Chow groups of Hilbn(P2)). Follow the above strategy to show
that the dth Betti number bd of Hilbn(P2) (or equivalently dim CHd(Hilbn(P2))) is
equal to

bd =
∑

n0+n1+n2=n

∑
p+r=d−n1

P (p, n0 − p)P (n1)P (2n2 − r, r − n2),

where P (a) is the number of partitions of a and P (a, b) is defined by (6.6.13).

Remark 6.6.65. Göttsche used the Weil conjectures in [Göt90, Thm. 0.1] (see also
[Göt94, Thm. 2.3.10]) to show that for any smooth projective surface S over C or Fq
that the Poincaré polynomial p(S[n], z) =

∑
i bi(S

[n])zn of S[n] := Hilbn(S) satisfies

∞∑
n=0

p(S[n], z)tn =

∞∏
m=1

(1 + z2m−1tm)b1(S)(1 + z2m+1tm)b3(S)

(1− z2m−2tm)b0(S)(1− z2mtm)b2(S)(1− z2m+2tm)b4(S)

337



In particular, the Betti numbers of S[n] only depend on the Betti numbers of S. While
each term p(S[n], z) does not admit a particularly nice expression, the generating
function involving all n does.

On the other hand, Nakajima constructed an action of the Heisenberg algebra
on H∗(S

[n]) which can be used to recover the Betti number formula above as well as
additional properties of the cohomology ring [Nak97] (see also [Nak99b]).

We can also use the Białynicki-Birula Stratification to compute equivariant Chow
rings CH∗G(X) (or equivalently the Chow ring CH∗([X/G]) of the quotient stack)
as introduced in §6.1.7. The following statements can also be made in de Rham or
singular cohomology (§6.1.8) where instead of the excision sequence above, one uses
the Thom–Gysin long exact sequence.

We will use the following two lemmas, which we state in a generality that we
can also apply to the HKKN stratification of §6.6.11.

Lemma 6.6.66. Let X be a smooth irreducible scheme over an algebraically closed
k with an action of a smooth affine algebraic group G. Let S1, . . . , Sr ⊂ X be
nonempty, disjoint, smooth, irreducible, and locally closed G-invariant subschemes
such that X =

∐
i Si and such that S≥i :=

⋃
j≥i Sj is closed for each i. Let di be

the codimension of Si in X. If the top Chern class cGdi(NSi/X) ∈ CH∗G(Si)Q is a
nonzero divisor for each i, then

dim CHk
G(X)Q =

r∑
i=1

dim CHk−di
G (Si)Q

for each k.

Proof. By assumption, S≤i =
⋃
j≤i Sj is open for each i, and Si ⊂ S≤i is a closed

subscheme with open complement S<i. We have a commutative diagram

CHk−di
G (Si) //

&&

CHk
G(S≤i) //

��

CHk
G(S<i) // 0

CHk
G(Si)

where the top row is the right exact excision sequence (6.1.33(3)) and the vertical
downward arrow is given by intersecting with Si. By the self-intersection formula
(6.1.33(5)), the composition CHk−di

G (Si)→ CHk
G(Si) is multiplication by cGdi(NSi/X).

By hypothesis, this map is injective after tensoring with Q. It follows that the top
row is an exact sequence after tensoring with Q, and that

dim CHk
G(S≤i)Q = dim CHk−di

G (Si)Q + dim CHk
G(S<i)Q.

The formula follows from induction. See [AB83, Prop. 1.9].

Remark 6.6.67. If [Si/G] is Deligne–Mumford, then CHk
G(Si) vanishes for k � 0

and cGdi(NSi/X) is a zero divisor.

The following gives a condition for the top Chern class to be a nonzero divisor.

Lemma 6.6.68. Let X be a smooth irreducible scheme over an algebraically closed
k with an action of a connected, smooth, and affine algebraic group G, and let N
be a G-equivariant vector bundle of rank d on X. Suppose that there is a subgroup
Gm ⊂ G acting trivially on X and a point x ∈ X(k) such that N ⊗ κ(x) contains
no Gm-invariant vectors. Then cGd (N) ∈ CH∗G(X)Q is a non-zero divisor.
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Proof. Choose a maximal torus T containing Gm and a character T → Gm such
that the composition Gm ↪→ T → Gm is given by t 7→ td for d > 0. By (6.1.33(7)),
CH∗G(X)Q = CH∗T (X)WQ where W is the Weyl group. Since CH∗G(X)Q is a subring
of CH∗T (X)Q, we are reduced to show that cTd (N) ∈ CH∗T (X)Q is a non-zero divisor.
If we write T as the product of the given Gm and a subtorus T ′, then

CH∗T (X) ∼= CH∗T ′(X)⊗ CH∗(BGm) ∼= CH∗T ′(X)[z]

by (6.1.33(6)). For x ∈ X(k), we can write

cTd (N) =
∑

cT
′

i (N)⊗ cGmd−i(N ⊗ κ(x))

= 1⊗ cGmd (N ⊗ κ(x)) + higher degree terms.

If a1, . . . , ad denote the Gm-weights of N ⊗κ(x), then by hypothesis each ai 6= 0 and

cGmd (N ⊗ κ(x)) =
(∏

i

ai
)
zd ∈ CH∗(BGm)Q ∼= Q[z]

is a non-zero divisor,and therefore cTd (N) is also a non-zero divisor.
See also [AB83, Prop. 13.4] and [Bri97, §3.2].

We define theG-equivariant Chow–Poincaré polynomial of aG-equivariant scheme
X as

pG(X, t) =

∞∑
d=0

(
dim CHd

G(X)Q
)
td.

We also denote p(X, t) =
∑∞
d=0

(
dim CHd(X)Q

)
td as the (non-equivariant) Chow–

Poincaré polynomial.

Proposition 6.6.69. Let X be a smooth, irreducible, and quasi-projective scheme
over an algebraically closed field k with an action of Gm such that X+ → X is
surjective (i.e. X is projective). Let X =

∐r
i=1Xi and XGm =

∐r
i=1 Fi be the

Białynicki-Birula Stratification (6.6.57), and let di be the codimension of Xi in X.
Then

pGm(X, t) =

r∑
i=1

p(Fi) · tdi(1− t)−1.

Proof. Since each Fi is smooth and Xi → Fi is a Zariski-local affine fibration (Theo-
rem 6.6.55), the pullback map CH∗Gm(Fi)

∼→ CH∗Gm(Xi) is an isomorphism (6.1.33(2)).
Under this isomorphism, NXi/X is the image of its restriction (NXi/X)|Fi . For x ∈ Fi,
NXi/X ⊗ κ(x) = Tx,<0 has no Gm-invariant vectors and thus Lemma 6.6.68 implies
that cGmdi ((NXi/X)|Fi) is a non-zero divisor. Lemma 6.6.66 therefore implies that
pGm(X, t) =

∑
i pGm(Xi, t). Since

CH∗Gm(Xi) ∼= CH∗Gm(Fi) ∼= CH∗(Fi)⊗ CH∗(BGm) ∼= CH∗(Fi)[z],

where the second equality uses (6.1.33(6)), we have the identity pGm(Fi, t) = p(Fi)(1−
t)−1 and the statement follows.
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6.6.11 The Hesselink–Kempf–Kirwan–Ness Stratification
For an action of a reductive group G on a projective variety X ⊂ Pn, we show
that the non-semistable locus admits a stratification into locally closed subschemes
according to the normalized Hilbert–Mumford index

M(x) := µ(x, λ)/ ‖λ‖ ∈ R<0

of a Kempf optimal destabilizing one-parameter subgroup λ of a point x ∈ X \Xss.
The more negative the index M(x) is, the more non-semistable (or ‘unstable’) the
pont x is. The strata will be indexed by pairs (λ,M) where λ ∈ X∗(G) andM ∈ R<0.

Recall from the Białynicki-Birula decomposition that for a one-parameter sub-
group λ : Gm → G, the attractor locus X+

λ = MorGm(A1, X) for the induced
Gm-action is a disjoint union of locally closed subschemes.

Theorem 6.6.70 (The HKKN Statification). Let G be a linearly reductive algebraic
group over an algebraically closed field k with a maximal torus T and a length ‖−‖
on X∗(G). Let X ⊂ P(V ) be a G-equivariant closed subscheme where V is a finite
dimensional G-representation. There is a finite subset Σ ⊂ X∗(T ) × R<0 and a
stratification of the non-semistable locus into G-invariant locally closed subschemes

X \Xss =
∐

(λ,M)∈Σ

Sλ,M

such that for each (λ,M) ∈ Σ,
(1) X+

λ,M := {x ∈ X+
λ |M(x) = M} is a Pλ-invariant locally closed subscheme

of X consisting of points x such that λ is a Kempf optimal destabilizing
one-parameter subgroup for x, and Sλ,M = G ·X+

λ,M ;

(2) a point x ∈ X+
λ,M if and only if ev0(x) = limt→0 λ(t) · x ∈ X+

λ,M ∩Xλ; thus
Zλ,M := {x ∈ Xλ |M(x) = M} is a Cλ-invariant closed subscheme of X+

λ,M

such that X+
λ,M = ev−1

0 (Zλ,M ).

(3) the natural map G ×Pλ X+
λ,M → Sλ,M is finite, surjective, and universally

injective; if char(k) = 0, then G×Pλ X+
λ,M → Sλ,M is an isomorphism.

(4) the locus ⋃
(λ′,M ′)∈Σ,M ′≤M

Sλ′,M ′

is closed and in particular contains Sλ,M ;
(5) if X is smooth, then so is each X+

λ,M ; in char(k) = 0, the strata Sλ,M is also
smooth.

Remark 6.6.71. The locus Sλ,M is called a stratum while X+
λ,M and Zλ,M are

sometimes called a blade and center of the stratum. In characteristic 0, we have
stack-theoretic equivalences [X+

λ,M/Pλ] ∼= [Sλ,M/G] and a stratification

[(X \Xss)/G] =
∐

(λ,M)∈Σ

[Sλ,M/G].

For each (λ,M), there is a diagram

[Zλ,M/Cλ]
i
// [X+

λ,M/Pλ] ∼= [Sλ,M/G] �
�

//

ev0

ss

[X/G] (6.6.14)

such that ev0 ◦i = id.
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Proof. Let X̂ ⊂ A(V ) be the affine cone of X, and let N̂ ⊂ X̂ be the nullcone, i.e.
the affine cone of X \ Xss. Then 0 ∈ N̂ is the unique closed G-orbit. Applying
Proposition 6.6.51 to the nullcone N̂ ⊂ A(V ), there is a finite subset Σ ⊂ X∗(T )×R<0

such that for every point x̂ ∈ N̂ \ 0, there is a unique (λ,M) ∈ Σ such that λ is a
Kempf optimal destabilizing one-parameter subgroup for x̂ with M = µ(x̂, λ)/ ‖λ‖.

Since N̂ is affine, the locus N̂+
λ ⊂ N̂ is a closed subscheme for each (λ,M) ∈ Σ

(Exercise 6.6.53). Since G is reductive, Pλ ⊂ G is parabolic and

[N̂+
λ /Pλ] ∼= [G×Pλ N̂+

λ /G]→ [N̂/G]

is projective. The image of this morphism is a closed substack corresponding to a
closed G-invariant subscheme Ŝλ such that Ŝλ = G · N̂+

λ . The loci N̂+
λ and Ŝλ are

invariant under scaling and are thus the affine cones over closed subschemes Nλ and
Sλ of X \Xss such that Sλ = G ·Nλ.

The locus X+
λ,M := {x ∈ X+

λ |M(x) = M} is identified with the points x ∈ Nλ
with M(x) = M . Moreover, Sλ,M := {x ∈ Sλ |M(x) = M} is identified with
G ·X+

λ,M . There are identifications

X+
λ,M = X+

λ \
⋃

(λ′,M ′),M ′<M

X+
λ′,M ′ and Sλ = Sλ,M \

⋃
(λ′,M ′),M ′<M

Sλ′,M ′ .

Thus X+
λ,M and Sλ,M are open in X+

λ and Sλ, and each are locally closed in U \U ss.
From the conclusion of Proposition 6.6.51, the loci Sλ,M are disjoint and cover
U \ U ss. This gives (1).

For (2), if x ∈ X ⊂ P(V ), then the limit x0 = limt→0 λ(t) ·x is the projection onto
the subspace W = ⊕Vχ ranging over characters χ ∈ X∗(T ) such that the projection
projχ(x) of x to Vχ is non-zero and 〈χ, λ〉 = −µ(x, λ). By Lemma 6.6.45, λ lies on
the ray spanned by the unique point closest to the origin in the closed convex set of
Cx = {λ ∈ X∗(T )R | 〈χ, λ〉 ≥ 1,projχ(x) 6= 0}. It follows that λ is also the closest
point to the origin in the analogously defined set Cx0

. Alternatively, one can check
that if λ0 ∈ X∗(T ) is a optimal destabilizing one-parameter subgroup for x0, then
µ(x0, λ0)/ ‖λ0‖ ≤ µ(x, λ)/ ‖λ‖ (giving the implication x0 ∈ X+

λ,M ⇒ x ∈ X+
λ,M ) and

µ(x, λNλ0)/
∥∥λNλ0

∥∥ ≤ µ(x, λ)/ ‖λ‖ for N � 0 (giving the implication x ∈ X+
λ,M ⇒

x0 ∈ X+
λ,M ).

For (3), for x ∈ X+
λ,M we claim that

Pλ = {g ∈ G(k) | gx ∈ X+
λ,M}. (6.6.15)

Since X+
λ,M is Pλ-invariant, we have the inclusion ‘⊂’. Conversely, if gx ∈ X+

λ,M ,
then both λ and gλg−1 are optimal destabilization one-parameter subgroups for
x. By Kempf’s Optimal Destabilization Theorem (6.6.41), the parabolics Pλ and
Pgλg−1 = gPλg

−1 are equal. Since NG(Pλ) = Pλ (Proposition C.3.7), we conclude
that g ∈ Pλ. Since [X+

λ /Pλ]→ [X/G] is proper, so is [X+
λ,m/Pλ]→ [Sλ,M/G]. The

map [X+
λ,m/Pλ]→ [Sλ,M/G] is surjective by construction, and injective on k-points

by (6.6.15); it is thus finite, surjective, and universally injective, and moreover an
isomorphism if char(k) = 0.

For (4), givenM < 0, assume by induction that
⋃

(λ′,M ′)∈Σ,M ′<M Sλ′,M ′ is closed.
Then for each (λ,M), we have that

Sλ,M = Sλ \
⋃

(λ′,M ′)∈Σ,M ′<M

Sλ′,M ′
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and it follows that
⋃

(λ′,M ′)∈Σ,M ′≤M Sλ′,M ′ is closed.
For (5), if X is smooth, then each X+

λ is smooth (Theorem 6.6.55). Since
X+
λ,M ⊂ X

+
λ is open, X+

λ,M is also smooth. In char(k) = 0, Sλ,M = G×Pλ X+
λ,M by

Part (3) and thus also smooth.
See also [Hes81, §3], [Hes79, §4] and [Kir84, §12-13].

Remark 6.6.72. When X is a smooth projective variety over C, the HKKN
stratification coincides with the Morse stratification of the square-norm of the
moment map ‖−‖2 : X → R. Given x ∈ X, the optimal destabilizing one-parameter
subgroup corresponds to the path of steepest descent starting from x. The centers
Zλ,M correspond to the set of critical values of ‖−‖2 while the strata Sλ,M are the
locally closed submanifolds consisting of points which flow to Zλ,M . See [Kir84, §6]
and [Nes84].

Example 6.6.73. Let Gm act linearly on X = P2 with weights −1, 2, 3. Letting λ =
id be the identity one-parameter subgroup, the non-semistable locus is V (x2y, x3z)
has the stratification Sλ−1,−1 ∪ Sλ,−2 ∪ Sλ,−3 where Sλ−1,−1 = {[1 : 0 : 0]}, Sλ,−2 =
{[0 : y : z] | y 6= 0}, and Sλ,−3 = {[0 : 0 : 1]}.

Example 6.6.74. Revisiting the action of SL2 onX = (P1)n with the Segre lineariza-
tion (Example 6.6.47), let λ0 : Gm → SL2 be the one-parameter subgroup defined
by λ0(t) = diag(t−1, t). The strata are indexed by (λ0,−1), (λ0,−3), . . . , (λ0,−n)
if n is odd and by (λ0,−2), (λ0,−4), . . . , (λ0,−n) if n is even. The strata Sλ0,n−2k

consists of tuples with precisely k > n/2 points in common and has codimension
k− 1. The blade X+

λ0,n−2k consists of tuples where precisely k points are 0 while the
center Zλ0,n−2k is the set of Gm-fixed points where k points are 0 and n− k points
are ∞.

Remark 6.6.75 (Θ-stratifications). As indicated in Remark 6.6.14, there is an
identification

Mor([A1/Gm], [X/G]) =
∐

λ∈X∗(G)/∼

[X+
λ /Pλ],

where X∗(G)/ ∼ represents the set of one-parameter subgroups up to conjugation.
A Θ-stratification of an algebraic stack X locally of finite type over k is the data

of a totally ordered set Σ with a minimal element 0 ∈ Σ and a stratification into
locally closed substacks

X =
∐
λ∈Σ

Sλ

such that:
(1) for each λ ∈ Σ, X≤λ :=

⋃
ρ≤λ Sρ is an open substack of X ,

(2) for each λ ∈ Σ, there is a union of connected components (called a Θ-stratum
of X≤λ)

S ′λ ⊂ Mor([A1/Gm],X≤λ)

such that ev0 : S ′λ → X≤λ is a closed immersion mapping isomorphically onto
Sλ, and

(3) for every x ∈ |X |, the set {λ ∈ Σ |x ∈ |X≤λ} has a minimal element.
See [HL14]. The semistable locus X ss is by definition the open substack X≤0 = S0.
Let Z ′λ be the preimage of S ′λ under the map

i : Mor(BGm, [X/G])→ Mor([A1/Gm],X ).
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The map ev0 : Mor([A1/Gm], [X/G])→ Mor(BGm,X ) obtained by restricting to 0
is a section of i, and there is a diagram analogous to (6.6.14)

Z ′λ
i // S ′λ

� � //

ev0

zz

X .

In characteristic 0, the HKKN stratification is an example of a Θ-stratification,
where one orders the indices (λ,M) first by −M and then arbitrarily by λ. In the
next chapter, we will see that the moduli stack Bunr,d(C) has a Θ-stratification
called the Harder–Narasimhan–Shatz stratification.

Recall that the Chow–Poincare polynomial of a G-equivariant scheme X is
pG(X, t) =

∑∞
d=0

(
dim CHd

G(U)Q
)
td.

Proposition 6.6.76 (Kirwan Surjectivity). Under the hypotheses of Theorem 6.6.70,
assume further assume that X is smooth and irreducible, and that char(k) = 0.
Suppose that for all (λ,M), the stratum Sλ,M is equidimensional of codimension
dλ,M . Then

dim CHk
G(X)Q = dim CHk

G(Xss)Q +
∑

(λ,M)

dim CH
k−dλ,M
Cλ

(Zλ,M )Q

and
pG(X, t) = pG(Xss, t) +

∑
(λ,M)

pCλ(Zλ,M , t)t
dλ,M .

Proof. From Theorem 6.6.70, we know that [Sλ,M/G] ∼= [X+
λ,M/Pλ]. From The-

orem 6.6.55, we know that ev0 : X+
λ,M → Zλ,M sending a point to its limit is a

Zariski-local affine fibration and equivariant with respect to Pλ → Cλ. We claim
that [X+

λ,M/Pλ]→ [Zλ,M/Cλ] induces an isomorphism

CH∗Cλ(Zλ,M )→ CH∗Pλ(X+
λ,M ). (6.6.16)

By the definition of the equivariant Chow groups, CHi
Pλ

(X+
λ,M ) is identified by

CHi(X+
λ,M ×Pλ V ) where V is an open subspace A(W ) of a Pλ-representation such

that Pλ acts freely on V and A(W ) \ V has sufficiently high codimension. On the
other hand, CHi

Cλ
(Zλ,M ) is identified with CHi(Zλ,M ×Cλ V ) and the map (6.6.16)

corresponds to the pullback map on Chow induced from the composition

X+
λ,M ×

Pλ V → Zλ,M ×Pλ V → Zλ,M ×Cλ V.

The first map is a Zariski local affine fibration and the second map is a principal
bundle under Uλ = ker(Pλ → Cλ). Since Uλ is unipotent, Uλ is isomorphic to
affine space and principal Uλ-bundles are locally trivial in the Zariski topology. We
conclude that (6.6.16) is an isomorphism.

We also claim that cdλ,M (NSλ,M/X) ∈ CH∗G(Sλ,M ) is a nonzero divisor. Since
NSλ,M/X |Zλ,M is identified with NSλ,M/X under CH∗Cλ(Zλ,M ) ∼= CH∗G(Sλ,M ), it
suffices to show that cdλ,M ((NSλ,M/X)|Zλ,M ) ∈ CH∗Cλ(Zλ,M )Q is a nonzero divisor
where d = dλ,M . By Theorem 6.6.55, λ acts on a fiber of the normal bundle with
non-zero weights. Thus Lemma 6.6.68 implies that cdλ,M ((NSλ,M/X)|Zλ,M ) is a
non-zero divisor.
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We therefore can apply Lemma 6.6.66 with the strata Sλ,M ordered first by −M
and then with any ordering of the λ’s; the semistable locus U ss is viewed as a strata
with the smallest index. This yields

dim CHk
G(X)Q = dim CHk

G(Xss)Q +
∑

(λ,M)

dim CH
k−dλ,M
G (Sλ,M )Q

= dim CHk
G(Xss)Q +

∑
(λ,M)

dim CH
k−dλ,M
Cλ,M

(Zλ,M )Q.

Remark 6.6.77. This formula was established for de Rham cohomology in [Kir84,
Thm. 5.4]. Instead of the excision sequence

CH
k−dλ,M
G (Sλ,M )→ CHk

G(S≤(λ,M))→ CHk
G(S<(λ,M))→ 0,

one uses the Thom–Gysin long exact sequence

· · · → H
k−dλ,M
G (Sλ,M )→ Hk

G(S≤(λ,M))→ Hk
G(S<(λ,M))→ · · · .

In this case, the surjectivity of the right map for all (λ,M) is equivalent to the
injectivity of the left map for all (λ,M), and the latter condition is verified as above
by the showing the top Chern class of the normal bundle is a non-zero divisor.

Example 6.6.78. As an application, we can compute the dimension of the rational
Chow groups of [(P1)n,ss/SL2] using the computation of the stratification in Exam-
ple 6.6.74. When n is odd, this also gives the dimension of the rational Chow groups
of the GIT quotient (P1)n,ss/ SL2 by Properties 6.1.33(4).

Since [(P1)n/ SL2] → BSL2 is an iterated P1-bundle and CH∗(SL2) ∼= Z[T ]
generated in degree 2,

CH∗([(P1)n/ SL2]) ∼= CH∗((P1)n)⊗ CH∗(BSL2)

∼= Z[H1, . . . ,Hn]/(H1, . . . ,Hn)2 ⊗ Z[T ]

and the Chow–Poincare polynomial is pSL2
((P1)n, t) = (1 + t)n(1 − t2)−1. On

the other hand, the strata Sλ,n−2k where precisely k points are the same has
codimension k − 1 and its center Zλ,n−2k consists of

(
n
k

)
Gm-fixed points. Thus

pGm(Zλ,n−2k, t) =
(
n
k

)
(1− t)−1 and

pG((P1)ss, t) = (1 + t)n(1− t)−1 −
∑
k>n/2

(
n

k

)
tk−1(1− t)−1

= 1 + nt+ · · ·+
(

1 + (n− 1) +

(
n− 1

2

)
+ · · ·+

(
n− 1

min(d, n− 3− d)

))
td

+ · · ·+ ntn−4 + tn−3.

See also [Kir84, §16.1].

6.7 Existence of good moduli spaces
In this section, we provide necessary and sufficient conditions for the existence of a
separated good moduli space in characteristic 0.

344



Theorem 6.7.1 (Existence Theorem of Good Moduli Spaces). Let X be an alge-
braic stack, of finite type over an algebraic closed field k of characteristic 0, with
affine diagonal. There exists a good moduli space π : X → X with X a separated
algebraic space if and only if X is Θ-complete (Definition 6.7.7) and S-complete
(Definition 6.7.9).

Moreover, X is proper if and only X satisfies the existence part of the valuative
criterion for properness.

The conditions of Θ-completeness and S-completeness are defined and discussed
in detail in §6.7.2.

6.7.1 Strategy for constructing good moduli spaces

We first explain how the Local Structure Theorem for Algebraic Stacks (6.5.1) gives
us a natural strategy to construct the good moduli space X. Namely, for each closed
point x ∈ X , we have an étale quotient presentation

W = [SpecA/Gx]
f
//

��

X

W = SpecAGx

where f is affine étale, and there is a preimage w ∈ W of x such that f induces
an isomorphism of stabilizer groups at w. We would like to show that the GIT
quotients W = SpecAGx as x ranges over closed points provides étale models that
can be glued to a good moduli space of X . To this end, we need to construct an
étale equivalence relation on W . Since f is affine, the fiber product R :=W ×X W
is isomorphic to a quotient stack [SpecB/Gx] and we have a diagram

R

��

p1 //

p2

// W

��

f
// X

R
q1 //

q2
// W

where R = SpecBGx . If q1, q2 : R ⇒ W defines an étale equivalence relation,
the algebraic space quotient W/R gives a candidate for a good moduli space of
f(W) ⊂ X .

Luna’s Fundamental Lemma (6.3.26) provides condition on when q1, q2 : R⇒W
are étale: we need that for all closed points r ∈ R that
(a) p1(r), p2(r) ∈ W are closed points; and
(b) p1 and p2 induce isomorphisms of stabilizer groups at r.

On the other hand, we know that f(w) ∈ X is closed and f induces an isomorphism
of stabilizer groups at the given preimage w of x. We would like to show that
there is an open neighborhood U of w such that the restriction f |U satisfies: (a)
f |U sends closed points map to closed points and (b) f |U induces isomorphism of
stabilizer groups at closed points, and moreover that these conditions are stable
under base change. While property (a) is stable under base change, property (b)
is not, and we will introduce a stronger condition below—called Θ-surjectivity
(Definition 6.7.30)—which is stable under base change and implies (b).
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The role of Θ-completeness and S-completeness in the construction of the good
moduli space is the following: the Θ-completeness of X implies that Θ-surjectivity
holds (and thus condition (a) and its base changes hold) in an open neighborhood
of w (Proposition 6.7.34) while S-completeness implies that condition (b) holds in
an open neighborhood of w (Proposition 6.7.40).

Counterexamples

The following examples do not admit good moduli spaces. We will explain why the
approach outlined above fails and then later explain how they violate the conditions
of Θ-completeness and S-completeness. We work over an algebraically closed field k.

Example 6.7.2. Consider the action of Gm on P1 given by t · [x : y] = [tx : y].
The quotient stack X = [P1/Gm] does not admit a good moduli space. Note that
Theorem 6.3.5(2) implies that every k-point has a unique closed point in its closure.
Here we see that [1 : 1] specializes to two closed points [1 : 0] and [0 : 1]. Alternatively,
if there were a good moduli space, it would have to be X → Speck (which is universal
for maps to algebraic spaces) but then the composition P1 → X → Speck would be
affine by Serre’s Criterion for Affineness (4.4.15) , a contradiction.

There are two open substacks U1,U2 ⊂ [P1/Gm] isomorphic to [A1/Gm] each
which admits a good moduli space πi : Ui → Speck but they do not glue to a good
moduli space of X : the intersection U1 ∩U2 is the open point in both U1 and U2 and
not the preimage of an open subscheme under πi. To see how the approach above
fails, observe that the étale presentation f : W := U1

∐
U2 → X satisfies (a) and (b)

but the base changes p1, p2 : W ×X W = U1

∐
U2

∐
U1 ∩ U2 →W fails (b), i.e. the

closed point in U1 ∩ U2 is mapped to a non-closed point under either projection.

Example 6.7.3. For a related example, let C be the projective nodal cubic with its
Gm-action. The quotient X = [C/Gm] has two points—one open and one closed—
but while there is no topological obstruction as above, X again does not admit a
good moduli space because C is projective, not affine. Viewing the nodal cubic
as the quotient of nodal union X ′ of two P1’s along 0 and ∞ modulo the rotation
action of Z/2, we have a finite étale cover [X ′/Gm] → [X/Gm]. Removing one of
the origins, we have an affine étale cover W = [Spec(k[x, y]/xy)/Gm] → X where
Gm acts via t · (x, y) = (tx, t−1y). Again, this map sends closed points to closed
points, but the projections W ×X W ⇒W do not.

Example 6.7.4. Let Gm act on A2 via t · (x, y) = (tx, y) and set X = [A2/Gm]r 0.
The point p = (1, 0) ∈ X is closed with trivial stabilizer, and the open immersion
f : A1 ↪→ X , sending z to (z, 1), is an étale quotient presentation. Note that while
f(0) is closed, the image f(z) is not closed for z 6= 0. The map X → A1 defined by
(x, y) 7→ y is not a good moduli space as A2 r 0 is not affine.

We will see in the next section that the previous examples violate Θ-completeness.
Similar phenomenon can naturally occur in moduli, e.g. by removing a single
polystable but not stable vector bundle from Bunr,d(C)ss. The next examples violate
S-completeness.

Example 6.7.5. Suppose char(k) 6= 2 and let G = Z/2 act on the non-separated
union U = A1

⋃
x 6=0 A1 by exchanging the copies of A1. The quotient stack [U/G] has

a Z/2 stabilizer everywhere except at the origin. This is a Deligne–Mumford stack
with quasi-finite but not finite inertia; in fact we’ve seen this before in Exercise 4.3.19
to illustrate the necessity of the separatedness condition in the Keel–Mori Theorem
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(4.3.11). By precomposing by the inclusion of one of the A1’s, we have an affine
étale morphism A1 → [U/G] which is stabilizer preserving at 0 but not in any open
neighborhood of 0.

For a related example, the Deligne–Mumford locus XDM in the moduli stack X =
[Sym4 P1/PGL2] of four unordered points in P1 is not separated (see Example 4.3.20).
Note however that the stable locus X s consisting of four distinct points is separated
and the semistable locus X ss = XDM ∪ {[0 : 0 : ∞ : ∞]} has a projective good
moduli space.

Example 6.7.6. Consider the action of G = Gm o Z/2 on X = A2 r 0 via
t · (a, b) = (ta, t−1b) and −1 · (a, b) = (b, a). Note that every point (a, b) ∈ X with
ab 6= 0 is fixed by the order 2 element (a/b,−1) ∈ G. The quotient stack [X/G] is a
non-separated Deligne–Mumford stack which does not admit a good moduli space;
note however that [A2/G]→ Speck[xy] is a good moduli space.

6.7.2 The valuative criteria: Θ- and S-completeness
We define the stack ‘Theta’ as

Θ := [A1/Gm]

over SpecZ.9 If R is a DVR with fraction field K and residue field κ, we define
ΘR := Θ× SpecR and set 0 ∈ ΘR to be the unique closed point. Observe that ΘR

is a local model of the quotient stack [A2/Gm] with weights 0, 1 as it is identified
with the base change of the good moduli space [A2/Gm]→ Speck[x] along the map
SpecR→ Speck[x] where x maps to a uniformizer π in R.

The following cartesian diagram gives a schematic picture of ΘR (where x is the
coordinate on A1 and π ∈ R is the uniformizer).

SpecR� q
x 6=0

##

BGm,R
M m

x=0

{{

SpecK
, �

::

� r

%%

ΘR BGm,κ
2 R

ee

K k

yy

ΘK

- 
π 6=0

;;

Θκ

2 R
π=0

cc
(6.7.1)

where the maps to the left are open immersions and to the right are closed immersions.
In particular, a morphism ΘRr0 = SpecR

⋃
SpecK ΘK → X to an algebraic stack

is the data of morphisms SpecR→ X and ΘK → X together with an isomorphism
of their restrictions to SpecK.

Definition 6.7.7. A noetherian algebraic stack X is Θ-complete10 if for every DVR
R, every commutative diagram

ΘR r 0 //

��

X

ΘR

;;

(6.7.2)

of solid arrows can be uniquely filled in.
9The symbol Θ is used as it resembles the picture of the two orbits of Gm on the complex plane.

10In the literature, the term ‘Θ-reductive’ is often used.
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Remark 6.7.8. We can state an equivalent formulation using the stack Mor(Θ,X )
classifying morphisms Θ→ X . Evaluation at 1 gives a morphism

ev1 : Mor(Θ,X )→ X , f 7→ f(1)

of stacks, and the Θ-completeness of X is equivalent to the morphism ev1 satisfying
the valuative criterion for properness. If X is of finite type over an algebraically
closed field k, then the stack Mor(Θ,X ) is an algebraic stack locally of finite type
over k; see Remark 6.6.14 where an explicit description is given when X is a quotient
stack. The stack Mor(Θ,X ) is however rarely quasi-compact, e.g. for X = BGm,
and ev1 is thus rarely proper.

For a DVR R with fraction field K, residue field κ, and uniformizer π, we define

φR := [Spec
(
R[s, t]/(st− π)

)
/Gm], (6.7.3)

where s and t have Gm-weights 1 and −1 respectively.11 The quotient φR is a
local model of the quotient stack [A2/Gm] with weights 1,−1 as it is identified with
the base change of the good moduli space [A2/Gm] → Speck[xy] along the map
SpecR→ Speck[xy] given by xy 7→ π.

The locus where s 6= 0 in φR is isomorphic to [Spec
(
R[s, t]s/(t− π/s)

)
/Gm] ∼=

[Spec(R[s]s)/Gm] ∼= SpecR and the locus where t 6= 0 has a similar description. We
thus have cartesian diagrams analogous to (6.7.1)

SpecR� q
s 6=0

##

ΘκN n

s=0

}}

SpecK
, �

99

� r

%%

φR BGm,κ
1 Q

cc

M m

{{

SpecR
- 

t6=0

;;

Θκ

0 P
t=0

aa
(6.7.4)

where the maps to the left are open immersions and to the right are closed immersions.
In particular, a morphism φR r 0 = SpecR

⋃
SpecK SpecR→ X to an algebraic

stack is the data of two morphisms ξ, ξ′ : SpecR→ X together with an isomorphism
ξK ' ξ′K over SpecK.

Definition 6.7.9. A noetherian algebraic stack X is S-complete if for every DVR
R, every commutative diagram

φR r 0 //

��

X

φR

;;

(6.7.5)

of solid arrows can be uniquely filled in.12

11The symbol φ is used because it looks like the non-separated affine line with an additional origin.
In the literature, STR is used as it is a compactification of STR = STRr0 = SpecR

⋃
SpecK SpecR,

which is the ‘standard test’ scheme for separatedness.
12The ‘S’ stands for ‘Seshadri’ as S-completeness is a geometric property reminiscent of how the

S-equivalence relation on sheaves implies separatedness of the moduli space.
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Remark 6.7.10. There are obvious extension of the definition of Θ-completeness
and S-completeness to morphisms f : X → Y but we will not need such notions.

Lemma 6.7.11. A noetherian algebraic stack with affine diagonal is Θ-complete
(resp. S-complete), if and only if every diagram (6.7.2) (resp. (6.7.5)), there exists
a lift after an extension of DVRs R ⊂ R′. In particular, Θ-completeness and S-
completeness can be verified on complete DVRs with algebraically closed residue
field.

Proof. We begin with the observation that if X → Y has affine diagonal and
j : U → T is an open immersion of algebraic stacks over Y with j∗OU = OT ,
then two extensions f1, f2 : T → X of a Y-morphism U → X are canonically 2-
isomorphic. Indeed, since IsomT (f1, f2)→ T is affine, the section over U induced
by the 2-isomorphism f1|U

∼→ f2|U extends uniquely to a section of T .
Consider a diagram (6.7.2), an extension of DVRs R ⊂ R′, and a lifting ΘR′ → X .

The open immersion j : ΘR r 0 → ΘR satisfies j∗OΘRr0 = OΘR and by flat base
change, the same property holds for the morphisms obtained by base changing j
along ΘR′ → ΘR, ΘR′ ×ΘR ΘR′ → ΘR, and ΘR′ ×ΘR ΘR′ ×ΘR ΘR′ → ΘR. By the
above observation, there exists a canonical 2-isomorphism between the two extensions
ΘR′ ×ΘR ΘR′ ⇒ ΘR′ → X which necessarily satisfies the cocycle condition. By fpqc
descent, the lifting ΘR′ → X descends to a lifting ΘR → X . The same argument
works for S-completeness.

Remark 6.7.12. It is even true that when X is of finite type over k, these criteria
can be verified on DVRs essentially of finite type over k; see [AHLH18, §4]. We will
not use this fact.

Lemma 6.7.13. Let f : X → Y be an affine morphism of noetherian algebraic
stacks. If Y is Θ-complete (resp. S-complete), so is X .

Proof. Since ΘR is regular and 0 ∈ ΘR is codimension 2, the pushforward of the
structure sheaf along ΘR r 0 → ΘR is the structure sheaf. We therefore have
canonical equivalences

MORY(ΘR r 0,X ) ∼= MOROY−alg(f∗OX , (ΘR r 0→ Y)∗OΘRr0)
∼= MOROY−alg(f∗OX , (ΘR → Y)∗OΘR)
∼= MORY(ΘR,X ).

The case of S-completeness is identical.

Proposition 6.7.14. If G is a reductive group over an algebraically closed field k,
then every quotient stack [SpecA/G] is Θ-complete and S-complete.

Proof. We first show that BGLn is Θ-complete. A morphism ΘR r 0→ X corre-
sponds to a vector bundle E on ΘR r 0. The algebraic stack ΘR is regular and
0 ∈ ΘR is a codimension 2 point. If Ẽ is a coherent sheaf on ΘR extending E, then
the double dual Ẽ∨∨ is a vector bundle extending E. (In fact the pushforward of
E along ΘR r 0 ↪→ ΘR is a vector bundle.) This provides the desired extension
ΘR → X . As G is affine, we can choose a faithful representation G ⊂ GLn. As G is
reductive, the quotient GLn /G is affine by Matushima’s Theorem (C.4.9). Using
the cartesian diagram

GLn /G //

��

Speck

��

BG // BGLn

�
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and smooth descent, we see that BG→ BGLn is affine. We conclude that BG and
[SpecA/G] are Θ-complete by Lemma 6.7.13.

As a result, we see that the hypotheses of Θ-completeness and S-completeness in
Theorem 6.7.1 are necessary.

Corollary 6.7.15. Let X be an algebraic stack of finite type over an algebraically
closed field k with affine diagonal. If π : X → X be a good moduli space, then X is
Θ-complete. Moreover, X is S-complete if and only if X is separated.

Proof. For a k-algebra A, the map ΘA → SpecA is a good moduli space and thus
every map ΘA → X factors through SpecA by the universality of good moduli
spaces (Theorem 6.3.5(4)). If R is a DVR with fraction field K, then every map
ΘR → X (resp. ΘK → X) factors through SpecR (resp. SpecK). To see that X is
Θ-complete, it therefore suffices to a find a lift of every commutative diagram

ΘR r 0 //

��

X

π

��

SpecR

;;

// X

of solid arrows. By the Local Structure for Good Moduli Spaces (6.5.3), there
exists an étale morphism SpecB → X containing the image of SpecR such that
X ×X SpecB ∼= [SpecA/G] with G linearly reductive and B = AG. Since SpecR→
X lifts to SpecB after an extension of DVRs and since Θ-completeness can be
checked after an extension (Lemma 6.7.11), we are reduced to the case of [SpecA/G].
This is Proposition 6.7.14.

If X is separated, then X is S-complete as φRr 0 = SpecR∪SpecK SpecR→ X
factors through SpecR by the valuative criterion for separatedness. The above
argument can be repeated to show that X is S-complete. Conversely, suppose
f, g : SpecR→ X are two maps such that f |K = g|K . After possibly an extension
of R, we may choose a lift SpecK → X of f |K = g|K . Since X → X is universally
closed (Theorem 6.3.5(1)), after possibly further extensions of R, we may choose
lifts f̃ , g̃ : SpecR → X of f, g such that f̃ |K ∼= g̃|K by the Valuative Criterion for
Universal Closedness (3.8.5). Since X is S-complete, we can extend f̃ and g̃ to a
morphism φR → X . As φR → SpecR is a good moduli space and hence universal
for maps to algebraic spaces, the morphism φR → X descends to a unique morphism
SpecR→ X which necessarily must be equal to both f and g. We conclude that X
is separated by the Valuative Criterion for Separatedness.

Lemma 6.7.16. Let X be a noetherian algebraic stack with affine and quasi-finite
diagonal. If R is a complete DVR, every map ΘR → X (resp. φR → X ) factors
through ΘR → SpecR (resp. φR → SpecR).

Proof. Since good moduli spaces are universal for maps to algebraic spaces, we
already know the claim when X is an algebraic space. In fact, we will reduce to the
case when X is affine in which case the factorizations follow easily from the fact that
Γ(ΘR,OΘR) = Γ(φR,OφR) = R.

Let x ∈ X (κ) be the image of 0 ∈ ΘR. Since Gm has no nontrivial finite
quotients, the induced map Gm → Gx on stabilizers is trivial. By Proposition 4.2.15,
we may find a smooth presentation U → X from an affine scheme together with a
lift u ∈ U(κ) of x. The map BGm,κ → X factors through u : Specκ→ U and thus
lifts to a map BGm,κ → Specκ

u−→ U . Letting Tn be the nth nilpotent thickening
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of BGm,κ ↪→ ΘR, deformation theory (Proposition 6.5.8) implies that we may find
compatible lifts Tn → U of Tn ↪→ ΘR → X . By Coherent Tannaka Duality (6.4.8),
there is an extension ΘR → U . Since ΘR → U factors through SpecR, so does
ΘR → X .

Proposition 6.7.17. Every noetherian algebraic stack X with affine and quasi-
finite diagonal (e.g. a Deligne–Mumford stack with affine diagonal) is Θ-complete.
Moreover, X is S-complete if and only if it is separated.

Proof. By Lemma 6.7.11, Θ-completeness and S-completeness can be tested on a
complete DVR R. Lemma 6.7.16 implies that that X is Θ-complete and also implies
that X is S-complete if only if every diagram

SpecR
⋃

SpecK SpecR //

��

X

SpecR

77

has a lift, which is the usual valuative criterion for separatedness.

Example 6.7.18. The examples in Examples 6.7.5 and 6.7.6 of non-separated
Deligne–Mumford stacks are not S-complete.

6.7.3 Examples of Θ- and S-completeness

We discuss the valuative criteria of Θ-completeness and S-completeness for quotient
stacks, stacks of coherent sheaves,f and the stack of all curves. In each case, it is
useful to provide geometric descriptions of morphisms from Θ = [A1/Gm] to the
stack.

Quotient stacks

Proposition 6.6.12 implies that giving a map Θ→ [U/G] is equivalent to giving a
point u ∈ U and a one-parameter subgroup λ : Gm → G such that limt→0 λ(t) · u
exists. We now use this interpretation to provide a geometric characterization of
Θ-completeness for quotient stacks. Recall that the attractor locus U+

λ represents
the functor MorGmk (A1, U) (Theorem 6.6.55). The evaluation map ev1 : U+

λ → U is
defined by sending f : A1 → U to f(1).

Proposition 6.7.19. Let G be a smooth linearly reductive group over an algebraically
closed field k, and U be a separated algebraic space of finite type over k with an
action of G. Then

[U/G] is Θ-complete ⇐⇒ for every map u : SpecR→ U from a complete
DVR over k with algebraically closed residue field
and one-parameter subgroup λ : Gm → G such that
limt→0 λ(t) · uK ∈ U(K) exists, then
limt→0 λ(t) · u ∈ U(R) also exists;

⇐⇒ for every one-parameter subgroup λ : Gm → G,
the morphism ev1 : U+

λ → U is a closed immersion.
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Proof. Since G is linearly reductive, BG is Θ-complete (Proposition 6.7.14). There-
fore Θ-completeness of [U/G] is equivalent to the existence of a lift in every diagram

ΘR r 0� _

��

// [U/G]

��

ΘR
//

::

BG

(6.7.6)

where R is a complete DVR with algebraically closed residue field (Lemma 6.7.11).
By Proposition 6.6.12, the map ΘR → BG corresponds to a one-parameter subgroup
λ : Gm → G while ΘR r 0→ [U/G] corresponds to a map u : SpecR→ U such that
limt→0 λ(t) · uK ∈ U(K) exists. In other words, we have a commutative diagram

SpecK

��

// U+
λ

ev1

��

SpecR
u //

;;

U

(6.7.7)

of solid arrows. A lift of (6.7.6) corresponds to the existence of limt→0 λ(t) ·u ∈ U(R)
or equivalently to a lift of (6.7.7). Since ev1 : U+

λ → U is a monomorphism of finite
type, it is closed immersion if and only if it is proper or equivalently satisfies the
existence part of the valuative criterion.

Example 6.7.20. When U = SpecA is affine, a one-parameter subgroup λ : Gm →
G induces a grading A =

⊕
d∈ZAd, and U

+
λ is represented by V (

∑
d<0Ad) (Exer-

cise 6.6.53). We see thus that ev1 : U+
λ ↪→ U is a closed immersion; this recovers the

fact that [U/G] is Θ-complete (Proposition 6.7.14).

Example 6.7.21. We can use this criteria to see that Examples 6.7.2 to 6.7.4 are
not Θ-complete. For [P1/Gm] with action t · [x : y] = [tx : y], taking λ = id we
have that (P1)+

λ = A1
∐
{∞}. For the quotient [C/Gm] of the nodal cubic C with

normalization P1 → C identifying 0 and ∞, then C+
∞ = P1 \∞ for λ = id. Finally,

for [X/Gm] with X = A2 r 0 with action t · (x, y) = (tx, y), then X+
λ = {y 6= 0} for

λ = id.

Example 6.7.22. We can also provide a interpretation using the algebraic stack
Mor(Θ, [X/G]) of morphisms which decomposes as a disjoint union

∐
λ[X+

λ /Pλ]
where λ varies over conjugation classes of one-parameter subgroups λ : Gm → G
(Remark 6.6.14). The evaluation morphism ev0 : [X+

λ /Pλ]→ [X/G] is induced by
the inclusion X+

λ → X. The Θ-completeness of [X/G] corresponds to the properness
of the maps [X+

λ /Pλ]→ [X/G].

One can also give a criteria for when [U/G] is S-complete in terms of one-
parameter subgroups λ : Gm → G and properties of the morphism MorGmA1 (A2, U ×
A1)→ U × U × A1, where the maps to U are obtained by restricting along the two
maps A1 → A2 given by x 7→ (x, 1) and x 7→ (1, x).

Stacks of coherent sheaves

Given a projective scheme X, let Coh(X) denote the algebraic stack of coherent
sheaves on X (see Exercise 3.1.21). Maps Θ→ Coh(X) correspond to filtrations.
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Proposition 6.7.23. Let X be a projective scheme over an algebraically closed field
k. For a noetherian k-algebra R, MORk(ΘR,Coh(X)) is equivalent to the groupoid
of pairs (E,E•) where E is a coherent sheaf on XR flat over R and

E• : 0 ⊂ · · · ⊂ Ei−1 ⊂ Ei ⊂ Ei+1 ⊂ · · · ⊂ E

is a Z-graded filtration such that Ei = 0 for i � 0, Ei = E for i � 0, and each
factor Ei/Ei−1 is flat over R. A morphism (E,E•)→ (E′, E′•) is an isomorphism
E → E′ of coherent sheaves compatible with the filtration.

Under this correspondence, the morphism ΘR → Coh(X) sends 1 to E and 0 to
the associated graded grE• :=

⊕
iEi/Ei−1, and factors through Bun(X) ⊂ Coh(X)

if and only if E and each factor Ei/Ei−1 is a vector bundle.

Proof. A morphism ΘR → Coh(X) corresponds to a coherent sheaf F on C ×ΘR

flat over ΘR. By smooth descent this corresponds to a coherent sheaf on C×A1
R flat

over A1
R together with a Gm-action. Pushing forward F along the affine morphism

C ×ΘR → C ×BGm,R, we see that F also corresponds to a graded OCR [x]-module
flat over R[x]. Writing F =

⊕
iEi with each Ei a coherent sheaf on CR, then

multiplication by x induces maps x : Ei → Ei+1 which are necessarily injective as
F is flat over R[x], hence torsion free. Since F is finitely generated as a graded
R[x]-module, there exist finitely many homogeneous generators with bounded degree.
Thus Ei = E for i � 0. On the other hand, considering the OCR [x]-submodule
E≥d :=

⊕
i≥nEi ⊂ F , the ascending chain · · · ⊂ E≥d ⊂ E≥d−1 ⊂ · · · ⊂ F must

terminate as F is noetherian. It follows that Ei = 0 for i � 0. Since F is flat as
an R[x]-module, the quotient F/xF =

⊕
iEi/Ei−1 is flat as an R-module and thus

each factor Ei/Ei−1 is flat over R.
Conversely, given E and a filtration E• satisfying the above conditions, consider

the graded OCR [x]-module F :=
⊕

iEi. We will show by induction that E≥d :=⊕
i≥dEi is flat and finitely generated over R[x]; this implies that F is flat and

finitely generated over R[x] since Ei = 0 for i� 0. For d� 0, E≥d is isomorphic to
the graded R[x]-module (E ⊗R R[x])〈d〉, where 〈d〉 denotes the grading shift, and is
thus flat and finitely generated. For every d, we have an exact sequence

0→ (Ed ⊗R R[x])〈d〉 → E≥d → ((Ed+1/Ed)⊗R R[x])〈d+ 1〉 → 0.

The flatness of E and the quotients Ed+1/Ed implies the flatness of each Ed. Thus
the left and right term above are flat and finitely generated as R[x]-modules, and
thus so is the middle term.

Proposition 6.7.24. For every projective scheme X over an algebraically closed
field k, the algebraic stack Coh(X) is Θ-complete and S-complete.

Proof. Given a DVR R, Proposition 6.7.23 implies that a map ΘR r 0→ Coh(X)
corresponds to a coherent sheaf E on XR flat over R and a Z-graded filtration
F• : · · ·Fi−1 ⊂ Fi ⊂ · · · ⊂ EK such that Fi = EK for i� 0, Fi = 0 for i� 0, and
Fi/Fi−1 is flat over R. Viewing E is a subsheaf of EK , we define Ei := Fi ∩ E as
the intersection in EK . Since Ei/Ei−1 is a subsheaf of Fi/Fi−1, it is torsion free,
hence flat as an R-module. The filtration E• defines an extension ΘR → Coh(X).
(Aside: this is exactly the argument for the valuative criterion of properness of the
Quot scheme (Proposition 1.4.2). Note also that if we let j : ΘR r 0 ↪→ ΘR, let
jx : SpecR ↪→ ΘR and let jπ : ΘK → ΘR denote the open immersions and we let E
be the coherent sheaf on C × (ΘR \ 0) denoting the union of E and F•, then the
extension is given by (id×j)∗E = jx,∗E ∩ jπ,∗F• = E[x±1]∩ F• = E•, where E[x±1]
is the Z-graded filtration given by placing E in every degree.)
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For S-completeness, suppose we are given a map φRr0→ Coh(X) corresponding
to coherent sheaves E and F flat over R and an isomorphism α : EK → FK . Recalling
the quotient presentation φR = [Spec(R[s, t]/(st− π))/Gm], we have several natural
open immersions: j : φR r 0 ↪→ φR, js, jt : SpecR ↪→ φR (with s 6= 0 and t 6= 0),
and jst : SpecK → φR (with st 6= 0). We compute the pushforward as the equalizer

0 // (id×j)∗E // (id×js)∗E ⊕ (id×jt)∗F // (id×jst)∗FK

(a, b) � // a− α(b).

The pushforwards can be computed as graded modules over R[s, t]/(st− π):

(id×jst)∗FK = FK ⊗R R[t±1] =
⊕
n∈Z

FKt
n,

(id×js)∗E = E ⊗R R[t±1] =
⊕
n∈Z

Etn,

(id×jt)∗F = F ⊗R R[s±1] ∼=
⊕
n∈Z

(π−n · F )tn ⊂ (id×jst)∗FK

where we’ve used that s = t−1π. Thus

j∗E ∼=
⊕
n∈Z

(
E ∩ (π−n · F )

)
tn ⊂ (id×jst)∗FK .

Each R-module E ∩ (π−n · F ) ⊂ E is finitely generated since E is. Moreover, the
ascending chain · · · ⊂ E ∩ (π−n · F ) ⊂ E ∩ (π−n−1 · F ) ⊂ · · · terminates to E and
it follows that j∗E is coherent. To show that j∗E is flat over φR, we only need to
check that it is flat over 0. By the Local Criterion for Flatness (Theorem A.2.5), we
need to show that TorA1 (A/m, j∗E) = 0 where A = R[s, t]/(st − π) and m = (s, t).
The Koszul complex gives a resolution of the residue field κ = A/m = R/π:

0→ A
(t,−s)−−−−→ A⊕A (s,t)−−−→ A→ κ→ 0.

Tensoring with j∗E yields a complex

0→ j∗E
(t,−s)−−−−→ j∗E ⊕ j∗E

(s,t)−−−→ j∗E . (6.7.8)

The pushforward of the exact sequence

0→ OφRr0
(t,−s)−−−−→ OφRr0 ⊕OφRr0

(s,t)−−−→ OφRr0 → 0

along id×j : C × φR r 0 ↪→ C × φR is a left exact sequence of vector bundles and
tensoring with j∗E yields a left exact sequence which identified with (6.7.8). Thus
TorA1 (A/m, j∗E) = 0.

The description in Proposition 6.7.23 interpreting maps from Θ as filtrations
allows us to prove a simple criteria for an open substack U ⊂ Coh(X) to be Θ-
complete or S-complete. We call two Z-graded filtrations

E• : 0 ⊂ · · · ⊂ Ei−1 ⊂ Ei ⊂ Ei+1 ⊂ · · · ⊂ E

and
F • : F ⊃ · · · ⊃ F i−1 ⊃ F i ⊃ F i+1 ⊃ · · · ⊃ 0
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are opposite if Ei/Ei−1
∼= F i/F i+1 for all i. Observe that F• defined by Fi = F−i

is a Z-graded filtration with the same indexing as E• and being opposite means that
grE• is isomorphic as a Z-graded sheaf to grF• with the opposite grading. A map
[(Speck[x, y]/xy)/Gm]→ Coh(X), where t · (x, y) = (tx, t−1y), is the same data as
two opposite filtration E• and F • such that Ei = 0 and F i = F for i � 0, and
Ei = E and F i = 0 for i� 0; in this case, under this map (1, 0) 7→ E, (0, 1) 7→ F ,
and (0, 0) 7→ grE•.

Proposition 6.7.25. Let C be a smooth, connected, and projective scheme over an
algebraically closed field k, and let U ⊂ Coh(C) be an open substack.
(1) The substack U is Θ-complete if and only if for every DVR R (with fraction

field K and residue field κ), coherent sheaf E on CR flat over R, and Z-graded
filtration E• with Ei = 0 for i� 0, Ei = E for i� 0 and with each Ei/Ei−1

flat over R, then if E and gr(E•|K) are in U , so is gr(E•|κ).
(2) The substack is S-complete if and only if for every pair of opposite filtrations

E• and F • of E,F ∈ U(k), the associated graded grE• is in U .

Remark 6.7.26. For a projective scheme of arbitrary dimension, Part (1) and the
(⇐) implication in (2) hold with the same proof.

Proof. Since we already know that Coh(C) is S-complete and Θ-complete, the
valuative criteria for U are equivalent to the existence of lifts for all commutative
diagrams

ΘR r 0� _

��

// U� _

��

ΘR
//

99

Coh(C)

and

φR r 0� _

��

// U� _

��

φR //

99

Coh(C)

where R is a DVR. In other words, we need to show that the images of 0 under the
unique fillings ΘR → Coh(C) and φR → Coh(C) are contained in U . Therefore (1)
holds as the image of 0 under ΘR → Coh(C) is gr(E•|κ).

For the (⇐) implication in (2), the restriction of φR → Coh(C) along π = 0
yields a map [Spec(k[x, y]/xy)/Gm]→ Coh(C) corresponding to opposite filtrations
E• and F •. If we grE• ∈ U(k), then the image of φR → Coh(C) is contained in U .
Conversely, let [Spec(k[x, y]/xy)/Gm] → Coh(X) be a map such that the images
of (1, 0) and (0, 1) are in U but the image of (0, 0) is not in U . Let Xn be the nth
nilpotent thickening of the closed immersion [Spec(k[x, y]/xy)/Gm] ↪→ φR. Since
the obstruction to lifting a coherent sheaf E lies in the second coherent cohomology
of X0 and since X0 is cohomologically affine, deformation theory and Coherent
Tannaka Duality (6.4.8) yield an extension φR → Coh(X) with the image of φR r 0
contained in U .

Remark 6.7.27. If the genus of C is at least 2, then the stack of vector bundles
Bun(C) is not Θ-complete nor S-complete. Let p ∈ C be a point defined by
the vanishing of a section s ∈ Γ(C,O(p)), and let I ⊂ OCR be the ideal sheaf
of (p, 0) ∈ C × SpecR. The injection (s,−π) : OCR(−p) ↪→ OCR ⊕ OCR(p) has
quotient I, which is torsion free, hence flat over R, but is not a vector bundle. By
Proposition 6.7.25, we see that Bun(C) is not Θ-complete.

Let L and M be line bundles on C, and let p ∈ C be a point such that
Ext1

OC (M,L(p)) and Ext1
OC (L,M(p)) are nonzero; if L and M have the same
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degree, then a Riemann–Roch calculation shows that both Ext1 groups are nonzero.
Let Q (resp. Q′) be a nontrivial extension of M by L(p) (resp. L by M(p)). Then

E• : 0 ⊂ L ⊂ L(p) ⊂ Q and F • : Q′ ⊃M(p) ⊃M ⊃ 0

define opposite filtrations where E0 = L and F 0 = Q′. The associated graded
grE• = L⊕ κ(p)⊕M is not a vector bundle and thus Bun(C) is not S-complete by
Proposition 6.7.25.

We will apply the above criteria later to verify that the stack Bunss
r,d(C) of

semistable vector bundles on a smooth, connected, and projective curve is both
Θ-complete and S-complete.

Stack of all curves

Proposition 6.7.28. Let Mall
g be the algebraic stack of all proper curves (Theo-

rem 5.4.7) over an algebraically closed field k. For every k-algebra R, MORk(ΘR,Mall
g )

is the groupoid whose objects are Gm-equivariant families of proper curves C → A1
R,

where Gm acts on A1
R with the usual scaling action. Morphisms are Gm-equivariant

morphisms.

Proof. The statement follows from smooth descent applied to A1
R → ΘR.

Remark 6.7.29. A similar description holds for other moduli stacks of varieties.
Such Gm-equivariant maps are often called ‘test configurations’ in the literature.

The stacksMg andMg of smooth and stable curves are both Θ-complete and
S-complete as they are separated Deligne–Mumford stacks. There is unfortunately
no known simple criteria—similar to the above criteria for quotient stacks and stacks
of coherent sheaves—to verify whether a given substack of the stack Mall

g of all
curves is Θ-complete or S-complete.

6.7.4 Θ-completeness and Θ-surjectivity

The property that a morphism X → Y sends closed points to closed points is not
stable under base change (see Examples 6.7.2 and 6.7.3). We introduce a stronger
and better behaved property called Θ-surjectivity. The main result of this section
is that an étale quotient presentation ([SpecA/Gx], w)→ (X , x) is Θ-surjective in
an open neighborhood of w as long as X is Θ-complete (prop:theta-surjective-in-
open-neighborhood). As motivated in §6.7.1, this result will be crucial in proving
the main existence theorem (Theorem 6.7.1) of this section.

Definition 6.7.30. Let f : X → Y be a morphism of algebraic stacks and x ∈ X (k)
be a geometric point. We say that f is Θ-surjective at x if every diagram

Speck x //
� _

1

��

X

f

��

Θk //

<<

Y

(6.7.9)

has a lift. We say that f is Θ-surjective if it is Θ-surjective at every geometric point.
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This notion is clearly stable under base change. Every morphism f : X → Y of
noetherian algebraic stacks where Y has affine and quasi-finite diagonal is Θ-surjective
since in this case every map Θk → Y factors through Speck (Lemma 6.7.16). The
next lemma gives condition for when the lift is unique and when the definition is
independent of the choice of geometric point.

Lemma 6.7.31. Let f : X → Y be a separated, representable, and finite type
morphism of noetherian algebraic stacks.
(1) Every lift of (6.7.9) is unique.
(2) If f is Θ-surjective at a geometric point x ∈ X (k), then f is Θ-surjective at

every other geometric point x′ ∈ X (k′) representing the same point in |X | as
x.

Proof. Part (1) follows from descent and the valuative criterion for separatedness.
To show (2), it suffices to show that given an extension k→ k′ of algebraically closed
fields, a lift Θk′ → X implies the existence of a lift Θk → X . We write k′ =

⋃
λAλ

as a union of finitely generated k-subalgebras. By Limit Methods (§A.6), there
exists a lift ΘAλ → X of SpecAλ → X . Restricting along a closed point of SpecAλ
provides a lift over k.

Proposition 6.7.32. Let f : X → Y be a morphism of algebraic stacks, each of
finite type over an algebraically closed field k with affine diagonal. Suppose that
the closed points of Y have linearly reductive stabilizer. If f is Θ-surjective, then f
sends closed points to closed points.

Proof. Let x ∈ X be a closed point. Let f(x) y0 be a specialization to a closed
point. By Corollary 6.6.21, this specialization can be realized by a map Θ → Y.
Since f is Θ-surjective, this can be lifted to a map g : Θ→ X with g(1) = x. But
x ∈ X is a closed point so this lift must correspond to the trivial specialization
x x. It follows that f(x) = y0 is a closed point.

Remark 6.7.33. The converse is not true. In Example 6.7.3, where C is the nodal
cubic with Gm-action, the étale morphism [Spec(k[x, y]/(xy))/Gm]→ [C/Gm] sends
closed points to closed points but is not Θ-surjective.

Proposition 6.7.34. Let X be an algebraic stack of finite type over an algebraically
closed field k with affine diagonal such that the closed points of X have linearly
reductive stabilizers. Let x ∈ X be a closed point, let f : ([SpecA/Gx], w)→ (X , x)
be an affine étale morphism inducing an isomorphism of stabilizer groups at w,
and let π : [SpecA/Gx] → SpecAGx . If X is Θ-complete, there exists an open
affine neighborhood U ⊂ SpecAGx of π(w) such that f |π−1(U) : π−1(U) → X is
Θ-surjective.

Proof. Let W = [SpecA/Gx] and define Σf ⊂ |W| as the set of points y ∈ W such
that f is Θ-surjective at y. We first show that Σf ⊂ W is open if X ∼= [SpecB/G]
with G linearly reductive. Zariski’s Main Theorem (6.1.10) provides a factorization

f : W
j
↪→ X̃ ν−→ X

where j is an open immersion and ν is a finite morphism. By Lemma 6.7.13,
[SpecB/G] is Θ-complete, and by Proposition 6.7.14, X̃ is also Θ-complete. As ν is
finite, Σj = Σf and we may assume that f is an open immersion. Let Z ⊂ X be
the reduced complement of W and let π : X → SpecBG denote the good moduli
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space. We claim that |W|rΣf = π−1(π(|Z|))∩ |W|. The inclusion “⊂” is clear: the
morphism X r π−1(π(|Z|)) ↪→ X is the base change of the Θ-surjective morphism
X r π(|Z|) ↪→ X of algebraic spaces. Conversely, let y ∈ π−1(π(|Z|)) ∩ |W|
represented by a geometric point SpecK → X . Let z ∈ |ZK | be the unique closed
point in the closure of y ∈ |XK | and let ΘK → XK be a morphism representing the
specialization y  z (Corollary 6.6.21). Since ΘK → X does not lift to W, y /∈ Σf .

We now claim that Σf ⊂ W is constructible. Use the Local Structure Theorem
(6.5.1) to choose an affine, étale, and surjective morphism g : X ′ = [SpecB/G]→ X
with G linearly reductive. Let W ′ = W ×X X ′ with projections g′ : W ′ →W and
f ′ : W ′ → X ′. Since we already know that Σf ′ is open, the claim follows from
Chevalley’s Theorem (3.3.29) once we show that W \Σf = g′(W ′ \Σf ′). To see this,
it suffices to show that for an algebraically closed field K, every map h : ΘK → X
lifts to a map h′ : ΘK → X ′. Let x′ ∈ X ′(K) be a preimage of h(0) ∈ X (K).
Since g is representable and étale, the induced map Gx′ → Gh(0) on stabilizers is
injective with finite cokernel. Thus the map Gm,K → Gh(0) on stabilizers induced by
h : ΘK → X factors through Gx′ . We may therefore lift the map h|BGm,K to a map
BGm,K → X ′. Letting Xn be the nth nilpotent thickening of BGm,K ↪→ ΘK , there
are compatible lifts Xn → X ′ of Xn → X by deformation theory (Proposition 6.5.8)
which extends to a lift ΘK → X ′ by Coherent Tannaka Duality (6.4.8).

Since Σf ⊂ W is constructible and w ∈ Σf , to show that Σf is open, it suffices to
show that for every generization ξ  w of w is contained in Σf . Let h : SpecR→W
be a morphism from a complete DVR representing the specialization ξ  w. Letting
K and κ be the fraction and residue field of R, we claim that there exists a lift
(necessarily unique as f is separated)

SpecK� _

��

hK // W

f

��

ΘK
g
//

g̃

;;

X .

(6.7.10)

This claim implies that f is Θ-surjective at ξ, i.e. ξ ∈ Σf . To show the claim, we
first apply the Θ-completeness of X to construct a lift

ΘR r 0
(f◦h)∪g

//
� _

��

X

ΘR.

q

;;

Since W → X is stabilizer preserving at w, we have a lift BGm,κ →W of q|BGm,κ .
Since ΘR is coherently complete along BGm,κ (6.4.11), we may apply deformation
theory (Proposition 6.5.8) and Coherent Tannaka Duality (6.4.8) to construct a lift

BGm,κ� _

��

// W

f

��

ΘR

q̃

;;

q
// X

The restriction q̃|SpecR is 2-isomorphic to h since it agrees at the closed point and f
is étale. It follows that g̃ := q̃|ΘK is a lift of (6.7.10).

The topology of k-points of Θ-complete stacks is analogous to the topology of
quotient stacks arising from GIT.
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Proposition 6.7.35. Let X be an algebraic stack of finite type over an algebraically
closed field k with affine diagonal. Assume that X is Θ-complete and that the closed
points of X have linearly reductive stabilizer. Then the closure of every k-point
contains a unique closed point.

Proof. Assume that x and x′ are two closed points in the closure of p ∈ X (k). By
Corollary 6.6.21, there are maps f, f ′ : Θ→ X realizing the specializations p x
and p x′. Under the action of G2

m on A2 given by (t1, t2) · (y1, y2) = (t1y1, t2y2),
the maps f and f ′ glue to define a map [A2/G2

m] r 0→ X . By considering only the
diagonal Gm-action, the map [A2/Gm]r 0→ X extends to Ψ: [A2/Gm]→ X by the
Θ-completeness of X . Then Ψ(0, 0) is a common specialization of x = Ψ(1, 0) and
x′ = Ψ(0, 1). Since x and x′ are closed points, we have that x = Ψ(0, 0) = x′.

Exercise 6.7.36. With the hypotheses of Proposition 6.7.35, show that if in addition
X has a unique closed point, then X ∼= [Spec(A)/Gx] such that AGx is an artinian
local k-algebra with residue field k.

6.7.5 Unpunctured inertia

We prove that an S-complete stack X has ‘unpunctured inertia’ (Theorem 6.7.43) and
the consequence that an étale quotient presentation f : ([SpecA/Gx], w)→ (X , x) is
stabilizer preserving in an open neighborhood of w (Proposition 6.7.40).

Definition 6.7.37. We say that a noetherian algebraic stack has unpunctured inertia
if for every closed point x ∈ |X | and every formally versal morphism p : (T, t)→ (X , x)
where T is the spectrum of a local ring with closed point t, every connected component
of the inertia group scheme AutX (p)→ T has non-empty intersection with the fiber
over t.

Remark 6.7.38. Here (T, t) → (X , x) is formally versal if the map T̂ → X from
the completion is is formally versal at t as in Definition D.3.5.

Remark 6.7.39. Unpuncturedness is related to the purity of the morphism AutX (p)→
T as defined in [RG71, §3.3] (see also [SP, Tag 0CV5]). If T is the spectrum of a
strictly henselian local ring, then purity requires that if s ∈ T is an arbitrary point
and γ is an associated point in the fiber AutX (p)s, then the closure of γ in AutX (p)
has non-empty intersection with the fiber over the closed point t of T .

Proposition 6.7.40. Let X be an algebraic stack of finite type over an algebraically
closed field k with affine diagonal. Let x ∈ X be a closed point with linearly reductive
stabilizer. Let f : ([SpecA/Gx], w)→ (X , x) be an affine étale morphism inducing
an isomorphism of stabilizer groups at w, and let π : [SpecA/Gx]→ SpecAGx . If X
has unpunctured inertia, there exists an open affine neighborhood U ⊂ SpecAGx of
π(w) such that f |π−1(U) : π−1(U)→ X induces isomorphisms of stabilizer groups at
all points.

Proof. Set W = [SpecA/Gx]. It suffices to find an open neighborhood U ⊂ W of
w such that f |U : U → X induces an isomorphism IU → U ×X IX . Consider the
cartesian diagram

IW //

��

W ×X IX

��

W // W ×X W;

�
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see Exercise 3.2.14. Since f is separated and étale, the morphism IW →W ×X IX
is finite and étale. We set Z ⊂ W ×X IX to be the open and closed substack over
which IW →W ×X IX is not an isomorphism. Since f is stabilizer preserving at w,
the point w is not contained in the image of Z under p1 : W ×X IX →W.

Consider a formally smooth morphism (T, t)→ (X , x) from the spectrum of a
local ring with closed point t. Since X has unpunctured inertia, the preimage of Z
in W×X IX ×X T is empty; indeed, if there were a non-empty connected component
of this preimage, it must intersect the fiber over t non-trivially contradicting that
w /∈ p1(Z). This in turn implies that w /∈ p1(Z). Therefore, if we set U =Wrp1(Z),
the induced morphism IU → U ×X IX is an isomorphism.

Proposition 6.7.41. Let X be a noetherian algebraic stack.
(1) If X has quasi-finite inertia, then X has unpunctured inertia if and only if X

has finite inertia.
(2) If X has connected stabilizer groups, then X has unpunctured inertia.

Proof. If X has finite inertia, then AutX (p) → T is finite so clearly the image of
each connected component contains the unique closed point t ∈ T . For the converse,
we may assume that T is the spectrum of a Henselian local ring in which case
AutX (p) = G

∐
H where G → T finite and the fiber of H → T over t is empty

(Proposition A.9.3). If T is nonempty (i.e. AutX (p) → T is not finite), then any
connected component of T doesn’t meet the central fiber and thus X does not have
unpunctured inertia.

For (2), by definition all fibers of AutX (p)→ U are connected, so every connected
component of AutX (p) intersects the component containing the identity section.

Remark 6.7.42. For algebraic stacks with connected stabilizer groups (e.g. the mod-
uli stack Bunss

r,d(C) of semistable vector bundles on a curve), Proposition 6.7.41(2)
implies unpunctured inertia. The deeper result below (Theorem 6.7.43) is therefore
unneeded in the proof of existence of a good moduli space of Bunss

r,d(C).

The rest of this section is dedicated to proving the following theorem.

Theorem 6.7.43. Let X be an algebraic stack of finite type over an algebraically
closed field k with affine diagonal. Assume that the closed points have linearly
reductive stabilizers. If X is S-complete, then X has unpunctured inertia.

Proof. Let x ∈ |X | be a closed point, let p : (U, u)→ (X , x) be a formally smooth
morphism from the spectrum of a local ring, and let H ⊂ AutX (p) be a connected
component. The image of the projection H → U is a constructible set whose closure
contains u. It follows that we can find a DVR R with residue field k and a map
SpecR→ U whose special point maps to u and whose generic point lies in the image
of H → U . Let ξ : SpecR → U

p−→ X denote the composition. After a residually-
trivial extension of DVRs, we may assume that the generic point SpecK → U lifts
to H. This gives a commutative diagram

SpecK //

��

SpecR

��

ξ

##

H // U
p
// X .

Let HK be the base change of H → U along SpecK → U . We claim we can
choose a finite type point g ∈ HK of finite order. If g ∈ HK is a finite type point,
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then after replacing K with a finite field extension, we can decompose g = gsgu
under the Jordan decomposition, where gs is semisimple and gu is unipotent. Now
consider the reduced Zariski closed K-subgroup H ′ ⊂ AutX (p)K generated by gs.
Because gs is semisimple, H ′ is a diagonalizable group scheme over K, and we
may replace gs with a finite order element in H ′ which still commutes with gu. If
char(K) > 0, then gu has finite order and we are finished. If char(K) = 0, then gu
lies in the identity component of G, so g lies on the same component as the finite
order element gs. This gives the desired element.

We claim that after replacing R with a residually-trivial extension, there is a map
ξ′ : SpecR→ X such that ξ′K ' ξK and g ∈ HK extends to an automorphism of ξ′.
This would finish the proof: since the closure of g meets the fiber of AutX (p)→ U
over u, the component H must also meet the central fiber.

If X ∼= [SpecA/GLn], then this claim is precisely the content of Proposition 6.7.44
below. We will use the Local Structure Theorem (6.5.1) to reduce to this case: let
f : (SpecA/Gx], w)→ (X , x) be an étale quotient presentation. After replacing R
with a residually-trivial extension, we may lift ξ to a map ξ̃ : SpecR→ [SpecA/Gx]

such that ξ̃(0) = w. To show that g lifts to an element g̃ ∈ Aut(ξ̃K), we will use
S-completeness. We may glue ξ to itself along g to define a morphism

SpecR
⋃

SpecK

SpecR = φR r 0→ X .

Since X is S-complete, this map extends to a morphism h : φR → X . Since ξ(0) = x
and x is a closed point, the image h(0) of 0 ∈ φR is also x. Since f is stabilizer
preserving at w, we may lift h|BGm to a map h̃0 : BGm → [SpecA/Gx] with image
w. By Deformation Theory (6.5.8), we may find compatible lifts to [SpecA/Gx] of
the restrictions of h to the nilpotent thickenings of φR along 0, and by Coherent
Tannaka Duality (6.4.8), we may find construct a lift h̃ below

BGm
h̃0 //

� _

��

[SpecA/Gx]

f

��

φR

h̃
88

h // X .

Since f is affine and étale, both restrictions h̃|s6=0 and h̃|t 6=0 to SpecR are iso-
morphic to ξ̃ and thus h̃|φRr0 gives a lift g̃ ∈ Aut(ξ̃K) of g. Finally, we apply
Proposition 6.7.44 to construct a map ξ̃′ : SpecR → [SpecA/Gx] with ξ̃′(0) = w

such that ξ̃K ' ξ̃′K and g̃ extends to an automorphism of ξ̃′. The composition
ξ′′ := f ◦ ξ̃′′ : SpecR→ X then satisfies the claim.

See also [AHLH18, Thm. 5.2].

Our proof used the following valuative criterion for a quotient stack.

Proposition 6.7.44. Let X = [SpecA/G] where SpecA is an affine scheme of
finite type over an algebraically closed field k equipped with an action by a linearly
reductive group G. Let x ∈ X be a closed point. Then X satisfies the following
property:
(?) For every DVR R with residue field k and fraction field K, for every morphism

ξ : SpecR → X with ξ(0) ' x, and for every K-pint g ∈ AutX (ξK) of finite
order, there is an extension R → R′ of DVRs (with K ′ = Frac(R′)) and a
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morphism ξ′ : SpecR′ → X such that ξ′(0) ' x, ξ′K′ ' ξK′ and g|K′ extends
to an automorphism of ξ′.

Remark 6.7.45. In other words, for every map ξ : SpecR→ SpecA and element
g ∈ GξK ⊂ G(K) of finite order, there exists after an extension R ⊂ R′ of DVRs
and an element h ∈ G(K ′) such that h · ξK′ extends to a map ξ′ : SpecR′ → SpecA
with ξ′(0) ∈ Gx and such that h−1g|K′h extends to an R′-point of G.

To illustrate this criterion, consider the the action of G = Gm o Z/2 on A2 via
t·(a, b) = (ta, t−1b) and−1·(a, b) = (b, a). Note that every point (a, b) ∈ A2 with ab 6=
0 is fixed by the order 2 element (a/b,−1) ∈ G. Consider ξ : SpecR = k[[z]]→ A2 via
z 7→ (z2, z). The element g = (z−1,−1) ∈ G(k((z))) stabilizes ξK but does not extend
to G(k[[z]]). However, we may take the degree 2 ramified extension k[[z]]→ k[[

√
z]]

and define ξ′ : Spec k[[
√
z]]→ A2 by

√
z 7→ ((

√
z)3, (

√
z)3). Over the generic point,

there is an isomorphism ξ′k((
√
z))
' ξk((

√
z)) given by h = (

√
z,−1) ∈ G(k((

√
z))) and

the element g|k((
√
z)) = (

√
z,−1)−1 · g|K′ · (

√
z,−1) = (1,−1) ∈ G(k((

√
z))) extends

to an element of G(k[[
√
z]])-point.

Proof. After choosing an embedding G ↪→ GLn and replacing [SpecA/G] with
[(SpecA×Gx GLn)/GLn], we may assume that G = GLn.

We first verify (?) for quotient stacks [SpecA/G] = SpecA×BG with a trivial
action. As R is local and G = GLn, the composition SpecR→ [SpecA/G]→ BG
corresponds to the trivial G-bundle. We need to prove that every finite order element
g ∈ G(K) is conjugate to an element of G(R) after passing to an extension of the
DVR R. We can conjugate g to its Jordan canonical form (after an extension of R).
Since g has finite order, the diagonal entries of the resulting matrix are rth roots of
unity for some r. Because the group µr of rth roots of unity is a finite group scheme
over SpecR, the entries of the Jordan canonical form must lie in R.

If X = [X/G] with X proper over k, we show that (?) holds except that ξ′(0)
may not be isomorphic to x. Since p : X → BG is proper and representable,
for every morphism ξ : SpecR → X from a DVR, we have a closed immersion
AutX (ξ) ↪→ AutBG(p ◦ ξ) of group schemes over SpecR. Moreover, any lift of the
generic point of a morphism SpecR→ BG to [X/G] extends to a unique morphism
SpecR → BG. Therefore, given an element g ∈ AutX (ξK), we use that (?) holds
for BG to find (after replacing R with an extension) a morphism η : SpecR→ BG
such that ηK ' (p ◦ ξ)K and g|K extends to a R-point of AutBG(η). If we lift η to
a morphism ξ′ : SpecR→ [X/G] such that ξ′K ' ξK , then the element g|K extends
to an automorphism of ξ′.

In verifying (?) for [SpecA/G], we may assume that A is reduced. Viewing
[SpecA/G] as an algebraic stack which is affine and of finite type over SpecAG×BG,
we can choose a vector bundle E on SpecAG ×BG and a G-equivariant embedding
SpecA ↪→ AAG(E) over AG. Viewing AAG(E) as an open subscheme of PAG(E ⊕O),
we let X be the closure of SpecA in PAG(E ⊕O). This gives a G-equivariant diagram

SpecA �
�

//

%%

X

��

SpecAG

(6.7.11)

whereX is a reduced projective scheme and the complementXrSpecA is the support
of an ample G-invariant Cartier divisor E. We also claim that SpecA is precisely the
semistable locus of X with respect to OX(E) in the sense of Exercise 6.6.11. Indeed
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the tautological invariant section s : OX → OX(E) restricts to an isomorphism over
SpecA and thus SpecA ⊂ Xss. Conversely sn defines an isomorphism

AG
∼→ Γ(X,OX(nE))G

for all n ≥ 0. Under this isomorphism, for every invariant global section f ∈
Γ(X,OX(nE))G, the restriction f |SpecA agrees with a section of the form gsn, where
g is the pullback of a function under the map X → SpecAG. It follows that f = g ·sn
because X is reduced. This shows that Xss ⊂ SpecA.

We now verify that (?) holds for [SpecA/G]. Let ξ : SpecR→ [SpecA/G] be a
map with ξ(0) ' x, and let g ∈ AutX (ξK) be a finite order K-point. By applying
the above result to [X/G], there exists (after an extension of R) a map ξ′ : SpecR→
[X/G] such that ξ′K ' ξK and g extends to an element of AutX (ξ′) but where ξ′(0)
may not be isomorphic to x. The stabilizer group scheme StabG(X) ⊂ X × G is
a closed subscheme equivariant with respect to the product action of G on X ×G
where G acts on itself via conjugation. The pair (ξ′, g) defines a morphism

η : SpecR→ [StabG(X)/G].

We will show that after an extension ofR, there is a map η′ : SpecR→ [StabG(SpecA)/G]
with η′K ' ηK . Similar to (6.7.11), we have a G-equivariant diagram

StabG(SpecA)
� � //

((

StabG(X)

��

SpecAG ×G

with StabG(X) projective over SpecAG × G. We claim that the semistable lo-
cus of StabG(X) for the action of G with respect to the pullback of OX(E)
is precisely StabG(SpecA) in the sense Exercise 6.6.11. The invariant section
s ∈ Γ(X,OX(E))G pulls back to an invariant section on StabG(X) and thus
StabG(SpecA) ⊂ StabG(X)ss. To see the converse, suppose that (y, h) ∈ StabG(X)
with y /∈ Xss = SpecA. Applying Kempf’s Optimal Destabilizing Theorem (6.6.43)
to a lift ŷ of y to the affine cone X̂ → SpecAG of X yields a one-parameter subgroup
λ : Gm → G such that limt→0 λ(t) · ŷ ∈ X̂ exists and is contained in the zero section
SpecAG. Moreover, since Gy ⊂ Pλ (Exercise 6.6.48), limt→0 λ(t) · (ŷ, h) also exists
and is contained in the zero section of the affine cone over of StabG(X); thus (y, h)
is not semistable.

The induced morphism StabG(SpecA)//G→ (SpecAG×G)//G of GIT quotients
is proper, and the good moduli space [StabG(SpecA)/G] → StabG(SpecA)//G is
universally closed. By the valuative criterion, the composition

SpecR
η−→ StabG(X)→ SpecAG ×G→ (SpecAG ×G)//G

lifts a morphism χ : SpecR → [StabG(SpecA)/G] such that χK ' ξK after an
extension of R. The composition ξ′ : SpecR

χ−→ [StabG(SpecA)/G] → [SpecA/G]
has the property that ξ′K ' ξK and that g extends to an element of AutX (ξ′). To
arrange that ξ′(0) ' x, we apply Lemma 6.7.46 below.

Lemma 6.7.46. Let X = [SpecA/G] where SpecA is an affine scheme of finite
type over an algebraically closed field k equipped with an action of a reductive group
G. Let ξ, ξ′ : SpecR→ X be morphisms from a DVR with residue field k such that
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ξK ' ξ′K and ξ(0) ∈ X is a closed point. For every element g ∈ AutX (ξ′), there
exists (after replacing R with an extension) a morphism ξ′′ : SpecR→ X such that
ξ′′K ' ξ′K , g|K extends to an automorphism of ξ′′, and ξ′′(0) ' ξ(0).

Proof. Since ξ(0) and ξ′(0) lie in the same fiber of X → SpecAG, the closure of
ξ′(0) in |X | must contain ξ(0). Kempf’s Criterion (6.6.41) yields a canonical map
f : Θ→ [SpecA/G] with f(1) ' ξ′(0) and f(0) ' ξ(0). Since f is canonical, every
automorphism of f(1) extends to an automorphism of the map f . In particular the
restriction of g ∈ AutX (ξ′) to f(1) = ξ′(0) extends uniquely to an automorphism gf
of f .

We now apply the Strange Gluing Lemma (6.7.47), which after replacing R
with R[π1/N ] and precomposing f with the map Θ → Θ defined by x 7→ xN for
N � 0, yields a unique map γ : φR → X , such that γ|s=0 ' f and γ|t 6=0 ' ξ′.
The uniqueness γ guarantees that the automorphism g of ξ′ and gf of f extends
uniquely to an automorphism gγ of γ. Finally we construct the desired map ξ′′ as
the composition

ξ′′ : Spec(R[
√
π])

q−→ φR
γ−→ X ,

where in (s, t, π) coordinates the first map q is defined by (
√
π,
√
π, π). Under q,

the special point of Spec(R[
√
π]) maps to the point 0 ∈ φR. By construction,

ξ′′(0) ' ξ(0) and the automorphism g of γ restricts to an automorphism of ξ′′
extending g|K(

√
π).

Lemma 6.7.47 (Strange Gluing Lemma). Let X be an algebraic stack of finite type
over an algebraically closed field k with affine diagonal. Let R be a DVR with residue
field k. Let f : Θ → X and ξ : SpecR → X be morphisms with an isomorphism
f(1) ' ξ(0). For N � 0, after replacing R with R[π1/N ] and f with the composition
Θ

N−→ Θ
f−→ X , there is a unique morphism γ : φR → X such that γ|s=0 ' f and

γ|t6=0 ' ξ.

Proof. For n > 0, define

φn,1R = [Spec(R[s, t]/(stn − π))/Gm]

where the Gm-acts with weight n on s and −1 on t. We have a closed immersion
Θ ↪→ φn,1R defined by s = 0 and an open immersion SpecR ↪→ φn,1R defined by
t 6= 0. Note that any morphism φn,1R → X restricts to morphisms f : Θ → X and
ξ : SpecR → X along with an isomorphism ξ(0) ' f(1). We will show conversely
that for n � 0, any f : Θ → X and ξ : SpecR → X with ξ(0) ' f(1) extends
canonically to a map φn,1R → X .

Letting C = R[t, π/t, π/t2, . . .] ⊂ R[t]t, the diagram

Speck[t]t //

��

Speck[t]

��

SpecR[t]t // SpecC

is a pushout in the category of schemes (Theorem A.8.1). This diagram is Gm-
equivariant and the diagram obtained by taking the fiber product with Gm is also
a pushout. It follows from Corollary A.8.6 that taking quotients by Gm yields a
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diagram

Speck //

��

Θ

��
f

��

SpecR //

ξ //

[Spec(C)/Gm]

Ψ

&& X

(6.7.12)

where the square is a pushout in the category of algebraic stacks with affine diagonal;
this induces the dotted arrow Ψ. We can write C as a union C =

⋃
Cn where Cn :=

R[t, π/tn] ⊂ R[t]t. Note that Cn ∼= R[s, t]/(stn−π) so in particular [Spec(Cn)/Gm] ∼=
φn,1R . As X → S is locally of finite presentation, for n� 0 the morphism Ψ factors
uniquely as [Spec(C)/Gm]→ φn,1R → X (Exercise 3.3.31).

To finish the proof, compose the uniquely defined map φn,1R → X with the
canonical map φR[π1/n] → X induced by the map of graded algebras R[s, t]/(stn −
π)→ R[π1/n][s1/n, t]/(s1/nt− π), where s1/n has weight 1.

6.7.6 S-completeness and reductivity

We’ve already seen that S-completeness characterizes separatedness (Proposition 6.7.17
and Corollary 6.7.15). We’ve also seen that it implies unpunctured inertia (Theo-
rem 6.7.43) and therefore implies the existence of stabilizer preserving local quotient
presentations (Proposition 6.7.40). We now prove a third remarkable property
of S-completeness: it characterizes reductivity. More precisely, a smooth affine
algebraic group G is reducitive if and only if BG is S-complete if and only if G
has Cartan Decompositions (Proposition 6.7.48). This also completes the proof of
Theorem 6.6.15

Proposition 6.7.48. Let G be a smooth affine algebraic group over an algebraically
closed field k. The following are equivalent:

(1) G is reductive,
(2) BG is S-complete, and
(3) G satisfies the Cartan Decomposition: for every complete DVR R over k with

residue field k and fraction field K and for every element g ∈ G(K), there
exists elements h1, h2 ∈ G(R) and a one-parameter subgroup λ : Gm → G such
that

g = h1λ|Kh2.

In particular, if X is an S-complete algebraic stack and x ∈ X is closed point with
smooth affine stabilizer Gx, then Gx is reductive.

Proof. For (2)⇒ (3), observe that since φRr0 = SpecR
⋃

SpecK SpecR, an element
g ∈ G(K) determines a morphism

ρg : φR r 0→ BG

by gluing two trivial G-torsors over SpecR via the isomorphism induced by g of
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their restrictions to SpecK. Since BG is S-complete, we have a lift

φR r 0
ρg
//

��

BG

φR.

h

;;

(6.7.13)

Restricting h to the origin gives a map BGm ↪→ φR
h−→ BG which corresponds

to a map λ : Gm → G (up to conjugation); this provides us with our candidate
one-parameter subgroup. We make two observations:

• If g, g′ ∈ G(K) are elements, the morphisms ρg, ρg′ : φR r 0 → BG are
isomorphic if and only if there are elements h, h′ ∈ G(R) such that hg = g′h′.

• If λ : Gm → G is a one-parameter subgroup and λ|φRr0 denotes the compo-
sition φR r 0 ↪→ φR → BGm

λ−→ BG, then λ|φRr0 and ρg′ , where g′ = λ|K ,
are isomorphic.

It therefore suffices to show that the extension h in (6.7.13) is isomorphic to
λ|φR : φR → BGm

λ−→ BG. To see this, let P and P ′ denote the principal G-bundles
over φR classifying h and λ|φR . Since G is smooth and affine, IsomφR

(P,P ′)→ φR
is smooth and affine. We have a section over the inclusion X0 := BGm ↪→ φR of
0. Letting Xn denote the nth nilpotent thickening, deformation theory (Proposi-
tion 6.5.8) and the cohomological affineness of Xn implies that we may find compatible
sections over Xn. Coherent Tannaka Duality (6.4.8) and the coherent completeness
of φR along BGm (Theorem 6.4.11) implies that the map

MORφR(φR, IsomφR
(P,P ′))→ lim←−MORφR(Xn, IsomφR

(P,P ′))

is an equivalence. We thus obtain a section of IsomφR
(P,P ′) → φR, i.e. an

isomorphism between P and P ′.
To see that (3) ⇒ (2), it suffices to show that every map φR r 0→ BG extends

to a map φR → BG where R is a complete DVR over k with residue field k
(Lemma 6.7.11). Since every principal G-bundle over SpecR is trivial, the map
φRr0→ BG is isomorphic to ρg for some element g ∈ G(K). Writing g = h1λ|Kh2,
the two observations above show that φR → BGm → BG is an extension.

We’ve already seen that (1) ⇒ (2) in Proposition 6.7.14. Conversely, if G is
not reductive, there is a normal subgroup Ga / Ru(G) of the unipotent radical. As
G/Ru(G) and Ru(G)/Ga are both affine, the composition BGa → BRuG→ BG is
affine. By Lemma 6.7.13, this would imply that BGa is S-complete but this is a
contradiction: taking R = k[[x]] and K = k((x)) the element x ∈ Ga(K) cannot be
written as h1λ|Kh2.

See also [AHHL21, Thm. A].

6.7.7 Proof of the Existence Theorem of GoodModuli Spaces
The necessity of Θ-completeness and S-completeness for the existence of a good
moduli space was established in Corollary 6.7.15. We now establish the sufficiency
following the strategy outlined in §6.7.1.

Proof of Theorem 6.7.1. Since X is S-complete and char(k) = 0, the stabilizer Gx
of every closed point x ∈ X is linearly reductive (Proposition 6.7.48). By the Local
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Structure Theorem (6.5.1), there exists an affine étale morphism f : ([SpecA/Gx], w)→
(X , x) inducing an isomorphism of stabilizer groups at x. Since X is Θ-complete
and S-complete, we may assume that f is Θ-surjective and stabilizer preserving
at all points after replacing [SpecA/Gx] with an open neighborhood of x (Propo-
sitions 6.7.34 and 6.7.40). Since X is quasi-compact, there exists finitely many
closed points xi ∈ X and morphisms fi : [SpecAi/Gxi ]→ X as above whose images
cover X . Choosing embeddings Gxi ↪→ GLn for some n, there are equivalence
[SpecAi/Gxi ]

∼= [(SpecAi ×Gxi GLn)/GLn]. Setting A =
∏
i(Ai ×Gxi GLn), there

is an surjective, affine, and étale morphism

f : X1 := [SpecA/GLn]→ X

which is Θ-surjective and stabilizer preserving at all points. Since char(k) = 0, there
is a good moduli space X1 → X1 := SpecAGLN .

Set X2 = X1 ×X X1. The projections p1, p2 : X2 → X1 are also affine, étale,
Θ-surjective, and stabilizer preserving. Since f is affine, X2

∼= [SpecB/GLn] and
there is a good moduli space X2 → X2 := SpecBGLn . This provides a commutative
diagram

X2

p1 //

p2

//

��

X1
f
//

��

X

��

X2

q1 //

q2
// X1

// X

(6.7.14)

which each square on left is cartesian by Luna’s Fundamental Lemma (6.3.26).
Moreover, by the universality of good moduli spaces (Theorem 6.3.5(4)), the étale
groupoid structure on X2 ⇒ X1 induces a étale groupoid structure on X2 ⇒ X1.

We claim that X2 ⇒ X1 is an étale equivalence relation, i.e. that the quotient
stack [X1/X2] is an algebraic space. By the Characterization of Algebraic Spaces
(3.6.5), it suffices to show that if x1 ∈ X1 is a k-point, then (x1, x1) has a unique
preimage under (q1, q2) : X2 → X1 ×X1. Let x2, x

′
2 ∈ X2 be two points mapping

to (x1, x1) ∈ X1 × X1, and let x̃2, x̃
′
2 ∈ X2 be the unique closed points in their

preimages. Since f is Θ-surjective, the images p1(x̃2), p2(x̃2), p1(x̃′2), and p2(x̃′2)
are all closed points of X1 over x1, and therefore they are all identified with the
unique closed point x̃1 over x1. On the other hand, since f is stabilizer preserving,
the stabilizer groups of x̃2 and x̃′2 are the same as the stabilizer groups of x̃1 and
of its image in X . Let’s denote this stabilizer group by G. It follows that the
fiber product of (p1, p2) : X2 → X1 × X1 along the inclusion of the residual gerbe
G(x̃1,x̃1) = BG×BG→ X1 ×X1 is isomorphic to BG and thus identified with the
residual gerbe of a unique closed point. Therefore x2 = x′2.

Since X2 ⇒ X1 is an étale equivalence relation, the quotient X = X1/X2 is an
algebraic space. From étale descent, there is a morphism X → X which pulls back
under X1 → X to the good moduli space X1 → X1. By descent of good moduli
spaces (Lemma 6.3.20(2)), X → X is a good moduli space. Finally, we use that X
is S-complete to conclude that X is separated (Corollary 6.7.15).
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Chapter 7

Moduli of semistable vector
bundles on a curve

TO BE WRITTEN
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Appendix A

Morphisms of schemes

In this appendix, we recall definitions and summarize certain properties of morphisms
of schemes: locally of finite presentation, flat, smooth, étale and unramified.

We pay particular attention to properties that can be described functorially,
i.e. properties of schemes and their morphisms that can be characterized in terms
of their functors. For instance, the properties of being separated, universally
closed, proper, locally of finite presentation, smooth, étale and unramified can be
characterized functorially. Such descriptions are particularly advantageous for us
since we systematically study moduli problems via functors and stacks. For example,
the valuative criterion for properness forMg amounts to checking that every family
of curves over a punctured curve (i.e. over the generic point of a DVR) can be
extended uniquely (after possibly a finite extension) to the entire curve (i.e. DVR).
Similarly, the smoothness ofMg can be shown by using the functorial formal lifting
criterion.

A.1 Morphisms locally of finite presentation

A morphism of schemes f : X → Y is locally of finite type (resp. locally of fi-
nite presentation) if for all affine open subschemes SpecB ⊂ Y and SpecA ⊂
f−1(SpecB), there is surjection A[x1, . . . , xn]→ B of A-algebras (resp. a surjection
A[x1, . . . , xn]→ B with finitely generated kernel). If in addition f is quasi-compact
(resp. quasi-compact and quasi-separated), we say that f is of finite type (resp. of
finite presentation).

Remark A.1.1. When Y is locally noetherian, these two notions coincide. However,
in the non-noetherian setting even closed immersions may not be locally of finite
presentation; e.g. SpecC ↪→ SpecC[x1, x2, . . .]. Since functors and stacks are defined
in these notes on the entire category of schemes, it is often necessary to work with
non-noetherian schemes. In particular, when defining a moduli functor or stack, we
need to specify what families of objects are over possibly non-noetherian schemes.
Morphisms of finite presentation are better behaved than morphisms of finite type
and so we often use the former condition. For example, when defining a family of
smooth curves π : C → S, we require not only that π is proper and smooth, but also
of finite presentation.

Before stating the functorial characterization of locally of finite presentation
morphism, we recall the notion of systems.
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Definition A.1.2. A directed system (resp. inverse system) in a category C is a
partially ordered set (I,≥) which is directed (i.e. for every i, j ∈ I there exists k ∈ I
such that k ≥ i and k ≥ j) together with a covariant (resp. contravariant) I → C.

Proposition A.1.3. A morphism f : X → Y of schemes is locally of finite presen-
tation if and only if for every inverse system {SpecAλ}λ∈I of affine schemes over
Y , the natural map

colimλ MorY (SpecAλ, X)→ MorY (Spec(colimλAλ), X) (A.1.1)

is bijective.

There’s a conceptual reason for this: every ring A (e.g. C[x1, x2, . . .]) is the union
(or colimit) of its finitely generated subalgebras Aλ. The condition that every map
SpecA→ X factors through some SpecAλ → X can be viewed as the condition that
specifying SpecA→ X over Y depends on only finite data (i.e. local generators and
relations for the ring maps defining X → Y ) and therefore translates to a finiteness
condition on X over Y . We encourage the reader to verify the proposition, especially
in the case of a morphism of affine schemes. See [EGA, IV.8.14.2] or [SP, Tag 01ZC].

A.2 Flatness
You can’t get very far in moduli theory without flatness. While its definition is
seemingly abstract and algebraic, it is a magical geometric property of a morphism
X → Y that ensures that fibers Xy ‘vary nicely’ as y ∈ Y varies. This principle is
nicely evidenced by Flatness via the Hilbert Polynomial (A.2.4). It is the reason
that we define objects of our moduli stacks as flat families.

A.2.1 Flatness criteria

A module M over a ring A is flat if the functor

−⊗AM : Mod(A)→ Mod(A)

is exact. We recall the following criteria:
(1) (Stalk Criterion) M is flat over A if and only if Mp is flat over Ap for every

prime (equivalently maximal) ideal p. More generally, if A→ B is a ring map,
a B-module N is flat if and only if for every prime q ⊂ B with preimage p ⊂ A,
Nq is flat over Ap.

(2) (Ideal Criterion)M is flat if and only if for every finitely generated ideal I ⊂ A,
the map I ⊗AM →M is injective [Eis95, Prop. 6.1]. (When A is a PID, this
implies that M is flat if and only if M is torsion free.)

(3) (Tor Criterion) M is flat if and only if TorA1 (A/I,M) = 0 for all finitely
generated ideals I ⊂ A [Eis95, Prop. 6.1].

(4) (Finitely Presented Criterion) M is finitely presented and flat over A if and
only if M is finite and projective if and only if M is finite and locally free (i.e.
Mp is finite and free for all prime—or equivalently maximal—ideals p); see
[SP, Tag 00NX]. (Without the finitely presented hypothesis, Lazard’s Theorem
states that M is flat over A if and only if M can be written as a directed
colimit colimi∈IMi of free finite A-modules Mi; see [Eis95, A6.6] or [SP, Tag
058G].)
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(5) (Equational Criterion) M is flat if and only if for every relation
∑n
i=1 aimi = 0

with ai ∈ A and mi ∈ M , there exists m′j ∈ M for j = 1, . . . , r and a′ij ∈ A
such that

∑r
j=1 a

′
ijm
′
j = mi for all i and

∑n
i=1 a

′
ijai = 0 for all j [Eis95,

Cor. 6.5].
If f : X → Y is a morphism of schemes, then a quasi-coherent OX -module F

is flat if for all affine opens SpecB ⊂ Y and SpecA ⊂ f−1(SpecB), the B-module
Γ(SpecA,F) is a flat.

Proposition A.2.1 (Flat Equivalences). Let f : X → Y be a morphism of schemes
and F be a quasi-coherent OX-module. The following are equivalent:
(1) F is flat over Y ;
(2) There exists a Zariski-cover {SpecBi} of Y and {SpecAij} of f−1(SpecBi)

such that Γ(SpecAij ,F) is flat as an Bi-module under the ring map Bi → Aij ;
(3) For all x ∈ X, the OX,x-module Fx is flat as an OY,y-module.
(4) The functor

QCoh(Y )→ QCoh(X), G 7→ f∗G ⊗OX F

is exact.

Proof. See [Har77, §III.9] or [SP, Tag 01U2].

We say that a morphism f : X → Y of schemes is flat at x ∈ X (resp. a quasi-
coherent OX -module F is flat at x ∈ X) if there exists a Zariski open neighborhood
U ⊂ X containing x such that f |U (resp. F|U ) is flat over Y . This is equivalent to
the flatness of OX,x (resp. Fx) as an OY,y-module.

Proposition A.2.2 (Flatness Criterion over Smooth Curves). Let C be an integral
and regular scheme of dimension 1 (e.g. the spectrum of a DVR or a smooth
connected curve over a field), and let X → C be a morphism of schemes. A quasi-
coherent OX-module F is flat over C if and only if every associated point of F maps
to the generic point of C.

Proof. A short argument shows that this follows from the fact that a module over a
DVR is flat if and only if it is torsion free; see [Har77, III.9.7].

Over higher dimensional bases, it is sometimes possible to check flatness by
reducing to the above criterion over a smooth curve. This is called the valuative
criterion for flatness: if f : X → S is a finite type morphism of noetherian schemes
over a reduced scheme S and F is a coherent OX -module, then F is flat at x ∈ X if
and only if for every map (SpecR, 0)→ (S, f(x)) from a DVR, the restriction F|XR
is flat over R at all points in XR := X ×S SpecR over 0 and x [EGA, IV.11.8.1].
Despite providing a conceptual geometric criterion for flatness, surprisingly it is
rarely used in moduli theory.

Proposition A.2.3 (Flatness Criterion over Artinian Rings). A module over an
artinian ring is flat if and only if it is free if and only if it is projective.

Proof. See [SP, Tag 051E].

Recall that if X ⊂ PnK is a subscheme and F is a quasi-coherent OX -module, the
Hilbert polynomial of F is PF (z) = χ(X,F(z)) ∈ Q[z].
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Proposition A.2.4 (Flatness via the Hilbert Polynomial). Let S be a connected,
reduced and noetherian scheme and let X ⊂ PnS be a closed subscheme. A coherent
OX-module F is flat over S if and only if the function

S → Q[z], s 7→ PF|Xs

assigning a point s ∈ S to the Hilbert polynomial of the restriction F|Xs to the fiber
Xs ⊂ Pnκ(s) is constant.

Proof. See [Har77, Thm. 9.9].

Theorem A.2.5 (Local and Infinitesimal Criteria for Flatness). Let A→ B be a
local homomorphism of noetherian local rings, and let M be a finite B-module. The
following are equivalent:
(1) M is flat over A,
(2) (Local Criterion) TorA1 (A/mA,M) = 0, and
(3) (Infinitesimal Criterion) M/mnAM is flat over A/mnA for every n ≥ 1.

Proof. See [Eis95, Thm. 6.8, Exer. 6.5] and [SP, Tag 00MK].

The following consequence of the Local Criterion for Flatness is particularly
useful in deformation theory.

Corollary A.2.6. Let A� A0 be a surjective homomorphism of noetherian rings
with kernel I such that I2 = 0. An A-module M is flat over A if and only if
(1) M0 := M ⊗A A0 is flat over A0, and
(2) the map M0 ⊗A0 I →M is injective.

Proof. For (⇒), condition (1) holds by base change and condition (2) holds by
tensoring the exact sequence 0 → I → A → A0 → 0 with M and using the
identification M ⊗A I ∼= M0 ⊗A0 I. For (⇐), by the Local Criterion for Flatness
(A.2.5) it suffices to show that TorA1 (A/p,M) = 0 for all prime ideals p ⊂ A. Let
p0 := p/I ⊂ A. Consider the following diagram which is obtained by tensoring the
exact sequences 0→ I → p→ p0 → 0 and 0→ I → A→ A0 → 0 with M :

TorA1 (M,A/p) //

��

TorA0
1 (M0, A0/p0)

��

0 // M ⊗A I // M ⊗A p

��

// M0 ⊗A0
p0

��

// 0

0 // M ⊗A I // M //

����

M0
//

����

0

M ⊗A A/p // M0 ⊗A0
A0/p0

Condition (2) implies that the second row is exact, and it follows that the first row
is also exact, where we’ve used the identification M ⊗A p0

∼= M0 ⊗A0 p0. Condition
(1) implies that TorA0

1 (M0, A0/p0) = 0 and it follows from the snake lemma that
TorA1 (M,A/p) = 0. See also [Har10, Prop. 2.2].
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Remark A.2.7. Applying this with A = k[ε]/(ε2) being the dual numbers and A′ =

k, we recover the fact that an A-module M is flat if and only if M ⊗k[ε]/(ε2) k
ε−→M

is injective. This also follows from the fact that a module N over a ring B is flat if
and only if for every ideal I ⊂ B, the map I ⊗BM →M is injective, and using that
the only ideal in k[ε]/(ε2) is (ε).

The Local Criterion for Flatness also provides the following useful criterion for
when slicing preserves flatness.

Corollary A.2.8. Let f : X → S be a morphism locally of finite presentation,
and let x ∈ X be a point with image s ∈ S. If f is flat at x and the image of
h ∈ mx ⊂ OX,x in the local ring OXs,x of the fiber is a nonzerodivisor, then there
exists an open neighborhood U ⊂ X of x such that h extends to a global function on
U and the composition V (h) ↪→ U → S is locally of finite presentation and flat at x.

Proof. The noetherian case is a consequence of the following algebraic statement: if
A→ B is a flat local ring homomorphism of noetherian local rings and f ∈ mB is
a nonzerodivisor in B ⊗A A/mA, then A → B/(f) is flat. It suffices to show that
f is also a nonzerodivisor in B. Indeed, in this case 0 → B

f−→ B → B/(f) → 0
is an exact sequence which implies that TorA1 (A/mA, B/(f)) = 0 and thus B/(f)
is flat over A by the Local Criterion for Flatness (A.2.5). Let b ∈ B and suppose
that fb = 0. We already know that b ∈ mAB and we claim that b ∈ mnAB for n > 0
implies that b ∈ mn+1

A B. Given this claim, then b ∈
⋂
n>0 m

n
AB and thus b = 0 by

Krull’s Intersection Theorem. Let a1, . . . , ar be minimal generators of mnA as an
A-module. Write b =

∑
i aibi for bi ∈ B. Then 0 = fb =

∑
i ai(fbi). Since B is

A-flat, the Equational Criterion implies that there exists m′j ∈ B and a′ij ∈ A such
that

∑
j a
′
ija
′
j = fbi for all i and

∑
i a
′
ijai = 0 for all j. By Nakayama’s Lemma and

our choice of the ai’s, each a′ij is in mA (as otherwise the images ai ∈ mnA/m
n+1
A

would be linearly dependent over A/mA). This implies that fbi ∈ mAB. As f is a
nonzerodivisor in B ⊗A A/mA, we see that bi ∈ mAB for each i and thus b ∈ mn+1

A .
The general case can be reduced to the noetherian case using limit methods

(A.6). See also [Mat89, Thm. 22.5] or [SP, Tag 056X].

Theorem A.2.9 (Fibral Flatness Criterion). Consider a commutative diagram

X //

��

Y

��

S

of schemes, and let F be a quasi-coherent OX-module of finite presentation. Assume
that X → S is locally of finite presentation and Y → S is locally of finite type. Let
x ∈ X with images y ∈ Y and s ∈ S. If the stalk Fx is nonzero, then the following
are equivalent:
(1) F is flat over S at x, and Fs := F|Xs is flat over Ys at x, and
(2) Y is flat over S at y and F is flat over Y at x.

Proof. See [SP, Tag 039A]

If A → B is local ring map of noetherian local rings, then dimB = dimA +
dimB/mAB. The following is a partial converse.

Theorem A.2.10 (Miracle Flatness). Let A → B be a local homomorphism of
noetherian local rings. Assume that
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1. A is regular,
2. B is Cohen–Macaulay, and
3. dimB = dimA+ dimB/mAB.

Then A→ B is flat.

Proof. See [Nag62, Thm. 25.16] or [SP, Tag 00R4].

A.2.2 Properties of flatness
Theorem A.2.11 (Generic Flatness). Let f : X → S be a finite type morphism of
schemes and F be a finite type quasi-coherent OX-module. If S is reduced, there
exists a dense open subscheme U ⊂ S such that XU → U is flat and of presentation
and such that F|XU is flat over U and of finite presentation as on OXU -module.

Proof. See [SP, Tag 052B].

Proposition A.2.12 (Fppf Morphisms are Open). Let f : X → Y be a morphism
of schemes. If f is flat and locally of finite presentation, then for every open subset
U ⊂ X, the image f(U) ⊂ Y is open.

Proof. See [SP, Tag 01UA].

Proposition A.2.13. A flat monomorphism locally of finite presentation (e.g. an
étale monomorphism) is an open immersion.

Theorem A.2.14 (Existence of Flattening Stratifications). Let X → S be a projec-
tive morphism of noetherian schemes, OX(1) be a relatively ample line bundle and
F be a coherent sheaf on X. For each polynomial P ∈ Q[z], there exists a locally
closed subscheme SP ↪→ S such that a morphism T → S factors through SP if and
only if the pullback FT of F to XT is flat over T and for every t ∈ T , the pullback
Fκ(t) to Xκ(t) has Hilbert polynomial P .

Moreover, there exists a finite indexing set I of polynomials such that S =∐
P∈I SP set-theoretically. The closure of SP in S is contained set-theoretically in

the union
⋃
P≤Q SQ, where P ≤ Q if and only if P (z) ≤ Q(z) for z � 0.

Proof. See [Gro61b] or [Mum66, §8].

Remark A.2.15. When X → S is only proper, there is a universal flattening, i.e.
an algebraic space S′ and a morphism S′ → S such that a map T → S factors
through S′ → S if and only if the pullback F|XT to XT := X×S T is flat over T [SP,
Tag 05UG]. In general, S′ may not be a disjoint union of locally closed subschemes
of S; see [Kre13].

Theorem A.2.16 (Raynaud-Gruson Flatification). Let Y be a quasi-compact and
quasi-separated scheme and X → Y be a finitely presented morphism which is flat
over a quasi-compact open subscheme U ⊂ Y . Then there is a commutative diagram

X̃ //

��

X

f

��

Y ′
p
// Y

where p : Y ′ → Y is a blow-up of a finitely presented closed subscheme Z ⊂ Y disjoint
from U and the strict transform X̃ of X is flat over Y ′.
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The strict transform X̃ above is by definition the closure of (Y ′ \ p−1(Z))×Y X
in the base change Y ′ ×Y X.

Proof. See [RG71, Thm. I.5.2.2] or [SP, Tag 0815].

A.2.3 Faithful flatness
AmoduleM over a ringA is faithfully flat if the functor−⊗AM : Mod(A)→ Mod(A)
is faithfully exact, i.e. a sequence N ′ → N → N ′′ of A-modules is exact if and only
if N ′ ⊗AM → N ⊗AM → N ′′ ⊗AM is exact

for every non-zero map φ : N → N ′ of A-modules, the induced map φ ⊗A
M : N ⊗AM → N ′ ⊗AM is also non-zero.

Proposition A.2.17 (Faithfully Flat Equivalences). Let A be a ring and M be a
flat A-module. The following are equivalent:
(1) M is faithfully flat;
(2) for every non-zero map φ : N → N ′ of A-modules, the induced map φ ⊗A

M : N ⊗AM → N ′ ⊗AM is also non-zero;
(3) for every non-zero A-module N , the tensor product N ⊗AM is non-zero;
(4) for every prime ideal p ⊂ A, the tensor product M ⊗A κ(p) is non-zero; and
(5) for every maximal ideal m ⊂ A, the tensor product M ⊗A κ(m) ∼= M/mM is

non-zero.

Proof. See [SP, Tag 00H9].

When M = B is an A-algebra, then by (4) a flat ring map A→ B is faithfully
flat if SpecB → SpecA is surjective , or equivalently by (5) every maximal ideal of
A is in the image of SpecB → SpecA. The latter equivalence implies that any flat
local ring map is faithfully flat.

A morphism f : X → Y of schemes is faithfully flat if f is flat and surjective.
This is equivalent to the condition that f∗ : QCoh(Y ) → QCoh(X) is faithfully
exact. It is also equivalent to the condition that a quasi-coherent OY -module (resp.
a morphism of quasi-coherent OY -modules) is zero if and only if its pullback is.
Faithfully flat morphisms play an important role in descent theory; see §B.

A.2.4 Fppf and fpqc morphisms
Fppf and fpqc morphisms are acronyms for ‘fidèlement plate de présentation finie’
and ‘fidèlement plat et quasi-compact,’ respectively. Despite this terminology, an
fpqc morphism is more general than a faithfully flat and quasi-compact map.

Definition A.2.18. We define a morphism f : X → Y of schemes to be:
(1) fppf if f is faithfully flat and locally of finite presentation, and
(2) fpqc is f is faithfully flat and every quasi-compact open subset of Y is the

image of a quasi-compact open subset of X.

Remark A.2.19. A quasi-compact and faithfully flat morphism is fpqc. In addition,
an open and faithfully flat moprhism is fpqc: for a quasi-compact open subset V ⊂ Y ,
we can write f−1(V ) =

⋃
i Ui as a union of affines, and since each f(Ui) ⊂ V is

open and V is quasi-compact, we see that V is the image of finitely many of the
Ui’s. In particular, since every fppf morphism is open (Proposition A.2.12), an fppf
morphism is also fpqc.
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An fppf (resp. fpqc) cover {Xi → X} is a collection of morphisms such that∐
iXi → X is fppf (resp. fpqc).

A.2.5 Universally injective homomorphisms

The defining characteristic of a flat module is that it preserves every injection under
tensoring. The dual notion of an injection of modules that is preserved under
tensoring is also a very useful property.

Definition A.2.20. A homomorphismM → N of A-modules if universally injective
if for every A-module P , the map M ⊗A P → N ⊗A P is injective. A ring map
A→ B is universally injective if it is as a map of A-modules.

We will use this notion in a fundamental way in our proof of Coherent Tannaka
Duality (Theorem 6.4.1). To this end, the following properties will be used:

Proposition A.2.21.
(1) A faithfully flat ring map A→ B is universally injective.
(2) A split injective M → N of A-modules is universally injective. The converse

is true if N/M is finitely presented.
(3) If A→ A′ is faithfully flat, then a map M → N of A-modules is universally

injective if and only if M ⊗A A′ → N ⊗A A′ is.
(4) If A→ B is universally injective and B → B ⊗A B, b 7→ b⊗ 1 is faithfully flat,

then A→ B is faithfully flat.

Proof. For (1), (2) and (1), see [SP, Tags 08WP, 058L and 08XD]. Part (3) follows
directly from the faithful exactness of − ⊗A A′. See also [Laz69] and [Lam99,
§4J].

Remark A.2.22. It is also true that an A-module map M → N is universally
injective if and only if HomA(P,N)→ HomA(P,N/M) is surjective for all finitely
presented A-modules P [SP, Tag 058F]. If M/N is flat, then M → N is universally
injective; if in addition N is flat, then the converse is true (in which case M is also
flat [SP, Tag 058P].

Remarkably universally injective ring maps are precisely those maps that satisfy
effective descent for modules; see Remark B.1.5.

A.3 Étale, smooth, unramified, and syntomic mor-
phisms

A.3.1 Smooth morphisms

A morphism f : X → Y of schemes is smooth if f is locally of finite presentation,
flat and for every y ∈ Y the geometric fiber X

κ(y)
= X ×Y Specκ(y) is regular.

Smooth Equivalences A.3.1. Let f : X → Y be morphism of (resp. noetherian)
schemes locally of finite presentation. The following are equivalent:
(1) f is smooth;
(2) f satisfies the Infinitesimal Lifting Criterion for Smoothness (sometimes re-

ferred to as formal smoothness): for every surjection A → A0 of rings with

378

http://stacks.math.columbia.edu/tag/08WP
http://stacks.math.columbia.edu/tag/058L
http://stacks.math.columbia.edu/tag/08XD
http://stacks.math.columbia.edu/tag/058F
http://stacks.math.columbia.edu/tag/058P


nilpotent kernel (resp. surjection A→ A0 of local artinian rings whose kernel
is isomorphic to the residue field A/mA) and every commutative diagram

SpecA0
//

� _

��

X

f

��

SpecA //

;;

Y

of solid arrows, there exists a dotted arrow filling in the diagram;
(3) f satisfies the Jacobi Criterion for Smoothness: for every point x ∈ X, there

exist affine open neighborhoods SpecB of f(x) and SpecA ⊂ f−1(SpecB) of
x and an A-algebra isomorphism

B ∼=
(
A[x1, . . . , xn]/(f1, . . . , fr)

)
g

for some f1, . . . , fr, g ∈ A[x1, . . . , xn] with r ≤ n such that the determinant
det(

δfj
δxi

)1≤i,j≤r ∈ B of the Jacobi matrix, defined by the partial derivatives
with respect to the first r xi’s, is a unit.

If in addition X and Y are locally of finite type over an algebraically closed field k,
then the above are equivalent to:
(4) for all x ∈ X(k), there is an isomorphism ÔX,x ∼= ÔY,y[[x1, . . . , xr]] of ÔY,y-

algebras.

We say that a morphism f : X → Y of schemes is smooth at x ∈ X if there exists
an open neighborhood U ⊂ X of x such that f |U : U → Y is smooth.

If f : X → Y is a smooth morphism of schemes, then ΩX/Y is a locally free
OX -module of finite rank. If Y is connected, the rank of ΩX/Y is the dimension of
any fiber.

A.3.2 Étale morphisms
A morphism f : X → Y of schemes is étale if f is smooth of relative dimension 0
(i.e. f is smooth and dimXy = 0 for all y ∈ Y ).

Étale Equivalences A.3.2. Let f : X → Y be morphism of (resp. noetherian)
schemes locally of finite presentation. The following are equivalent:
(1) f is étale;
(2) f is smooth and ΩX/Y = 0;
(3) f is flat and for all y ∈ Y , the fiber Xy is isomorphic to a disjoint union∐

i SpecKi where each Ki is separable field extension of κ(y); (This is exactly
the condition that f is flat and unramified; see §A.3.3.)

(4) f satisfies the Infinitesimal Lifting Criterion for Étaleness : for every surjection
A → A0 of rings with nilpotent kernel (resp. surjection A → A0 of local
artinian rings whose kernel is isomorphic to the residue field A/mA) and every
commutative diagram

SpecA0
//

� _

��

X

f

��

SpecA //

;;

Y

of solid arrows, there exists a unique dotted arrow filling in the diagram;
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(5) f satisfies the Jacobi Criterion for Étaleness: for every point x ∈ X, there
exist affine open neighborhoods SpecB of f(x) and SpecA ⊂ f−1(SpecB) of
x and an A-algebra isomorphism

B ∼=
(
A[x1, . . . , xn]/(f1, . . . , fn)

)
g

for some f1, . . . , fn, g ∈ A[x1, . . . , xn] such that the determinant det(
δfj
δxi

)1≤i,j≤n ∈
B is a unit.

If in addition X and Y are locally of finite type over an algebraically closed field k,
then the above are equivalent to:
(6) for all x ∈ X(k), the induced map ÔY,y → ÔX,x on completions is an isomor-

phism
If in addition X and Y are smooth over k, then the above are equivalent to:
(7) for all x ∈ X(k), the induced map TX,x → TY,y on tangent spaces is an

isomorphism.

We say that a morphism f : X → Y of schemes is étale at x ∈ X if there exists
an open neighborhood U ⊂ X of x such that f |U : U → Y is étale.

A.3.3 Unramified morphisms
A morphism f : X → Y of schemes is unramified if f is locally of finite type and
every geometric fiber is discrete and reduced. Note that this second condition is
equivalent to requiring that for all y ∈ Y , the fiber Xy is isomorphic to a disjoint
union

∐
i SpecKi where each Ki is separable field extension of κ(y).

Caution A.3.3. We are following the conventions of [RG71] and [SP] rather than
[EGA] as we only require that f is locally of finite type rather than locally of finite
presentation.

Unramified Equivalences A.3.4. Let f : X → Y be morphism of schemes locally
of finite type. The following are equivalent:
(1) f is unramified;
(2) ΩX/Y = 0;
(3) f satisfies the Infinitesimal Lifting Criterion for Unramifiedness: for every

surjection A→ A0 of rings with nilpotent kernel (resp. surjection A→ A0 of
local artinian rings whose kernel is isomorphic to the residue field A/mA) and
every commutative diagram

SpecA0
//

� _

��

X

f

��

SpecA //

;;

Y

of solid arrows, there exists at most one dotted arrow filling in the diagram.
If in addition X and Y are locally of finite type over an algebraically closed field k,
then the above are equivalent to:
(4) for all x ∈ X(k), the induced map ÔY,y → ÔX,x on completions is surjective.

We say that a morphism f : X → Y of schemes is unramified at x ∈ X if there
exists an open neighborhood U ⊂ X of x such that f |U : U → Y is unramified.
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A.3.4 Étale-local structure of smooth, étale, and unramified
morphisms

Every smooth morphism looks étale-locally like relative affine space AnB → SpecB.

Proposition A.3.5. Let X → Y be a morphism of schemes smooth at x ∈ X.
There exists affine open subschemes SpecA ⊂ X and SpecB ⊂ Y with x ∈ SpecA,
and a commutative diagram

X

��

SpecA

��

? _
op

oo ét // AnB

{{

Y SpecB? _
op

oo

where SpecA→ AnB is étale.

Proof. See [SP, Tag 039P].

Corollary A.3.6. Let f : X → Y be a morphism of schemes smooth at x ∈ X.
Then there exists an étale neighborhood Y ′ → Y of f(x) such that X ×Y Y ′ → Y ′

has a section.

Proof. We apply the proposition. The morphism AnB → SpecB admits the zero
section SpecB → AnB and we let Y ′ := SpecB ×AnB SpecA. Then Y ′ → SpecB is
étale and Y ′ → SpecA ↪→ X defines a section Y ′ → X ×Y Y ′ of X ×Y Y ′ → Y ′.

Every étale (resp. unramified) morphism is étale-locally an isomorphism (resp.
closed immersion).

Proposition A.3.7. Let f : X → S be a separated morphism of schemes étale at
x ∈ X. Then there exists an étale neighborhood (U, u) → (S, f(x)) and a finite
disjoint union decomposition

XU = W q
∐
i

Vi

such that each Vi → U is an isomorphism and the the fiber Wu contains no point
over x.

Proof. See [SP, Tags 04HM and 04HG].

A.3.5 Further properties

Proposition A.3.8 (Fiberwise Criteria for Étaleness/Smoothness/Unramifiedness).
Consider a diagram

X

��

//

S

Y

��

of schemes where X → S and Y → S are locally of finite presentation.
(1) X → Y is unramified if and only if Xs → Ys is for all s ∈ S.
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(2) If X → S is flat, then X → Y is étale (resp. smooth) if and only if Xs → Ys
is for all s ∈ S.

Remark A.3.9. With the same hypotheses, let x ∈ X be a point with image s ∈ S.
Then X → Y is étale (resp. smooth, unramified) at x ∈ X if and only if Xs → Ys is
at x.

Corollary A.3.10. If f : X → Y is a proper flat morphism of finite presentation,
then the set Σf , consisting of points y ∈ Y where Xy → Specκ(y) is smooth, is
open.

Proof. By Remark A.3.9, if y ∈ Y is a point such that Xy → Specκ(y) is smooth,
then f : X → Y is smooth in an open neighborhood of Xy. If Z ⊂ X is the closed
locus where f : X → Y is not smooth, then f(Z) ⊂ Y is precisely the locus where
the fibers of f are not smooth. Since f is proper, f(Z) is closed.

Proposition A.3.11. Let X → Y be a smooth morphism of noetherian schemes.
For every point x ∈ X with image y ∈ Y ,

dimx(X) = dimy(Y ) + dimx(Xy).

Proposition A.3.12. If X → Y is a finite étale morphism, there exists a finite
étale cover Y ′ → Y such that X ×Y Y ′ → Y ′ is a trivial covering, i.e. X ×Y Y ′ is
isomorphism to

∐
i Y
′ over Y ′.

Proof. We may assume that the degree d of X → Y is constant. The scheme
(X/Y )d = X ×Y · · · ×Y X︸ ︷︷ ︸

d

represents the functor on Sch/Y assigning a Y -scheme T

to the set of d sections of X×Y T → T . Each pairwise diagonal (X/Y )d−1 → (X/Y )d

is an open and closed immersion and we set (X/Y )d0 ⊂ (X/Y )d to be the complement
of all pairwise diagonals. The projection morphism (X/Y )d0 → Y is finite étale and
the functorial description gives d disjoint sections of X ×Y (X/Y )d0 → (X/Y )d0.

Proposition A.3.13. A dominant unramified morphism X → Y of schemes with
Y normal and X connected is étale.

Proof. See [SGA1, Cor. I.9.11].

A.3.6 Fitting ideals and the singular locus

For background references on fitting ideals, we recommend [SP, Tag 07Z6] and
[Eis95, §20]. If R is a noetherian ring and M is a finitely generated R-module, the
kth fitting ideal Fitk(M) of M is the ideal generated by the (n− k)× (n− k) minors
of a matrix A defining a presentation⊕

i∈I
R

A−→ Rn →M → 0.

Of course, when M is finitely presented (e.g. R is noetherian), then left term can
be assume to a finite free module Rm, in which case A is an m × n matrix and
Fitk(M) is a finitely generated ideal. The fitting ideal is independent of the choice
of presentation. This defines an increase sequence of ideals

0 = Fit−1(M) ⊂ Fit0(M) ⊂ Fit1(M) ⊂ · · ·
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such that Fitk(M) = R if M can be generated by k elements. The R-module M is
locally free of rank r if and only if Fitr−1(M) = 0 and Fitr(M) = R, and in this case
Fitk(M) = 0 for all k < r. There is an identification Fitk(M ⊗R S) = Fitk(M)S
for a ring map R → S. In particular, Fitk(Mf ) = Fitk(M)f for f ∈ R, and
Fitk(Mp) = Fitk(M)p for a prime ideal p ⊂ R; moreover Fitk(M)⊗R R̂ = Fitk(M̂)
if R is a noetherian local ring.

If X is a scheme and F is a finitely generated quasi-coherent sheaf on X, the
kth fitting ideal sheaf Fitk(F ) of F is the quasi-coherent sheaf of ideals defined by
the property that for an affine open U ⊂ X, Γ(U,Fitk(F )) = Fitk(Γ(F,U)).

Fitting ideals allow us to define a scheme structure on the singular locus.

Definition A.3.14. If X is a noetherian scheme of pure dimension d over a field
k , we define the singular locus of X as the subscheme Sing(X) := V (Fitd(ΩX/k))
defined by the dth fitting ideal of of ΩX/k.

More generally, if X → S is an fppf morphism such that every fiber has pure
dimension d, we define the relative singular locus as the subscheme Sing(X/S) :=
V (Fitd(ΩX/S)).

For example, if X = SpecR with R = k[x1, . . . , xn]/I and I = (f1, . . . , fm), then
using the exact sequence I/I2 → ΩAn/k|X → ΩX/k → 0, we see that there is a
resolution

OmX
J−→ OnX → ΩX/k → 0 with J =

(
∂fj
∂xi

)
,

and Sing(X) is defined by all (n− d)× (n− d) minors of the n×m Jacobian matrix
J .

A.3.7 Local complete intersections
A scheme X locally of finite type over a field k is a local complete intersection at
p ∈ X if there exists an affine open neighborhood p ∈ SpecA ⊂ A such that A
is a global complete intersection over k, i.e. A ∼= k[x1, . . . , xn]/(f1, . . . , fc) with
dimA = n− c. The scheme X is a local complete intersection if it is at every point.

Proposition A.3.15. For a scheme X locally of finite type over a field k and a
point p ∈ X, the following are equivalent:
(1) X is a local complete intersection at p,
(2) the local ring OX,x ∼= R/(f1, . . . , fc) where R is a regular local ring and

f1, . . . , fc ∈ R is a regular sequence, and
(3) the completion ÔX,x ∼= R/(f1, . . . , fc) where R is a regular local ring and

f1, . . . , fc ∈ R is a regular sequence.

Proof. See [SP, Tags 00S8 and 09PY].

For a scheme locally of finite type over a field k, we have the following implications:

smooth =⇒ local complete intersection =⇒ Gorenstein =⇒ Cohen–Macaulay.

A.3.8 Syntomic morphisms
There is also a well-behaved relative notion of local complete intersections: a
morphism of schemes f : X → S is syntomic (or a flat local complete intersection
morphism) if f is fppf and every fiber is a local complete intersection. We say that
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f : X → S is syntomic at x ∈ X if there is an open neighborhood U of x such that
f |U is syntomic; this is equivalent to f being fppf in an open neighborhood of x and
the fiber Xs being a local complete intersection at x, where s = f(x). Moreover,
syntomic morphisms have a local structure analogous to local complete intersections:
a morphism f : X → S is syntomic at x ∈ X if and only if there are affine open
neighborhood x ∈ SpecA ⊂ X and SpecB ⊂ Y with f(SpecA) ⊂ SpecB such that
A ∼= B[x1, . . . , xn]/(f1, . . . , fc) and every nonempty fiber of SpecA → SpecB has
dimension n− c. See [EGA, IV §19.3], [SGA6, VIII §1] and [SP, Tag 01UB].

A.3.9 Lifting étale, smooth, and syntomic morphisms along
closed immersions

The following fact is sometimes convenient.

Proposition A.3.16. Consider a diagram

SpecA0

��

� � // SpecA

��

SpecB0
� � // SpecB

�

of solid arrows where SpecB ↪→ SpecB0 is a closed immersion. If SpecA0 →
SpecB0 is étale (resp. smooth, syntomic), then there exists an étale (resp. smooth,
syntomic) morphism SpecA→ SpecB making the above diagram cartesian.

Proof. See [SP, Tags 04D1 and 07M8].

A.4 Properness and the valuative criterion
One of the most important applications of the valuative criterion is in moduli
theory where it can be applied for instance to show thatMg is proper and Bunss

C is
universally closed. As we generalize the criterion to algebraic stacks, we provide a
quick recap for how it’s established for schemes.

A.4.1 Preliminaries
The starting point is the following lifting criterion for quasi-compact morphisms to
be closed.

Lemma A.4.1. A quasi-compact morphism f : X → Y of schemes is closed if and
only if for every point x ∈ X, every specialization f(x) y0 lifts to a specialization
x x0:

X

f

��

x ///o/o/o
_

��

x0_

��
Y f(x) // y0.

Proof. The implication (⇒) is clear as f({x}) ⊂ Y is closed. For the converse, after
replacing X with a closed subscheme it suffices to show that f(X) is closed. We
can assume that X = SpecA and Y = SpecB are affine (since f is quasi-compact)
and reduced (since the question is topological). The scheme-theoretic image of
SpecA → SpecB is defined by I := ker(B → A). By replacing B with B/I, we
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can assume that B → A is injective. For every minimal prime p ∈ SpecB, the
localization Bp → Ap is injective and thus Ap 6= 0 and the fiber f−1(p) = SpecAp

is non-empty. Since f(X) contains all the minimal primes and is closed under
specialization, f(X) = Y is closed.

The noetherian valuative criterion depends on the following algebraic fact:

Proposition A.4.2. Let (A,mA) be a noetherian local domain with fraction field K
such that A is not a field. If K → L is a finitely generated field extension, then there
exists a DVR R with fraction field L dominating A (i.e. A ⊂ R and mA ∩K = mR
is the maximal ideal of R).

Proof. We first reduce to the case that K → L is a finite field extension. To
this end, choose a transcendence basis x1, . . . , xn ∈ L over K and replace A with
A[x1, . . . , xn]n where n = mAA[x1, . . . , xn] + (x1, . . . , xn).

Let X = SpecA with closed point x = mA. Let B = BlxX be the blow-up of X
at x with exceptional divisor E. If ξ ∈ E is a generic point, then OB,ξ is a noetherian
domain of dimension 1 (by Krull’s Hauptidealsatz) with fraction field K. We now let
R ⊂ L be the integral closure of OB,ξ in L. By Krull–Akizuki (Proposition A.4.3),
R is noetherian. Since R is also normal of dimension 1, it is a DVR.

Proposition A.4.3 (Krull–Akizuki). Let R be a noetherian domain of dimension
1 with fraction field K. If K → L is a finite extension of fields, then every ring A
with R ⊂ A ⊂ L is noetherian.

Proof. See [Nag62, p. 115] or [SP, Tag 00PG].

Krull–Akizuki has the following geometric implication:

Proposition A.4.4. If f : X → Y is a finite type morphism of noetherian schemes,
x ∈ X and f(x) y0 is a specialization, then there exists a commutative diagram

SpecK //

��

X

f

��

x_

��

SpecR // Y f(x) // y0.

where R is a DVR with fraction field K, the image of SpecK → X is x and
SpecR→ Y realizes the specialization f(x) y0. In particular, every specialization
x x0 in a noetherian scheme is realized by a map SpecR→ X from a DVR.

Proof. After replacing X with {f(x)} and Y with {x}, we may assume that X
and Y are integral with generic points x and f(x). Then OY,y0

is a noetherian
local domain with fraction field κ(f(x)). By applying Proposition A.4.2 to the field
extension κ(f(x))→ κ(x), we obtain a DVR R with fraction field κ(x) dominating
OY,y0 which yields the desired diagram.

A.4.2 The Valuative Criteria

Theorem A.4.5 (Valuative Criteria for Proper/Separated/Universally Closed Mor-
phisms). Let f : X → Y be a finite type morphism of noetherian schemes. Consider

385

http://stacks.math.columbia.edu/tag/00PG


a commutative diagram

SpecK //

��

X

f

��

SpecR //

;;

Y

(A.4.1)

of solid arrows where R is a DVR with fraction field K. Then
(1) f is proper if and only if for every diagram (A.4.1), there exists a unique lift.
(2) f is separated if and only if for every diagram (A.4.1), any two lifts are equal.
(3) f is universally closed if and only if for every diagram (A.4.1), there exists a

lift.

Proof. We first claim that it suffices to handle the universally closed case. Indeed, a
morphism X → Y is separated if and only if the diagonal X → X×Y X is universally
closed, and the equality of two lifts in the valuative criterion for X → Y corresponds
to the existence of a lift in the valuative criterion for X → X ×Y X.

Suppose that X → Y satisfies the valuative criterion for universally closedness.
To show that X → Y is universally closed, we claim that it suffices to check
that for every finite type morphism T → Y , the base change XT → T is closed.
Indeed, suppose that for an arbitrary morphism T → Y of schemes, the base
change fT : XT → T is not closed. By Lemma A.4.1, there exists x ∈ XT and
a specialization fT (x)  t0 which doesn’t lift to a specialization x  x0. This
implies that Z = {x} ⊂ XT has trivial intersection with the fiber (XT )t0 . Applying
Lemma A.4.6 (with its notation) yields, after replacing T with an open neighborhood
of t0, a commutative diagram

x_

��

XT
//

fT

��

XT ′
//

fT ′

��

X

f

��

fT (x) // t0 T
g
// T ′ // Y

where T ′ → Y is finite type and a closed subscheme Z ′ ⊂ XT ′ such that fT ′(Z ′)
contains g(fT (x)) but not g(t0). This shows that fT ′ : XT ′ → T ′ is not closed.

Since the valuative criterion holds for X → Y , it also holds for the morphism
XT → T of noetherian schemes. It therefore suffices to show that X → Y is closed.
By Lemma A.4.1, it suffices to show that given x ∈ X, every specialization f(x) y0

lifts to a specialization x x0. By Proposition A.4.4, there exists a diagram (A.4.1)
such that SpecR → Y realizes f(x)  y0 with a lift SpecK → X whose image is
x. The valuative criterion implies the existence of a lift SpecR→ X which in turn
yields a specialization x x0 lifting f(x) y0.

Conversely, assume that f : X → Y is universally closed and that we are given a
diagram (A.4.1). By replacing Y with SpecR and X with X ×Y SpecR, we may
assume that Y = SpecR and that we have a diagram

SpecK
x //

��

X

{{

SpecR

By replacing X with {x}, we may assume that X is integral with generic point
x. Since X → SpecR is closed, there exists a specialization x  x0 mapping to
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the specialization of the generic point to the closed point in SpecR. This gives an
inclusion of local rings R ↪→ OX,x0

in K. Since R is a valuation ring with fraction
field K (i.e. is maximal among local rings properly contained in K), we see that
R = OX,x0

and the inclusion SpecOX,x0
→ X gives the desired lift.

Lemma A.4.6. Let f : X → Y be a quasi-compact morphism of schemes. Let
T → Y be a morphism of schemes, t0 ∈ T be a point and Z ⊂ XT a closed
subscheme with trivial intersection with the fiber (XT )t0 . Then after replacing T with
an open neighborhood of t0, there exist a finite type morphism T ′ → Y of schemes
with a factorization T

g−→ T ′ → Y and a closed subscheme Z ′ ⊂ XT ′ with trivial
intersection with the fiber (XT ′)g(t0) such that im(Z ↪→ XT → XT ′) ⊂ Z ′.

Proof. See [SP, Tag 05BD].

A.4.3 Universally submersive morphisms

A morphism f : X → Y of schemes is submersive if f is surjective and Y has the
quotient topology, i.e. a subset U ⊂ Y is open if and only if f−1(U) is open, and
f : X → Y is universally submersive if for every map Y ′ → Y , the base change
X ×Y Y ′ → Y ′ is submersive.

Exercise A.4.7. (1) Show that a morphism f : X → Y of noetherian schemes is
universally submersive if and only if for every map SpecR→ Y from a DVR,
there is a commutative diagram

SpecR′ //

��

X

f

��

SpecR // Y

where R→ R′ is local homomorphism of DVRs.
(2) Show that every fppf morphism or universally closed morphism of noetherian

schemes is universally submersive.

A.5 Quasi-finite morphisms and Zariski’s Main The-
orem

We say that a locally of finite type morphism x : X → Y of schemes is quasi-finite at
x ∈ X if x is isolated in the fiber Xf(x) = X ×Y Specκ(k(y)). When f : X → Y is
quasi-compact, then this is equivalent to f−1(f(x)) being a finite set. We say that
f : X → Y is locally quasi-finite if f is is locally of finite type and quasi-finite at
every point, and quasi-finite if f is of finite type and quasi-finite.

Theorem A.5.1 (Étale Localization of Quasi-finite Morphisms). Let f : X → S
be a separated and finite type morphisms of schemes which is quasi-finite at x ∈ X.
There exists an étale neighborhood (S′, s′)→ (S, f(x)) with κ(s′) = κ(f(x)) and a
decomposition X ×S S′ = F tW into open and closed subschemes such that F → S′

is finite and the fiber Ws′ is empty.

Proof. See [EGA, IV.8.12.3] or [SP, Tag 02LP].
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Proposition A.5.2. A separated and quasi-finite morphism f : X → Y of schemes
factors as

f : X → SpecY f∗OX → Y

where X ↪→ SpecY f∗OX is an open immersion and SpecY f∗OX → Y is affine.

Proof. As f∗OX commutes with étale (even flat) base change on Y , so does the
above factorization of f : X → Y . Therefore, it suffices to show that every point
y ∈ Y has an étale neighborhood where the proposition holds. By Theorem A.5.1 we
may assume that X = X1tX2 with X1 finite over Y and (X2)y = ∅. After replacing
Y with SpecY f∗OX , we may also assume that f∗OX = OY . As OX = A1 × A2

is the product of quasi-coherent OX -algebras, OY = f∗OX = f∗A1 × f∗A2 and
thus Y decomposes as Y1 t Y2 such that y ∈ Y1 and f(Xi) ⊂ Yi for i = 1, 2.
After replacing Y with Y1, we see that X → Y is finite. Thus X is affine and
X = Y = SpecY f∗OX .

In the above factorization f∗OY may not be a finite type OY -algebra (even if
Y is a noetherian affine scheme, then Γ(X,OX) may not be a noetherian ring; see
[Ols16, Ex. 7.2.15]). However, we may modify the factorization to arrange that
X → Y factors as an open immersion followed by a finite morphism.

Theorem A.5.3 (Zariski’s Main Theorem). A separated and quasi-finite morphism
f : X → Y of schemes factors as the composition of a dense open immersion X ↪→ Ỹ
and a finite morphism X̃ → X. In particular, f is quasi-affine.

Proof. If A ⊂ f∗OX denotes the integral closure of OY → f∗OX , there is a factor-
ization X j−→ SpecY A → Y . We claim that j : X → SpecY A is an open immersion.
To show this claim, it suffices to show that for every point x ∈ X, there is an open
neighborhood V ⊂ SpecY A of j(x) such that j−1(V )→ V is an isomorphism. Since
normalization commutes with étale base change (Proposition A.5.4) and being an
open immersion at a point is an étale local property, we are free to replace Y by an
étale neighborhood of f(x). By Theorem A.5.1, we can assume that X = F tW
with F finite over Y and x ∈ F . In this case, the normalization SpecY A of Y in X
is F t W̃ where W̃ is the normalization of Y in W , and the claim follows.

By construction SpecY A → Y is integral. We can write A = colimAλ as the
colimit of finite type OY -algebras and since open immersions descent under limits
(Proposition A.6.7), we see that X → SpecY Aλ is an open immersion for λ � 0.
Since SpecY Aλ → Y is integral and finite type, it is finite.

See also [EGA, IV.8.12.6] or [SP, Tag 05K0].

The following algebra result was used above and will be useful to generalize
Zariski’s Main Theorem to algebraic spaces (Theorem 4.4.9) and stacks (Theo-
rem 4.4.9).

Proposition A.5.4. Let Y be a scheme, B be a quasi-coherent OY -algebra and B̃
be the integral closure of OY in B. If f : X → Y is a smooth morphism, then f∗B̃ is
identified with the integral closure of OX in f∗B.

Proof. See [SP, Tag 03GG] or [LMB00, Prop. 16.2].

Zariski’s Main Theorem has some useful corollaries.

Corollary A.5.5. A quasi-finite and proper morphism (resp. proper monomor-
phism) of schemes is finite (resp. a closed immersion).
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Proof. If f : X → Y is a quasi-finite and proper, Zariski’s Main Theorem (A.5.3)
gives a factorization f : X ↪→ X̃ → Y and the dense open immersion X ↪→ X̃ is
also closed, thus an isomorphism. On the other hand, if f : X → Y is a proper
monomorphism, then it is also quasi-finite, thus finite. The statement reduces to the
algebra fact that a finite epimorphism of rings is surjective (c.f. [SP, Tag 04VT]).

Remark A.5.6. Every universally closed morphism is necessarily quasi-compact
[SP, Tag 04XU]. It follows that every morphism which is universally closed, locally
of finite type, and a monomorphism is a closed immersion; see also [SP, Tag 04XV].

A.6 Limits of schemes

In moduli theory, we often need to deal with non-noetherian rings for the simple
reason that moduli functors and stacks are defined over the category Sch of all
schemes. Working instead with the category of locally noetherian schemes has the
limitation that it is not closed under fiber products while working instead with
the category of schemes finite type over a field or Z doesn’t contain local rings of
schemes or their completions.

In any case, using the limit methods presented in this section, it is usually straight-
forward to reduce properties of schemes and their morphisms to the noetherian
case.

A.6.1 Limits of schemes

The first result states that a limit exists for an inverse system (Sλ, fλµ)λ∈Λ of schemes
over a directed set Λ (see Definition A.1.2) where the transition map fλµ : Sλ → Sµ
for every λ ≥ µ is affine.

Proposition A.6.1 (Existence of Limits). If (Sλ, fλµ)λ∈Λ is an inverse system of
schemes with affine transition maps, then the limit S = limλ Sλ exists in the category
of schemes such that each morphism fλ : S → Sλ is affine.

Proof. If each Sλ = SpecAλ is affine, one takes S = Spec(colimλAλ). In general,
choose an element 0 ∈ I and set S = SpecS0

(colimλ≥0 fλ0,∗OSλ). Details can be
found in [EGA, IV.8.2] and [SP, Tag 01YX].

A morphism f : X → Y of schemes is locally of finite presentation if and
only if for every inverse system (Sλ, fλµ) of affine schemes over Y , the map
colimλ MorY (Sλ, X)→ MorY (limλ Sλ, X) is bijective (Proposition A.1.3) The same
holds for inverse systems of quasi-compact and quasi-separated schemes over S with
affine transition maps; see [EGA, IV.8.14.1] and [SP, Tag 01ZC].

A.6.2 Noetherian approximation

Every affine scheme SpecA is the limit of affine schemes SpecAλ of finite type over
Z. This follows from the fact that the ring A is the union of its finitely generated
Z-subalgebras. More generally, we have:

Proposition A.6.2 (Relative Noetherian Approximation). Let X → S be a mor-
phism of schemes with X quasi-compact and quasi-separated and with S quasi-
separated. Then X = limλXλ is a limit of an inverse system (Xλ, fλµ) of schemes
of finite presentation over S with affine transition maps over S.
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Proof. See [SP, Tag 09MV].

When S = SpecZ, this is often referred to as Absolute Noetherian Approximation
and was first established in [TT90, Thm. C.9].

A.6.3 Descending properties under limits
Proposition A.6.3 (Descending Properties of Schemes under Limits). Let S =
limλ Sλ be a limit of an inverse system of quasi-compact and quasi-separated schemes
with affine transition maps. If S is affine (resp. quasi-affine, separated), then so is
Sλ for λ� 0.

Proof. See [SP, Tags 01Z6, 086Q and 01Z5] and [TT90, Props C.6-7].

Proposition A.6.4 (Descending Morphisms under Limits). Let S = limλ Sλ∈Λ be
a limit of an inverse system of quasi-compact and quasi-separated schemes with affine
transition maps.
(1) For a finitely presented morphism X → S of schemes, there exists an index

0 ∈ Λ and a finitely presented morphism X0 → S0 of schemes such that
X ∼= X0 ×S0 S. Moreover, if we define Xλ := X0 ×S0 Sλ for λ > 0, then
X = limλ≥0Xλ is the limit of the inverse system (Xλ, fλµ) where the (affine)
transition map fλµ : Xλ → Xµ is the base change of Sλ → Sµ for λ ≥ µ.

(2) Let X0 and Y0 be finitely presented schemes over S0 for some index 0 ∈ Λ.
For λ > 0, set Xλ = X0 ×S0

Sλ and Yλ = Y0 ×S0
Sλ, and let X = limλXλ

and Y = limλ Yλ be the limits (Proposition A.6.1). Then the natural map

colimλ≥0 MorSλ(Xλ, Yλ)→ MorS(X,Y )

is bijective.

Remark A.6.5. In other words, the category of schemes finitely presented over S
is the colimit of the categories of schemes finitely presented over Sλ.

Proof. See [EGA, IV.8.8] and [SP, Tag 01ZM].

Definition A.6.6. We say that a property P of morphisms of schemes descends
under limits if the following holds for every limit S = limλ∈Λ Sλ of an inverse
system of quasi-compact and quasi-separated schemes with affine transition maps:
for every index 0 ∈ Λ, and for every morphism g0 : X0 → Y0 of quasi-compact and
quasi-separated schemes with base changes gλ : Xλ → Yλ over Sλ and g : X → Y
over S, we require that if g has P, then gλ has P for λ� 0.

Proposition A.6.7 (Descending Properties of Morphisms under Limits). The
following properties of morphisms of schemes descends under limits: isomorphism,
closed immersion, open immersion, affine, quasi-affine, finite, quasi-finite, proper,
projective, quasi-projective, separated, monomorphism, surjective, flat, locally of
finite presentation, unramified, étale, smooth, syntomic, and for any integer d the
property that every fiber is connected and has pure dimension d.

Proof. See [EGA, IV 8.10.5] and [SP, Tags 081C and 05M5].

Suppose S = colimSλ is the colimit of an inverse system (Sλ, fλµ) of quasi-
compact and quasi-separated schemes with affine transition maps. If F0 is a quasi-
coherent sheaf on S0 for an index 0 ∈ Λ, and F = f∗λF and Fλ = f∗λ0F0 are the
pullbacks to S and Sλ for λ ≥ 0, then Γ(S, F ) = colimλ≥0 Γ(Sλ, Fλ) [SP, Tag 01Z0].
Moreover, a quasi-coherent sheaf on S and its properties often descend to some Sλ.
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Proposition A.6.8 (Descending Sheaves under Limits). Let (Sλ, fλµ) be an inverse
system of quasi-compact and quasi-separated schemes with affine transition maps
and limit S = limλ∈Λ Sλ. Denote the projection maps by fλ : S → Sλ.
(1) If F is an OS-module of finite presentation (resp. vector bundle, line bundle),

then there exists an index i ∈ Λ and an OSλ module Fλ of finite presentation
(resp. vector bundle, line bundle) such that F ∼= f∗λFλ.

(2) For an index 0 ∈ Λ, let F0 and G0 be OS0-modules of finite presentation. The
natural map

colimλ≥0 HomOSλ (f∗λ0F0, f
∗
λ0G0)→ HomOS (f∗0F0, f

∗
0G0)

is bijective.
(3) For an index 0 ∈ Λ, let f0 : X0 → Y0 be a finitely presented morphism of

schemes over S0 and let F0 be a quasi-coherent sheaf on X0 of finite presenta-
tion. If the pullback of F0 under X0 ×S0

S → X0 is flat over Y0 ×S0
S, then

the pullback of F0 under X0 ×S0 Sλ → X0 is flat over Y0 ×S0 Sλ for λ� 0.

Remark A.6.9. In other words, the category of finitely presented modules over S
is the colimit of the categories of finitely presented modules over Sλ.

Proof. See [EGA, IV.8.5.2] and [SP, Tags 01ZR, 0B8W and 05LY].

A.6.4 Application
For a typical application of noetherian approximation in moduli theory, we illustrate
here how properties of an arbitrary family of curves can be reduced to a family over
a noetherian base.

Proposition A.6.10. Let S be a quasi-compact and quasi-separated scheme (e.g.
an affine scheme), and let C → S be a flat, proper and finitely presented morphism
of schemes such that every geometric fiber has dimension at most 1. Then there
exist a cartesian diagram

C //

��

C′

��

S // S′

where S′ is a scheme of finite type over Z and C′ → S′ is a flat, proper morphism
of schemes such that every geometric fiber has dimension at most 1. Moreover, if
C → S is smooth, then C′ → S′ can also be arranged to be smooth.

Remark A.6.11. The upshot is that we can now establish properties of the mor-
phism Cλ → Sλ of noetherian schemes and then deduce properties of C → S by base
change. In Lemma 5.2.17 we show if C → S is a nodal family of curves, then C′ → S′

can be arranged to be nodal.

Proof. Write S = limλ∈Λ Sλ as a limit of an inverse system of schemes of finite type
over Z (Proposition A.6.1). Note that each Sλ is quasi-compact and quasi-separated.
Since C → S is finitely presented, there exists an index 0 ∈ Λ and a finitely presented
morphism C0 → S0 such that C ∼= C0 ×S0

S (Proposition A.6.4). For each λ > 0, we
can define Cλ = C0 ×S0

Sλ and we have a cartesian diagram

C //

��

Cλ

��

S // Sλ.
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Since C → S is flat and proper with fiber of dimension at most 1 (resp. smooth),
then there exists λ0 ∈ I such that the same is true for Cλ → Sλ for all λ ≥ λ0

(Proposition A.6.7). We now take S′ = Sλ and C′ = Cλ for every λ ≥ λ0.

A.7 Cohomology and base change
Given a proper morphism f : X → Y of noetherian schemes and a coherent sheaf F
on X, we would like to know:
(a) When is Rif∗F a vector bundle on Y ?
(b) For a morphism of schemes Y ′ → Y inducing a cartesian diagram

XY ′
g′
//

f ′

��

X

f

��

Y ′
g
// Y,

when is the comparison map

φiY ′ : g
∗Rif∗F → Rif ′∗g

′∗F (A.7.1)

an isomorphism?
When f : X → Y is flat, Flat Base Change tells us that (A.7.1) is always an
isomorphism. Cohomology and Base Change provides an answer when F is flat over
Y .

Cohomology and Base Change is an essential tool in moduli theory. It can
be applied to verify properties of families of objects and construct vector bundles
on moduli spaces. For instance, for a family π : C → S of smooth curves, we can
verify that π∗Ω⊗kC/S is a vector bundle for k > 0 whose construction commutes
with base change on S and that C embeds canonically into PS(π∗Ω

⊗k
C/S) for k ≥ 3

(Proposition 5.1.9). These properties are used for instance to verify the algebraicity
ofMg (Theorem 3.1.15). On the other hand, applying this result to the universal
family π : Ug →Mg yields vector bundles π∗Ω⊗kUg/Mg

onMg; when k = 1, this is a
vector bundle of rank g called the Hodge bundle.

A.7.1 Algebraic input

The key algebraic input to Cohomology and Base Change is the following:

Theorem A.7.1. Let X → SpecA be a proper morphism of noetherian schemes
and F be a coherent sheaf on X which is flat over A. There is a complex

K• : 0→ K0 → K1 → · · · → Kn → 0

of finitely generated, projective A-modules such that Hi(X,F ) = Hi(K•) for all i.
Moreover, for every A-moduleM , Hi(X,F⊗AM) = Hi(K•⊗AM). In particular,

for a morphism SpecB → SpecA of schemes, Hi(XB , FB) = Hi(K• ⊗A B) where
XB := X ×SpecA SpecB and FB is the pullback of F to XB.

Proof. This is established by choosing a finite affine cover {Ui} of X and considering
the corresponding alternating Céch complex C• on {Ui} with coefficients in F .
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Then C• is a finite complex of free (but not finitely generated) A-modules and
Hi(X,F ) = Hi(C•). The result is then obtained by inductively refining C• to
build a finite complex K• of finitely generated, projective A-modules which is
quasi-isomorphic to C•.

See [Mum70, p.46] where the last statement is established for A-algebras B but
the argument goes through for every A-module M . See also [SP, Tag 07VK] or
[Vak17, 28.2.1].

Remark A.7.2 (Perfect complexes). A bounded complex K• of coherent sheaves
on a noetherian scheme X is perfect if there is an affine cover X =

⋃
i Ui such that

each K•|Ui is quasi-isomorphic to a bounded complex of vector bundles on Ui. (By
a vector bundle, we mean a locally free sheaf of finite rank—this is equivalent to
the corresponding module on Γ(Ui,OUi)) to be finitely generated and projective.)
If X is affine (or more generally has the resolution property, i.e. every coherent
sheaf is the quotient of a vector bundle), then K• is perfect if and only if it is
quasi-isomorphic to a bounded complex of vector bundles on X [SP, Tags 066Y
and 0F8F]). Moreover, the compact objects in DQCoh(X) are precisely the perfect
complexes [SP, Tag 09M8].

With this terminology in place, Theorem A.7.1 has the following translation:
Rf∗F ∈ Db

Coh(SpecA) is perfect [SP, Tag 07VK]. More generally, if F • is a perfect
complex on X, then Rf∗F

• is also perfect [SP, Tag 0A1H].

A.7.2 Theorems of Semicontinuity, Grauert and Cohomology
and Base Change

Theorem A.7.1 tells us for a proper morphism X → SpecA and coherent sheaf F on
X flat over A, the cohomology Hi(X,F ) can be computed using a perfect complex
K•. Since Zariski-locally on the base, the complex K• is a finite complex of free
objects, this reduces cohomological questions to linear algebra.

Theorem A.7.3 (Semicontinuity Theorem). Let f : X → Y be a proper morphism
of noetherian schemes and F be a coherent sheaf on X which is flat over Y .
(1) For each i ≥ 0, the function

Y → Z, y 7→ hi(Xy, Fy)

is upper semicontinuous.
(2) The function

Y → Z, y 7→ χ(Xy, Fy) =

∞∑
i=0

(−1)ihi(Xy, Fy)

is locally constant.

Proof. This is a direct consequence of Theorem A.7.1; see also [Mum70, p. 47],
[Har77, Thm. 12.8] or [Vak17, 28.2.4].

When the base scheme is reduced, Grauert’s Theorem provides a criterion for
when the higher pushforward sheaves Rif∗F are vector bundles.

Theorem A.7.4 (Grauert’s Theorem). Let f : X → Y be a proper morphism of
noetherian schemes and let F be a coherent sheaf on X which is flat over Y . Assume
that Y is reduced and connected. For each integer i, the following are equivalent:
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(1) the function y 7→ hi(Xy, Fy) is constant; and
(2) Rif∗F is a vector bundle and the comparison map

φiy : Rif∗F ⊗ κ(y)→ Hi(Xy, Fy)

is an isomorphism for all y ∈ Y .
If these conditions hold, then we have the following additional properties:
(a) for all maps g : Y ′ → Y of schemes, the comparison map φiY ′ : g

∗Rpf∗F →
Rif ′∗g

′∗F is an isomorphism; and
(b) The comparison map φi−1

y : Ri−1f∗F ⊗ κ(y) → Hi−1(Xy, Fy) is an isomor-
phism.

Proof. See [Mum70, p.51-2], [Har77, Cor. 12.9] and [Vak17, 28.1.5].

Grauert’s Theorem is proved by using that Rf∗F is a perfect complex and a
linear algebra argument to show that Rif∗F ⊗κ(y) has constant dimension. Since Y
is reduced, this implies that Rif∗F is a vector bundle. When Y is not reduced, the
local criterion for flatness can be leveraged to provide the following useful criteria.

Theorem A.7.5 (Cohomology and Base Change). Let f : X → Y be a proper and
finitely presented morphism of schemes, and let F be a finitely presented sheaf on X
which is flat over Y . Suppose that for a point y ∈ Y and integer i, the comparison
map φiy : Rif∗F ⊗ κ(y)→ Hi(Xy, Fy) is surjective. Then the following hold
(a) There is an open neighborhood V ⊂ Y of y such that for every morphism

Y ′ → V of schemes, the comparison map φiY ′ : g
∗Rpf∗F → Rif ′∗g

′∗F is an
isomorphism. In particular, φiy is an isomorphism.

(b) φi−1
y is surjective if and only if Rif∗F is a vector bundle in an open neighbor-

hood of y.

Proof. See [EGA, III.7.7.5, III.7.7.10, III.7.8.4], [Har77, Thm. 12.11] and [Vak17,
28.1.6].

Remark A.7.6. For moduli-theoretic applications, it is sometimes convenient to
apply Cohomology and Base Change in the non-noetherian setting. Using the
methods of Noetherian Approximation from §A.6, it is not hard to see how the
general statement follows from the noetherian version. Since the statement is local
on Y , we can assume Y is affine and we can write Y = limλ∈Λ Yλ as a limit of affine
schemes of finite type over Z. Since X → Y is finitely presented, there exists an
index 0 ∈ Λ and a finitely presented morphism X0 → Y0 such that X ∼= X0 ×Y0

Y
(Proposition A.6.4). For each λ > 0, we can define Xλ = X0 ×Y0

Yλ and we
have X ∼= Xλ ×Yλ Y . By Proposition A.6.7, Xλ → Yλ is proper for λ � 0. By
Proposition A.6.8(1), there exist an index µ ∈ Λ and a coherent sheaf Fµ on Xµ

that pulls back to F under X → Xµ. For λ > µ, set Fλ to be the pullback of Fµ
under Xλ → Xµ. By Proposition A.6.8(3), Fλ is flat over Yλ for λ � 0. We may
now apply noetherian Cohomology and Base Change to the data of Xλ → Yλ and
Fλ for λ� 0, and we may deduce the same properties for X → Y and F under the
base change Y → Yλ.

Corollary A.7.7. Let f : X → Y be a proper morphism of noetherian schemes and
let F be a coherent sheaf on X which is flat over Y . The following are equivalent:
(1) Hi(Xy, Fy) = 0 for all y ∈ Y and i > 0; and

394



(2) Rif∗F = 0 for all i > 0, and f∗F is a vector bundle whose construction
commutes with base change on Y (i.e. for all morphisms g : Y ′ → Y of
schemes, the comparison map φ0

Y ′ : g
∗f∗F → f ′∗g

′∗F is an isomorphism).

Proof. The implication (2) ⇒ (1) follows from choosing N > dimXy so that
HN (Xy, Fy) = 0 and φNy is surjective, and then inductively applying Cohomol-
ogy and Base Change (A.7.5(b)) to conclude φiy is surjective for all i ≤ N .

For the converse, since φiy : Rif∗F ⊗ κ(y)→ Hi(Xy, Fy) = 0 is surjective for all
y ∈ Y and i > 0, A.7.5(a) implies that each φiy is an isomorphism and therefore
Rif∗F = 0 for i > 0. We now apply Cohomology and Base Change three more times:
A.7.5(b) with i = 1 implies that φ0

y is surjective for all y ∈ Y , A.7.5(b) with i = 0 (as
φ−1
y is necessarily surjective) implies that f∗F is a vector bundle, and A.7.5(a) with
i = 0 implies that the construction of f∗F commutes with base change on Y .

A.7.3 Applications to moduli theory

Here is a typical application of Cohomology and Base Change to moduli theory.
The following proposition is used to establish properties of smooth families of curves
(Proposition 5.1.9) and its argument applies in the same way to families of stable
curves (Proposition 5.3.9).

Proposition A.7.8. Let π : C → S be a family of smooth curves of genus g ≥ 2
(i.e. C → S is a smooth, proper morphism of schemes such that every geometric
fiber is a connected curve of genus g). Then
(1) π∗OC = OS;
(2) For k > 1, the pushforward π∗(Ω⊗kC/S) is a vector bundle of rank (2k− 1)(g− 1)

whose construction commutes with base change on S and Riπ∗(Ω
⊗k
C/S) = 0 for

i > 0.
(3) The pushforward π∗(ΩC/S) is a vector bundle of rank g whose construction

commutes with base change on S and R1π∗(ΩC/S) ∼= OS while Riπ∗(ΩC/S) = 0
for i ≥ 2.

Proof. To see (1), observe that H0(Cs,OCs) = κ(s) for all s ∈ S since Cs is proper
and geometrically connected. It follows that φ0

s : π∗OC ⊗ κ(s) → H0(Cs,OCs) is
surjective. Cohomology and Base Change (A.7.5(a)–(b) with i = 0) implies that φ0

s

is an isomorphism and that π∗OC is a line bundle. On a fiber over s ∈ S, the natural
map OS → π∗OC induces a surjective map κ(s)→ π∗OC ⊗ κ(s) (as post-composing
with φ0

s : π∗OC ⊗ κ(s)→ H0(Cs,OCs) = κ(s) is the identity). Thus OS → π∗OC is a
surjective morphism of line bundles, hence an isomorphism.

For (2) with k > 1, H1(Cs,Ω⊗kCs/κ(s)) = H0(Cs,Ω⊗(1−k)
Cs/κ(s)) for all s ∈ S by Serre

Duality (5.1.2) and this vanishes as deg(Ω
⊗(1−k)
Cs/κ(s)) < 0. Note that we also have the

vanishing of Hi(Cs,Ω⊗kCs/κ(s)) for i ≥ 2 since dim Cs = 1. Cohomology and Base
Change (A.7.5(a)) gives the vanishing of the higher pushforward Riπ∗(Ω

⊗k
C/S) = 0 for

i > 0. On the other hand, h0(Cs,Ω⊗kCs/κ(s)) = deg(Ω⊗kCs/κ(s)) + 1− g = (2k − 1)(g − 1)

by Riemann–Roch (5.1.1). Corollary A.7.7 implies that π∗(Ω⊗kC/S) is a vector bundle
of rank (2k − 1)(g − 1).

For (3), since ΩC/S is a relative dualizing sheaf (see [Liu02, §6.4]), Grothendieck–
Serre Duality implies that R1π∗ΩC/S ∼= π∗OC and this is identified with OS by
(1). For i ≥ 2, Hi(Cs,ΩC/S ⊗ κ(s)) = 0 and A.7.5(a) implies that Riπ∗ΩC/S = 0.
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Applying A.7.5(b) with i = 2 yields that φ1
s : R1π∗ΩC/S ⊗ κ(s) → H1(Cs,ΩCs/κ(s))

is surjective for every s ∈ S and thus an isomorphism (A.7.5(a) with i = 1). Since
R1π∗ΩC/S ∼= π∗OC ∼= OS is a line bundle, applying A.7.5(b) with i = 1 implies that
φ0
s : π∗ΩC/S ⊗ κ(s)→ H0(Cs,ΩCs/κ(s)) is surjective, and applying A.7.5(a)–(b) with
i = 0 implies that π∗ΩC/S is a vector bundle of rank h0(Cs,ΩCs/κ(s)) = g whose
construction commutes with base change.

The following proposition is useful to verify the algebraicity of stacks of coherent
sheaves and vector bundles (Theorem 3.1.19).

Proposition A.7.9. Let p : X → S be a proper morphism of schemes and F be a
finitely presented sheaf on X of finite presentation and flat over S. Suppose that
dimXs ≤ d for all s ∈ S. The subset S′ of points s ∈ S such that Hj(Xs, Fs) = 0
for all j > 0 is open. Denoting X ′ = p−1(S′), p′ := p|X′ : X ′ → S and F ′ = F |X′ ,
we have that Rjp′∗F

′ = 0 for all j > 0 and that p′∗F ′ is a vector bundle whose
construction commutes with base change.

Proof. For each j = 1, . . . , d, A.7.5(a) implies that the locus of points s ∈ S such that
Hj(Xs, Fs) = 0 is open and the comparison map φjs : Rjp∗F ⊗ κ(s) → Hj(Xs, Fs)
is an isomorphism. It follows that Rjp′∗F = 0 which allows us to apply A.7.5(b)
(with i = 1) to conclude that φ0

s : p′∗F
′ ⊗ κ(s) → H0(Xs, Fs) is surjective. Apply

A.7.5(a)-(b) (with i = 0) now gives the final statement.

For the following proposition (specialized to n = 1) is convenient to define
determinantal line bundles on BunC,r,d.

Proposition A.7.10. Let f : X → S be a smooth projective morphism of relative
dimension n between noetherian schemes. If F is a coherent sheaf on X flat over S,
there is a locally free resolution

0→ Fn → Fn−1 → · · · → F0 → F

such that

• Rif∗Fd = 0 for i 6= n and d = 0, . . . , n,

• Rnf∗Fd is locally free for d = 0, . . . , n,

• Rif∗F is the (n− i)th homology Hn−i(R
nf∗F•) of the complex Rnf∗F•.

• the determinant
det Rf∗F :=

⊗
i

(det Rif∗F )(−1)i

is identified with
⊗

d(det Rnf∗Fd)
(−1)n−d .

Moreover, the construction is compatible with base change on S.

Proof. See [HL10, Prop. 2.1.10].

A.7.4 Applications to line bundles
Given a flat, proper morphism f : X → Y , when is a line bundle L on X the pullback
of a line bundle on Y ? More generally, is there a largest subscheme Z ⊂ Y where
LZ on XZ = X ×Y Z is the pullback of a line bundle on Z? In this section, we
provide three answers in increasing complexity.

As we will need to impose conditions on the fibersXy, we first discuss relationships
between various conditions.
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Lemma A.7.11. Let f : X → Y be a flat, proper morphism of noetherian schemes.
Consider the following conditions:
(1) the geometric fibers of f : X → Y are non-empty, connected and reduced;
(2) h0(Xy,OXy ) = 1 for all y ∈ Y ; and
(3) OY = f∗OX and this holds after arbitrary base change (i.e. OT = fT,∗OXT

for a morphism T → Y of schemes).
Then (1) ⇒ (2) ⇐⇒ (3).

Proof. If (1) holds, then H0(Xy,OXy )⊗κ(y)κ(y) = H0(X×Y κ(y),O
X×Y κ(y)

) = κ(y)

by Flat Base Change and the fact that a connected, reduced and proper scheme
over an algebraically closed field has only constant functions. This gives (2).

If (2) holds, then the comparison map φ0
y : f∗OX⊗κ(y)→ H0(Xy,OXy ) = κ(y) is

necessarily surjective as we have the global section 1 ∈ H0(Y, f∗OX). Theorem A.7.5
(with i = 0) implies that f∗OX is a line bundle and that OY → f∗OX is a surjection
of line bundles, hence an isomorphism. Since the same argument applies to the base
change XT → T , this gives (3). The converse (3) ⇒ (2) follows by consider the base
change T = Specκ(y)→ Y .

When Y is reduced, Grauert’s Theorem provides a complete answer to when a
line bundle is a pullback.

Proposition A.7.12 (Version 1). Let f : X → Y be a flat, proper morphism of
noetherian schemes such that h0(Xy,OXy ) = 1 for all y ∈ Y . Let L be a line bundle
on X. If Y is reduced, then L = f∗M for a line bundle M on Y if and only if Ly
is trivial for all y ∈ Y . Moreover, if these conditions hold, then M = f∗L and the
adjunction morphism f∗f∗L→ L is an isomorphism.

Proof. The condition on geometric fibers implies that h0(Xy, Ly) = 1 and
Grauert’s Theorem (A.7.4) implies that f∗L is a line bundle and that f∗L⊗ κ(y)

∼→
H0(Xy, Ly) is an isomorphism. We claim that f∗f∗L→ L is surjective. It suffices to
show that (f∗f∗L)|Xy → L|Xy is surjective. Denoting fy : Xy → Specκ(y), we have

identifications (f∗f∗L)|Xy = f∗y (f∗L⊗κ(y)) = f∗y ( ˜H0(Xy, Ly)) = OXy and the claim
follows. Since f∗f∗L→ L is a surjection of line bundles, it is an isomorphism.

Exercise A.7.13. Show that if Y is a connected and reduced noetherian scheme
and E is a vector bundle, then Pic(PY (E)) = Pic(Y ) × Z. See also [Har77, Exer.
III.12.5].

Proposition A.7.14 (Version 2). Let f : X → Y be a flat, proper morphism of
noetherian schemes with integral geometric fibers. For a line bundle L on X, the
locus

{y ∈ Y | Ly is trivial} ⊂ Y
is closed.

Proof. The important observation here is that for a geometrically integral and proper
scheme Z over field k, a line bundle M is trivial if and only if h0(Z,M) > 0 and
h0(Z,M∨) > 0. To see that the latter condition is sufficient, observe that we have
non-zero homomorphisms OZ →M and OZ →M∨, the latter of which dualizes to a
non-zero mapM → OZ . Since Z is integral, the composition OZ →M → OZ is also
non-zero and is defined by a constant in H0(Z,OZ) = k. It follows that M → OZ
is a surjective map of line bundles, hence an isomorphism. By the Semicontinuity
Theorem (A.7.3) the condition that h0(Xy, Ly) > 0 and h0(Xy, L

∨
y ) > 0 is closed,

and the statement follows. See also [Mum70, p. 51].
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Remark A.7.15. If the geometric fibers are only connected and reduced, the locus
may fail to be closed. For example consider a family of smooth curves f : X → Y
where Y is a curve and X is a smooth surface. For a closed point x ∈ X, consider
the blow-up BlxX → X and let E be the exceptional divisor. Then BlxX → Y
is a flat, proper morphism and the fiber over f(x) ∈ Y is connected and reduced,
but reducible. The line bundle L = OBlxX(E) has the property that the fiber Ly is
trivial if and only if y 6= f(x).

The two versions above can be combined to the following powerful statement for
a flat, proper morphism X → Y . For moduli-theoretic applications, it is essential
that we allow the possibly that Y is non-reduced and that the fibers Xy be reducible.
The proposition will be applied in the proof of Theorem 3.1.15 to show that the
locus of curves C in a Hilbert scheme HilbP (P5g−6

Z /Z) which are tri-canonically is a
closed condition.

Proposition A.7.16 (Version 3). Let f : X → Y be a flat, proper morphism of
noetherian schemes such that h0(Xy,OXy) = 1 for all y ∈ Y (resp. the geometric
fibers are integral). For a line bundle L on X, there is a unique locally closed (resp.
closed) subscheme Z ⊂ Y such that
(1) LZ on XZ = X ×Y Z is the pullback of a line bundle on Z; and
(2) if T → Y is a morphism of schemes such that LT on XT is the pullback of a

line bundle on T , then T → Y factors through Z.

Remark A.7.17. In other words, the functor

Sch /Y → Sets,

(T → Y ) 7→
{
{∗} if LT is the pullback of a line bundle on T
∅ otherwise

is representable by a locally closed (resp. closed) subscheme of Y .

Proof. By the Semicontinuity Theorem (A.7.3), the locus V = {y ∈ Y | h0(Xy, Ly) ≤
1} is open. Since for points y /∈ V , Ly is not trivial, we may replace Y with V and
assume that h0(Xy, Ly) ≤ 1 for all y ∈ Y .

Observe that if L = f∗M for a line bundle M on Y , then by using the projection
formula and the fact that OY = f∗OX (Lemma A.7.11), we see that f∗L ∼= f∗f

∗M ∼=
f∗f
∗OY ⊗M ∼= f∗OX ⊗M ∼= M is a line bundle and that the adjunction map

f∗f∗L→ L is an isomorphism. The same holds for the base change XT → T , and
we conclude that LT is a pullback of a line bundle on T if and only if fT,∗L is a line
bundle and f∗T fT,∗L → L is an isomorphism. We see therefore that the question
is Zariski-local on Y and T . We will show that every point y ∈ Y has an open
neighborhood where the proposition holds.

By applying Theorem A.7.1 and after replacing Y with an open affine neigh-
borhood of y, we may assume that there is a homomorphism d : Ar0

d−→ Ar1

of finitely generated and free A-modules such that for every ring map A → B,
H0(XB , LB) = ker(d⊗B). Consider the dual d∨ of d, we define M as the cokernel
in the sequence

Ar1
d∨−−→ Ar0 →M → 0.

Tensoring over A→ B yields a right exact sequence

Br1
d∨⊗B−−−−→ Br0 →M ⊗A B → 0
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which after applying the contravariant left-exact functor HomB(−, B) becomes

0→ HomB(M ⊗A B,B)→ Br0
d⊗AB−−−−→ Br1 .

We conclude that

H0(XB , LB) = HomB(M ⊗A B,B) = HomA(M,B). (A.7.2)

Applying this to A → κ(y) for every point y ∈ SpecA, we have H0(Xy, Ly) =
HomA(M,κ(y)) = M ⊗A κ(y).

If h0(Xy, Ly) = 0, then Ly is not trivial and there is an open neighborhood U of
y such that M̃ |U = 0. The proposition holds over U since there are no morphisms
T → U from a non-empty scheme such that LT is a pullback.

If h0(Xy, Ly) = 1, then M ⊗A κ(y) = κ(y) and by Nakayama’s lemma, after
replacing Y with an open affine neighborhood of y, there is a surjection A → M .
Write M = A/I for an ideal I and define the closed subscheme Z = V (I) ⊂ Y .
Observe that H0(Z,LZ) = HomA(A/I,A/I) = A/I so that fZ,∗LZ is the trivial line
bundle. For an A/I-algebra B, we have that H0(XB , LB) = HomA(A/I,B) = B.
It follows that the comparison map H0(XZ , LZ) ⊗A/I B → H0(XB , LB) is an
isomorphism, or in other words the construction of fZ,∗LZ commutes with base
change. We claim that T → Y factors through Z if and only if fT,∗LT is a line
bundle. This question is Zariski-local on T so we may assume T = SpecB is
affine. If fT,∗LT is a line bundle, we may assume fT,∗LT = OT is trivial since the
question is local on T . Then B = HomA(A/I,B) implies that I ⊂ ker(A → B)
or in other words that A → B factors as A → A/I → B. Finally, considering
the adjunction morphism λ : f∗ZfZ,∗LZ → LZ on XZ , we claim that for y ∈ Z,
Ly is trivial if and only if λ|Xy is surjective. If λ|Xy is surjective, then using that
fZ,∗LZ = OZ , we have a surjection OXy → Ly of line bundles, hence an isomorphism.
For converse, observe that since fZ,∗LZ commutes with base change, the comparison
map fZ,∗LZ ⊗ κ(y) = H0(Xy, Ly) is an isomorphism. Denoting fy : Xy → Specκ(y),
we have identifications (f∗ZfZ,∗LZ)|Xy = f∗y (fZ,∗LZ ⊗κ(y)) = f∗y fy,∗Ly under which
λ|Xy corresponds to the adjunction map f∗y fy,∗Ly → Ly which is an isomorphism.
Replacing Z with Z \ Supp(coker(λ)) establishes the proposition in the case that
h0(Xy,OXy) = 1 for all y ∈ Y . If the fibers are geometrically integral, then
Proposition A.7.14 implies that Z is closed.

See also [Mum70, p. 90], [Vie95, Lem. 1.19] and [SP, Tags 0BEZ and 0BF0].

Remark A.7.18. Note that to prove the strongest version, we needed the strongest
version of our various cohomology and base change results, namely Theorem A.7.1.

Remark A.7.19. For a flat, proper morphism X → S, define the Picard functor as

PicX/S : Sch/S → Sets, T 7→ Pic(XT )/f∗T Pic(T ).

If f : X → S has geometrically integral fibers, then the existence of a closed
subscheme Z ⊂ Y characterized by Proposition A.7.16 is equivalent to the diagonal
morphism PicX/S → PicX/S ×S PicX/S of presheaves over Sch/S being representable
by closed immersions, i.e. PicX/S is separated over S.

A.8 Pushouts

A.8.1 Existence of pushouts
Pushouts are the dual notion of fiber product. Unlike fiber products, pushouts may
not always exist. However, Ferrand showed that they often exist when one of the
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maps is a closed immersion and the other is an affine morphism.

Theorem A.8.1 (Ferrand’s Theorem on the Existence of Pushouts). Consider a
diagram

X0
� � i //

f0

��

X

f

��

Y0
� � j

// Y

(A.8.1)

of schemes where i : X0 ↪→ X is a closed immersion and f0 : X0 → Y0 is affine. If

(?) for every point y0 ∈ Y0, the subspace f−1
0 (SpecOY0,y0

) ⊂ X0 has a basis of
open affine neighborhoods of X,

then there exists a closed immersion j : Y0 ↪→ Y and an affine morphism f : X → Y
of schemes such that (A.8.1) is cocartesian (i.e. a pushout). Moreover, we have the
following properties:

(a) the square (A.8.1) is cartesian, X → Y restricts to an isomorphism X \X0 →
Y \ Y0 and the induced map X q Y0 → Y is universally submersive;

(b) the induced map
OY → j∗OY0 ×(j◦f0)∗OX0

f∗OX

is an isomorphism of sheaves; and
(c) if f0 is finite (resp. integral), then so is f . In this case, Condition (?) can

be replaced with the condition that every finite set of points in X0 and Y is
contained in an open affine (resp. for every y0 ∈ Y0, f−1

0 (y0) is contained in
an open affine). Finally if X0, X and Y0 are of finite type over a noetherian
scheme, then so is Y .

Proof. See [Fer03, Thm. 5.4 and 7.1] and [SP, Tag 0ECH].

Example A.8.2 (Affine case). In the affine case where X = SpecA, X0 = SpecA0,
Y0 = SpecB0, then Spec(A×A0

B0) is the pushout X qX0
Y0.

Example A.8.3 (Gluing and pinching). If X0 ↪→ X and X0 ↪→ Y0 are closed
immersions, the pushout X qX0

Y0 can be viewed as the gluing of X and Y0 along
X0. For example, the nodal curve Spec k[x, y]/xy is the union of A1 and A1 along
their origins. If X0 = Z t Z is the union of two isomorphic disjoint subschemes of
X and X0 → Z is the projection, then the pushout X qZtZ Z can viewed as the
pinching of the two copies of Z in X. For example, the nodal cubic curve is the
pinching of 0 and ∞ in P1.

Example A.8.4 (Non-noetherianness). When f0 : X0 → Y0 is affine but not finite,
then the pushout X qX0 Y0 is often not noetherian. For example, if X0 = V (x) ⊂
X = A2

k and f0 : X0 → Speck, the pushout is the non-noetherian affine scheme
defined by

k[x, y]×k[x] k = k[x, xy, xy2, xy3, . . .] ⊂ k[x, y].

On the other hand, we wouldn’t expect a finite type pushout as one cannot contract
the y-axis in A2

k.
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A.8.2 Properties of pushouts
Given a fiber product diagram of rings

B //

����

A

����

B0
// A0

with A� A0 surjective and B := B0 ×A0 A, the fiber product Mod(B0)×Mod(A0)

Mod(A) is the category of triples (N0,M, α) consisting of a B0-module N0, an
A-module M and isomorphism α : N0 ⊗B0

A0
∼→M ⊗A A0. Equivalently, an object

is a diagram

M
ww

N0
// M0

A
ww

B0
// A0

(A.8.2)

where N0, M0 and M are modules over B0, A0 and A, and the maps N0 →M0 and
M →M0 are morphisms of B0 and A-modules inducing isomorphisms N0⊗B0

A0 →
M0 and M ⊗A A0 →M0.

We define functors

Mod(B)
L
// Mod(B0)×Mod(A0) Mod(A)

Roo (A.8.3)

where for a B-module N , L(N) := (N ⊗BB0, N ⊗BA,α) with α being the canonical
isomorphism (N ⊗B B0) ⊗B0 A0

∼→ (N ⊗B A) ⊗A A0. For an object (N0,M, α)
corresponding to a diagram (A.8.2), we define R(N0,M, α) := N0 ×M0 M , which we
can view as:

N0 ×M0
M //

uu

M
xx

N0
// M0

B0 ×A0 A //

uu

A
xx

B0
// A0.

Proposition A.8.5. The functors L and R restrict to an equivalence on the full
subcategories of flat (resp. finite) modules.

Proof. See [Fer03, Thm. 2.2], [Sch68, Lem. 3.4] and [SP, Tag 0D2G] where it
is established more generally that R is the right adjoint of L, the adjunction
morphism L ◦R→ id is an isomorphism and for a B-module N , the adjunction map
N → R ◦ L(N) is surjective whose kernel is annihilated by I = ker(B → B0) and
contained in IM .

Corollary A.8.6. Consider a commutative cube of schemes

X ′0

��

xx

� � // X ′

xx

��

X0

��

� � // X

��

Y ′0
� � //

xx

Y ′

xx
Y0
� � // Y
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of schemes where X0 ↪→ X is a closed immersion and X0 → Y0 is affine.

(1) Assume that Y ′ → Y is a flat morphism of schemes and X ′0, Y ′0 and X ′ are
the base changes under Y ′ → Y (i.e. the bottom, left, top and right faces are
cartesian).

(a) If the front face is a pushout, then so is the back face and the natural
functor

QCoh(Y ′)→ QCoh(Y ′0)×QCoh(X′0) QCoh(X ′),

restricts to an equivalence on the full subcategories of QCoh(Y ′), QCoh(Y ′0)
and QCoh(X ′) containing finitely presented O-modules flat over Y ′, Y ′0
and X ′.

(b) If in addition Y ′ → Y is faithfully flat and locally of finite presentation,
then back face being a pushout implies that the front face is as well.

(2) If the top and left faces are cartesian, and the front and back faces are pushouts,
then all faces are cartesian. Moreover, if Y ′0 → Y0 and X ′ → X are étale (resp.
smooth, flat), then so is Y ′ → Y .

A.9 Henselizations

A.9.1 Henselian and strictly henselian local rings

Let (R,m) be a local ring with residue field κ. We will denote the image of a ∈ R
(resp. f ∈ R[x]) as a ∈ κ (resp. f ∈ κ[x]). If f ∈ R[t], we denote its derivative by
f ′ ∈ R[t]. Note that f ′ = f

′
.

Definition A.9.1. Let (R,m) be a local ring with residue field κ.
(1) We say that R is henselian if for a monic polynomial f ∈ R[t], every root

α0 ∈ κ of f with f ′(α0) 6= 0 lifts to a root α ∈ R of f .
(2) We say that R is strictly henselian if R is henselian and κ is separably closed.

Remark A.9.2. Hensel’s lemma states that a complete DVR R (e.g. Zp) is
henselian.

Proposition A.9.3 (Henselian Equivalences). The following are equivalent for a
local ring (R,m) with residue field κ:
(1) R is henselian;
(2) for a polynomial f ∈ R[t], every factorization f = g0h0 with gcd(g0, h0) = 1

lifts to a factorization f = gh with g = g0 and h = h0;
(3) every finite R-algebra is a finite product of local rings finite over R;
(4) every quasi-finite R-algebra A is isomorphic to a product A ∼= B × C where B

is a finite over R and C ⊗R κ = 0;
(5) every étale ring homomorphism φ : R→ A and a prime p ⊂ A with φ−1(p) = m

and κ = κ(p) has a unique section s : A→ R with s−1(m) = p.
Moreover R is strictly henselian if and only if for every étale ring homomorphism
φ : R→ A and prime p ⊂ A with φ−1(p) = m, there is a unique section s : A→ R
with s−1(m) = p.

Proof. See [EGA, IV.18.5.11], [Mil80, Thm. I.4.2] and [SP, Tag 04GG].
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Remark A.9.4. The following stronger version of (4) holds for a henselian ring R:
for every quasi-finite and separated morphism X → SpecR of schemes, X ∼= F tW
with F finite over R and W ×R κ = ∅. This is a reformulation of Étale Localization
of Quasi-finite Morphisms (Theorem A.5.1); see Exercise A.9.10.

Remark A.9.5. Both property (5) and the analogous property of strictly
henselian rings generalize to étale morphisms X → SpecA of schemes: every section
over SpecA/m

X

��

SpecA/m �
�

//

88

SpecA

]]

extends to a global section.

Proposition A.9.6. Let (R,m) be a henselian (resp. strictly henselian) local ring
with residue field κ.

(1) Every finite R-algebra is a product of finite henselian local (resp. strictly
henselian) R-algebras.

(2) Every complete local ring is henselian.
(3) The functor A 7→ A⊗R κ gives an equivalence of categories between finite étale

A-algebras and finite étale κ-algebras.

Proof. See [EGA, IV.18.5.10, IV.18.5.14-15], [Mil80, 4.3-4.5] and [SP, Tag 04GE].

Remark A.9.7. The more general notion of henselian pairs is sometimes useful
(although won’t be used in these notes). A pair (X,X0) consisting of a scheme X and
a closed subscheme X0 ⊂ X is henselian if every finite morphism f : U → X induces
a bijection ClOpen(U)→ ClOpen(f−1(X0)) between open and closed subschemes of
U and those of f−1(X0). If (R,m) is a henselian local ring, then (SpecR,Spec(R/m))
is a henselian pair by Proposition A.9.3(3). See [EGA, IV.18.5.5] or [SP, Tag 09XD]
for further discussion and equivalences.

A.9.2 Henselizations and strict henselizations

Definition A.9.8. Let (R,m) be a local ring with residue field κ. The henselization
of R is a local homomorphism R → Rh into a henselian local ring Rh such that
every other local homomorphism R→ A into a henselian local ring factors uniquely
through R→ Rh.

Given a separable closure κ→ κs, the strict henselization of R with respect to κ→
κs is a local homomorphism R→ Rsh into a strictly henselian local ring (Rsh,msh)
inducing κ → κs on residue fields such that every other local homomorphism
R→ A into a strictly henselian local ring (A,mA) factors through R→ Rsh and the
factorization is uniquely determined by the inclusion Rsh/msh → A/mA of residue
fields.

Proposition A.9.9. Let (R,m) be a local ring with residue field κ and let κ→ κs

be a separable closure. The henselization R→ Rh and strict henselization R→ Rsh
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exist and can be constructed as

Rh = colim
(R,m)

ét// (A,mA), κ = A/mA
A

Rsh = colim
(R,m)

ét//

��

(A,mA)

vv
κs

A

where the colimits are taken over the directed system of étale R-algebras A and
maximal ideals mA over m; in the henselian case, we require that κ = R/mA while
in the strictly henselian case, the data includes a homomorphism A→ κs over R.
Moreover,

(a) the residue fields of Rh and Rsh are κ and κs, respectively;
(b) the maps R→ Rh and R→ Rsh are faithfully flat; and
(c) if R is noetherian, then so is Rh and Rsh.

Proof. See [EGA, IV.18.5-8], [Mil80, I.4] and [SP, Tags 0BSK and 07QL].

For a scheme X and a point x ∈ X with a choice of separable closure κ(x)→ κs,
the henselization Oh

X,x and strict henselization Oh
X,x are the colimits of Γ(U,OU )

taken over diagrams

Specκ
x //

##

U

ét

��

X

and Specκs //

##

U

ét

��

X,

respectively, where U → X is an étale morphism of schemes and Specκs → U is a
lift of Specκs → Specκ(x)

x−→ X. Both Oh
X,x and Osh

X,x can be thought of as local
rings in étale topology.

Exercise A.9.10. Show that Étale Localization of Quasi-finite Morphisms (Theo-
rem A.5.1) follows from the case when S is the spectrum of a henselian ring (see
Remark A.9.4).

Hint: Use limit methods (Propositions A.6.4 and A.6.7) to extend a decomposition
X ×S SpecOh

S,s
∼= F h tW h to an étale neighborhood of s.

A.10 Artin Approximation

In this section, we discuss the deep result of Artin Approximation (Theorem A.10.9)
which can be vaguely expressed as the following principle:

algebraic properties that hold for the completion ÔS,s of the local ring of a
scheme S at a point s also hold in an étale neighborhood (S′, s′)→ (S, s).

Artin Approximation is related to another equally deep and powerful result known
as Néron–Popescu Desingularization (Theorem A.10.4). Both Artin Approximation
and Néron–Popescu are difficult theorems which we will not attempt to prove
here. However, we will show at least how Artin Approximation easily follows from
Néron–Popescu Desingularization.
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A.10.1 Néron–Popescu Desingularization

Definition A.10.1. A ring homomorphism A → B of noetherian rings is called
geometrically regular if A → B is flat and for every prime ideal p ⊂ A and every
finite field extension κ(p)→ κ′ (where κ(p) = Ap/p), the fiber B ⊗A κ′ is regular.

Remark A.10.2. It is important to note that A→ B is not assumed to be of finite
type. If it is, then A→ B is geometrically regular if and only if A→ B is smooth.

Remark A.10.3. It can be shown that it is equivalent to require that each geometric
fiber B⊗Aκ(p) is regular, or equivalently that B⊗Aκ′ is regular for every inseparable
finite field extensions κ(p) → κ′. In particular, in characteristic 0, A → B is
geometrically regular if it is flat and and every fiber B ⊗A κ(p) is regular.

Theorem A.10.4 (Néron–Popescu Desingularization). A homomorphism A→ B
of noetherian rings is geometrically regular if and only if there is a directed system
Bλ of smooth A-algebras over a directed set Λ such that B = colimBλ∈Λ.

Proof. This was result was proved by Néron in [Nér64] in the case that A and B are
DVRs and in general by Popescu in [Pop85], [Pop86] and [Pop90]. We recommend
[Swa98] and [SP, Tag 07GC] for an exposition of this result.

Example A.10.5. A field extension k → l is geometrically regular if and only if it
is separable. When k → l is algebraic, then l is the colimit of separable finite (i.e.
étale) extensions.

Definition A.10.6. A noetherian local ring A is called a G-ring if the homomor-
phism A→ Â is geometrically regular.

Remark A.10.7. One of the defining features of excellent schemes is that their
local rings are G-rings.

In order to apply Néron–Popescu Desingularization, we will need that local rings
of schemes are frequently G-rings.

Theorem A.10.8. If A is the localization of a finitely generated algebra over a field
or Z, then A is a G-ring.

Proof. While substantially easier than Néron–Popescu Desingularization, this result
nevertheless requires some effort. See [EGA, IV.7.4.4] or [SP, Tag 07PX].

A.10.2 Artin Approximation

Let S be a scheme and consider a contravariant functor

F : Sch/S → Sets

where Sch/S denotes the category of schemes over S. We say that F is limit
preserving (or locally of finite presentation) if for system of OS-algebras Aλ (i.e.
each SpecAλ is an S-scheme), the natural map

colimF (Bλ)→ F (colimBλ)

is bijective. When F is a functor MorS(−, X) representable by a scheme X over S,
then this equivalent to X → S being locally of finite presentation (Proposition A.1.3).
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Theorem A.10.9 (Artin Approximation). Let S be a scheme and s ∈ S a point
such that OS,s is a G-ring (Definition A.10.6), e.g. a scheme of finite type over a
field or Z. Let

F : Sch/S → Sets

be a limit preserving contravariant functor and ξ̂ ∈ F (Spec ÔS,s). For every integer
N ≥ 0, there exist an étale morphism

(S′, s′)→ (S, s) and ξ′ ∈ F (S′)

with κ(s) = κ(s′) such that the restrictions of ξ̂ and ξ′ to Spec(OS,s/mN+1
s ) are

equal.

Remark A.10.10. To make sense of the restriction ξ′ to Spec(OS,s/mN+1
s ), note

that since (S′, s′)→ (S, s) is a residually-trivial étale morphism, there are compatible
identifications OS,s/mN+1

s
∼= OS′,s′/mN+1

s′ .

Remark A.10.11. It is not possible in general to find ξ′ ∈ F (S′) restricting to ξ̂
or even such that the restrictions of ξ′ and ξ̂ to SpecOS,s/mn+1

s agree for all n ≥ 0.
For instance, F could be the functor Mor(−,A1) representing the affine line A1 and
ξ̂ ∈ ÔS,s could be a non-algebraic power series.

Proof. The theorem was originally proven in [Art69a, Cor. 2.2] in the case that S is of
finite type over a field or an excellent dedekind domain. We also recommend [BLR90,
§3.6] for an accessible account of the case of excellent and henselian DVRs. We
will show how Artin Approximation follows from Néron–Popescu Desingularization
(Theorem A.10.4).

Néron–Popescu Desingularization implies that ÔS,s = colimλ∈ΛBλ is a directed
colimit of smooth OS,s-algebras. Since F is limit preserving, there exist λ ∈ Λ, a
factorization OS,s → Bλ → ÔS,s and an element ξλ ∈ F (SpecBλ) whose restriction
to F (Spec ÔS,s) is ξ̂. Letting B = Bλ and ξ = ξλ, we have a commutative diagram

Spec ÔS,s
g
//

ξ̂

''

&&

SpecB

��

ξ
// F

SpecOS,s

where SpecB → SpecOS,s is smooth. We claim that we can find a commutative
diagram

S′

$$

� � // SpecB

��

SpecOS,s

(A.10.1)

where S′ ↪→ SpecB is a closed immersion, (S′, s′) → (SpecOS,s, s) is étale, and
the composition SpecOS,s/mN+1

s → S′ → SpecB agrees with the restriction of
g : Spec ÔS,s → SpecB.1 To see this, since ΩB/OS,s is a locally free B-module,

1This is where the approximation occurs. It is not possible to find a morphism S′ → SpecB →
SpecOS,s which is étale at a point s′ over s such that the composition Spec ÔS,s → S′ → SpecB
is equal to g.
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after replacing SpecB with an affine open neighborhood of g(s), we may as-
sume that ΩB/OS,s is free with basis db1, . . . , dbn. This induces a homomorphism
OS,s[x1, . . . , xn]→ B defined by xi 7→ bi and provides a factorization

SpecB → AnOS,s → SpecOS,s

where SpecB → AnOS,s is étale. Choosing a lift of the composition

OS,s

��

OS,s[x1, . . . , xn] //

33

B // ÔS,s // OS,s/mN+1
s

defines a section s : SpecOS,s → AnOS,s and we define S′ as the fibered product

S′� _

��

// SpecOS,s� _

s

��

SpecB //

�

AnOS,s .

This gives the desired diagram (A.10.1), and the composition ξ′ : S′ → SpecB
ξ−→ F

is an element which agrees with ξ̂ up to order N .
Finally, we must explain how to “smear out" the étale morphism (S′, s′) →

(SpecOS,s, s) and the element ξ′ ∈ F (S′) to an étale morphism (S′′, s′′) → (S, s)
and an element ξ′′ ∈ F (S′′). Writing OS,s = colimg/∈ms Ag, we may apply Proposi-
tions A.6.4, A.6.7 and B.4.4 (or a direct argument) to find an element g /∈ ms and an
affine scheme S′′ = Spec(Ag[y1, . . . , yn]/(f ′′1 , . . . , f

′′
m)) such that S′′ ×Ag Ams

∼= S′

and such that S′′ → SpecAg is étale. As F is limit preserving and Γ(S′′,OS′′) =
colimh/∈ms Ahg[y1, . . . , yn]/(f ′1, . . . , f

′
m), after replacing g with hg, we can find an

element ξ′′ ∈ F (S′′) restricting to ξ′ and, in particular, agreeing with ξ̂ up to order
N .

Exercise A.10.12 (Alternative formulations). Let (A,m) be a henselian local
G-ring.

(1) Let F = Hom(−, X) : Sch/S → Sets be the contravariant functor of an affine
scheme X = SpecA[x1, . . . , xn]/(f1, . . . , fm) of finite type over A. Note that
for an A-algebra B,

F (B) = {a = (a1, . . . , an) ∈ B⊕n | fi(a) = 0 for all i}.

If â = (â1, . . . , ân) ∈ Âm is a solution to the equations f1(x) = · · · = fm(x) = 0,
show that Artin Approximation implies that for every N ≥ 0, there is a solution
a = (a1, . . . , an) ∈ A⊕n to the equations f1(x) = · · · = fm(x) = 0 such that
a ∼= â mod mN+1.

(2) Show that (1) implies Artin Approximation.

Hint: Use that F is limit preserving to find a finitely generated A-subalgebra
B ⊂ ÔS,s and an element ξ ∈ F (B) restricting to ξ̂.
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A.10.3 A first application of Artin Approximation
The next corollary states an important fact which you may have taken for granted:
if two schemes are formally isomorphic at two points, then they are isomorphic in
the étale topology.

Corollary A.10.13. Let X and Y be schemes of finite type over a scheme S and
let s ∈ S be a point such that OS,s is a G-ring. If x ∈ X and y ∈ Y are points over
s such that ÔX,x and ÔY,y are isomorphic as OS-algebras, then there exists étale
morphisms

(U, u)

##{{

(X,x) (Y, y)

(A.10.2)

inducing isomorphisms κ(x)
∼→ κ(u) and κ(y)

∼→ κ(u) on residue fields.

Proof. The functor

F : Sch /X → Sets, (T → X) 7→ Mor(T, Y )

is limit preserving as it can be identified with the representable functor
MorX(−, Y × X) corresponding to the finite type morphism Y × X → X. The
isomorphism ÔX,x ∼= ÔY,y provides an element of F (Spec ÔX,x). By applying Artin
Approximation with N = 1, we obtain a diagram as in (A.10.2) with U → X étale
at u with κ(x)

∼→ κ(u) and such that OY,y/m2
y → OU,u/m2

u is an isomorphism. Since
ÔU,u is abstractly isomorphic to ÔY,y, Lemma A.10.15 implies that ÔY,y → ÔU,u is
an isomorphism and therefore that (U, u)→ (Y, y) is étale.

Remark A.10.14. If φ : ÔY,y
∼→ ÔX,x is the specified isomorphism, it is not always

possible to arrange that the induced diagram

ÔU,u

ÔX,x

<<

ÔY,y
φ

oo

bb

is commutative, but the proof (using Artin Approximation with a given N ≥ 1)
shows that we can arrange that the diagram commutes modulo mN+1

y . See also [SP,
Tag 0CAV].

Lemma A.10.15. Let (A,mA)→ (B,mB) be a local homomorphism of noetherian
complete local rings. If A/m2

A → B/m2
B is surjective, so is A→ B. If in addition

A = B, then A→ B is an isomorphism.

Proof. This follows from the following version of Nakayama’s lemma for noetherian
complete local rings (A,m): if M is a (not-necessarily finitely generated) A-module
such that

⋂
k m

kM = 0 and m1, . . . ,mn ∈ F generate M/mM , then m1, . . . ,mn

also generate M (see [Eis95, Exercise 7.2]). The final statement follows from the
fact that a surjective endomorphism of a noetherian ring is an isomorphism.
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Appendix B

Descent

It is hard to overstate the importance of descent in moduli theory. The central idea
of descent is as simple as it is powerful. You already know that many properties of
schemes and their morphisms can be checked on a Zariski-cover, and descent theory
implies that they can also be checked on étale covers and often even faithfully flat
covers. For example, if Y ′ → Y is étale and surjective, then a morphism X → Y is
proper if and only if X ×Y Y ′ → Y ′ is.

The applications of descent reach far beyond moduli theory. For instance, it
can be used to reduce statements about schemes over a field k to the case when
k is algebraically closed since k → k is faithfully flat, or reduce statements over a
noetherian local ring A to its completion Â since A→ Â is faithfully flat.

References: [BLR90, Ch.6], [Vis05], [Ols16, Ch. 4], [SP, Tag 0238], [EGA, §IV.2],
and [SGA1, §VIII.7] (other descent results are scattered throughout EGA and SGA).

B.1 Descending quasi-coherent sheaves

Descent theory rests on the following algebraic fact.

Proposition B.1.1. If φ : A→ B is a faithfully flat ring map, then the sequence

0 // A
φ
// B

b 7→b⊗1
//

b 7→1⊗b
// B ⊗A B

is exact. More generally, if M is an A-module, the sequence

0 // M
m 7→m⊗1

// M ⊗A B
m⊗b 7→m⊗b⊗1

//

m⊗b 7→m⊗1⊗b
// M ⊗A B ⊗A B (B.1.1)

is exact.

Proof. Note that A → B and M → M ⊗A B are necessarily injective by Proposi-
tion A.2.17. Since A→ B is faithfully flat, the sequence (B.1.1) is exact if and only
if the sequence

M ⊗A B
m⊗b′ 7→m⊗1⊗b′

// M ⊗A B ⊗A B
m⊗b⊗b′ 7→m⊗b⊗1⊗b′

//

m⊗b⊗b′ 7→m⊗1⊗b⊗b′
// M ⊗A B ⊗A B ⊗A B
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is exact. The above sequence can be rewritten as

M ⊗A B
x 7→x⊗1

// (M ⊗A B)⊗B (B ⊗A B)
x⊗y 7→x⊗y⊗1

//

x⊗y 7→x⊗1⊗y
// (M ⊗A B)⊗B (B ⊗A B)⊗B (B ⊗A B)

which is precisely sequence (B.1.1) applied to ring B → B ⊗A B given by b 7→ 1⊗ b
and the B-module M ⊗A B. Since this ring map has a section B ⊗A B → B given
by b⊗ b′ 7→ bb′, we are reduced to proving the proposition when φ : A → B has a
section s : B → A with s ◦ φ = idA.

Let x =
∑
imi⊗bi ∈M⊗AB such that

∑
imi⊗bi⊗1 =

∑
imi⊗1⊗bi. Applying

idM ⊗ idB ⊗s : M ⊗A B ⊗A B → M ⊗A B ⊗A A ∼= M ⊗A B to this identity shows
that x =

∑
imi⊗φ(s(bi)) =

∑
i φ(s(bi))mi⊗1 is in the image ofM →M⊗AB.

Exercise B.1.2. Denoting (B/A)⊗n as the n-fold tensor product B ⊗A · · · ⊗A B,
show that the short exact sequence (B.1.1) extends to a long exact sequence 0→
M →M ⊗A (B/A)⊗1 →M ⊗A (B/A)⊗2 → · · · with differentials

d : M ⊗A (B/A)⊗n →M ⊗A (B/A)⊗(n+1)

m⊗ b1 ⊗ · · · bn 7→
n+1∑
i=0

(−1)im⊗ b1 ⊗ · · · ⊗ bi−1 ⊗ 1⊗ bi+1 ⊗ · · · bn.

Proposition B.1.3. Let f : X → Y be an fpqc morphism of schemes.
(1) Let G and G′ be quasi-coherent OY -modules. Let p1, p2 denote the two projec-

tions X ×Y X → X and q denote the composition X ×Y X
pi−→ X

f−→ Y . Then
the sequence

HomOY (G,G′)
f∗
// HomOX (f∗G, f∗G′)

p∗1 //

p∗2

// HomOX×Y X (q∗G, q∗G′)

is exact.
(2) Let F be a quasi-coherent OX-module and α : p∗1F → p∗2F an isomorphism

of OX×YX-modules satisfying the cocycle condition p∗23α ◦ p∗12α = p∗13α on
X ×Y X ×X Y . Then there exists a quasi-coherent OY -module G and an
isomorphism φ : F → f∗G such that p∗1φ = p∗2φ ◦ α on X ×Y X. The data
(F, φ) is unique up to unique isomorphism.

Remark B.1.4. The following diagram may be useful to internalize (2)

p∗23α ◦ p∗12α = p∗13α p∗1F
α−→ p∗2F F G

��

X ×Y X ×Y X
p12 //

p23 //

p13 // X ×Y X
p1 //

p2

// X
f
// Y

Keep in mind the special case that {Ui} is an open covering of Y and X =
∐
i Ui in

which case the above fiber products correspond to intersections.
The cocycle condition p∗23α ◦ p∗12α = p∗13α and the condition that p∗1φ = p∗2φ ◦ α

should be understood as the commutativity of

p∗12p
∗
1F

p∗12α // p∗12p
∗
2F p∗23p

∗
1F

p∗23α

��

p∗13p
∗
1F

p∗13α // p∗13p
∗
2F p∗23p

∗
2F

and

p∗1F
p∗1φ //

α

��

p∗1f
∗G

p∗2F
p∗2φ // p∗2f

∗G.
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Proposition B.1.3 can be reformulated as the statement that the category
QCoh(Y ) is equivalent to the category of descent datum for X → Y , denoted
by QCoh(X → Y ). Here the objects of QCoh(X → Y ) are pairs (F, α) consisting of
a quasi-coherent OX -module F and an isomorphism α : p∗1F → p∗2F satisfying the
cocycle condition. A morphism (F ′, α′) → (F, α) is a morphism β : F ′ → F such
that α ◦ p∗1β = p∗2β ◦ α′.

Proof. If X = SpecB and Y = SpecA are affine, write G = M̃ and G′ = M̃ ′.
Proposition B.1.1 implies that 0 → M ′ → M ′ ⊗A B ⇒ M ′ ⊗A B ⊗A B is exact.
Applying HomA(M,−) and using tensor-hom adjunction yields (1). For (2), writing
F = M̃ , one defines N as the equalizers of two maps M ⇒ M ⊗A B defined by
m 7→ m⊗ 1 and m 7→ α(m⊗ 1).

The general case is handled by first reducing to the case that Y is affine. Since
f is fpqc, Y is the image of a quasi-compact open subset U ⊂ X. By choosing a
finite affine cover {Ui} of U and replacing X with the affine scheme

∐
i Ui, we have

reduced to the case that X is affine. We leave the details to the reader.

Remark B.1.5. It turns out that effective descent for modules holds for a class
of ring maps A → B larger than just faithfully flat maps. Namely, it holds for
universally injective maps (see Definition A.2.20) and moreover the converse is true!
More precisely, A→ B is universally injective if and only if the functor

ModA → {(N,α) | N ∈ ModB , α : N ⊗B,p1 (B ⊗A B)
∼→ N ⊗B,p2 (B ⊗A B)

satisfying the cocycle condition p∗23α ◦ p∗12α = p∗13α}

M 7→ (M ⊗A B, can)

to the category of descent data, is an equivalence of categories. See [Mes00] or [SP,
Tag 08XA].

B.2 Descending morphisms

Proposition B.2.1. Let f : X → Y be an fpqc morphism of schemes. If g : X → Z
is a morphism to a scheme such that p1 ◦ g = p2 ◦ g on X ×Y X, then there exists a
unique morphism h : Y → Z filling in the commutative diagram

X ×Y X
p1 //

p2

// X
f
//

g

��

Y

h

��

Z

of solid arrows.

This result implies that every scheme is a sheaf in the fpqc topology; see Propo-
sition 2.2.6.

B.3 Descending schemes

We will use the following notation: if f : X → Y and W → Y are morphisms of
schemes, we denote f∗W as the fiber product X ×Y W .
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Proposition B.3.1 (Effective Descent). Let f : X → Y be an fpqc morphism
of schemes. Let P be one of the following properties of morphisms of schemes:
open immersion, closed immersion, locally closed immersion, affine, quasi-affine
or separated and locally quasi-finite. If Z → X is P-morphism of schemes and
α : p1

∗(Z)
∼→ p∗2(Z) is an isomorphism over X ×Y X satisfying p∗23α ◦ p∗12α = p∗13α,

then there exist P-morphism W → Y of schemes and an isomorphism φ : Z → f∗(W )
such that p∗1φ = p∗2φ ◦ α.

Remark B.3.2. In the case of an open or closed immersion Z ↪→ X, then the
existence of α translates to the equality p−1

1 (Z) = p−1
2 (Z) as subschemes of X ×Y X

and there is no need for a cocycle condition.
It may be helpful to interpret the above statement using the diagram

p∗23α ◦ p∗12α = p∗13α p∗1Z
α−→ p∗2Z

����

Z

��

// W

��

X ×Y X ×Y X
p12 //

p23 //

p13 // X ×Y X
p1 //

p2

// X
f
// Y.

Proof. If Z ↪→ X is a closed immersion defined by an ideal sheaf IX ⊂ OX , then one
can apply Proposition A.6.8 to descend IX to a quasi-coherent sheaf IY on Y and to
descend the inclusion IX ↪→ OX to an inclusion IY ↪→ OY . Then W = V (IY ) ↪→ Y
is the descended scheme. The case of open immersions can be handled by considering
the reduced complement.

If Z = SpecX AX is affine over X, then Proposition A.6.8 allows us to first
descend AX to a quasi-coherent sheaf AY on Y and then the multiplication
AX ⊗OX AX → AX to a morphism AY ⊗OY AY → AY which will necessarily
satisfy the axioms making AY into a quasi-coherent OY -algebra. Then one takes
W = SpecY AY . The case of quasi-affine morphisms is handled by combining the
affine and open immersion cases.

If Z → X is separated and locally quasi-finite, then working locally on Z
one reduces to the quasi-compact case in which case Z → X is quasi-affine by
Proposition A.5.2.

We will often apply Effective Descent to show that a given sheaf in the big étale
or fppf topology is representable by a scheme; see Proposition 2.2.11.

B.4 Descending properties

This is currently an incomplete list of the descent results needed.

B.4.1 Descending properties of morphisms

Proposition B.4.1 (Properties fpqc local on the target). Let Y ′ → Y be an fpqc
morphism of schemes. Let P be one of the following properties of a morphism of
schemes:
(i) isomorphism;
(ii) closed immersion;
(iii) open immersion;
(iv) surjective;
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(v) proper;
(vi) flat;
(vii) smooth;
(viii) étale;
(ix) unramified;
(x) syntomic.

Then X → Y has P if and only if X ×Y Y ′ → Y ′ does.

Proposition B.4.2 (Properties local on the source). Let X ′ → X be an fppf
morphism of schemes. Let P be one of the following properties of a morphism of
schemes:
(i) surjective;
(ii) fppf;
(iii) smooth;
Then X → Y has P if and only if X ′ → X → Y does.

If X ′ → X is étale and surjective, then X → Y is étale if and only if X ′ → X →
Y is.

Proposition B.4.3 (Fpqc-local properties of quasi-coherent sheaves). Let f : X →
Y be an fpqc morphism of schemes. Let P ∈ {finite type, finite presentation, flat,
vector bundle, line bundle} be a property of quasi-coherent sheaves. If G is a
quasi-coherent OY -module, then G has P if and only if f∗G does. If X and Y are
noetherian, then the same holds for the property of coherence.

Proof. This reduces to the algebra statement: if A→ B is a faithfully flat ring map,
then an A-module M is finitely generated (resp. finitely presented, flat, locally free
of finite rank) if and only if M ⊗A B is. The (⇒) implications are clear. Conversely,
if M ⊗A B is finitely generated, then let y1, . . . , ym ∈ M ⊗A B be generators and
write yi =

∑
xi ⊗ bi. Since (x1, . . . , xn) : An →M base changes to a surjective map,

it is surjective. Repeating this argument to the kernel, we see that the property
of being finite presentation descends. For flatness, suppose that M ⊗A B is flat.
By faithful flatness, the exactness of M ⊗A − is equivalent to the exactness of
(M ⊗A B)⊗B (−⊗A B), which follows from the flatness of A→ B and the flatness
of the B-module M ⊗A B. As being locally free of finite rank is equivalent to being
finitely presented and flat, the final statement also follows.

See also [SP, Tag 05AY].

Proposition B.4.4 (Descending properties of schemes). Let X → Y be an fpqc
morphism of schemes. Suppose X has one of the following properties: locally
noetherian, quasi-compact, noetherian, integral, reduced, normal, and regular. Then
Y has the same property.

Proof. First note that quasi-compactness descends under any surjective map. There-
fore, this reduces to the following statements in algebra: if A → B is a faithfully
flat ring map and B is noetherian (resp. a domain, reduced, normal, or regular),
then so is A. The map A → B is injective and I = IB ∩ A for every ideal I ⊂ A.
For noetherianness, if I1 ⊂ I2 ⊂ · · · is an ascending chain of ideals, then since
I1B ⊂ I2B ⊂ · · · terminates, so does I1 = I1B ∩ A ⊂ I2 = I2B ∩ A ⊂ · · · . By
injectivity of A→ B, the ‘domain’ and ‘reduced’ cases are clear.

For normality and regularity, we can assume that A → B is a local ring map.
If B is a normal domain and a/b is integral over A where a, b ∈ A, then a/b ∈ B

413

http://stacks.math.columbia.edu/tag/05AY


as B is normal. This implies that a is the ideal of B generated by b, and thus
a : B → B/bB is the zero map. As this map is the base change of a : A → A/bA,
faithful flatness implies that a : A → A/bA is the zero map and thus a ∈ (b) and
a/b ∈ A. For regularity, we will appeal to the fact that a noetherian local ring A
of dimension d is regular if and only if every finitely generated A-module M has a
resolution 0→ Akd → · · · → Ak1 → Ak0 →M → 0, moreover if this holds and

0→ K → · · · → Ak1 → Ak0 →M → 0 (B.4.1)

is any exact sequence, then K is free; see [Eis95, Thm. 19.12] and [SP, Tag 00OC].
If M is a finitely generated A-module, choose an exact sequence (B.4.1). Since B is
regular, K ⊗A B is free. By Proposition B.4.3, K is free and thus A is regular.

See also [SP, Tags 033D, 034B and 06QL].

Remark B.4.5. For example, if A is a noetherian local ring, then the map A→ Â
to is its completion is faithfully flat. If the completion Â is reduced (resp. normal,
regular), then the above result implies that the same holds for A. While the converse
holds for regularity, it does not hold in general for reducedness and normality.
However, if A is essentially of finite type over a field (or more generally excellent),
then A is reduced (resp. normal) if and only if Â is, and moreover in this case the
normalization commutes with completion. See [SP, Tags 07NZ and 0C23].

The property of being locally noetherian is fppf-local, but the other properties are
not. For instance, there are finite type k-schemes which are non-reduced, non-normal,
and non-regular but any such scheme is flat over k. However, reducedness, normality,
and regularity are smooth-local properties.

Proposition B.4.6 (Smooth local properties of schemes). Let X → Y be a smooth
and surjective morphism of schemes. Let P be one of the following properties: locally
noetherian, reduced, normal, and regularity. Then X has P if and only if Y has P.

Proof. The (⇒) implications follows from Proposition B.4.4. If Y is locally noethe-
rian, then so is X by Hilbert’s Basis Theorem. The remaining properties follow from
the algebraic statement that if A→ B is a smooth ring map and A is reduced (resp.
normal, regular), then so is B [SP, Tags 033B, 033C and 036D]. See also [SP, Tag
034D].

The property of being a domain is however not smooth local (nor even étale local),
e.g. there is a reducible étale neighborhood of the nodal cubic (see Example 0.5.2).

Proposition B.4.7 (Descending ampleness). Let f : X → Y be a morphism of
schemes and L be a line bundle on X. If Y ′ → Y is an fpqc morphism of schemes,
then L is relatively ample over Y if and only if the pullback of L to X ×Y Y ′ is
relatively ample over Y ′.

Proof. See [SP, Tag 0D3C].
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Appendix C

Algebraic groups and actions

C.1 Group schemes and actions

C.1.1 Group schemes
Definition C.1.1. A group scheme over a scheme S is a morphism π : G → S
of schemes together with a multiplication morphism µ : G ×S G → G, an inverse
morphism ι : G→ G and an identity morphism e : S → G (with each morphism over
S) such that the following diagrams commute:

G×S G×S G
idG×µ//

µ×idG

��

G×S G

µ

��

G×S G
µ

// G

Associativity

G

(ι,idG)

��

(idG,ι)
//

e◦π

%%

G×S G

µ

��

G×S G
µ

// G

Law of inverse

G

(idG,e◦π)

��

(e◦π,idG)
//

idG

%%

G×S G

µ

��

G×S G
µ

// G

Law of identity

For group schemes H and G over S, a morphism of group schemes is a morphism
φ : H → G schemes over S such that µG ◦ (φ × φ) = φ ◦ µH . A (closed) subgroup
of G is a (closed) subscheme H ⊂ G such that H → G

µG−−→ G×G factors through
H ×H.

Remark C.1.2. If G and S are affine, then by reversing the arrows above gives
Γ(G,OG) the structure of a Hopf algebra over Γ(S,OS).

Exercise C.1.3. Show that a group scheme over S is equivalently defined as a
scheme G over S together with a factorization

Sch/S //

MorS(−,G)
##

Gps

��

Sets

where Gps→ Sets is the forgetful functor.
(We are not requiring that there exists a factorization; the factorization is part of
the data. Indeed, the same scheme can have multiple structures as a group scheme,
e.g. Z/4 and Z/2× Z/2 over C.)

Example C.1.4. The following examples of group schemes are the most relevant
for us. Let S = SpecR and V be a free R-module of finite rank:
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(1) The multiplicative group scheme over R is Gm,R = SpecR[t]t with comultipli-
cation µ∗ : R[t]t → R[t]t ⊗R R[t′]t′ given by t 7→ tt′ while the group scheme
of nth roots of unity is µn,R : SpecR[t]/(tn − 1) with comultiplication also
defined by t 7→ tt′.

(2) The additive group scheme over R is Ga,R = SpecR[t] with comultiplication
µ∗ : R[t]→ R[t]⊗R R[t′] given by t 7→ t+ t′.

(3) The general linear group on V is

GL(V ) = Spec(Sym∗(End(V ))det)

with the comultiplication µ∗ : Sym∗(End(V ))→ Sym∗(End(V ))⊗RSym∗(End(V ))
defined as following: for a basis v1, . . . , vn of V , then for i, j = 1, . . . , n, the
endomorphisms xij : V → V defined by vi 7→ vj and vk 7→ 0 if k 6= i define a
basis of End(V ), and we define µ∗(xij) = xi1x

′
1j + · · ·+ xinx

′
nj .

(4) The special linear group on V is SL(V ) is the closed subgroup of GL(V ) defined
by det = 1.

(5) The projective linear group PGLn is the affine group scheme

Proj(Sym∗(End(V )))det

with the comultiplication defined similarly to GL(V ).
We write GLn,R = GL(Rn), SLn,R = GL(Rn) and PGLn,R = PGL(Rn). We often
simply write Gm, GLn, SLn and PGLn when the base ring is understood.

Exercise C.1.5.
(a) Provide functorial descriptions of each of the group schemes above.
(b) Show that every abstract group G can be given the structure of a group scheme
qg∈GS over a base scheme S. Provide both explicit and functorial descriptions.

Proposition C.1.6.
(1) A group scheme G→ S is separated (resp. quasi-separated) if and only if the

identity section S → G is a closed immersion (resp. quasi-compact).
(2) A group scheme over a field is separated.
(3) A group scheme G → S of finite type is trivial if and only if the fiber Gs is

trivial for each s ∈ S.

Proof. See [SP, Tags 047G and 047J]. For the last fact, observe that G → S is
unramified since every fiber is. Therefore ΩG/S = 0 and the diagonal G→ G×S G
is an open immersion. It follows that the identity section S → G is a surjective open
immersion, thus an isomorphism. See also [Con07, Thm. 2.2.5].

C.1.2 Group actions
Definition C.1.7. Let G→ S be a group scheme with multiplication µ and identity
e. An action of G on a scheme X p−→ S is a morphism σ : G×S X → X over S such
that the following diagrams commute:

G×S G×S X
idG×σ//

µ×idX

��

G×S X

σ

��

G×S X
σ // G

Compatibility

X
(e◦p,idX)

//

idX
##

G×S X

σ

��

X
Law of identity
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If X → S and Y → S are schemes with actions of G→ S, a morphism f : X → Y
of schemes over S is G-equivariant if σY ◦ (id×f) = f ◦ σX , and is G-invariant if
G-equivariant and Y has the trivial G-action.

Exercise C.1.8. Show that giving a group action of G → S on X → S is the
same as giving an action of the functor MorS(−, G) : Sch/S → Gps on the functor
MorS(−, X) : Sch/S → Sets.
(This requires first spelling out what it means for a functor to groups to act on a
functor to sets.)

C.1.3 Representations

Let S = SpecR be an affine scheme. Let G→ S be a group scheme with multiplica-
tion µ and identity e. A representation (or comodule) of a group scheme G is an
R-module V together with a homomorphism σ : V → Γ(G,OG)⊗R V (often referred
to as a coaction) such that the following diagrams commute:

V
σ //

σ

��

Γ(G,OG)⊗R V

idG⊗σ
��

Γ(G,OG)⊗R V
µ∗⊗idV// Γ(G,OG)⊗R Γ(G,OG)⊗R V

Compatibility

V
σ //

idV
&&

Γ(G,OG)⊗R V

e∗⊗idV
��

V
Law of identity

(C.1.1)

Example C.1.9. Every R-module V can be viewed as a trivial representation
with coaction σ(v) = 1 ⊗ v. The comultiplication µ∗ : Γ(G,OG) → Γ(G,OG) ⊗R
Γ(G,OG) defines a representation (Γ(G,OG), µ∗) called the regular representation.
The standard representation of GLn,R = SpecR[xij ]det (or a subgroup scheme of
GLn,R) is V = Rn with coaction σ : V → Γ(GLn,R) ⊗R V defined by σ(ei) =∑n
j=1 xij ⊗ ej where (e1, . . . , en) is the standard basis of V .

A representation V of G induces an action of G on A(V ) = Spec Sym∗ V , which
we refer to as a linear action. Morphisms of representations and subrepresentations
are defined in the obvious way.

Exercise C.1.10. If R = k is a field and V is a finite dimensional vector space, show
that giving V the structure as a representation is the same as giving a homomorphism
G→ GL(V ) of group schemes.

Example C.1.11 (Diagonalizable group schemes). Let k be a field and A a finitely
generated abelian group. We let k[A] be the free k-module generated by elements of A.
The k-module k[A] has the structure of an k-algebra with multiplication on generators
induced from multiplication in A. The comultiplication k[A]→ k[A]⊗k k[A′] defined
by a 7→ a ⊗ a′ defines a group scheme Dk(A) = Speck[A] over Speck. A group
scheme G over Speck is diagonalizable if G ∼= Dk(A) for some A. (By allowing k to
be a ring or even a scheme, one obtains the notion of diagonalizable group scheme).

The group schemeDk(Zr) = Grm,k is the r-dimensional split torus whileDk(Z/n) =
µn = Speck[t]/(tn − 1) is the group of nth roots of unity. The classification of
finitely generated abelian groups implies that every diagonalizable group scheme is
a product of Grm × µn1

× · · · × µnk .
A group scheme G→ S is of multiplicative type if it becomes diagonalizable after

étale locally on S.
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Exercise C.1.12. Describe Dk(A) as a functor Sch /k→ Gps.

Proposition C.1.13. Let G = Dk(A) be a diagonalizable group scheme over a field
k. Every representation of G is a direct sum of one-dimensional representations. In
particular, G is linearly reductive.

Proof. Let G = Dk(A) and let V be a free representation of G with coaction
σ : V → k[A]⊗k V . Each a ∈ A, defines a one-dimensional representation Wa = A of
Dk(A) defined by the coaction Wa → k[A]⊗k Wa defined by 1 7→ a⊗ 1. For a ∈ A,
the subspace

Va := {v ∈ V |σ(v) = a⊗ v}

is isomorphic to Wa ⊗ Va as G-representations, where Va is viewed as the trivial
representation (so that in the case Va is finite dimensional, Va ∼= W dimVa

a ). (Note
that when a = 0, Wa is the trivial one-dimensional representation and V G = V0.)

Then V ∼= ⊕a∈AVa as G-representations. The details are left to the reader. See
also [Mil17, Thm 12.30] and [SGA3I, 5.3.3].

C.2 Principal G-bundles
The concept of a principal G-bundle is an algebraic formulation of a topological fiber
bundle P → T where G acts freely and transitively on P with quotient T = P/G.

C.2.1 Definition and equivalences
Definition C.2.1. Let G→ S be an fppf affine group scheme. A principal G-bundle
over an S-scheme T is a scheme P with an action of G via σ : G ×S P → P such
that P → T is a G-invariant fppf morphism and

(σ, p2) : G×S P → P ×T P, (g, p) 7→ (gp, p)

is an isomorphism.
Morphisms of principal G-bundles are G-equivariant morphisms of schemes.

A principal G-bundle P → T is trivial if there is an G-equivariant isomorphism
P ∼= G×S T , where G acts on G×S T via multiplication on the first factor.

A principal G-bundle P → T are examples of G-torsors (Definition 6.2.12)
over (Sch/T )fppf by viewing P as a sheaf in the big fppf topology over T (see
Example 6.2.16). In these notes, we will always distinguish between these two
notions but in conversation or the literature, they are often conflated.

Exercise C.2.2. Show that P → T is a principal G-bundle over an S-scheme T if
and only if P → T is a principal G×S T -bundle.

Exercise C.2.3. Show that a morphism of principal G-bundles is necessarily an
isomorphism.

Principal G-bundles as fppf-locally trivial; if G is smooth, they are étale-locally
trivial.

Proposition C.2.4. Let G → S be an fppf group scheme and P → T be a G-
equivariant morphism of S-schemes where T has the trivial action. Then P → T is
a principal G-bundle if and only if there exists an fppf morphism T ′ → T such that
P ×T T ′ is the trivial principal G-bundle over T ′. Moreover, if G→ S is smooth,
then we can arrange that T ′ → T is surjective and étale.
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Proof. The (⇒) direction follows from the definition by taking T ′ = P → T . For
(⇐), after base changing G→ S by T → S, we assume that G is defined over T (see
Exercise C.2.2). Let GT ′ and PT ′ be the base changes of G and P along T ′ → T .
The base change of the action map (σ, p2) : G×T P → P ×T P along T ′ → T is the
action map GT ′ ×T ′ PT ′ → PT ′ ×T ′ PT ′ of GT ′ acting on PT ′ over T ′. Since PT ′ is
trivial, this latter action map is an isomorphism. Since the property of being an
isomorphism descends under fppf morphisms (Proposition B.4.1), we conclude that
(σ, p2) : G×T P → P ×T P is an isomorphism.

If G is smooth, then T ′ = P → S is a surjective smooth morphism such that
PT ′ is trivial. Since there is a section of T ′ → S after a surjective étale morphism
S′ → S (Corollary A.3.6), PS′ is also trivial.

Proposition C.2.5 (Effective Descent for Principal G-bundles). Let G → S be
an fppf affine group scheme. Let f : X → Y be an fpqc morphism of schemes over
S. If P → X is a principal G-bundle and α : p1

∗(P )
∼→ p∗2(P ) is an isomorphism

of principal G-bundles over X ×Y X satisfying p∗12α ◦ p∗23α = p∗13α, then there
exists a principal G-bundle Q→ Y and an isomorphism φ : P → f∗(Q) of principal
G-bundles such that p∗1φ = p∗2φ ◦ α.

Proof. By Effective Descent (Proposition B.3.1) for affine morphisms, there is a
scheme Q affine over Y and an isomorphism φ : P → f∗(Q) of schemes. By applying
descent for morphisms (Proposition A.6.4), we can descend the action G×S P → P
to an action G×SQ→ Q giving Q the structure of a principal G-bundle and making
φ : P → f∗(Q) a G-equivariant isomorphism.

C.2.2 Examples of principal G-bundles
Exercise C.2.6. Let L/K be a finite Galois extension and G = Gal(L/K) be its
Galois group viewed as a finite group scheme over SpecK. Show that SpecL →
SpecK is a principal G-bundle.

Exercise C.2.7. If T is a scheme, show that there there is an equivalence of
categories

{line bundles on T} ∼→ {principal Gm-bundles on T}
L 7→ A(L) \ T

between the groupoids of line bundles on T (where the only morphisms allowed are
isomorphisms) and Gm-torsors on T . If L is a line bundle (i.e. invertible OT -module),
then A(L) denotes the total space Spec Sym∗ L∨ of L and T ⊂ A(L) denotes the
image of the zero section T → A(L).

Exercise C.2.8. If T is a scheme and d ≥ 1, show that there there is an equivalence
of groupoids

{finite, étale, and degree d covers of T } ∼→ {principal Sd-bundles over T}
(Y → T ) 7→ (Y ×T · · · ×T Y︸ ︷︷ ︸

d times

\∆→ T )

(P/Sd−1 → T )←[ (P → T ).

For the rightward map, the symmetric group Sd acts on the d-fold fiber product
Y ×T · · · ×T Y by permutation and ∆ denotes the Sd-equivariant closed locus of
d-tuples where at least two points coincide. Alternatively, Y ×T · · · ×T Y \∆ can be
identified with the scheme IsomT (T × {1, . . . , d}, Y ) parameterizing isomorphisms
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of the trivial finite étale cover of degree d and Y . For the leftward map, Sd−1 ⊂ Sd
denotes the subgroup of permutations fixing the dth index and P/Sd−1 denotes the
quotient scheme of this free action (see Exercise 4.2.8).

Exercise C.2.9.
(a) Show that the standard projection An+1 \ 0→ Pn is a principal Gm-bundle.
(b) For each line bundle O(d) on Pn, explicitly determine the corresponding

principal Gm-bundle. In particular, which O(d) correspond to the principal
Gm-bundle of (a)?

Exercise C.2.10. Let G→ S be a smooth affine group scheme. Let P → T and
Q→ T be principal G-bundles. Show that the functor

IsomT (P,Q) : Sch /T → Sets,

assigning a T -scheme T ′ to the set of isomorphisms of the principal G-bundles P×T T ′
and Q×T T ′, is representable by a scheme which is also a principal G-bundle over T .

Exercise C.2.11 (Principal GLn-bundles). Let T be a scheme.
(a) If E is a vector bundle over T of rank n, the frame bundle FrameT (E) is

defined as the functor IsomT (OnT , E) on Sch/T , i.e

FrameT (E) : Sch /T → Sets

(T ′ → T ) 7→ {trivializations α : OnT
∼→ f∗E}.

Show that FrameT (E) is representable by a scheme and that FrameT (E)→ T
is a principal GLn-bundle.

(b) If P → T is a principal GLn-bundle, then define P ×GLn An := (P ×An)/GLn
where GLn acts diagonally via its given action on P and the standard action
on An. (The action is free and the quotient (P ×An)/GLn can be interpreted
as the sheafification of the quotient presheaf Sch /T → Sets taking T 7→
(P ×An)(T )/GLn(T ) in the big Zariski (or big étale) topology or equivalently
as the algebraic space quotient (Corollary 4.4.11)). Show that (P × An)/GLn
is representable by scheme and is the total space of a vector bundle over T .
Hint: Use Effective Descent for Principal G-bundles (C.2.5).

(c) Conclude that

{vector bundles over T}→ {principal GLn-bundles over T}
E 7→ FrameT (E)

(P × An)/GLn ← [ P

defines an equivalence of categories between the groupoids of vector bundles
over T and principal GLn-bundles over T .

Exercise C.2.12 (Principal SLn-bundles). Show that the groupoid of principal
SLn-bundles over a scheme T is equivalent to the groupoid of pairs (V, α) where
V is a vector bundle on T of rank n and α : OT

∼→ detV is a trivialization and
a morphism (V ′, α′) → (V, α) of pairs is an isomorphism φ : V ′ → V such that
α′ = α ◦ detφ.

Exercise C.2.13 (Brauer–Severi schemes). A morphism X → T of schemes is a
Brauer–Severi scheme of relative dimension r if there exists an étale cover T ′ → T
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and an isomorphism X ×T T ′ ∼= PrT ′ . An example of a non-trivial Brauer-Severi
scheme is ProjR[x, y, z]/(x2 + y2 + z2)→ SpecR. Show that

{Brauer–Severi schemes of rel. dim. r over T}→ {principal PGLr-bundles over T}
X 7→ IsomT (PrT , X)

(P × Pr)/PGLr ← [ P

defines an equivalence of groupoids.

Exercise C.2.14. Let X → S be a proper, flat, and finitely presented morphism
of schemes. Assume that for every geometric point Speck→ S, the geometric fiber
X ×S k is isomorphic to P1

k. Show that X → S is a Brauer–Severi scheme of relative
dimension 1 following one of the approaches below.

Approach 1 (local-to-global): Show that for every point s ∈ S, there is a finite and
separable field extension κ(s) → K such that X ×S K ∼= P1

K . Show that there
an étale neighborhood (S′, s′) → (S, s) such that K ∼= κ(s′) over κ(s). Assuming
now that X ×s κ(s) ∼= P1

κ(s), use deformation theory (Proposition D.2.6) to show
that there are compatible isomorphisms X ×S OS,s/mns ∼= P1

OS,s/mns
for n > 0.

Use Grothendieck’s Existence Theorem (D.4.4) to show that X ×S ÔS,s ∼= P1
ÔS,s

.
Apply Artin Approximation (A.10.9) to show that there is an étale neighborhood
(S′, s′)→ (S, s) such that X ×S S′ ∼= P1

S′ .

Approach 2 (direct): Assuming that there is a section σ : S → X of π : X → S, show
that every point s ∈ S has an open neighborhood U ⊂ S such that X ×S U ∼= P1

U .
Letting L be the line bundle on X corresponding to the Cartier divisor σ, use
Cohomology and Base Change (A.7.5) to show that E := π∗L is a rank 2 vector
bundle on S, that π∗E � L is surjective, and that X ∼= P(E) over S. Conclude by
choosing an open neighborhood of s ∈ S where E is trivial. Returning to the general
case, show that there is an effective divisor D associated to Ω∨X/S such that D → S
is étale. Reduce to the case where X → S has a section by base changing by D → S.
See also [Har77, Prop. 25.3 and Exer. 25.2].

Exercise C.2.15 (Azumaya algebras). An Azumaya algebra of rank r2 over a
noetherian scheme T is a (possibly non-commutative) associative OT -algebra A
which is coherent as an OT -module and such that there is an étale covering T ′ → T
where A⊗OT OT ′ is isomorphic to the matrix algebraMr(OT ); see [Mil80, §IV.2]. An
Azumaya algebra over a field k is a central simple algebra (i.e. a finite dimensional
associative k-algebra which is simple and whose center is k); the quarternions is an
example of a central simple algebra over R.

Let A be an Azumaya algebra over a noetherian scheme T of rank r2.
(a) Show that the sheaf PA := IsomT (Mr(OT ), A) defines a PGLn-torsor.
(b) Show that the map A 7→ IsomT (Mr(OT ), A) defines a bijection between

Azumaya algebras of rank r2 and PGLn-torsors.

The preceding two exercises yield a bijection between Azumaya algebras and
Brauer–Severi schemes. Over a field k, the bijection is defined by assigning a central
simple algebra A of rank r2 to the k-subscheme X ⊂ Gr(r,A) classifying right ideals
of A.

Exercise C.2.16 (Orthogonal group). Let k be a field with char(k) 6= 2, and let
V be an n dimensional vector space with a non-degenerate quadratic form q. Let
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O(q) ⊂ GL(V ) be the subgroup of invertible matrices preserving the quadratic form.
If q = x2

1 + · · ·+ x2
n is the diagonalized quadratic form, then On = O(q) is the set of

orthogonal matrices A (i.e. AA> = I).
Show that there is a bijection between principal O(q)-bundles over a k-scheme T

and vector bundles of rank n on T with a non-degenerate quadratic form.

C.3 Algebraic groups
An algebraic group over a field k is a group scheme G of finite type over k.

A proper algebraic group over a field k is necessarily projective and has a
commutative group law. It is called an abelian variety ; examples include an elliptic
curve (E, p). Chevalley’s structure theorem (see [Che60] or [Con02]) states that a
smooth and connected algebraic group G over a perfect field k has a unique smooth,
connected and normal subgroup N / G such that G/N is an abelian variety.

C.3.1 Affine algebraic groups
An affine algebraic group over a field k is often referred to as a linear algebraic group.

Algebraic Group Facts C.3.1. Let G be an affine algebraic group over a field k.
(1) Every representation V of G is a union of its finite dimensional subrepresenta-

tions.
(2) There exists a finite dimensional representation V and a closed immersion

G ↪→ GL(V ) of group schemes.
(3) If char(k) = 0, then G is smooth.
(4) If k is perfect, then G is reduced if and only if G is geometrically reduced.
(5) There exists a canonical subgroup schemeG0 ⊂ G such thatG0 is the connected

component of the identity element. Moreover, G0 is geometrically irreducible
and quasi-compact.

(6) Every algebraic subgroup H ⊂ G is closed.
(7) If G acts on a finite type k-scheme U and u ∈ U is a closed point, the orbit

Gu, defined set-theoretically as the image of G→ U, g 7→ g · u, is open in its
closure Gu.

(8) If H ⊂ G is a subgroup, there is a representation V of G and a k-point
x ∈ P(V ) whose stabilizer is H. In particular, there is a locally closed
immersion G/H ↪→ P(V ), defined by g 7→ gx, and G/H is quasi-projective.

A subgroup T ⊂ G of an affine algebraic group over a field k is called a torus if
Tk
∼= Gn

m,k and a maximal torus if it not contained in a larger torus.

(8) G contains a maximal torus T such that Tk′ ⊂ Gk′ is a maximal torus for every
field extension k→ k′.

(9) If k is algebraically closed, all maximal tori are conjugate.

See [Bor91, Hum75, Spr98, Wat79, Mil17] and [SP, Tags 047J and 0BF6].
We will repeatedly use the following simple consequence of C.3.1(1).

Lemma C.3.2. Let G be an affine algebraic group over a field k. Let X be an affine
scheme of finite type over k with an action of G.
(1) There exists a G-equivariant closed immersion X ↪→ A(V ) where V is a finite

dimensional G-representation.
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(2) For every G-invariant closed subscheme Z ⊂ X, there exists a G-equivariant
morphism f : X → A(W ), where W is a finite dimensional G-representation,
such that f−1(0) = Z.

Proof. Write X = SpecA and let f1, . . . , fn be k-algebra generators. By C.3.1(1)
there is a finite dimensional G-invariant subspace V ⊂ A containing each fi. The
surjection Sym∗ V → A induces a G-equivariant embedding X ↪→ A(V ). For (2),
let Z = SpecA/I and let g1, . . . , gm ∈ I be generators. Letting W ⊂ I be a finite
dimensional G-invariant subspace containing each gi, we see that f : X → A(W ) is
a G-equivariant map with f−1(0) = Z.

C.3.2 Line bundles with G-actions

If G is an algebraic group over a field k acting on a k-scheme U via σ : G× U → U ,
then a line bundle with a G-action or a G-linearization is a line bundle L on U
together with an isomorphism α : σ∗L

∼→ p∗2L satisfying the cocycle condition: the
diagram

(σ ◦ (idG×σ))∗L
(idG×σ)∗α

// (p2 ◦ (idG×σ))∗L

(σ ◦ (µ× idU ))∗L

(µ×idU )∗α

))

(σ ◦ p23)∗L

p∗23αvv

(p2 ◦ (µ× idU ))∗L (p2 ◦ p23)∗L

commutes where µ : G × G → G denotes multiplication. When U is projective,
a very ample line bundle L with a G-action corresponds to a finite dimensional
G-representation V = H0(U,L) and a G-equivariant closed immersion U ↪→ P(V ).

Theorem C.3.3 (Sumihiro’s Theorem on Linearizations). Let G be a connected,
smooth, and affine algebraic group over an algebraically closed field. Let U be a
normal scheme over k with an action of G.
(1) If L is a line bundle on U , then there exists an integer n > 0 such that L⊗n

admits a G-action.
(2) If U is a quasi-projective, there exists a locally closed embedding U ↪→ P(V )

where V is a finite dimensional G-representation.
(3) Every point u ∈ U has a G-invariant quasi-projective open neighborhood.

Proof. For (1), see [Sum74, Thm. 1], [Sum75, Lem. 1.2], and [KKLV89, Prop. 2.4].
Part (2) is a direct consequence of (1). For (3), see [Sum74, Lem. 8] and [Sum75,
Thm. 3.8].

When G is a torus, then we have the stronger result that U has a G-invariant
affine cover.

Theorem C.3.4 (Sumihiro’s Theorem on Torus Actions). Let U be a normal scheme
over an algebraically closed field k with an action of a torus T . Then any point
u ∈ U has a T -invariant affine open neighborhood.

Proof. See [Sum74, Cor. 2] and [Sum75, Cor. 3.11].
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Remark C.3.5. Theorems C.3.3 and C.3.4 can fail if U is not normal, e.g. the
plane nodal cubic curve has a Gm-action and no Gm-invariant neighborhood of the
origin can be embedded Gm-equivariantly into projective space.

C.3.3 One-parameter subgroups
Let G be a smooth affine algebraic group over an algebraically closed field k. A
one-parameter subgroup is a homomorphism λ : Gm → G of algebraic groups (which
is not necessarily a subgroup). We define the subgroups:

Cλ = {g ∈ G |λ(t)g = gλ(t) for all t} (centralizer)
Pλ = {g ∈ G | limt→0 λ(t)gλ(t)−1 exists} (parabolic)
Uλ = {g ∈ G | limt→0 λ(t)gλ(t)−1 = 1} (unipotent).

Functorially, for a k-algebra R, Cλ(R) (resp. Pλ(R), Uλ(R)) consist of elements
g ∈ G(R) such that λR = g−1λRg (resp. limt→0 λ(t)gλ(t)−1 exists, limt→0 λ(t)gλ(t)−1 =
1). The one-parameter subgroup λ induces a Gm action on G via conjugation:
t · g := λ(t)gλ(t)−1. Under this action, Cλ is the fixed locus while Pλ is the attractor
locus G+

λ as defined in §6.6.9.
The subgroup Cλ is the centralizer of λ. When G is reductive, the subgroup Pλ

is parabolic (i.e. G/Pλ is projective) and Uλ is the unipotent radical of Pλ. There is
a homomorphism Pλ → Cλ defined by g 7→ limt→0 λ(t)gλ(t)−1 which is the identity
on Cλ yielding a split short exact sequence

1→ Uλ → Pλ → Cλ → 1.

Example C.3.6. Let λ : Gm → GLn be a one-parameter subgroup. After a change
of basis, we can assume that λ(t) = diag(tλ1 , · · · , tλn) with λ1 ≤ · · · ≤ λn. Given
(gij) ∈ GLn, one has that

λ(t)
(
gij
)
λ(t)−1 =

(
tλi−λjgij

)
.

If n1, . . . , ns are integers with
∑
i ni = n such that

λ1 = · · · = λn1
< λn1+1 = · · · = λn1+n2

< · · · < λn−ns+1 = · · · = λn,

then Cλ = GLn1
× · · · ×GLns is the subgroup of block diagonal matrices while Pλ

is the subgroup of block upper triangular matrices.
For example, if λ(t) = (t−1, t2, t2, t7), then

Uλ =


1 ∗ ∗ ∗
0 1 0 ∗
0 0 1 ∗
0 0 0 1

 , Pλ =


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 ∗

 , Cλ =


∗ 0 0 0
0 ∗ ∗ 0
0 ∗ ∗ 0
0 0 0 ∗

 .

We record the following properties of parabolic subgroups.

Proposition C.3.7. Let G be a reductive algebraic group over an algebraically
closed field k.
(a) If λ, λ′ : Gm → G are one-parameter subgroups, the intersection Pλ ∩ Pλ′ of

two parabolic subgroups contains a maximal torus of G.
(b) The unipotent radical Uλ acts freely and transitively on the set of one-parameter

subgroups of Pλ which are conjugate (under Pλ) to λ.
(c) For a one-parameter subgroup λ : Gm → G, NG(Pλ) = Pλ.
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C.4 Reductivity

We denote by Rep(G) the category of representations of an algebraic group G. If
V is a G-representation with coaction σ : V → Γ(G,OG)⊗ V , then the invariants
are V G := {v ∈ V |σ(v) = 1 ⊗ v}. A representation V of G is irreducible if every
subrepresentation W ⊂ V is either 0 or V .

C.4.1 Linear reductive groups

There are various notions of reductivity but the one most central to this book is
linear reductivity.

Definition C.4.1. An affine algebraic group G over a field k is linearly reductive if
the functor Rep(G)→ Vectk, taking a G-representation V to its G-invariants V G,
is exact.

Proposition C.4.2. Let G be an affine algebraic group over a field k. The following
are equivalent:
(1) G is linearly reductive;
(1′) The functor Repfd(G)→ Vectk, V 7→ V G, on the category of finite dimensional

representations is exact;

(2) Every G-representation (resp. finite dimensional G-representation) is a direct
sum of irreducible representations.

(3) Given a G-representation (resp. finite dimensional G-representation) V and
a G-invariant subspace W ⊂ V , there exists a G-invariant subspace W ′ ⊂ V
such that V = W ⊕W ′.

(4) For every finite dimensional representation V and fixed k-point x ∈ P(V )G,
there exists a G-invariant linear function f ∈ Γ(P(V ),O(1))G such that f(x) 6=
0.

Proof. TO ADD

Remark C.4.3. In the notation introduced in §6.3, G is linearly reductive if and
only if BG→ Spec k is cohomologically affine or equivalently a good moduli space.

It is not hard to see that for a field extension k → k′, G is linearly reductive
if and only if Gk′ is and that linearly reductive groups are closed under extension
Linearly reductive algebraic group are also closed under extension. See Lemma 6.3.15
and Proposition 6.3.17.

Proposition C.4.4 (Maschke’s Theorem). Let G be a finite group whose order is
prime to char(k). Then G is linearly reductive.

Proof. If V is a G-representation, averaging over translates gives a G-equivariant
k-linear

RV : V → V G, v 7→ 1

|G|
∑
g∈G

g · v, (C.4.1)

which is on the identity on V G and compatible with a map f : V → W of G-
representations, i.e. RW ◦ f = f ◦ RV . It follows that a surjection V → W of
G-representations induces a surjection V G →WG on invariants.

425



Example C.4.5. In characteristic p, there is a 2-dimensional representation V of

G = Z/p where a generator acts via the matrix
(

1 1
0 1

)
. The surjection V → k

onto the first component is a surjection of G-representations. The induced map
V G → k on invariants is the zero-map. Note however that the element ep1 ∈ Symp V
is G-invariant and maps to 1. Geometrically, this gives an action of G on A2 = A(V )
where (1, 0) is G-invariant; the invariant hypersurface xp doesn’t contain p but there
is no such hyperplane.

Remark C.4.6 (Reynolds operator). The map (C.4.1) is called a Reynolds operator
for the action of G on V . If G is linearly reductive, the canonical projections
RV : V → V G are Reynold operators, i.e. k-linear maps which are the identity
on V G and compatible with maps of G-representations. For an action of G on
a k-scheme SpecA with dual action A → Γ(G,OG) ⊗ A, there is a projection
RA : A→ AG. This is not a ring map but since multiplication AG ⊗A→ A is map
of G-representations commuting with the Reynold operators, we have that

RA(xy) = xRA(y) for x ∈ AG, y ∈ A.

This is called the Reynolds identity and shows that A → AG is an AG-algebra
homomorphism.

In Remark 6.3.9, the Reynolds operator was applied to show that AG is finitely
generated whenever A is. It can also be used to show that SpecA → SpecAG

separates G-orbits and has the properties of affine GIT quotients (Corollary 6.3.7);
see [GIT, §1.2]. As we will see in the proof of Theorem C.4.7, one technique to prove
that a given group is linearly reductive is to construct Reynolds operators.

C.4.2 Reductive groups

An affine algebraic group G over an algebraically closed field k is called reductive if
every smooth, connected, unipotent and normal subgroup of G is trivial. 1 Over C,
an affine algebraic group is reductive if and only if it is the complexification of any
maximal compact subgroup [Hoc65, XVII.5] Reductive groups are a particular nice
class of algebraic groups appearing in many branches of mathematics and can be
completely classified in terms of their root datum.

For a smooth affine algebraic group G, there are subgroup R(G) and Ru(G) of G,
called the radical and unipotent radical, which are maximal among connected, normal
and solvable (resp. connected normal unipotent) subgroups. Over an algebraically
closed field k, G is reductive if Ru(G) is trivial and called semisimple if R(G) is trivial.
For a reductive group, the center Z(G) of a reductive group G is diagonalizable
containing the radical R(G) ⊂ Z(G) as its largest subtorus, and the quotient G/R(G)
is semisimple. For a smooth affine algebraic group G, the quotient G/Ru(G) is
reductive. Over an arbitrary field k, G is called reductive if Gk is. The unipotent
radical Ru(G) commutes with separable field extensions and so over a perfect field
k G is reductive if and only if Ru(G) is trivial. See [Bor91, Hum75, Spr98, Mil17].

The classical algebraic groups of GLn, PGLn, SLn, or SP2n are reductive in
every characteristic. We develop GIT in this book for actions by linearly reductive
groups and it is therefore convenient to know that these classical groups are linearly
reductive in characteristic 0.

1Sometimes G is also assumed to be connected. For a reductive group scheme G→ S, there is
no such ambiguity in the literature: G is smooth and affine over S with connected and reductive
geometric fibers [SGA3III, Exp. XIX, Defn. 2.7].
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Theorem C.4.7. In characteristic 0, a reductive algebraic group is linearly reductive.
The converse is true in every characteristic for smooth algebraic groups.

Proof. In [Hil1890], Hilbert established the linearly reductivity for SLn,C and GLn,C
using a explicit differential operator well-known to 19th century invariant theorists:
the Ω-process. Write Γ(GLn,C,OGLn,C) = C[Xij ]det. Let V be a finite dimensional G-
representation such that the diagonal matrices act with weight k, and let σ : C[V ]→
C[Xij ]det ⊗ C[V ] be the dual action on the coordinate ring C[V ] of A(V ∨). The
differential operator

Ω := det
( ∂

∂Xij

)
acts linearly on C[Xij ]det and also on C[Xij ]det ⊗ C[V ]. One checks that the map

V → V GLn , f 7→ 1

Ωk
(

det(Xij)k
)Ωk

(
det(Xij)

kσ(f)
)

defines a Reynolds operator. As with the averaging operator (C.4.1) in Maschke’s
Theorem (C.4.4), this shows that GLn is linearly reductive and a variant of the
argument shows that SLn is also linearly reductive. The argument is algebraic and
works over every field of characteristic 0. See also [Stu08, §4.3], [Dol03, §2.1] and
[DK15, §4.5.3].

Extending an integral procedure developed by Hurwitz and Schur and ideas of
Cartan, Weyl [Wey26, Wey25] showed that every reductive algebraic group over C
is linearly reductive. The technique is now referred to as ‘Weyl’s unitarian trick’. A
Lie group G has a measure µ, called the left Haar measure. When G is compact,
this measure is finite, and for a finite dimensional G-representation V , averaging
gives k-linear map

V → V G, v 7→ 1∫
G
dµ(g)

∫
G

(g · v)dµ(g)

constant on V G and compatible with maps of G-representations. This is a Reynolds
operator (Remark C.4.6) exactly as the averaging map in Maschke’s Theorem (C.4.4)
and implies that V 7→ V G is exact. For every reductive algebraic group G over
C, there is a real Lie subgroup K ⊂ G(C) which is dense in the Zariski topology
and compact in the Euclidean topology; for GLn,C, K = Un is the subgroup of
unitary matrices (hence the name ‘unitarian trick’). Then for a finite dimensional
G-representation V , there is an identification V K = V G and since the functor taking
K-invariant is exact, so is the functor taking G-invariants. See also [Dol03, §3.2],
[Bum13, Thm. 14.3].2

There is also an algebraic argument using the Casimir operator. First, one reduces
to the case that G is semisimple because every reductive group is an extension of a
torus by a semisimple group. Given a representation ρ : g→ V of the Lie algebra,
there is a symmetric bilinear form on g defined by 〈x, y〉 = Tr(ρ(x) ◦ ρ(y)). Letting
{ei} be a basis of g and {e′i} be a dual basis with respect to 〈−,−〉, the Casimir
operator is the g-endomorphism cV :=

∑n
i=1 ρ(ei) ◦ ρ(e′i) on V . To show that G is

2This analytic argument suffices to show the linear reductivity of a reductive group G over
every characteristic 0 field by the limit methods of §A.6 (or by using the classification theorem
of reductive groups): there is a subfield k′ ⊂ k of finite transcendence degree over Q and a group
scheme G′ → Spec k′ such that G′k = G. Choosing an embedding k′ ↪→ C, and using the fact that
both the notions of reductivity and linear reductivity are insensitive to separable field extensions,
we see that the linear reductivity of G′C implies the linear reductivity of G.
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linearly reductive, it suffices to find a complement of any codimension 1 irreducible
subspace W ⊂ V . As G is semisimple, G acts trivial on V/W and therefore so does
g. It follows that g takes V into W and therefore so does cV , i.e. cV (V ) ⊂W . On
the other hand, since W is irreducible, cV acts on W by multiplication by a scalar
(Schur’s lemma). It follows that ker(cV ) ⊂ V is a complement of W . See also [Mil17,
Thm. 22.42], [Muk03, §4.3], [Hum78, §6.2] and [DK15, §4.5.2].

For the converse, we need to show that for a linearly reductive group G, the
unipotent radical Ru(G) is trivial. Since G/Ru(G) is affine, Matsushima’s Theorem
(6.3.19) implies that Ru(G) is linearly reductive. However, a non-trivial unipotent
group is not linearly reductive. Indeed, it suffices to show this for Ga. Let V = k2

be the two-dimensional representation given by t 7→
(

1 t
0 1

)
. The projection

V → k, (x, y) 7→ x is a surjection of Ga-representations with no complement,
i.e. there is no invariant (x, y) ∈ V Ga with x 6= 0 (in fact there is no invariant
f ∈ (Symd V )Ga with d > 0 and f(1, 0) nonzero. See also [NM64].

Example C.4.8. The algebraic groups such as GLn, PGLn, SLn, or SP2n are not
linearly reductive in characteristic p. For example, in characteristic 2, consider the
action of SL2 acts on the space V = Sym2(k∨) = {Ax2 + Bxy + Cy2} of degree
2 binary forms. The subspace W consisting of squares L2 of linear forms is a
GL2-invariant subspace with no complement; the quotient V → V/W = C is given
by (A,B,C) 7→ B. While there is no invariant linear function not vanishing at
(0, 1, 0), the discriminant ∆ = B2 ∈ Sym2 V ∨ is an invariant function nonzero at
(0, 1, 0) (verifying the geometric reductivity condition given below).

Theorem C.4.9 (Matsushima’s Theorem). Let G be a reductive group over a field
k. Then a subgroup H ⊂ G is reductive if and only if G/H is affine.

Proof. See Proposition 6.3.19 for a proof when G is linearly reductive. The general
case can be proven in a similar way relying on the a generalization of Serre’s Criterion
for Affineness: an algebraic space U , satisfying the property that for a surjection
A → B of OU -algebras every global section of B has a positive power that lifts, is
affine. See also [Mat60], [BB63], [Ric77], [FS82], [Alp13, Thm. 12.5] and [Alp14,
Thm 9.4.1].

C.4.3 Geometrically reductive groups
An affine algebraic group G is called geometrically reductive (or sometimes called
semi-reductive) if for every surjection V → W of G-representations and w ∈ WG,
there exists n > 0 such that wp

n

is in the image of Sympn V → SympnW . It suffices
to take V finite dimensional and W the trivial representation in which case the
condition translates to a geometric property that for a fixed k-point x ∈ P(V )G,
there is an invariant homogenous polynomial f ∈ Γ(P(V ),O(pn))G for n > 0 with
f(x) 6= 0 (analogous to Proposition C.4.2(4) except that f need not be linear).

Geometrically reductive groups appear in the context of GIT (§6.6) as their
defining property can be used to show that the quotient morphisms SpecA →
SpecAG have desirable properties (e.g. separates closed orbits and AG is finitely
generated). In an effort to extend GIT to actions by reductive groups such as
SLn and GLn in positive characteristic, Mumford conjectured in [GIT, preface] a
reductive group is geometrically reductive. This conjecture was resolved by Haboush
[Hab75]; see also [SS11], [Ses69] and [Oda64]. Conversely, a smooth geometrically
reductive group is reductive. In fact, an affine algebraic group G is geometrically
reductive if and only if Gred is reductive.
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On the other hand, a linearly reductive group is clearly geometrically reductive.
The converse is true in characteristic 0 [Alp14, Lem. 9.2.8].

We thus have the implications:

linearly reductive +3 geometrically reductive

G smooth
&.

char=0
ow

reductive.ks

A smooth algebraic group G in characteristic p is linearly reductive if and only if
the connected component G0 is a torus and the order of G/G0 is prime to p [Nag62].
Every finite (possibly non-reduced) group scheme G is geometrically reductive but
is linearly reductive if and only if G0 is diagonalizable and G/G0 has order prime to
p [HR15, Thm. 1.2]. A commutative algebraic group G is reductive if and only if its
diagonalizable.

We also point out that a smooth algebraic group G satisfying the property that
AG is finitely generated for every coaction on a finitely generated k-algebra, then G
is necessarily reductive.
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Appendix D

Deformation Theory

Deformation theory is the study of the local geometry of a moduli spaceM near an
object E0 ∈M(k). We focus primarily on the following three deformation problems:
(A) Embedded deformations Z0 ⊂ X of a closed subscheme Z0 in a fixed projective

scheme X over k. Here the moduli problem is the Hilbert functor HilbP (X)
and E0 = [Z0 ⊂ X] ∈ HilbP (X)(k).

(B) Deformations of a scheme E0 over k. In this section, the main example for us
is when E0 is a smooth curve in which case the moduli problem isMg and
[E0] ∈Mg(k).

(C) Deformations of a coherent sheaf E0 on a fixed projective scheme C over k.
The main example for us is when C is a smooth curve and E0 is a vector
bundle in which case the moduli problem is BunC and [E0] ∈ BunC(k).

In this chapter, we sketch the local-to-global approach of deformation theory by
zooming in around E0 ∈M(k) and studying successively first order neighborhoods
of M at E0, higher order deformations of E0, formal neighborhoods of E0 and
eventually étale or smooth neighborhoods of E0.

(1) A first order deformation of E0 is an object E ∈M(k[ε]) over the dual numbers
k[ε] := k[ε]/(ε2) together with an isomorphism α : E0 → E|Spec k, or in other
words a commutative diagram

Speck

[E0]
%%

� � // Speck[ε]

[E]

��

M

allowing us to view E as a tangent vector ofM at E0. We classify first order
deformations of Problems (A)–(C) in §D.1.

(2) Given a surjection A′ � A of artinian local k-algebras with residue field k and
an object object E ∈M(A) with an isomorphism E0 → E|Spec k, a deformation
of E over A′ is an object E′ ∈M(A′) with an isomorphism α : E → E′|SpecA.
Pictorially, this corresponds to a commutative diagram

Speck

[E0]
**

� � // SpecA �
�

//

[E]

%%

SpecA′

[E′]

��

M.
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For Problems (A)–(C), we determine when a deformation E′ of E over A′
exists and we classify them in §D.2

(3) Given a noetherian complete local k-algebra (R,m), a formal deformation of
E0 over R is a compatible collection of deformations En ∈M(R/mn+1) of E0,
and a formal deformation {En} is versal if every other deformation factors
through one of the En (see Definition D.3.5 for a precise definition). Rim–
Schlessinger’s Criteria (Theorem D.3.11) provides criteria for the existence of
a versal deformation {En} of E0, and in §D.3 we verify the criteria for the
Problems (A)–(C).

(4) A formal deformation {En} over (R,m) is effective if there exists an object
Ê ∈M(R) extending the {En}, or in other words there exists a commutative
diagram

SpecR/m

[E0]
..

� � // SpecR/m2

[E1]

..

� � // SpecR/m3

[E2]

))

� � // · · · �
�

// SpecR

[Ê]

��

M.

In §D.4, we show how Grothendieck’s Existence Theorem (D.4.4) implies that
formal deformations are effective for Problems (A)–(C).

(5) In §D.5, we take a detour from the local-to-global approach to provide a
glimpse into the role of the cotangent complex in deformation theory.

(6) Given an effective versal formal deformation Ê over R, Artin Algebraization
(Theorem D.6.6) ensures the existence of a finite type k-scheme U with a point
u ∈ U(k) and an object E ∈M(U) such that R ∼= ÔU,u and Ê|SpecR/mn+1

∼=
E|SpecR/mn+1 for all n.

(7) Artin’s Axioms for Algebraicity (Theorems D.7.1 and D.7.4) provides criteria to
verify the algebraicity of a moduli problemM. Namely, it provides conditions
to ensure that the morphism [E] : U → M constructed above is a smooth
morphism in an open neighborhood of E0.

In this chapter, k will denote an algebraically closed field. In §D.3, §D.6 and
§D.7, we work over the category of k-schemes for convenience but the results hold
more generally.

D.1 First order deformations

Denote the dual numbers by k[ε] := k[ε]/(ε2).

D.1.1 First order embedded deformations

Definition D.1.1. Let X be a projective scheme over a k and Z0 ⊂ X be a
closed subscheme. A first order deformation of Z0 ⊂ X is a closed subscheme
Z ⊂ Xk[ε] := X ×k k[ε] flat over k[ε] such that Z0 = Z ×k[ε] k. Pictorially, a first
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order deformation is a filling of the diagram

X

��

� � // Xk[ε]

��

Z0

, �

cl
::

$$

� � // Z
+ �

cl
99

flat

%%

Speck �
�

// Speck[ε].

with a scheme Z and dotted arrows making the diagram cartesian.
We say that Z ⊂ Xk[ε] is trivial if Z = Z0 ×k k[ε].

Remark D.1.2. Since Z0 and the central fiber Z ×k[ε] k of Z are embedded in X,
it makes sense to require that they are equal.

Remark D.1.3. The closed subscheme Z0 ⊂ X defines a k-point [Z0 ⊂ X] ∈
HilbP (X) of the Hilbert scheme where P is the Hilbert polynomial of Z0 with
respect to a fixed ample line bundle on X. A first order deformation corresponds to
a commutative diagram

Speck
[Z0⊂X]

//
� _

��

HilbP (X)

Speck[ε],

[Z⊂Xk[ε]]

88

or in other words a tangent vector [Z ⊂ Xk[ε]] ∈ THilbP (X),[Z0⊂X].

Proposition D.1.4. Let X be a projective scheme over a k and Z0 ⊂ X be a closed
subscheme defined by a sheaf of ideals I0 ⊂ OX . There is a bijection

{first order deformations Z ⊂ Xk[ε]} ∼= H0(Z0, NZ0/X)

where NZ0/X = H omOZ0
(I0/I

2
0 ,OZ0

) is the normal sheaf. Under this correspon-
dence, the trivial deformation corresponds to 0 ∈ H0(Z0, NZ0/X).

Remark D.1.5. In light of Remark D.1.3, this proposition gives a bijection
THilbP (X),[Z0⊂X]

∼= H0(Z0, NZ0/X).

Proof. We sketch the bijection and point the reader to [Har10, Prop. 2.3] and
[Ser06, Prop. 3.2.1] for details. After reducing to the affine case X = SpecB and
Z0 = SpecB/I0, we need to show that the set of first order deformations is bijective
to

H0(Z0, NZ0/X) ∼= HomB/I0(I0/I
2
0 , B/I0) ∼= HomB(I0, B/I0).

Given a first order deformation Z = SpecB[ε]/I, the flatness of Z over k[ε] ensures
that tensoring the exact sequence 0 → I → B[ε] → B[ε]/I → 0 of k[ε]-modules
with k = k[ε]/(ε) yields an exact sequence 0 → I0 → B → B/I0 → 0. We define
α : I0 → B/I0 as follows: for x0 ∈ I0, choose a preimage x = a + bε ∈ I and set
α(x0) := b ∈ B/I0. Conversely, given a B-module homomorphism α : I0 → B/I0,
we define

I = {a+ bε | a ∈ I0, b ∈ B such that b = α(a) ∈ B/I0} ⊂ B[ε].

Then (B[ε]/I)⊗k[ε] k = B/I0. To see that B[ε]/I is flat over k[ε], we need to check
that the map B/I0

ε−→ B[ε]/I is injective (see Remark A.2.7): given b ∈ B with
εb ∈ I, then b ∈ I0 by the definition of I. Thus Z = SpecB[ε]/I defines a first order
deformation of Z0.
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D.1.2 Locally trivial first order deformations of schemes

Definition D.1.6. Let X0 be a scheme over a k. A first order deformation of X0

is a scheme X flat over k[ε] together with an isomorphism α : X0 → X ×k[ε] k, or in
other words a cartesian diagram

X0

��

� � // X

flat

��

Speck �
�

// Speck[ε].

� (D.1.1)

A morphism of first order deformations (X,α) and (X ′, α′) is a morphism
β : X → X ′ of schemes over k[ε] such that (β ×k[ε] k) ◦ α = α′, or in other words
considering X and X ′ in cartesian diagrams (D.1.1), we require the restriction of β
to central fiber X0 to be the identity.

We say that X is trivial if X is isomorphic as first order deformations to X×kk[ε],
and locally trivial if there exists a Zariski-cover X =

⋃
i Ui such that Ui is a trivial

first order deformation of Ui ×k[ε] k ⊂ X0.

Everymorphism of deformations is necessarily an isomorphism. This is a conse-
quence of the following algebraic fact.

Lemma D.1.7. Let A be a ring, m ⊂ A be a nilpotent ideal (e.g. (A,m) is an
artinian local ring) and M → N be a homomorphism of A-modules. Assume that N
is flat over A. If M/mM → N/mN is an isomorphism, then so is M → N .

Proof. The right exact sequence M → N → C → 0 becomes M/mM → N/mN →
C/mC → 0 after modding out by m, and we see that C = mC. As mn = 0 for some
n, we obtain that C = mC = m2C = · · · = mnC = 0. Considering now the exact
sequence 0 → K → M → N → 0, the flatness of N implies that we get an exact
sequence 0→ K/mK →M/mM → N/mN → 0. Thus K = mK = · · · = mnK = 0
and we see that M → N is an isomorphism.

Proposition D.1.8. Every first order deformation of a smooth affine scheme X0

over k is trivial. In other words, X0 is rigid.

Proof. Let X be a first order deformation of X0. Since X0 → Speck is smooth, we
may apply the Infinitesimal Lifting Criterion for Smoothness (A.3.1) to construct a
lift X → X0 making the diagram

X0� _

��

id // X0

smooth

��

X //

;;

Speck

commute. This induces a morphism X → X0 ×k k[ε] over k[ε] which restricts to the
identity on X0, and thus is an isomorphism by Lemma D.1.7.

See also [Har77, Exer. II.8.7].

Remark D.1.9. If X0 is not smooth or affine, then first order deformations are
not necessarily trivial. For example, if X0 = Speck[x, y]/(xy) is the nodal affine
plane curve, then X = Speck[x, y, ε]/(xy − ε)→ Speck[ε] is a non-trivial first order
deformation.
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On the other hand, consider an elliptic curve E0 = V (y2z−x(x−z)(x−2z)) ⊂ P2

is a elliptic curve over k with char(k) 6= 2, 3. It is easy to write down global
deformations by deforming the coefficients of the defining equations: E = V (y2z −
(x−λz)(x−z)(x−2z)) ⊂ P2×A1 (where A1 has coordinate λ) defines a flat projective
morphism E → A1 such the central fiber E0 is isomorphic to E0. Restricting E to
the family E := E ×A1 Speck[λ]/λ2 over the dual numbers defines a non-trivial first
order deformation. For an affine open U0 ⊂ E0 and setting U ⊂ E to be the open
subscheme with the same topological space as U0, then there is an isomorphism
U
∼→ U0×kk[ε]. These local isomorphism however do not glue to a global isomorphism

E
∼→ E0 ×k k[ε]. Since every deformation of a smooth scheme is obtained by gluing

together trivial deformations, we need to understand automorphisms of trivial
deformations in order to classify global deformations.

Lemma D.1.10. If X0 = SpecA is an affine scheme over k and X = SpecA[ε] is
the trivial first order deformation, then there are identifications

{automorphisms X → X of first order defs} ∼= Derk(A,A) ∼= HomA(ΩA/k, A).

Proof. The second equivalence is given by the universal property of the module of
differentials. An automorphism of the trivial first order deformation corresponds
to a k[ε]-algebra isomorphism φ : A⊕Aε→ A⊕Aε which is the identity modulo ε.
Therefore, φ is determined by the images φ(a) = a+ d(a)ε of elements a ∈ A where
d : A→ A is k-linear map. Since φ is a ring homomorphism, for elements a, a′ ∈ A,
we must have that aa′ + d(aa′)ε = (a+ d(a)ε)(a′ + d(a′)ε) = aa′ + (ad(a′) + a′d(a))ε
and we see that d : A→ A is a k-derivation.

For a schemeX0 over k, let Def(X0) and Def lt(X0) denote the sets of isomorphism
classes of first order and locally trivial first order deformations.

Proposition D.1.11. For a scheme X0 of finite type over k with affine diagonal,
there is a bijection

Def lt(X0) ∼= H1(X0, TX0
),

where TX0
= H omOX0

(ΩX0/k,OX0
). The trivial deformation corresponds to 0 ∈

H1(X0, TX0
).

In particular, if in addition X0 is smooth over k, then there is a bijection

Def(X0) ∼= H1(X0, TX0).

Proof. Let X → Speck[ε] be a locally trivial first order deformation of X0. Choose
an affine cover {Ui} of X0 and isomorphisms φij := φi : Ui ×k k[ε]

∼→ X|Ui , where
X|Ui ⊂ X denotes the open subscheme with the same topological space as Ui.
Letting Uij = Ui ∩ Uj , we have automorphisms φ−1

j |Uij×kk[ε] ◦ φi|Uij×kk[ε] of the
trivial deformation Uij ×k k[ε] which by Lemma D.1.10 corresponds to elements
φij ∈ HomOUij (ΩUij/k,OUij ). Since φij ◦φjk = φik on Uijk := Ui ∩Uj ∩Uk, we have
that φij + φjk = φik ∈ TX0

(Uijk). Recall that H1(X0, TX0
) can be computed using

the Céch complex

0 //
⊕

i TX0
(Ui)

d0 //
⊕

i,j TX0
(Uij)

d1 //
⊕

i,j,k TX0
(Uijk)

(sij)
� // (sij |Uijk − sik|Uijk + sjk|Uijk)ijk

As {φij} ∈
⊕

i,j TX0
(Uij) is in the kernel of d1, it defines an element of H1(X0, TX0

) =

ker(d1)/ im(d0). Conversely, given an element of H1(X0, TX0
) and a choice of
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representative {φij} ∈ ker(d1), then viewing each φij as an automorphism φij of the
trivial deformation of Uij , we may glue together the trivial deformations Ui ×k k[ε]
along Uij ×k k[ε] via φij to construct a global first order deformation X of X0.

For the final statement, observe that since X0 is smooth over k, every first order
deformation is locally trivial by Proposition D.1.8. See also [Har77, Exer. III.4.10
and Ex. III.9.13.2].

Example D.1.12. If C is a smooth projective curve of genus g ≥ 2, then we’ve
computed that

TMg,[C] = H1(C, TC)
SD
= H0(C,Ω⊗2

C/k)

which by Riemann–Roch is a 3g − 3 dimensional vector space.

Exercise D.1.13. Use the Euler exact sequence to show that H1(Pn, TPn) = 0 and
conclude that every first order deformation of Pn is trivial, i.e. Pn is rigid.

D.1.3 First order deformations of vector bundles and coher-
ent sheaves

Definition D.1.14. Let X be a projective scheme over k and E0 be a coherent
sheaf. A first order deformation of E0 is a pair (E,α) where E is a coherent sheaf
on X ×k k[ε] flat over k[ε] and α : E0

∼→ E|X is an isomorphism. Pictorially, we have

E0 E

flat/k[ε]

X �
�

// Xk[ε].

A morphism (E,α)→ (E′, α′) of first order deformations is a morphism β : E →
E′ (equivalently an isomorphism by Lemma D.1.7) of coherent sheaves on X ′ such
that α′ = β|X ◦ α.

We say that (E,α) is trivial if it isomorphic as first order deformations to
(p∗E0, id) where p : Xk[ε] → X.

Proposition D.1.15. Let X be a scheme over k and E0 be a coherent sheaf. There
is a bijection

{first order deformations (E,α) of E0}/∼ ∼= Ext1
OX (E0, E0)

Under this correspondence, the trivial deformation corresponds to 0 ∈ Ext1
OX (E0, E0).

If in addition E0 is a vector bundle (resp. line bundle), then the set of isomor-
phism classes of first order deformations of E0 is bijective to H1(X,E ndOX (E0))
(resp. H1(X,OX)).

Proof. If (E,α) is a first order deformation then since E is flat over k[ε], we may
tensor the exact sequence 0→ k ε−→ k[ε]→ k→ 0 of k[ε]-modules with E to obtain
an exact sequence 0→ E0

ε−→ E → E0 → 0 (after identifying E ⊗k[ε] k with E0 via
α). Since Ext1

OX (E0, E0) parameterizes isomorphism classes of extensions [Har77,
Exer. III.6.1], we have constructed an element of Ext1

OX (E0, E0). Conversely, given
an exact sequence 0→ E0

α−→ E → E0 → 0, then E is a coherent sheaf on Xk[ε] and
is flat over k[ε] by the flatness criterion over the dual numbers (see Remark A.2.7).
The restriction E|X is isomorphic to E0 via α.

See also [Har10, Thm. 2.7].
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Remark D.1.16. The classifications of Propositions D.2.2, D.2.6 and D.2.15 give
vector space structures to the set of isomorphism classes of first order deforma-
tions. The vector space structures can also be witnessed as a consequences of
Rim–Schlessinger’s homogeneity condition; see Lemma D.3.13.

D.2 Higher order deformations and obstructions

LetM be a moduli problem and E ∈M(A) be an object defined over a ring A. If
A′ � A is a surjection of rings with square-zero kernel, in this section we address
the following two questions:

(1) Does E deform to an object E′ ∈M(A′)?
(2) If so, can we classify all such deformations?

Pictorially, we have:

E E′

SpecA
� � // SpecA′.

where SpecA ↪→ SpecA′ is a closed immersion of schemes with the same topological
space. Note that since J = ker(A′ → A) is square-zero, J = J/J2 is naturally a
module over A = A′/J . In other words, Question (1) is asking whether there is
some “obstruction" to the existence of a deformation E′ while (2) seeks to classify
all higher order deformations given that there is no obstruction.

An interesting case is when A and A′ are local artinian algebras with residue
field k and the kernel J = ker(A′ → A) satisfies mA′J = 0 (which implies that
J2 = 0). In this case, J = J/mA′J is naturally a vector space over k = A′/mA′ .
Setting E0 := E|k ∈M(k), we can view E as a deformation over E0 over A and we
are attempting to classify the higher order deformations over A′. If there are no
obstructions to deforming, then the Infinitesimal Lifting Criterion for Smoothness
(3.7.1) implies thatM is smooth at [E0].

The previous section studied the specific case when A = k and A′ = k[ε] in
which case deformations of an object E0 ∈M(k) over A′ correspond to first order
deformations. In this case, the obstruction vanishes as there is always the trivial
deformation (i.e. the pullback of E0 along Speck[ε]→ Speck). Other examples of
A′ → A to keep in mind are k[x]/xn+1 � k[x]/xn and Z/pn+1 � Z/pn where we
inductively attempt to deform E0 over the nilpotent thickenings Speck[x]/xn+1 ↪→
A1 and SpecZ/pn+1 ↪→ SpecZ.

D.2.1 Higher order embedded deformations

Definition D.2.1. Let A′ � A be a surjection of noetherian rings with square-zero
kernel. Let X ′ be a scheme over A′ and set X := X ′ ×A′ A. Let Z ⊂ X be a closed
subscheme flat over A. A deformation of Z ⊂ X over A′ is a closed subscheme
Z ′ ⊂ X ′ flat over A′ such that Z ′ ×A′ A = Z as closed subschemes of X. Pictorially,
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a deformation is a filling of the cartesian diagram

X

��

� � // X ′

��

Z
, �

cl
99

flat

$$

� � // Z ′
+ �

cl
99

flat

%%

SpecA �
�

// SpecA′.

The formulation of the next proposition uses the following notion: a torsor of a
group G is a transitive and free action of G on a set.

Proposition D.2.2. Let A′ � A be a surjection of noetherian rings with square-
zero kernel J . Let X ′ be a scheme over A′ with affine diagonal (e.g. separated) and
Z ⊂ X := X ′ ×k A be a closed subscheme flat over A defined by a sheaf of ideals
I ⊂ OX . Then
(1) If there exists a deformation Z ′ ⊂ X ′ of Z ⊂ X over A′, then the set of such

deformations is a torsor under H0(Z,NZ/X ⊗A J) = Ext0
OZ (I/I2, J).

(2) There exists an element obZ ∈ Ext1
OZ (I/I2, J) (depending on Z and A′ � A)

such that there exists a deformation of Z ⊂ X over A′ if and only if obZ = 0.

Remark D.2.3. An interesting example is when X = X0 ×k A and X ′ = X0 ×k A
′

are the base changes of a k-scheme X0. If the closed subscheme Z ⊂ X has
constant Hilbert polynomial P (i.e. for each s ∈ SpecA, the Hilbert polynomial of
Zs ⊂ X0×kκ(s), with respect to a fixed ample line bundle onX0, is independent of s),
then we have an object [Z ⊂ X] ∈ HilbP (X0)(A) of the Hilbert scheme. In this case, a
deformation of Z ⊂ X over A′ is an object [Z ′ ⊂ X ′] ∈ HilbP (X0)(A′) which restricts
to [Z ⊂ X]. Note that when A′ � A is a surjection of local artinian k-algebras with
mA′J = 0, then there is an identification H0(Z,NZ/X ⊗A J) = H0(Z0, NZ0/X0

⊗k J)
where Z0 = Z ×A k.

Remark D.2.4. In the case that deformations of Z ⊂ X over A′ exist Zariski-locally
on X, then there is an obstruction element obZ ∈ H1(Z,NZ/X ⊗A J).

Proof. Suppose first that X ′ = SpecB′, X = SpecB where B = B′ ⊗A′ A and
Z = SpecB/I. If there exists a deformation Z ′ = SpecB′/I ′, then there is an exact
diagram

0

��

0

��

0

��

0 // I ⊗A J //

��

I ′ //

��

I //

��

0

0 // B ⊗A J //

��

B′ //

��

B //

��

0

0 // (B/I)⊗A J //

��

B′/I ′ //

��

B/I //

��

0

0 0 0

The exactness of the bottom row (resp. middle row) is equivalent to the flatness of
B′/I ′ (resp. B′) over A′ by the Local Criterion of Flatness (Corollary A.2.6) while
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the exactness of the left column follows from the flatness of B/I over A. Conversely,
an exact diagram defines an deformation Z ′ = SpecB′/I ′.

We will define an action HomB(I, (B/I) ⊗A J) on the set of deformations as
follows: given φ ∈ HomB(I, (B/I)⊗A J) and a deformation Z ′ = SpecB′/I ′, define
I ′′ ⊂ B′ as the set of elements x′′ ∈ B′ such that its image x′′ ∈ B lies in I and such
that a lifting x′ ∈ I ′ of x′′ ∈ I satisfies x′′ − x′ = φ(x′′) ∈ (B/I)⊗A J (noting that
this condition is independent of the choice of lifting x′). One checks that SpecB′/I ′′

is another deformation.
On the other hand, given two deformations defined by ideals I ′ and I ′′, we define

φ : I → (B/I) ⊗A J by φ(x) = x′ − x′′ where x′ ∈ I ′ and x′′ ∈ I ′′ are lifts of x
(which forces x′−x′′ ∈ B⊗A J). One checks that this is a B-module homomorphism
providing an inverse to the above construction. We have natural identifications

HomB(I, (B/I)⊗A J) = HomB/I(I/I
2, B/I ⊗A J) = H0(Z,NZ/X ⊗A J).

The above constructions globalize to X and establishes (1).
For (2), we will assume that there is an open cover {Ui} of X such that there

exists deformations Z ′i ⊂ X ′ ∩ Ui of Z ∩ Ui ⊂ X ∩ Ui (noting that X and X ′

are homeomorphic). On Uij = Ui ∩ Uj , the two deformations Z ′i|Uij and Z ′j |Uij
defines an element φij ∈ H0(Uij , NZ/X ⊗A J) which in turn defines a Céch 1-cocycle
(φij) ∈ H1(X,NZ/X ⊗A J). We leave the reader to check that the vanishing of (φij)
characterizes whether there is a deformation of Z ⊂ X over A′.

See also [Har10, Thm. 6.2].

D.2.2 Higher order deformations of schemes
In this chapter, we discuss higher order deformations and obstructions for smooth
schemes and for local complete intersections.

Definition D.2.5. Let A′ � A be a surjection of noetherian rings with square-
zero kernel and X → SpecA be a flat morphism of schemes. A deformation of
X → SpecA over A′ is a flat morphism X ′ → SpecA′ together with an isomorphism
α : X

∼→ X ′ ×A′ A over A, or in other words a cartesian diagram

X

flat

��

� � // X ′

flat

��

SpecA
� � // SpecA′.

(D.2.1)

A morphism of deformations over A′ is a morphism of schemes over A′ restricting
to the identity on X. By Lemma D.1.7, every morphism of deformations is an
isomorphism.

Proposition D.2.6 (Higher Order Deformations of Smooth Schemes). Let A′ � A
be a surjection of noetherian rings with square-zero kernel J . If X → SpecA is a
smooth morphism of schemes where X has affine diagonal (e.g. separated), then
(1) The group of automorphisms of a deformation X ′ → SpecA′ of X → SpecA

over A′ is bijective to H0(X,TX/A ⊗A J).
(2) If there exists a deformation of X → SpecA over A′, then the set of isomor-

phism classes of all such deformations is a torsor under H1(X,TX/A ⊗A J).
(3) There is an element obX ∈ H2(X,TX/A ⊗A J) with the property that there

exists a deformation of X → SpecA over A′ if and only if obX = 0.
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Remark D.2.7. If A and A′ are local artinian rings with residue field k such
that mA′J = 0 and we set X0 := X ×A k, then automorphisms, deformations and
obstructions are classified by Hi(X0, TX0

⊗k J) for i = 0, 1, 2.

Proof. When X = SpecA is an affine scheme, the same argument of Lemma D.1.10
shows that group of automorphisms of X ′ is identified with HomA(ΩA/k, J) =
H0(X,TX/A ⊗ J). Since TX/A ⊗ J and the assignment of an open subscheme U to
the group of automorphisms of the first order deformation X ′|U are sheaves, Part
(1) follows.

Let {Ui} be an affine cover of X. Part (2) follows from a similar argument
to Proposition D.1.11: Fix a deformation X ′ → SpecA of X. For every other
deformation X ′′ → SpecA, we know that over each affine Ui, there is an isomorphism
φi : X

′|Ui → X ′′|Ui and we let φij = φ−1
j |X′|Uij ◦ φi|X′|Uij viewed as an element of

H0(Ui, TX/A ⊗ J). The Céch 1-cycle (φij) defines an element in H1(X,TX/A ⊗ J).
For (3), again using that Ui is affine, we can choose a deformation U ′i → SpecA′

of Ui. We can also choose isomorphisms φij : U ′i |Uij → U ′j |Uij . This defines gluing
data for a deformation X ′ if φjk ◦ φij = φik on the triple intersections Uijk. The
automorphism Ψijk = φ−1

ik ◦φjk ◦φij restricts to the identity on Uijk and thus defines
an element of H0(Uijk, TX/A ⊗ J). Consider the Céch complex with F = TX/A ⊗ J

⊕
i,j F (Uij)

d1 //
⊕

i,j,k F (Uijk)
d2 //

⊕
i,j,k,l F (Uijkl)

(sij)
� // (sij − sik + sjk)ijk

(sijk) � // (sijk − sijl + sikl − sjkl)ijkl.

One checks that d2(Ψijk) = 0 and that if φ′ij is a different choice of isomorphisms
then the corresponding element (Ψ′ijk) differs from (Ψijk) by an element in the image
of d1. Thus (Ψijk) is a well-defined element of H2(X,TX/A ⊗ J).

See also [Har10, Cor. 10.3].

Exercise D.2.8 (Interpretation of deformations and obstruction using gerbes).
With the hypotheses of Proposition D.2.6, consider the category G over Sch /X
whose objects over S → X are cartesian diagrams

S

��

� � // S′

��

SpecA �
�

// SpecA′

�

where S → SpecA is the composition S → X → SpecA. A morphism (S →
X,S ↪→ S′ → SpecA′) → (T → X,T ↪→ T ′ → SpecA′) is the data of a morphism
φ : S′ → T ′ over A′ such that φ restricts to a morphism S → T over X.
(a) Show that G is a gerbe banded by the sheaf of groups TX/A ⊗A J on X.

(Hint: Use Lemma D.1.7 to show it is a prestack. See Definition 6.2.21 for
the definition of a banded gerbe.)

(b) Give an alternate proof of Proposition D.2.6. (Hint: For part (3), use Exer-
cise 6.2.30.)

Exercise D.2.9 (Deformations of principal G-bundles). Let G be a smooth affine
algebraic group over a field k with Lie algebra g. Let X ↪→ X ′ be a closed immersion
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of finite type k-schemes defined by a square-zero sheaf of ideals J and assume
that X has affine diagonal. If P → X is a principal G-bundle, one can define
deformations over X ′ and automorphisms of deformations analogous to the case of
smooth morphisms. Show that
(1) The group of automorphisms of a deformation P ′ → X ′ of P → X is bijective

to H0(X, g⊗ J).
(2) If there exists a deformation of over X ′, then the set of isomorphism classes of

all such deformations is a torsor under H1(X, g⊗ J).
(3) There is an element obX ∈ H2(X, g⊗ J) with the property that there exists a

deformation over X ′ if and only if obX = 0.

Example D.2.10 (Abelian varieties). IfX0 is an abelian variety over C of dimension
n, then it turns out that deforming X0 as an abstract scheme is equivalent to
deforming it as an abelian variety, and that obstructions to deforming X0 as an
abelian variety also live in H2(X0, TX0). Using that ΩX0 = OnX0

is trivial and the
Hodge symmetries, we see that H2(X0, TX0

) = H2(X0,OX0
)⊕n = H0(X0,

∧2OnX0
)⊕n

is non-zero. Nevertheless, Grothendieck and Mumford showed that given every
deformation problem as in (D.2.1), the obstruction obX ∈ H2(X,TX/A⊗AJ) vanishes!
This shows that abelian varieties are unobstructed and their moduli is formally
smooth. See [Oor71].

Proposition D.2.11 (Higher Order Deformations of Complete Intersections). Let
X0 be a scheme of finite type over a field k such that X0 is generically smooth and
a local complete intersection. Let A′ � A be a surjection of local noetherian rings
with residue field k. Assume that the kernel J := ker(A′ → A) satisfies mA′J = 0.
If X → SpecA is a flat morphism of schemes with central fiber X ×A k ∼= X0, then

(1) The group of automorphisms of a deformation X ′ → SpecA′ of X → SpecA
over A′ is bijective to Ext0

OX0
(ΩX0

, J).

(2) If there exists a deformation of X → SpecA over A′, then the set of isomor-
phism classes of all such deformations is a torsor under Ext1

OX0
(ΩX0

, J).

(3) There is an element obX ∈ Ext2
OX0

(ΩX0 , J) with the property that there exists
a deformation of X → SpecA over A′ if and only if obX = 0.

Proof. See [Vis97, Thm. 4.4] for an explicit argument. Alternatively, since X0 is
generically smooth and a local complete intersection, the cotangent complex LX0 is
quasi-isomorphic to ΩX0 (see Example D.5.11) and thus the result follows from the
fact that the cotangent complex controls deformations (Theorem D.5.10).

Exercise D.2.12.

(1) Show that under the bijection Def(k[[x, y]]/(xy)) ∼= k an element t ∈ k corre-
sponds to the first order deformation Speck[[x, y, ε]]/(xy − tε).

(2) Classify first order deformations of the Ak-singularity k[[x, y]]/(y2 − xk+1).

Exercise D.2.13 (Higher Order Deformations of Morphisms). Let k be a field and
A′ � A be a surjection of local artinian rings with residue field k. Let f : X → Y be
a morphism of schemes over A. A deformation of f : X → Y over A′ is a morphism
f ′ : X ′ → Y ′ of schemes over SpecA′ together with isomorphisms α′ : X ∼→ X ′×A′ A
and β′ : Y

∼→ Y ′ ×A′ A such that both X ′ and Y ′ are flat over A′ and such that
the base change of f ′ to A is equal to f under the isomorphisms α and β. In other
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words, a deformation is a cartesian diagram

X

f

��

� � // X ′

f ′

��

Y

��

� � // Y ′

��

�

SpecA �
�

// SpecA′.

�

A morphism of deformations (X ′ → Y ′, α′, β′) → (X ′′ → Y ′′, α′′, β′′) consists of
morphisms X ′ → X ′′ and Y ′ → Y ′′ over A′ compatible with the given isomorphisms.

Assume that X and Y are proper A, and that f∗OX = OY and R1f∗OX = 0.
Show that the functor taking a deformation f ′ : X ′ → Y ′ of f : X → Y over A′ to
the deformation X ′ over X over A′ induces an isomorphism of categories.

Hint: Given a deformation X ′ over X, define Y ′ as the ringed space (Y, f∗OX′)
(using that X and X ′ have the same topological space). Use the conditions of f
and the flatness of X ′ over A′ to show that Y ′ is a scheme flat over A′. See also
[Vak06, §5.3], [Ran89, Thm. 3.3], and [SP, Tag 0E3X]. (For additional properties
of deformations of morphisms, see [Ser06, §3.4].)

D.2.3 Higher order deformations of vector bundles
Definition D.2.14. Let A′ � A be a surjection of noetherian rings with square-
zero kernel J . Let X ′ → SpecA′ be finite type morphism of schemes and set
X := X ′ ×A′ A. Given a coherent sheaf E on X flat over A, a deformation of E
over A′ → A is a pair (E′, α) where E′ is a coherent sheaf on X ′ flat over A′ and
α : E → E′|X is an isomorphism. Pictorially, we have

E

flat/A

E′

flat/A′

X �
�

// X ′.

A morphism (E,α) → (E′, α′) of deformations is a morphism β : E → E′ of
coherent sheaves on XA′ such that α′ = β|X ◦ α. By Lemma D.1.7, every morphism
of deformations is an isomorphism.

Proposition D.2.15. Let A′ � A be a surjection of noetherian rings with square-
zero kernel J . Let X ′ → SpecA′ be a flat and finite type morphism of schemes such
that X ′ has affine diagonal (e.g. separated) and set X := X ′ ×A′ A. Let E be a
vector bundle on X over A.
(1) The group of automorphisms of a deformation E′ of E over A′ is bijective to

H0(X,E ndOX (E)⊗A J).
(2) If there exists a deformation of E over A′, then the set of isomorphism classes

of all such deformations is a torsor under H1(X,E ndOX (E)⊗A J).
(3) There is an element obE ∈ H2(X,E ndOX (E) ⊗A J) with the property that

there exists a deformation of E over A′ if and only if obE = 0.

Remark D.2.16. If X and X ′ are base changes of a finite type k-scheme X0 with
affine diagonal, and A and A′ are local artinian rings with residue field k such that
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mA′J = 0, then automorphisms, deformations and obstructions are classified by
H2(X0,E ndOX0

(E0)⊗k J) for i = 0, 1, 2 where E0 = E|X0
.

Proof. See [Har10, Thm. 7.1].

Exercise D.2.17. Give an alternative proof of Proposition D.2.15 using the tech-
nique outlined in Exercise D.2.8.

D.3 Versal formal deformations and Rim–Schlessinger’s
Criteria

D.3.1 Functors of artin rings
For an algebraically closed field k, let Artk denote the category of artinian local
k-algebras with residue field k. The opposite category Artop

k is equivalent to the
category of local artinian k-schemes (S, s) with κ(s) = k.

Definition D.3.1. We say that a covariant functor F : Artk → Sets is pro-
representable if there exists a noetherian complete local k-algebra R such that
for all A ∈ Artk, there is a isomorphism F

∼→ hR where hR := Homk−alg(R,−).

Remark D.3.2. If F : Sch/k→ Sets is a contravariant functor and x0 ∈ F (k), then
we can consider the induced functor of artin rings

Fx0 : Artk → Sets, A 7→ {x ∈ F (A) | x|k = x0 ∈ F (k)}

where x|k denotes the image of x under F (A)→ F (A/mA). If F is representable by a
schemeX and x ∈ X is the k-point corresponding to x0, then Fx0

is pro-representable
by ÔX,x.

Exercise D.3.3. Provide an example of a non-representable contravariant functor
F : Sch/k→ Sets and an object x0 ∈ F (k) such that Fx0

is pro-representable.

Many functors of artin rings are not pro-representable. For example, if C0 is a
smooth connected projective curve with a non-trivial automorphism group, then the
covariant functor FC0

: Artk → Sets where FC0
(A) consists of isomorphism classes

of smooth proper families of curves C → SpecA such that C ×A A/mA is isomorphic
to C0, is not pro-representable. Nevertheless many moduli functors admit versal
deformations.

Remark D.3.4. To work over a more general base (e.g. of mixed characteristic),
one can consider instead the following setup: let Λ be a noetherian complete local
ring with residual field k (not necessarily algebraically closed) and ArtΛ be the
category of artinian local Λ-algebras (A,m) with an identification k ∼→ A/m. Rim–
Schlessinger’s Criteria (Theorem D.3.11) holds after replacing Artk with ArtΛ. More
generally, one can consider the setup where A→ k is a finite morphism to a field,
not assumed to be the residue field.

Setting Λ = k recovers our setup but in many applications it is often useful to take
Λ to be a ring of Witt vectors, e.g. Λ = Zp. In this way, one can consider deforming
an object E0 over Fp inductively along extensions Z/pn+1 � Z/pn with the hope of
applying Rim–Schlessinger’s Criteria (Theorem D.3.11) and Grothendieck’s Existence
Theorem (D.4.4) to deform E0 to an object Ê over the characteristic zero ring Zp;
see Section D.4.1
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D.3.2 Versal deformations

As it’s important to keep track of automorphisms, we will present Rim–
Schlessinger’s Criteria, a generalization of Schlessinger’s Criterion from functors to
prestacks. Therefore we will formulate the definition of versality for prestacks X
over Artop

k . We will assume that X (k) is equivalent to a set consisting of a single
object, i.e. there is a unique morphism between any two objects in X (k).

Definition D.3.5. Let X be a prestack over Artop
k such that the groupoid X (k) is

equivalent to the set {x0}.
(1) A formal deformation (R, {xn}) of x0 is the data of a noetherian complete

local k-algebra (R,mR) together with objects xn ∈ X (R/mn+1
R ) and morphisms

xn−1 → xn over SpecR/mnR → SpecR/mn+1
R , or in other words an element

of lim←−X (R/mn). When X = F is a covariant functor Artk → Sets, a formal
deformation is a compatible sequence of elements xn ∈ F (R/mn+1

R ).
(2) A formal deformation (R, {xn}) is versal if for every surjection A � A0

in Artk with mn+1
A = 0, object η ∈ X (A) and k-algebra homomorphism

φ0 : R/mn+1
R → A0 with an isomorphism α0 : xn|A0

∼→ η|A0 in X (A0), there
exists a k-algebra homomorphism φ : R/mn+1

R → A and an isomorphism

α : xn|A
∼→ η in X (A) such that φ0 is the composition R/mn+1

R

φ−→ A � A0

α|A0
= α0.

(3) A versal formal deformation (R, {xn}) is miniversal (or a pro-representable
hull) if the induced map Homk−alg(R,k[ε]) → X (k[ε])/∼ on isomorphism

classes, defined by (R→ R/m2
R

φ−→ k[ε]) 7→ φ(x1), is bijective.

Remark D.3.6. The deformation xn ∈ X (R/mn+1
R ) can be viewed via Yoneda’s

2-Lemma as a morphism SpecR/mn+1
R → X or more precisely as hR/mn+1

R
→ X .

Likewise, we can view a formal deformation as a morphism {xn} : hR → X where
hR = Homk−alg(R,−) (see Exercise D.3.8). With this terminology, {xn} is versal if
there exists a lift for every commutative diagram

SpecA0� _

��

// hR

{xn}
��

SpecA
η

//

;;

X

(D.3.1)

of solid arrows where A � A0 is a surjection in Artk. In this way, we see that
a versal formal deformation corresponds to the Infinitesimal Lifting Criterion for
Smoothness (see Smooth Equivalences A.3.1(2) and Theorem 3.7.1) with respect
to artinian local k-algebras. Meanwhile a miniversal deformation is a versal formal
deformation inducing an isomorphism on tangent spaces hR(k[ε])→ X (k[ε])/∼.

Remark D.3.7. The condition of versality can be checked on surjections A� A0

with ker(A→ A0) ∼= k. Indeed, the kernel of every surjection A� A0 in Artk is a
finite dimensional k-vector space and A→ A0 can be factored into surjections where
each kernel is one-dimensional.

Exercise D.3.8. Let R be a noetherian complete local k-algebra and let hR =
Homk−alg(R,−) be the covariant functor Artk → Sets which we can also view as
a prestack over Artop

k . If X is a prestack over Artop
k , show that giving a formal

deformation (R, {xn}) is equivalent to giving a morphism hR → X of prestacks.
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Remark D.3.9. If F is pro-representable by R, then letting xn ∈ F (R/mn+1
R )

correspond to the surjection (R� R/mn+1
R ) ∈ hR(R/mn+1

R ), it is easy to see that
{xn} is a versal formal deformation. In this case, there is a unique lift in (D.3.1)

Remark D.3.10 (Global prestacks to local deformation prestacks). If X is a
prestack over Sch/k and x0 ∈ X (k), we can consider the local deformation prestack
Xx0

at x0 as the prestack of morphisms x0 → x over Artop
k where a morphism

(x0
α−→ x) → (x0

α′−→ x′) is a morphism β : x → x′ such that α′ = α ◦ β. In other
words, an object of Xx0

is a pair (x, α) where x ∈ X (A) and α : x0 → x|k is an
isomorphism. Note that the fiber category Xx0

(k) is equivalent to the set {x0
id−→ x0}.

If X is algebraic with a smooth presentation U → X from a scheme and u ∈ U(k)
is a point mapping to x0, then we may set xn ∈ X (OU,u/mn+1

u ) to be the composition
SpecOU,u/mn+1

u ↪→ U → X . Then {xn} is a versal formal deformation.
On the other hand, if X is not yet known to be algebraic, one can sometimes

verify the existence of versal formal deformation via Rim–Schlessinger’s Criteria
(Theorem D.3.11) as a first step to verifying the algebraicity of X via Artin’s Axioms
for Algebraicity (Theorem D.7.1).

D.3.3 Rim–Schlessinger’s Criteria
Rim–Schlessinger’s Criteria provides necessary and sufficient conditions for a prestack
X over Artop

k or covariant functor F : Artk → Sets to admit a versal formal defor-
mation.

Theorem D.3.11 (Rim–Schlessinger’s Criteria). Let X be a prestack over Artop
k

such that the groupoid X (k) is equivalent to the set {x0}. For morphisms B0 → A0

and A→ A0 in Artk, consider the natural functor

X (B0 ×A0
A)→ X (B0)×X (A0) X (A) (D.3.2)

Then X admits a miniversal formal deformation if and only if
(RS1) the functor (D.3.2) is essentially surjective whenever A � A0 is surjection

with kernel k;
(RS2) the map (D.3.2) is essentially surjective when A0 = k and A = k[ε], and given

two commutative diagrams

x0
//

��

y0

α1

��

α2

��

x //
77y

β
// y′

over

Speck �
�

//

��

SpecB0

��

Speck[ε] �
�

// Spec(k[ε]×k B0)

there exists an isomorphism β : y → y′ in X (k[ε]×k B0) such that α2 = β ◦ α1.
(RS3) dimk TX <∞ where TX := X (k[ε])/∼ .

Moreover, X is prorepresentable if and only if X is equivalent to a functor and
(RS4) the map (D.3.2) is an equivalence whenever A� A0 is a surjection with kernel

k.

Conditions (RS2)–(RS3) (sometimes referred to as semi-homogeneity) may be
difficult to parse1 but in practice it is almost always just as easy to verify the stronger

1The second part of (RS2) is slightly stronger than requiring that two objects in X (k[ε]×k B0)
are isomorphic if and only if their images are. Note that (RS2) does not require the isomorphism
β : y → y′ to be compatible with the given morphisms x→ y and x→ y′.
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condition (RS4) (called homogeneity), and in fact the even stronger condition (RS∗4)
(called strong homogeneity) introduced in §D.3.4.

Remark D.3.12 (Schlessinger’s Criteria). When X is a covariant functor
F : Artk → Sets with F (k) = {x0}, then (RS1)–(RS4) translate into Schlessinger’s
conditions as introduced in [Sch68]:

(H1) the map (D.3.2) is surjective whenever A� A0 is a surjection with kernel k;
(H2) the map (D.3.2) is bijective when A0 = k and A = k[ε];
(H3) dimk F (k[ε]) <∞; and
(H4) the map (D.3.2) is bijective whenever A� A0 is a surjection with kernel k.
The functor F admits a miniversal formal deformation if (H1)–(H3) hold and is
pro-representable if (H3)–(H4) hold.

If X satisfies (RS1)–(RS3), then the functor FX : Sch/k→ Sets parameterizing
isomorphism classes of objects satisfies (H1)–(H3) but the converse does not always
hold. On the other hand, the essential surjectivity of X (B0×A0

A)→ X (B0)×X (A0)

X (A) implies the surjectivity of FX (B0 ×A0
A)→ FX (B0)×FX (A0) FX (A) and the

fully faithfulness for X implies the injectivity of FX as long as AutX (B0)(y0) →
AutX (A0)(y0|A0) is surjective for an object y0 ∈ X (B0). This latter condition holds
in the case when FX (A0) is a set, e.g. when A0 = k. If X is the local deformation
prestack arising from an object x0 ∈ X̃ (k) of an algebraic stack X̃ over Sch/k as
in Remark D.3.10, then the surjectivity condition on automorphisms translates to
the inertia stack IX → X being smooth at e(x0), where e : X → IX is the identity
section, by the Infinitesimal Lifting Criterion for Smoothness (Theorem 3.7.1).

While the existence of a miniversal formal deformation of FX suffices for many
applications, for moduli problems with automorphisms it is more natural to ask for
the existence of a miniversal formal deformation of X and this generality is needed
for some applications, e.g. Artin’s Algebraization (Theorem D.6.6) and Artin’s
Axioms for Algebraicity (Theorem D.7.4).

Before proceeding to the proof, we first show that (RS1)–(RS2) yield natural
structures on sets of deformations. In particular, they induce a vector space structure
on the tangent space TX = X (k[ε])/∼ which allows us to make sense of condition
(RS3).

Lemma D.3.13. Let X be a prestack over Artop
k such that the groupoid X (k) is

equivalent to the set {x0}, and let FX : Artk → Sets be the covariant functor assigning
A ∈ Artk to the set of isomorphism classes X (A)/∼. Assume that Condition (RS2)
holds for X .

(1) The tangent space TX = FX (k[ε]) has a natural structure of a k-vector space.
More generally, for every finite dimensional k-vector space V , denoting k[V ] as
the k-algebra k⊕V defined by V 2 = 0, the set FX (k[V ]) has a natural structure
of a k-vector space and there is a functorial bijection FX (k[V ]) = TX ⊗k V .

(2) Consider a surjection B � A in Artk with square-zero kernel I and an
element x ∈ X (A), and let Liftx(B) be the set of morphisms x → y over

SpecA→ SpecB where x α−→ y is declared equivalent to x α′−→ y′ if there is an
isomorphism β : y → y′ such that α′ = β ◦ α. There is an action of TX ⊗ I
on Liftx(B) which is functorial in X . Assuming Liftx(B) is non-empty, this
action is transitive if Condition (RS1) holds for X and free and transitive (i.e.
Liftx(B) is a torsor under TX ⊗ I) if Condition (RS4) holds for X .
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Proof. We first note if V is a finite dimensional vector space, then k[V ] = k[ε]×k
· · ·×k k[ε] and by applying (RS2) inductively, we see that the statement of Condition
(RS2) also holds for A0 = k and A = k[V ]. For B0 ∈ Artk, the first part of (RS2)
implies that FX (B0 ×k k[V ])

∼→ FX (B0) × FX (k[V ]) is a bijection. In particular,
FX (k[V ] ×k k[W ])

∼→ FX (k[V ]) × FX (k[W ]) is bijective for every pair of finite
dimensional vector spaces, or in other words the functor V 7→ FX (k[V ]) commutes
with finite products.

The vector space structure of TX = FX (k[ε]) follows from the bijectivity of

FX (k[ε]×k k[ε′])
∼→ FX (k[ε])× FX (k[ε′]). (D.3.3)

Indeed, addition of τ1, τ2 ∈ FX (k[ε]) is defined by using the above identification to
view (τ1, τ2) ∈ FX (k[ε]×k k[ε′]) and then taking its image under F (k[ε]×k k[ε′])→
F (k[ε]) induced by the ring map k[ε] ×k k[ε′] → k[ε] taking (ε, 0) and (0, ε′) to ε.
Scalar multiplication of c ∈ k on τ ∈ FX (k[ε]) is defined by taking the image of τ
under FX (k[ε])→ FX (k[ε]) induced by the map k[ε]→ k[ε] taking ε to cε.

The same argument gives FX (k[V ]) the structure of a vector space such that the
assignment V 7→ FX (k[V ]) is a k-linear functor Vectfd

k → Vectk defined on finitely
dimensional k-vector spaces. The natural map

FX (k[ε])×Homk(k[ε],k[V ])→ FX (k[V ]), (τ, φ) 7→ φ∗τ

is k-bilinear and under the equivalences TX = FX (k[ε]) and V = Homk(k[ε],k[V ])
corresponds to a linear map TX ⊗ V → FX (k[V ]), which is an isomorphism. This
finishes the proof of (1).

For (2), we observe that the natural map

B ×A B → k[I]×k B, (b1, b2) 7→ (b1 + b2 − b1, b1)

is an isomorphism. We therefore have a diagram

X (k[I])×X (B)� X (k[I]×k B) ∼= X (B ×A B)
p∗1−→ X (B) (D.3.4)

where the left functor is essentially surjective by the first part of (RS2). Given
τ ∈ TX ⊗ I = FX (k[I]) (with a choice of representative in X (k[I])) and (x

α−→
y) ∈ Liftx(B), we would like to define τ · (x α−→ y) as the image under p∗1 of a
choice of preimage of (τ, y). To see that this is well-defined, consider two elements
z, z′ ∈ X (k[I]×k B) whose images in X (k[I])×X (B) are isomorphic to (τ, y). This
yields a diagram

x0
//

��

y

α1

��

α2

��

τ //
77z

β
// z′

over

Speck �
�

//

��

SpecB

��

Speck[I] �
�

// Spec(k[I]×k B)

and by the second part of (RS2), there exists a dotted arrow β such that α2 = β ◦α1.
Therefore choices of pullbacks p∗1z and p∗1z′ in X (B) defines the same element in
Liftx(B). If (RS1) holds, then the statement of Condition (RS1) also holds for every
surjection A 7→ A0 (since we may factor it as a composition of surjections whose
kernels are k). Therefore if (RS1) holds (resp. (RS4) holds), then X (B ×A B) →
X (B)×X (A) X (B) is essentially surjective (resp. an equivalence) and we see that
the action is transitive (resp. free and transitive).
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Proof Theorem D.3.11. The details of the necessity of these conditions are left to
the reader. We will establish the sufficiency. The tangent space TX := X (k[ε])/∼
has the structure of a vector space by Lemma D.3.13(1) and is finite dimensional by
(RS2). Let N = dimk TX with basis x1, . . . , xN and define S = k[[x1, . . . , xN ]]. We
will construct inductively a decreasing sequence of ideals J0 ⊃ J1 ⊃ · · · and objects
ηn ∈ X (S/Jn) together with morphisms ηn → ηn+1 over SpecS/Jn ↪→ SpecS/Jn+1.
We set J0 = mS and η0 = x0 ∈ X (k). We also set J1 = m2

S so that S/J1
∼= k[TX ].

Using the bijection FX (k[TX ]) ∼= TX ⊗k TX of Lemma D.3.13(1), the element∑
i xi ⊗ xi defines an isomorphism class of an object η1 ∈ X (S/J1) such that the

induced map SpecS/J1 → X induces a bijection on tangent spaces. By construction,
we have a morphism η0 → η1 over Speck ↪→ SpecS/J1.

Suppose we’ve constructed Jn and ηn−1 → ηn. We claim that the set of ideals

Σ = {J ⊂ S |mSJn ⊂ J ⊂ Jn and there exists ηn → η

over SpecS/Jn ↪→ SpecS/J}
(D.3.5)

has a minimal element. Indeed, it is non-empty since Jn ∈ Σ and given J,K ∈ Σ,
we must check that J ∩K ∈ Σ. To achieve this, choose an ideal J ′ ⊂ S satisfying
J ⊂ J ′ ⊂ I with J∩K = J ′∩K and J ′+K = I. Then A/(J ′∩K) ∼= A/J ′×A/IA/K.
Letting ηJ ∈ X (S/J) and ηK ∈ X (S/K) be the objects corresponding to J and K,
the data of (ηJ |S/J ′ ← ηn → ηK) defines an object of X (S/J ′) ×X (S/I) X (S/K).
The functor X (A/(J ∩K))→ X (S/J ′)×X (S/I) X (S/K) is essentially surjective by
(RS1) and the existence of preimage of (ηJ |S/J ′ ← ηn → ηK) shows that J ∩K ∈ Σ.

Setting J =
⋂
n Jn, then R = S/J is a noetherian complete local k-algebra

with ideals In := Jn/J . Since mSJn ⊂ Jn+1, we have that mn+1
R ⊂ In and thus

ξn := ηn|R/mn+1
R

defines a formal deformation of x0 over R.
We must check that ξ := {ξn} is versal. Suppose B � A is a surjection in Artk

with kernel k and that we have a diagram

x //

��

ξ

y

over

SpecA� _

��

g
// hR

SpecB.

g̃

;;

We need to construct a morphism y → ξ extending x→ ξ. We claim that it suffices
to construct a morphism g̃ : SpecB → hR (i.e. a ring map R → B) extending g.
Since hR(k[ε])→ TX is bijective, Lemma D.3.13(2) implies that there are actions of
TX on the sets Liftx(B) and Liftg(B) of isomorphism classes of lifts of x and g to
objects in X (B) and hR(B) which are compatible with the map Liftg(B)→ Liftx(B)
where g̃ 7→ g̃∗ξ. Thus, we can find τ ∈ TX such that y = τ · (g̃∗ξ) = (τ · g̃)∗ξ. This
gives an arrow y → ξ over τ · g̃ : SpecB → hR.

To construct g̃, choose n such that R→ A factors as R→ R/In = S/Jn → A. It
suffices to show that SpecA→ SpecS/Jn extends to a map SpecB → SpecS/Jn+1

and for this, it suffices to show the existence of a dotted arrow making the diagram

SpecA� _

��

// SpecS/Jn� _

��

� p

""

SpecB // SpecB ×A (S/Jn)

((

SpecS/Jn+1
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commutative. As S = k[[x1, . . . , xn]], we may choose an extension S → B of
S → S/Jn → A. Then B ×A (S/Jn) = S/K where K is the kernel of the induced
map S → B ×A (S/Jn). The kernel K lies in the set of ideals defined in (D.3.5):
the inclusion K ⊂ Jn is clear, the inclusion mSJn ⊂ K is implied by the equality
ker(B → A) = k, and the existence of ηn → η over SpecS/Jn ↪→ SpecS/K follows
from applying (RS1) to the above square. Thus Jn+1 ⊂ K and we have a ring map
S/Jn+1 → S/K = B ×A (S/Jn) inducing the desired dotted arrow.

Finally, we must show that if X is equivalent to a functor F and (RS4) holds,
then F is prorepresentable by ξ = {ξn}. Given a surjection B → A with kernel k
and x ∈ F (A), it suffices to show the existence of a unique lift in every diagram

SpecA� _

��

g
// hR

��

SpecB

;;

// F.

This holds because the map Liftg(B)→ Liftx(B) is bijective by Lemma D.3.13(2)
as both are torsors under TX .

See also [Sch68, Thm. 2.11], [SGA7-I, Thm. VI.1.11] and [SP, Tag 06IX], where
the result is established more generally for prestacks over the category ArtΛ intro-
duced in Remark D.3.4.

D.3.4 Verifying Rim–Schlessinger’s Conditions
Consider the following strong homogeneity condition:

(RS∗4) X (B0×A0
A)→ X (B0)×X (A0)X (A) is an equivalence for every map B0 → A0

and surjection A� A0 of rings with square-zero kernel (where the rings are
not necessarily local artinian);

If X is a prestack over (Sch/k) satisfying (RS∗4), then the local deformation prestack
Xx0

at x0 (see Remark D.3.10) is easily checked to satisfy (RS4). On the other
hand, it turns out that every algebraic stack satisfies (RS∗4); see [SP, Tag 07WN].
In other words, the Ferrand pushout Spec(B0 ×A0

A) is a pushout in the category
of algebraic stacks. Condition (RS∗4) will appear in our second version of Artin’s
Axioms for Algebraicity (Theorem D.7.4) as it will be useful to verify openness
of versality (in addition to implying (RS2)–(RS3) ensuring the existence of versal
formal deformations).

For a moduli problemM, it is often possible to verify (RS∗4) (and thus (RS4) as
well as (RS1)–(RS2)) as a consequence of Proposition A.8.5: for a ring map B0 → A0

and surjection A� A0, the functor Mod(B0 ×A0 A)→ Mod(B0)×Mod(A0) Mod(A)
restricts to an equivalence on flat modules. When B0, A0 and A are artinian, there is
an elementary argument for this fact since flatness translates to freeness for modules
over an artinian ring (Proposition A.2.3).

We say that a prestack X over Sch/k admits formal versal deformations if for
every k-point x0, the local deformation prestack Xx0

(Remark D.3.10) admits a
formal versal deformation.

Proposition D.3.14. Each of the moduli problems HilbP (X), Mg (with g ≥
2) and BunC over k satisfy (RS3) and (RS∗4), and therefore admit formal versal
deformations.

Proof. To check (RS3) for objects [Z0 ⊂ X], C0 and E0 of X = HilbP (X),Mg and
BunC defined over k, we have identifications of the tangent spaces TX with the finite
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dimensional k-vector spaces H0(Z0, NZ0/X), H1(C0, TC0) and H1(X,E ndOX (E0))
by Propositions D.1.4, D.1.11 and D.1.15.

For (RS∗4), let B0 → A0 be a ring map and A� A0 be a surjection with square-
zero kernel. Set B = B0 ×A0

A. For HilbP (X), Corollary A.8.6(1)–(2) implies that
the diagram

XA0

� � //

��

XA

��

XB0

� � // XB

is a pushout and that the functor

QCoh(XB)→ QCoh(XB0)×QCoh(XA0
) QCoh(XA) (D.3.6)

restricts to an equivalence between the full subcategory of finitely presented OXB -
modules flat over B and the fiber product of the full subcategories of finitely presented
O-modules flat over B0 and A. This implies the desired equivalence HilbP (X)(B)→
HilbP (X)(B0)×HilbP (X)(A0) HilbP (X)(A) between closed subschemes flat over the
base.

ForMg, the essential surjectivity ofMg(B)→Mg(B0)×Mg(A0)Mg(A) trans-
lates into the existence of an extension

C0 �
�

//

��

tt

C

��

uuD0
� � //

��

D

��

SpecA0
� � //

tt

SpecA
uu

SpecB0
� � // SpecB

of smooth families of curves. The existence of D as a pushout of top face follows from
Theorem A.8.1. The fact that D is smooth over B follows from Corollary A.8.6(2).
The properness of D → SpecB follows from the properness of D0 → SpecB0. The
fully faithfulness translates to the bijectivity of

Aut(D/B)→ Aut(D0/B0)×Aut(C0/A0) Aut(C/A)

and follows direct from the fact that D is a pushout of the top face. Alternatively, one
can replicate the above argument for HilbP (X) using the tricanonical embedding.

For BunC , Corollary A.8.6(1) implies that the functor (D.3.6) restricts to an
equivalence on finitely presented O-modules flat over the base and therefore also on
vector bundles.

D.4 Effective formal deformations and Grothendieck’s
Existence Theorem

We often would like to know when a formal deformation is effective.

Definition D.4.1. Let X be a prestack (or functor) over (Sch/k). Let x0 ∈ X (k)
and consider a formal deformation (R, {xn}) of x0 (or more precisely a formal
deformation of the deformation stack Xx0 at x0 as defined in Remark D.3.10).
We say that {xn} is effective if there exists an object x̂ ∈ X (R) and compatible
isomorphisms xn

∼→ x̂|SpecR/mn+1 .
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Remark D.4.2. A formal deformation (R, {xn}) is effective if it is in the essential
image of the natural functor X (R)→ lim←−X (R/mn) or in other words if there exists
a dotted arrow making the diagram

SpecR/m

x0
..

� � // SpecR/m2

x1

..

� � // SpecR/m3

x2

))

� � // · · · �
�

// SpecR

x̂

��

X

commutative.

Example D.4.3. If F : Sch/k→ Sets is a contravariant functor representable by a
scheme X over k, then every formal deformation (R, {xn}) is effective. Indeed, xn
corresponds to a morphism SpecR/mn+1 → X with image x ∈ X(k) and thus to
a k-algebra homomorphism φn : ÔX,x → R/mn+1. By taking the inverse image of
φn, we have a local homomorphism ÔX,x → R which in turn defines a morphism
x̂ : SpecR→ X extending {xn}.

Grothendieck’s Existence Theorem—sometimes referred to as Formal GAGA—
can often be applied to show that formal deformations are effective.

Theorem D.4.4 (Grothendieck’s Existence Theorem). Let X → SpecR be a
proper morphism of schemes where (R,m) is a noetherian complete local ring. Set
Xn := X ×R R/mn+1 The functor

Coh(X)→ lim←−Coh(Xn), E 7→ {En}, (D.4.1)

where En is the pullback of E along Xn → X, is an equivalence of categories.

Proof. See [EGA, III.5.1.4], [FGI+05, Thm. 8.4.2] and [SP, Tag 088E].

Remark D.4.5. The essential surjectivity of (D.4.1) translates to an extension of
the diagram

E0 E1 E2 E

X0
� � //

��

X1
� � //

��

X2
� � //

��

· · · �
�

// X

��

SpecR/m �
�

// SpecR/m2 �
�

// SpecR/m3 �
�

// · · · �
�

// SpecR

while the fully faithfulness of (D.4.1) translates to the bijectivity of the natural map
HomOX (E,F )→ lim←−HomOXn (En, Fn) for coherent sheaves E and F on X.

Using the language of formal schemes and setting X̂ = X ×SpecR Spf R to be
the m-adic completion of X, then Grothendieck’s Existence Theorem asserts that
the functor Coh(X)→ Coh(X̂), defined by E 7→ Ê, is an equivalence.

Corollary D.4.6. Let (R,m) be a noetherian complete local ring and Xn →
SpecR/mn+1 be a sequence of proper morphisms such that Xn ×R/mn+1 R/mn ∼=
Xn−1. If Ln is a compatible sequence of line bundles on Xn such that L0 is ample,
then there exists a projective morphism X → SpecR and an ample line bundle L on
X and compatible isomorphisms Xn

∼= X ×R R/mn+1 and Ln
∼→ L|Xn .
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Remark D.4.7. It follows that there an extension in the cartesian diagram

X0
� � //

��

X1
� � //

��

X2
� � //

��

· · · �
�

// X

��

SpecR/m �
�

// SpecR/m2 �
�

// SpecR/m3 �
�

// · · · �
�

// SpecR

such that X is projective over R. We say that the formal deformation {Xn →
SpecR/mn+1} of X0 is effective (which is sometimes referred to as algebraizable.

Proof. We sketch how this follows from Grothendieck’s Existence Theorem. Consider
the finitely generated graded k-algebra B =

⊕
mn/mn+1 and the quasi-coherent

graded OX0
-algebra A = B ⊗k OX0

. By applying Serre’s vanishing theorem to
SpecX0

A and the ample line bundle L0⊗OX0
OX′0 , we see that H1(X0,A⊗L⊗d0 ) = 0

for d� 0. We have a closed immersion X0 ↪→ PN defined by a basis s0,0, . . . , s0,N

of H0(X0, L
⊗d
0 ). Noting that mnOXn+1

/mn+1OXn+1
is identified with ker(OXn+1

→
OXn), we may tensor the corresponding short exact sequence by L⊗dn+1 to obtain a
short exact sequence

0→ (mnOXn+1
/mn+1OXn+1

)⊗ L⊗d0 → L⊗dn+1 → L⊗dn → 0,

where we’ve used that that (mnOXn+1/m
n+1OXn+1) ⊗ L⊗dn+1 is supported on X0

along with the identifications Ln+1 ⊗ OXm ∼= Lm for m ≤ n. The vanishing of
H1(X0,A ⊗ L⊗d0 ) implies that we may lift the sections s0,0, . . . , s0,N inductively
to compatible sections sn,0, . . . , sn,N of H0(Xn, L

⊗d
n ). By Nakayama’s Lemma, the

induced morphisms Xn ↪→ PNR/mn+1 are closed immersions giving a commutative
diagram

PN

��

� � // Pn
R/m2

R

��

� � // · · · �
�

// PNR

��

X0

- 
cl

;;

$$

� � // X1

+ �

cl 99

&&

� � // · · · �
�

// X
- 

cl
;;

##

Speck �
�

// SpecR/m2 �
�

// · · · �
�

// SpecR

Grothendieck’s Existence Theorem (D.4.4) gives an equivalence Coh(PNR )→ lim←−Coh(PNR/mn+1).
Essential surjectivity gives a coherent sheaf E on PNR extending {OXn} and full
faithfulness gives a surjection OPNR → E extending OPN

R/mn+1
→ OXn . We take

X ⊂ PNR to be the closed subscheme defined by ker(OPNR → E).
See also [EGA, III.5.4.5], [FGI+05, Thm. 8.4.10] and [SP, Tag 089A].

Remark D.4.8. Suppose that X is flat over R and that we are only given an ample
line bundle L0 on X0 (and not the line bundles Ln). Then the obstruction to de-
forming Ln−1 to Ln is an element obLn−1

∈ H2(X,OX⊗km
n) by Proposition D.2.15.

If these cohomology groups vanish (e.g. if X is of dimension 1), then there exists
compatible extensions Ln and thus the formal deformation {Xn → SpecR/mn+1}
are effective.

Without the existence of deformations Ln of L0, it is not necessarily true that
formal deformations are effective. For instance, there is a projective K3 surface
(X0, L0) and a first order deformation X1 → Speck[ε] which is not projective (so L0

does not deform to X1), and a formal deformation which is not effective; see [Har10,
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Ex. 21.2.1]. Similarly formal deformations of abelian varieties may not be effective.
Note that for both K3 surfaces and abelian varieties, Rim–Schlessinger’s Criteria
applies to construct versal formal deformations.

Corollary D.4.9. For each of the moduli problems HilbP (X), Mg (with g ≥ 2)
and BunC over k, every formal deformation is effective. In particular, there exist
effective versal formal deformations.

Proof. For HilbP (X), we show the effectivity of a formal deformation {Zn ⊂
XR/mn+1} by following the argument at the end of the proof of Corollary D.4.6 (with
Xn ⊂ PNR/mn+1 replaced with Zn ⊂ XR/mn+1): Grothendieck’s Existence Theorem
(D.4.4) implies the existence of a coherent sheaf E on XR extending {OZn} and a
surjection OXR → E extending {OXn → OZn}, and we take Z ⊂ XR defined by
ker(OXR → E).

ForMg, the effectivity of a formal deformation {Cn → SpecR/mn+1} follows
from Corollary D.4.6 by taking Ln be the ample bundle ΩCn/(R/mn+1), or by taking
L0 to be any ample bundle on C0 and using Proposition D.2.15 and the vanishing
of H2(C0,OC0) to inductively deform L0 to a compatible sequence of line bundle Ln
on Cn.

For BunC , the effectivity of a formal deformation of vector bundles En on
CR/mn+1 follows directly from Grothendieck’s Existence Theorem (D.4.4) noting
that the coherent extension is necessarily a vector bundle.

The last statement follows from the existence of versal formal deformations of
these moduli problems (Proposition D.3.14).

Exercise D.4.10. If X is an algebraic stack locally of finite type over k and (R,m)
is a noetherian complete local ring with residue field k, show that the functor

X (R)→ lim←−X (R/mn+1)

is an equivalence of categories. In particular, every formal deformation is effective.

D.4.1 Lifting to characteristic 0

One striking application of deformation theory is to “lift" a smooth variety X0 over a
field k of char(k) = p to characteristic 0. We say that X0 is liftable to characteristic
0 if there exists a noetherian complete local ring (R,m) of characteristic 0 such
that R/m = k and a smooth scheme X → SpecR such that X0

∼= X ×R k.2 One
can hope to then use characteristic 0 techniques (e.g. Hodge theory) on X and
deduce properties of X0. The strategy to lift a variety X0 is to inductively deform
X0 to smooth schemes Xn over R/mn+1 and then apply Grothendieck’s Existence
Theorem to effective the formal deformation. Note however that to achieve this, we
must work over a mixed characteristic base as in Remark D.3.4 rather than over a
fixed field k.

Smooth curves are liftable as obstructions to deforming both the curve and
the ample line bundle both vanish. Serre produced an example of a non-liftable
projective threefold (see [Har10, Thm. 22.4]) which Mumford extended to a non-
liftable projective surface (see [FGI+05, Cor. 8.6.7]). On the other hand, Mumford
showed that principally polarized abelian varieties are liftable [Mum69] while Deligne
showed that K3 surfaces are liftable [Del81]. These examples are quite interesting as
in both cases, formal deformations are not necessarily effective (see Remark D.4.8)
and additional techniques are needed.

2There are some variants to this definition, e.g. when R is already given as a complete DVR
with residue field k.
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D.5 Cotangent complex
In this chapter, we summarize properties of the cotangent complex of a morphism
of schemes as introduced in [Ill71] globalizing work of André [And67] and Quillen
[Qui68, Qui70] on the cotangent complex of a ring homomorphism. One advantage
of the cotangent complex is that it allows us to describe the deformations and
obstruction of singular schemes; see Theorem D.5.10.

D.5.1 Properties of the cotangent complex
Theorem D.5.1. For every morphism f : X → Y of schemes (resp. finite type
morphism of noetherian schemes), there exists a complex

LX/Y : · · · → L−1
X/Y → L0

X/Y → 0

of flat OX-modules with quasi-coherent (resp. coherent) cohomology, whose image in
D−QCoh(OX) (resp. D−Coh(OX)) is also denoted by LX/Y . It satisfies the following
properties:
(1) H0(X,LX/Y ) ∼= ΩX/Y ;
(2) f is smooth if and only if f is locally of finite presentation and LX/Y is a

perfect complex supported in degree 0. In this case LX/Y is quasi-isomorphic
to the complex where the vector bundle ΩX/Y sits in degree 0;

(3) If f is flat and finitely presented, then f is syntomic if and only if LX/Y is
a perfect complex supported in degrees [−1, 0]. Explicitly, if f factors as a
local complete intersection X ↪→ Ỹ defined by a sheaf of ideals I and a smooth
morphism Ỹ → Y , then LX/Y is quasi-isomorphic to 0→ I/I2 d−→ ΩX/Y → 0
(with ΩX/Y in degree 0);

(4) If

X ′
g′
//

��

X

f

��

Y ′
g
// Y

is a cartesian diagram with either f or g flat (or more generally f and g are
tor-independent), then there is a quasi-isomorphism g′∗LX/Y → LX′/Y ′ . (Note
that without any flatness condition g′∗ΩX/Y ∼= ΩX′/Y ′ .)

(5) If X f−→ Y → Z is a composition of morphisms of schemes, then there is an
exact triangle in D−QCoh(OX)

f∗LY/Z → LX/Z → LX/Y → f∗LY/Z [1].

This induces a long exact sequence on cohomology

· · · H−2(LX/Y )

H−1(f∗LX/Z) H−1(LX/Z) H−1(LX/Y )

f∗ΩY/Z ΩX/Z ΩX/Y 0

extending the usual right exact sequence on differentials [Har77, II.8.12]. (Note
that if f is smooth, then H−1(LX/Y ) = 0 and f∗ΩY/Z → ΩX/Z is injective.)
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Proof. See [Ill71, II.1.2.3], [SP, Tag 08T2] for the definition of the cotangent complex
of a morphism of schemes (and more generally for morphisms of ringed topoi). For
(1)–(5), see [Ill71, II.1.2.4.2, II.3.1.2, II.3.2.6, II.2.2.3 and II.2.1.2] and [SP, Tags
08UV, 0D0N, 0FK3, 08QQ and 08T4] (noting that [SP, Tag 08RB] relates the naive
cotangent complex NLX/Y to LX/Y ).

D.5.2 Truncations of the cotangent complex

The definition of the cotangent complex relies on simplicial techniques and we won’t
attempt an exposition here. We will however give an explicit description of its
truncation, which often suffice for applications.

First, if X → Y factors as a closed immersion X ↪→ P defined by a sheaf of
ideals I and a smooth morphism P → Y , then the truncation τ≥−1(LX/Y ) of LX/Y
in degrees [−1, 0] is quasi-isomorphic to 0 → I/I2 d−→ ΩX/Y → 0 (with ΩX/Y in
degree 0). In the case that X → Y is smooth or syntomic, then X ↪→ Ỹ is a regular
immersion, I/I2 is a vector bundle and LX/Y is quasi-isomorphic to τ≥−1(LX/Y )
(Theorem D.5.1(3)).

For a morphism X = SpecA → SpecB = Y of affine schemes, Lichtenbaum–
Schlessinger [LS67] offer an explicit description of τ≥−2(LX/Y ). Choose a polynomial
ring P = B[xi] (with possibly infinitely many generators) and a surjection P � A
as B-algebras with kernel I. Choose a free P -module F = ⊕λ∈ΛP and a surjection
p : F � I of P -modules with kernel K = ker(p). Let K ′ ⊂ K be the submodule
generated by p(x)y−p(y)x for x, y ∈ F . Then the truncation τ≥−2(LX/Y ) (or rather
τ≥−2(LB/A)) is quasi-isomorphic to the complex of A-modules

K/K ′ → F ⊗P A→ ΩP/B ⊗P A (D.5.1)

with the last term in degree 0; see [SP, Tag 09CG].
One defines the T i functors on the category of A-modules by

T i(A/B,−) := Hi(HomA(LA/B ,−)),

which can be used for instance to describe deformations of schemes (see Exam-
ple D.5.11). See also [LS67, §2.3] and [Har10, §1.3].

D.5.3 Extensions of algebras and schemes

Definition D.5.2. An extension of a ring homomorphism R→ A by an A-module
J is an exact sequence of R-modules

0→ J → A′ → A→ 0

where A′ → A is an R-algebra homomorphism and J ⊂ A′ is an ideal with J2 = 0.
(Note that since J2 = 0, J = J/J2 is a module over A = A′/J .) The trivial extension
is A[J ] := A⊕ J where multiplication is defined by J2 = 0.

A morphism of extensions is a morphism of short exact sequences which is the
identity on J and A. By the five lemma, a morphism of extensions is necessarily
an isomorphism. We let ExalR(A, J) be the groupoid of extensions of R→ A by J ,
and ExalR(A, J) the set of isomorphism classes.
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Remark D.5.3. Geometrically, an extension is a commutative diagram of schemes

SpecA �
�

//

��

SpecA′

yy

SpecR

such that J ∼= ker(A′ → A) and J2 = 0.

The set of extensions ExalR(A, J) is functorial with respect to A and J :
(a) Given a map B → A of R-algebras, there is a map ExalR(A, J) →

ExalR(B, J) given by mapping a complex 0 → J → A′ → A → 0 to
0→ J → A′ ×A B → B → 0.

(b) Given an A-module map α : J → J , there is a map α∗ : ExalR(A, J) →
ExalR(A, J) given by mapping a complex 0→ J → A′ → A→ 0 to 0→ J →
(A′ ⊕ J)/{(−x, α(x)), x ∈ J} → A→ 0.

(c) Given modules J and K, the natural map (p1,∗, p2,∗) : ExalR(A, J ⊕ K) →
ExalR(A, J)⊕ExalR(A,K), induced from (b) by the projections p1 : J⊕K → J
and p2 : J ⊕K → K, is a bijection.

Moreover, ExalR(A, J) naturally has the structure of an A-module: scalar multi-
plication by x ∈ A is defined using (b) with x : J → J and addition is defined by
ExalR(A, J)× ExalR(A, J) ∼= ExalR(A, J ⊕ J)

Σ∗−−→ ExalR(A, J) using the bijection
in (c) and the map Σ∗ of (b) where Σ: J ⊕ J → J is addition. The maps (a)–(c)
are in fact maps of A-modules. See [Ill71, §III.1.1] for details.

Proposition D.5.4. Let R be a ring.
(1) Given a R-algebra A and an exact sequence 0 → J ′ → J → J ′′ → 0 of

A-modules, there is an exact sequence

0 DerR(A, J ′) DerR(A, J) DerR(A, J ′′)

ExalR(A, J) ExalR(A, J) ExalR(A, J ′′)

of A-modules.
(2) Given a homomorphism B → A of R-algebras, there is an exact sequence

0 DerB(A, J) DerR(A, J) DerR(B, J)

ExalB(A, J) ExalR(A, J) ExalR(B, J)

of A-modules.

Proof. See [EGA, 0.20.2.3] and [Ill71, III.1.2.4.3, III.1.2.5.4].

Remark D.5.5. The top row of (D.5.4) can be realized using the right exact
sequence ΩB/R ⊗B A→ ΩA/R → ΩA/B → 0. Namely, apply HomA(−, J) and use
the identities HomA(ΩA/B , J) = DerB(A, J), HomA(ΩA/R, J) = DerR(A, J) and
HomA(ΩB/R ⊗B A, J) = HomB(ΩB/R, J) = DerR(B, J).

The cotangent complex can be applied to extend these sequences to long exact
sequences; see Remark D.5.8.
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The definition of Exal extends naturally to schemes (and more generally to ringed
topoi).

Definition D.5.6. An extension of a morphism X → S of schemes by a quasi-
coherent OX -module J is a short exact sequence

0→ J → OX′ → OX → 0

where X ↪→ X ′ is a closed immersion of schemes defined by sheaf of ideals J ⊂ OX′
with J2 = 0. (Note that the condition J2 = 0 implies that the J ⊂ OX′ is naturally a
OX -module.) The trivial extension is X[J ] := (X,OX ⊕ J) where the ring structure
is is defined by J2 = 0.

A morphism of extensions is a morphism of short exact sequences which is the
identity on J and OX . We let ExalS(X, J) be the category of extensions of X → S
by J , and ExalS(X, J) be the set of isomorphism classes.

The set ExalS(X, J) is naturally an OX -module and is functorial in X and J .
In fact, the groupoid ExalS(X, J) is a Picard category, and the prestack over Sch/S
whose fiber category over f : T → S is ExalT (XT , f

∗J) is a Picard stack ; see [Ill71,
III.1.1.5] and [SGA4, XVIII.1.4].

D.5.4 The cotangent complex and deformation theory
Theorem D.5.7. If X → Y is a morphism of schemes and J is a quasi-coherent
OY -module, there is a natural isomorphism

ExalY (X,J) ∼= Ext1
OX (LX/Y , J).

Proof. See [Ill71, III.1.2.3].

Remark D.5.8. This identification allows us to use the cotangent complex to extend
the 6-term left exact sequences of Proposition D.5.4 to long exact sequences. Namely,
applying HomOX (LX/Y ,−) to the exact sequence 0 → J ′ → J → J ′′ extends
D.5.4(1) and applying HomOX (−, J) to the exact triangle f∗LY/Z → LX/Z → LX/Y
extends D.5.4(2).

When X = SpecA → SpecB = Y is a morphism of affine schemes, using the
T i functors of §D.5.2, the above equivalence translates to ExalB(A, J) = T 1(A/B, J).
This can be established using the explicit description of the Lichtenbaum–
Schlessinger truncated cotangent complex (D.5.1); see [LS67, 4.2.2] and [Har10,
Thm. 5.1]. The T i functors can also be used to extend the 6-term sequences of
Proposition D.5.4 to 9-term sequences; see [LS67, 2.3.5-6] and [Har10, Thms. 3.4-5].

Remark D.5.9. More generally, there is an equivalence between the groupoid
ExalY (X, J) and the groupoid obtained from the 2-term complex

[C−1 d−→ C0] := τ≤0(RHomOX (τ≥−1LX/Y , J)[1])

where objects are elements of C0 and Mor(c, c′) = d−1(c− c′); see [Ill71, III.1.2.2].

Theorem D.5.10. Consider the following deformation problem

X

f

��

� � // X ′

f ′

��

Y
� � i // Y ′
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where f : X → Y is a morphism of schemes and i : Y ↪→ Y ′ is a closed immersion
of schemes defined by an ideal sheaf J ⊂ OY ′ with J2 = 0. A deformation is a
morphism f ′ : X ′ → Y ′ making the above diagram cartesian and a morphism of
deformations is a morphism over Y ′ restricting to the identity on X.
(1) The group of automorphisms of a deformation f ′ : X ′ → Y ′ is isomorphic to

Ext0
OX (LX/Y , f

∗J).
(2) If there exists a deformation, then the set of deformations is a torsor under

Ext1
OX (LX/Y , f

∗J).

(3) There exists an element obX ∈ Ext2
OX (LX/Y , f

∗J) with the property that there
exists a deformation if and only if obX = 0.

Proof. See [Ill71, III.2.1.7] and [SP, Tag 08UZ]. See also [LS67, 4.2.5] and [Har10,
Thm. 10.1] for descriptions in the affine case using the truncated cotangent complex.

Example D.5.11. As a reality check, let’s first consider a smooth morphism
f : X → SpecA is smooth and a surjection A′ � A of noetherian rings with
square-zero kernel J . By the identification

ExtiOX (LX/A, f
∗J) = Hi(X,TX/A ⊗A J),

we recover Proposition D.2.6.
Second, let’s consider a scheme X0 locally of finite type over a field k which is

generically smooth and a local complete intersection. In this case, every point of X0

has an open neighborhood U such that U = V (I) ⊂ An where I is generated by a
regular sequence. We always have a right exact sequence

I/I2 d−→ ΩAn |U → ΩU → 0, (D.5.2)

and by properties of the cotangent complex (D.5.1(3)), we have that LU = [I/I2 →
ΩAn |U ] and supported in degrees [−1, 0]. On the other hand, since U is generally
smooth, I/I2 → ΩAn |U is generically injective. But as I/I2 is a vector bundle (as I
is generated by a regular sequence), it can have no torsion subsheaves. It follows
that the sequence D.5.2 is also left exact, and that ΩU is quasi-isomorphic to LU .
Thus, ΩX0

is also quasi-isomorphic to LX0
, and automorphisms, deformations, and

obstructions are classified by ExtiOX (ΩX0
, J) recovering Proposition D.2.11.

One major advantage of the cotangent complex is that for ExtiOX (LX/A, f
∗J) for

i = 0, 1, 2 classifies automorphisms, deformations and obstructions for an arbitrary
morphism. Moreover, the truncated cotangent complex τ≥−2LX/A suffices to com-
pute automorphisms, deformations and obstructions; for instance when X = SpecB
is affine, we get equivalent descriptions using the T i functors T i(LB/A, f∗J) as
defined in §D.5.2.

Remark D.5.12. There are analogous results for other deformation problems. For
instance, for the deformation problem

X
� � //

f

""

��

X ′

##

��

Y �
�

//

��

Y ′

��

Z �
�

// Z ′,
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where the horizontal morphisms are closed immersions defined by square-zero ideal
sheaves JX , JY and JZ , then automorphisms, deformations and obstructions are
classified by ExtiOX (f∗LY/Z , JX) for i = −1, 0, 1 [Ill71, III.2.2.4]. An important
special case is when Y = Y ′ and Z = Z ′.

D.6 Artin Algebraization
Artin Algebraization is a procedure to “algebraize" or extend an effective versal
formal deformation ξ ∈M(R) to an object η ∈M(U) over a finite type k-scheme U .
In this section, we show how Artin Algebraization follows from Artin Approximation
following the ideas of Conrad and de Jong [CJ02].

D.6.1 Limit preserving prestacks
Extending the definition of a limit preserving functor §A.10.2, we say that a prestack
X over Sch/k is limit preserving (or locally of finite presentation) if for every system
Bλ of k-algebras, the natural functor

colimX (Bλ)→ X (colimBλ)

is an equivalence of categories. When X is an algebraic stack over k, then this
equivalent to the morphism X → Speck being locally of finite presentation; see
Exercise 3.3.31).

Lemma D.6.1. Each of the prestacks HilbP (X),Mg (with g ≥ 2) and BunC over
(Sch/k) are limit preserving.

Proof. To add.

D.6.2 Conrad–de Jong Approximation
In Artin Approximation (Theorem A.10.9), the initial data is an object over a
noetherian complete local k-algebra ÔS,s which is assumed to be the completion
of a finitely generated k-algebra at a maximal ideal. We will now see that a
similar approximation result still holds if this latter hypothesis is dropped and one
approximates both the complete local ring and the object.

Recall also that if (A,m) is a local ring andM is an A-module, then the associated
graded module of M is defined as Grm(M) =

⊕
n≥0 m

nM/mn+1M ; it is a graded
module over the graded ring Grm(A).

Theorem D.6.2 (Conrad–de Jong Approximation). Let X be a limit preserving
prestack over Sch/k. Let (R,mR) be a noetherian complete local k-algebra and let
ξ ∈ X (R). Then for every integer N ≥ 0, there exist
(1) an affine scheme SpecA of finite type over k and a k-point u ∈ SpecA,
(2) an object η ∈ X (A),
(3) an isomorphism φN+1 : R/mN+1

R
∼= A/mN+1

u ,
(4) an isomorphism of ξ|R/mN+1

R
and η|A/mN+1

u
via φN , and

(5) an isomorphism GrmR(R) ∼= Grmu(A) of graded k-algebras.

The proof of this theorem will proceed by simultaneously approximating equations
and relations defining R and the object ξ. The statements (1)–(4) will be easily
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obtained as a consequence of Artin Approximation. A nice insight of Conrad and de
Jong is that condition (5) can be ensured by Artin Approximation, and moreover
that this condition suffices to imply the isomorphism of complete local k-algebras in
Artin Algebraization. As such, condition (5) takes the most work to establish.

We will need some preparatory results controlling the constant appearing in the
Artin–Rees lemma.

Definition D.6.3 (Artin–Rees Condition). Let (A,m) be a noetherian local ring.
Let ϕ : M → N be a morphism of finite A-modules. Let c ≥ 0 be an integer. We
say that (AR)c holds for ϕ if

ϕ(M) ∩mnN ⊂ ϕ(mn−cM), ∀n ≥ c.

The Artin–Rees lemma implies that (AR)c holds for ϕ if c is sufficiently large;
see [AM69, Prop. 10.9] or [Eis95, Lem. 5.1].

Lemma D.6.4. Let (A,m) be a noetherian local ring. Let

L
α−→M

β−→ N and L′
α′−→M

β′−→ N

be two complexes of finite A-modules. Let c be a positive integer. Assume that
(a) the first sequence is exact,
(b) the complexes are isomorphic modulo mc+1, and
(c) (AR)c holds for α and β.

Then there exists an isomorphism Grm(cokerβ) → Grm(cokerβ′) of graded
Grm(A)-modules.

Proof. The proof while technical is rather straightforward. First by taking free
presentations of L and L′, we can assume that L = L′. One shows that (AR)c holds
for β′ and that the second sequence is exact. Then one establishes the equality

mn+1N + β(M) ∩mnN = mn+1N + β′(M) ∩mnN

by using that (AR)c holds for β to show the containment “⊂" and then using
(AR)c holds for β′ to get the other containment. The statement then follows from
the description Grm(cokerβ)n = mnN/(mn+1N + β(M) ∩ mnN) and the similar
description of Grm(cokerβ′)n. For details, see [CJ02, §3] and [SP, Tag 07VF].

Proof of Conrad–de Jong Approximation (Theorem D.6.2). Since X is limit preserv-
ing and R is the colimit of its finitely generated k-subalgebras, there is an affine
scheme V = SpecB of finite type over k and an object γ of X over V together with
a 2-commutative diagram

SpecR //

ξ

&&
V

γ
// X .

Let v ∈ V be the image of the maximal ideal m ⊂ R. After adding generators to
the ring B if necessary, we can assume that the composition ÔV,v → R→ R/m2 is
surjective. This implies that ÔV,v → R is surjective by Lemma A.10.15. The goal
now is to simultaneously approximate over V the equations and relations defining
the closed immersion SpecR ↪→ Spec ÔV,v and the object ξ. In order to accomplish
this goal, we choose a resolution

Ô⊕rV,v
α̂−→ Ô⊕sV,v

β̂−→ ÔV,v → R→ 0 (D.6.1)
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as ÔV,v-modules and consider the functor

F : (Sch /V )→ Sets

(T → V ) 7→
{
complexes O⊕rT

α−→ O⊕sT
β−→ OT

}
.

It is not hard to check that this functor is limit preserving. The resolution in (D.6.1)
yields an element of F (ÔV,v). Applying Artin Approximation (Theorem A.10.9)
yields an étale morphism (V ′ = SpecB′, v′)→ (V, v) and an element

(B′⊕r
α′−→ B′⊕s

β′−→ B′) ∈ F (V ′) (D.6.2)

such that α′, β′ are equal to α̂, β̂ modulo mN+1.
Let U = SpecA ↪→ SpecB′ = V ′ be the closed subscheme defined by imβ′ and

let u = v′ ∈ U . Consider the composition

η : U ↪→ V ′ → V
γ−→ X

As R = coker β̂ and A = cokerβ′, we have an isomorphism R/mN+1 ∼= A/mN+1
u

together with an isomorphism of ξ|R/mN+1 and η|A/mN+1
u

. This gives statements
(1)–(4).

To establish (5), we need to show that there are isomorphisms mn/mn+1 ∼=
mnu/m

n+1
u . For n ≤ N , this is guaranteed by the isomorphism R/mN+1 ∼= A/mN+1

u .
On the other hand, for n� 0, this can be seen to be a consequence of the Artin–Rees
lemma. To handle the middle range of n, we need to control the constant appearing
in the Artin–Rees lemma. First note that before we applied Artin Approximation, we
could have increased N to ensure that (AR)N holds for α̂ and β̂. We are thus free to
assume this. Now statement (5) follows directly if we apply Lemma D.6.4 to the exact

complex Ô⊕rV,v
α̂−→ Ô⊕sV,v

β̂−→ ÔV,v of (D.6.1) and the complex Ô⊕rV,v
α̂′−→ Ô⊕sV,v

β̂′−→ ÔV,v
obtained by restricting (D.6.2) to F (ÔV,v).

See also [CJ02] and [SP, Tag 07XB].

Exercise D.6.5. Show that Conrad–de Jong Approximation implies Artin Approx-
imation.

D.6.3 Artin Algebraization

Artin Algebraization has a stronger conclusion than Artin Approximation or Conrad–
de Jong Approximation in that no approximation is necessary. It guarantees the
existence of an object η over a pointed affine scheme (SpecA, u) of finite type over
k which agrees with the given effective formal deformation ξ to all orders. In order
to ensure this, we need to impose that ξ is versal at u, i.e. that the restrictions
ξn = ξ|A/mn+1

u
define a versal formal deformation {ξn} over A (Definition D.3.5).

Theorem D.6.6 (Artin Algebraization). Let X be a limit preserving prestack over
Sch/k. Let (R,m) be a noetherian complete local k-algebra and ξ ∈ X (R) be an
effective versal formal deformation. There exist
(1) an affine scheme SpecA of finite type over k and a k-point u ∈ SpecA;
(2) an object η ∈ X (A);

(3) an isomorphism α : R
∼→ Âmu of k-algebras; and
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(4) a compatible family of isomorphisms ξ|R/mn+1
∼= η|A/mn+1

u
(under the identifi-

cation R/mn+1 ∼= A/mn+1
u ) for n ≥ 0.

Remark D.6.7. If X is an algebraic stack locally of finite type over k, then there
exists an isomorphism ξ ∼= η|Âmu

.

Remark D.6.8. In the case that R is known to be the completion of a finitely
generated k-algebra, this theorem can be viewed as an easy consequence of Artin
Approximation. Indeed, one applies Artin Approximation with N = 1 and then uses
versality to obtain compatible maps R→ A/mn+1

u and therefore a map R→ Âmu

which is an isomorphism modulo m2. As R and Âmu are abstractly isomorphic, the
homomorphism R→ Âmu is an isomorphism (Lemma A.10.15) and the statement
follows. The argument in the general case is analogous except we use Conrad–de
Jong Approximation instead of Artin Approximation.

Proof of Artin Algebraization (Theorem D.6.6). Applying Conrad–de Jong Approx-
imation (Theorem D.6.2) with N = 1, we obtain an affine scheme SpecA of fi-
nite type over k with a k-point u ∈ SpecA, an object η ∈ X (A), an isomorphism
φ2 : SpecA/m2

u → SpecR/m2, an isomorphism α2 : ξ|R/m2 → η|A/m2
u
, and an isomor-

phism Grm(R) ∼= Grmu(A) of graded k-algebras. We claim that φ2 and α2 can be ex-
tended inductively to a compatible family of morphisms φn : SpecA/mn+1

u → SpecR
and isomorphisms αn : ξ|A/mn+1

u
→ η|A/mn+1

u
. Given φn and αn, versality of ξ implies

that there is a lift φn+1 filling in the commutative diagram

SpecA/mnu
φn //

��

SpecR

ξ

��

SpecA/mn+1
u η|

A/m
n+1
u

//

φn+1

88

X ,

which establishes the claim. By taking the limit, we have a homomorphism φ̂ : R→
Âmu which is surjective since φ2 is surjective (Lemma A.10.15). On the other hand,
for each n the k-vector spaces mN/mN+1 and mNu /m

N+1
u have the same dimension.

This implies that φ̂ is an isomorphism.
See also [Art69b, Thm. 1.6] and [CJ02, §4], where the statement is established

more generally when X is defined over a scheme S whose local rings are G-rings
where it is required that SpecR/m

ξ0−→ X → S be of finite type.

D.7 Artin’s Axioms for Algebraicity

A spectacular application of Artin Algebraization is a criterion—which is often
verifiable in practice—ensuring that a given stack is algebraic. This is called Artin’s
Axioms for Algebraicity and we provide two versions below Theorems D.7.1 and D.7.4.
This foundational result was proved by Artin in the very same paper [Art74] where
he introduced algebraic stacks.

The first version can be proved easily using Artin Algebraization.

Theorem D.7.1. (Artin’s Axioms for Algebraicity—first version) Let X be a stack
over k. Then X is an algebraic stack locally of finite type over k if and only if the
following conditions hold:
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(1) (Limit preserving) The stack X is limit preserving over Sch/k, i.e. for every
system Bλ of k-algebras, the functor

colimX (Bλ)→ X (colimBλ)

is an equivalence of categories.
(2) (Representability of the diagonal) The diagonal X → X ×X is representable.
(3) (Existence of versal formal deformations) Every x0 ∈ X (k) has a versal formal

deformation {xn} over a noetherian complete local k-algebra (R,m) with residue
field k.

(4) (Effectivity) For every noetherian complete local k-algebra (R,m) with residue
field k, the natural functor

X (SpecR)→ lim←−X (SpecR/mn)

is an equivalence of categories.
(5) (Openness of versality) For every morphism U → X from a finite type k-scheme

which is versal at u ∈ U(k) (i.e. the formal deformation {Spec ÔU,u/mn+1
u →

X} is versal), there exists an open neighborhood V of u such that U → X is
versal at every k-point of V .

Proof. We first note that for a representable and locally of finite type morphism
U → X from a finite type k-scheme U , the Infinitesimal Lifting Criterion for
Smoothness (Smooth Equivalences A.3.1, Theorem 3.7.1) implies that U → X is
smooth if and only if it is versal at all k-points u ∈ U . Indeed, this is clear when
U → X is representable by schemes, and the general case follows as one can see that
both properties are étale-local on U .

For (⇒), (1) holds by Exercise 3.3.31, (2) holds by Theorem 3.2.1 and (4)
holds by Exercise D.4.10. If U → X is a morphism from a finite type k-scheme,
then it is necessarily representable and locally of finite type. By using the above
equivalence between versality and smoothness, (3) holds by choosing a smooth pre-
sentation U → X and a preimage u ∈ U(k) of x0 and taking the formal deformation
{SpecOU,u/mn+1

u → X}, and (5) holds by openness of smoothness.
For the converse, we first note that representability of the diagonal, i.e. condition

(2), implies that every morphism U → X from a scheme U is representable and
the limit preserving property (1) implies that U → X is locally of finite type. For
every object x0 ∈ X (k), we will construct a smooth morphism U → X from a
scheme and a preimage u ∈ U(k) of x0. Conditions (3)–(4) guarantee that there
exists an effective versal formal deformation x̂ : SpecR→ X of x0 where (R,m) is a
noetherian complete local k-algebra with residue field k. By Artin Algebraization
(Theorem D.6.6), there exists a finite type k-scheme U , a point u ∈ U(k), a
morphism p : U → X , an isomorphism R ∼= ÔU,u and compatible isomorphisms
p|R/mn+1

∼→ x̂|R/mn+1 . By (5), we can replace U with an open neighborhood of
u so that U → X is versal at every k-point of U . By the equivalence in the first
paragraph, we have obtained a smooth morphism (U, u)→ (X , x0).

See also [Art74], [LMB00, Cor. 10.11] and [SP, Tag 07Y4] where the result is
established more generally.

Remark D.7.2. In practice, condition (1)–(4) are often easy to verify directly
with (3) a consequence of Rim–Schlessinger’s Criteria (Theorem D.3.11) and (4) a
consequence of Grothendieck’s Existence Theorem (D.4.4). Also note that (2) can
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sometimes be established by applying the theorem to the diagonal X → X ×X , i.e.
to the Isom sheaves IsomT (x, y) of objects x, y ∈ X (T ) over a scheme T . In some
cases Condition (5) can be checked directly while for more general moduli problems,
it is often a consequence of a well-behaved deformation and obstruction theory as
will be explained in the next section.

D.7.1 Refinements of Artin’s Axioms
We state a refinement of Artin’s Axioms for Algebraicity that is often easier to
verify in practice. To formulate the statements, we will need a bit of notation. Let
ξ ∈ X (A) be an object over a finitely generated k-algebra A. Let M be a finite
A-module and denote by A[M ] the ring A⊕M defined by M2 = 0. Let Defξ(M)
the set of isomorphism classes of diagrams

SpecA
ξ

//
_�

��

X

SpecA[M ],

η

::

where an isomorphism of two extensions η, η′ : SpecA[M ]→ X is by definition an
isomorphism η

∼→ η′ in X (A[M ]) restricting to the identity on ξ. Let Autξ(M) be the
group of automorphisms of the trivial deformation ξ′ : SpecA[M ]→ SpecA→ X .
Note that when ξ ∈ X (k), then Defξ(k) is precisely the tangent space of X at ξ and
is identified with TXξ = Xξ(k[ε])/ ∼ of the local deformation prestack at ξ while
Autξ(k) is the group of infinitesimal automorphism of ξ and is identified with the
kernel AutX (k[ε])(ξ

′)→ AutX (k)(ξ).

Lemma D.7.3. Suppose that X is a prestack over Sch/k satisfying the strong
homogeneity condition (RS∗4). Let ξ ∈ X (A) be an object over a finitely generated
k-algebra A.
(1) For every A-module M , Defξ(M) and Autξ(M) are naturally A-modules, and

the functors
Autξ(−) : Mod(A)→ Mod(A)

Defξ(−) : Mod(A)→ Mod(A)

are A-linear.
(2) Consider a surjection B � A in Artk with square-zero kernel I, and let

Liftξ(B) be the set of morphisms ξ → η over SpecA→ SpecB where ξ α−→ η is

declared equivalent to ξ α′−→ η′ if there is an isomorphism β : η → η′ such that
α′ = β ◦ α. There is an action of Defξ(I) on Liftξ(B) which is functorial in
B and I. Assuming Liftξ(B) is non-empty, this action is free and transitive.

Proof. This can be established by arguing as in Lemma D.3.13. For instance, scalar
multiplication by x ∈ A is defined by pulling back along the morphism SpecA[M ]→
SpecA[M ] induced by the A-algebra homomorphism A[M ]→ A[M ], a+m 7→ a+xm.
Condition (RS∗4) implies that the functor X (A[M⊕M ])→ X (A[M ])×X (A)X (A[M ])
is an equivalence. Addition M ⊕M → M induces an A-algebra homomorphism
A[M ⊕M ]→ A[M ] and thus a functor

X (A[M ])×X (A) X (A[M ]) ∼= X (A[M ⊕M ])→ X (A[M ])

which defines addition on Defξ(M) and Autξ(M).
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Theorem D.7.4 (Artin’s Axioms for Algebraicity—second version). A stack X over
(Sch/k)ét is an algebraic stack locally of finite type over k if the following conditions
hold:

(AA1) (Limit preserving) The stack X is limit preserving;
(AA2) (Representability of the diagonal) The diagonal X → X ×X is representable;
(AA3) (Finiteness of tangent spaces) For every object ξ : Speck→ X , Defξ(k) is a

finite dimensional k-vector space;
(AA4) (Strong homogeneity) For every k-algebra homomorphism B0 → A0 and sur-

jection A� A0 of k-algebras with square-zero kernel, the functor

X (B0 ×A0
A)→ X (B0)×X (A0) X (A)

is an equivalence, i.e. Condition (RS∗4) holds;
(AA5) (Effectivity) For every noetherian complete local k-algebra (R,m), the natural

functor
X (SpecR)→ lim←−X (SpecR/mn)

is an equivalence of categories;
(AA6) (Existence of an obstruction theory) For every object ξ ∈ X (A) over a finitely

generated k-algebra A, there exists the following data

(a) there is an A-linear functor

Obξ(−) : Mod(A)→ Mod(A),

and for every surjection B → A with square-zero kernel I, there is an
element obξ(B) ∈ Obξ(I) such that there is an extension

SpecA
ξ
//

_�

��

X

SpecB

<<

if and only if obξ(B) = 0, and
(b) for every composition B → B′ → A of k-algebras such that B � A and

B′ � A are surjective with square-zero kernels I and I ′, the image of
obξ(B) under Obξ(I)→ Obξ(I

′) is obξ(B
′); and

(AA7) (Coherent deformation theory) For every object ξ ∈ X (A) over a k-algebra A,
the functors Defξ(−) and Obξ(−) commute with products.

Moreover (AA2) can be removed if we replace (AA3) and (AA7) with:
(AA3′) For every object ξ : Speck→ X , Autξ(k) and Defξ(k) are finite dimensional

k-vector spaces; and

(AA7′) For every object ξ ∈ X (A) over a k-algebra A, the functors Autξ(−), Defξ(−)
and Obξ(−) commute with products.

Proof. Conditions (AA3)–(AA4) above allow us to apply Rim–Schlessinger’s Cri-
teria (Theorem D.3.11) to deduce the existence of versal formal deformations, i.e.
Condition D.7.1(3) holds. It remains to check openness of versality, i.e. Condition
D.7.1(5), in order to apply the first version (Theorem D.7.1) to establish this version.
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Let ξ0 : U0 → X be a morphism from an affine scheme U0 = SpecB0 of finite
type over k which is versal at a point u0 ∈ U0(k). By (AA1)–(AA2), the morphism
ξ0 : U0 → X is representable and locally of finite type. Let Σ = {u ∈ U0(k) |
ξ0 : U0 → X is not versal at u}. If openness of versality does not hold, then u0 ∈ Σ
and there exists a countably infinite subset Σ′ = {u1, u2, . . .} ⊂ Σ of distinct points
with u0 ∈ Σ′.

Step 1. We claim that there exists a commutative diagram

U0

ξ0
��

� � // U1

ξ1

~~

� � // U2

ξ2
vv

� � // · · ·

X

where each closed immersion Un−1 ↪→ Un is defined by a short exact sequence

0→ κ(un)→ OUn → OUn−1
→ 0,

and for each n and open neighborhood W ⊂ Un of un, the restriction ξn|W is not
the trivial deformation of ξ0|W∩U0

, i.e. there is no morphism r : ξn|W → ξ0|W∩U0

such that ξn|W
r−→ ξ0|W∩U0 → ξn|W is the identity. Note that for each m ≥ n,

Un ↪→ Um is a closed immersion which is square-zero (i.e. ker(OUm → OUn) is
square-zero). We will inductively construct Un = SpecBn and ξn ∈ X (Un), Since
ξ0 : U0 → X and ξn−1 : Un−1 → X are isomorphic in an open neighborhood of un, the
morphism ξn−1 : Un−1 → X is also not versal at un. By definition of versality (using
Remark D.3.7) there exists a surjection A→ A0 in Artk with ker(A→ A0) = k and
a commutative diagram

SpecA0� _

��

// Un−1

ξn−1

��

SpecA //

6∃
::

X ,

(D.7.1)

such that un is the image of SpecA0 → Un−1, which does not admit a lift SpecA→
Un−1. Using strong homogeneity (AA4), there exists an extension of the commutative
diagram

SpecA0� _

��

// Un−1 = SpecBn−1� _

��
ξn−1

��

SpecA //

//

Un = Spec(A×A0
Bn−1)

ξn

(( X

yielding an object ξn over Un = SpecBn with Bn := A ×A0 Bn−1. If ξn were the
trivial deformation of ξ0 in an open neighborhood of un, then SpecA→ X would be
the trivial deformation of SpecA0 contradicting the obstruction to a lift of (D.7.1).
Finally note that ker(Bn → Bn−1) = k since ker(A→ A0) = k. This establishes the
claim.

Step 2. Letting B̂ = lim←−Bn and Û = Spec B̂, we claim that there exists an object
ξ̂ ∈ X (Û) extending each ξn ∈ X (Un). Let Mn = ker(Bn → B0) (noting that
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M0 = 0). Since M2
n = 0, we can view Mn as a B0-module. The k-algebra

B̃ := {(b0, b1, . . .) ∈
∏
n≥0

Bn | the image of each bn under Bn → B0 is b0}

has the following properties:

• The surjective k-algebra homomorphism B̃ → B0 defined by (bi) 7→ b0 has
kernel M :=

∏
n≥0Mn;

• The map B̃ → B0[M ] defined by (b0, b1, b2, . . .) 7→ (b0, b1−b0, b2−b1, b3−b2, . . .)
is a surjective k-algebra homomorphism with square-zero kernel;

• The composition B̂ → B̃ → B0[M ] induces a short exact sequence

0 // ker(B̂ → B0) // ker(B̃ → B0) // ker(B0[M ]→ B0) // 0

0 // lim←−n≥0
Mn

//
∏
n≥0Mn

//
∏
n≥0Mn

// 0

(b0, b1, . . .)
� // (b1 − b0, b2 − b1, . . .)

• There is an identification B̂ = B̃ ×B0[M ] B0.

Since the lift ξn ∈ X (Bn) of ξ0 exists for each n, obξ(Bn) = 0 ∈ Obξ(Mn). By
(AA6)(b), the element obξ(B̃) maps to obξ(Bn) under Obξ(M) → Obξ(Mn). By
(AA7), the map Obξ(M) ↪→

∏
n Obξ(Mn) is injective3 and thus obξ(B̃) = 0 ∈

Obξ(M) which shows that there exists a lift ξ̃ ∈ X (B̃) of ξ0.

The restrictions ξ̃|Bn are not necessarily isomorphic to ξn. However, we may
use the free and transitive action Defξ(Mn) = Liftξ(B0[Mn]) on the non-empty
set of liftings Liftξ(B̃n) to find elements tn ∈ Defξ(Mn) such that ξn = tn · ξ̃|Bn
(Lemma D.7.3). Since Defξ(M)

∼→
∏
n Defξ(Mn) by (AA7), there exists t̃ ∈ Defξ(M)

mapping to (tn). After replacing ξ̃ with t̃ · ξ̃, we can arrange that ξ̃|Bn and ξn are
isomorphic for each n.

We now show that each restriction ξ̃|B0[Mn] ∈ Defξ(Mn) under the composi-
tion B̃ → B0[M ] → B0[Mn] is the trivial deformation. Indeed, the map M =

ker(B̃ → B0)→ ker(B0[Mn]→ B0) = Mn induces a map Defξ(M)→ Defξ(Mn) on
deformation modules which under the identification Defξ(M)

∼→
∏
n Defξ(Mn) of

(AA7) sends an element (η0, η1, . . .) to (ηn+1|Bn − ηn). The ring map B̃ → B0[Mn]

also induces a map Liftξ(B̃)→ Liftξ(B0[Mn]) which is equivariant with respect to
Defξ(M)→ Defξ(Mn). It follows that the image of ξ̃ in Liftξ(B0[Mn]) = Defξ(Mn)
is ξn+1|Bn − ξn = 0.

The existence of ξ̂ ∈ X (B̂) extending (ξn) ∈ lim←−X (Bn) now follows from applying

3The hypotheses of (AA7) can be weakened to only require the injectivity of Obξ(M) ↪→∏
n Obξ(Mn) although in practice one usually verifies that this map is bijective.
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the identity B̂ = B̃ ×B0[M ] B0 and strong homogeneity (AA4) to the diagram

SpecB0[M ]� _

��

// SpecB0� _

�� ξ0

��

Spec B̃ //

ξ̃

//

Spec B̂

ξ̂

##
X

Step 3. We now use the versality of ξ0 : U0 → X at u0 to arrive at a contradiction.
Since X is limit preserving (AA1), there exists a finitely generated k-subalgebra
B′ ⊂ B̂ and an object ξ′ ∈ X (B′) together with an isomorphism ξ̂

∼→ ξ|B̂. After
possibly enlarging B′, we may assume that the composition B′ ↪→ B̂ → B0 is
surjective. There is thus a closed immersion U0 ↪→ U ′ := SpecB′ and we can
consider the commutative diagram

U0

i

$$

� �

%%

id

%%

U0 ×X U ′ //

��

U ′ = SpecB′

ξ′

��

U0
ξ0 // X .

where the fiber product U0 ×X U ′ is an algebraic space locally of finite type over
k. Since ξ0 : U0 → X is versal at u0, it follows from the artinian version of the
Infinitesimal Lifting Criterion for Smoothness (Smooth Equivalences A.3.1) that
U0 ×X U ′ → U ′ is smooth at i(u0). After replacing U0 with an open affine neigh-
borhood of u0, U ′ with the corresponding open and {u1, u2, . . .} with an infinite
subsequence contained in this open, we can arrange that U0 ×X U ′ → U ′ is smooth.
The non-artinian version of the Infinitesimal Lifting Criterion for Smoothness implies
the section of U0 ×X U ′ → U ′ over U0 extends to a global section U ′ → U0 ×X U ′.
This implies that ξ′ is the trivial deformation of ξ0, contradicting our choice of
ξ′ : U ′ → X .

Our exposition follows [SP, Tag 0CYF] and [Hal17, Thm. A]. See also [Art74,
Thm. 5.3] and [HR19a, Main Thm.].

Remark D.7.5. The converse of the theorem also holds. For the necessity of the
conditions, we only need to check (AA3), (AA4), (AA6) and (AA7). Condition (AA3)
(finiteness of the tangent spaces) holds as X is of finite type over k. The strong
homogeneity condition (AA4) holds by [SP, Tag 07WN]. Condition (AA6) (existence
of an obstruction theory) follows from the existence of a cotangent complex LX/k for
X satisfying properties analogous to Theorem D.5.1; see [Ols06]. If ξ : SpecA→ X
is a morphism from a finitely generated k-algebra A and I is an A-module, then
we set Obξ(I) := Ext1

A(ξ∗LX/k, I). Property (AA6)(b) holds as a consequence
of [Ols06, Thm. 1.5], a generalization of [Ill71, III.2.2.4] (which was discussed in
Remark D.5.12) from morphisms of schemes to representable morphisms of algebraic
stacks. Finally, Condition (AA7) (Defξ(−) and Obξ(−) commutes with products)
follows from cohomology and base change.
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D.7.2 Verifying Artin’s Axioms
Theorem D.7.6. Each of the stacks HilbP (X),Mg (with g ≥ 2) and BunC over
(Sch/k)ét are algebraic stacks locally of finite type over k.

Proof. We check condition the conditions of Theorem D.7.4. Condition (AA1) (limit
preserving) was verified in Lemma D.6.1. For (AA3′), the finite dimensionality of
the vector spaces Defξ(k) and Autξ(k) for an object ξ ∈ X (k) can be identified with:

• H0(Z,NZ/X) and {0} for ξ = [Z ⊂ X] ∈ HilbP (X)(k) (Proposition D.1.4),

• H1(C, TC) and H0(C, TC) for ξ = [C] ∈Mg(k) (Lemma D.1.10 and Proposi-
tion D.1.11) and

• Ext1
OC (E,E) and Ext0

OC (E,E) for ξ = [E] ∈ BunC(k) (Proposition D.1.15).

Condition (AA4) (the strong homogeneity condition of (RS∗4)) was checked in
Proposition D.3.14. Condition (AA5) (effectivity) was checked in Corollary D.4.9
as a consequence of Grothendieck’s Existence Theorem. For Condition (AA6), we
define obstruction theories as follows: for a finitely generated k-algebra A and an
A-module M , we set

• Obξ(M) := Ext1
OZ (IZ/I

2
Z ,M) for ξ = [Z ⊂ XA] ∈ HilbP (X)(A) where IZ ⊂

OXA is the sheaf of ideal defining Z.

• Obξ(M) := H2(C, TC/A ⊗AM) = 0 for ξ = [C → SpecA] ∈Mg(A), and

• Obξ(M) := H2(CA,E ndOCA (E)⊗AM) = 0 for ξ = [E] ∈ BunC(A).

Property (AA6)(a) holds for these obstruction theories as a consequence of Proposi-
tions D.2.2, D.2.6 and D.2.15; these results also show that Autξ(M) and Defξ(M)
are identified with the analogous cohomology groups. Condition (AA7′) (Autξ(−),
Defξ(−) and Obξ(−) commutes with products) for follows from (Corollary D.7.7).

Corollary D.7.7. Let X → SpecA be a proper morphism of noetherian schemes.
Let E and F be coherent sheaves on X with F flat over A. Then the functors

Hi(X,F ⊗A −) : Mod(A)→ Mod(A) and

ExtiOX (E,F ⊗A −) : Mod(A)→ Mod(A)

commute with products.

Proof. Since F is flat over A, there is a perfect complex K• of A-modules such that
Hi(X,F ⊗A −) ∼= Hi(K• ⊗A −) (Theorem A.7.1). Write Kd = A⊕rd . For every set
of A-modules {Mα} we have an identification of complexes

0 //
∏
αM

⊕r0
α

//
∏
αM

⊕r1
α

// · · · //
∏
αM

⊕rn
α

// 0

0 // (
∏
αMα)⊕r0 // (

∏
αMα)⊕r1 // · · · // (

∏
αMα)⊕rn // 0.

The top row is the product of the complexes K• ⊗A Mα and its cohomology is
identified with

∏
α Hi(X,F ⊗AMα) while the bottom row is K• ⊗A (

∏
αMα) with

cohomology groups Hi(X,F ⊗A (
∏
αMα)). For the second statement, one needs to

apply alternative versions of cohomology and base change (see [EGA, III.7.7.5], [SP,
Tag 08JR] and [Hal14, Thm. E]).
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Appendix E

Birational Geometry

E.1 Birational geometry of surfaces

By a surface, we mean an integral scheme X of pure dimension 2 which is either
of finite type over an algebraically closed field k or of finite type over a complete
DVR R with algebraically closed residue field k. In the latter case, we say that X
is smooth (resp. projective), we mean that the structure morphism X → SpecR is
smooth (resp. projective), and a curve X0 ⊂ X is by definition a component in the
central fiber.

Theorem E.1.1 (Minimal Resolutions). Let X be a surface. There exists a unique
projective birational morphism π : X̃ → X from a smooth surface such that every
other resolution Y → X factors as Y → X̃ → X (or equivalently such that KX̃ ·E ≥ 0
for every π-exceptional curve E).

Proof. See [Kol07, Thm. 2.16].

Theorem E.1.2 (Embedded Resolutions of Curves in Surfaces). Let X be a surface
and X0 ⊂ X be a curve. There is a finite sequence of blow-ups at reduced points of
X0 yielding a projective birational morphism X̃ → X such that X̃ is smooth and
such that the preimage X̃0 of X0 has set-theoretic normal crossings, i.e. (X̃0)red is
nodal.

Proof. See [Har77, Thm V.3.9] and [Kol07, Thm. 1.47].

Theorem E.1.3 (Structure Theorem of Birational Morphisms of Surfaces). Ev-
eryprojective birational morphism f : X → Y of smooth surfaces is the composition
of blowing up smooth points.

Proof. See [Har77, Thm V.5.5] and [Kol07, Thm 2.13].

Theorem E.1.4 (Hodge Index Theorem for Exceptional Curves). Let f : X → Y
be a projective and generically finite morphism of surfaces with X smooth and Y
quasi-projective. Let E1, . . . , En be the exceptional curves. Then the intersection
form matrix (Ei · Ej) is negative-definite. In particular, E2

i < 0 for each i.

Proof. See [Kol07, Thm 2.12].
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Theorem E.1.5 (Castelnuovo’s Contraction Theorem). Let X be a smooth projective
surface and E a smooth rational curve with E2 = −1. Then there is a projective
morphism X → Y to a smooth surface and a point y ∈ Y such that f−1(y) = E and
X \ E → Y \ {y} is an isomorphism.

Proof. See [Har77, Thm. V.5.7] and [Kol07, Thm 2.14].

Remark E.1.6. If E2 < −1, then E can still be contracted to a point but the
surface may be singular.

One can show that the process of repeatedly contracting smooth rational −1
curves in a smooth projective surface terminates (see [Har77, Thm 5.8]). Thus
by applying Castelnuovo’s Contractibility Criterion a finite number of times, one
obtains:

Corollary E.1.7 (Existence of Minimal Models). A smooth surface X admits a
projective birational morphism X → Xmin to a smooth surface such that every
projective birational morphism Xmin → Y to a smooth surface is an isomorphism.
In particular, Xmin has no smooth rational −1 curves.

E.2 Positivity
The standard reference for this material is [Laz04a, Laz04b].

E.2.1 Ample line bundles
Let X be a proper scheme over an algebraically closed field k. A line bundle L on
X is ample if for some m > 0, L⊗m is very ample, i.e. defines a closed embedding
|L⊗m| : X ↪→ PN into projective space. Ampleness can be equivalently characterized
by any of the following conditions:

• L⊗m is very ample for m� 0,

• for every x ∈ X, there exists a section s ∈ Γ(X,L) such that Xs = {s 6= 0} is
affine and contains x,

• for every coherent sheaf F , the tensor product F ⊗ L⊗m is base point free for
m� 0, or

• for every coherent sheaf F on X, the cohomology groups Hi(X,F ⊗ L⊗m) = 0
vanish for i > 0 and m� 0.

See [Har77, §II.7, III.5.3] or [SP, Tags 01PR and 0B5U].
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Proposition E.2.1 (Openness of Ampleness). Let f : X → Y be a proper, flat,
and finitely presented morphism of schemes, and L be a line bundle on X. If for
some y ∈ Y , the restriction Ly of y to the fiber Xy is ample (resp. very ample and
Hi(Xy, Ly) = 0 for i > 0), then there exists an open neighborhood U ⊂ S of s such
that the restriction LU on XU is relatively ample (resp. relatively very ample) over
U . In particular, for all u ∈ U , Lu is ample (resp. very ample) on Xu.

Proof. If Ly is ample on Xy, then for n� 0, L⊗ny is very ample and Hi(Xy, L
⊗n
y ) = 0

for i > 0. It therefore suffices to handle the very ample case. By Cohomology and
Base Change (A.7.5), after replacing Y with an open neighborhood of y, f∗L is a
vector bundle and the comparison map f∗L⊗ κ(t)→ Hi(Xt, Lt) is an isomorphism
for t ∈ Y . By further replacing Y with an affine open neighborhood, we can arrange
that H0(X,L) is freely generated by sections s0, . . . , sn that restrict to a basis in
H0(Xy, Ly). The vanishing locus V := V (s0, . . . , sn) ⊂ X is closed and disjoint from
Xy. By replacing Y with an affine open neighborhood of s contained in Y \ f(V ),
we may assume that the sections si generate L, and that they define a morphism
g : X → PnY over Y restricting to a closed immersion gy : Xy ↪→ Pnκ(y). By upper
semi-continuity of fiber dimension, there is a closed locus Z ⊂ PnY consisting of
points z such that dim g−1(z) > 0. Since Z is disjoint from Pnκ(y), we may shrink
Y further so that g : X → PnY is quasi-finite, and hence finite as g is proper. The
cokernel OPnY → g∗OX is coherent and its support is a closed subscheme of Pn
disjoint from Pnκ(y). By shrinking Y further, we may arrange that g : X → PnY is a
closed immersion and hence L = g∗OPnY (1) is very ample.

See also [Laz04a, Thm. 1.2.17, Thm. 1.7.8], [EGA, III1.4.7.1, IV3.9.6.4], [KM98,
Prop. 1.41] and [SP, Tags 0D3A and 0D3D]; the openness of ampleness holds without
assuming flatness of X → Y .

We also recall that ampleness can be checked on finite covers.

Proposition E.2.2. Let f : X → Y be a finite morphism of noetherian schemes
and L be a line bundle on Y . If L is ample, then so is f∗L. If f is surjective, then
the converse is true.

Proof. See [Har77, Exer III.5.7].

Remark E.2.3. As an immediate consequence, we see that a line bundle L on
X is ample if and only if its restriction L(Xi)red

to the reduced subscheme of each
irreducible component Xi is ample.

E.2.2 Nef line bundles

A line bundle L on a proper scheme X over a field k is nef if∫
C

c1(L) ≥ 0

for every irreducible curve. Here
∫
C
c1(L) is the same number as CL̇ or degL|C .

Proposition E.2.4 (Openness of Nefness). Let X be a proper and flat scheme over
a DVR R and L be a line bundle on X. Let 0, η ∈ SpecR be the closed and generic
points. If L|X0

is nef, then so is L|Xη .

Proof. To be added.
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Remark E.2.5. For proper, flat, and surjective morphisms X → S, it is shown in
[Laz04a, Prop 1.4.14] that if L|Xs is ample for a point s ∈ S, then there exists a
countable union B ⊂ S of proper subschemes not containing s such that L|Xt is nef
for every t ∈ S \B. It is not known whether there exists an open subset s ∈ U ⊂ S
with L|Xt nef for t ∈ S.

Proposition E.2.6. Let f : X → Y be a proper morphism of noetherian schemes,
and let L be a line bundle on Y . If L is nef, then so is f∗L. If f is surjective, then
the converse is true.

Theorem E.2.7 (Kleiman’s Theorem). If L is a line bundle on a proper scheme
X over a field k, then L is nef if and only if for every irreducible subvariety Z ⊂ X
of dimension k, ∫

Z

c1(L)k ≥ 0.

Proof. See [Laz04a, Thm. 1.4.9], [Kol96, Thm. 2.17], or the original source [Kle66].

Remark E.2.8 (Ample and nef cones). It’s also worthwhile to keep in mind that
ample and nef line bundles generate cones Amp(X),Nef(X) ⊂ N1(X)R, called the
ample cone and nef cone. As a consequence of Kleiman’s theorem, one can show
that for a projective variety, the nef cone is the closure of the ample cone, and that
the ample cone is the interior of the nef cone; see [Laz04a, Thm. 1.4.23].

E.2.3 Effective, base point free, and semiample line bundles
We have the following notions for a line bundle L on X:

• L is effective if Γ(X,L) 6= 0,

• L is base point free (or globally generated) if for every x ∈ X, there exists
s ∈ Γ(X,L) with s(x) 6= 0, or equivalent the linear series |L| defines a morphism
X → Ph0(X,L)−1, and

• L is semiample if for some m > 0, L⊗m is base point free.

A semiample line bundle L is necessarily nef; indeed if for some m > 0, L⊗m
defines a morphism f : X → PN with f∗O(1) ∼= L⊗m, then the projection formula
implies that

∫
C
c1(L⊗m) =

∫
f(C)

c1(O(1)) ≥ 0. We thus have the implications

base point free =⇒ semiample =⇒ nef.

E.2.4 Big line bundles
A line bundle L on a normal variety X is big if for some m > 0, the rational map

φm : X
|L⊗m|
99K PN is birational onto its image for some m > 0. For a possibly non-

normal variety X, we say a line bundle L is big if its pullback to the normalization
is big.

Proposition E.2.9 (Kodaira’s Lemma). Let X be a projective variety and L be
a big line bundle. If E is an effective line bundle, then for m sufficiently divisible,
L⊗m ⊗ E∨ is effective.

Proof. See [Laz04a, Prop. 2.2.6].
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Proposition E.2.10 (Equivalences of Bigness). We have the following equivalences
for a line bundle L = OX(D) on an irreducible variety:

L is big ⇐⇒ dim imφm = dimX for m sufficiently large
⇐⇒ there exists a constant C such that h0(X,L⊗m) ≥ C ·mdimX

for m sufficiently large
⇐⇒ for every ample divisor A on X, there exists a positive

integer m > 0 and an effective divisor N on X such that
mD = A+N (linear equivalence).

⇐⇒ there exists an ample divisor A on X, a positive integer
m > 0, and an effective divisor N on X such that mD ≡
A+N (numerical equivalence).

Proof. See [Laz04a, §2.2] for details; the last three equivalences follow from Kodaira’s
lemma.

As a consequence of Proposition E.2.10, we see that up scaling (i.e. taking
positive tensor powers), a big line bundle is the same as the sum of an ample and
effective line bundle. In particular, the sum of a big and effective line bundle is also
big. To summarize,

big up to scaling⇐=======⇒ ample + effective

big + effective =⇒ big.

Proposition E.2.11. Let f : X → Y be a generically quasi-finite and proper mor-
phism of varieties such that f∗OX = OY (e.g. f is a proper birational morphism of
normal varieties). For a line bundle L on Y , L is big if and only if f∗L is big.

Proof. The projection formula

f∗f
∗L⊗m ∼= L⊗m ⊗ f∗OX ∼= L⊗m

implies that Γ(Y, f∗L⊗m) = Γ(X,L⊗m). Since X and Y have the same dimension,
the result follows from the above equivalences of bigness.

Theorem E.2.12 (Asymptotic Riemann-Roch). Let X be a proper scheme over
a field k of dimension n, and let L be a nef line bundle on X. Then the Euler
characteristic χ(X,L⊗m) is a polynomial of degree ≤ n in m

h0(X,L⊗m) =
(c1(L)n)

n!
mn +O(mn−1).

Remark E.2.13. See [Laz04a, Cor. 1.4.41] for a proof in the projective case and
[Kol96, Thm. VI.2.15] in general.

This immediately yields the following useful characterization of bigness for nef
line bundles.

Corollary E.2.14. On a proper scheme of dimension n, a nef line bundle L is big
if and only if c1(L)n > 0.

Remark E.2.15 (Big and pseudo-effective cones). Big and effective divisors generate
cones Big(X),Eff(X) ⊂ N1(X)R, called the big cone and effective cone. The closure
Eff(X) of Eff(X) is called the pseudo-effective cone. The big cone Big(X) is the
interior of Eff(X), and Eff(X) = Big(X) [Laz04a, Thm. 2.2.6].

In particular, we have the implication:

big + nef ⇒ big.
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E.2.5 Ampleness criteria

We review general techniques here to show that a line bundle L on a proper scheme
X is ample. Perhaps the first strategy to keep in mind is that if L is semiample and
strictly nef, then L is ample.

Lemma E.2.16. Let X be a proper scheme. If L is a semiample line bundle and∫
T
c1(L) = degL|C > 0 for all curves T , then L is ample.

Proof. For some m > 0, L⊗m defines a morphism f : X → PN which does not
contract any curves. It follows that f : X → PN is a proper and quasi-finite
morphism of schemes, thus finite. Therefore, L⊗m = f∗O(1) is ample.

See also Lemma 5.8.1 for a similar property of algebraic spaces and Deligne–
Mumford stacks.

Remark E.2.17. The semiampleness condition can be very challenging to verify
in practice. However, there are powerful base point free theorems in birational
geometry stemming either from vanishing theorems or analytic methods that can
reduce semiampleness to bigness and nefness. For instance, Kawamata’s base point
free theorem states that if (X,∆) is a proper klt pair with ∆ effective and D is a
nef Cartier divisor such that aD −KX −∆ is nef and big for some a > 0, then D
is semiample [KM98, Thm. 3.3]. One can contrast this result with the Abundance
Conjecture that states that if (X,∆) is a proper log canonical pair with ∆ effective,
then the nefness of KX + ∆ implies semiampleness [KM98, Conj. 3.12].

Alternatively, it is a classical result of Zariski and Wilson that if X is a normal
projective variety and D is a nef and big divisor, then D is semiample if and
only if its graded section ring

⊕
n Γ(X,OX(nD)) is finitely generated; see [Laz04a,

Thm. 2.3.15]. While [BCHM10] can sometimes be applied to verify the finite
generation, this result already presumes the projectivity of X; nevertheless, this can
be applied for instance to show that a given birational model of X is projective.

In positive characteristic, Keel’s theorem provides another technique: on a
projective variety X, a nef line bundle L is semiample if and only if the restriction of
L to the exceptional locus E is semiample, where the exceptional locus E is defined
as the union of irreducible subvarieties the Z ⊂ X satisfying LdimZ · Z = 0 [Kee99].

E.2.6 Numerical criteria for ampleness

The Nakai–Moishezon Criterion1 for ampleness provides a convenient method to
establish projectivity. We state the criteria for proper schemes but this is extended
to proper algebraic spaces in Theorem 5.8.4.

Theorem E.2.18 (Nakai–Moishezon Criterion). If X is a proper scheme, a line
bundle L is ample if and only if for all irreducible closed subvarieties Z ⊂ X,
c1(L)dimZ · Z > 0

Remark E.2.19. Using Corollary E.2.14, the Nakai–Moishezon Criterion translates
to:

L is ample ⇐⇒ L|Z is big for all irreducible closed subvarieties Z ⊂ X.
1This is also known as the Nakai Criterion or the Nakai–Moishezon–Kleiman Criterion. See

[Laz04a, §1.2.B] for a historical account and further references.
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Proof. Let n = dimX. First, if L is very ample, then for some m > 0, L⊗m is very
ample and mnc1(L)dimZ ·Z = c1(L⊗m)dimZ ·Z > 0 as its the degree of Z under the
projective embedding defined by L⊗m. To show the converse, we follow the proofs
of [Laz04a, Thm. 1.2.23], [Kol96, Thm VI.2.18], and [Har77, Thm. V.1.10] (surface
case). Since we already know that L is nef, it suffices to show that L is semiample
(Lemma E.2.16).

First, by Proposition E.2.2, we may assume that X is a normal variety and we
write L = OX(D) for a divisor D. Since D is big on X, some positive multiple mD
is effective; replacing D by mD, there exists a non-zero section s ∈ H0(X,OX(D)).
In particular, OX(D) is base point free away from the support of D. We aim to
show that for m� 0, OX(mD) is also base point free on D.

By induction on n = dimX, we can assume that OX(D)|D is ample; the base
case for the induction is n = 1, where a line bundle is ample if and only if it has
positive degree. Consider the exact sequence

0→ OX((m− 1)D)→ OX(mD)→ OD(mD)→ 0.

For m � 0, OD(mD) is base point free and H1(X,OD(mD) = 0. It follows that
H1(X,OX((m− 1)D))� H1(X,OX(mD)) is surjective but since each vector space
is finitely generated, we see that these surjections eventually become isomorphisms
for m� 0. Thus, for m� 0, H0(X,OX(mD))→ H0(D,OD(mD)) is surjective and
OX(mD) is base point free on D.

We use this criterion to establish Kollar’s Ampleness Criteria (Theorem 5.8.5),
which we in turn apply to establish the projectivity of Mg. The following two
additional numerical criteria for ampleness will not be used in these notes but are
included to offer a more complete treatment.

Theorem E.2.20 (Kleiman’s Criterion). If X is a projective scheme, a divisor D
is ample if and only if for all C ∈ NE(X), D · C > 0.

Remark E.2.21. See [?], [Kol96, Thm. VI.2.19], and [Laz04a, Thm. 1.4.23]. Note
that it is not enough to check that D · C for only irreducible curves C ⊂ X; one
must check it on curve classes in the closure NE(X) of the effective cone of curves.
See [Har66a, p.50-56] for a counterexample due to Mumford.

Kleiman’s Criterion also holds for Q-factorial (e.g. smooth) proper schemes but
is not known in general for proper schemes or algebraic spaces.

Theorem E.2.22 (Sesahdri’s criterion). If X is a proper scheme, a line bundle L
is ample if and only if there exists an ε > 0 such that for every point x ∈ X and
every irreducible curve C ⊂ X, c1(L) · C > εmultx(C), where multx(C) denotes the
multiplicity of C at x.

Remark E.2.23. See [Laz04a, Thm. 1.4.13] or [Kol96, Thm. 2.18] for a proof. This
criterion also holds for proper algebraic spaces; see [Cor93].

E.2.7 Nef vector bundles
In Kollár’s Criterion (Theorem 5.8.5), nefness of vector bundles plays an essential
role:

Definition E.2.24. A vector bundle E on a scheme X is called nef (or semipositive)
if for every map f : C → X from a proper curve, every quotient line bundle of
f∗E � L has nonnegative degree.
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We note that when E is a line bundle, then this is clearly equivalent to the usual
notion of nefness: for all proper curves C ⊂ X, degL|C ≥ 0.

Proposition E.2.25. Let E be a vector bundle on a proper scheme X. Then the
following are equivalent:

E is nef ⇐⇒ for every map f : C → X from a proper curve, every quo-
tient vector bundle of f∗E �W has nonnegative degree;

⇐⇒ OP(E)(1) is nef on P(E)→ X.

Remark E.2.26. See [Har66a] or [Laz04b, Ch. 6] for details. There is a similar
notion of an ample vector bundle (which we won’t need in these notes) where one
defines a vector bundle E to be ample if OP(E)(1) is ample on P(E). This notion
also has some nice equivalences. If X is an irreducible projective variety and E is
base point free, then E is ample if and only if for every map f : C → X from a
proper curve, every quotient line bundle of f∗E � L is non-trivial. There are also
cohomological characterizations of ampleness for vector bundles in the same spirit
as their line bundle counterparts. Moreover, nefness of E can then be characterized
as requiring that for every map f : C → X from a proper curve and for every ample
line bundle H on C, the vector bundle H ⊗ f∗E is ample.

Proposition E.2.27.
(1) Quotients and extensions of nef vector bundles are nef.

(2) If E is nef, then so is
∧k

E and Symk E for k ≥ 0.

Proof. Part (1) follows from the definition of nefness. Part (2): to be added.

As a consequence of Proposition E.2.4 and the first equivalence of Proposi-
tion E.2.25, we obtain that nefness is open in a proper flat family over a DVR:

Proposition E.2.28 (Openness of Nefness). Let X be a proper and flat scheme
over a DVR R and E be a vector bundle on X. Let 0, η ∈ SpecR be the closed and
generic points. If E|X0 is nef, then so is E|Xη .

E.3 Vanishing theorems
Kollár’s argument for the projectivity of Mg makes use of the following vanishing
theorem in positive characteristic due to Ekedahl [Eke88]. The characteristic zero
version is due to Bombieri [Bom73].

Theorem E.3.1 (Bombieri–Ekedahl vanishing). Let S be a smooth projective surface
over k which is minimal and of general type. If char(k) 6= 2, then H1(S,K⊗−nS ) = 0
for all n ≥ 1. If char(k) = 2, then h1(S,K⊗−nS ) ≤ 1 for all n ≥ 2.
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