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Abstract

These notes provide the foundations of moduli theory in algebraic geometry with
the goal of providing self-contained proofs of the following theorems:

Theorem A. The moduli space Mg of stable curves of genus g ≥ 2 is a smooth,
proper, and irreducible Deligne–Mumford stack of dimension 3g − 3 which admits a
projective coarse moduli space Mg.

Theorem B. The moduli space Bunssr,d(C) of semistable vector bundles of rank
r and degree d over a smooth, connected, and projective curve C of genus g is a
smooth, universally closed, and irreducible algebraic stack of dimension r2(g − 1)
which admits a projective good moduli space M ss

r,d(C).

Along the way we develop the foundations of algebraic spaces and stacks, which
provide a convenient language to discuss and establish geometric properties of moduli
spaces. Introducing these foundations requires developing several themes at the
same time including:

• using the functorial and groupoid perspective in algebraic geometry: we will
introduce the new algebro-geometric structures of algebraic spaces and stacks,

• replacing the Zariski topology on a scheme with the étale topology: we will
introduce Grothendieck topologies proving a generalization of topological
spaces, and we will systematically use descent theory for étale morphisms, and

• relying on several advanced topics not typically seen in a first algebraic geometry
course: properties of flat, étale and smooth morphisms of schemes, algebraic
groups and their actions, deformation theory, and the birational geometry of
surfaces.

Choosing a linear order in presenting the foundations is no easy task. We attempt
to mitigate this challenge by relegating much of the background to appendices. We
keep the main body of the notes always focused on developing moduli theory with
the above two theorems in mind.
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Chapter 0

Introduction and motivation

Moduli spaces arise as solutions to one of the most fundamental problems in mathe-
matics:

Classification problem: Can we classify the isomorphism classes
of mathematical objects of a given type?

There are many types of objects that we may want to classify:

– subspaces V ⊂ Cn of dimension k;
– plane curves C ⊂ P2 of degree d;
– curves C of genus g together with a degree d morphism C → P1;
– line bundles on a fixed projective variety X;
– representations of a group, e.g., an absolute Galois group Gal(Qp/Qp), the

fundamental group π1(Σ) of a topological surface of genus g, or the path
algebra of quiver.

Our primary interest is in the following two examples, which will be used
throughout this book to illustrate the concepts of moduli.

(1) smooth (or more generally stable) curves of genus g, and
(2) vector bundles (or more specifically semistable vector bundles) on a fixed

smooth curve C.

A moduli space is a space whose points are in natural bijection
with isomorphism classes of the given algebro-geometric objects.

The keyword above is ‘natural’, and it is probably not clear to you what this
could mean. Indeed, one of the main challenges in developing moduli theory is
formulating precisely what this means. After all, any two complex manifolds or
varieties of positive dimension are bijective as they both have the cardinality of the
continuum. Our approach to clarify a ‘natural bijection’ will be to introduce the
notion of a family of objects and require a certain relationship between maps to the
moduli space and families of objects.

Moreover, the structure of the ‘space’ depends on the context: if we are classifying
topological objects, we might hope for the structure of a topological space, while if
we are classifying analytic objects, we might hope for the structure of a manifold. In
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this book, we are mainly focused on classifying algebraic structures, and we desire
a moduli space with the structure of an algebraic variety, and ideally a projective
variety.

Once you start viewing spaces through the lens of moduli, everything begins
looking like a moduli space! This is true in a precise sense: every space M is the
moduli space of its points. It is of course more interesting when there are equivalent
descriptions with geometric meanings. Projective space P1 is the set of points
in P1 (not so interesting), or lines in the plane passing through the origin (more
interesting), or subschemes of A2 of length 2 supported at the origin (also interesting),
or isomorphism classes of stable elliptic curves (very interesting). Fascinatingly,
moduli spaces often afford equivalent viewpoints across different mathematical fields,
as is the case in our primary two examples:

(1) Mg is the moduli of smooth projective algebraic curves of genus g, or the
moduli of compact Riemann surfaces of genus g, or the moduli of complex
structures on a fixed compact oriented topological surface Σg of genus g up to
biholomorphisms, or the moduli of hyperbolic metrics on Σg up to isometries.

(2) Bunssr,d(C) is the moduli of semistable algebraic vector bundle on a fixed
curve C, or the moduli of holomorphic vector bundles on C with flat unitary
connection, or the moduli of irreducible unitary representation of π1(C).

This leads to a rich interplay between algebraic, analytic, and topological approaches.
As Mumford writes in the preface of [Mum04]:

Besides being a form of cartography, the theory of moduli spaces has
the wonderful feature of having many doors, many techniques by which
this theory can be developed. Of course, there is traditional algebraic
geometry, but there is also invariant theory, complex-analytic techniques
such as Teichmüller theory, global topological techniques, and purely
characteristic p methods such as counting objects over finite fields. This
is another part of its charm.

Discrete vs continuous moduli. Depending on the types of objects, the moduli
space could be discrete or continuous, or a combination of the two. We illustrate
this with the following examples:

• The moduli space of line bundles on P1 is the discrete set Z: every line bundle
on P1 is isomorphic to O(n) for a unique integer n ∈ Z.

• The moduli space parameterizing quadric plane curves C ⊂ P2 is the connected
space P5: a curve defined by a0x

2 + a1xy + a2xz + a3y
2 + a4yz + a5z

2 is
uniquely determined by the point [a0, . . . , a5] ∈ P5, and as a plane curve varies
continuously (i.e., by varying the coefficients ai), the corresponding point in
P5 does too.

• For smooth curves, the genus g is a discrete invariant while for smooth curves
of a fixed genus g, the moduli space Mg is a variety (it is in fact an irreducible
quasi-projective variety but we are now getting far ahead of ourselves). The
moduli space of all smooth curves can thus be viewed as the disjoint union∐
gMg.

• For vector bundles on a smooth curve C, the rank r and degree d are discrete
invariants while the moduli space M ss

r,d(C) of semistable bundles of rank r and
degree d is an irreducible projective variety.
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Why study moduli spaces? Properties of moduli spaces can inform us about the
properties of the objects themselves. Many properties of objects are best formulated
in terms of moduli spaces. For instance, to express the condition that a general
genus 3 curve can be parameterized by an explicit coordinate system—namely a
general genus 3 curve is canonically embedded into P2 as a plane quartic and thus
parameterized by a point in the space P(Γ(P2,O(4))) ∼= P14—we could say that the
moduli space M3 is unirational, i.e., there is a dominant rational map P14 99KM3.

Do moduli spaces exist? Before we can even begin to discuss the geometry of
moduli spaces, we need to show that they exist. This is no easy task and is one
of the major goals of this book. We develop the foundations of moduli theory in
order to prove that there is a projective moduli space parameterizing stable curves
of genus g (Theorem A) and a projective moduli space parameterizing semistable
vector bundles of rank r and degree d on a fixed smooth curve (Theorem B). It
seems like a miraculous coincidence that these moduli spaces exist as varieties! Their
existence is the starting point of moduli theory.

Trichotomy of moduli. A recurring theme in moduli is the impact of automor-
phism groups on both the properties of a moduli space and the techniques used to
study its geometry. There is a trichotomy in moduli theory depending on the size of
the automorphism groups: (1) no automorphisms, (2) finite automorphisms, and
(3) infinite automorphisms. In (3), the moduli spaces are particularly well-behaved
when the closed points of the moduli stack have reductive automorphisms.

Automorphisms None Finite Reductive
at Closed Points

Type of space Scheme/algebraic
space

Deligne–Mumford
stack

algebraic stack

Defining
property

Zariski/étale locally
an affine scheme

étale locally an
affine scheme

smooth locally an
affine scheme

Examples Pn, Gr(k, n), Hilb,
Quot

Mg Bunssr,d(C)

Quotient
stacks [X/G]

action is free finite stabilizers reductive stabiliz-
ers

Existence of
moduli space

fine moduli space coarse moduli
space

good moduli space

Table 0.1: Trichotomy of moduli.

Our approach. In this chapter, we motivate the approach of this text by gradually
adding more enriched structures to sets and groupoids. We first introduce families of
objects and the functorial worldview (§0.3) and then develop the groupoid perspective
(§0.4). After motivating the étale topology (§0.5), we combine these perspectives by
introducing moduli stacks (§0.6). We then sketch our main techniques to construct
a projective moduli space (§0.7).
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Sets

Topological
spaces

Functors or
presheaves on Sch

Ringed spaces

Schemes Algebraic spaces

Sheaves on Schét

Groupoids

Prestacks over Sch

Stacks over Schét

Deligne–Mumford
stacks

Algebraic
stacks

Figure 0.1: Schematic diagram algebro-geometric enrichments of sets and groupoids.

0.1 A brief history of moduli

The spirit of Riemann will move future generations as it has moved us.

Ahlfors [Ahl53, p. 53]

The historical development of moduli theory provides a first glimpse of many
themes in moduli.

0.1.1 Riemann and the origins of Mg

Die 3p − 3 übrigen Verzweigungswerthe in jenen Systemen gle-
ichverzweigter µ werthiger Functionen können daher beliebige Werthe
annehmen; und es hängt also eine Klasse von Systemen gleichverzweigter
2p+ 1 fach zusammenhängender Functionen und die zu ihr gehörende
Klasse algebraischer Gleichungen von 3p−3 stetig veränderlichen Grössen
ab, welche die Moduln dieser Klasse genannt werden sollen.

Translation: The remaining 3p − 3 branch points in these systems of
similarly branching µ-valued functions can therefore be assigned any given
values; and thus a class of systems of similarly branching functions with
connectivity 2p+ 1, and the corresponding class of algebraic equations,
depends on 3p− 3 continuous variables, which we shall call the moduli of
the class.

Riemann [Rie57, p. 33]

This is a remarkable sentence in a remarkable paper—Riemann both introduces
the concept of ‘moduli’ and computes that the ‘number of moduli’ of Mg is 3g − 3.
Riemann’s idea went something like this: instead of considering abstract smooth
curves, let us view curves as branched covers over P1 and consider the moduli space

Hurd,g =

{
[C → P1]

∣∣∣∣ • C is a smooth curve of genus g
• C → P1 is a simply branched covering of degree d

}
.

(0.1.1)

4



Formally studied later by Hurwitz [Hur91], these moduli spaces—which are now
referred to as Hurwitz spaces—also play an essential role in irreducibility arguments
for Mg (see §5.7).

A simply branched covering is a finite map of smooth curves where the ramification
indices are at most two and every fiber has at most one ramification point; see
also Definition 5.7.2. By Riemann–Hurwitz (5.7.3), every simply branched covering
C → P1 is branched over 2g+2d− 2 distinct points of P1. This gives a commutative
diagram

Hurd(C)
� � //

zz

Hurd,g

zz &&

{[C]} �
�

//� � // Mg Sym2d+2g−2 P1

(0.1.2)

where

– the map Hurd,g → Sym2d+2g−2 P1 sends a covering [C → P1] to the 2g +

2d− 2 branched points; here SymN P1 = (P1)N/SN is the space classifying N
unordered points,

– the map Hurd,g →Mg is defined by [C → P1] 7→ [C], and
– Hurd(C) is the preimage of [C] ∈ Mg under Hurd,g → Mg, i.e., Hurd(C)

classifies simply branched coverings C → P1 where C is fixed.

If d is sufficiently large, then for every general collection of 2d+ 2g − 2 points of P1,
there exists a genus g curve C and a simply branched covering C → P1 branched
over precisely these points, and moreover there are at most finitely many such maps.
In other words, Hurd,g → Sym2d+2g−2 P1 has dense image and finite fibers; see §5.7.2
for precise details. Therefore,

dimMg = dimHurd,g −dimHurd(C)

= 2d+ 2g − 2− dimHurd(C).
(0.1.3)

To compute the dimension of Hurd(C), we observe that a simply branched covering
C → P1 is the data of a degree d line bundle L and two base point free sections
such that the induced map to P1 is simply branched. Since a general choice of two
sections defines a simply branched covering (Lemma 5.7.13), we can compute

dimHurd(C) = dimPicd(C) + 2h0(C,L)− 1,

where we subtract one since scaling any two sections will define the same map
to P1. Riemann–Roch (5.1.5) tells us that h0(C,L) = d + 1 − g. On the other
hand dimPicd = dimPic0 = g; this can be seen using the exponential sequence:
0→ Z→ OC

exp−−→ O∗
C → 0 yields a long exact sequence

H1(C,Z)︸ ︷︷ ︸
Z2g

→ H1(C,OC)︸ ︷︷ ︸
Cg

→ H1(C,O∗
C)︸ ︷︷ ︸

Pic(C)

deg−−→ H2(C,Z)︸ ︷︷ ︸
Z

, (0.1.4)

and provides an identification Pic0(C) ∼= Cg/Z2g. We conclude that dimPic0(C) = g
and dimHurd(C) = g + 2(d + 1 − g) − 1 = 2d − g + 1. Plugging this into (0.1.3)
yields

dimMg = (2d+ 2g − 2)− (2d− g + 1) = 3g − 3.

Riemann in fact gave several other heuristic arguments computing the dimension of
Mg. See [GH78, pp. 255-257] or [Mir95, pp. 211-215] for further discussion on the
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number of moduli of Mg, and see [AJP16] for historical background of Riemann’s
computations.

Riemann’s moduli problem: Does Mg exist as a complex
analytic space?

While Riemann’s argument can be made completely rigorous with today’s meth-
ods (as we do ourselves later in this text), there are foundational issues with
Riemann’s method—today we would say that Riemann computed the dimension of
a ‘local deformation space.’ Most notably, Mg was not known to exist and it was
not clear what type of space Mg was supposed to be. Despite this, Riemann had
an instinctive grasp of its geometry—in fact in the same paper [Rie57], Riemann
introduced the word ‘Mannigfaltigkeit’ (or ‘manifold’) to describe its geometry. Man-
ifolds were not formally defined until much later in the 1940s following Teichmüller,
Chern, and Weil.

0.1.2 Moduli of curves of low genus

Genus 0. For n ≥ 3, the moduli space M0,n of smooth genus 0 curves with n
ordered distinct points can be described as

M0,n =
(
P1 \ {0, 1,∞}

)n−3 \ (all diagonals).

Indeed, given n ordered distinct points p1, . . . , pn on P1, there is a unique auto-
morphism g ∈ Aut(P1) ∼= PGL2 taking (p1, p2, p3) to (0, 1,∞). When n = 4, we
obtain that a bijection M0,4 = P1 \ {0, 1,∞} given by the classical cross-ratio of
four points in P1 first discovered by Pappus of Alexandria [Ale86] in 300 AD (see
also Example 6.7.9).

Genus 1. Every elliptic curve (E, p), i.e., a smooth genus 1 curve E with a marked
point p ∈ E, can be described as a plane cubic in Weierstrass form

Eλ = V (y2z − x(x− z)(x− λz)) ⊂ P2

for some λ ̸= 0, 1, where p = [0 : 1 : 0] ∈ Eλ. However, the choice of λ is not unique:
the values λ, 1/λ, 1− λ, 1/(1− λ), λ/(λ− 1), and (λ− 1)/λ determine isomorphic
elliptic curves. In other words, the map A1 \ {0, 1} →M1,1 given by λ 7→ [Eλ] is a
6-to-1 surjective map. The j-invariant on the other hand

j = 28
(λ2 − λ+ 1)3

λ2(λ− 1)2

uniquely determines the isomorphism class of the curve and thus gives a bijection
M1,1

∼= A1. For a modern treatment, see [Har77, §4].

Genus 2. Every smooth genus 2 curve C is hyperelliptic and can be written as a
double cover y2 = (x− a1) · · · (x− a6) over P1. This is a consequence of the sheaf of
differentials ΩC being a base point free line bundle of degree 2 with 2 global sections;
the induced map C → P1 is ramified over 6 points by Riemann–Hurwitz (5.7.3). We
obtain the description that

M2 =
(
Γ(P1,O(6)) \∆

)
/GL2,
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where ∆ ⊂ Γ(P1,O(6)) denotes the locus of binary sextics with a double root. After
a projective change of coordinates on P1, we can arrange that the curve is ramified
over 0, 1, ∞ and 3 other points a4, a5, a6 ∈ P1 \ (0, 1,∞). In this way, we obtain a
surjective map (P1 \ {0, 1,∞})3 \∆→M2.

Invariant theory of binary sextics (see [Cle70]) provides an even sharper de-
scription: the ring of invariant polynomials, i.e., polynomials in a0, . . . , a6 that are
invariant under automorphisms of P1, is generated by invariants J2, J4, J6, J8,
J10, and J15, whose degree is indicated by the subscript, with a single relation
J2
15 = G(J2, J4, J6, J10) for a polynomial G. The invariant J10 is the discriminant

while J15 does not affect the scheme structure. This yields that M2 is an open subset
of weighted projective space

M2 = ProjC[J2, J4, J6, J10] \ {J10 = 0},

and thus M2 is an affine variety embedded into A8 via

J5
2

J10
,
J3
2J4
J10

,
J2
2J6
J10

,
J2J

2
4

J10
,
J2J

3
6

J2
10

,
J5
4

J2
10

,
J4J6
J10

,
J5
6

J3
10

.

We can identify this coordinate ring with the invariant ring of the action on Z/5
on A3 where a generator ζ ∈ Z/5 acts via ζ · (x, y, z) = (ζx, ζ2y, ζ3z); the above
functions are identified with the invariants x5, x3y, x2z, xy2, xz3, y5, yz, z5. This
yields the rather elegant global description

M2 = A3/(Z/5).

This was studied classically by Bolza [Bol87] and more recently by Igusa [Igu60].

Genus 3. A non-hyperelliptic smooth genus 3 curve embeds as a quartic in P2

under the canonical embedding. Letting ∆ ⊂ Γ(P2,O(4)) be the locus of singular
quartics, we obtain a description of the open locus of non-hyperelliptic curves as
the quotient

(
Γ(P2,O(4)) \∆

)
/GL3—this is the first time that our description only

describes a general curve. On the other hand, a hyperelliptic genus 3 curve is a
double cover of P1 ramified over 8 points, and we obtain a set-theoretic decomposition

M3 =
(
Γ(P2,O(4)) \∆

)
/GL3︸ ︷︷ ︸

dim=6

∐(
Γ(P1,O(8)) \∆

)
/GL2︸ ︷︷ ︸

dim=5

,

suggesting that the locus of hyperelliptic curves is a divisor in M3.

Genus 4. A non-hyperelliptic smooth curve C of genus 4 embeds into P3 under its
canonical embedding, and can be realized as the intersection C = Q∩S of a quadric
Q and a cubic S. This gives a rational map Γ(P3,O(2))×Γ(P3,O(3)) 99KM4 whose
image is the locus of non-hyperelliptic curves; as above the hyperelliptic locus can be
parameterized by

(
Γ(P1,O(10))\∆

)
/GL2. Alternatively, a general non-hyperelliptic

smooth genus 4 curve can be realized as the normalization of a plane quintic with
precisely two nodes, or as a degree 3 cover of P1 branched over 12 points.

Genera 5–10. Classically, general curves were described either as plane curves
with prescribed singularities via the image of a map C → P2, or as branched covers
C → P1. For a general genus g curve C, the smallest degree d such that C is realized
as normalization of a singular plane curve is d = ⌊ 2g+8

3 ⌋. If the plane curve has at
worst nodal singularities, then the number of nodes is δ := (d − 1)(d − 2)/2 − g.
Meanwhile, the minimum degree of a map C → P1 is ⌊ g+3

2 ⌋.
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g d = min degree δ = # of nodes (d+1)(d+2)
2 − 3δ min degree # of branch pts

of im(C → P2) of C → P1

0 1 0 3 1 0
1 3 0 10 2 4
2 4 1 12 2 6
3 4 0 15 3 10
4 5 2 15 3 12
5 6 5 13 4 16
6 6 4 16 4 18
7 7 8 12 5 22
8 8 13 6 5 24
9 8 12 9 6 28
10 9 18 1 6 30
11 10 25 -9 7 34

Table 0.2: General curves of low genus.

In [Sev15] and [Sev21], Severi used such descriptions to show that Mg is unira-
tional for g ≤ 10. Like other mathematicians of his era, Severi did not precisely
formulate what it meant for Mg to be a moduli space.

What goes wrong for g ≥ 11? As the genus grows, it becomes more difficult
to describe a general genus g curve. To give an indication of the challenges for
g ≥ 11, let us try to describe a genus g curve as a degree d = ⌊ 2g+8

3 ⌋ planar curve
with δ = (d − 1)(d − 2)/2 − g nodes at prescribed points p1, . . . , pδ ∈ P2. If the
plane curve defined by f ∈ Γ(P2,O(d)) has a node at each pi, then the equations
fx(pi) = fy(pi) = fz(pi) = 0 imposes 3δ linear equations on Γ(P2,O(d)). For such
nodal plane curves to exist, we would need

dimΓ(P2,O(d))− 3δ =
(d+ 1)(d+ 2)

2
− 3

(
(d− 1)(d− 2)

2
− g
)
> 0.

As illustrated by Table 0.2, g = 11 is the first case where this does not hold!

Severi’s conjecture. Severi conjectured that Mg is unirational for all g: “Ritengo
probabile che la varietà sia razionale o quanto meno che sia riferibile ad un’involuzione
di gruppi di punti in uno spazio lineare...” [Sev15, p. 881]. While this conjecture
turned out to be false, it motivated mathematicians for decades: “Whether more
Mg’s, g ≥ 11, are unirational or not is a very interesting problem, but one which
looks very hard too, especially if g is quite large” [Mum75a, p. 37]. In the 1980s,
Eisenbud, Harris, and Mumford disproved this conjecture and showed that in some
sense quite the opposite is true in large genus: Mg is of general type for g ≥ 24
[HM82], [EH87].

Petri’s description of canonical curves. While most 19th and early 20th
century mathematicians described curves as either plane singular curves or as covers
of P1, Petri’s explicit description [Pet23] of canonically embedded curves was an
exception and is more reminiscent of modern approaches. As Mumford writes
in [Mum75a, p.17], Petri’s approach “is unavoidably a bit messy, but just to be
able to brag, I think it is a good idea to be able to say ‘I have seen every curve
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once.’ ” Building on M. Noether’s result [Noe80] that the canonical embedding
C ↪→ Pg−1 of a non-hyperelliptic smooth curve C is projectively normal—that is,
φ : Sym∗ Γ(C,ΩC)→

⊕
d≥0 Γ(C,Ω

⊗d
C ) is surjective—and also building on work of

Enriques [Enr19] and Babbage [Bab39], Petri showed that the homogeneous ideal
I = kerφ is generated by quadrics unless C is a plane quintic (g = 6) or trigonal
(i.e., a triple covering of P1) in which case I is generated in degree 2 and 3. Petri’s
analysis was remarkably constructive leading to explicit equations in Pg−1 cutting
out C along with explicit syzygies among the equations. Petri’s work continues
to inspire research in the theory of moduli and syzygies. We will not cover this
perspective further in this text but we recommend [SD73], [Mum75a, pp. 17-21],
[AS78], [Gre82], [Gre84], and [ACGH85, §III.3].

0.1.3 Analytic approaches and the Teichmüller space
In the late 19th and early 20th century, Riemann surfaces were described as quotients
of the upper half plane by a discrete subgroup of PSL2(R); such subgroups are named
Fuchsian groups after Fuchs [Fuc66]. Fricke and Klein classified Fuchsian groups
using the theory of automorphic functions in their 1300 page volumes [FK92], [FK12].
They constructed what is now known as the Teichmüller space, showed that it is a
contractible space, and even exhibited complex structures. Torelli showed that a
Riemann surface can be constructed from its Jacobian [Tor13], and Siegel constructed
the moduli space Ag of abelian varieties of dimension g as an analytic space [Sie35].

Teichmüller1 was the first to give a precise formulation of Riemann’s moduli
problem, to construct Mg as a complex analytic space, and to interpret 3g − 3 as
its complex dimension [Tei40], [Tei44]. Teichmüller constructed the Teichmüller
space Tg parameterizing complex structures on a topological surface Σg of genus
g up to homeomorphism. The space Tg is homeomorphic to a ball in C3g−3 and
inherits an action of the mapping class group Γg of diffeomorphisms of Σg modulo
the subgroup of diffeomorphisms isotopic to the identity. This action is properly
discontinuous, and Mg is realized as the quotient Tg/Γg. Although largely forgotten
for nearly 20 years, Teichmüller theory was later greatly expanded by Ahlfors, Bers,
and Weil among others; see [Wei57], [Wei58], [AB60], [Ber60b], and [Ahl61]. For
modern expository treatments, see [Ber72], [Hub06], and [FM12].

Teichmüller also introduced the notion of families of Riemann surfaces and showed
that the Teichmüller space satisfies a universal property. Grothendieck, in a series of
lectures at Cartan’s seminar [Gro61], developed a general theory of analytic moduli
spaces in the language of categories and functors, reformulated Teichmüller theory
in this setting, and showed that Tg represents a functor parameterizing families of
Riemann surfaces. This set the stage for Grothendieck’s later work on algebraic
moduli: “One can hope that we shall be able one day to eliminate analysis completely
from the theory of Teichmüller space, which should be purely geometric” [Gro61,
Lecture I].

0.1.4 The origins of algebraic moduli theory

As for Mg there is virtually no doubt that it can be provided with the
structure of an algebraic variety.

Weil [Wei58, p. 383]

1Bers’ use of the famous quote of Plutarch (Perikles 2.2) to describe Teichmüller in [Ber60a]
seems fitting: “It does not of necessity follow that, if the work delights you with its grace, the one
who wrought it is worthy of your esteem.”
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Cayley, Gordan, and Hilbert. The invariant theorists of the 19th century were
interested in classifying homogeneous polynomials of degree d in n variables up to pro-
jective automorphisms, or in other words in the moduli space Γ(Pn−1,O(d))/PGLn.
They attempted to describe this moduli space by exhibiting explicit invariant poly-
nomials in the coefficients aI of a polynomial f =

∑
I aIx

I . The origins of invariant
theory lie in work of Boole [Boo41] and Cayley [Cay45], and were further developed
by Gordan and Hilbert along with many others. Gordan exhibited explicit generators
of the ring of invariants of binary forms (n = 2) [Gor68] and Hilbert later proved
that the ring of invariants is finitely generated for any ring [Hil90], [Hil93].

Cayley constructed the moduli space of curves in P3 [Cay60], [Cay62], which
is now referred to as the Chow variety. His idea was to associate to a degree
d curve C ⊂ P3 the set of lines L ⊂ P3 meeting C; this is a hypersurface of
degree d in Gr(1,P3), and the Chow variety is the closure of all hypersurfaces
in Γ(Gr(1,P3),O(d)) obtained this way. The general theory of Chow varieties
parameterizing subschemes in Pn of any dimension was later developed by Chow
and van der Waerdan [CW37]; see Section 1.4.4.

Weil. In Weil’s work on the Riemann hypothesis for curves over finite fields
[Wei48], he needed to construct the Jacobian of a curve parameterizing degree 0 line
bundles. At that point, varieties had only been considered as embedded in affine or
projective space, and in his foundational work [Wei62] Weil enlarged the category to
abstract varieties. This was enough to construct the Jacobian and give a proof—in
fact his second proof—of the Riemann hypothesis for curves. Later Weil and Chow
independently showed that the Jacobian was projective.

Baily. Baily constructed the moduli space Ag of principally polarized abelian vari-
eties as a quasi-projective variety [Bai60a], [Bai60b], showed that Satake’s topological
compactification [Sat56] is algebraic [Bai58], and together with Borel introduced
what is now known as the Baily–Borel compactification [BB66]. Using the period
map Mg → Ag associating a curve to its Jacobian and Torelli’s theorem that this
map is injective, Baily concluded that Mg has the structure of a quasi-projective
variety. However, he did not prove that this provided a ‘natural’ structure of a
variety nor that it had any uniqueness properties, i.e., that Mg is a coarse moduli
space.

Thirdly, in order to call E the variety of moduli of Riemann surfaces
of genus n, one should be able to state that it is unique and in some
sense universal among normal parameter varieties of algebraic systems of
curves of genus n. Namely, given any normal algebraic system of curves
of genus n there should exist a natural map of the parameter variety
of the nonsingular members of this system into E. — Baily [Bai60b,
pp. 59-60]

Mumford credits Baily for the quasi-projectivity of Mg in [Mum75a, p. 98] just as
Gieseker does in his commentary in [Mum04].

Grothendieck. After Grothendieck’s formalization of analytic moduli theory, in
his ‘FGA series’ [FGAI]–[FGAVI], he applied his functorial approach to algebraic
geometry. He defined the Hilbert, Quot, and Picard functors, and showed that they
are representable by projective schemes. Grothendieck of course later reformulated
the entire foundations of algebraic geometry by developing scheme theory. His
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profound influence on algebraic geometry and more broadly mathematics helped
shape the future of moduli theory.

Although he did not publish on Mg, Grothendieck was nevertheless very much
interested in the existence of Mg as a quasi-projective variety and its connectedness
in any characteristic—see his email correspondence with Mumford in the early
1960s [Mum10, §II]. Grothendieck was aware that the presence of automorphisms
obstructed the representability of the functor parameterizing smooth families of
curves. He rigidified the moduli problem by also parameterizing a level structure
on a curve. While he could show that the functor of smooth curves with level
structure r ≥ 3 was representable by a scheme, he struggled to show that it was
quasi-projective. The idea was to construct Mg as a quotient of the rigidified moduli
space by taking the quotient by the finite group acting on the choice of level r
structure. The lack of quasi-projectivity impeded this approach as the quotient
of a non-quasi-projective variety by a finite group need not exist as a variety (see
Example 0.5.5).

Mumford. Motivated by Riemann’s moduli space as well as by constructions of
Chow varieties, Picard varieties, and the moduli of abelian varieties in the early
20th century, Mumford made immense contributions to the foundations of moduli
theory. He was the first to systematically study their geometry.

The point is, I love maps, that is “maps” in the sense of “maps of the
world,” “charts of the ocean,” “atlases of the sky”! I think one of the key
things that attracted me to the group of problems was the hope of making
a map of some parts of the world of algebraic varieties. An algebraic
variety felt like a tangible thing in the lectures of Oscar Zariski, so why
shouldn’t you venture out, like Magellan, and uncover their geography?
—Mumford, preface of [Mum04]

By integrating Grothendieck’s formalism of scheme theory with 19th century
invariant theory, Mumford developed a theory of quotients in algebraic geometry
now known as Geometric Invariant Theory (or GIT ), and then applied this theory to
construct both Mg and Ag. His theory was originally sketched in [Mum61] and fully
worked out in the definitive text [GIT]. In fact, Mumford gave two constructions
[GIT, Thms. 5.11 and 7.13] of the coarse moduli schemeMg over SpecZ and moreover
that Mg is quasi-projective over SpecZ[1/p] for every prime p.2 The projectivity of
Mg over SpecZ was established later by other methods [Knu83b, Mum77, Gie82],
which were more directly applicable to other moduli spaces.

Later, Mumford constructed a quasi-projective variety parameterizing stable
vector bundles on a fixed smooth curve [Mum63], and Seshadri then showed that
the moduli space of semistable vector bundles provides a projective compactification
[Ses67]. In the seminal joint work [DM69], Deligne and Mumford not only introduce
the compactificationMg,n and apply it (as noted above) to prove the connectedness
of Mg in all characteristics, they also first introduce the notion of an algebraic
stack—now referred to as Deligne–Mumford stacks.

Artin. The theory of algebraic spaces and stacks was developed by M. Artin.
Similar to Weil’s enlargement of affine and projective varieties to abstract varieties,

2Interestingly, neither of Mumford’s constructions actually uses GIT, or at least what is often
considered as the ‘standard GIT machinery’ by verifying GIT stability using the Hilbert–Mumford
Criterion. One of Mumford’s constructions relies on the existence of the moduli space Ag of
principally polarized abelian varieties, and the other on ad hoc method using covariants.
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enlarging the category of schemes to algebraic spaces allows us to construct the
quotient of finite group actions or more generally any étale equivalence relation.3
Knutson, a student of Artin, was the first to write down the theory of algebraic
spaces [Knu71].

In 1969, Artin proved two crucial results in moduli theory—Artin Approximation
(Theorem B.5.18) and Artin Algebraization (Theorem C.6.8). In his groundbreaking
paper [Art74], Artin not only introduced the concept of algebraic stacks broadening
the definition of Deligne and Mumford, but he also provided a local deformation-
theoretic characterization of algebraic stacks. This is known as ‘Artin’s Criteria’
and can be used to verify the algebraicity of a moduli stack (see §C.7).

As Faltings said: “The notion of stack came up in the sixties. But to swallow
schemes was already enough for one generation of mathematicians” [Sto95, p.45].
The theory of stacks once had a formidable reputation and a somewhat questionable
foundation. This could be in part due to the abstract categorical nonsense involved in
its formulation and to 2-categorical subtleties, or perhaps due to shifting conditions
on the diagonal of an algebraic stack in the literature. Or it could be partly due to
that Deligne and Mumford did not give proofs for their results on algebraic stacks—
in [DM69, p. 76], they write: “Full details on the basic properties and theorems
for algebraic stacks will be given elsewhere.” Sure enough, future mathematicians
worked out the details, and there are now excellent textbooks on stacks such as
[LMB00] and [Ols16]. Of course, the Stacks Project [SP] has now provided an
unquestionably solid foundation.

For further historical background, we recommend [Mum75a], [Oor81], [Kle05],
[JP13], [AJP16], and [Kol21].

0.2 Moduli sets of curves, vector bundles, and tri-
angles

To define a moduli space as a set entails specifying two things:
(1) a class of certain types of objects, and
(2) an equivalence relation on objects.

Here is our first attempt at defining Mg:

Example 0.2.1 (Moduli set of smooth curves). The objects of the moduli set of
smooth curves, denoted as Mg, are smooth, connected, and projective curves of
genus g over C. Two curves are declared equivalent if they are isomorphic. There are
many variants obtained by parameterizing additional structures or choosing different
equivalence relations.

• We already saw the Hurwitz moduli set Hurd,g in (0.1.1) parameterizing
branched covers C → P1 of degree d.

• The moduli setMg,n of n-pointed smooth genus g curves parameterizes the data
of a smooth curve C together with n ordered distinct points p1, . . . , pn ∈ C; two
objects (C, pi) ∼ (C ′, p′i) are equivalent if there is an isomorphism α : C → C ′

with α(pi) = p′i.

3Matsusaka also built a theory of Q-varieties by considering certain quotients of equivalence
relations [Mat64] but it was not as robust as algebraic spaces.
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• The moduli set Mg[n] of smooth genus g curves with level n structure parame-
terizes smooth, connected, and projective curves C of genus g over C together
with a basis (α1, . . . , αg, β1, . . . , βg) of H1(C,Z/nZ) such that the intersection
pairing is symplectic, while two objects (C,αi, βi) ∼ (C ′, α′

i, β
′
i) are declared

equivalent if there is an isomorphism C → C ′ taking αi and βi to α′
i and β′

i.

• For the moduli set whose objects are plane curves C ⊂ P2, there are several
choices for equivalence relations C ∼ C ′: (a) C and C ′ are equal as subschemes,
(b) C and C ′ are projectively equivalent (i.e., there is an automorphism of P2

taking C to C ′), or (c) C and C ′ are abstractly isomorphic.

Example 0.2.2 (Moduli set of vector bundles on a curve). The moduli set Bunr,d(C)
parameterizes vector bundles of rank r and degree d on a fixed smooth, connected, and
projective curve C; the equivalence relation here is isomorphism. The special case of
r = 1 yields the set Picd(C) parameterizing degree d line bundles on C. This is non-
canonically identified with with the abelian variety H1(C,OC)/H1(C,Z) = Cg/Z2g

via the exponential exact sequence (0.1.4).

A recurring theme in moduli is the exhibition of moduli spaces as quotients of
group actions.

Example 0.2.3 (Moduli set of orbits). Given a group action of a group G on a set
X, we define the moduli set of orbits by taking the objects to be all elements x ∈ X
and by declaring x to be equivalent to x′ if they have the same orbit Gx = Gx′. In
other words, the moduli set of orbits is the quotient set X/G.

Some examples to keep in mind are the Z/2-action on A1 via (−1) · x = −x
and the usual scaling action of Gm on An via t · (x1, . . . , xn) = (tx1, . . . , txn). The
quotient set (An \ 0)/Gm is identified with Pn−1. The quotient An/Gm including
the origin—and particularly the case of A1/Gm—shows up repeatedly in this text.
Another interesting example is the Gm-action on A2 given by t · (x, y) = (tx, t−1y).

0.2.1 Toy example: moduli of triangles

Before diving deeper into Mg and Bunr,d(C), let us study the simple yet surprisingly
fruitful example of the moduli of triangles. These moduli spaces are easy to visualize
and, as M. Artin has remarked, are useful to illustrate various themes of stacks and
moduli.

Example 0.2.4 (Labeled triangles). A labeled triangle is a triangle in R2 where the
vertices are labeled with ‘1’, ‘2’ and ‘3’, and the distances of the edges are denoted
as a, b, and c. We require that triangles have nonzero area or equivalently that their
vertices are not collinear.

1

2

3a

b

c

Figure 0.2: To keep track of the
labeling, we color the edges.

We define the moduli set of labeled triangles M as the set of labeled triangles
where two triangles are said to be equivalent if they are the same triangle in R2 with
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the same vertices and same labeling. By writing (x1, y1), (x2, y2) and (x3, y3) as the
coordinates of the labeled vertices, we obtain a bijection

M ∼=
{
(x1, y1, x2, y2, x3, y3) | det

(
x2 − x1 x3 − x1
y2 − y1 y3 − y1

)
̸= 0

}
⊂ R6 (0.2.5)

with the open subset of R6 whose complement is the codimension 1 closed subset
defined by the condition that the vectors (x2, y2)− (x1, y1) and (x3, y3)− (x1, y1)
are linearly dependent.

y3

x3

Figure 0.3: Picture of the slice
of the moduli space M where
(x1, y1) = (0, 0) and (x2, y2) =
(1, 0). Triangles are described by
their third vertex (x3, y3) with
y3 ̸= 0. We have drawn represen-
tative triangles for a handful of
points in the x3y3−plane.

Example 0.2.6 (Labeled triangles up to similarity). We define the moduli set of
labeled triangles up to similarity, denoted by M lab, by taking the same class of
objects as in the previous example—labeled triangles—but changing the equivalence
relation to label-preserving similarity.

similar not similar

Figure 0.4: The two triangles on the left are similar, but the third is not.

Every labeled triangle is similar to a unique labeled triangle with perimeter
a+ b+ c = 2. We have the description

M lab =

(a, b, c)

∣∣∣∣
a+ b+ c = 2
0 < a < b+ c
0 < b < a+ c
0 < c < a+ b

 . (0.2.7)

By setting c = 2− a− b, we may visualize M lab as the analytic open subset of R2

defined by pairs (a, b) satisfying 0 < a, b < 1 and a+ b > 1.
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Figure 0.5: M lab is the shaded
triangle. The magenta lines
represent the right triangles
defined by a2 + b2 = c2, a2 +
c2 = b2 and b2 + c2 = a2, the
blue lines represent isosceles
triangles defined by a = b, b =
c and a = c, and the green
point is the unique equilateral
triangle defined by a = b = c.

Example 0.2.8 (Unlabeled triangles up to similarity). We now turn to the moduli
of unlabeled triangles up to similarity, which reveals a new feature not seen in to
the two previous examples: symmetry!

We define the moduli set of unlabeled triangles up to similarity, denoted by
Munl, where the objects are unlabeled triangles in R2 and the equivalence relation
is similarity. We can describe an unlabeled triangle uniquely by the ordered tuple
(a, b, c) of increasing side lengths as follows:

Munl =

{
(a, b, c)

∣∣∣∣ 0 < a ≤ b ≤ c < a+ b
a+ b+ c = 2

}
. (0.2.9)

Figure 0.6: Picture of Munl.

The isosceles triangles with a = b or b = c and the equilateral triangle with
a = b = c have symmetry groups of Z/2 and S3, respectively. This is unfortunately
not encoded into our description Munl above. Note that we can identify Munl as
the quotient M lab/S3 under the natural action of S3 on the labelings, and that the
stabilizers of isosceles and equilateral triangles are precisely their symmetry groups
Z/2 and S3. The action of S3 on the locus of triangles that are not isosceles or
equilateral is free.
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0.3 The functorial worldview
Defining a moduli functor requires specifying:

(1) families of objects,
(2) when two families of objects are equivalent, and
(3) how families pull back under morphisms.

In the algebraic category, this is packaged with a contravariant functor

F : Sch→ Sets

where, for a scheme S, F (S) denotes the set of families of objects over S, and, for
a map f : S → T , the F (f) : F (T ) → F (S) gives the pullback map from a family
over T to a family over S. (To be a functor, pullback maps must commute with
composition: F (g ◦ f) = F (f) ◦ F (g) for maps f : S → T and g : T → U .)

0.3.1 Family matters
Families allow us to provide a precise formulation of a moduli space M . A family of
objects C over a space S defines a set-theoretic map

S →M, s 7→ [Cs], (0.3.1)

where the fiber [Cs] ∈M is the pullback of C under the inclusion {s} ↪→ S. In the
topological (resp., algebraic) category, we desire that the map S →M is continuous
(resp., an algebraic map). Ideally, there is a bijective correspondence between families
over S and morphisms S →M , or in other words that the space M represents the
functor S 7→ {families over S}. If this happens, we call M a fine moduli space, but
we will see shortly that this is often too much to hope for.

Defining moduli spaces via families has advantages:

– We can endow the moduli set M with enriched structures. To provide M a
topology, we declare a subset U ⊂M to be open if for every family of objects C
over S, the locus {s ∈ S | [Cs] ∈ U} is an open subset of S. A global function
f on M can be defined as the data of compatible global functions fX on S for
every family X over S.

– When M is a fine moduli space, the identity map id : M →M corresponds to
a family of objects U over the moduli space M . This is the universal family :
for any other family C over S, there is a unique morphism S → M (given
set-theoretically by (0.3.1)) such that the universal family U pulls back to C.

This is certainly a giant leap in abstraction! And it may seem that we just
made life more difficult: rather than introducing a space by specifying its points,
its topology, and possibly other structures, we must specify an immense amount of
categorical data. In practice, however, it is usually quite straightforward to define
good notions of families.

Example 0.3.2 (Families of labeled triangles). Revisiting the moduli of labeled
triangles up to similarity introduced in Example 0.2.6, we define a family of labeled
triangles over a topological space S as a tuple (T , σ1, σ2, σ3) where T → S is a fiber
bundle with three sections σi : S → T equipped with a continuous distance function
d : T ×S T → R≥0 such that for every point s ∈ S, the restriction ds : Ts×Ts → R≥0

is a metric on the fiber Ts with Ts isometric to a triangle with vertices σi(s).
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We say two families (T , (σi)) and (T ′, (σ′
i)) of labeled triangles over S ∈ Top are

similar if there is a homeomorphism f : T → T ′ over S compatible with the sections
(i.e., f ◦ σi = σ′

i) such that for each s ∈ S, the induced map Ts → T ′
s on fibers is a

similarity of triangles, i.e., an isometry after rescaling. Given a family T → S of
labeled triangles and a continuous map S′ → S, the pullback family is defined as
the fiber product T ×S S′ of sets together with the pullback sections σ′

i : S
′ → T ′

and its inherited distance function.

Figure 0.7: A family of labeled triangles over a curve corresponds to an arc in the
moduli space.

We define the moduli functor of labeled triangles as

FM lab : Top→ Sets, S 7→ {families (T → S, σi) of labeled triangles}/(similarity).

Recall from (0.2.7) that the assignment of a triangle to its side lengths yields a
bijection between FM lab and

M lab =

(a, b, c)

∣∣∣∣
a+ b+ c = 2
0 < a < b+ c
0 < b < a+ c
0 < c < a+ b

 .

Since this extends to compatible isomorphisms FM lab(S)→ Mor(S,M lab) for every
space S, the topological space M lab represents the functor FM lab . Consequently,
there is a universal family Tuniv ⊂M lab × R2 with σi : M lab → Tuniv.
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Figure 0.8: The universal family U lab →M lab of labeled triangles up to similarity.

Example 0.3.3 (Families of unlabeled triangles). Revisiting Example 0.2.8, we
define a family of unlabeled triangles as a fiber bundle T → S equipped with a
continuous distance function d : T ×S T → R≥0 that restricts to a metric on every
fiber and such that every fiber is isometric to a triangle. Two families T → S and
T ′ → S are similar if there is a homeomorphism f : T → T ′ over S compatible with
the sections inducing similarities of triangles on fibers.

We define the functor

F : Top→ Sets, S 7→ {families T ⊂ S × R2 of triangles}/similarity

but we can already see complications arising from the presence of symmetries of our
objects—each equilateral triangle has symmetry group S3 while the isosceles triangles
have symmetry groups Z/2. This functor is not representable as there are non-trivial
families of triangles T such that all fibers are similar triangles (Proposition 0.3.21).
For instance, we construct a non-trivial family of triangles over S1 by gluing two
trivial families via a symmetry of an equilateral triangle.
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Figure 0.9: A trivial (left) and non-trivial (right) family of equilateral triangles.
Image taken from a video produced by Jonathan Wise: see http://math.colorado.
edu/~jonathan.wise/visual/moduli/index.html.

0.3.2 Moduli functors of curves, vector bundles, and orbits

Defining a moduli functor F : Sch/C → Sets in the category of C-schemes entails
specifying for every C-scheme S a set F (S) of families of objects over S, and pullback
maps F (S)→ F (S′) for morphisms S′ → S which are compatible under composition.

To gain intuition for a moduli functor, it is always useful to plug in special test
schemes. For instance, by plugging in S = SpecC, we obtain the underlying moduli
set F (SpecC) of objects. By plugging in S = C[ϵ]/(ϵ2), we obtain a set of pairs
consisting of a C-point and a tangent vector, and plugging in a curve (or a DVR)
gives families of objects over the curve.

Example 0.3.4 (Moduli functor of smooth curves). A family of smooth curves of
genus g is a smooth, proper morphism C → S of schemes such that for every s ∈ S,
the fiber Cs is a connected curve of genus g.

s

t

S

CCs
Ct

Figure 0.10: A family of curves over a curve S.

The moduli functor of smooth curves of genus g is

FMg
: Sch/C→ Sets, S 7→ {families of smooth curves C → S of genus g} / ∼,
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where two families C → S and C′ → S are equivalent if there is an isomorphism
C → C′ over S. If S′ → S is a map of schemes and C → S is a family of curves, the
pullback is defined as the family C ×S S′ → S′.

Example 0.3.5 (Moduli functor of vector bundles on a curve). Let C be a fixed
smooth, connected, and projective curve over C. A family of vector bundles of rank
r and degree d over a scheme S is a vector bundle E on C × S such that for every
s ∈ S, the restriction Es := E|Cκ(s)

of E to Cκ(s) := C ×C κ(s) has rank r and degree
d. The moduli functor of vector bundles on C of rank r and degree d is

Sch/C→ Sets S 7→
{

vector bundles E on C × S
of rank r and degree d

}/
(isomorphism),

If f : S′ → S is a map of schemes and E is a vector bundle on C × S, the pullback
is defined as the vector bundle (id×f)∗E on C × S′.

We will see in Section 0.3.5 that these two functors are not representable, and
correspondingly that there is no fine moduli space.

Example 0.3.6 (Moduli functor of orbits). Consider the action of an algebraic
group G over C acting on a scheme X. For every scheme S, the abstract group G(S)
acts on the set X(S)—in fact, giving such actions functorial in S uniquely specifies
the group action (Exercise B.1.10). We can consider the functor

Sch/C→ Sets S 7→ X(S)/G(S).

This is a very naive candidate for a moduli functor of a quotient, and very far from
being representable even for free actions (see Exercise 0.3.27). We will modify this
example in §0.6.5.

In some cases, you may know precisely which objects you want to parameterize,
but it may not be straightforward to introduce a notion of families. Or there may be
several candidate notions for a family of objects, which could translate to different
scheme structures on the same topological space. This happens for instance for the
moduli of higher dimensional varieties.

0.3.3 Yoneda’s lemma and representable functors
Following Grothendieck, we study a scheme X by studying all maps to it! That
schemes are determined by maps into them is a completely formal fact that is true
in every category. This is the Yoneda Lemma: for an object X of a category C, the
contravariant functor

hX : C → Sets, S 7→ Mor(S,X)

recovers the object X itself.

Lemma 0.3.7 (Yoneda Lemma). Let C be a category and X be an object. For every
contravariant functor G : C → Sets, the map

Mor(hX , G)→ G(X), α 7→ αX(idX)

is bijective and functorial with respect to both X and G, where the left-hand side
denotes the set of natural transformations hX → G and αX denotes the map
hX(X) = Mor(X,X)→ G(X).
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Caution 0.3.8. Throughout this book, we will consistently abuse notation by
conflating an element g ∈ G(X) and the corresponding morphism hX → G, which
we will often write simply as X → G.

Exercise 0.3.9.
(a) Spell out precisely what ‘functorial with respect to both X and G’ means.
(b) Prove Yoneda’s lemma.

Definition 0.3.10 (Representable functors and fine moduli spaces). We say that a
functor F : Sch→ Sets is representable by a scheme if there exists a scheme X and
an isomorphism of functors F ∼→ hX .

When F is a moduli functor representable by a scheme M , we say that M is a
fine moduli space.

By the Yoneda Lemma (0.3.7), if a functor is representable, then it is representable
by a unique scheme. One of our aims is to understand when a given moduli functor
F has a fine moduli space, i.e., is representable by a scheme.

Example 0.3.11 (Projective space as a functor). By [Har77, Thm. II.7.1], there is
a functorial bijection

Mor(S,PnZ) ∼=
{
(L, s0, . . . , sn)

∣∣∣∣ L is a line bundle on S globally
generated by s0, . . . , sn ∈ Γ(S,L)

}
/ ∼,

where (L, (si)) ∼ (L′, (s′i)) if there exists an isomorphism α : L → L′ such that
si = α∗s′i for all i. In other words, the functor on the right is representable by the
scheme PnZ. The condition that the sections si are globally generated translates to
the condition that for every x ∈ S, at least one section si(x) ∈ L⊗ κ(x) is nonzero,
or equivalently to the surjectivity of (s0, . . . , sn) : On+1

S → L.

Example 0.3.12 (The Grassmannian functor). As a set, the Grassmannian Gr(k, n)
parameterizes k-dimensional quotients of n-dimensional space.4 But what are families
of k-dimensional quotients over a scheme S? A naive guess might be quotients
q : OnS ↠ OkS but this has no chance to be representable (see Exercise 0.3.27). The
case of projective space suggests we define the Grassmannian functor as

Gr(k, n) : Sch→ Sets

S 7→
{[
OnS ↠ Q

] ∣∣∣∣ Q is a vector bundle of rank k
}
/ ∼

where [OnS
q
↠ Q

]
∼ [OnS

q′

↠ Q′] if there exists an isomorphism Ψ: Q
∼→ Q′ such that

OnS
q
//

q′   

Q

Ψ

��

Q′

commutes (i.e., q′ = Ψ ◦ q), or equivalently if ker(q) = ker(q′). Pullbacks are defined
in the obvious manner.

We will later show that Gr(k, n) is representable by a scheme projective over
Z (Theorem 1.1.1). The proof of this result is a good illustration of the utility of
the functorial approach and a warmup for the representability of Hilb and Quot
(Theorems 1.1.2 and 1.1.3).

4Alternatively, the points could be considered as k-dimensional subspaces but in these notes, we
will follow Grothendieck’s convention of quotients.
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These exercises will give you some practice.

Exercise 0.3.13 (Affine and Projective Space). Let S be a scheme and E be a
vector bundle on S.

(a) Show that the affine space A(E) := SpecS(Sym∗E) represents the functor
assigning f : T → S to Γ(T, f∗E∨), where E∨ := H omOS

(E,OS). Note that
a k-point of A(E) is an element of the dual of E ⊗OS

k.5

Observe also the special case A(O⊕n
S ) ∼= AnS .

(b) Show that the projectivization P(E) := ProjS(Sym∗E) of E represents the
functor

Sch/S → Sets

(T
f−→ S) 7→ {quotients q : f∗E ↠ L where L is a line bundle on T}/ ∼

where [q : f∗E ↠ L] ∼ [q′ : f∗E ↠ L′] if ker(q) = ker(q′) (or equivalently
there is an isomorphism α : L→ L′ with q′ = α ◦ q). Note that E is naturally
identified with the pushforward of OP(E)(1) along P(E)→ S, and that when
E is trivial, there is an identification P(On+1

S ) ∼= Pn.

Exercise 0.3.14. Provide functorial descriptions of:

(a) An \ 0;
(b) Speck[x1, . . . , xn]/(f1, . . . , fm);
(c) SpecS A where A is a quasi-coherent sheaf of algebras on a scheme S; and
(d) ProjR where R is a positively graded ring.

Exercise 0.3.15. Let X be a scheme and let E and F be vector bundles on X.
Show that the functor

H omOX
(E,F ) : Sch/X → Sets, (f : T → X) 7→ HomOT

(f∗E, f∗F )

is representable by A(H omOX
(E,F )∨)→ X.

Note the distinction between HomOX
(E,F ) (group of OX-module homomorphisms),

H omOX
(E,F ) (sheaf of OX-module homomorphisms), and H omOX

(E,F ) (func-
tor or scheme parameterizing OX-module homomorphisms).

Exercise 0.3.16 (Weil restriction). If S′ → S is a morphism of schemes, the Weil
restriction of a morphism X ′ → S′ is the functor

ReS′/S(X
′) : Sch/S → Sets, (T → S) 7→ X ′(T ×S S′).

(1) If k/k′ is a field extension of degree d, show that Rek′/kA1 ∼= Ad.
(2) Show that T := ReC/R(Gm,C) is an algebraic group over R, which is a non-split

torus of rank 2, i.e., T ×R C ∼= G2
m,C but T ̸ ∼=G2

m,R.
(3) (hard) Assume that S′ → S is finite and flat, and that for every s ∈ S, every

finite set of points of the fiber X ′
s is contained in an affine, then ReS′/S(X

′) is
representable. See also [BLR90, Thm. 7.4].

5This is consistent with [Har77, Exc. 5.18, Def. p.162], [EGA, II.4.1.1], and [SP, Tag 01OB] but
beware that some authors use the dual E∨ instead of E in defining A(E) and P(E).
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0.3.4 Universal families

Definition 0.3.17. If F : Sch → Sets is a moduli functor representable by a
scheme M via an isomorphism α : F

∼→ hM of functors, then the universal family
of F is the object u ∈ F (M) corresponding under α to the identity morphism
idM ∈ hM (M) = Mor(M,M).

Exercise 0.3.18 (easy but important). Let F : Sch → Sets be a functor repre-
sentable by a scheme M , and let u ∈ F (M) be the universal family. Show that if
a ∈ F (T ) is an object over a scheme T corresponding to a map fa : T →M , then
the object a is the pullback of u under fa, i.e., a = F (fa)(u).

Suspend your skepticism for a moment and suppose that there actually exists
a scheme Mg representing the moduli functor of smooth curves of genus g (Exam-
ple 0.3.4). Then corresponding to the identity map Mg →Mg is a family of genus g
curves Ug →Mg satisfying the following universal property: for every smooth family
of curves C → S over a scheme S, there is a unique map S → Mg and cartesian
diagram

C //

��

Ug

��

S // Mg.

□

The map S →Mg sends a point s ∈ S to the curve [Cs] ∈Mg. The above ideas are
made precise in §3.1.7.

Mg

Ug
C

D

[C]

[D]

Figure 0.11: Visualization of a (non-existent) universal family over Mg.

Example 0.3.19. The universal family of the moduli functor of projective space
(Example 0.3.11) is the line bundleO(1) on Pn together with the sections x0, . . . , xn ∈
Γ(Pn,O(1)).
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Example 0.3.20 (Classifying spaces in algebraic topology). Let G be a topological
group and Toppara be the category of paracompact topological spaces where mor-
phisms are defined up to homotopy. It is a theorem in algebraic topology that the
functor

Toppara → Sets, S 7→ {principal G-bundles P → S}/ ∼,

where ∼ denotes isomorphism of G-bundles, is represented by a topological space,
which we denote by BG and call the classifying space. The universal family is
usually denoted by EG→ BG. For example, the classifying space BC∗ is the infinite
dimensional manifold CP∞.

0.3.5 Examples of non-representable moduli functors
If F : Sch/C→ Sets is a moduli functor, then an object E ∈ F (C) with a non-trivial
automorphism can prevent the functor F from being representable. This is because
we may glue trivial families using the automorphism to construct a non-trivial family
E over a scheme S such that every fiber Es (i.e., the pullback of E along SpecC→ S)
is isomorphic to E.

Proposition 0.3.21. Let F : Sch/C→ Sets be a moduli functor. If there is a family
of objects E ∈ F (S) over a variety S such that

(a) the fibers Es are isomorphic for s ∈ S(C); and
(b) the family E is non-trivial, i.e., is not equal to the pullback of an object

E ∈ F (C) along the structure map S → SpecC,
then F is not representable.

Proof. Suppose by way of contradiction that F is represented by a scheme X. By
condition (a), the restriction E := Es is independent of s ∈ S(C) and defines a unique
point x ∈ X(C). As S is reduced, the map S → X factors as S → SpecC

x−→ X. This
implies that the family E is the pullback under the constant map S → SpecC

x−→ X,
i.e., E is a trivial family, which contradicts condition (b).

Example 0.3.22 (Moduli of elliptic curves). An elliptic curve is a pair (E, p) where
E is a smooth, connected, and projective curve E of genus 1 and p ∈ E(C). A family
of elliptic curves over a scheme S is a pair (E → S, σ) where E → S is smooth proper
morphism with a section σ : S → E such that for every s ∈ S, the fiber (Es, σ(s)) is
an elliptic curve over the residue field κ(s). The moduli functor of elliptic curves is

FM1,1
: Sch→ Sets

S 7→ {families (E → S, σ) of elliptic curves } / ∼,

where (E → S, σ) ∼ (E ′ → S, σ′) if there is an S-isomorphism α : E → E ′ compatible
with the sections (i.e., σ′ = α ◦ σ).

Exercise 0.3.23 (good practice). Consider the family of elliptic curves defined over
A1 \ 0 (with coordinate t) by

E := V (y2z − x3 + tz3) �
�

//

��

(A1 \ 0)× P2

A1 \ 0
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with section σ : A1 \ 0→ E given by t 7→ [0, 1, 0]. Show that (E → A1 \ 0, σ) satisfies
(a) and (b) in Proposition 0.3.21.

Example 0.3.24 (Moduli functor of smooth curves). Let C be a curve with a
non-trivial automorphism α ∈ Aut(C) and let N be the nodal cubic curve, which
we can think of as P1 with the points 0 and ∞ glued together. We can construct
a family C → N by taking the trivial family π : C × P1 → P1 and gluing the fiber
π−1(0) with π−1(∞) via the automorphism α. To show that the moduli functor
Sch/C→ Sets of smooth curves is not representable, it suffices to show that C → N
is non-trivial.

0 ∞

α

Figure 0.12: Family of curves over the nodal cubic obtaining by gluing the fibers
over 0 and ∞ of the trivial family over P1 via α. (It would be more illustrative to
draw a Möbius band as the family of curves over the nodal cubic.)

Exercise 0.3.25 (details). Show that C → N is a non-trivial family.

Exercise 0.3.26 (good practice). Show that the moduli functor of vector bundles
over a curve C is not representable.

0.3.6 Schemes are sheaves in the big Zariski topology
If F : Sch→ Sets is representable by a scheme X, then F is necessarily a sheaf in
the big Zariski topology, that is, for every scheme S, the presheaf on the Zariski
topology of S, defined by assigning to an open subset U ⊂ S the set F (U), is a
sheaf on the Zariski topology of S. This is a restatement that morphisms into the
fixed scheme X glue uniquely. The failure to be a sheaf therefore provides another
obstruction to the representability of a given moduli functor F .

Exercise 0.3.27.
(a) Show that the following naive Grassmannian functor

F : Sch→ Sets, S 7→ {quotients q : OnS ↠ OkS}/ ∼

is not representable.
(b) Under the usual scaling action of Gm on An+1 \ 0, show that the functor

S 7→ (An+1 \ 0)(S)/Gm(S) is not a sheaf.

The presence of non-trivial automorphisms often implies that a given moduli
functor is not a sheaf in the big Zariski topology.
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Example 0.3.28. Consider the moduli functor FMg of smooth curves from Ex-
ample 0.3.4. Let {Si} be a Zariski open covering of a scheme S, and suppose that
Ci → Si are families of smooth curves Ci → Si with isomorphisms αij : Ci|Sij

∼→ Cj |Sij

on the intersection Sij := Si ∩ Sj . The requirement that FMg
be a sheaf (when re-

stricted to the Zariski topology on S) implies that the families Ci → Si glue uniquely
to a family of curves C → S. However, we have not required the isomorphisms αi to
be compatible on the triple intersection (i.e., αij |Sijk

◦ αjk|Sijk
= αik|Sijk

), which is
necessary for gluing schemes [Har77, Exc. II.2.12]. For this reason, FMg

fails to be a
sheaf.

Exercise 0.3.29. Show that the moduli functors of smooth curves and elliptic
curves are not sheaves by explicitly exhibiting a scheme S, an open cover {Si}, and
families of curves over Si that do not glue to a family over S.

0.3.7 The yoga of functors
Contravariant functors F : Sch→ Sets form a category Fun(Sch,Sets) where mor-
phisms are natural transformations. This category has fiber products: given mor-
phisms F α−→ G and G′ β−→ G, we define

F ×G G′ : Sch→ Sets

S 7→ {(a, b) ∈ F (S)×G′(S) |αS(a) = βS(b)} .

Exercise 0.3.30. Show that F ×G G′ satisfies the universal property for fiber
products in Fun(Sch,Sets).

Definition 0.3.31.
(1) We say that a morphism F → G of contravariant functors is representable by

schemes if for every map S → G from a scheme S, the fiber product F ×G S
is representable by a scheme.

(2) We say that a morphism F → G is an open immersion or that a subfunctor
F ⊂ G is open if for every morphism S → G from a scheme S, F ×G S is
representable by an open subscheme of S.

(3) We say that a set of open subfunctors {Fi} of F is a Zariski open cover if for
every morphism S → F from a scheme S, {Fi ×F S} is a Zariski open cover of
S (and in particular each Fi is an open subfunctor of F ).

Each of these conditions can be checked on affine schemes.

These definitions give a recipe for checking that a given functor F is representable
by a scheme: find a Zariski open cover {Fi} where each Fi is representable.

Exercise 0.3.32.
(a) Let F : Sch→ Sets be a functor which is a sheaf in the big Zariski topology

and {Fi} be a Zariski open cover of F . Show that if each Fi is representable
by a scheme, then so is F .

(b) Show that a collection of open subfunctors {Fi} of F is a Zariski open cover if
and only if the map

∐
i Fi(k)→ F (k) is surjective for each algebraically closed

field k.
(c) Given morphisms of schemes X → Y and Y ′ → Y , reprove the existence of the

fiber product X ×Y Y ′ in the category of schemes by exhibiting a Zariski open
cover {Fi} of X ×Y Y ′ where each Fi is representable by an affine scheme.
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Exercise 0.3.33. Show that a scheme can be equivalently defined as a contravariant
functor F : AffSch→ Sets on the category of affine schemes (or covariant functor
on the category of rings) as follows. Let C be a full subcategory of the category
Fun(AffSch,Sets) of contravariant functors. Extending Definitions 0.3.10 and 0.3.31,
we define a functor F : AffSch → Sets to be representable in C if there exists an
object X ∈ C and a functorial equivalence F (S) = Mor(S,X) for every S ∈ AffSch.
We say that a map F → G of functors from AffSch to Sets is representable by open
immersions in C if for every morphism SpecB → G, the fiber product F ×G SpecB
is representable by an object X ∈ C which is an open subscheme of SpecB. Finally,
we say that a collection {Fi} of subfunctors of F is a Zariski open C-cover if each
Fi → F is representable by open immersions in C and for each algebraically closed
field k, the map

∐
i Fi(k)→ F (k) is surjective.

(a) Letting C = AffSch, show that a scheme with affine diagonal can be equivalently
defined as a functor F : AffSch→ Sets such that there exists a Zariski open
C-cover {Fi} of F with each Fi representable in C.

(b) Letting C be the category of schemes with affine diagonal, show that a scheme
can be equivalently defined as a functor F : AffSch → Sets such that there
exists a Zariski open C-cover {Fi} with each Fi representable in C.

Replacing Zariski opens with étale morphisms leads to the definition of an
algebraic space.

Exercise 0.3.34. Let X be a noetherian scheme and let E → F be homomorphism
of vector bundles on X. Show that the subfunctor of X (or more precisely of
hX = Mor(−, X)) defined by

Sch→ Sets, T 7→ {morphisms T → X such that ET → FT is zero}

is representable by a closed subscheme of X.

Exercise 0.3.35. Let X → Y be a morphism of schemes each proper over a scheme
S. If X is flat over S, show that the subfunctor F ⊂ Mor(−, S), parameterizing
maps T → S of schemes such that XT

∼→ YT is an isomorphism, is representable by
an open subfunctor.
Hint: If s ∈ S is a point such that Xs → Ys is an isomorphism, use the Fibral
Flatness Criterion (A.2.10) to show that X → Y is flat over s. Then reduce to the
case when X → Y is finite étale.

0.4 Moduli groupoids
We now change our perspective: rather than specifying when two objects are
identified, we specify how !

One of the most desirable properties of a moduli space is the existence of
a universal family (see §0.3.4) and the presence of automorphisms obstructs its
existence (see §0.3.5). Encoding automorphisms into our descriptions will allow us
to get around this problem.

To define a moduli groupoid, we need to specify
(1) objects; and
(2) a set of equivalences (possibly empty) between any two objects.

Shortly we will combine the functorial worldview of the last section with this
groupoid perspective to define moduli stacks.
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0.4.1 Groupoids

A convenient mathematical structure to encode objects and their identifications is a
groupoid.

Definition 0.4.1. A groupoid is a category C where every morphism is an isomor-
phism.

Two groupoids C1 and C2 are equivalent if there is an equivalence of categories
F : C1

∼→ C2, i.e., there is a functor G : C2 → C1 such that F ◦ G and G ◦ F are
isomorphic to the identity functors, or equivalently F is fully faithful and essentially
surjective.

Example 0.4.2 (Sets are groupoids). If Σ is a set, the category CΣ, whose objects
are elements of Σ and whose morphisms consist of only the identity morphism, is a
groupoid.

We say that a groupoid C is equivalent to a set Σ if there is an equivalence of
categories C → CΣ.

Example 0.4.3 (Classifying groupoid). If G is a group, the classifying groupoid BG
of G is defined as the category with one object ⋆ such that Aut(⋆) = Mor(⋆, ⋆) = G.

Example 0.4.4. The category FB of finite sets where morphisms are bijections
is a groupoid. The isomorphism classes of FB are in bijection with N while
Aut({1, . . . , n}) = Sn is the permutation group.

Example 0.4.5 (Projective space). Projective space is identified with the moduli
groupoid of lines L ⊂ An+1 through the origin where the only morphisms are the iden-
tity maps. Alternatively, the objects are nonzero linear maps x = (x0, . . . , xn) : C→
Cn+1 and there is a unique morphism x→ x′ if and only if im(x) = im(x′) ⊂ Cn+1

(i.e., there exists a λ ∈ C∗ such that x′ = λx).

0.4.2 Moduli groupoid of orbits

Example 0.4.6 (Moduli groupoid of orbits). Given an action of a group G on a set
X, we define the moduli groupoid of orbits [X/G]6 by taking the objects to be all
elements x ∈ X and by declaring Mor(x, x′) = {g ∈ G |x′ = gx}.

[A1/(Z/2)]

A1

Z/2

A1

[A1/Gm]

Gm {1}

0

Figure 0.13: Pictures of the scaling actions of Z/2 = {±1} and Gm on A1 over C with
the automorphism groups listed in blue. Note that [A1/Gm] has two isomorphism
classes of objects—0 and 1—corresponding to the two orbits—0 and A1 \ 0—such
that 0 ∈ {1} if the set A1/Gm is endowed with the quotient topology.

6We use brackets to distinguish the groupoid quotient [X/G] from the set quotient X/G. Later
when G is an algebraic group and X is a scheme, [X/G] will denote the quotient stack.
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Exercise 0.4.7. Show that the moduli groupoid of orbits [X/G] in Example 0.4.6
is equivalent to a set if and only if the action of G on X is free.

Example 0.4.8. Consider the category C with two objects x1 and x2 such that
Mor(xi, xj) = {±1} for i, j = 1, 2 where composition of morphisms is given by
multiplication. Then C is equivalent BZ/2.

1
-1

x1

1
-1

x2

1
-1

1

-1

1
-1

x
xi x

Figure 0.14: An equivalence of groupoids.

Exercise 0.4.9. In Example 0.4.8, show that there is an equivalence of categories
inducing a bijection on objects between C and either [(Z/2)/(Z/4)] or [(Z/2)/(Z/2×
Z/2)] where the action is given by surjections Z/4→ Z/2 or Z/2× Z/2→ Z/2.

Example 0.4.10 (Projective space as a quotient). The moduli groupoid of projective
space (Example 0.4.5) can also be described as the moduli groupoid of orbits
[(An+1 \ 0)/Gm]. We can also consider the quotient groupoid [An+1/Gm], which
is equivalent to the groupoid whose objects are (possibly zero) linear maps x =
(x0, . . . , xn) : C→ Cn+1 such that Mor(x, x′) = {t ∈ C∗ |x′i = txi for all i}. In this
way, Pn is a subgroupoid of [An+1/Gm].

Exercise 0.4.11. If a group G acts on a set X and x ∈ X is a point, show that
there is a fully faithful functor BGx → [X/G]. If the action is transitive, show that
it is an equivalence.

A morphisms of groupoids C1 → C2 is by definition a functor. The category
Mor(C1, C2) has functors as objects and natural transformations as morphisms.

Exercise 0.4.12. If C1 and C2 are groupoids, show that Mor(C1, C2) is a groupoid.

Exercise 0.4.13. If H and G are groups, show that there is an equivalence

Mor(BH,BG) =
∐

ϕ∈Hom(H,G)/G

B
(
CG(imϕ)

)
where Hom(H,G)/G denotes equivalence classes of homomorphisms H → G up to
conjugation by G, and CG(imϕ) denotes the centralizer of imϕ in G.

Exercise 0.4.14. Provide an example of group actions of H and G on sets X
and Y and a map [X/H] → [Y/G] of groupoids that does not arise from a group
homomorphism ϕ : H → G and a ϕ-equivariant map X → Y .

0.4.3 Examples of moduli groupoids
Example 0.4.15 (Moduli groupoid of smooth curves). In this case, the objects are
smooth, connected, and projective curves of genus g over C and for two curves C,C ′,
the set of morphisms is defined as the set of isomorphisms

Mor(C,C ′) = {isomorphisms α : C ∼→ C ′}.
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Example 0.4.16 (Moduli groupoid of vector bundles on a curve). The objects are
vector bundles E of rank r and degree d, and the morphisms are isomorphisms of
vector bundles.

Example 0.4.17 (Moduli groupoid of unlabeled triangles). Let us revisit the moduli
Munl of unlabeled triangles up to similarity from Example 0.2.8. Recall that we
have already introduced families of unlabeled triangles and shown that this functor
is not representable (Example 0.3.3).

We define the moduli groupoid of unlabeled triangles up to similarity, denoted
by Munl (note the calligraphic font), where the objects are unlabeled triangles and
the morphisms are similarities. For example, an isosceles triangle and an equilateral
triangle have automorphism groups Z/2 and S3.

We can draw essentially the same picture as Figure 0.6 except we record the
automorphisms.

Figure 0.15: Picture of the
moduli groupoid Munl with
non-trivial automorphism
groups labeled.

a

b

1

a
+
b =
c

a
=
b

b = c

equilateral

a2 + b2 = c2

S3

Z/2

Z/
2

1/2

1/2 2/3

2/3

There is a functor
Munl →Munl,

from the moduli groupoid to the moduli set, which is an equivalence on isomorphism
classes of objects and collapses all morphisms to the identity. This is a first example
of a coarse moduli space.

Exercise 0.4.18. Recalling the description of the moduli set M lab of labeled
triangles up to similarity from (0.2.5), show that there is a natural action of S3

on the moduli set M lab of labeled triangles up to similarity and that there is an
identification Munl ∼= [M lab/S3].

Exercise 0.4.19. Define a moduli groupoid of oriented triangles and investigate its
relation to the moduli sets/groupoids of labeled/unlabeled triangles.

For a more detailed exposition of the moduli stack of triangles, see [Beh14].

0.5 Motivation: why the étale topology?

Moduli stacks will be introduced in the next section by combining moduli functors
with groupoids—one needs to specify families of objects over every scheme S (along
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with identifications and pullbacks). For such data to define a stack, we will require
that objects and their morphisms glue in the étale topology !

Why is the Zariski topology not sufficient for our purposes? The short answer is
that there are not enough Zariski-open subsets and that étale morphisms serve as a
good replacement of analytic open subsets.

0.5.1 What is an étale morphism anyway?

I have sometimes been baffled when a student is intimidated by étale morphisms,
especially when she has already mastered the conceptually more difficult notions
of say properness and flatness. One factor could be the fact that the definition is
buried in [Har77, Exercises III.10.3-6] and its importance is not highlighted there.

A1

A1

x2

x

Figure 0.16: Picture of an étale double cover of A1 \ 0.

The geometric picture to have in your mind is a covering space. There are several
ways in which we can formulate an étale morphism f : X → Y of schemes of finite
type over C:

• f is smooth of relative dimension 0 (i.e., f is flat and all fibers are smooth of
dimension 0);

• f is flat and unramified (i.e., for all y ∈ Y (C), the scheme-theoretic fiber Xy

is isomorphic to a disjoint union
∐
i SpecC of points);

• f is flat and ΩX/Y = 0;

• for all x ∈ X(C), the induced map ÔY,f(x) → ÔX,x on completions is an
isomorphism; and

• assuming in addition that X and Y are smooth: for all x ∈ X(C), the induced
map TX,x → TY,f(x) on tangent spaces is an isomorphism.

We say that f is étale at x ∈ X if there is an open neighborhood U of x such that f |U
is étale. See §A.3 for more background. These characterizations are all equivalent,
but by no means this should be clear to you—some of the proofs are quite involved.
Nevertheless, if you can take the equivalences on faith, it requires very little effort
to not only internalize the concept but to master its use.

Exercise 0.5.1. Show that f : A1 → A1, x 7→ x2 is étale over A1 \ 0 but is not étale
at the origin. Try to show this for as many of the above characterizations as you
can.

0.5.2 What can you see in the étale topology?

Working with the étale topology is like putting on a better pair of glasses allowing
you to see what you could not before. Or perhaps more accurately, it is like getting
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magnifying lenses for your algebraic geometry glasses allowing you to see what you
already could with your differential geometry glasses.

Example 0.5.2 (Reducibility of a node). Consider the plane nodal cubic C defined
by y2 = x2(x − 1) in the plane. While there is an analytic open neighborhood of
the node p = (0, 0) which is reducible, there is no such Zariski-open neighborhood.
However, taking a ‘square root’ of x− 1 yields a reducible étale neighborhood. More
specifically, define C ′ = SpecC[x, y, t]t/(y2 − x3 + x2, t2 − x+ 1) and consider

C ′ → C, (x, y, t) 7→ (x, y)

Since y2 − x3 + x2 = (y− xt)(y+ xt), we see that C ′ is reducible. This is illustrated
by the following picture, which is also featured in [Har77, Exc. III.10.6].

Figure 0.17: After an étale cover, the nodal cubic becomes reducible.

Example 0.5.3 (Étale cohomology). Sheaf cohomology for the Zariski topology can
be extended to the étale topology leading to the extremely robust theory of étale
cohomology. For example, for a smooth projective curve C of genus g over C, the étale
cohomology H1(Cét,Z/n) of the finite constant sheaf Z/n is isomorphic to (Z/n)2g

just like the ordinary cohomology groups, while the sheaf cohomology H1(C,Z/n)
in the Zariski topology is 0. Finally, we would be remiss without mentioning the
spectacular application of étale cohomology to prove the Weil conjectures.

Example 0.5.4 (Étale fundamental group). Have you ever thought that there
is a similarity between the bijection in Galois theory between intermediate field
extensions and subgroups of the Galois group, and the bijection in algebraic topology
between covering spaces and subgroups of the fundamental group? Well, you are
in good company—Grothendieck also considered this and developed a beautiful
theory of the étale fundamental group which packages Galois groups and fundamental
groups in the same framework.

Example 0.5.5 (Quotients by free actions of finite groups). If G is a finite group
acting freely on a projective variety X, then there exists a quotient X/G as a
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projective variety. The essential reason for this is that every G-orbit (or in fact every
finite set of points) is contained in an affine variety U , which is the complement of
some hypersurface. Then the intersection V =

⋂
g gU of the G-translates is a G-

invariant affine open containing Gx and V/G = Spec Γ(V,OV )G (see Corollary 4.2.8).
These local quotients glue to form X/G.

However, if X is not projective, the quotient does not necessarily exist as a scheme.
As with most phenomena for smooth proper varieties that are not projective, a
counterexample can be constructed by using Hironaka’s examples of smooth, proper
3-folds; [Har77, App. B, Ex. 3.4.1]. There is a smooth, proper 3-fold with a free
action by G = Z/2 such that there is an orbit Gx not contained in any G-invariant
affine open. This shows that X/G cannot exist as a scheme; indeed, if it did, then
the image of x under the finite morphism X → X/G would be contained in some
affine and its inverse would be an affine open containing Gx. See [Knu71, Ex. 1.3]
or [Ols16, Ex. 5.3.2] for details.

Nevertheless, for a free action of a finite group G on a scheme X, then every
point x ∈ X has a G-equivariant étale neighborhood Ux → X where Ux is an affine
scheme, and the quotients Ux/G can be glued in the étale topology to construct X/G
as an algebraic space (Corollary 3.1.14). The upshot is that we can always take
quotients of free actions by finite groups. This is a very desirable feature given the
ubiquity of group actions in algebraic geometry but it comes at the cost of enlarging
our category from schemes to algebraic spaces.

Example 0.5.6 (Artin Approximation). Artin Approximation (B.5.18) is a pow-
erful and extremely deep result, due to Michael Artin, which implies that most
properties which hold for the completion ÔX,x of the local ring is also true in an
étale neighborhood of x. For instance, since the completion of the local ring at a
nodal singularity is reducible, Artin Approximation implies that there is a reducible
étale neighborhood.

0.5.3 Working with the étale topology: descent theory

Another reason why the étale topology is so useful is that many properties of schemes
and their morphisms can be checked on étale covers. In fact, almost every property
that can be checked on a Zariski-open cover {Ui} of scheme X can also be checked
on an étale cover {Ui → X}; here each map Ui → X is étale and

∐
i Ui → X is

surjective. Descent theory is developed in Section 2.1 and is used to prove just about
everything about algebraic spaces and stacks.

0.6 Moduli stacks

As promised, we now synthesize moduli functors with the groupoid perspective. To
define a moduli stack, we need to specify

(1) families of objects;
(2) how two families of objects are isomorphic; and
(3) how families pull back under morphisms.

Notice the difference from specifying a moduli functor is that rather than specifying
when two families are isomorphic, we specify how. In other words, we need to specify
an assignment

F : Sch→ Groupoids, S 7→ FamS
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taking a scheme S to a groupoid of families of objects over S. But what exactly do
we mean by this? Groupoids form a ‘2-category’ as they have objects (groupoids),
morphisms (functors between groupoids), and 2-morphisms (natural transformations
between functors). How can we precisely formulate such an assignment in down-
to-earth terms? Well, we certainly need pullback functors f∗ : FamT → FamS for
each morphism f : S → T . Given a composition S f−→ T

g−→ U of schemes, we should
also have an isomorphism of functors (i.e., a 2-morphism) µf,g : (f∗ ◦ g∗)

∼→ (g ◦ f)∗.
Should the isomorphisms µf,g satisfy a compatibility condition under triples S f−→
T

g−→ U
h−→ V ? Yes! This leads to the notion of a pseudo-functor but we will

not spell it out here; we encourage the reader to work it out (or to look it up in
[Vis05, Def. 3.10] or [SP, Tag 003N]). We take a slightly different approach which is
technically more convenient, but it is nevertheless useful to think of a prestack as
an assignment Sch→ Groupoids.

0.6.1 Motivating the definition of a prestack

Instead of trying to define an assignment S 7→ FamS , we will build one massive
category X encoding all of the groupoids FamS which will live over the category
Sch of schemes. Loosely speaking, the objects of X will be a family a of objects
over a scheme S, i.e., a ∈ FamS , and a morphism a→ b between a family a over S
and a family b over T will be the data of a morphism f : S → T together with an
isomorphism a

∼→ f∗b of a and the pullback family of b.
A prestack over Sch is a category X together with a functor p : X → Sch, which

we visualize as

X
p

��

a
α //

_

��

b_

��

Sch S
f
// T

where the lower case letters a, b are objects in X and the upper case letters S, T are
schemes. We say that a is over S and that α : a→ b is over f : S → T . Moreover, we
need to require that certain natural axioms hold for p : X → Sch. Loosely speaking,
we require the existence and uniqueness of pullbacks: given a map S → T and
object b ∈ X over T , there should exist an arrow a

α−→ b over f satisfying a suitable
universal property; see Definition 2.4.1.

Given a scheme S, the fiber category X (S) is defined as the category of objects
over S whose morphisms are over the identity. If X is built from the groupoids
FamS as above, then X (S) = FamS .

Example 0.6.1 (Viewing a set-valued functor as a prestack). A moduli functor
F : Sch→ Sets can be encoded as a moduli prestack as follows: we define the category
XF of pairs (S, a) where S is a scheme and a ∈ F (S). A map (S′, a) → (S, a) is
a map f : S′ → S such that a′ = f∗a, where f∗ is convenient shorthand for
F (f) : F (S)→ F (S′). Observe that the fiber categories XF (S) are equivalent (even
equal) to the set F (S).

Example 0.6.2 (Moduli prestack of smooth curves). The moduli prestack of smooth
curves is the category Mg of families of smooth curves C → S together with the
functor p :Mg → Sch defined by (C → S) 7→ S. A morphism (C′ → S′)→ (C → S)
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is the data of maps α : C′ → C and f : S′ → S such that the diagram

C′

��

α // C

��

S′ f
// S

□

is cartesian. Note that in the fiber category Mg(C), an object is a smooth curve C
and the set of morphisms C → C is identified with the automorphism group Aut(C).

Example 0.6.3 (Moduli prestack of vector bundles). The moduli prestack of vector
bundles on a smooth curve C is the category Bunr,d(C) of pairs (E,S) where S
is a scheme and E is a vector bundle on CS = C ×C S together with the functor
p : Bunr,d(C)→ Sch/C, (E,S) 7→ S. A map (E′, S′)→ (E,S) consists of a map of
schemes f : S′ → S together with an isomorphism E′ ∼→ (id×f)∗E

0.6.2 Motivating the definition of a stack
A stack is to a prestack as a sheaf is to a presheaf. The concept could not be more
intuitive: we require that objects and morphisms glue uniquely.

Example 0.6.4 (Moduli stack of sheaves). Define the category X over Sch of
pairs (E,S) where E is a sheaf of abelian groups on a scheme S, and the functor
p : X → Sch is given by (E,S) 7→ S. A map (E′, S′) → (E,S) in X is a map of
schemes f : S′ → S together with a map E → f∗E

′ of OS′ -modules whose adjoint is
an isomorphism.

You already know that morphisms of sheaves glue: let E and F be sheaves on
schemes S and T and let f : S → T be a map. If {Si} is a Zariski open cover of S,
then giving a morphism α : (E,S)→ (F, T ) is the same data as giving morphisms
αi : (E|Si , Si) → (F, T ) such that αi|Sij = αj |Sij [Har77, Exc. II.1.15]. You also
know how sheaves glue—it is more complicated than gluing morphisms since sheaves
have automorphisms and given two sheaves, we prefer to say that they are isomorphic
rather than equal. If {Si} is a Zariski open cover of a scheme S, then giving a sheaf E
on S is equivalent to giving a sheaf Ei on Si and isomorphisms ϕij : Ei|Sij

→ Ej |Sij

such that ϕik = ϕjk ◦ ϕij on the triple intersection Sijk [Har77, Exc. II.1.22].
In a similar way, we could have considered the stack of O-modules, quasi-coherent

sheaves, or vector bundles, or we could have stacks of sheaves/O-modules/quasi-
coherent sheaves/vector bundles over a given scheme X where an object over a
scheme S is a sheaf on X × S.

The definition of a stack (Definition 2.5.1) simply axiomatizes these two natural
gluing concepts.

0.6.3 Motivating the definition of an algebraic stack
For a stack to be a geometric object, we need to specify that it is locally like a
scheme in a suitable sense. Without such a condition would be like trying to study
the geometry of an arbitrary ringed space (X,OX) or a (possibly non-representable)
functor F : Sch→ Sets which is a sheaf in the big Zariski topology. If we wish to
utilize our algebraic geometry toolkit (e.g., coherent sheaves, commutative algebra,
cohomology, ...) to study stacks in a similar way that we study schemes, we must
impose an algebraicity condition.

The conditions we impose are quite natural. In increasing generality, we define:
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(1) A functor X : Sch→ Sets is an algebraic space if objects of X glue uniquely
in the étale topology and there is an étale cover {Ui → X} where each Ui is
an affine scheme.

(2) A stack X → Sch is Deligne–Mumford if there is an étale cover {Ui → X}
where each Ui is an affine scheme.

(3) A stack X → Sch is algebraic if there is a smooth cover {Ui → X} where each
Ui is an affine scheme.

Of course, we need to make precise the notions of étale and smooth covers. For
a first approximation, when we say that {Ui → X} is an étale cover, we require that
for every map T → X of functors where T is representable by a scheme, the fiber
product of functors is representable by a scheme Ti, and moreover that Ti → T is
étale and

∐
Ti → T is surjective. Note that in (1), if we replace ‘étale’ with ’Zariski’,

we would recover the notion of a scheme; see Exercise 0.3.32. It will take some time
to develop the foundations to make this completely rigorous; precise definitions are
postponed until §3.1.

Algebro-geometric space Type of object Obtained by gluing

Schemes ringed space/
sheaf

affine schemes in the
Zariski topology

Algebraic spaces sheaf affine schemes in the
étale topology

Deligne–Mumford stacks stack affine schemes in the
étale topology

Algebraic stacks stack affine schemes in the
smooth topology

Table 0.3: Schemes, algebraic spaces, Deligne–Mumford stacks, and algebraic stacks
are obtained by gluing affine schemes.

Why smooth covers? After all the fuss motivating étale morphisms above, you
might be surprised to see that an algebraic stack is smooth-locally a scheme. For
Deligne–Mumford stacks—which turn out to be precisely algebraic stacks with finite
automorphism groups—étale covers are sufficient. But for algebraic stacks like
Bunr,d(C) with infinite automorphism groups, we need smooth covers. For instance,
we would like to be able to form the quotient [SpecC/Gm] (which we will call the
classifying stack BGm) of the trivial action of Gm (or C∗) on a point, and this will
have no étale cover by a scheme.

0.6.4 Examples of moduli stacks
Constructing a smooth cover of a given moduli stack is a geometric problem inherent
to the moduli problem. It can often be solved by rigidifying the moduli problem by
parameterizing additional information. This concept is best absorbed in examples.

Example 0.6.5 (Moduli stack of elliptic curves). An elliptic curve (E, p) is embedded
into P2 via OE(3p) such that E is defined by a Weierstrass equation y2z = x(x−
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z)(x − λz) for some λ ≠ 0, 1 [Har77, Prop. IV.4.6]. Setting U = A1 \ {0, 1} with
coordinate λ, the family E ⊂ U × P2 of elliptic curves defined by the Weierstrass
equation defines a map U →M1,1 which is an étale cover.

Example 0.6.6 (Moduli stack of smooth curves). For a smooth curve C of genus g ≥
2, the line bundle Ω⊗3

C is very ample and defines an embedding C ↪→ P(Γ(C,Ω⊗3
C )) ∼=

P5g−6. There is a Hilbert scheme H (see Theorem 1.1.2) parameterizing closed
subschemes of P5g−6 with the same Hilbert polynomial as C ⊂ P5g−6, and there is
a locally closed subscheme H ′ ⊂ H parameterizing smooth subschemes such that
Ω⊗3
C
∼= OC(1). The universal subscheme over H ′ defines a map H ′ →Mg which is

a smooth cover (see Theorem 3.1.17 for details) and thusMg is an algebraic stack.
We will show that it is Deligne–Mumford in Corollary 3.6.10.

Example 0.6.7 (Moduli stack of vector bundles). For every vector bundle E of
rank r and degree d on a smooth curve C, the twist E(m) is globally generated
for sufficiently large m. Taking Nm = h0(C,E(m)), we can view E as a quotient
OC(−m)Nm ↠ E. There is a Quot scheme Qm (see Theorem 1.1.3) parameterizing
such quotients that have the same Hilbert polynomial as E and there is a locally closed
subscheme Q′

m ⊂ Q parameterizing vector bundle quotients π : OC(−m)Nm ↠ E
such that the induced map Γ(π ⊗OC(m)) : CNm → Γ(C,E(m)) is an isomorphism.
The universal quotient over Q′

m defines a map Q′
m → Bunr,d(C) which is smooth

and the collection {Q′
m → Bunr,d(C)} for m ≫ 0 defines a smooth cover. This

shows that an Bunr,d(C) is an algebraic stack; see Theorem 3.1.21 for details. It is
not a Deligne–Mumford stack.

0.6.5 Quotient stacks
One of the most important examples of a stack is a quotient stack [X/G] arising
from an action of an algebraic group G on a scheme X. The geometry of [X/G]
could not be simpler: it is the G-equivariant geometry of X (see Table 0.4).

Similar to how toric varieties provide concrete examples of schemes, quotient
stacks provide both concrete examples useful to gain geometric intuition of general
algebraic stacks and a fertile testing ground for conjectural results. On the other
hand, it turns out that many algebraic stacks are quotient stacks or are at least
locally quotient stacks, and most properties that hold for quotient stacks also hold
for many algebraic stacks.

Quotient prestacks. Given an action of an algebraic group G on a scheme X, the
quotient prestack [X/G]pre is the prestack whose fiber category [X/G]pre(S) over a
scheme S is the quotient groupoid (or the moduli groupoid of orbits) [X(S)/G(S)].
This will not satisfy the gluing axioms of a stack; even when the action is free,
the quotient functor Sch → Sets defined by S 7→ X(S)/G(S) is not a sheaf (see
Exercise 0.3.27). How can we make it into a stack? Well, instead of thinking of an
object of [X/G]pre over a scheme S as a morphism f : S → X, let us think of it as a
trivial G-bundle together with a map to X:

G× S
f̃
//

p2

��

X, (g, s) � // g · f(s)

S.

Given two maps f1, f2 : S → X, an element of α ∈ G(S) with f2 = α · f1 is the same
data as an isomorphism of trivial G-bundles G × S → G × S, (g, s) 7→ (gα(s), s);
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this is because any such isomorphism must be G-equivariant and commute with
the structure maps to S. From this perspective, it is even more clear that [X/G]pre

is not a stack even when X is a point: given a Zariski cover {Si} of a scheme S,
trivial G-bundles G× Si → Si together with isomorphisms over Si ∩ Sj satisfying a
cocycle condition will glue to a principal G-bundle P → S but it will not necessarily
be trivial. This suggests that we should define objects of a quotient stack to be
principal G-bundles (Definition B.1.46).

Quotient stacks. We define the quotient stack [X/G] as the category over Sch/C
whose objects over a C-scheme S are diagrams

P

��

f
// X

S

where P → S is a principal G-bundle and f : P → X is a G-equivariant morphism.
A morphism is the data of a commutative diagram

P ′

��

φ
//

f ′

##

P

��

f
// X

S′ g
// S

□

where the left square is cartesian. There is an object of [X/G] over X given by the
diagram

G×X

p2

��

σ // X

X,

where σ denotes the action map. By the 2-Yoneda Lemma (2.4.20), this defines a
map X → [X/G]. Even if the action of G on X is not free, the map X → [X/G] is
a principal G-bundle. Let us pause to appreciate that:

The map X → [X/G] is a principal G-bundle even if the action of
G on X is not free.

This is one of the great advantages of working with stacks. At the expense of
enlarging our category from schemes to algebraic stacks, we are able to tautologically
construct the quotient [X/G] as a ‘geometric space’ with desirable properties.

Example 0.6.8 (Classifying stack). We define the classifying stack of an algebraic
group G as the category BG := [SpecC/G] of principal G-bundles P → S. The
projection SpecC → BG is not only a principal G-bundle; it is the universal
principal G-bundle. Given any other principal G-bundle P → S, there is a unique
map S → BG and a cartesian diagram

P

��

// SpecC

��

S // BG.

□
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Example 0.6.9 (Quotients by finite groups). Quotients by free actions of finite
groups exist as algebraic spaces! See Corollary 3.1.14.

Exercise 0.6.10. What is the universal family over the quotient stack [X/G]?

Moduli stacks can often be described as quotient stacks, and these descriptions
can be leveraged to establish properties of the moduli stack.

Example 0.6.11 (Moduli stack of smooth curves as a quotient). Reexamining
Example 0.6.6, we see that the embedding of a smooth curve C via |Ω⊗3

C | : C ↪→ P5g−6

depends on a choice of basis Γ(C,Ω⊗3
C ) ∼= C5g−5 and therefore is only unique up

to a projective automorphism, i.e., an element of PGL5g−5 = Aut(P5g−6). The
algebraic group PGL5g−5 acts on the schemeH ′ parameterizing smooth tricanonically
embedded curves such thatMg

∼= [H ′/PGL5g−6].

Example 0.6.12 (Moduli stack of vector bundles as a quotient). For the moduli
stack of vector bundles (Example 0.6.7), the presentation of a vector bundle E as a
quotient OC(−m)Nm ↠ E depends on a choice of basis Γ(C,E(m)) ∼= CNm . The
algebraic group PGLNm−1 acts on the scheme Q′

m and there is an identification

Bunr,d(C)
∼=
⋃
m≫0

[Q′
m/PGLNm−1];

see Theorem 3.1.21.

Geometry of a quotient stack. While the definition of the quotient stack [X/G]
may appear abstract, its geometry is very familiar. The table below provides a
dictionary between the geometry of a quotient stack [X/G] and the G-equivariant
geometry of X. The stack-theoretic concepts on the left-hand side will be introduced
later.

Geometry of [X/G] G-equivariant geometry of X

C-point x ∈ [X/G] orbit Gx of C-point x ∈ X (with x the image
of x under X → [X/G])

automorphism group Aut(x) stabilizer Gx
function f ∈ Γ([X/G],O[X/G]) G-equivariant function f ∈ Γ(X,OX)G

map [X/G]→ Y to a scheme Y G-equivariant map X → Y

line bundle G-equivariant line bundle (or G-linearization)

quasi-coherent sheaf G-equivariant quasi-coherent sheaf

tangent space T[X/G],x normal space TX,x/TGx,x to the orbit

coarse moduli space [X/G]→ Y geometric quotient X → Y

good moduli space [X/G]→ Y good GIT quotient X → Y

Table 0.4: Dictionary between the geometry of [X/G] and the G-equivariant geometry
of X.
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0.7 Constructing projective moduli spaces

Our motivation for algebraic stacks was to ensure that a given moduli problemM
is representable with a universal family. While many geometric questions can be
studied (and arguably should be studied) on the moduli stackM itself, it is often
very convenient to make a trade-off: by sacrificing the existence of a universal family,
we can sometimes construct a more familiar geometric space, ideally a projective
variety. This allows us to utilize the much larger toolkit of projective geometry (e.g.,
birational geometry, intersection theory, Hodge theory, ...) to study the moduli
problem.

We highlight two approaches to construct projective moduli spaces:
(1) Geometric Invariant Theory (GIT), and
(2) Intrinsic construction of coarse/good moduli spaces.

There is a beautiful interplay between the intrinsic and extrinsic approaches.
Ideas from GIT have inspired techniques in each of the six steps of the intrinsic
approach, and conversely the intrinsic approach sheds light back on GIT. GIT is
also deeply intertwined with 19th century invariant theory, and determining the GIT
semistable locus is an interesting and important problem on its own. It is valuable
to keep both approaches in mind.

0.7.1 GIT approach

Outline of the GIT strategy

(A) Express the moduli stack M as a substack

M⊂ [X/G],

where G is reductive and X ↪→ P(V ) is G-equivariantly
embedded into the projectivization of a G-representation V .

(B) Show that a point x ∈ X is GIT semistable if and only if
x ∈M, or in other words thatM = [Xss/G].

For Step A, there are often natural ways to rigidify the moduli problem by
parameterizing additional data. For smooth curves, we can parameterize a basis
of Γ(C,Ω⊗3

C ) along with a curve C to obtain a tricanonical embedding C ↪→ P5g−6

(Example 0.6.11), or we can parameterize a basis of Γ(C,Ω⊗k
C ) for the kth canonical

embedding C ↪→ P(2k−1)(g−1)−1. For vector bundles on a smooth curve, we can
parameterize a basis of Γ(C,E(m)) along with a vector bundle E, after making
a choice of a sufficiently large integer m. The rigidified moduli problem should
have a compactification which is represented by a projective variety X—which is
Hilb and Quot in our two examples—and the choice of additional data should be
governed by an action of a group G. For the GIT approach to succeed, we need that
G is reductive and thatM is a substack of [X/G]. Finally, we need to choose a G-
equivariant embedding X ↪→ P(V ) where V is a finite dimensional G-representation,
or equivalently choose a G-linearization of an ample line bundle on X.

Step B is the hardest: we must show that M is precisely the open substack
of [X/G] of GIT semistable points. Using the Hilbert–Mumford Criterion we can
translate the problem to the following: a point x ∈ X represents an object of the
moduli problemM if and only if the Hilbert–Mumford index µ(x, λ) ≥ 0 for every
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one-parameter subgroup λ : Gm → G. This often reduces the goal to a tractable
(but often still daunting) combinatorial problem.

The GIT quotient M := Xss//G is necessarily projective. One beautiful feature
of GIT is that even if the moduli stack M is not compact, the GIT strategy
provides a compactification! If M has only finite automorphisms or equivalently
there are no strictly semistable points, then Xss → M is a geometric quotient
and M = [Xss/G] → M is a coarse moduli space. In the presence of infinite
automorphisms, Xss →M is a good quotient and M→M is a good moduli space.

The GIT approach is covered in detail in §6.7. We sketch the GIT construction
of Mg in §5.9 and present a complete GIT construction of Bunr,d(C) in ??.

0.7.2 Intrinsic approach

However I do not claim at all that [GIT] should be avoided, but only that
sometimes it may be good to have an alternative.

Faltings [Fal93]

Six steps toward projective moduli

① Algebraicity: Express the moduli stack M as a substack

M⊂ X

of a larger moduli stack X . Define an object x ∈ X to be
semistable if it is in M; this allows us to think of M as
the semistable locus X ss. Show that X is an algebraic stack
locally of finite type over C.

② Openness of semistability: Show that semistability is an
open condition, i.e.,M = X ss ⊂ X is an open substack.

③ Boundedness of semistability: Show that semistability
is bounded, i.e.,M = X ss is of finite type over C.

④ Semistable reduction: Show thatM satisfies the existence
part of the valuative criterion for properness.

⑤ Existence of a moduli space: Show that there is a
fine/coarse/good moduli spaceM→M where M is a proper
algebraic space.7

⑥ Projectivity: Show that a tautological line bundle onM
descends to an ample line bundle on M , i.e., M is projective.

GIT magically solves all these steps at once! In Step A of the GIT approach,
expressing the moduli stack M as a substack [X/G] already implies ‘boundedness.’
Since GIT semistability is always an open condition, the identification in Step B
ofM with the semistable locus [Xss/G] gives ‘openness of semistability’ and thus
‘algebraicity’ of M. Strikingly, GIT also implies each of the other steps: ‘semistable
reduction,’ ‘existence of a moduli space’, and ‘projectivity.’

Step 1 (Algebraicity). Many moduli stacks have natural enlargements. The
stackMg of smooth curves and the stackMg of stable curves are both contained in

7The calligraphic font M denotes the stack while the Roman font M denotes the space. This
convention will be followed throughout the text.
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the stack of all curves. The stack of semistable vector bundles on a smooth curve is
contained in the stack of all vector bundles or even the stack of all coherent sheaves.
It is usually easier to first show that the enlargement X is an algebraic stack, and
then use Steps 2 and 3 to conclude that M itself is algebraic.

To get started, we need to define the stacks M and its enlargement X—this
entails specifying families of objects along with pullbacks and identifications. To
check that X is algebraic requires finding a smooth cover U → X by a scheme. In
many cases, we can even show that X is identified with a quotient stack [U/G] in
which case U → [U/G] provides a presentation. Alternatively, it is often possible
to use Artin’s Criteria (Theorem C.7.4) to establish algebraicity; this essentially
amounts to verifying local properties of the moduli problem and in particular requires
an understanding of the deformation and obstruction theory.

Step 2 (Openness of semistability). This translates to the following condition:
for every family E of objects of X over a scheme S, the subset

{s ∈ S | Es is semistable}, (0.7.1)

where Es is the pullback of E along Specκ(s)→ S, is an open subset of S. This is
precisely what it means for the inclusionM = X ss ↪→ X to be representable by open
immersions: for every map S → X (corresponding to the family E), the fiber product
M×X S (which is identified set-theoretically with (0.7.1)) is an open subscheme of
S. This step ensures that M is also an algebraic stack locally of finite type over C.

Step 3 (Boundedness of semistability). By boundedness, we mean that the
moduli stack M is of finite type over C. Since algebraicity implies that M is locally
of finite type over C, boundedness translates into quasi-compactness of M. More
concretely, boundedness is equivalent to the existence of a scheme Z of finite type
over C and a family of objects E over Z such that every object E ofM is isomorphic
to Ez for some (not necessarily unique) z ∈ Z.

For example,Mg is bounded but the stack of all proper curves of genus g and
the stack

∐
gMg of all smooth curves (of any genus) are not bounded. For vector

bundles, the stack Bunssr,d(C) of semistable vector bundles of fixed rank and degree
is bounded. The stack of all vector bundles Bunr,d(C) of fixed rank and degree is
not bounded, nor is the stack of semistable vector bundles of arbitrary rank and
degree.

Step 4 (Semistable reduction). The existence part of the valuative criterion for
properness is the assertion that for every DVR R (which you can think of as a local
model of a smooth curve) with fraction field K (or punctured curve) every object
E× over K extends to a family of objects E over R after possibly replacing R with
an extension of DVRs. In other words, every diagram

SpecK
E×

//

��

M

SpecR,

E

;;

(0.7.2)

has an extension after replacing R with an extension. If the extension E over R is
also unique, then we say that M satisfies the valuative criterion for properness, and
this implies properness (Theorem 3.8.2) and in particular separatedness. Arguably
the usefulness of valuative criteria in algebraic geometry is best witnessed in moduli
theory.
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The moduli stack of smooth curves is not compact and does not satisfy the
existence part of the valuative criterion.

0 1 λ

Figure 0.18: The family of elliptic curves y2z = x(x− z)(x− λz) degenerates to the
nodal cubic over λ = 0, 1.

Projective varieties are of course compact and satisfy the valuative criterion.
If there’s any hope to construct a projective moduli space, then the moduli stack
better satisfy the existence part of the valuative criterion. Properness ofMg was
first proven by Deligne and Mumford in their influential paper [DM69]. We prove
semistable reduction in characteristic 0 in §5.5.

For the moduli of vector bundles, semistable reduction was first proved by
Mumford and Seshadri as a consequence of the GIT construction [Ses67]. An
intrinsic geometric argument was later proved by Langton [Lan75]. Note that unlike
stable curves, the stack Bunssr,d(C) is not separated as there may exist several non-
isomorphic extensions of a vector bundle on CK to CR. Nevertheless, the moduli
stack Bunssr,d(C) satisfies a weaker notion of separatedness called S-completeness.

Step 5 (Existence of a moduli space). We would like to construct an algebraic
space that is the best possible approximation of the moduli stack. This step depends
on the automorphisms of the moduli problem:

• No automorphisms: in this case, the moduli stackM is already an algebraic
space M . In other words, M is a fine moduli space: for a scheme S, there is a
natural bijection between objects over a scheme S and maps S →M .

• Finite automorphisms: we must show that M is separated or in other words
that M satisfies the uniqueness part (in addition to the existence part) of the
valuative criterion. The Keel–Mori theorem (Theorem 4.3.12) then establishes
the existence of a coarse moduli space M→M where M is a proper algebraic
space. The map M → M induces a bijection of C-points and satisfies the
universal property that any other mapM→ Y to an algebraic space Y factors
uniquely through M .

• Reductive automorphisms: we must show that M is Θ-complete and S-
complete—these are valuative criteria about extending Gm-equivariant families
of objects over a punctured surface which are introduced in Section 6.8.2.
Given these properties, Theorem 6.8.1 yields a good moduli space M → M
where M is a proper algebraic space. The mapM→M is no longer a bijection
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of C-points as it identifies points whose closures intersect in an analogous way
to the orbit closure equivalence relation in GIT. ButM→M does induce a
bijection between closed C-points ofM (sometimes called polystable objects)
and the C-points of M , and it also satisfies the universal property for maps to
algebraic spaces.

Step 6 (Projectivity). This is usually the hardest step. It requires a solid
understanding of the geometry of the moduli problem and sometimes relies on
sophisticated techniques in birational geometry. Kollár introduced a strategy in
[Kol90] to verify projectivity for moduli stacks of varieties and applied it to verify
the projectivity of Mg. We cover Kollár’s method in §5.8. Faltings constructed
projective moduli spaces of vector bundles in [Fal93] without using the theory of
GIT, and we borrow several of his ideas in our construction in ??.
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Chapter 1

Hilbert and Quot schemes

Wir müssen wissen. Wir werden wissen.

Hilbert

We prove that the Grassmannian, Hilbert and Quot functors are representable by
projective schemes. These results serve as the backbone of many results in moduli
theory and more widely algebraic geometry. In particular, they are essential for
establishing properties about the moduli stacks Mg of stable curves and Vss

r,d of
vector bundles over a curve. While the reader could safely treat these results as
black boxes (and we encourage some readers to do this), it is also worthwhile to dive
into the details. We follow Mumford’s simplification [Mum66] of Grothendieck’s
original construction of Hilbert of Quot schemes [FGAIV]. Specifically, we exploit the
theory of Castelnuovo–Mumford regularity (Section 1.3) and flattening stratifications
(Theorem A.2.16), which are interesting results on their own with wide-ranging
applications outside moduli theory.

1.1 The Grassmannian, Hilbert, and Quot functors

1.1.1 Statements of the main theorems

TEST
The representability theorems below are formulated for a strongly projective

morphism X → S of noetherian schemes, i.e., there exists a closed immersion
X ↪→ P(E) over S where E is a vector bundle on S. This is a stronger condition
than the projectivity of X → S which only requires that E is a coherent sheaf [EGA,
§II.5], [SP, Tag 01W8]. On the other hand, the definition of projectivity in [Har77,
II.4] requires that X embeds into projective space PnS over S.

Theorem 1.1.1. Let S be a noetherian scheme and V be a vector bundle on S of
rank n. For an integer 0 < k < n, the functor

GrS(k, V ) : Sch/S → Sets

(T
f−→ S) 7→

{
vector bundle quotients VT = f∗V → Q of rank k

}
is represented by a scheme strongly projective over S.
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If S = SpecZ and V = OnS , then GrS(k, V ) is equal to the functor Gr(k, n)
defined in Example 0.3.12. In addition, when k = 1, the Grassmannian GrS(1, V )
is identified with the projectivization P(V ) of V as discussed in Exercise 0.3.13.
For arbitrary S, we sometimes denote GrS(k, n) := GrS(k,OnS) and we sometimes
drop the subscript S when we are working over a fixed base such as S = Speck or
S = SpecZ.

In the formulation of the following two theorems, we will use the convention that
if X → S and T → S are morphisms of schemes, then XT := X ×S T . Similarly,
if F is a sheaf on X, then FT denotes the pullback of F under XT → X. If s ∈ S
is a point, then Xs := X ×S Specκ(s) and Fs := F |Xs

= FSpecκ(s). If X → S is a
projective morphism, OX(1) is relatively ample and s ∈ S is a point, the Hilbert
polynomial of Fs is

PFs(z) = χ(Xs, Fs(z)),

where Fs(z) = Fs ⊗OXs
(z). It is a fact that this defines a polynomial PFs

∈ Q[z]
(c.f.,[Har77, Exer III.5.2]]); for z ≫ 0, we have PFs

(z) = h0(Xs, Fs(z)).

Theorem 1.1.2. Let X → S be a strongly projective morphism of noetherian
schemes and OX(1) be a relatively ample line bundle on X. For every polynomial
P ∈ Q[z], the functor

HilbPX/S : Sch/S → Sets

(T → S) 7→

 subschemes Z ⊂ XT flat and finitely presented
over T such that Zt ⊂ Xt has Hilbert

polynomial P for all t ∈ T


is represented by a scheme strongly projective over S.

Theorem 1.1.3. Let π : X → S be a strongly projective morphism of noetherian
schemes, OX(1) be a relatively ample line bundle on X, and F be a coherent sheaf
on X which is the quotient of π∗(W )(q) for a vector bundle W on S and an integer
q. For every polynomial P ∈ Q[z], the functor

QuotPX/S(F ) : Sch/S → Sets

(T → S) 7→


quasi-coherent and finitely presented
quotients FT → Q on XT such that Q is
flat over T and Q|Xt

on Xt has
Hilbert polynomial P for all t ∈ T


is represented by a scheme strongly projective over S.

The Grassmannian and the Hilbert scheme are special cases of the Quot scheme:
GrS(k, V ) ∼= QuotPS/S(V ) where P (z) = k is the constant polynomial and HilbPX/S =

QuotPX/S(OX).

Remark 1.1.4.
(1) In the definition of the Grassmannian and Quot functor above, two quotients

VT
q−→ Q and VT

q′−→ Q′ are identified if ker(q) = ker(q′) as subsheaves of VT ,
or equivalently there exists an isomorphism Q

α−→ Q′ such that the composition

VT
q−→ Q

α−→ Q′ is equal to VT
q′−→ Q′. In the Hilbert functor, two subschemes

of XT are identified if they are equal as subschemes (or equivalently their ideal
sheaves are equal as subsheaves of OXT

).
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(2) The definitions HilbPX/S and QuotPX/S(F ) depend on the relatively ample line
bundle OX(1) but we have suppressed this from the notation.

(3) When T is noetherian, the conditions that Z be finitely presented and Q
be of finite presentation in the definitions of HilbPX/S and QuotPX/S(F ) are
superfluous.

(4) If we do not fix P , then Hilb(X/S) and Quot(F/X/S) are representable by
schemes locally of finite type, and there are decompositions

Hilb(X/S) =
∐
P

HilbPX/S and Quot(F/X/S) =
∐
P

QuotPX/S(F );

these functorial decompositions follows from the flatness of the quotient Q and
the local constancy of the Hilbert polynomial (Proposition A.2.4).

(5) Suppose that S satisfies the resolution property, i.e., every coherent sheaf is
the quotient of a vector bundle. This is satisfied if S has an ample line bundle
or if S is regular. Then a projective morphism X → S is necessarily strongly
projective. Moreover, if F is a coherent sheaf on X, then π∗π∗(F (q))→ F (q)
is surjective for q ≫ 0 and choosing a surjection W ↠ π∗(F (q)) from a
vector bundle W on S, we have a surjection π∗(W (−q)) 7→ F . Theorem 1.1.3
therefore implies that QuotPX/S(F ) is strongly projective over S if X → S is
projective and F is coherent.

Caution 1.1.5. We will abuse notation by using HilbPX/S , QuotPX/S(F ) and GrS(k, V )
to denote both the functor and the scheme that represents it.

1.1.2 Proof strategy
In §1.2, we show that GrS(k, V ) is representable by a projective scheme by using
the functorial Plücker embedding GrS(k, V )→ P(

∧k
V ), which over an S-scheme T

sends a quotient VT → Q to the line bundle quotient
∧k

VT →
∧k

Q.
In §1.3, we introduce Castelnuovo–Mumford regularity and exploit Mumford’s re-

sult on Boundedness of Regularity (Theorem 1.3.9) to show that under the hypotheses
of Theorem 1.1.3, then for d≫ 0, the morphism of functors

QuotPX/S(F )→ GrS(P (d), π∗F (d))

[FT ↠ Q] 7→ [πT,∗(FT (d))→ πT,∗(Q(d))],
(1.1.6)

defined over an S-scheme T , is well-defined. Note that for a field-valued point
s : Speck→ S a quotient [Fs 7→ Q] is mapped to [H0(Xs, Fs(d))→ H0(Xs, Q(d))].

We show that the above functor is representable by locally closed immersions
(Proposition 1.4.1). This is established by reducing to the special case where
X = P(V ) and F = π∗W where V and W are vector bundles on S; this is where
Boundedness of Regularity (Theorem 1.3.9) is applied.

Since GrS(P (d), π∗F (d)) is representable by a projective scheme over S (The-
orem 1.1.1), this already establishes the representability and quasi-projectivity of
QuotPX/S(F ). Finally, we establish that QuotPX/S(F ) is proper over S (Proposi-
tion 1.4.2) by checking the valuative criterion which implies that QuotPX/S(F ) is
projective over S.

Historical comments
Grothendieck established both the representability and projectivity of QuotPPn

A/A
(F )

where F is coherent sheaf on PnA and A is a noetherian ring [FGAIV, Thm. 3.2]. Our
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exposition largely follows Grothendieck’s original strategy while incorporating Mum-
ford’s simplification to establish boundedness, i.e., finite typeness of QuotPPn

A/A
(F ).

Boundedness is one of the hardest parts of the proof, and almost every bounded-
ness argument for a moduli space in algebraic geometry ultimately relies on the
boundedness of Hilb or Quot. Grothendieck’s approach for boundedness of Quot
was a reduction argument to Hilb (i.e., the case where F = OX) and relied on
Chow’s boundedness result for the parameter space of reduced, pure-dimensional
subschemes of fixed degree. In [Mum66], Mumford introduced the concept of regu-
larity of a coherent sheaf—now called Castelnuovo–Mumford regularity—and proved
that for sufficiently large integers m every subsheaf F ⊂ OrPn with fixed Hilbert
polynomial is m-regular (Theorem 1.3.9). Mumford used this result to construct the
Hilbert scheme of curves on a surface but his argument applies equally to construct
QuotPPn

A/A
(F ).

Our formulation of Theorem 1.1.3 using the strong projectivity of X → S follows
Altman and Kleiman [AK80, Thm. 2.6]. This chapter follows closely the excellent
expositions of [Mum66, §14-15], [Nit05], [Kol96, §1], [Laz04a, §1.8], and [AK80, §2].

1.2 Representability and projectivity of the Grass-
mannian

The Grassmannian provides a warmup to the functorial approach of constructing
projective moduli spaces in these notes, and it is also used in the proof of the
representability of Hilb and Quot. Given its importance, we present a slow-paced
expository account of the representability and projectivity of the Grassmannian. We
focus first on the Grassmannian Gr(k, n) = GrZ(k,OnSpec Z) over Z parameterizing k-
dimension quotients of a trivial vector bundle of rank n. The proof of the projectivity
and representability of the relative Grassmannian GrS(k, V ) is shown in §1.2.3.

1.2.1 Representability by a scheme

In this subsection, we show that Gr(k, n) is representable by a scheme (Propo-
sition 1.2.4). Our strategy will be to find a Zariski open cover of Gr(k, n) by
representable subfunctors; see Definition 0.3.31. Given a subset I ⊂ {1, . . . , n} of
size k, let GrI ⊂ Gr(k, n) be the subfunctor where for a scheme S, Gr(k, n)I(S) is the
subset of Gr(k, n)(S) consisting of surjections OnS

q
↠ Q such that the composition

OIS
eI−→ OnS

q
↠ Q

is an isomorphism, where eI is the canonical inclusion.

Lemma 1.2.1. For each I ⊂ {1, . . . , n} of size k, the functor GrI is representable
by affine space Ak×(n−k)

Z

Proof. We may assume that I = {1, . . . , k}. We define a map of functors ϕ : Ak×(n−k) →
GrI where over a scheme S, a k × (n− k) matrix

f =
(
fi,j
)
1≤i≤k , 1≤j≤n−k
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of global functions on S is mapped to the quotient
1 f1,1 · · · f1,n−k

1 f2,1 · · · f2,n−k
. . .

...
1 fk,1 · · · fk,n−k

 : OnS → OkS . (1.2.2)

The injectivity of ϕ(S) : Ak×(n−k)(S)→ GrI(S) follows from the fact that any two
quotients written in the form of (1.2.2) which are equivalent in GrI are necessarily
defined by the same equations. To see surjectivity, let [OnS

q−→ Q] ∈ GrI(S) where
by definition OIS

eI−→ OnS
q
↠ Q is an isomorphism. The tautological commutative

diagram

OnS
q
//

(q◦eI)−1◦q   

Q

(q◦eI)−1

��

OIS

shows that [OnS
q
↠ Q] = [OnS

(q◦eI)−1◦q
↠ OIS ] ∈ Gr(k, n)(S). Since the composition

OIS
eI−→ OnS

(q◦eI)−1

↠ OIS is the identity, the k×n matrix corresponding to (q◦eI)−1 ◦q
is necessarily of the same form as (1.2.2) for functions fi,j ∈ Γ(S,OS). Therefore
ϕ(S)({fi,j}) = [OnS

q
↠ Q] ∈ Gr(k, n)(S).

Lemma 1.2.3. {GrI} is a Zariski open cover of Gr(k, n) where I ranges over all
subsets of size k.

Proof. For a fixed subset I, we first show that GrI ⊂ Gr(k, n) is an open subfunctor.
To this end, we consider a scheme S and a morphism S → Gr(k, n) corresponding to
a quotient q : OnS → Q. Let C denote the cokernel of the composition q◦eI : OIS → Q.
Notice that if C = 0, then q ◦ eI is an isomorphism. The fiber product

FI //

��

S

[On
S

q
↠Q]

��

GrI // Gr(k, n)

□

of functors is representable by the open subscheme U = S \ Supp(C) (the reader is
encouraged to verify this claim). Note that if S is not noetherian, then Supp(C) ⊂ S
is still closed as C is finitely presented as a quasi-coherent sheaf.

To check the surjectivity of
∐
I FI → S, let s ∈ S be a point. Since κ(s)n

q⊗κ(s)
↠

Q⊗ κ(s) is a surjection of vector spaces, there is a nonzero k × k minor, given by a

subset I, of the k × n matrix q ⊗ κ(s). This implies that [κ(s)n
q⊗κ(s)
↠ Q⊗ κ(s)] ∈

FI(κ(s)).

Lemmas 1.2.1 and 1.2.3 together imply:

Proposition 1.2.4. The functor Gr(k, n) is representable by a scheme.

Exercise 1.2.5. Show that Gr(k, n) is an integral scheme of finite type over Z.

Exercise 1.2.6. Use the valuative criterion of properness to show that Gr(k, n)→
SpecZ is proper.
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1.2.2 Projectivity of the Grassmannian

We show that the Grassmannian scheme Gr(k, n) is projective (Proposition 1.2.7)
by explicitly providing a projective embedding. The Plücker embedding is the map
of functors

P : Gr(k, n)→ P(
∧k
OnSpec Z)

[OnS
q
↠ Q] 7→ [

∧k
OnS →

∧k
Q]

defined above over a scheme S. As both sides are representable by schemes, the
morphism P corresponds to a morphism of schemes via Yoneda’s lemma.

Proposition 1.2.7. The morphism P : Gr(k, n)→ P(
∧kOnSpec Z) of schemes is a

closed immersion. In particular, Gr(k, n) is a strongly projective scheme over Z.

Proof. A subset I ⊂ {1, . . . , n} corresponds to a coordinate xI on P(
∧kOnSpec Z), and

we set P(
∧kOnSpec Z)I to be the open locus where xI ≠ 0. Note that P(

∧kOnSpec Z)I ⊂
P(
∧kOnSpec Z) is the subfunctor parameterizing line bundle quotients

∧kOnS → L

such that the composition OS
eI−→
∧kOnS → L (where the first map is the inclusion of

the Ith term) is an isomorphism, or in other words P(
∧kOnSpec Z)I

∼= Gr(1,
(
n
k

)
){I}

viewing {I} as the corresponding subset of {1, . . . ,
(
n
k

)
} of size 1. Using these

functorial descriptions, one can check that there is a cartesian diagram of functors

Gr(k, n)I
PI //

��

P(
∧kOnSpec Z)I

��

Gr(k, n)
P // P(

∧kOnSpec Z).

□

Since {P(
∧kOnSpec Z)I} is a Zariski open cover, it suffices to show that each PI : Gr(k, n)I →

P(
∧kOnSpec Z)I is a closed immersion.
For simplicity, assume that I = {1, . . . , k}. Under the isomorphisms Gr(k, n)I ∼=

Ak×(n−k)
Z of Lemma 1.2.1 and P(

∧kOnSpec Z)I
∼= A

(nk)−1

Z , the morphism PI corre-
sponds to the map

Ak×(n−k)
Z → A

(nk)−1

Z

assigning a k × (n − k) matrix A = {xi,j} to the element of A
(nk)−1

Z whose Jth
coordinate, where J ⊂ {1, . . . , n} is a subset of length k distinct from I, is the
{1, . . . , k} × J minor of the k × n block matrix

1 x1,1 · · · x1,n−k
1 x2,1 · · · x2,n−k

. . .
...

1 xk,1 · · · xk,n−k

 .

The coordinate xi,j on Ak×(n−k)
Z is the pullback of the coordinate corresponding to

the subset {1, · · · , î, · · · , k, k+j} (see Figure 1.1). This shows that the corresponding
ring map is surjective thereby establishing that PI is a closed immersion.
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Figure 1.1: The minor obtained by removing the ith column and all columns
k + 1, . . . , n other than k + j is precisely xi,j .

Exercise 1.2.8. For a field k, let Gr(k, n)k be the k-scheme Gr(k, n) ×Z k, and
p ∈ Gr(k, n)k be the point corresponding to a quotient Q = kn/K. Show that there
is a natural bijection of the tangent space

TpGr(k, n)k
∼→ Homk(K,Q).

with the vector space of k-linear maps K → Q.

Exercise 1.2.9. Provide an alternative proof of the projectivity of Gr(k, n) as
follows.

(a) Show that the functor P : Gr(k, n)→ P(
∧kOnSpec Z) is injective on points and

tangent spaces.
(b) Use a criterion for being a closed immersion (c.f.,[Har77, Prop. II.7.3]) to show

that P : Gr(k, n)→ P(
∧kOnSpec Z) is a closed immersion.

(Alternatively, you could show that P : Gr(k, n) → P(
∧kOnSpec Z) is a proper

monomorphism and conclude that Gr(k, n) is projective over Z.)

1.2.3 Relative version
We now prove the relative version of the representability and strong projectivity of
the Grassmannian.

Proof of Theorem 1.1.1. If V is a vector bundle over S of rank n, there is the relative
Plücker embedding

P : GrS(k, V )→ P(
∧k

V )

[VT
q
↠ Q] 7→

[∧k
VT →

∧k
Q
] (1.2.10)

defined above over a S-scheme T . This is a morphism of functors over S. Since
P(
∧k

V ) is projective over S, it suffices to show that this morphism is representable by
closed immersions. This property can be checked Zariski-locally: if U ⊂ S is an open
subscheme where V is trivial, then the base change of GrS(k, V )→ P(

∧k
V ) over

U is the Plücker embedding GrU (k,OnU )→ P(
∧kONU ) which is a closed immersion

(Proposition 1.2.7).

Since the Grassmannian functor is representable, there is a universal quotient
OGrS(k,V ) ⊗S V → Quniv; here OGrS(k,V ) ⊗S V denotes the pullback of V under the
structure morphism GrS(k, V ) → S. Under the Plücker embedding (1.2.10), the
pullback of O(1) is identified with det(Quniv), which we sometimes call the Plücker
line bundle. Thus, we obtain:
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Corollary 1.2.11. The determinant det(Quniv) of the universal quotient is a very
ample line bundle on GrS(k, V ).

Remark 1.2.12. For projective space Pn = Gr(1, n), the universal quotient yields
an exact sequence 0 → ΩPn(1) → On+1

Pn → OPn(1) → 0, which is the dual of the
Euler sequence [Har77, Ex. 8.20.1] twisted by OPn(1).

1.3 Castelnuovo–Mumford regularity
The Cartan–Serre–Grothendieck theorem states that if F is a coherent sheaf on a
projective variety (X,OX(1)), then for d≫ 0

(1) F (d) is globally generated;
(2) Hi(X,F (d)) = 0 for i > 0; and
(3) the multiplication map

H0(X,F (d))⊗H0(X,O(p))→ H0(X,F (d+ p))

is surjective for all p ≥ 0.
Castelnuovo–Mumford regularity provides a quantitative measure of the size of d
necessary for the twist F (d) to have the three above desired cohomological properties
and in particular that the Hilbert polynomial χ(X,F (d)) of F evaluated at d agrees
with h0(X,F (d)).

1.3.1 Definition and basic properties
Definition 1.3.1. Let F be a coherent sheaf on projective space Pn over a field k.
For an integer m, we say that F is m-regular if

Hi(Pn, F (m− i)) = 0

for all i ≥ 1.
The regularity of F is the smallest integer m such that F (m) is m-regular.

While the requirement that the ith cohomology of the (m− i)th twist vanishes
may appear mysterious at first, this definition is very convenient for induction
arguments on the dimension n as indicated for instance by the following result.

Lemma 1.3.2. Let F be an m-regular coherent sheaf on Pn over a field k. If H ⊂ Pn

is a hyperplane avoiding the associated points of F , then F |H is also m-regular.

Proof. The hypotheses imply that over an affine open subscheme U ⊂ Pn, the defining
equation of H is a nonzerodivisor for the module Γ(U,F ). Thus F (−1) H−→ F is
injective, and for an integer i > 0 we have a short exact sequence

0→ F (m− i− 1)→ F (m− i)→ F |H(m− i)→ 0

inducing a long exact sequence on cohomology

· · · → Hi(Pn, F (m− i))→ Hi(H,F |H(m− i))→ Hi+1(Pn, F (m− i− 1))→ · · ·

If F is m-regular, then Hi(Pn, F (m− i)) = Hi+1(Pn, F (m− i− 1)) = 0. It follows
that Hi(H,F |H(m− i)) = 0 for all i > 0, and thus F |H is also m-regular.
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Remark 1.3.3. It follows from the definition of regularity that if F is m-regular,
then F (d) is (m− d)-regular. We will show in Lemma 1.3.6 that if F is m-regular,
it also d-regular for all d ≥ m.

Exercise 1.3.4.

(a) Show that O(d) is (−d)-regular on Pn.
(b) Show that the structure sheaf of a hypersurface H ⊂ Pn of degree d is (d− 1)-

regular.
(c) Show that the structure sheaf of a smooth curve C ⊂ Pn of genus g is (2g− 1)-

regular.

Exercise 1.3.5. Let F be a coherent sheaf on Pn resolved by a long exact sequence
of coherent sheaves. Show that if each Fi is (m+ i)-regular, then F is m-regular.

· · · → F2 → F1 → F0 → F → 0

Another advantage of regularity is the following lemma due to Castelnuovo.

Lemma 1.3.6. Let F be an m-regular coherent sheaf on Pn.

(1) For d ≥ m, F is d-regular.
(2) The multiplication map

H0(Pn, F (d))⊗H0(Pn,O(k))→ H0(Pn, F (d+ k))

is surjective if d ≥ m and k ≥ 0.
(3) For d ≥ m, F (d) is globally generated and Hi(Pn, F (d)) = 0 for i ≥ 1.

Proof. If k→ k′ is a field extension, then Flat Base Change (A.2.12) implies that
Hi(Pnk , F )⊗k k′ = Hi(Pnk′ , F ⊗k k′). As k→ k′ is faithfully flat, the assertions (1)–(3)
can be checked after base change. We can thus assume that k is algebraically closed
and in particular infinite.

For (1) and (2), we will argue by induction on n with the base case of n = 0 being
clear. If n > 0, since k is infinite, we may choose a hyperplane H ⊂ Pn avoiding
the associated points of F . Since the restriction F |H is m-regular (Lemma 1.3.2) on
H ∼= Pn−1, the inductive hypothesis implies that (1) and (2) hold for F |H .

We prove (1) by using induction also on d. The base case d = m holds by
hypothesis. For d > m, the short exact sequence 0→ F (d− i− 1)→ F (d− i)→
F |H(d− i)→ 0 induces a long exact sequence on cohomology

· · · → Hi(Pn, F (d− i− 1))→ Hi(Pn, F (d− i))→ Hi(H,F |H(d− i))→ · · ·

For i > 0, the first term vanishes by the induction hypothesis on d (F is (d − 1)-
regular so Hi(Pn, F (d− 1− i)) = 0) and the third term vanishes by the inductive
hypothesis on n (F |H is m-regular by Lemma 1.3.2 and thus d-regular by the
inductive hypothesis on n so Hi(H,F |H(d− i)) = 0). Thus, the second term vanishes
and we have established (1).

To show (2), we use induction on k in addition to n. We denote the multiplication
map by

µd,k : H
0(Pn, F (d))⊗H0(Pn,O(k))→ H0(Pn, F (d+ k)).
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While the base case k = 0 is clear, the inductive argument will require us to directly
establish the case k = 1. To this end, we consider the commutative diagram

H0(Pn, F (d))⊗H0(Pn,O(1)) νd⊗res
//

µd,1

��

H0(H,F |H(d))⊗H0(H,OH(1))

��

H0(Pn, F (d)) α //

id⊗H
44

H0(Pn, F (d+ 1))
νd+1

// H0(H,F |H(d+ 1)).

(1.3.7)

As the map α is given by multiplication by H ∈ H0(Pn,O(1)), α factors through
the the map id⊗H defined by v 7→ v ⊗H. It follows that im(α) ⊂ im(µd,1). Since
H1(Pn, F (d)) = 0 by (2), the restriction map νd : H

0(Pn, F (d)) → H0(H,F |H(d))
is surjective. Likewise, since H1(Pn,O) = 0, res : H0(Pn,O(1))→ H0(H,OH(1)) is
surjective. We conclude that the top horizontal arrow is surjective. The inductive
hypothesis applied to H = Pn−1 implies that the right vertical arrow is surjective.
Therefore, the composition νd+1 ◦ µd,1 is surjective and it follows that im(µd,1)
surjects onto H0(H,F |H(d+ 1)). By exactness of the bottom row, we have that

H0(Pn, F (d+ 1)) = im(µd,1) + ker(β) = im(µd,1) + im(α) = im(µd,1),

which shows that µd,1 is surjective.
If k > 1, we consider the commutative square

H0(Pn, F (d))⊗H0(Pn,O(k − 1))⊗H0(Pn,O(1)) //

µd,k−1⊗id

��

H0(Pn, F (d))⊗H0(Pn,O(k))

µd,k

��

H0(Pn, F (d+ k − 1))⊗H0(Pn,O(1))
µd+k−1,1

// H0(Pn, F (d+ k)).

The left vertical map and bottom horizontal arrow are surjective by the inductive
hypothesis applied to k − 1 and k = 1, respectively. It follows that µd,k is surjective.

To show (3), we know that for k ≫ 0, F (d + k) is globally generated, i.e.,
γF (d+k) : H

0(Pn, F (d+k))⊗OPn → F (d+k) is surjective. Consider the commutative
square

H0(Pn, F (d))⊗H0(Pn,O(k))⊗OPn

µd,k⊗id
//

γF (d)⊗id

��

H0(Pn, F (d+ k))⊗OPn

γF (d+k)

��

F (d)⊗
(
H0(Pn,O(k))⊗OPn

) id⊗γO(k)
// F (d)⊗O(k).

Since the top horizontal arrow is surjective by (1), the composition from the top
left to the bottom right is surjective. Given the nature of the bottom horizontal
map, we see that γF (d) must be surjective (indeed, if V = im(γF (d)) ⊂ F (d), then
im(id⊗γO(k) ◦ γF (d) ⊗ id) = V ⊗O(k)). Finally, to see the vanishing of the higher
cohomology of F (d) observe that for each i > 0, the sheaf F is (d+ i)-regular by (2)
and thus Hi(Pn, F (d)) = 0.

One easy consequence of (1) is that if F is m-regular, then the restriction map

νd : : H
0(Pn, F (d))→ H0(H,F |H(d))

is surjective for all d ≥ m. Indeed, (1) implies that F is also d-regular and the
surjectivity follows from the vanishing of H1(Pn, F (d− 1)). The following lemma—
which will be used in the proof of Theorem 1.3.9—shows that we can still arrange
for the surjectivity of νd under weaker hypotheses.
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Lemma 1.3.8. Let F be a coherent sheaf on Pn and H be a hyperplane avoiding
the associated points of F . If F |H is m-regular and νd is surjective for some d ≥ m,
then νp is surjective for all p ≥ d.

Proof. By staring at the square in diagram (1.3.7), we see that the top arrow νd⊗res
is surjective (as both νd and res are surjective) and the vertical right multiplication
morphism is surjective (by applying Lemma 1.3.6(2) to the m-regular sheaf F |H).
The statement follows.

1.3.2 Regularity bounds
We now turn to the following bound on the regularity of subsheaves of the trivial
vector bundle established by Mumford in [Mum66, p.101].

Theorem 1.3.9 (Boundedness of Regularity). For every pair of non-negative integers
r and n, and for every polynomial P ∈ Q[z], there exists an integer m0 with the
following property: for every field k, every subsheaf F ⊂ OrPn

k
with Hilbert polynomial

P is m0-regular.

Proof. As in the proof of Lemma 1.3.6, we can assume that k is infinite. We will
argue by induction on n. The base case of n = 0 holds as every sheaf F on P0 is
m-regular for every integer m.

For n ≥ 1 and a subsheaf F ⊂ OrPn with Hilbert polynomial P , we can choose
a hyperplane H ⊂ Pn avoiding all associated points of OrPn/F . This ensures that
Tor1OPn (OH ,OrPn/F ) = 0 and that the short exact sequence 0 → F → OrPn →
OrPn/F → 0 restricts to a short exact sequence

0→ F |H → OrH → OrH/F → 0. (1.3.10)

As H ∼= Pn−1, this will allow us to apply the inductive hypothesis to F |H ⊂ OrH .
On the other hand, since F ⊂ OrPn is torsion free, we have a short exact sequence

0→ F (−1) H−→ F → F |H → 0, (1.3.11)

and the Hilbert polynomial of F |H is χ(F |H(d)) = χ(F (d)) − χ(F (d − 1)) =
P (d)− P (d− 1). In particular, the Hilbert polynomial of F |H only depends on P
and the inductive hypothesis applied to F |H ⊂ OrH gives an integer m1 such that
F |H is m1-regular.

For m ≥ m1 − 1, since Hi(H,F |H(m)) = 0 for all i ≥ 1, we have a long exact
sequence

0→ H0(Pn, F (m− 1))→ H0(Pn, F (m))→ H0(H,F |H(m))→
H1(Pn, F (m− 1))→ H1(Pn, F (m))→ 0. (1.3.12)

For i ≥ 2, we also have isomorphisms Hi(Pn, F (m− 1))→ Hi(Pn, F (m)), and since
Hi(Pn, F (d)) vanishes for d≫ 0, we can conclude that Hi(Pn, F (m− 1)) = 0.

To handle H1, we use the inequalities h1(Pn, F (m1)) ≥ h1(Pn, F (m1 + 1)) ≥
· · · , which eventually stabilize to 0. We claim that in fact that the inequalities
h1(Pn, F (m1)) > h1(Pn, F (m1 + 1)) > · · · are strict until they become 0. To
see this, we observe that there is an equality h1(Pn, F (m − 1)) = h1(Pn, F (m))
for m ≥ m1 if and only if νm : H0(Pn, F (m)) → H0(H,F |H(m)) is surjective. If
h1(Pn, F (m − 1)) = h1(Pn, F (m)) for some m ≥ m1, then νm is surjective. Since
F |H is m1-regular, we may apply Lemma 1.3.8 to conclude that νm′ is surjective for
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all m′ ≥ m, which in turn implies that h1(Pn, F (m′)) is constant for m′ ≥ m, and
therefore zero. This establishes the claim. Setting m2 = m1 + 1 + h1(Pn, F (m1)),
we see that h1(Pn, F (m2 − 1)) = 0 and that F is m2-regular.

We now show that m2 is bounded above by a constant m0 independent of F .
Since F ⊂ OrPn , we have that h0(Pn, F (d)) ≤ rh0(Pn,O(d)) = r

(
n+d
n

)
for any d ≥ 0.

Using the vanishing of hi(Pn, F (m1)) for i ≥ 2, we have

h1(Pn, F (m1)) = h0(Pn, F (m1))− χ(F (m1))

≤ r
(
n+m1

n

)
+ P (m1).

Thus, defining m0 := m1 + 1 + r
(
n+m1

n

)
+ P (m1), we have that m2 ≤ m0.

Remark 1.3.13. The above proof establishes in fact a stronger statement. To
formulate the result, we recall that every numerical polynomial P ∈ Q[z] (i.e.,
P (d) ∈ Z for integers d≫ 0) of degree n can be uniquely written as

P (d) =

n∑
i=0

ai

(
d

i

)
for ai ∈ Z; this follows from a straightforward inductive argument (c.f.,[Har77,
Prop. I.7.3]). For non-negative integers r and n, there exists a polynomial Λr,n ∈
Z[x0, . . . , xn] with the following property: for every field k, every subsheaf F ⊂ OrPn

k

with Hilbert polynomial P (d) =
∑
i=0 ai

(
d
i

)
is m0-regular for m0 = Λr,n(a0, . . . , an).

Remark 1.3.14 (Optimal bounds). Although Mumford’s result on Boundedness
of Regularity (Theorem 1.3.9) provides an explicit bound and is sufficient for
many applications including the construction of the Quot scheme as well as for
other applications, there is a more optimal bound established by Gotzmann: for
a projective scheme X ⊂ PN over a field k with Hilbert polynomial P , there are
unique integers λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1 such that P can be expressed as

P (d) =

(
d+ λ1 − 1

λ1 − 1

)
+

(
d+ λ2 − 2

λ2 − 1

)
+ · · ·+

(
d+ λr − r
λr − 1

)
,

and the ideal sheaf IX of X is r-regular. See [Got78], [Gre89], [Gre98, §3] and
[BH93, §4.3].

Exercise 1.3.15. Let C ⊂ Pn be a curve of degree d and genus g. Show that
Gotzmann’s bound implies that the ideal sheaf IC of C is (

(
d
2

)
+1− g)-regular. Can

you compare this to the bound given by the proof of Theorem 1.3.9, i.e., can you
compute Λ1,n(1− g, d) for an explicit polynomial satisfying Theorem 1.3.9?

Remark 1.3.16. It was shown in [GLP83] that the ideal sheaf IC of an integral,
non-degenerate curve C ⊂ PN of degree d is (d−N + 2)-regular. It is conjectured
more generally that the ideal sheaf of a smooth, non-degenerate projective variety
X ⊂ PN of dimension n and degree d is (d− (N −n)) + 1)-regular; see [GLP83] and
[EG84].

Corollary 1.3.17. Let π : X → S be a strongly projective morphism of noetherian
schemes and OX(1) be a relatively ample line bundle on X. Let F be quotient sheaf
of π∗(W )(q) for some vector bundle W on S and integer q. Let P ∈ Q[z] be a
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polynomial. There exists an integer m0 satisfying the following property for every
d ≥ m0: for every morphism f : T → S inducing a cartesian square

XT
fT //

πT

��

X

π

��

T
f
// S

and every finitely presented quotient Q = FT /K flat over S such that every fiber Qt
on Xt has Hilbert polynomial P , then

(1) πT,∗Q(d) is a vector bundles of rank P (d)
(2) the comparison maps f∗π∗Q(d)→ πT,∗f

∗
TQ(d), f∗π∗F (d)→ πT,∗f

∗
TF (d) and

f∗π∗K(d)→ πT,∗f
∗
TK(d) are isomorphisms;

(3) R1πT,∗K(d) = 0 for i > 0; and
(4) the adjunction maps π∗

TπT,∗Q(d)→ Q(d), π∗
TπT,∗FT (d)→ FT (d) and π∗

TπT,∗K(d)→
K(d) are surjective.

Proof. For (2), since π : X → S is strongly projective, there is a closed immersion
i : X ↪→ P(V ) where V is a vector bundle on S. Since the statement is local on S
(and S is quasi-compact), we may assume that S is affine and that V is the trivial
vector bundle of rank n+ 1. We are given a surjection π∗(W )(q)↠ F , and if Q is a
quotient of i∗F with Hilbert polynomial P , then Q(−q) is a quotient of π∗W with
Hilbert polynomial P ′ where P ′(z) = P (z + d). We can therefore replace (F,X, P )
with (π∗(W ),P(V ), P ′). In particular, for every field-valued point s : Speck→ S,
P(V )s ∼= Pnk and Fs ∼= OkPn

k
where rk(V ) = n+ 1 and rk(W ) = k.

By Boundedness of Regularity (Theorem 1.3.9), there exists an integer m0

depending on n, r and P such that for every field-valued point s : Speck → S,
the kernel Ks is m0-regular. As Ks is also (m0 + 2)-regular (Lemma 1.3.6) and
Fs ∼= OkPn

k
is (m0+1)-regular (in fact, it is 0-regular), it follows that Qs is m0-regular

(Exercise 1.3.4). By Lemma 1.3.6, for d ≥ m0 + 2, Ks(d), Fs(d) and Qs(d) are each
globally generated with vanishing higher cohomology. Since K, F and Q are flat
over S, statements (1)–(3) follow from applying Cohomology and Base Change in
the form of Exercise A.6.9. For (4), to verify the surjectivity of the adjunction
map π∗

TπT,∗K(d)→ K(d) (and likewise for FT and Q), it suffices to check that the
restriction

(π∗
TπT,∗K(d))|Xt

→ Kt(d) (1.3.18)

is surjective one each fiber Xt over t ∈ T . Using (2), we have identifications

(π∗
TπT,∗K(d))|Xt

∼= π∗
t (πT,∗K(d)⊗ κ(t)) ∼= π∗

t πt,∗Kt(d),

where πt : Xt → Specκ(t) and thus (1.3.18) corresponds to the adjunction map
π∗
t πt,∗Kt(d)→ Kt(d), which we know is surjective as Kt(d) is globally generated.

1.4 Representability and projectivity of Hilb and
Quot

In this section, we prove the representability and projectivity of Quot (Theorem 1.1.3)
and as a consequence we obtain the same for the Hilbert scheme (Theorem 1.1.2).
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As before, π : X → S is a strongly projective morphism of noetherian schemes,
OX(1) is a relatively ample line bundle on X, F is a quotient sheaf of π∗(W )(q)
for some vector bundle W on S and integer q, and P ∈ Q[z] is a polynomial. Our
strategy is to use the morphism of functors

QuotPX/S(F )→ GrS(P (d), π∗F (d))

[FT ↠ Q] 7→ [πT,∗FT (d)→ πT,∗Q(d)],

defined above over an S-scheme T . For d ≫ 0, Corollary 1.3.17 implies that the
above morphism is well-defined: indeed part (1) shows that πT,∗Q(d) is a vector
bundle of rank P (d), part (2) shows the pullback of the coherent sheaf π∗F (d) under
T → S is identified with πT,∗FT (d), and part (3) shows that R1πT,∗K(d) = 0 which
implies the surjectivity of πT,∗FT (d)→ πT,∗Q(d).

1.4.1 Quot is locally closed in a Grassmannian

We prove that the map QuotPX/S(F )→ GrS(P (d), π∗F (d)) is representable by locally
closed immersions.

Proposition 1.4.1. Let π : X → S be a strongly projective morphism of noetherian
schemes, OX(1) be a relatively ample line bundle on X, and F be a coherent sheaf
on X which is the quotient of π∗(W )(q) for a vector bundle W on S and an integer
q. For d≫ 0, the morphism QuotPX/S(F )→ GrS(P (d), π∗F (d)) is representable by
locally closed immersions, i.e., for every morphism T → GrS(P (d), π∗F (d)) from a
scheme, the fiber product

T ×GrS(P (d),π∗F (d)) QuotPX/S(F )

is representable by a locally closed subscheme of T .

Proof. We first reduce to the special case that X = P(V ) and F = π∗W for trivial
vector bundles V and W . Let i : X ↪→ P(V ) be a closed immersion where V is a
vector bundle on S. The morphism of functors QuotPX/S(F )→ GrS(P (d), π∗F (d))
is defined over S and its base change to an open subscheme U ⊂ S is identified
with the morphism QuotPXU/U (FU ) → GrS(P (d), πU,∗FU (d)). Since the property
of being a locally closed immersion is Zariski-local on the target, the statement is
Zariski-local on S. We may therefore assume that S is affine and that V is the
trivial vector bundle of rank n+ 1.

First, observe that since there is an isomorphism of functors

QuotPX/S(F )→ QuotPP(V )/S(i∗F ),

we may replace (F,X) with (i∗F,P(V )). Next using the surjection π∗(W )(q)↠ F ,
we obtain a morphism of functors

QuotPP(V )/S(F )→ QuotP
′

P(V )/S(π
∗W )

[FT → Q] 7→ [(π∗W )T → F (−q)T → Q(−q)],

defined over an S-scheme T , where P ′(z) = P (z − q). We claim that this morphism
is representable by closed immersions. This claims boils down to the statement
that for an S-scheme T and quotient π∗W (q)T ↠ Q, there is a closed subscheme
Z ⊂ T such that a morphism U → T factors through Z if and only if the restriction
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π∗W (q)U ↠ GU factors through FU . Defining K = ker(π∗W (q)T → FT ) and
considering the diagram

0 // K //

$$

π∗W (q)T //

����

FT // 0

G,

we see that the claim is satisfied by taking Z ⊂ T to be vanishing scheme of the
morphism K → G (see Exercise 0.3.34).

Finally, using that π∗(π∗W (d)) =W ⊗ Symd V , we have a commutative diagram

QuotPP(V )/S(F )
� � //

��

QuotP
′

P(V )/S(π
∗W )

� _

��

GrS(P (d), π∗F (d)) // GrS(P
′(d),W ⊗ Symd V ).

By the above claim, the top horizontal map is a closed immersion. As
GrS(P (d), π∗F (d)) and GrS(P

′(d),W ⊗Symd V ) are projective (Theorem 1.1.1), the
bottom horizontal map is projective and in particular separated. If the proposition
holds for QuotP

′

P(V )/S(π
∗W ) and the right vertical map is a locally closed immersion,

then the left vertical map is also a closed immersion by the cancellation property.

We now handle the special case. We first claim that QuotPX/S(F )→ GrS(P (d),W⊗
Symd V ) is a monomorphism, i.e.,

QuotPX/S(F )(T )→ GrS(P (d), π∗F (d))(T )

is injective for each scheme T . To see this, observe that if FT = Q/K is a quotient
with Hilbert polynomial P , then Corollary 1.3.17 implies that there is a map of
short exact sequences

0 // π∗
TπT,∗K(d)

��

// π∗
TπT,∗FT (d)

��

// π∗
TπT,∗Q(d)

��

// 0

0 // K(d) // FT (d) // Q(d) // 0

where the vertical maps are surjections. Thus FT (d)→ Q(d) can be recovered from
πT,∗FT (d) → πT,∗Q(d) by taking the cokernel of the composition π∗

TπT,∗K(d) →
π∗
TπT,∗FT (d)→ FT (d).

Let T → GrS(P (d),W ⊗ Symd V ) be a morphism determined by a vector bundle
quotient γ : πT,∗FT (d) =WT ⊗Symd VT → G of rank P (d). Define Q as the quotient
sheaf of FT with the property that FT (d)↠ Q(d) is identified with the cokernel of
ker(π∗

T γ)→ π∗
TπT,∗FT (d)→ FT (d). The fiber product

Z //

��

T

��

QuotPX/S(F ) // GrS(P (d),W ⊗ Symd V )

is identified with the subfunctor of T (or more precisely the subfunctor of MorS(−, T ))
consisting of morphisms T ′ → T such that QT ′ is flat over T ′ with Hilbert polynomial
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P (in other words, a map T ′ → T factors through Z if and only if QT ′ is flat
over T ′ with Hilbert polynomial P ). By Existence of Flattening Stratifications
(Theorem A.2.16), Z is representable by a locally closed subscheme of T .

1.4.2 Valuative criteria for Hilb and Quot

To establish that Quot is projective, it will be sufficient to know that it is proper.

Proposition 1.4.2. For every projective morphism X → S of noetherian schemes,
relatively ample line bundle OX(1), coherent sheaf F on X and polynomial P ∈ Q[x],
the functor QuotPX/S(F ) satisfies the valuative criterion for properness, i.e., for
every DVR R over S with fraction field K, every flat coherent quotient FK → Q∗ on
XK with Hilbert polynomial P extends uniquely to a flat coherent quotient FR → Q
on XR with Hilbert polynomial P .

Remark 1.4.3. In other words, the proposition implies that for every commutative
diagram

SpecK //

��

QuotPX/S(F )

��

SpecR //

88

S,

of solid arrows, there is a unique dotted arrow filling in the diagram. See §3.8 for a
further discussion of the valuative criterion for functors and stacks.

Proof. If we write j : XK ↪→ XR as the open immersion, we define Q as the image of
the composition FR → j∗FK → j∗Q

∗ (where the first map is given by the adjunction
FR → j∗j

∗FR = j∗FK). Since Q is a subsheaf of j∗Q∗, it is torsion free over R and
thus flat (as R is a DVR). (Locally, if S = SpecB is affine and U = SpecA ⊂ X is an
affine open, then we can write F |U = M̃ for a finitely generated A-module M and we
have a quotientM⊗BK → N∗ of A⊗BK-modules where Q∗|UK

= Ñ∗. Then Q = Ñ
where N is the A⊗B R-module defined by N := im(M ⊗B R → M ⊗B K → N∗).
Since the R-module N is a subsheaf of the K-module N∗, we see that N is torsion
free and thus flat.) Finally, since Q if flat over R and SpecR is connected, its Hilbert
polynomial is constant.

Remark 1.4.4. For HilbPX/S , the argument translates into the following: the
unique extension of a closed subscheme Z∗ ⊂ XK is the scheme-theoretic image
Z = im(Z∗ → XK ↪→ XR). The scheme Z is flat over R as all associated points live
over the generic point of SpecR.

1.4.3 Projectivity
The proof of the main theorem of this section (Theorem 1.1.3) follows from the
following proposition.

Proposition 1.4.5. Let π : X → S be a strongly projective morphism of noetherian
schemes, OX(1) be a relatively ample line bundle on X, and F be a coherent sheaf on
X which is the quotient of π∗(W )(q) for a vector bundle W on S and an integer q.
For d≫ 0, the morphism QuotPX/S(F )→ GrS(P (d), π∗F (d)) is a closed immersion.

Proof. For d≫ 0, the morphism

QuotPX/S(F )→ GrS(P (d), π∗F (d))
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is a locally closed immersion of schemes defines over S (Proposition 1.4.1). Since
QuotPX/S(F ) is proper over S (Proposition 1.4.2), this map is a closed immer-
sion. Since GrS(P (d), π∗F (d)) is strongly projective over S (Theorem 1.1.1), so is
QuotPX/S(F ).

Consider the diagram

X ×S QuotPX/S(F )

p1

xx

p2

��

X

π

&&

QuotPX/S(F )
� � //

��

GrS(P (d), π∗F (d))

g

uuS

As QuotPX/S(F ) represents the Quot functor, there is a universal quotient p∗1F →
Quniv on X ×S QuotPX/S(F ). For d ≫ 0, we also have the universal quotient
g∗π∗F (d)→ Quniv on GrS(P (d), π∗F (d)) and a composition of closed immersions

QuotPX/S(F )
� � // GrS(P (d), π∗F (d))

� � // P(
∧P (d)

(π∗F (d)))

[FT ↠ Q] � // [πT,∗FT (d)→ πT,∗Q(d)] � //
[∧P (d)

(πT,∗FT (d))→
∧P (d)

(πT,∗Q(d))
]

The pullback of O(1) on P(
∧P (d)

(π∗F (d))) pulls back to the Plücker line bundle
det(Quniv) (Corollary 1.2.11) which in turn pulls back to det

(
p2,∗(Quniv(d))

)
on

QuotPX/S(F ). We obtain:

Corollary 1.4.6. For d≫ 0, the line bundle det
(
p2,∗(Quniv(d))

)
is very ample on

QuotPX/S(F ).

Exercise 1.4.7.
(a) Show that if S is a noetherian scheme and V is a coherent sheaf on S, then

functor GrS(k, V ) defined analogously to Theorem 1.1.1 is represented by a
scheme projective (but not necessarily strongly projective) over S.

(b) Show that if X → S is a projective morphism of noetherian scheme and F is
a coherent sheaf on X flat over S, then QuotPX/S(F )→ GrS(P (d), π∗F (d)) is
well-defined for d≫ 0 and QuotPX/S(F ) is projective over S.

Remark 1.4.8 (Generalizations). Suppose that π : X → S is strongly quasi-
projective (rather than strongly projective) morphism of noetherian schemes, i.e.,
there is a locally closed immersion X ↪→ P(V ) where V is a vector bundle on S.
Also let OX(1) be a relatively ample line bundle, let F be a coherent sheaf on X
which is a quotient of π∗(W )(q) for a vector bundle W on S and integer q, and let
P ∈ Q[z] is a polynomial. We modify the Hilb and Quot functors as follows:

HilbPX/S : Sch/S → Sets

(T → S) 7→

 subschemes Z ⊂ XT flat, proper, and finitely
presented over T such that Zt ⊂ Xt

has Hilbert polynomial P for all t ∈ T

 ,
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QuotPX/S(F ) : Sch/S → Sets

(T → S) 7→


quasi-coherent quotients FT → Q on XT

of finite presentation which are flat and have
proper support over T such that Q|Xt

on Xt

has Hilbert polynomial P for all t ∈ T

 .

Then HilbPX/S and QuotPX/S(F ) are represented by strongly quasi-projective schemes
over S; see [FGAIV, §4], [AK80] or [Nit05, §5.6]

If X → S is merely a separated morphism of noetherian schemes, then one can
define functors Hilb(X/S) and Quot(F/X/S) as above dropping the condition on
the Hilbert polynomial P . These functors are representable by algebraic spaces
separated and locally of finite type over S; see [Art69b, Thm. 6.1] and [SP, Tag
09TQ]. Examples of Hironaka produce smooth proper (but not projective) 3-folds
X over C such that HilbPX/S is not a scheme.

1.4.4 Chow varieties and other variants
The Chow variety Chowr,d(Pn) parameterizes effective cycles on Pn of dimension r
and degree d. The Chow variety can be constructed by using the Chow form Chowα
of an effective cycle α. If α =

∑
i ai[Xi], then Chowα =

∏
iChow

ai
Xi

. Thus it suffices
to define the Chow form for an integral closed subscheme X ⊆ Pnk of dimension r and
degree d. Letting Pn,∨ denote the dual projective space parameterizing hyperplanes
H ∈ Γ(Pn,O(1)), define the locus

{(H0, . . . ,Hr) | X ∩H0 ∩ · · · · · ·Hr ̸= ∅} ⊂ (Pn,∨)r+1. (1.4.9)

As this is a divisor, there is a polynomial in the variables ui,j with 0 ≤ i ≤ r and
0 ≤ j ≤ n

ChowX(uij) ∈ Symd(kn+1)⊗(r+1),

which is homogenous of degree d in ui,0, . . . , ui,n for each i, such that ChowX(H0, . . . ,Hr) =
0 if and only if X ∩H0 ∩ · · · · · ·Hr ̸= ∅.

The Chow variety Chowr,d(Pn) is the closure of the set of Chow forms of all
effective cycles on Pn of dimension r and degree d. The main existence theorem in
characteristic 0 asserts that

– Chowr,d(Pn) is projective and seminormal (i.e. every finite bijective mor-
phism Y → Chowr,d(Pn) inducing isomorphisms on field extensions is an
isomorphism),

– Chowr,d(Pn) represents a functor on the category of seminormal k schemes: for
a seminormal k scheme S, Mor(S,Chowr,d(Pn)) are identified with well-defined
families of nonnegative, proper, algebraic cycles on PnS of dimension r and
degree d, and

– for a polynomial P (t) = d· t
r

r!+(lower terms), there is a Hilbert–Chow morphism

HilbP (Pn)sn → Chowr,d(P
n),

from the seminormalization of HilbP (Pn), taking a closed subscheme Z ⊂ Pn

to the cycle ai[Zi] were the Zi are the reduced scheme structures of the ith
irreducible components and ai is its multiplicity of Zi at its generic point.
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See [CW37], [HP47, §X.6-8], and [Sam55], or the modern treatments in [Kol96,
I.3.21, I.6.1] and [GIT, §5.4]. In our sketch of the GIT construction of Mg, we will
utilize the Chow variety for curves in Pn (i.e., the r = 1 case), in which case the
statements are slightly easier to prove.

Example 1.4.10 (Additional variants). There are further variants and general-
izations. For instance, [Vis91] constructs a Hilbert stack parameterizing finite and
unramified morphisms to a separated scheme X. Alexeev and Knutson’s moduli
of branch varieties [AK10] parameterizes finite morphisms from a geometrically
reduced proper scheme to a separated scheme X .

Exercise 1.4.11 (Schemes of morphisms). For projective morphisms X → S and
Y → S of noetherian schemes, consider the functor

MorS(X,Y ) : Sch/S → Sets

(T → S) 7→ MorT (XT , YT )

assigning an S-scheme T to the set of T -morphisms XT → YT . By using a suitable
Hilbert scheme HilbPX×SY/X parameterizing graphs X ⊂ X ×S Y of morphisms
X → Y , show that MorS(X,Y ) is representable by a projective scheme over S. Can
we weaken the hypothesis on X and Y ?

1.5 An invitation to the geometry of Hilbert schemes

The art of doing mathematics consists in finding that special case which
contains all the germs of generality.

Hilbert

Hilbert schemes are some of the most well-studied algebraic varieties, with
perhaps only Mg and M ss

r,d(C) having received greater attention over the last 50
years. As such, we will not attempt a systematic exposition, but merely offer a few
interesting examples and features.

1.5.1 First examples
In this section, we work over an algebraically closed field k. The Hilbert polynomial
P (z) =

∑d
i=0 aiz

i of a projective scheme X ⊂ Pn encodes invariants of X. For
instance, dimX is the degree d of P and degX is the normalized leading coefficient
d!ad. Riemann–Roch implies that P (z) = deg(C)z + (1 − g) for a smooth curve
C ⊂ Pn and P (z) = 1

2 (zH · (zH−K))+(1−pa) for a smooth surface S ⊂ Pn, where
H is a hyperplane divisor, K is the canonical divisor, and pa = 1 − χ(OS) is the
arithmetic genus. In arbitrary dimension, Hirzebruch–Riemann–Roch implies that
P (z) =

∫
X
ch(OX(z))td(X), where ch(OX(z)) is the Chern character and td(X) the

Todd class.

Example 1.5.1 (Hypersurfaces and linear subspaces). A hypersurface H ⊂ Pn of
degree d has Hilbert polynomial

P (z) = χ(OPn(z))− χ(OPn(z − d)) =
(
n+ z

n

)
−
(
n+ z − d

n

)
(coming from the exact sequence 0 → OPn(−d) → OPn → OH → 0). We claim
that HilbPPn

∼= P(Γ(Pn,O(d))). We encourage the reader to show this and in
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particular establish that every subscheme Z ⊂ Pn with Hilbert polynomial P is
a hypersurface. Similarly, a linear subspace L ⊂ Pn of dimension k has Hilbert
polynomial P (z) =

(
z+k
k

)
and HilbPPn = Gr(k + 1, n+ 1).

Example 1.5.2 (Hilbert scheme of points on a curve). If C is a smooth projec-
tive curve, then the Hilbert scheme of n points HilbnC (viewing n as the constant
polynomial) is a smooth irreducible projective variety isomorphic to the symmetric
product

Symn C := C × · · · × C︸ ︷︷ ︸
n

/Sn,

where Sn acts by permuting the factors. The quotient exists as a projective variety
since C × · · · × C is projective; see Exercise 4.2.9.

Example 1.5.3 (Hilbert scheme of points on a surface). If S is a smooth irreducible
projective surface, then the Hilbert scheme of n points HilbnS is a smooth irreducible
projective variety [Fog68]. See also [Nak99a] and [Mac07, §4]. There is a birational
morphism

HilbnS → Symn(S) := S × · · · × S︸ ︷︷ ︸
n

/Sn,

of projective varieties. The symmetric product Symn(S) is not smooth for n > 1 and
this provides a resolution of singularities. For an unordered collection of (possibly
non-distinct) points (p1, . . . , pn) ∈ Symn(S), the fiber consists of all possible scheme
structures on {p1, . . . , pn} of length n.

The case of n = 2 is the first interesting case, as Hilb1S = S. For any point
p ∈ S, there are many non-reduced scheme structures of length 2 supported at
p. They are parameterized by P1: k[x, y]/(x2, xy, y2, ay − bx) (with coordinates
such that p1 = p2 = 0) parameterized by their “tangent direction" [a : b] ∈ P1.
In this case, Hilb2S → Sym2(S) is the blowup of the diagonal S ↪→ Sym2(S) given
by p 7→ (p, p). In fact, for n > 2, the map HilbnS → Symn(S) is a blowup along
some ideal sheaf [Hai98] but the description of the ideal sheaf is more complicated.
When X is of arbitrary dimension, HilbnX is smooth at (reduced) closed subschemes
Z ⊂ X consisting of n distinct smooth points of X. If X is reduced, there is an open
subscheme of HilbnX dimension n dim(X) parameterizing n distinct smooth points.
Another result of Fogarty is that HilbnX is connected as long as X is connected
[Fog68]. Moreover, for every projective scheme X, there is an irreducible component
HilbnX , called the “good component,” that can be identified with the blowup of
Symn(X) along an ideal sheaf [ES14].

Example 1.5.4 (Twisted cubics). The Hilbert scheme Hilb3z+1
P3 consists of the

union of two smooth rational irreducible components H and H ′ of dimensions 12
and 15 intersecting transversely along a smooth rational subvariety of dimension 11
[PS85]. The locus H is the closure of the locus H0 consisting of twisted cubics, i.e.,
rational smooth curves in P3 of degree 3. Each twisted cubic can be represented by a
map P1 → P3 given by the line bundle OP1(3) and a choice of basis of Γ(P1,OP1(3)),
and this representation is unique up to automorphisms of P1. All such curves are
projectively equivalent, i.e., differ by an automorphism of P3, so we see that H0

is identified with the homogeneous space Aut(P3)/Aut(P1) = SL4 /SL2, which is
smooth and irreducible of dimension 12. The locus H0 is not proper as it includes
families such as P1 ↪→ P3 given by [x, y] 7→ [x3, x2y, xy2, ty3] parameterized by t ∈ A1

whose limit is a singular curve C0 supported on a nodal cubic in V (w) = P2 (where
w is the 4th coordinate) but with an embedded point at the node; see [Har77, Ex.
9.8.4].
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The locus H ′ is the closure of the locus H ′
0 consisting of subschemes C ⨿ {p}

where C is a smooth cubic curve contained in a hyperplane H and p ∈ P3 \ C. To
count the dimension, observe that the choice of hyperplane H ∈ P(H0(P3,O(1)))
is given by 3 parameters, the choice of plane cubic C ∈ P(H0(H,OH(3))) is given
by 9 parameters and the point p ∈ P3 \ C is given by 3 parameters. The locus H ′

0

is smooth and irreducible of dimension 15. Again, the locus H ′
0 is not proper and

its closure contains the limits of for instance degenerating the point p to lie on the
curve whose limit can be curves like C0.

The intersection H ∩H ′ consists of plane singular cubic curves with an embedded
point at the singular point. This locus contains curves such as C0 above but it also
contains even more degenerate curves such as a triple line with an embedded point.
Every curve C ∈ H ∩H ′ is in fact projectively equivalent to the curve defined by
V (xz, yz, z2, q(x, y, w)) where q(x, y, w) is a homogeneous cubic polynomial with a
singular point at (0, 0, 1). This depends on 11 parameters.

1.5.2 Geometric properties
Exercise 1.5.5 (Local properties). Let X be a projective scheme over a field k and
F be a coherent sheaf on X.

(a) Let p ∈ QuotPX/k(F ) be the point corresponding to a quotient Q = F/K. Show
that TpQuotPX/k(F ) ∼= HomOX

(K,Q). This generalizes the exercise computing
the tangent space of the Grassmannian (Exercise 1.2.8).

(b) Conclude that if p ∈ HilbPX/k is a point corresponding to a closed subscheme
Z ⊂ X defined by a sheaf of ideals I, then TpHilbPX/k

∼= H0(Z,NZ/X)

where NZ/X is the normal sheaf HomOZ
(IZ/I

2
Z ,OZ). (This recovers Proposi-

tion C.1.3.)

Non-emptiness. The Hilbert scheme HilbPPn is non-empty if and only if the Hilbert
polynomial P can be written as as

P (z) =

(
z + λ1 − 1

λ1 − 1

)
+

(
z + λ2 − 2

λ2 − 1

)
+ · · ·+

(
z + λr − r
λr − 1

)
, (1.5.6)

integers λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1. This is a result of Hartshorne [Har66b, Cor. 5.7].
The necessity of this condition was already mentioned in Remark 1.3.14 in the
context of Gotzmann’s bounds on regularity.

Connectedness. Hartshorne’s Connectedness Theorem asserts that the Hilbert
scheme HilbPPn is connected for every Hilbert polynomial P [Har66b]. More generally,
for every connected noetherian scheme S, HilbPPn

S/S
is connected. The strategy of the

argument is to show that every closed subscheme Z ⊂ Pn degenerates to a subscheme
V (I) defined by a monomial ideal. This reduces the question to the combinatorial
question of connecting any two monomial ideals by a family over A1. This turns out
to be a purely deformation and combinatorial question, or as Hartshorne writes: “It
also appears that the Hilbert scheme is never actually needed in the proof.” See also
[Mac07, §3].

Murphy’s Law.

Murphy’s Law for Hilbert Schemes: There is no geometric possibility so
horrible that it cannot be found generically on some component of the
Hilbert scheme.

[HM98, p.18]
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The first pathology was exhibited by Mumford: there is an irreducible compo-
nent of Hilb14z−23

P3 which is generically non-reduced [Mum62]. Ellia—Hirschowitz—
Mezzetti show that the number of irreducible components in Hilbaz+bP3 is not bounded
by a polynomial in a, b [EHM92]. Murphy’s Law was made precise by Vakil [Vak06]:
for every scheme X finite type over Z and point x ∈ X, there exists a point
[Z ⊂ Pn] ∈ HilbPPn of some Hilbert scheme such that (X,x) and (HilbPPn , [Z ⊂ Pn])
are smooth-locally isomorphic, i.e., their complete local rings become isomorphic
after appending power series rings. In fact, one can take [Z ⊂ Pn] to be a smooth
curve! Many other moduli spaces satisfy Murphy’s Law: Kontsevich’s moduli space
of maps, moduli of canonically polarized smooth surfaces, moduli of curves with
linear systems, and the moduli space of stable sheaves.

Smoothness. Despite Murphy’s Law, Hilbert schemes are surprisingly often smooth.
We have seen before that the Hilbert scheme of points on a smooth surface is smooth.
A recent theorem of Skjelnes–Smith [SS20] gives necessary and sufficient conditions
for the Hilbert scheme HilbPPn to be smooth in terms of the partition λ = (λ1, . . . , λr)
defining P as in (1.5.6).
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Chapter 2

Sites, sheaves, and stacks

If there is one thing in mathematics that fascinates me more than anything
else (and doubtless always has), it is neither ‘number’ nor ‘size,’ but
always form.

Grothendieck

This chapter introduces the core categorical constructions—sites, sheaves, and
stacks—necessary to define algebraic spaces and stacks. The chapter begins with an
exposition of descent theory, which is our main tool to verify the axioms of a sheaf
and stack. Grothendieck introduced stacks in [FGAI, §A.1] and [SGA1, §6] as a way
to package objects, e.g., quasi-coherent sheaves, satisfying fpqc descent.

2.1 Descent theory

It is hard to overstate the importance of descent in moduli theory. The central
idea behind descent is strikingly simple, and a special case is already familiar to
you: quasi-coherent sheaves, morphisms of schemes, and schemes themselves can
be constructed locally on a Zariski cover, and moreover most of their properties
can also be checked Zariski locally. Indeed, a central technique in the development
of scheme theory is to reduce to the case of affine schemes, and then apply results
from commutative algebra. Descent theory implies that each of these objects (quasi-
coherent sheaves, morphisms of schemes, and schemes) can be constructed not only
Zariski locally but étale locally and moreover that their properties can be verified
étale locally. In fact, much of descent theory holds not just étale locally, but even
fppf or fpqc locally. This allows us to prove statements about algebraic stacks by
reducing to the case of schemes (or even affine schemes).

Descent theory was originally developed by Grothendieck in [FGAI], [SGA1, §6],
and [EGA, §IV] as a grand generalization of Galois descent. Applications of descent
theory extend far beyond moduli theory. For instance, since field extensions are
faithfully flat, one can reduce properties of a scheme over a field k to the case of an
algebraically closed field. Similarly, since the map A→ Â of a local noetherian ring
to its completion is faithfully flat, properties of A can be reduced to properties of
its completion. As there are already wonderful expositions on descent theory such
as [BLR90, §6], [Vis05], and [SP, Tag 0238], our treatment will sometimes be short
on details.
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2.1.1 Descending quasi-coherent sheaves

The following key algebraic fact is the basis for descent for quasi-coherent sheaves.

Proposition 2.1.1. If ϕ : A→ B is a faithfully flat ring map, then

0 // A
ϕ
// B

b 7→b⊗1
//

b 7→1⊗b
// B ⊗A B

is exact (i.e., an equalizer sequence). More generally, if M is an A-module,

0 // M
m 7→m⊗1

// M ⊗A B
m⊗b 7→m⊗b⊗1

//

m⊗b 7→m⊗1⊗b
// M ⊗A B ⊗A B (2.1.2)

is exact.

Proof. Note that A→ B and M →M ⊗A B are necessarily injective by Faithfully
Flat Equivalences (A.2.19). Since A→ B is faithfully flat, the sequence (2.1.2) is
exact if and only if

M ⊗A B
m⊗b′ 7→m⊗1⊗b′

// M ⊗A B ⊗A B
m⊗b⊗b′ 7→m⊗b⊗1⊗b′

//

m⊗b⊗b′ 7→m⊗1⊗b⊗b′
// M ⊗A B ⊗A B ⊗A B

is exact. The above sequence can be rewritten as

M ⊗A B
x 7→x⊗1

// (M ⊗A B)⊗B (B ⊗A B)
x⊗y 7→x⊗y⊗1

//

x⊗y 7→x⊗1⊗y
// (M ⊗A B)⊗B (B ⊗A B)⊗B (B ⊗A B)

which is precisely sequence (2.1.2) applied to the ring map B → B ⊗A B, defined by
b 7→ 1⊗ b, and the B-module M ⊗A B. Since B → B ⊗A B has a left inverse given
by b⊗ b′ 7→ bb′, we are reduced to proving the proposition when ϕ : A → B has a
left inverse s : B → A with s ◦ ϕ = idA. Let x =

∑
imi ⊗ bi ∈M ⊗A B such that∑

i

mi ⊗ bi ⊗ 1 =
∑
i

mi ⊗ 1⊗ bi ∈M ⊗A B ⊗A B.

Applying idM ⊗ idB ⊗s : M ⊗A B ⊗A B → M ⊗A B ⊗A A ∼= M ⊗A B to this
identity shows that x =

∑
imi ⊗ ϕ(s(bi)) =

∑
i ϕ(s(bi))mi ⊗ 1 is in the image of

M →M ⊗A B.

Exercise 2.1.3. Denoting (B/A)⊗n as the n-fold tensor product B ⊗A · · · ⊗A B,
show that the exact sequence (2.1.2) extends to a long exact sequence

0→M
d−→M ⊗A (B/A)⊗1 d−→M ⊗A (B/A)⊗2 d−→ · · ·

with differentials

d : M ⊗A (B/A)⊗n →M ⊗A (B/A)⊗(n+1)

m⊗ b1 ⊗ · · · ⊗ bn 7→
n+1∑
i=0

(−1)im⊗ b1 ⊗ · · · ⊗ bi−1 ⊗ 1⊗ bi+1 ⊗ · · · ⊗ bn.
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Recall from Definition A.2.20 that a morphism of schemes f : S′ → S is fpqc
if f is faithfully flat and every quasi-compact open subset of Y is the image of
quasi-compact open subset of X. It is always instructive to keep in the mind the
special case where f is the map S′ = ⨿iUi → S induced from a Zariski cover {Ui} of
S; in the case, the fiber product S′×S S′ is ⨿i,jUi∩Uj and the higher fiber products
afford similar descriptions.

Proposition 2.1.4 (Fpqc Descent for Quasi-Coherent Sheaves). Let f : S′ → S be
an fpqc morphism of schemes.

(1) Let F and G be quasi-coherent OS-modules. Let p1, p2 : S′ ×S S′ ⇒ S′ be
the two projections and q : S′ ×S S′ → S be the composition f ◦ pi. Then the
sequence

HomOS
(F,G)

f∗
// HomOS′ (f

∗F, f∗G)
p∗1 //

p∗2

// HomOS′×SS′ (q
∗F, q∗G)

is exact.
(2) Let H be a quasi-coherent OS′-module and α : p∗1H → p∗2H be an isomorphism

of OS′×SS′-modules satisfying the cocycle condition p∗23α ◦ p∗12α = p∗13α on
S′ ×S S′ ×S S′. Then there exists a quasi-coherent OS-module G and an
isomorphism ϕ : H → f∗G such that p∗1ϕ = p∗2ϕ ◦ α on S′ ×S S′. The data
(G,ϕ) is unique up to unique isomorphism.

The following diagram may help to internalize (2):

p∗23α ◦ p∗12α = p∗13α p∗1H
α−→ p∗2H H G

S′ ×S S′ ×S S′
p12 //

p23 //
p13 // S′ ×S S′ p1 //

p2 // S
′ f

// S.

The cocycle condition p∗23α ◦ p∗12α = p∗13α and the equality p∗1ϕ = p∗2ϕ ◦ α should
be understood as the commutativity of

p∗12p
∗
1H

p∗12α // p∗12p
∗
2H

p∗13p
∗
1H p∗13α

))

p∗23p
∗
1Hp∗23α

uu

p∗13p
∗
2H p∗23p

∗
2H

and

p∗1H
p∗1ϕ //

α

��

p∗1f
∗G

p∗2H
p∗2ϕ // p∗2f

∗G.

Proposition 2.1.4 can be reformulated as an equivalence of categories

QCoh(S)
∼→ QCoh(S′ → S), G 7→ (f∗G, can), (2.1.5)

where QCoh(S′ → S) is the category of descent datum for S′ → S, whose objects
are pairs (H,α) consisting of a quasi-coherent OS′-module H and an isomorphism
α : p∗1H → p∗2H satisfying the cocycle condition, and a morphism (H ′, α′)→ (H,α)
is a morphism β : H ′ → H such that α ◦ p∗1β = p∗2β ◦ α′. Note that if H = f∗G
for G ∈ QCoh(S), then there a canonical isomorphism can: p∗1H

∼→ p∗2H since the
compositions f ◦ p1 and f ◦ p2 are equal. In yet other language, this result asserts
that every descent data (H,α) for S′ → S is effective, i.e., in the essential image of
(2.1.5). Finally, we will see shortly that this is equivalent to the statement that the
prestack QCoh parameterizing quasi-coherent sheaves is a stack in the fpqc topology
(Example 2.5.9).
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Proof. If S′ = SpecA′ and S = SpecA are affine, write F = M̃ and G = Ñ .
Proposition 2.1.1 implies that 0→ N → N ⊗A A′ ⇒ N ⊗A A′ ⊗A A′ is exact. Part
(1) follows from applying HomA(M,−) and using tensor-hom adjunction. For (2),
writing H = M̃ ′, we define the A-module M as the equalizer

0 // M // M ′
m7→m⊗1

//

m7→α(m⊗1)
// M

′ ⊗A A′

Tensoring this sequence with M ′ expresses M ⊗AA′ as the equalizer of M ′⊗AA′ ⇒
M ′ ⊗A A′ ⊗A A′. On the other hand, the key algebra result of Proposition 2.1.1
shows that M ′ is identified with the same equalizer. This gives an isomorphism
ϕ : M ′ →M ⊗A A′ of A′-modules and one checks that p∗1ϕ = p∗2ϕ ◦ α.

The general case is Zariski local on S so we may assume that S is affine. Since f
is fpqc, S is the image of a quasi-compact open subset U ′ ⊂ S′. By choosing a finite
affine cover {U ′

i} of U ′, we can reduce to the case of a faithfully flat map ⨿iU ′
i → S

of affine cases (details left to the reader), where we have already verified the result.
It is, in fact, a general result (see Exercise 2.5.5) that to verify properties (1)–(2) for
an fpqc morphism S′ → S, it suffices to verify them for maps ⨿iUi → S induced
by a Zariski cover {Ui} of S (which we already know) and for a faithfully flat map
S′ → S of affine schemes (which we just verified). See also [FGAI, Thm. 1, p. 315],
[BLR90, Thm. 6.4], [Vis05, Thm. 4.23], and [SP, Tag 023T].

Remark 2.1.6. It turns out that descent for modules holds for a class of ring maps
A→ B larger than just faithfully flat maps. It holds for universally injective maps
(see Definition A.2.22), and remarkably the converse is true! More precisely, A→ B
is universally injective if and only if the functor to the category of descent data

ModA →
{
(N,α)

∣∣∣∣ N ∈ ModB , α : N ⊗B,p1 (B ⊗A B)
∼→ N ⊗B,p2 (B ⊗A B)

satisfying the cocycle condition p∗23α ◦ p∗12α = p∗13α

}
.

M 7→ (M ⊗A B, can)

is an equivalence of categories. See [Mes00] or [SP, Tag 08XA].

2.1.2 Descending morphisms

Proposition 2.1.7 (Fpqc Descent for Morphisms). Let X be a scheme and f : S′ →
S be an fpqc morphism of schemes. If g : S′ → X is a morphism such that p1 ◦ g =
p2 ◦ g, then there exists a unique morphism h : S → X filling in the commutative
diagram

S′ ×S S′
p1 //

p2
// S

′ f
//

g
  

S

h

��

X.

In other words, an fpqc morphism f : S′ → S is an effective epimorphism in the
category of schemes, i.e., for every scheme X, the sequence

Mor(S,X)→ Mor(S′, X)⇒ Mor(S′ ×S S′, X), (2.1.8)

is exact; being only an epimorphism translates to the injectivity of the first map.
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Proof. The affine case is straightforward. Writing S′ = SpecA′, S = SpecA, and
X = SpecR, then Proposition 2.1.1 yields that A→ A′ ⇒ A′ ⊗A A′ is exact, and
applying Hom(R,−) shows that Hom(R,A)→ Hom(R,A′)⇒ Hom(R,A′ ⊗A A′) is
also exact, which translates to the exactness of (2.1.8) under the duality between
affine schemes and rings. To reduce to the affine case, observe that question is local
on S so we may assume that S is affine. As S′ → S is fpqc, there is a quasi-compact
open subset U ′ ⊂ S′ surjecting onto S. After choosing a finite affine covering {U ′

i}
of U ′, we can replace S′ with the affine scheme ⨿iU ′

i (details left to the reader).
Reducing to the case that X is affine is a little harder. We first observe that

|S′ ×S S′|⇒ |S′| → |S| (2.1.9)

is a coequalizer diagram of sets. Indeed, we already know that |S′| → |S| is surjective.
If s′1, s′2 ∈ |S′| have the same image in S, then since |S′ ×S S′| → |S′| ×|S| |S′| is
surjective, there exists a point q ∈ |S′ ×S S′| with p1(q) = s′1 and p2(q) = s′2. As
(2.1.9) is a coequalizer sequence, there exists a map |h| : |S| → |X| of sets such that
|g| = |h| ◦ |f |. Letting U ⊂ X be an open affine subset, then V := |h|−1(U) is a
subset of S such that f−1(V ) = g−1(U) is an open subset of S′. Since S′ → S is
submersive (i.e., S has the quotient topology) by Exercise A.4.9, it follows that
V ⊂ S is open. Since f−1(V ) → V is also fpqc, we may assume that X is affine.
See also [FGAI, Thm. 2, p. 317], [BLR90, Thm. 6(a)], [Vis05, Thm. 2.55], and [SP,
Tag 023Q].

The following generalization also holds.

Corollary 2.1.10.
(1) If f : S′ → S is an fpqc morphism of schemes over a scheme T and X is an

S-scheme, then

MorT (S,X)→ MorT (S
′, X)⇒ MorT (S

′ ×S S′, X), (2.1.11)

is exact.
(2) If f : S′ → S is an fpqc morphism of schemes and X and Y are schemes over

S, then

MorS(X,Y )→ MorS′(XS′ , YS′)⇒ MorS′′(XS′′ , YS′′),

is exact where S′′ = S′ ×S S′.

Proof. For (1), it follows from Proposition 2.1.7 that MorT (S,X) → MorT (S
′, X)

is injective and that if g : S′ → X is an T -morphism such that p1 ◦ g = p2 ◦ g,
there exists a map h : S → X of schemes with g = h ◦ f . Letting pS : S → T ,
pS′ : S′ → T , and pX : X → T denote the structure morphisms, observe that pX ◦ h
and pS are elements of Mor(S, T ) mapping to pX ◦ g = pS′ ∈ Mor(S′, T ). By
Proposition 2.1.7, the inclusion Mor(S, T )→ Mor(S′, T ) is injective and we conclude
that h : S → X is a T -morphism. Part (2) follows from applying (1) to the fpqc
morphism XS′ → X.

2.1.3 Descending schemes
Proposition 2.1.12 (Fpqc Descent for Open/Closed Subschemes). Let f : S′ → S
be an fpqc morphism of schemes. If Z ′ ⊂ S′ is a closed (resp., open) subscheme such
that p−1

1 (Z ′) = p−1
2 (Z ′) as subschemes of S′ ×S S′, then there exists a closed (resp.,

open) subscheme Z ⊂ S such that Z ′ = f−1(Z).
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Proof. If Z ′ ↪→ S′ is a closed immersion defined by an ideal sheaf IZ′ ⊂ OS′ , then
Fpqc Descent for Quasi-Coherent Sheaves (2.1.4)implies that IZ′ descends to a
quasi-coherent sheaf IZ on S and the inclusion IZ′ ↪→ OS′ descends to an inclusion
IZ ↪→ OS . It follows that Z ′ descends to closed subscheme Z ⊂ S defined by IZ .
The case of an open immersion is handled by passing to the reduced complement.

For the following results, it will be convenient to denote f∗X as the base change
of X → S by a morphism f : S′ → S.

Proposition 2.1.13 (Fpqc Descent for Affine/Quasi-affine Schemes). Let f : S′ → S
be an fpqc morphism of schemes. If X ′ → S′ is an affine (resp., quasi-affine)
morphism and α : p1

∗(X ′)
∼→ p∗2(X

′) is an isomorphism over S′ ×S S′ satisfying
p∗23α◦p∗12α = p∗13α, then there exists an affine (resp., quasi-affine) morphism X → S
of schemes and an isomorphism ϕ : X ′ → f∗(X) over S′ such that p∗1ϕ = p∗2ϕ ◦ α.

In other words, there exists dotted arrows completing the diagram

p∗23α ◦ p∗12α = p∗13α p∗1X
′ α−→ p∗2X

′

��

X ′

��

// X

��

S′ ×S S′ ×S S′
p12 //

p23 //
p13 // S′ ×S S′ p1 //

p2 // S
′ f

// S.

Proof. If X ′ → S′ is affine, we can write X ′ = SpecX A′ for a quasi-coherent sheaf
A′ of OS′-algebras. Fpqc Descent for Quasi-Coherent Sheaves (2.1.4) allows us
to first descend A′ to a quasi-coherent sheaf A on Y , and then to descend the
multiplication map A′ ⊗OS′ A′ → A′ to a map A ⊗OS

A → A, which by descent
will necessarily satisfy the axioms making A into a quasi-coherent OS-algebra.
It follows that X ′ → S′ descends to the affine morphism X := SpecS A → S.
The case of quasi-affine morphisms is handled by using the canonical factorization
X ′ ↪→ SpecS′ g′∗OX′ → S′ into an open immersion followed by an affine morphism,
and then combining the affine case above with Fpqc Descent for Open Subschemes
(2.1.12). See also [BLR90, Thm. 6.6] and [Vis05, Thm. 4.33].

Theorem 2.1.14 (Fppf Descent for Separated and Locally Quasi-finite Schemes).
Let f : S′ → S be an fppf morphism of schemes. If X ′ → S′ is a separated and
locally quasi-finite morphism of schemes and α : p∗1(X ′)

∼→ p∗2(X
′) is an isomorphism

over S′ ×S S′ satisfying p∗23α ◦ p∗12α = p∗13α, then there exists a separated and locally
quasi-finite morphism X → S of schemes and an isomorphism ϕ : X ′ → f∗(X) over
S′ such that p∗1ϕ = p∗2ϕ ◦ α.

Proof. Our strategy is to reduce to Fpqc Descent for Quasi-affine Morphisms (2.1.13).
For each quasi-compact open subset U ′ ⊂ X ′, the composition U ′ ↪→ X ′ → S is quasi-
affine by Zariski’s Main Theorem (A.7.3). Since S′ → S is fppf, so is p2 : S′ ×S S′,
and hence the image V ′ := p2(α(p

∗
1U

′)) is an open subset of X ′. The image V ′ is
also quasi-compact and contains U ′, and moreover α restricts to an isomorphism
p∗1(V

′)
∼→ p∗2(V

′) satisfying the cocycle condition. As the map V ′ → S′ is quasi-
affine, Fpqc Descent for Quasi-affine Morphisms implies that V ′ → S′ descends to a
quasi-affine morphism V → S. Covering X ′ with quasi-compact open subsets U ′

i ,
the subsets V ′

i := p2(α(p
∗
1U

′
i)) also cover X ′, and since each V ′

i descends to a scheme
Vi quasi-affine over S, we may glue the schemes Vi to a scheme X over S which
pulls back to X ′. See also [Mur95, Prop. 1], [SGA3II, Lem. X.5.4], [GR71, proof of
Lem. 5.7.2], and [SP, Tag 02W7].
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We will often apply the above result in the form of Proposition 2.3.16 to show
that a given sheaf in the big étale or fppf topology is representable by a scheme.

Example 2.1.15 (Non-effective descent). An arbitrary morphism X ′ → S′ of
schemes with descent data along an fppf (or even étale) morphism S′ → S may
not descend to a morphism X → S of schemes. Raynaud constructed a normal
noetherian local ring A of dimension 2, an étale cover S′ → S = SpecA and a family
C′ → S′ of smooth genus 1 curves that does not descend to a family C → S [Ray70,
XIII 3.2]. There is also an example of a DVR R, an étale cover S′ → S = SpecR,
and a family C′ → S′ of nodal genus 1 curves with smooth generic fiber that does not
descend to a family C → S [BLR90, § 6.7], and an example of a projective surface S,
an étale cover S′ → S, and a family C′ → S′ of nodal genus 0 curves with smooth
generic fiber that does not descend to a family C → S [Ful10, Ex. 2.3].

On the other hand, an map X ′ → S′ of schemes with descent data along an
fppf cover S′ → S always descends to a morphism X → S of algebraic spaces (see
Theorem 3.4.11 for the étale case and Corollary 6.2.4 in general). In other words, the
prestack AlgSp, whose objects over a scheme S are morphisms X → S of algebraic
spaces, is a stack in the fppf topology (see Exercise 4.4.15).

Effective descent does, however, hold in some other settings. For instance, it holds
for pairs (X ′ → S′,L′), where X ′ → S′ is a quasi-compact morphism of schemes
and L′ is a line bundle on X ′ relatively ample over S′ (see [BLR90, Thm. 6.7] and
[Vis05, Thm. 4.38]).

2.1.4 Descending properties
Proposition 2.1.16 (Fpqc Local Properties of Quasi-Coherent Sheaves). Let
f : S′ → S be an fpqc morphism of schemes.
(1) A homomorphism F → G of quasi-coherent OS-module is an isomorphism

(resp., injective, surjective) if and only if f∗F → f∗G is.
(2) A quasi-coherent OS-module F is of finite type (resp., of finite presentation,

flat, a vector bundle, a line bundle) if and only if f∗G is. If S and S′ are
noetherian, then the same holds for coherence.

(3) A quasi-coherent OX-module F on an S-scheme X is flat over S if and only
if the pullback of F to X ×S S′ is flat over S′.

In other words, each of these properties is fpqc local on S.

Proof. Part (1) reduces to the algebra statement: if A→ A′ is a faithfully flat ring
map, an A-module map M → N is an isomorphism (resp., injection, surjection) if
and only if M ⊗A A′ → N ⊗A A′ is. This follows directly from the faithful exactness
of −⊗AA′. Part (2) reduces to: if A→ A′ is faithfully flat, an A-module M is finitely
generated (resp., finitely presented, flat, locally free of rank r) if and only if M ⊗AA′

is. The (⇒) implications are clear. Conversely, if M ⊗A A′ is finitely generated,
then let x′1, . . . , x′m ∈ M ⊗A A′ be generators and write x′i =

∑
j xij ⊗ a′ij with

xij ∈M and a′ij ∈ A′. Letting n be the number of the xij , the map (xij) : A
n →M

is surjective since it becomes surjective after base changing by the faithfully flat map
A→ A′. Repeating this argument to the kernel, we see that the property of being
finite presentation descends. For flatness, suppose that M ⊗A A′ is flat. By the
faithful flatness of A→ A′, the exactness of M ⊗A − is equivalent to the exactness
of (M ⊗A A′) ⊗A′ (− ⊗A A′), which follows from the flatness of A → A′ and the
flatness of the A′-module M ⊗A A′. As being locally free of finite rank is equivalent
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to being finitely presented and flat, the final statement also follows. Part (3) reduces
to: if A→ A′ is faithfully flat and A→ B is a ring map, a B-module N is flat over
A if and only if N ⊗A A′ is flat over A′. This is special case of (2). See also [EGA,
IV2.2.5] and [SP, Tag 05AY].

The following, perhaps surprising, fact that regularity descends under faithful
flatness will come in handy.

Lemma 2.1.17. If A→ B is a flat local ring map of local noetherian rings and B
is regular, then so is A.

Proof. Recall that a noetherian local ring R of dimension d is regular if and only
if every finitely generated R-module M has a resolution 0→ Rkd → · · · → Rk1 →
Rk0 →M → 0, and moreover if this holds and

0→ K → Rkd−1 → · · · → Rk0 →M → 0 (2.1.18)

is an exact sequence of R-modules, then K is free; see [Eis95, Thm. 19.12] and
[SP, Tag 00OC]. If M is a finitely generated A-module, choose an exact sequence
(2.1.18). Since B is regular, K⊗AB is free. Since being locally free is an Fpqc Local
Property of Quasi-Coherent Sheaves (2.1.16), K is free. Therefore A is regular. See
also [EGA, IV0.17.3.3] and [SP, Tag 00OF].

Proposition 2.1.19 (Fpqc Local Properties on the Target). Let S′ → S be an fpqc
morphism of schemes and P be one of the following properties of a morphism of
schemes: surjective, quasi-compact, quasi-separated, isomorphism, closed immersion,
open immersion, quasi-compact locally closed immersion, monomorphism, affine,
quasi-affine, locally of finite type, locally of finite presentation, locally of finite type
with every fiber equidimensional of dimension d, separated, proper, universally closed,
universally open, universally submersive, finite, quasi-finite, flat, fppf, smooth, étale,
unramified, or syntomic. Then X → S has P if and only if X ×Y S′ → S′ does.

In other words, each of these properties is fpqc local on the target.

Proof. For notation, let f : X → S and g : S′ → S with X ′ := X ×Y S′, and let
f ′ : X ′ → S′ and g′ : X ′ → X be the base changes of f and g. We already know that
each property is stable under base change. It is not hard to see that the properties
‘surjective’, ‘quasi-compact’, and ‘quasi-separated’ descend.

For ‘isomorphism’, let h′ : S′ → X ′ be an inverse of f ′. As inverses are unique,
p∗1h

′ = p∗2h
′ as morphisms S′ ×Y S′ → X ′ ×Y S′. By Fpqc Descent for Morphisms

(2.1.10(2)), the S′-morphism h′ descends to a S-morphism h : S → X. This yields
that f ◦ h = idY . To see that h ◦ f = idX , observe that the two morphisms
idX , h ◦ f : X → X become equal after precomposing with X ′ → X, and thus Fpqc
Descent for Morphisms implies that h ◦ f = idX . For ‘open immersion’, if f ′ is an
open immersion, then f ′(X ′) = g−1(f(X)) is open. As g is universally submersive
(Exercise A.4.9), f(X) is open and we have reduced to show that X → f(X) is an
isomorphism, which follows from the previous case.

For ’affine’ and ’quasi-affine’, we can assume by above that f is quasi-compact and
quasi-separated. We appeal to the canonical factorization f : X → SpecY f∗OX → S
which commutes with flat base change S′ → S, and use that f is affine (resp., quasi-
affine) if and only if X → SpecY f∗OX is an isomorphism (resp., open immersion).

The ‘locally of finite type’ (resp., ‘locally of finite presentation’) case reduces to:
if A → A′ is faithfully flat, then a ring map A → B is of finite type (resp., finite
presentation) if and only if A′ → A′ ⊗B B′ is. If A′ → A′ ⊗A B is of finite type,
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there are A′-algebra generators b′1, . . . , b′n which we can write as b′i =
∑
j a

′
ij ⊗ bij

with a′ij ∈ A′ and bij ∈ B. If B̃ ⊂ B denotes the A-subalgebra generated by the
bij , then since B̃ ⊗A A′ = B ⊗A A′, the faithful flatness of A → A′ implies that
B̃ = B. If A′ → A′ ⊗A B is of finite presentation, then we have just seen that
A → B is of finite type and we can write B = A[x1, . . . , xn]/I. Since A → A′ is
flat, B ⊗A A′ = A′[x1, . . . , xn]/I

′, where I ′ = I ⊗A[x1,...,xn] A
′[x1, . . . , xn]. Since I ′

is a finitely generated ideal, Fpqc Descent for Properties of Quasi-Coherent Sheaves
(2.1.16(2)) implies that I is also finitely generated.

The ‘flat’ case is easy and was already handled in Proposition 2.1.16(2). Since the
property ‘smooth’ is equivalent to flat, locally of finite presentation, and smoothness
of every fiber, this case reduces to the algebra fact: a finite type algebra A over
an algebraically closed field K is regular if and only if A⊗K L is regular for every
algebraically closed field extension L/K. Similarly, f is unramified if and only if f is
locally of finite type and ΩX/S = 0. Since f∗ΩX/S = ΩX′/S′ , the ‘unramified’ case
follows from the faithful flatness of f . Since étaleness is equivalent to smoothness
and unramifiedness, the ‘étale’ case also follows. The remaining cases are left to the
reader. See also [EGA, IV2.2.6-7 and IV4.17.7.4] and [SP, Tag 02YJ].

Proposition 2.1.20 (Fppf/Smooth/Étale Local Properties on the Source).
(1) If X ′ → X is an fppf morphism of schemes, a morphism X → Y of schemes is

locally of finite presentation, (resp., locally of finite type, surjective, flat, fppf)
if and only if X ′ → X → Y is.

(2) If X ′ → X is a surjective smooth morphism of schemes, a morphism X → Y
of schemes is smooth if and only if X ′ → X → Y is.

(3) If X ′ → X is a surjective étale morphism of schemes, a morphism X → Y
of schemes is étale, (resp., locally quasi-finite, unramified) if and only if
X ′ → X → Y is.

In other words, each property is fppf/smooth/étale local on the source.

Proof. Part (1) reduces to: if A→ A′ is a faithfully flat and finitely presented map
of R-algebras, then R→ A is of finite type (resp., finite presentation) if and only if
R→ A′ is. Using properties of limits of schemes (B.3.2 and B.3.3), there exists a
finite type R-algebra A0, a faithfully flat and finitely presented map A0 → A′

0 of
R-algebras, and a commutative diagram

R //

��

A0
//

��

A′
0

��

A // A′

such that A′ ∼= A ⊗A0 A
′
0. If R → A′ is of finite type, after possibly enlarging

A′
0, we may arrange that A′

0 → A′ is surjective. As A → A′ is faithfully flat, this
implies that A0 → A is surjective. Hence R→ A is also of finite type. We leave the
finite presentation case to the reader. For (2), it suffices to show that smoothness
descends under field extensions, which follows from Lemma 2.1.17. For (3), it easy
to see that locally quasi-finiteness and unramifiedness descend, and since étaleness
is equivalent to smoothness and unramifiedness, étaleness also descends. See also
[EGA, IV4.17.7.5] and [SP, Tags 036M, 036T, and 036V]

While smoothness and étaleness are not fppf local properties on the source, they
do descend under fppf covers of the source.
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Proposition 2.1.21 (Fppf Descent for Properties on the Source). Let X ′ → X
be an fppf morphism of schemes. If X → Y is a morphism of schemes such that
X ′ → X → Y is smooth (resp., étale), then X → Y is smooth (resp., étale).

Proof. The smooth case follows from Lemma 2.1.17. The étale case follows from the
smooth case with the observation that for y ∈ Y , the map X ′

y → Xy on fibers is
surjective, and hence if dimX ′

y = 0, then dimXy = 0. See also [EGA, IV4.17.7.7]
and [SP, Tag 05B5].

Proposition 2.1.22 (Fpqc Descent for Properties of Schemes). Let X → Y be
an fpqc morphism of schemes. If X is quasi-compact (resp., locally noetherian,
noetherian, integral, reduced, normal, regular), then so is Y .

Proof. First, note that quasi-compactness descends under any surjective map. The
other parts reduce to the algebraic statement: if A→ B is a faithfully flat map of
rings and B is noetherian (resp., a domain, reduced, normal, or regular), then so
is A. As A → B is faithfully flat, A → B is injective and I = IB ∩ A for every
ideal I ⊂ A. By the injectivity of A → B, the ‘domain’ and ‘reduced’ cases are
clear. For noetherianness, if I1 ⊂ I2 ⊂ · · · is an ascending chain of ideals, then
since I1B ⊂ I2B ⊂ · · · terminates, so does I1 = I1B ∩ A ⊂ I2 = I2B ∩ A ⊂ · · · .
If B is a normal domain and a/b is integral over A where a, b ∈ A, then a/b ∈ B.
This implies that a ∈ (b) ⊂ B, hence a : B → B/bB is the zero map. As this map
is the base change of a : A→ A/bA, faithful flatness implies that a : A→ A/bA is
the zero map, hence a ∈ (b) and a/b ∈ A. The regularity statement follows from
Lemma 2.1.17. See also [SP, Tags 033D, 034B, and 06QL].

Proposition 2.1.23 (Fppf/Smooth Local Properties of Schemes).
(1) If X → Y is an fppf morphism of schemes, then X is locally noetherian if and

only if Y is.
(2) If X → Y be a surjective smooth morphism of schemes, then X is reduced

(resp., normal, regular) if and only if Y is.

Proof. The (⇒) implications follows from Proposition 2.1.22. For (1), if Y is locally
noetherian, so is X by Hilbert’s Basis Theorem. Part (2) reduces to the algebra
statement that if A → B is a smooth ring map and A is reduced (resp., normal,
regular), then so is B, which we leave to the reader. See also [SP, Tag 034D].

Remark 2.1.24. The property of being a domain is not étale local, e.g., there is a
reducible étale neighborhood of the nodal cubic (see Example 0.5.2). Reducedness,
normality, and regularity are not fppf local as there are finite type (and necessarily
flat) schemes over a field that are non-reduced, non-normal, and non-regular. On
the other hand, if X → Y is a flat morphism of noetherian schemes such that Y is
normal and every fiber Xy is normal, then X is normal; see [EGA, IV2.6.5.4] or [SP,
Tag 0C22].

Remark 2.1.25. If A is a noetherian local ring, the map A→ Â to its completion
is faithfully flat. If the completion Â is reduced (resp., normal, regular), Fpqc
Descent for Properties of Schemes (2.1.22) implies that the same holds for A. While
the converse holds for regularity, it does not hold in general for reducedness and
normality. However, if A is essentially of finite type over a field (or more generally
excellent), then A is reduced (resp., normal) if and only if Â is, and moreover in this
case the normalization commutes with completion. See [SP, Tags 07NZ and 0C23].
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2.2 Grothendieck topologies and sites

We saw in the last section that quasi-coherent sheaves, morphisms, and schemes can
be glued not only in the Zariski topology, but the étale topology and even the fppf
and fpqc topologies. For this reason, it is convenient to generalize the concept of
a topological space so that we can view étale/fppf/fpqc morphisms as ‘opens’ and
so that we can formulate the axioms for sheaves and stacks in these generalized
topologies. Grothendieck topologies were introduced in [SGA4, Def. II.1.3]. Our
exposition follows [Art62], [Vis05], [Ols16, §2], and [SP, Tag 00UZ].

2.2.1 Definitions and examples

Definition 2.2.1 (Sites). A Grothendieck topology on a category S consists of the
following data: for each object X ∈ S, there is a set Cov(X) consisting of coverings
of X, i.e., collections of morphisms {Xi → X}i∈I in S. We require that:

(1) (identity) If X ′ → X is an isomorphism, then (X ′ → X) ∈ Cov(X).
(2) (restriction) If {Xi → X}i∈I ∈ Cov(X) and Y → X is a morphism, then the

fiber products Xi ×X Y exist in S and the collection {Xi ×X Y → Y }i∈I ∈
Cov(Y ).

(3) (composition) If {Xi → X}i∈I ∈ Cov(X) and {Xij → Xi}j∈Ji ∈ Cov(Xi) for
each i ∈ I, then {Xij → Xi → X}i∈I,j∈Ji ∈ Cov(X).

A site is a category S with a Grothendieck topology.

Caution 2.2.2. The definition requires that Cov(X) is a set, but this is not true
in many important cases, including the big étale site defined below. We however
ignore set-theoretic issues in this book—they can be addressed by working with a
suitable subcategory containing all morphisms of interest which defines the same
category of sheaves; see [SP, Tag 00VI].

Example 2.2.3 (Topological spaces). If X is a topological space, let Op(X) denote
the category of open sets U ⊂ X. There is a unique morphism U → V if and only if
U ⊂ V . We say that a covering of U (i.e., an element of Cov(U)) is a collection of
open immersions {Ui → U}i∈I such that U =

⋃
i∈I Ui. This defines a Grothendieck

topology on Op(X). In particular, if X is a scheme, the Zariski topology on X
defines a site XZar, called the small Zariski site on X.

By replacing Zariski open immersions with étale morphisms, we obtain the small
étale site.

Example 2.2.4 (Small étale site). If X is a scheme, the small étale site on X is the
categoryXét of étale morphisms U → X such that a morphism (U → X)→ (V → X)
is simply an X-morphism U → V (which is necessarily étale). In other words, Xét

is the full subcategory of Sch /X consisting of schemes étale over X. A covering
of an object (U → X) ∈ Xét is a collection of étale morphisms {Ui → U} such
that

∐
i Ui → U is surjective. Later we will introduce the small étale site Xét of an

algebraic space or Deligne–Mumford stack (Definition 4.1.1), which we use to define
sheaves on X .

Big sites. The big étale site Schét is the most frequently used site in these notes. It
is used to define the most central notions in this book: an algebraic space is a sheaf
on Schét that is étale locally a scheme (Definition 3.1.2) while an algebraic stack is
a stack over Schét that is smooth-locally a scheme (Definition 3.1.6).

77

http://stacks.math.columbia.edu/tag/00UZ
http://stacks.math.columbia.edu/tag/00VI


Example 2.2.5 (Big étale site). The big étale site is the category Sch where a
covering of a scheme U is a collection of étale morphisms {Ui → U} in Sch such
that

∐
i Ui → U is surjective. We denote this site as Schét.

There are various analogous constructions.

Example 2.2.6 (Big topological site). Let Top be the category of topological spaces.
A covering of U ∈ Top is a collection of open subspaces {Ui ↪→ U}i∈I such that
U =

⋃
i∈I Ui.

Example 2.2.7 (Big Zariski site). Replacing étale morphisms in Example 2.2.5
with open immersions defines the big Zariski site SchZar.

The big fppf site Schfppf is also important in moduli theory. In [SP], algebraic
spaces and stacks are defined using Schfppf rather than Schét, but these two sites
nevertheless define equivalent notions [SP, Tag 076U]. In this text, we use the big fppf
site in §6.2 to discuss gerbes and quotients stacks by non-smooth groups schemes.

Example 2.2.8 (Big fppf site). A morphism of schemes is fppf if it is surjective, flat,
and locally of finite presentation (see Definition A.2.20). The big fppf site Schfppf is
the category Sch of schemes where a covering {Ui → U} is a collection of morphisms
such that

∐
i Ui → U is fppf.

There are serious set-theoretic issues in defining an fpqc site, arising from the
presence of too many fpqc covers—given any nonzero ring R, there does not exist
a set of fpqc coverings of SpecR which can refine every fpqc covering; see [SP,
Tags 0BBK,03NV and .] If one defines the big fpqc site ignoring set-theoretic issues
(as we do in example below!), there are presheaves that do not have a sheafification
[Wat75, Thm. 5.5]. Fortunately, we have no need for fpqc sites in this text. The
notion of an fpqc sheaf/stack is well-defined, which allows us to formulate general
statements, even though we will only apply the étale case.

Example 2.2.9 (Big fpqc site). A morphism of schemes is fpqc if it is surjective,
flat, and every quasi-compact subset of the target is the image of a quasi-compact
subset (see Definition A.2.20). The big fpqc site Schfppf is the category Sch where a
covering {Ui → U} is a collection of morphisms such that

∐
i Ui → U is fpqc.

Additional sites. We introduce the lisse-étale site of an algebraic stack (Defini-
tion 6.1.1) in order to define quasi-coherent sheaves.

Example 2.2.10 (Lisse-étale site). On a scheme X, the lisse-étale site Xlis-ét is the
category of schemes smooth over X where morphisms in Xlis-ét are (not necessarily
smooth) morphisms of schemes over X. A covering {Ui → U} of an X-scheme U is
a collection of X-morphisms such that

∐
i Ui → U is surjective and étale.

Example 2.2.11 (Localized categories and sites). If S is a category and S ∈ S,
define the category S/S whose objects are maps T → S in S. A morphism (T ′ →
S) → (T → S) is a map T ′ → T over S. If S is a site, S/S is also a site where a
covering of T → S in S/S is a covering {Ti → T} in S. Applying this construction
to a scheme S yields the relative versions of the big Zariski, étale, fppf, and fpqc
sites (Sch/S)Zar, (Sch/S)ét, (Sch/S)fppf , and (Sch/S)fpqc.

Example 2.2.12 (Grothendieck topologies on the category of affine schemes). In the
literature, authors sometimes use the big sites AffSchZar, AffSchét, and AffSchfppf
on the category of affine schemes. These define the same categories of sheaves as
the corresponding big sites on Sch.
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2.3 Presheaves and sheaves
Recall that ifX is a topological space, a presheaf of sets onX is simply a contravariant
functor F : Op(X) → Sets on the category Op(X) of open sets. The sheaf axiom
translates succinctly into the condition that for each covering U =

⋃
i Ui, the

sequence
F (U)→

∏
i

F (Ui)⇒
∏
i,j

F (Ui ∩ Uj)

is exact (i.e., is an equalizer diagram), where the two maps F (Ui)⇒ F (Ui ∩ Uj) are
induced by the two inclusions Ui ∩ Uj ⊂ Ui and Ui ∩ Uj ⊂ Uj . Also note that the
intersections Ui ∩ Uj can also be viewed as fiber products Ui ×X Uj .

2.3.1 Definitions
Definition 2.3.1 (Presheaves). A presheaf on a category S is a contravariant functor
S → Sets.

Remark 2.3.2. If F : S → Sets is a presheaf and f : S → T is a map in S, then
the pullback F (f)(b) of an element b ∈ F (T ) is sometimes denoted as f∗b or b|S .

Definition 2.3.3 (Sheaves). A sheaf on a site S is a presheaf F : S → Sets such
that for every object S ∈ S and covering {Si → S} ∈ Cov(S), the sequence

F (S)→
∏
i

F (Si)⇒
∏
i,j

F (Si ×S Sj) (2.3.4)

is exact, where the two maps F (Si)⇒ F (Si ×S Sj) are induced by the two maps
Si ×S Sj → Si and Si ×S Sj → Si.

Remark 2.3.5. The exactness of (2.3.4) means that it is an equalizer diagram:
F (S) is precisely the subset of

∏
i F (Si) consisting of elements whose images under

the two maps F (Si)⇒ F (Si ×S Sj) are equal.

Exercise 2.3.6. Let F be a presheaf on Sch. Show that the following are equivalent:
(1) F is a sheaf on Schét (resp., Schfppf , Schfpqc),
(2) F sends coproducts to products (i.e., F (

∐
i Ui) =

∏
i F (Ui) for schemes Ui)

and for every surjective étale (resp., fppf, faithfully flat) morphism S′ → S of
schemes, the sequence F (S)→ F (S′)⇒ F (S′ ×S S′) is exact.

(3) F is a sheaf in the big Zariski topology SchZar and for every surjective étale
(resp., fppf, faithfully flat) morphism S′ → S of affine schemes, the sequence
F (S)→ F (S′)⇒ F (S′ ×S S′) is exact.

Hint: Given a covering {Si → S}, consider the map
∐
i Si → S. You will likely

need to apply that étale and fppf morphisms are open (Proposition A.2.14), or the
defining property of an fpqc cover (Definition A.2.20).

Proposition 2.3.7 (Schemes are Sheaves). If X → S is a morphism of schemes,
then MorS(−, X) : Sch/S → Sets is a sheaf on (Sch/S)fpqc and therefore also a sheaf
on (Sch/S)ét and (Sch/S)fppf .

Proof. As MorS(−, X) is a sheaf in the big Zariski topology, it suffices by Exer-
cise 2.3.6 to show that if T ′ → T is a faithfully flat morphism of affine schemes over
S, then the sequence

MorS(T,X)→ MorS(T
′, X)⇒ MorS(T

′ ×T T ′, X)
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is exact, which is precisely Fpqc Descent for Morphisms (Corollary 2.1.10).

Exercise 2.3.8. If F and G are sheaves on a site S, show that the presheaf
MorS(F,G), defined by S 7→ MorSets(F (S), G(S)), is a sheaf on S. Conclude that if
X and Y are schemes over S, the functor MorS(X,Y ) : Sch/S → Sets, assigning an
S-scheme T to MorT (XT , YT ), is a sheaf in the fpqc topology.

Exercise 2.3.9 (Gluing sheaves). Let S be a site and (Xi → X) be a covering
in S. If Fi are sheaves on the restricted sites S/Xi and αij : Fi|Xij

→ Fj |Xij

are isomorphisms of sheaves on S/Xij (where Xij := Xi ×X Xj) satisfying the
cocycle condition αjk ◦ αij = αik on S/Xijk (where Xijk = Xi ×X Xj ×X Xk),
then there exists a unique sheaf F on S and isomorphisms ϕi : F |Xi

→ Fi satisfying
ϕi|Xij = ϕj |Xij ◦ αij .

2.3.2 Morphisms and fiber products

A morphism of presheaves or sheaves is by definition a natural transformation.
By Yoneda’s lemma (Lemma 0.3.7), if X is a scheme and F is a presheaf on
Sch, a morphism α : X → F (which we interpret as a morphism of presheaves
Mor(−, X)→ F ) corresponds to an element in F (X), which by abuse of notation
we also denote by α.

Exercise 2.3.10. Recall from Proposition 2.3.7 that a scheme can be viewed as
a sheaf in the big fpqc topology. Show that a surjective smooth (resp., fppf, fpqc)
morphism of schemes is an epimorphism of sheaves on Schét (resp., Schfppf , Schfpqc).

Definition 2.3.11. Given morphisms α : F → G and β : G′ → G of presheaves on
a category S, the fiber product of α and β is the presheaf F ×G G′ whose set of
sections over S ∈ S is F (S)×G(S) G

′(S), i.e.,

F ×G G′ : S → Sets

S 7→ {(a, b) ∈ F (S)×G′(S) |αS(a) = βS(b)} .
(2.3.12)

Exercise 2.3.13.
(a) Show that (2.3.12) is a fiber product F×GG′ in Pre(S). (This is a generalization

of Exercise 0.3.30 but the same proof should work.)
(b) Show that if F , G, and G′ are sheaves on a site S, then so is F ×G G′. In

particular, (2.3.12) is also a fiber product F ×G G′ in Sh(S).

2.3.3 Sheafification

Theorem 2.3.14 (Sheafification). Let S be a site. The forgetful functor Sh(S)→
Pre(S) admits a left adjoint F 7→ F sh, called the sheafification.

Proof. A presheaf F on S is called separated if for every covering {Si → S} of an
object S, the map F (S) →

∏
i F (Si) is injective (i.e., if sections glue, they glue

uniquely). Let Pre(S) and Sh(S) be the categories of presheaves and sheaves, and
let Presep(S) ⊂ Pre(S) be the full subcategory of separated presheaves. We will
construct left adjoints

Sh(S) �
�

// Presep(S) �
�

//

sh2

vv

Pre(S).

sh1

vv
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For F ∈ Pre(S), we define sh1(F ) by S 7→ F (S)/ ∼ where a ∼ b if there exists a
covering {Si → S} such that a|Si

= b|Si
for all i.

For F ∈ Presep(S), we define sh2(F ) by

S 7→
{(
{Si → S}, {ai}

) ∣∣∣∣where {Si → S} ∈ Cov(S) and ai ∈ F (Si)
such that ai|Sij = aj |Sij for all i, j

}
/ ∼

where ({Si → S}, {ai}) ∼ ({S′
j → S}, {a′j}) if ai|Si×SS′

j
= a′j |Si×SS′

j
for all i, j. The

details are left to the reader.

Remark 2.3.15 (Topos). A topos is a category equivalent to the category of sheaves
on a site. Two different sites may have equivalent categories of sheaves, and the
topos is a more fundamental invariant. While topoi are undoubtedly important in
moduli theory, they will not play a role in these notes.

2.3.4 A criterion for a sheaf to be a scheme

The following is a reinterpretation of Fppf Descent for Schemes (2.1.12, 2.1.13, and
2.1.14).

Proposition 2.3.16 (Descent Criterion for an Fppf Sheaf to be a Scheme). Let P
be one of the following properties of morphisms of schemes: open immersion, closed
immersion, affine, quasi-affine, or separated and locally quasi-finite. Let X → Y be a
surjective smooth (resp., fppf) morphism of schemes. Let F be a sheaf on (Sch/Y )ét
(resp., (Sch/Y )fppf). Consider the fiber product

FX

��

// X

��

F // Y

□

of sheaves. If FX is a scheme and FX → X has P, then F is a scheme and F → Y
has P.

Proof. As FX is the pullback of F , there is a canonical isomorphism α : p∗1FX → p∗2FX
on X ×Y X satisfying the cocycle condition p∗23α ◦ p∗12α = p∗13α. By Fppf Descent
for Separated and Locally Quasi-finite Schemes (2.1.14), there exists a morphism of
schemes W → Y satisfying P that pulls back to FX → X. The sheaf F is identified
with the sheafification of the presheaf on Sch /Y defined by

F pre : (T → Y ) 7→ Eq
(
FX(T → Y )⇒ FX ×X FX(T → Y )

)
.

By Schemes are Sheaves (2.3.7), W is a sheaf and there is a morphism F pre →W of
presheaves. By the universal property of sheafification, there is a morphism α : F →
W of sheaves which pulls back under X → Y to an isomorphism αX : FX →W×Y X.
It is not hard to see that this implies that α is an isomorphism. For instance, since
Hom(W,F ) is a sheaf (Exercise 2.3.8) and the inverse βX of αX defines a section
over X → Y whose two pullbacks to X ×Y X agree, the inverse βX descends to
a section β of Hom(W,F ) over id : Y → Y . Since Hom(F, F ) and Hom(W,W ) are
sheaves, it follows that β ◦ α = idF and α ◦ β = idW . See also [SP, Tag 02W5].
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2.4 Prestacks
Prestacks and stacks were introduced by Grothendieck in [FGAI, §A.1] and [SGA1,
§6] to express the categorical structure of objects satisfying fpqc descent. The lan-
guage of prestacks was further developed by Giraud [Gir64] and [Gir71]. Motivation
for prestacks was provided in §0.6.1: in an effort to keep track of automorphisms,
we were naively led to consider a ‘functor’

F : S → Groupoids .

While this is a good way to think about prestacks, it is more convenient to define a
prestack by packaging the groupoids F (S) for S ∈ S into one massive category X
over S parameterizing pairs (a, S) where S ∈ S and a ∈ F (S).

2.4.1 Definition of a prestack
Let S be a category and p : X → S be a functor of categories. We visualize this data
as

X
p

��

a
α //

_

��

b_

��

S S
f
// T

where the lower case letters a, b are objects of X and the upper case letters S, T are
objects of S. We say that a is over S and α : a→ b is over f : S → T .

Definition 2.4.1 (Prestacks). A functor p : X → S is a prestack over a category S
if

(1) (pullbacks exist) for every diagram

a //
_

��

b_

��

S // T

of solid arrows, there exists a morphism a→ b over S → T ; and
(2) (universal property for pullbacks) for every diagram

a //
$$

_

��

b //
_

��

c_

��

R // S // T

of solid arrows, there exists a unique arrow a → b over R → S filling in the
diagram.

Caution 2.4.2. When defining and discussing prestacks, we often write X instead
of X → S, but when necessary, we denote the projection by pX : X → S. We do not
usually spell out the definition of the functor X → S as it should be clear to the
reader. Moreover, when defining a prestack X , we often only define the objects and
morphisms in X and leave the composition law to the reader.

Remark 2.4.3. Axiom (2) above implies that the pullback in Axiom (1) is unique
up to unique isomorphism. We often write f∗b or simply b|S to indicate a choice of
a pullback.
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Definition 2.4.4 (Fiber categories). If X is a prestack over S, the fiber category
X (S) over S ∈ S is the category of objects in X over S with morphisms over idS .

Exercise 2.4.5. Show that the fiber category X (S) is a groupoid.

Caution 2.4.6. Our terminology is not standard. Prestacks are usually referred to
as categories fibered in groupoids. In the literature (c.f.,[Vis05], [Ols16]), a prestack
is sometimes defined as a category fibered in groupoids together with Axiom 2.5.1(1)
of a stack. It is also standard to call a morphism b→ c in X cartesian if it satisfies
the universal property in Axiom 2.5.1(2) and p : X → S a fibered category if for
every diagram as in Axiom 2.5.1(1), there exists a cartesian morphism a→ b over
S → T . With this terminology, a prestack (as we have defined it) is a fibered
category where every arrow is cartesian, or equivalently where every fiber category
X (S) is a groupoid.

2.4.2 Examples

Example 2.4.7 (Presheaves are prestacks). If F : S → Sets is a presheaf, we can
construct a prestack XF as the category of pairs (a, S) where S ∈ S and a ∈ F (S).
A morphism (a′, S′)→ (a, S) in XF is a map f : S′ → S such that a′ = f∗a, where
f∗ is convenient shorthand for F (f) : F (S) → F (S′). The projection XF → S is
defined by (a, S) 7→ S. Observe that the fiber categories XF (S) are equivalent (even
equal) to the set F (S). We will often abuse notation by conflating F and XF .

Example 2.4.8 (Schemes are prestacks). For a scheme X, applying the previous
example to the functor Mor(−, X) : Sch→ Sets yields a prestack XX . This allows
us to view a scheme X as the prestack XX where an object over a scheme T is a
morphism T → X of schemes. We often abuse notation by referring to XX as X.

Example 2.4.9 (Prestack of smooth curves). We define the prestackM over Sch as
the category of families of smooth curves C → S, i.e., smooth and proper morphisms
C → S of schemes such that every geometric fiber is a connected curve. A map
(C′ → S′)→ (C → S) is the data of maps α : C′ → C and f : S′ → S such that the
diagram

C′

��

α // C

��

S′ f
// S

□

is cartesian. The projection M → Sch is given by (C → S) 7→ S. The prestack
Mg is defined as the full subcategory of M consisting of families of smooth curves
C → S where every geometric fiber has genus g. Note that the fiber categoryMg(k)
over a field k is the groupoid of smooth, connected, and projective curves C over k
of genus g such that MorMg(k)(C,C

′) = IsomSch/k(C,C
′).

Exercise 2.4.10. Verify thatM and Mg are prestacks.

Example 2.4.11 (Prestack of coherent sheaves and vector bundles). Let X be a
scheme over a field k. We define the prestack QCoh(X) over Sch/k as the category
of pairs (E,S) where S is a scheme over k and E is a quasi-coherent sheaf on
XS = X ×k S flat over S. A morphism (E′, S′) → (E,S) consists of a map of

83



schemes f : S′ → S together with an isomorphism f∗E → E′ of OXS′ -modules.1
The projection QCoh(X)→ Sch/k is defined by (E,S) 7→ S.

The substacks Coh(X) ⊂ QCoh(X) is the full subcategory consisting of pairs
(E,S) where E is a finitely presented, quasi-coherent sheaf on XS (or equivalently
a coherent sheaf when XS is noetherian). Similarly, Bun(X) ⊂ Coh(X) is the full
subcategory where E is a vector bundle on XS (i.e., locally free quasi-coherent sheaf
of finite rank).

Exercise 2.4.12. Verify that QCoh(X), Coh(X), and Bun(X) are prestacks.

Classifying stacks and quotient stacks. Classifying and quotient stacks were
motivated in §0.6.5. Their definitions involve the notion of a principal G-bundle.
For a smooth affine group scheme G→ S2, a principal G-bundle over an S-scheme
T is a morphism P → T with an action of G on P via σ : G×S P → P such that
P → T is a G-invariant fppf morphism and

(σ, p2) : G×S P → P ×T P, (g, p) 7→ (gp, p)

is an isomorphism (see Definition B.1.46); in other wordsG acts freely and transitively
on P with quotient T . Equivalently, P → T is a principal G-bundle if there is
étale cover T ′ → T such that P ×T T ′ is G-equivariantly isomorphic to the trivial
principal G-bundle G×S T ′ (Proposition B.1.48). See §B.1.5 for further background
on principal bundles including many examples.

Definition 2.4.13 (Classifying stacks). The classifying stack BG of a smooth affine
group scheme G → S is the category over Sch/S whose objects are principal G-
bundles P → T and a morphism (P ′ → T ′)→ (P → T ) is the data of a G-equivariant
morphism P ′ → P such that

P ′

��

// P

��

T ′ // T

□

is cartesian.

Definition 2.4.14 (Quotient prestacks and stacks). Let G→ S be a smooth affine
group scheme acting on a scheme U over S. The quotient prestack [U/G]pre of an
action of a smooth affine group scheme G→ S on an S-scheme U is the category
over Sch/S consisting of pairs (T, u) where T is an S-scheme and u ∈ U(T ). A
morphism (T ′, u′) → (T, u) is the data of a map f : T ′ → T of S-schemes and an
element g ∈ G(T ′) such that f∗u = g · u′. Note that the fiber category [U/G]pre(T )
is identified with the quotient groupoid [U(T )/G(T )] from Example 0.4.6.

1This definition of a morphism is not completely precise as the pullback f∗E is not canonical.
Recall that f∗E is defined as f−1E ⊗f−1OS

OS′ and while it exists and is unique up to unique
isomorphism, a choice of pullback f∗E involves a choice of a limit in the definition of f−1E,
choices of tensor products, and a choice of sheafification. Instead, one can define a morphism
(E′, S′) → (E,S) as an equivalence class of triples (f, F ′, α) where f : S′ → S is a map of schemes,
F ′ is a choice of a pullback of E, and an isomorphism α : F ′ → E′ where (f, F ′, α) ∼ (g,G′, β)

if f = g and the canonical isomorphism γ : F ′ ∼→ G′ satisfies α = β ◦ γ. Alternatively, since the
pushforward f∗E′ is canonical, a morphism (E′, S′) → (E,S) can be defined as a map f : S′ → S
and a morphism E → f∗E′ of OXS

-modules whose adjoint is an isomorphism.
2In §6.2.2, we will define principal G-bundles, classifying stacks, and quotient stacks more

generally for fppf group schemes.
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The quotient stack [U/G] is the category over Sch/S consisting of diagrams

P

��

// U

T

where P → T is a principal G-bundle and P → U is a G-equivariant morphism
of S-schemes. A morphism (P ′ → T ′, P ′ → U) → (P → T, P → U) consists of a
morphism T ′ → T and a G-equivariant morphism P ′ → P of schemes such that the
diagram

P ′

��

//
''

P

��

// U

T ′ // T

□

is commutative and the left square is cartesian.

Exercise 2.4.15. Verify that [U/G]pre and [U/G] are prestacks over Sch/S.

We show shortly that [U/G] and BG = [S/G] are stacks over (Sch/S)ét (Propo-
sition 2.5.13), which justifies our terminology of a ‘quotient stack’ and ‘classifying
stack’. We also show that [U/G] is identified as the stackification of [U/G]pre

(Exercise 2.5.21), and later show that [U/G] is algebraic (Theorem 3.1.10).

2.4.3 Morphisms of prestacks
Definition 2.4.16.

(1) A morphism of prestacks f : X → Y is a functor f : X → Y such that the
diagram

X

pX
��

f
// Y

pY
��

S
strictly commutes, i.e., for every object a ∈ Ob(X ), there is an equality
pX (a) = pY(f(a)) of objects in S.

(2) If f, g : X → Y are morphisms of prestacks, a 2-isomorphism (or 2-morphism)
α : f → g is a natural transformation α : f → g such that for every object
a ∈ X , the morphism αa : f(a)→ g(a) in Y (which is an isomorphism) is over
the identity in S. We often describe the 2-isomorphism α schematically as

X
f
''

g

77�� α Y.

(3) We define the category Mor(X ,Y) whose objects are morphisms of prestacks
and whose morphisms are 2-isomorphisms.

(4) A 2-commutative diagram (which we often call simply a commutative diagram)
is a diagram

X ′

g′

��

f ′
//

|� α

Y ′

g

��

X
f
// Y
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together with a 2-isomorphism α : g ◦ f ′ ∼→ f ◦ g′.
(5) A morphism f : X → Y of prestacks is a monomorphism (resp., epimorphism)

if f is fully faithful (resp., essentially surjective), and f is an isomorphism if
there exists a morphism g : Y → X of prestacks and 2-isomorphisms g◦f ∼→ idX
and f ◦ g ∼→ idY .

Exercise 2.4.17. Show that every 2-isomorphism is indeed an isomorphism of
functors, or in other words that Mor(X ,Y) is a groupoid.

Exercise 2.4.18. Let f : X → Y be a morphism of prestacks over a category S.
(a) Show that f is a monomorphism if and only if fS : X (S) → Y(S) is fully

faithful for every S ∈ S.
(b) Show that f is an isomorphism if and only if f is fully faithful and essentially

surjective.

A prestack X is equivalent to a presheaf if there is a presheaf F and an isomorphism
between X and the prestack XF corresponding to F (see Example 2.4.7).

Exercise 2.4.19. Show that G acts freely on U (i.e., the action map (σ, p2) : G×S
U → U ×S U is a monomorphism) if and only if [U/G]pre (resp., [U/G]) is equivalent
to a presheaf. We often denote these presheaves by (U/G)pre and U/G.

2.4.4 The 2-Yoneda Lemma

The Yoneda Lemma (0.3.7) states that for a presheaf F : S → Sets on a category S
and an object S ∈ S, there is a bijection Mor(S, F )

∼→ F (S). In particular, there
is a fully faithful embedding S → Pre(S), from S into the category of presheaves
on S, given by S 7→ Mor(−, S). We will need an analogue of Yoneda’s lemma for
prestacks. First we recall that an object S ∈ S can be viewed as a prestack over S,
which we also denote by S, whose objects over T ∈ S are morphisms T → S and a
morphism (T → S)→ (T ′ → S) is an S-morphism T → T ′.

Lemma 2.4.20 (The 2-Yoneda Lemma). Let X be a prestack over a category S
and S ∈ S. The functor

Mor(S,X )→ X (S), f 7→ fS(idS)

is an equivalence of categories.

Proof. We will construct a quasi-inverse Ψ: X (S)→ Mor(S,X ) as follows.
On objects: For a ∈ X (S), we define Ψ(a) : S → X as the morphism of prestacks

sending an object (T
f−→ S) (of the prestack corresponding to S) over T to a choice

of pullback f∗a ∈ X (T ) and a morphism (T ′ f ′

−→ S) → (T
f−→ S) given by an

S-morphism g : T ′ → T to the morphism f ′∗a→ f∗a uniquely filling in the diagram

f ′∗a //
%%

��

f∗a //
_

��

a_

��

T ′ g
// T

f
// S,

using Axiom (2) of a prestack.
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On morphisms: If α : a′ → a is a morphism in X (S), then Ψ(α) : Ψ(a′)→ Ψ(a)

is defined as the morphism of functors which maps a morphism T
f−→ S (i.e., an

object in S over T ) to the unique morphism f∗a′ → f∗a filling in the diagram

f∗a′ //

��

f∗a

��
a′

α // a

over

T

f

��

S

using again Axiom (2) of a prestack.
We leave the verification that Ψ is a quasi-inverse to the reader.

Caution 2.4.21. We will use the 2-Yoneda Lemma, often without mention, through-
out these notes in passing between morphisms S → X and objects of X over S.

Remark 2.4.22. If f, g : S → X are morphisms from a scheme S corresponding
via the 2-Yoneda Lemma to objects a, b ∈ X (S), then a 2-isomorphism α : f

∼→ g
corresponds to an isomorphism a

∼→ b in X (S).

Remark 2.4.23 (Universal families). When F : Sch→ Sets is the functor hM =
Mor(−,M) representable by a scheme M , the (usual) Yoneda Lemma (0.3.7) gives
a bijection Mor(hM , F ) ∼= F (M) and the object U ∈ F (M) corresponding to the
identity map is a universal family (see §subsec:universal-families). The Yoneda 2-
Lemma does not immediately apply to give a universal family as the category X (X )
of objects of X over X is not well-defined. Later in §3.1.7, we prove a Generalized
2-Yoneda Lemma (3.1.24) for algebraic stacks and use it to define universal families.

Example 2.4.24 (Quotient stack presentations). Consider the prestack [U/G] in
Definition 2.4.14 arising from a group action σ : G×S U → U . The object of [U/G]
over U given by the diagram

G×S U

p2

��

σ // U

U

corresponds via the 2-Yoneda Lemma (2.4.20) to a morphism U → [U/G].

Exercise 2.4.25.

(a) Show that there is a morphism p : U → [U/G]pre and a 2-commutative diagram

G×S U
σ //

p2

��
�
 α

U

p

��

U
p
// [U/G]pre

(b) Show that U → [U/G]pre is a categorical quotient among prestacks, i.e., for
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every 2-commutative diagram

G×S U
σ //

p2

��
�
 α

U

φ

��

p

��

U
p
//

φ

//

[U/G]pre

�� τ

Z

of prestacks, there exists a morphism χ : [U/G]pre → Z and a 2-isomorphism
β : φ

∼→ χ ◦ p which is compatible with α and τ (i.e., the two natural transfor-
mations φ ◦ σ β◦σ−−→ χ ◦ p ◦ σ χ◦α−−→ χ ◦ p ◦ p2 and φ ◦ σ τ−→ φ ◦ p2

β◦p2−−−→ χ ◦ p ◦ p2
agree.

2.4.5 Warmup: fiber products of groupoids

Before we get to fiber products of prestacks, it is instructive to first compute fiber
products of groupoids.

Construction 2.4.26. Let f : C → D and g : D′ → D be functors of groupoids.
Define the groupoid C ×D D′ as the category of triples (c, d′, γ) where c ∈ C and
d′ ∈ D′ are objects, and γ : f(c)

∼→ g(d′) is an isomorphism in D. A morphism
(c1, d

′
1, γ1)→ (c2, d

′
2, γ2) is the data of morphisms χ : c1

∼→ c2 and λ : d′1
∼→ d′2 such

that

f(c1)
f(χ)
//

γ1

��

f(c2)

γ2

��

g(d′1)
g(λ)
//// g(d′2)

commutes.

Exercise 2.4.27 (details). Formulate a university property for fiber products of
groupoids and show that C ×D D′ satisfies it.

The following foreshadows important cartesian diagrams involving quotient
stacks.

Exercise 2.4.28 (good practice). Let G be a group acting on a set U via σ : G×U →
U . Let [U/G] denote the quotient groupoid as defined in Exercise 0.4.7: objects are
elements u ∈ U and a morphism u → u′ is an element g ∈ G with u′ = gu. Let
p : U → [U/G] denote the projection.

(a) Let P be a set with a free action of G and quotient T = P/G. If f : P → U is
a G-equivariant map, show that there is a cartesian diagram

P
f
//

��

U

p

��

T // [U/G].

□

88



(b) Show that there are cartesian diagrams

G× U σ //

p2

��

U

p

��

U
p
// [U/G]

□ and

G× U
(σ,p2)

//

��

U × U

p×p
��

[U/G]
∆ // [U/G]× [U/G].

□

Exercise 2.4.29 (Good practice). Recall from Example 0.4.3 that the classifying
groupoid BG of a group G is the category with one object ∗ with Mor(∗, ∗) = G.

(a) Let ϕ : H → G be a homomorphism of groups. Show that there is an induced
morphism BH → BG of groupoids and that BH ×BG pt ∼= [G/H], where pt
denotes the groupoid with one object and one morphism.

(b) If K ◁ G is a normal subgroup with quotient Q = G/K, show that there is a
cartesian diagram

Q //

��

BK

��

// pt

��

pt // BG //

□

BQ.

□

(c) Let G be a group acting on a set U and let [U/G] be the groupoid quotient.
If u ∈ U , show that there is a morphism BGu → [U/G] of groupoids and a
cartesian diagram

Gu //

��

U

p

��

BGu // [U/G].

□

Exercise 2.4.30 (Good practice). Show that a groupoid C is equivalent to a set if
and only if C → C × C is fully faithful.

2.4.6 Fiber products of prestacks
The fiber product of morphisms X → Y and Y ′ → Y of prestacks over a category
S is the prestack X ×Y Y ′ whose fiber category over S ∈ S is the fiber product
X (S)×Y(S) Y ′(S) of groupoids.

Construction 2.4.31. Let f : X → Y and g : Y ′ → Y be morphisms of prestacks
over a category S. Define the prestack X ×Y Y ′ over S as the category of triples
(x, y′, γ) where x ∈ X and y′ ∈ Y ′ are objects over the same object S := pX (x) =
pY′(y′) ∈ S, and γ : f(x)

∼→ g(y′) is an isomorphism in Y(S). A morphism
(x1, y

′
1, γ1)→ (x2, y

′
2, γ2) consists of a triple (h, χ, λ) where h : pX (x1) = pY′(y′1)→

pY′(y′2) = pX (x2) is a morphism in S, and χ : x1 → x2 and λ : y′1 → y′2 are morphisms
in X and Y ′ over h such that

f(x1)
f(χ)
//

γ1

��

f(x2)

γ2

��

g(y′1)
g(λ)

//// g(y′2)

commutes.
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Letting p1 : X ×Y Y ′ → X and p2 : X ×Y Y ′ → Y ′ denote the projections
(x, y′, γ) 7→ x and (x, y′, γ) 7→ y′, define the 2-isomorphism α : f ◦ p1

∼→ g ◦ p2, which
is defined on an object (x, y′, γ) ∈ X ×Y Y ′ by setting α(x,y′,γ) := γ : f(x)→ g(y′).
This yields a 2-commutative diagram

X ×Y Y ′

p1

��

p2 // Y ′

g

��

X
f

// Y.

@Hα (2.4.32)

Theorem 2.4.33. The prestack X ×Y Y ′ together with the morphisms p1 and p2
and the 2-isomorphism α as in (2.4.32) satisfy the following universal property: for
every 2-commutative diagram

T

q2 ..

q1 00

X ×Y Y ′

p2
??

p1 ��

KS
τ

Y ′

g

��

X
f

??
Y

KS
α

with 2-isomorphism τ : f ◦ q1
∼→ g ◦ q2, there exists a morphism h : T → X ×Y Y ′

and 2-isomorphisms β : q1 → p1 ◦ h and ρ : q2 → p2 ◦ h yielding a 2-commutative
diagram

T

q2 ..

q1 00

h // X ×Y Y ′

p2
??

p1 ��
⇑β

⇓ρ

Y ′

g

��

X
f

??
Y

KS
α

such that

f ◦ q1
f(β)
//

τ

��

f ◦ p1 ◦ h

α◦h
��

g ◦ q2
g(ρ)
// g ◦ p2 ◦ h

commutes. The data (h, β, ρ) is unique up to unique isomorphism.

Proof. We define h : T → X ×Y Y ′ on objects by t 7→
(
q1(t), q2(t), τt : f(q1(t))

∼→
g(q2(t))

)
and on morphisms as (Ψ: t → t′) 7→ (pT (Ψ), q1(Ψ), q2(Ψ)). There are

equalities of functors q1 = p1 ◦ h and q2 = p2 ◦ h so we can define β and ρ as the
identity natural transformations. The remaining details are left to the reader.

Definition 2.4.34. We say that a 2-commutative diagram

X ′

��

// Y ′

��

X // Y.

<Dα
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is cartesian if it satisfies the universal property of Theorem 2.4.33. We often write a
cartesian diagram of stacks as

X ′

��

// Y ′

��

X // Y,

□

where the existence of the 2-isomorphism α is implicit.

As usual, X × Y denotes the fiber product X ×Spec Z Y or, in the case that we
are working over a field k, the fiber product X ×Spec k Y.

2.4.7 Examples
The following exercise is essential for establishing properties of quotient stacks such
as their algebraicity (Theorem 3.1.10).

Exercise 2.4.35 (important, good practice). Let G→ S be a smooth affine group
scheme acting on a scheme U over S via σ : G ×S U → U , and let [U/G] be the
quotient stack (Definition 2.4.14).

(a) Let T → [U/G] be a morphism corresponding via the 2-Yoneda Lemma (2.4.20)
to a principal G-bundle P → T and a G-equivariant map f : P → U . Show
that there is a cartesian diagram

P
f
//

��

U

��

T // [U/G].

□

(We will later see that [U/G] is an algebraic stack and that U → [U/G] is
principal G-bundle (Theorem 3.1.10). In particular, the principal G-bundle
U → [U/G] with the identity map U → U is the universal family over [U/G],
corresponding via the 2-Yoneda Lemma to the identity map [U/G]→ [U/G].)

(b) Show that there are cartesian diagrams

G×S U
σ //

p2

��

U

p

��

U
p
// [U/G]

□ and

G×S U
(σ,p2)

//

��

U ×S U

p×p
��

[U/G]
∆ // [U/G]×S [U/G].

□

The diagram in the next exercise is utilized extensively, just as it is in the case
of schemes. It will be used to define stabilizers and the inertia stack in §3.2.2.

Exercise 2.4.36 (Magic Square, important). Let X be a prestack over a category
S. Let S, T ∈ S be objects which we can view as prestacks over S via Example 2.4.8.
Show that for all morphisms a : S → X and b : T → X , there is a cartesian diagram

S ×X T //

��

S × T

a×b
��

X ∆ // X × X ,

□

where the fiber products S × T and X × X are taken over SpecZ.
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Exercise 2.4.37 (Isom presheaves, important). Let X be a prestack over a category
S. For S ∈ S, recall from Example 2.2.11 that the localized category S/S denotes
the category whose objects are morphisms T → S in S and whose morphisms are
S-morphisms.

(a) Show that for objects a and b of X over S that the functor

IsomX (S)(a, b) : S/S → Sets

(T
f−→ S) 7→ MorX (T )(f

∗a, f∗b),

where f∗a and f∗b are choices of a pullback, defines a presheaf on S/S.
(b) Show that there is a cartesian diagram

IsomX (S)(a, b) //

��

S

(a,b)

��

X ∆ // X × X .

□

(c) Show that the presheaf AutX (T )(a) = IsomX (T )(a, a) is naturally a presheaf
in groups.

(d) Show that X is equivalent to a presheaf if and only if the diagonal X → X ×X
is fully faithful.

Exercise 2.4.38 (good practice).
(a) If H → G is a morphism of smooth affine group schemes over a scheme S, define

a morphism of prestacks BH → BG over Sch/S by using Definition B.1.59 to
construct a principal G-bundle from a principal H-bundle.

(b) Show that BH ×BG S ∼= [G/H].
(c) If 1 → K → G → Q → 1 is an exact sequence of smooth affine algebraic

groups over a field k, show that there is a cartesian diagram

Q //

��

BK

��

// Speck

��

Speck // BG //

□

BQ.

□

Exercise 2.4.39 (good practice). Let G and H be smooth affine group schemes
over a scheme S

(a) Show that B(G×H) ∼= BG×BH.
(b) If X and Y are S-schemes with a actions by G and H, show that [(X ×

Y )/(G×H)] ∼= [X/G]× [Y/H].
(c) Conclude that [An/Gnm] ∼= [A1/Gm]× · · · × [A1/Gm]︸ ︷︷ ︸

n times

.

Exercise 2.4.40 (important, good practice). Analogous to the prestack Mg of
smooth curves (Example 2.4.9), let Mg,1 be the prestack where an object over
a scheme S is a family of smooth curves C → S and a section σ : S → C. Let
Mg,1 → Mg be the morphism of prestacks forgetting the section. Show that if
S → Mg is a morphism corresponding to a family of curves C → S, there is a
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cartesian diagram
C //

��

Mg,1

��

S //Mg.

□

In other words, Mg,1 → Mg is the universal family, as defined later in Defini-
tion 3.1.26.

Exercise 2.4.41 (good practice). Let H and G be smooth affine group schemes
over a scheme S. Let Hom(H,G) be the sheaf on (Sch/S)ét whose sections over an
S-scheme T are homomorphisms HT → GT , and let Mor(BH,BG) be the stack
over S whose objects over T ∈ S are morphisms B(HT )→ B(GT ). Show that

Mor(BH,BG) ∼= [Hom(H,G)/G],

where G acts via conjugation.

2.5 Stacks
A stack over a site S is a prestack X where the objects and morphisms glue uniquely
in the Grothendieck topology of S.

2.5.1 The definition
Given a covering {Si → S} in a site, we will use the convention that Sij denotes
Si ×S Sj and Sijk denotes Si ×S Sj ×S Sk.

Definition 2.5.1 (Stacks). A prestack X over a site S is a stack if the following
conditions hold for all coverings {Si → S} of an object S ∈ S:

(1) (morphisms glue) For objects a and b in X over S and morphisms ϕi : a|Si
→ b

such that ϕi|Sij = ϕj |Sij as displayed in the diagram

a|Sij

??

��

a|Si

��

ϕi

  

a|Sj

??

ϕj

==
a // b over Sij

??

��

Si

��

Sj

??
S,

there exists a unique morphism ϕ : a→ b over idS with ϕ|Si
= ϕi.

(2) (objects glue) For objects ai over Si and isomorphisms αij : ai|Sij → aj |Sij ,
as displayed in the diagram

ai

  

ai|Sij

αij

��

55

a

aj |Sij

))
aj

>> over Sij

??

��

Si

��

Sj

?? S
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satisfying the cocycle condition αjk|Sijk
◦αij |Sijk

= αik|Sijk
on Sijk, then there

exists an object a over S and isomorphisms ϕi : a|Si
→ ai over idSi

such that
ϕi|Sij

= ϕj |Sij
◦ αij on Sij .

Remark 2.5.2. If the covering consists of a single map S′ → S and a′ ∈ X is
an object over S′, the cocycle condition for an isomorphism α : p∗1a

′ ∼→ p∗2a
′ over

S′ ×S S′ translates to the commutativity of

p∗12p
∗
1a

p∗12α // p∗12p
∗
2a

p∗13p
∗
1a p∗13α

((

p∗23p
∗
1ap∗23α

vv

p∗13p
∗
2a p∗23p

∗
2a

over S′×SS′×SS′. Axiom (2) requires the existence of a ∈ X (S) and an isomorphism
ϕ : a′

∼→ a|S′ satisfying p∗1ϕ = p∗2ϕ ◦ α.

Remark 2.5.3. Analogous to the sheaf axiom of a presheaf F : S → Sets requiring
that F (S) →

∏
i F (Si) ⇒

∏
i,j F (Si ×S Sj) is exact for coverings {Si → S}, the

stack axioms translate to the ‘exactness’ of

X (S) //
∏
i X (Si)

//
//
∏
i,j X (Si ×S Sj)

//

//
//
∏
i,j,k X (Si ×S Sj ×S Sk).

Exercise 2.5.4. Show that Axiom (1) is equivalent to the condition that for all
objects a and b of X over S ∈ S, the Isom presheaf IsomX (S)(a, b) (see Exercise 2.4.37)
is a sheaf on S/S.

Exercise 2.5.5. Generalizing Exercise 2.3.6 from sheaves to shacks, show that a
prestack X over Sch is a stack over Schét (resp., Schfppf , Schfpqc) if and only if X
is a prestack over SchZar and Axioms (1) and (2) hold for a surjective étale (resp.,
fppf, fpqc) morphism SpecA′ → SpecA of affine schemes.

A morphism of stacks is a morphism of prestacks.

Exercise 2.5.6 (Fiber product of stacks). Show that if X → Y and Y ′ → Y are
morphisms of stacks over a site S, then X ×Y Y ′ is also a stack over S.

2.5.2 First examples of stacks
Example 2.5.7 (Sheaves and schemes are stacks). A presheaf F on a site S defines
a prestack XF over S whose objects are pairs (a, S) where S ∈ S and a ∈ F (S)
(see Example 2.4.7), and F is a sheaf if and only if XF is a stack. We often abuse
notation by writing F also as the stack XF .

Since schemes are sheaves on Schét (Proposition 2.3.7), a scheme X defines a
stack—also denoted as X—over Schét, whose objects over a scheme S are morphisms
S → X.

Example 2.5.8 (Stacks of sheaves). Let Sheaves be the prestack over Sch whose
objects are pairs (T, F ) where T is a scheme and F is a sheaf on the Zariski
topology of T . A morphism (T ′, F ′) → (T, F ) is pair (f, α) where f : T ′ → T is a
map of schemes and α : f−1F → F ′ is an isomorphism of sheaves. The projection
Sheaves→ Sch is defined by (T, F ) 7→ T . Because sheaves and their morphisms glue
in the Zariski topology [Har77, Exc. II.1.15 and 22], X is a stack over the big Zariski
site SchZar.
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Example 2.5.9 (Stack of quasi-coherent sheaves). Define the QCoh, Coh, and Bun
as the category over Sch consisting of pairs (T, F ) where F is a quasi-coherent sheaf
(resp., finitely presented, quasi-coherent sheaf, vector bundle) on a scheme T and a
morphism (T, F )→ (T ′, F ′) is a map f : T → T ′ and an isomorphism α : f∗F ′ → F .
To see that QCoh is a stack over Schfpqc, by Exercise 2.5.5, it suffices to verify
Axioms (1) and (2) with respect to an fpqc map T ′ → T , and these translate literally
to the two parts of Fpqc Descent of Quasi-Coherent Sheaves (2.1.4). In particular,
QCoh is a stack over Schét. By Fpqc Descent of Properties of Quasi-Coherent
Sheaves (2.1.16), Coh and Bun are also stacks over Schfpqc and Schét.

Exercise 2.5.10. Show that the prestack Mod parameterizing pairs (T, F ) where
T is a scheme and F is a sheaf of OT -modules is not a stack over Schét.

Exercise 2.5.11. Define the prestack of sheaves over any site and apply Exer-
cises 2.3.8 and 2.3.9 to conclude that it is a stack.

Example 2.5.12 (Stack of schemes). Define Schemes as the prestack over Sch
consists of morphisms X → S of schemes where a morphism (X ′ → S′)→ (X → S)
consists of morphisms X ′ → X and S′ → S that forms a cartesian diagram. The
projection Schemes → Sch takes X → S to S. Since schemes glue in the Zariski
topology [Har77, Exc. II.2.12], Schemes is a stack over SchZar. However, Schemes
is not a stack over Schét; see Example 2.1.15. Schemes can be glued to algebraic
spaces in the étale topology and there is a stack of algebraic spaces over Schét; see
Exercise 4.4.15.

On the other hand, the subcategories ClSubSch (resp., OpenSubSch, Aff, QAff,
SepLQFin) parameterizing morphisms X → S which are closed immersions (resp.,
open immersions, affine, quasi-affine, separated and locally quasi-finite) are stacks
over Schét by Fppf Descent for Schemes (2.1.12, 2.1.13, and 2.1.14).

2.5.3 Classifying stacks and quotient stacks
Let G → S be a smooth affine group scheme acting on an S-scheme U , and let
[U/G] be the category over Sch/S defined prestack in Definition 2.4.14: an object
over an S-scheme T is a diagram

P

��

// U

T

where P → T is a principal G-bundle and P → U is a G-equivariant morphism of
schemes.

Proposition 2.5.13. If G → S be a smooth affine group scheme acting on an
S-scheme U , then [U/G] is a stack over Schét. In particular, the classifying stack
BG = [S/G] is a stack over Schét.

Proof. We will show in fact that [U/G] is a stack over Schfpqc. Since schemes and
their morphisms glue in the Zariski topology, it suffices by Exercise 2.5.5 to verify
Axioms (1) and (2) with respect to an fpqc map T ′ → T . For Axiom (1), let
(P ′ → T, f ′ : P → U) and (P → T, f : P → U) be objects over an S-scheme T ,
T ′ → T be an fpqc map, and ϕ′ : P ′

T ′ → P be a G-equivariant morphism identifying
P ′
T ′ with P ×T T ′ and compatible with f and f ′. By Fpqc Descent for Morphisms

(2.1.7), there exists a unique morphism P ′ → P compatible with f ′ and f . By Fpqc
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Local Properties on the Target (2.1.19), P ′ → P is an isomorphism. For Axiom
(2), let (P ′ → T ′, f ′ : P ′ → U) be an object over T ′ and α : p∗1P

′ → p∗2P
′ be an

isomorphism commuting with f ′ and satisfying the cocycle condition p∗23α ◦ p∗12α =
p∗13α on T ′×T T ′×T ′. The existence of a principal G-bundle P → T pulling back to
P ′ → T follows from Fpqc Descent of Principal G-bundles (B.1.49). The existence
of a G-equivariant morphism P → U follows from Fpqc Descent for Morphisms
(2.1.7).

2.5.4 Moduli stack of curves

LetMg denote the prestack of families of smooth curves C → S of genus g as defined
in Example 2.4.9.

Proposition 2.5.14 (Moduli stack of smooth curves). If g ≥ 2, thenMg is a stack
over Schét.

Proof. We check thatMg is a stack over Schfpqc as smooth curves and their mor-
phisms glue in the Zariski topology, it suffices by Exercise 2.5.5 to verify Axioms (1)
and (2) with respect to an fpqc map S′ → S. Axiom (1) translates to: for families
of smooth curves C → S and D → S of genus g, every commutative diagram

CS′×SS′

��

// CS′

��

//

f ′

$$
C

��

f
// D

��

S′ ×S S′ //

//

□

S′ //

□

S

of solid arrows can be uniquely filled in. The existence and uniqueness of f follow
from Fpqc Descent for Morphisms (2.1.7). The fact that f is an isomorphism also
follows from étale descent (Proposition 2.1.19).

Axiom (2) will require some geometry: we must show that given a diagram

p∗1C′

��

α //
((

p∗2C′

��

// C′

��

// C

��

S′ ×S S′
p1 //

p2
//

□

S′ //

□

S

where C′ → S′ is a family of smooth curves and α : p∗1C′ → p∗2C′ is an isomorphism
satisfying the cocycle condition p∗23α ◦ p∗12α = p∗13α on T ′ ×T T ′ × T ′, there is family
of smooth curves C → S and an isomorphism ϕ : C|S′ → C′ such that p∗1ϕ = p∗2ϕ ◦ α.
We will apply Properties of Families of Smooth Curves (5.1.16): Ω⊗3

C′/S′ is relatively
very ample on S (as g ≥ 2) and E′ := π∗(Ω

⊗3
C′/S′) is a vector bundle on S′ of rank

5(g − 1). This implies that Ω⊗3
C′/S′ defines a closed immersion C′ ↪→ P(E′) over

S′. The isomorphism α induces an isomorphism β : p∗1E
′ → p∗2E

′ satisfying the
cocycle condition p∗23β ◦ p∗12β = p∗13β on S′ ×S S′ ×S S′. Fpqc Descent for Quasi-
Coherent Sheaves (2.1.4) yields a quasi-coherent sheaf E on S and isomorphisms
ψ : E′ → E|S′ such that p∗1Ψ = p∗2ψ ◦ β. It follows from Fpqc Descent of Properties
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of Quasi-Coherent Sheaves (2.1.16) that E is a vector bundle. Pictorially, we have

P(p∗1E
′)

β
//

**
P(p∗2E

′) // P(E′) // P(E)

p∗1C′
?�

OO

!!

α // ))
p∗2C′

}}

?�

OO

// C′

��

//
?�

OO

C

��

?�

OO

S′ ×S S′
p1 //

p2
// S

′ // S.

Under the identifications of P(p∗1E
′) and P(p∗2E

′) with P(E) ×S (S′ ×S S′), the
preimages p∗1C′ and p∗2C′ are equal. By Fpqc Descent for Closed Subschemes (2.1.12),
there is a closed subscheme C ⊂ P(E) pulling back to C′. By Fpqc Local Properties
on the Target (2.1.19), smoothness and properness are local properties on the target,
and thus C → S is smooth and proper. Every geometric fiber of C → S is identified
with a geometric fiber of C′ → S′ and is thus a connected genus g curve.

Exercise 2.5.15.
(a) Use the correspondence between families of genus 0 curves and principal PGL2-

torsors (Exercise B.1.66) to show that the prestack M0 is a stack on Schét
isomorphic to B PGL2 over SpecZ.

(b) A family of elliptic curves over a scheme S is a pair (E → S, σ) where E → S
is smooth proper morphism with a section σ : S → E such that for every s ∈ S,
the fiber (Es, σ(s)) is an elliptic curve over the residue field κ(s). Show that
the moduli stack M1,1, whose objects are families of elliptic curves, is a stack
on Schét.

Remark 2.5.16 (M1). The prestackM1, whose objects are smooth and proper
morphisms C → S of schemes whose geometric fibers are connected genus 1 curves,
is not a stack over Schét. Unlike Mg with g ≥ 2 and M1,1, there is no natural
line bundle defining an embedding into projective space that we can use as above
to verify Axiom (2). Raynaud constructed an étale cover S′ → S and a family
C′ → S′ of smooth genus 1 curves which does not descend to a family C → S [Ray70,
XIII 3.2]. However, similar to Example 2.5.12, if we redefine M1 as the category
of smooth and proper morphisms C → S from an algebraic space such that every
geometric fiber is a connected curve of genus 1, then M1 is a stack.

2.5.5 Moduli stack of coherent sheaves and vector bundles
If X is a scheme over a field k, the prestacks QCoh(X), Coh(X), and Bun(X)
from Example 2.4.11 parameterize quasi-coherent sheaves, coherent sheaves, and
vector bundles. Note that while the prestack QCoh of Example 2.5.9 parameterizes
pairs (T, F ) where T is a scheme and F is a quasi-coherent sheaf on T , QCoh(X)
parameterizes pairs (T, F ) where T is a scheme and F is a quasi-coherent sheaf on
XT = X ×k T .

Proposition 2.5.17. The prestacks QCoh(X), Coh(X), and Bun(X) are stacks
over (Sch/k)ét.

Proof. Just as in the proof of Example 2.5.9, the statement follows directly from
Fpqc Descent for Quasi-Coherent Sheaves (2.1.4) and Fpqc Descent of Properties of
Quasi-Coherent Sheaves (2.1.16).
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2.5.6 Stackification
Recall from Sheafification (2.3.14) that for any a presheaf F on a site S, there is a
map F → F sh which is a left adjoint to the inclusion, i.e., Mor(F sh, G)→ Mor(F,G)
is bijective for every sheaf G on S. Similarly, there is a stackification X → X st of a
prestack X over S.

Theorem 2.5.18 (Stackification). If X is a prestack over a site S, there exists a
stack X st, which we call the stackification, and a morphism X → X st of prestacks
such that for every stack Y over S, the induced functor

Mor(X st,Y)→ Mor(X ,Y) (2.5.19)

is an equivalence of categories.

Proof. As in the construction of the sheafification in Theorem 2.3.14, we construct
the stackification in stages. Most details are left to the reader.

First, given a prestack X , we can construct a prestack X st1 satisfying Axiom (1)
and a morphism X → X st1 of prestacks such that

Mor(X st1 ,Y)→ Mor(X ,Y)

is an equivalence for all prestacks Y satisfying Axiom (1). Specifically, the objects
of X st1 are the same as X , and for objects a, b ∈ X over S, T ∈ S, the set of
morphisms a → b in X st1 over a given morphism f : S → T is the global sections
Γ(S, IsomX (S)(a, f

∗b)sh) of the sheafification of the Isom presheaf (Exercise 2.4.37).
Second, given a prestack X satisfying Axiom (1), we construct a stack X and a

morphism X → X st of prestacks such that (2.5.19) is an equivalence for all stacks Y .
An object of X st over S ∈ S is given by a triple consisting of a covering {Si → S},
objects ai of X over Si, and isomorphisms αij : ai|Sij

→ aj |Sij
satisfying the cocycle

condition αjk|Sijk
◦ αij |Sijk

= αik|Sijk
on Sijk. Morphisms(

{Si → S}, {ai}, {αij}
)
→
(
{Tµ → T}, {bµ}, {βµν}

)
in X st over S → T are defined as follows: first consider the induced cover {Si×STµ →
S}i,µ and choose pullbacks ai|Si×STµ

and bµ|Si×STµ
. A morphism is then the data

of maps Ψiµ : ai|Si×STµ → bµ|Si×STµ
for all i, µ which are compatible with αij and

βµν (i.e., Ψjν ◦ αij = βµν ◦Ψiµ on Sij ×T Tµν).

Exercise 2.5.20. Show that stackification commutes with fiber products: if X → Y
and Z → Y are morphisms of prestacks, then (X ×Y Z)st ∼= X st ×Yst Zst.

Exercise 2.5.21. Let G→ S be a smooth affine group scheme acting on a scheme
U over S. Recall from Definition 2.4.14 that the quotient prestack [U/G]pre and
quotient stack [U/G] denote the prestacks over Sch/S classifying trivial principal
G-bundles (resp., principal G-bundles) P → T and G-equivariant maps P → U .

(a) Show that [U/G]pre satisfies Axiom (1) of a stack over (Sch/S)ét.
(b) Show that the [U/G] is isomorphic to the stackification of [U/G]pre over

(Sch/S)ét, and that [U/G]pre → [U/G] is fully faithful.

Exercise 2.5.22. Extending Exercise 2.4.25, show that U → [U/G] is a categorical
quotient among stacks.
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Chapter 3

Algebraic spaces and stacks

The notion of stacks came up in the sixties. But to swallow schemes was
already enough for one generation of mathematicians.

Faltings [Sto95, p. 45]

3.1 Definitions of algebraic spaces and stacks

What are algebraic spaces, Deligne–Mumford stacks, and algebraic stacks? After
giving their definitions, we will verify the algebraicity of quotient stacks [U/G], the
moduli stack of curves Mg, and the moduli stack of vector bundles Bunr,d(C).

3.1.1 Algebraic spaces

Definition 3.1.1 (Morphisms representable by schemes). A morphism X → Y of
prestacks (or presheaves) over Sch is representable by schemes (or schematic) if for
every morphism T → Y from a scheme, the fiber product X ×Y T is a scheme.

If P is a property of morphisms of schemes stable under base change (e.g.,
surjective or étale), a morphism X → Y of prestacks representable by schemes has
property P if for every morphism T → Y from a scheme, the morphism X ×Y T → T
of schemes has property P.

Definition 3.1.2 (Algebraic spaces). An algebraic space is a sheaf X on Schét such
that there exists a scheme U and a surjective étale morphism U → X representable
by schemes.

The map U → X is called an étale presentation. Morphisms of algebraic spaces
are by definition morphisms of sheaves. Every scheme is an algebraic space.

3.1.2 Deligne–Mumford stacks

Definition 3.1.3 (Representable morphisms and their properties). A morphism
X → Y of prestacks (or presheaves) over Sch is representable if for every morphism
T → Y from a scheme T , the fiber product X ×Y T is an algebraic space.

Let P be a property of morphisms of schemes stable under base change and étale-
local on the source (i.e., if X ′ → X is a surjective étale morphism, then a morphism
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X → Y of schemes has P if and only if X ′ → X → Y has P); examples include
the properties of being surjective, étale, or smooth. We say that a representable
morphism X → Y of prestacks has property P if for every morphism T → Y
from a scheme and étale presentation U → X ×Y T by a scheme, the composition
U → X ×Y T → T has property P.

Definition 3.1.4 (Deligne–Mumford stacks). A Deligne–Mumford stack is a stack X
over Schét such that there exists a scheme U and a surjective, étale, and representable
morphism U → X .

The morphism U → X is called an étale presentation. Morphisms of Deligne–
Mumford stacks are by definition morphisms of stacks. Every algebraic space is a
Deligne–Mumford stack via Example 2.4.7. We show later that a Deligne–Mumford
stack (or even an algebraic stack) that is a sheaf is an algebraic space (Theorems 3.6.6
and 4.4.10).

Remark 3.1.5. While the essential difference between an algebraic space and a
Deligne–Mumford stack is that one is a sheaf while the other is a stack, there
is also the technical difference that an étale presentation of an algebraic space is
representable by schemes while an étale presentation of a Deligne–Mumford stack
is only required to be representable. If the diagonal of a Deligne–Mumford stack
is separated and quasi-compact, then it is representable by schemes and every
presentation U → X is representable by schemes (Corollary 4.4.8). Therefore, if you
are like most other humans and are happy restricting to stacks with separated and
quasi-compact diagonal, then you may treat algebraic spaces and Deligne–Mumford
stacks on the same footing. On the other hand, you should be aware that there are
Deligne–Mumford stacks whose diagonal is not quasi-compact, not separated, or not
representable by schemes, e.g., BG for an étale group algebraic space that is not
quasi-compact, not separated, or not a scheme; see Examples 3.9.20 to 3.9.22.

3.1.3 Algebraic stacks

Definition 3.1.6 (Algebraic stacks). An algebraic stack is a stack X over Schét such
that there exists a scheme U and a surjective, smooth, and representable morphism
U → X .

The morphism U → X is called a smooth presentation. Morphisms of algebraic
stacks are by definition morphisms of prestacks. Every scheme, algebraic space, or
Deligne–Mumford stack is also an algebraic stack.

Caution 3.1.7. The definitions above are not standard as most authors add a
representability condition on the diagonal. They are nevertheless equivalent to the
standard definitions: we show in Theorem 3.2.1 that the diagonal of an algebraic
space is representable by schemes and that the diagonal of an algebraic stack is
representable.

Definition 3.1.8 (Open and closed substacks). A substack T ⊂ X of a stack over
Schét is called an open substack (resp., closed substack) if the inclusion T → X is
representable by schemes and an open immersion (resp., closed immersion).

Exercise 3.1.9 (Fiber products). Show that fiber products exist for algebraic
spaces, Deligne–Mumford stacks, and algebraic stacks.
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3.1.4 Algebraicity of quotient stacks
Theorem 3.1.10 (Algebraicity of Quotient Stacks). If G→ S is a smooth affine
group scheme acting on an algebraic space U → S, the quotient stack [U/G] is an
algebraic stack over S such that U → [U/G] is a principal G-bundle and in particular
surjective, smooth, and affine. In particular, the classifying stack BG = [S/G] is
algebraic.

Remark 3.1.11. An eagle-eyed reader may have noticed that we only defined
[U/G] when U is a scheme. It is not hard to extend the definition. An action of
a smooth affine group scheme G→ S on an algebraic space U → S is a morphism
σ : G ×S U → U satisfying the same axioms as in Definition B.1.9, and we define
the quotient stack [U/G] as the stackification of the prestack [U/G]pre, whose
fiber category over an S-scheme T is the quotient groupoid [U(T )/G(T )], as in
Definition 2.4.14. Objects of [U/G] over an S-scheme T are principal G-bundles
P → T and G-equivariant morphisms P → U . Since morphisms to algebraic spaces
glue uniquely in the étale topology, the argument of Proposition 2.5.13 extends
to show that [U/G] is a stack. Finally, we note that saying that U → [U/G] is a
principal G-bundle means that it is representable by schemes and every base change
by a map T → [U/G] from scheme is a principal G-bundle.

Proof. We will use the natural projection U → [U/G] corresponding via the 2-
Yoneda Lemma (2.4.20) to the trivial principal G-bundle p2 : G× U → U and the
G-equivariant map σ : G×U → U given by multiplication. To show that U → [U/G]
is a principal G-bundle, let T → [U/G] is a morphism from an S-scheme classified by
a principal G-bundle P → T and a G-equivariant map P → U . By Exercise 2.4.35,
there is a cartesian diagram

P //

��

U

��

T // [U/G].

□

Since every base change is a principal G-bundle, so is U → [U/G]. The map
U → [U/G] is almost a smooth presentation except that U may not be a scheme:
letting U ′ → U be an étale presentation with U ′ a scheme, the composition U ′ →
U → [U/G] provides a smooth presentation.

Example 3.1.12 (BGm, BGLn, and B PGLn). Since principal Gm-bundles cor-
respond to line bundles (Exercise B.1.51), the classifying stack BGm is equivalent
to the category of pairs (S, V ) consisting of a scheme S and a line bundle V on
S. Similarly, BGLn is the stack of pairs (S, V ) where V is a vector bundle of
rank n on a scheme S (Exercise B.1.56). The classifying stack B PGLn can be
described equivalently using either principal PGLn-bundles, Brauer–Severi schemes,
or Azumaya algebras over S (see Exercises B.1.65 and B.1.67).

Exercise 3.1.13 (BO(q)). Let k be a field of char(k) ̸= 2. For a non-degenerate
quadratic form q on an n-dimensional vector space V , the orthogonal group O(q)
is the subgroup of GL(V ) containing matrices preserving q. If q and q′ are non-
degenerate quardratic forms, show that BO(q) ∼= BO(q′) even though O(q) and
O(q′) may be non-isomorphic.

Corollary 3.1.14. Let G be an finite abstract group viewed as a group scheme over
a scheme S. If G acts freely on an algebraic space U over S, then the quotient sheaf
U/G is an algebraic space.
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Proof. Since the action is free, the quotient stack [U/G] is equivalent to a sheaf,
which we denote by U/G (see Exercise 2.4.19). Theorem 3.1.10 implies that U/G
is an algebraic stack and that U → U/G is a principal G-bundle so in particular
finite, étale, surjective and representable by schemes. Taking U ′ → U to be an
étale presentation by a scheme, the composition U ′ → U → U/G yields an étale
presentation of U/G.

Remark 3.1.15. This resolves the troubling issue from Example 0.5.5 that the
quotient of a finite group acting freely on a scheme need not exist as a scheme. In
addition, it shows that the category of algebraic spaces itself is closed under taking
quotients by free actions of finite groups so that we do not need to enlarge our
category even more.

Exercise 3.1.16 (easy). Let G → S be a smooth affine group scheme acting on
S-schemes X and Y . Show that a G-equivariant morphism X → Y induces a
morphism [X/G]→ [Y/G] of algebraic stacks, and conversely that [X/G]→ [Y/G]
is induced by a G-equivariant morphism if and only if [X/G]→ [Y/G] is a morphism
over BG.

3.1.5 Algebraicity of Mg

Why is Mg algebraic? Here is one reason: every smooth, connected, and projective
curve C is tri-canonically embedded C ↪→ P5g−6 by the very ample line bundle ω⊗3

C

and the locally closed subscheme H ′ ⊂ HilbP (P5g−6) parameterizing smooth families
of tri-canonically embedded curves provides a smooth presentation H ′ →Mg. The
technical details however are a bit involved. The Algebraicity of Bunr,d(C) (3.1.21)
will be easier.

Theorem 3.1.17 (Algebraicity of Mg). If g ≥ 2, then Mg is an algebraic stack
over SpecZ.

Proof. As in the proof thatMg is a stack (Proposition 2.5.14), we will use Properties
of Families of Smooth Curves (5.1.16): for a family of smooth curves p : D → S,
ω⊗3
D/S is relatively very ample on S and p∗(ω⊗3

D/S) is a vector bundle of rank 5(g− 1).
It follows that ω⊗3

D/S defines a closed immersion D ↪→ P(p∗(ω
⊗3
D/S)) over S. By

Riemann–Roch, the Hilbert polynomial of a fiber Ds ↪→ P5g−6
κ(s) is given by

P (n) := χ(ODs
(n)) = deg(ω⊗3n

Ds
) + 1− g = (6n− 1)(g − 1).

and we define
H := HilbP (P5g−6

Z /Z)

as the (projective) Hilbert scheme parameterizing closed subschemes of P5g−6 with
Hilbert polynomial P (Theorem 1.1.2). Let C ↪→ P5g−6 ×H be the universal closed
subscheme and let π : C → H be the projection. We claim that there is a locally
closed subscheme H ′ ⊂ H such that the family CH′ → H ′ satisfies

(a) for every h ∈ H ′, Ch → Specκ(h) is smooth and geometrically connected (and
thus geometrically integral),

(b) the natural map p2,∗OP5g−6×H′(1)→ p2,∗OCH′ (1) induced by the closed immer-
sion C′ ↪→ P5g−6 ×H ′ is an isomorphism (or equivalently H0(P5g−6

κ(h) ,O(1))→
H0(Ch,OCh

(1)) is an isomorphism for all h ∈ H ′), and
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(c) the line bundles ω⊗3
CH′/H′ and OCH′ (1) differ by a pullback of a line bundle

from H ′.
Moreover, if T → H is a morphism of schemes such that (a)–(c) hold for the family
CT → T , then T → H factors through H ′. In particular, H ′ ⊂ H is unique. Note
that (b)–(c) imply that Ch ↪→ P5g−6

κ(h) is embedded by the complete linear series
ω⊗3
Ch/κ(h)

for h ∈ H.
Since the condition that a fiber of a proper morphism (of finite presentation)

is smooth is an open condition on the target (Corollary A.3.9), the condition on
H that Ch is smooth is open. Consider the Stein factorization [Har77, Cor. 11.5]
C → H̃ = SpecH π∗OC → H where C → H̃ has geometrically connected fibers
and H̃ → H is finite. Since the kernel and cokernel of OH → π∗OC have closed
support (as they are coherent), H̃ → H is an isomorphism over an open subscheme
of H, which is precisely where the fibers of C → H are geometrically connected.
In summary, the set of h ∈ H satisfying (a) is an open subscheme of H, which we
will denote by H1. To arrange (b), observe that Cohomology and Base Change
(A.6.8) implies that both p2,∗OP5g−6×H1

(1) and p2,∗OCH1
(1) are vector bundles

whose constructions commute with base change, and Riemann–Roch (5.1.2) further
implies they have the same rank. Therefore, α : p2,∗OP5g−6×H1

(1)→ p2,∗OCH1
(1) is

an isomorphism if and only if it is surjective. Setting H2 := H1 \Supp(coker(α)), we
conclude that (a)–(b) hold over H2. It is also clear that any map T → H over which
(a)–(b) hold factors through H2. For (c), the relative canonical sheaf ω := ωCH2

/H2
is

a line bundle. By Proposition A.6.17, there exists a closed subscheme H3 ↪→ H2 such
that a morphism T → H2 factors through H3 if and only if ω⊗3|CT

and OC(1)|CT

differ by the pullback of a line bundle on T . The subscheme H ′ := H3 satisfies
(a)–(c) along with the universal property.

The group scheme PGL5g−5 = Aut(P5g−6
Z ) over Z acts naturally on H: if

g ∈ Aut(P5g−6
S ) and [D ⊂ P5g−6

S ] ∈ H(S), then g · [D ⊂ P5g−6
S ] = [g(D) ⊂ P5g−6

S ].
The closed subscheme H ′ ⊂ H is PGL5g−5-invariant and we claim that Mg

∼=
[H ′/PGL5g−5]. This finishes the theorem by the Algebraicity of Quotient Stacks
(3.1.10). Consider the morphism H ′ →Mg defined by the restriction C′ → H ′ of
the universal family of the Hilbert scheme. This morphism forgets the embedding,
i.e., assigns a closed subscheme D ⊂ P5g−6

S to the family D → S. This morphism
is PGL5g−5-invariant and descends to a morphism [H ′/PGL5g−5]

pre → Mg of
prestacks. We claim that this map is fully faithful. To see this, let S → H ′ be a
map corresponding to a closed subscheme

D �
�

//

q
$$

P5g−6 × S

p2

��

S

We will exploit the equivalences

H0(P5g−6
Z ,O(1))⊗OS ∼= p2,∗OP5g−6×S(1)

∼= q∗OD(1) (property (c))
∼= q∗(ω

⊗3
D/S ⊗ q

∗M) (property (b) for M ∈ Pic(S))
∼= q∗(ω

⊗3
D/S)⊗M (projection formula).

Therefore, we see that an automorphism of D → S induces an automorphism of ω⊗3
D/S

and thus an automorphism of q∗(ω⊗3
D/S)⊗M , which in turn induces an automorphism
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of P5g−6 × S preserving D. Since Mg is a stack (Theorem 3.1.10), the universal
property of stackification yields a morphism [H ′/PGL5g−5]→Mg; this map is fully
faithful since [H ′/PGL5g−5]

pre → [H ′/PGL5g−5] is fully faithful (Exercise 2.5.21).
It remains to check that [H ′/PGL5g−5] → Mg is essentially surjective. For this,
it suffices to check that if q : D → S is a family of smooth curves, there exists an
étale cover {Si → S} such that each DSi is in the image of H ′(Si)→Mg(Si). Since
ω⊗3
D/S defines a closed immersion D ↪→ P(q∗(ω

⊗3
D/S)) over S and q∗(ω⊗3

D/S) is locally
free of rank 5g − 5, we may simply take {Si} to be a Zariski open cover (and thus
étale cover) such that each (q∗(ωD/S)

⊗3)|Si
is free.

Remark 3.1.18. The entire stack M of smooth curves (Example 2.4.9) is also
algebraic since M =

∐
gMg.

Exercise 3.1.19. Recall from Exercise 2.5.15 that M1,1 denotes the stack over
Schét parameterizing families of elliptic curves.

(a) Show thatM1,1 is an algebraic stack over Z.
(b) Use the Weierstrass form y2 = x3 + ax+ b (see [Sil09, §3.1]) to show that if

we invert the primes 2 and 3, there is an isomorphism

M1,1 ×Z Z[1/6] ∼= [(A2 ∖ V (∆))/Gm],

where the action is given by t · (a, b) = (t4a, t6b) and ∆ is the discriminant
4a3 + 27b2.

(c) Define a stable elliptic curve over a field k as a pair (E, p) where E is an
irreducible projective curve over k of arithmetic genus 1 with at worst nodal
singularities and p ∈ E(k) is a smooth point. Over a scheme S, a family of
stable elliptic curves over S is a proper flat E → S and a section σ : S → E
such that every fiber is a stable elliptic curve. Denoting M1,1 as the stack
over Sch classifying stable elliptic curves, show that

M1,1 ×Z Z[1/6] ∼= [(A2 ∖ 0)/Gm]

with the same action as above.

Exercise 3.1.20. An n-pointed family of genus 0 curves is smooth, proper mor-
phism X → S of schemes with n sections σ1, . . . , σn : S → X such that for every
s : Spec k → S, Xs is a genus 0 curve with and σ1(s), . . . , σn(s) ∈ Xs are distinct.
In Exercise 2.5.15, we have identified M0,0 with the classifying stack B PGL2.

(a) Show that the prestack M0,n parameterizing n-pointed families of genus 0
curves is a stack over Schét.

(b) Show thatM0,1
∼= BU2 where U2 ⊂ PGL2 is the two-dimensional subgroup of

upper triangular matrices.
(c) Show thatM0,2

∼= BGm.
(d) Show thatM0,3

∼= SpecZ.
(e) Show that for n > 3, M0,n

∼= (P1 \ {0, 1,∞})n−3 \∆ where ∆ is the closed
subscheme where at least two of the n− 3 points are equal.

3.1.6 Algebraicity of Bun(C)

In Proposition 2.5.17, we show that QCoh(X), Coh(X), and Bun(X) are stacks over
(Sch/k)ét for a scheme X over a field k. We now specialize to the case of a smooth,
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connected, and projective curve C over an algebraically closed field k, even though
the following result holds in far greater generality. We define

Cohr,d(C) ⊂ Coh(C) and Bunr,d(C) ⊂ Bun(C)

as the full subcategories parameterizing pairs (E,S) such that for every geometric
point SpecK → S, EK is a coherent sheaf on CK of rank r and degree d.

Theorem 3.1.21 (Algebraicity of Bun(C)). Let C be a smooth, connected, and
projective curve over an algebraically closed field k. The stacks Bun(C) and Coh(C)
are algebraic, and Bun(C) ⊂ Coh(C) is an open substack. For integers r ≥ 0 and
d, Bunr,d(C) and Cohr,d(C) are algebraic stacks, and Bunr,d(C) ⊂ Bun(C) and
Cohr,d(C) ⊂ Coh(C) are open and closed substacks.

Remark 3.1.22. The theorem yields decompositions

Coh(C) =
∐
r,d

Cohr,d(C) and Bun(C) =
∐
r,d

Bunr,d(C).

While Bunr,d(C) and Cohr,d(C) are not quasi-compact (Definition 3.3.20), the proof
below shows that every quasi-compact open substack of Bunr,d(C) or Cohr,d(C) is
a quotient stack.

Proof. We first note that Cohr,d(C) and Bunr,d(C) are stacks over (Sch/k)ét since
they are defined as the full subcategories of the stacks Coh(C) and Bun(C) by a
condition on the geometric fiber. To see that Bun(C) ⊂ Coh(C) is an open substack,
let S → Coh(C) be a morphism classified by a finitely presented, quasi-coherent sheaf
E on C × S flat over S. If V ⊂ C × S is the open locus where E is a vector bundle,
then S \p2(C×S \V ) is open and identified with the fiber product S×Coh(C)Bun(C).
By Riemann–Roch (5.1.2), the Hilbert polynomial of a coherent sheaf E on C of
rank r and degree d is

P (n) := χ(E(n)) = deg(E(n)) + rk(E(n))(1− g) = d+ rn+ r(1− g).

Since the Hilbert polynomial is locally constant in flat families (Proposition A.2.4),
the inclusions Bunr,d(C) ↪→ Bun(C) and Cohr,d(C) ↪→ Coh(C) are open and closed
substacks. It therefore suffices to show that Cohr,d(C) is algebraic.

If E is a coherent sheaf C of rank r and degree d, then Serre vanishing implies
that E(N) is globally generated and H1(C,E(N)) = 0 for N ≫ 0. This yields a
surjection Γ(C,E(N))⊗k OC ↠ E(N) inducing an isomorphism on global sections.
For each integer N , let

UN ⊂ Cohr,d(C)

be the substack parameterizing pairs (S, E) ∈ Cohr,d(C) such that for every s ∈
S, Es(N) := E(N)|C×Specκ(s) is globally generated on Cs := C ×k κ(s) and
H1(Cs, Es(N)) = 0. Note that since P (N) = h0(Cs, Es(N))− h1(Cs, Es(N)), these
conditions imply that h0(C, Es(N)) = P (N) and that the surjection Γ(C, E(N))⊗
OC ↠ E(N) induces an isomorphism on global sections.

We claim that UN ⊂ Cohr,d(C) is an open substack. To verify the claim, let S
be a scheme and E a finitely presented, quasi-coherent sheaf on C × S flat over S
with Hilbert polynomial P , and consider the diagram

C × S
p1

||

p2

##
C S.
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A simple application of Cohomology and Base Change (see Proposition A.6.11)
implies that the locus S′ ⊂ S of points s ∈ S such that H1(C, Es(N)) = 0
is open, and moreover that

(
R1p2,∗E(N)

)
|S′ = 0 and

(
p2,∗E(N)

)
|S′ is a vec-

tor bundle of rank P (N) whose construction commutes base change. The sheaf
F := coker

(
p∗2p2,∗E(N) → E(N)

)
has closed support and the open subset S′′ :=

S′ \ p2(Supp(F)) is the locus of points s ∈ S such that Es(N) is globally generated
and H1(C, Es(N)) = 0. If S → Cohr,d(C) is the map classifying E , the base change
UN ×Cohr,d(C) S is identified with S′′, and the claim is established.

For each N , consider the Quot scheme

QN := QuotPC(OC(−N)P (N))

parameterizing quotients OC(−N)P (N) ↠ F with Hilbert polynomial P (The-
orem 1.1.3). A similar argument as above shows that there is an open sub-
scheme Q′

N ⊂ QN parameterizing quotients q : OC(−N)P (N) ↠ F such that
H0(q(N)) : H0(C,OC)P (N) → H0(C,F (N)) is surjective and H1(C,F (N)) = 0. The
Quot scheme QN inherits a natural action from GLP (N): given g ∈ GLP (N) and
[q : OC(−N)P (N) ↠ F ] ∈ QN ,

g · q := [OC(−N)P (N) g−1

−−→ OC(−N)P (N) q−→ F ] ∈ QN .

The locus Q′
N ⊂ QN is clearly GLP (N)-invariant. The morphism

Q′
N → UN , [OC(−N)P (N) ↠ F ] 7→ F,

is GLP (N)-invariant (i.e., GLP (N)-equivariant with respect to the trivial action on
UN ) and thus descends to a morphism Ψpre : [Q′

N/GLP (N)]
pre → UN of prestacks.

To see that Ψpre is fully faithful, observe that Ψpre induces a map Stab(q) =
(GLP (N))q → Aut(F ) from the stabilizer of a quotient [q : OC(−N)P (N) ↠ F ] ∈ QN
to the automorphism group of F . Conversely, an automorphism α ∈ Aut(F ) induces
an automorphism H0(α(N)) of H0(C,F (N)) ∼= kP (N), corresponding to an element
of GLP (N) fixing q. This defines an inverse to Stab(q)→ Aut(F ), and it is not hard
to extend this construction to a family of quotients over a base S.

Since Cohr,d(C) is a stack (Proposition 2.5.17), there is an induced morphism
Ψ: [Q′

N/GLP (N)] → UN of stacks which is fully faithful (by Exercise 2.5.21) and
essentially surjective (by construction). We conclude that UN = [Q′

N/GLP (m] and
that

Cohr,d(C) =
⋃
N

[
Q′
N/GLP (N)

]
.

The algebraicity of quotient stacks (Theorem 3.1.10) implies the algebraicity of
Cohr,d(C).

Exercise 3.1.23. Modify the above argument to show that Bun(X) and Coh(X)
are algebraic stacks if X is a projective scheme over k. More generally, show that
if X → S is a strongly projective morphism of noetherian schemes, then the stack
Coh(X/S), whose objects over an S-scheme T are finitely presented, quasi-coherent
sheaves on XT flat over T , is an algebraic stack.

3.1.7 Universal families
Lemma 3.1.24 (Generalized 2-Yoneda Lemma). Let X be a stack over Schét. If T
is an algebraic stack and T → T is a smooth presentation, define the category X (T )
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as the equalizer

X (T ) := Eq
(
X (T ) //

// X (T ×T T )
//

//
// X (T ×T T ×T T )

)
,

i.e., an object is the data of a pair (a, α) where a ∈ X (T ) and α : p∗1a
∼→ p∗2a is an

isomorphism satisfying the cocycle condition p∗23α ◦ p∗12α = p∗13α, while a morphism
(a, α)→ (a′, α′) is the data of a morphism β : a→ a′ satisfying p∗2β ◦ α = α′ ◦ p∗1β.
There is a natural equivalence of categories

Mor(T ,X )→ X (T ). (3.1.25)

In particular, X (T ) is independent of the presentation.

Proof. Let q : T → T denote the smooth presentation, and consider the 2-commutative
diagram

T ×T T

p1

��

p2 //

�� γ

T

q

��

T
q
// T .

Given a morphism f : T → X , let a ∈ X (T ) be the object corresponding via the
2-Yoneda Lemma (2.4.20) to the composition f ◦ q : T → T → X . Composing the
2-isomorphism γ : q ◦ p2 → q ◦ p1 with f induces a 2-isomorphism α : p∗1a

∼→ p∗2a.
The map (3.1.25) is defined by taking the morphism f to the pair (a, α) ∈ X (T ).

To show that (3.1.25) is an equivalence, we first assume that it holds for algebraic
spaces T . Thus, (3.1.25) holds for T , T ×T T , and T ×T T ×T T . We will construct
an inverse Ψ: X (T ) → Mor(T ,X ) of (3.1.25). Let (a, α) ∈ X (T ) and fa : T → X
be the map corresponding to a. To define a morphism Ψ(a, α) : T → X of stacks,
let b ∈ T be an object over a scheme S classified by a map fb : S → T , and consider
the commutative diagram

S2
� � //

''

S1
// S0

��

// T

q

��

fa // X

S
fb // T ,

□

where S0 = S ×T T is an algebraic space, S1 → S0 is an étale presentation, and
S2 → S is an etale surjection of schemes factoring through S1, which exists because
smooth morphisms have sections étale locally (Corollary A.3.5). The composition in
the top row defines an object c2 of X over S2. The isomorphism α : p∗1a

∼→ p∗2a over
T ×T T induces an isomorphism β : p∗1c2

∼→ p∗2c2 over S2 ×S S2. Since α satisfies the
cocycle condition and (3.1.25) is an equivalence for T ×T T ×T T , β also satisfies
the cocycle condition, and thus there is an object c of X over S pulling back to
c2. We set Ψ(a, α)(b) = c ∈ X (S). We leave the details that this is an inverse to
(3.1.25) to the reader. Finally, the same argument applies to show that (3.1.25) is an
equivalence when T is an algebraic space by using an étale presentation T → T .

Definition 3.1.26 (Universal family). If X is an algebraic stack, the universal family
over X is the object u ∈ X (X ) (unique up to unique isomorphism) corresponding to
the identity morphism idX : X → X under the equivalence (3.1.25).
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Exercise 3.1.27 (details). Let X be an algebraic stack and u ∈ X (X ) be the
universal family. If g : S → T is a morphism of algebraic stacks, show that there is
a natural pullback functor g∗ : X (T )→ X (S), and that if fa : T → X is a map from
scheme classified by an object a ∈ X (T ), then a is isomorphic to the pullback f∗au.

In practice, for an algebraic stack X arising from a moduli problem, the geometric
significance of objects of X (S) is usually clear.

Example 3.1.28 (Universal family of Mg). A family of smooth curves C → T
over an algebraic stack T is a morphism of algebraic stacks which is representable
by schemes, proper, and flat, and such that for every geometric point Speck→ T ,
the fiber Cs := C ×S k is a smooth, connected, and projective curve of genus g.
Descent theory provides an identification ofMg(T ) with the category of family of
smooth curves over T . Let [Ug → Mg] ∈ Mg(Mg) denote the universal family.
By Exercise 2.4.40, the universal family is identified with the map Mg,1 → Mg

forgetting a section, where Mg,1 is the stack of smooth 1-pointed curves. For every
morphism S →Mg corresponding to a family C → S of smooth curves, there is a
cartesian diagram

C //

��

Ug =Mg,1

��

S //Mg.

□

See Figure 0.11 for a visualization of Ug →Mg.

Example 3.1.29 (Universal family of Bunr,d(C)). Later we will define vector
bundles on an algebraic stack using the theory of quasi-coherent sheaves (see §6.1).
By decent theory, Bunr,d(C)(T ) is identified with the groupoid of vector bundles
on C × T of rank r and degree d. The universal family is a vector bundle Euniv on
C × Bunr,d(C) with the property that for every scheme S and vector bundle E on
C × S corresponding to a map f : S → Bunr,d(C), E ∼= (id×f)∗Euniv.

3.1.8 Desideratum
We will develop the foundations of algebraic spaces and stacks in the forthcoming
chapters but we first share some of the highlights.

The importance of the diagonal. When overhearing others discussing algebraic
stacks, you may have wondered what is all the fuss about the diagonal. Well, I will
tell you—the diagonal encodes the stackiness!

First and foremost, the diagonal X → X×X of an algebraic stack is representable
and the diagonal X → X × X of an algebraic space is representable by schemes
(Theorem 3.2.1). The automorphism group or stabilizer Gx of a field-valued point
x : Speck→ X is defined as the sheaf AutX (k)(x) = IsomX (k)(x, x) and is identified
with the fiber product X ×X×X Speck by Exercise 2.4.37. By Representability of
the Diagonal (3.2.1) the stabilizer Gx is representable by a group algebraic space
over k. See §3.2.2 for a further discussion of stabilizers.

For schemes (resp., separated schemes), the diagonal is an immersion (resp.,
closed immersion). For algebraic spaces, the diagonal need not be an immersion,
and for algebraic stacks, the diagonal need not even be a monomorphism as the fiber
over (x, x) : Speck→ X ×X , or in other words the stabilizer Gx, may be non-trivial.
Theorems 3.6.4 and 3.6.6 characterizes algebraic spaces and Deligne–Mumford stacks
in terms of the diagonal, as expressed by the following table:
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Type of space Property of the diagonal Property of stabilizers

algebraic space monomorphism trivial

Deligne–Mumford stack unramified reduced finite groups1

algebraic stack arbitrary arbitrary

Table 3.1: Characterization of algebraic spaces and Deligne–Mumford stacks. See
Table 0.1, Figure 0.1, and Table 0.3 for further diagramatic explanations of the
trichotomy of moduli.

This characterization will allow us to conclude that Mg is Deligne–Mumford
(Corollary 3.6.10). Extending this characterization, we show that a morphism
f : X → Y of algebraic stacks is representable if and only if the induced map on
stabilizer groups Gx → Gf(x) is injective for every field-valued point x ∈ X (k)
(Corollaries 3.6.9 and 4.4.11).

Properties of algebraic spaces.

• (Algebraicity of Quotients by Equivalence Relations) If R⇒ U is an étale equiv-
alence relation of schemes, the quotient sheaf U/R is an algebraic space (Theo-
rem 3.4.11). This is extended to smooth equivalence relations of algebraic spaces in
Corollary 4.4.12 and fppf equivalence relations in Corollary 6.2.4, and in particular
the quotient of a free action by an algebraic group on an algebraic space exists as
an algebraic space.

• (Zariski’s Main Theorem) If X → Y is a separated and quasi-finite morphism of
noetherian algebraic spaces, then there exists a factorization X ↪→ X̃ → Y where
X ↪→ X̃ is an open immersion and X̃ → Y is finite (Theorem 4.4.9). In particular,
X → Y is quasi-affine. Zariski’s Main Theorem also holds for representable mor-
phisms of Deligne–Mumford stacks, and is extended to representable morphisms
of algebraic stacks in Theorem 6.1.10.

• (Affine Criteria) By Serre’s Criterion for Affineness (4.4.16), an algebraic space X
is an affine scheme if and only if Γ(X,−) is exact on the category of quasi-coherent
sheaves, and by Chevelley’s Criterion for Affineness (4.4.20), if X → Y is a finite
surjection of noetherian algebraic spaces and X is affine, then Y is also affine.

• (Algebraic spaces vs schemes) If X is a quasi-separated algebraic space, there
exists a dense open subspace U ⊂ X which is a scheme (Theorem 4.4.1). A
quasi-separated group algebraic space locally of finite type over a field is a scheme
(Theorem 4.4.28); in particular, the stabilizer of a point of an algebraic stack
with quasi-separated diagonal is a group scheme. A separated one-dimensional
algebraic spaces are schemes (Theorem 4.4.32)

Properties of Deligne–Mumford stacks.

• (Algebraicity of Quotients by Groupoids) If R⇒ U is an étale groupoid of schemes,
the quotient stack [U/R] is a Deligne–Mumford stack (Theorem 3.4.11).

• (Local Structure of Deligne–Mumford Stacks) If X is a separated Deligne–Mumford
stack and x ∈ X is a finite type point with stabilizer Gx, there exists an affine
étale neighborhood [SpecA/Gx]→ X of x (Theorem 4.2.12).
1If the diagonal is not quasi-compact, the stabilizers will only be discrete and reduced.
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• (Keel–Mori Theorem) If X is an Deligne–Mumford stack separated and of finite
type over a noetherian scheme S, there exists a coarse moduli space X → X where
X is an algebraic space separated over S (Theorem 4.3.12).

• (Le Lemme de Gabber) If X is a Deligne–Mumford stack (e.g., algebraic space)
separated and of finite type over a noetherian scheme S, there exists a scheme Z
and a finite surjection U → X (Theorem 4.5.1).

Properties of algebraic stacks.

• (Algebraicity of Quotients by Groupoids) If R ⇒ U is a smooth groupoid of
schemes, the quotient stack [U/R] is an algebraic stack (Theorem 3.4.11). This is
extended to fppf groupoids of algebraic spaces in Corollary 6.2.4.

• (Residual Gerbes and Minimal Presentations) If X is a noetherian algebraic stack
and x ∈ |X | is a finite type point, then the residual gerbe Gx exists and Gx ↪→ X
is a locally closed immersion (Proposition 6.2.36), and if in addition the stabilizer
Gx is smooth, there is a smooth presentation (U, u)→ (X , x) of relative dimesion
dimGx such that Gx ×X U ∼= Specκ(u) (Theorem 3.6.1). Later we establish the
existence of residual gerbes for any point x ∈ |X | (Proposition 6.2.36).

• (Infinitesimal Lifting Criteria and Valuative Criteria) We establish these criteria
for algebraic stacks in Theorem 3.7.1 and Theorem 3.8.2.

• (Local Structure of Algebraic Stacks) If X is an algebraic stack of finite type over an
algebraically closed field k with affine diagonal, every point x ∈ X (k) with linearly
reductive stabilizer Gx has an affine étale neighborhood [Spec(A)/Gx]→ X of x
(Theorem 6.5.1).

• (Existence of Good Moduli Spaces) Let X be an algebraic stack, of finite type
over an algebraically closed field k of characteristic 0, with affine diagonal. If X is
S-complete and Θ-complete, then there exists a good moduli space X → X where
X is a separated algebraic space of finite type over k (Theorem 6.8.1).

Historical comments
Deligne–Mumford and algebraic stacks were first introduced in [DM69] and [Art74]—
and in both cases referred to as algebraic stacks—with conventions slightly different
than ours. Namely, [DM69, Def. 4.6] assumed that algebraic stacks had an étale
presentation U → X which is representable by schemes (which as they point out
in a footnote gives the “right” definition when the diagonal is separated and quasi-
compact). On the other hand, [Art74, Def. 5.1] assumed that algebraic stacks are
locally of finite type over an excellent Dedekind domain. The term Artin stack—
which we refrain from using—is sometimes reserved for stacks that satisfy Artin’s
Axioms (C.7.1 or C.7.4) as first estsablished in [Art74, Thm. 5.3].

We follow the conventions of [LMB00], [Ols16], and [SP] with the following
exceptions:

– [LMB00] imposes a separated and quasi-compact hypothesis on the diagonal,
but we do not as in [Ols16] and [SP].

– We define algebraic spaces and stacks over Schét, while [LMB00] works over the
étale site of affine schemes and [SP] works over Schfppf . These gives equivalent
notions of algebraic stacks (c.f.,[SP, Tag 076U]).

– Perhaps confusingly, instead of our convention of calling a morphism X → Y
of stacks representable (resp., representable by schemes), [SP, Tags 02ZW and
02Y7] uses representable by algebraic spaces (resp., representable).
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3.2 Representability of the diagonal

3.2.1 Representability

Theorem 3.2.1 (Representability of the Diagonal).
(1) The diagonal of an algebraic space is representable by schemes.
(2) The diagonal of an algebraic stack is representable.

Proof. Let X be an algebraic space and U → X be an étale presentation. Define
the scheme R := U ×X U . If T → X ×X is a morphism from a scheme, we need to
show that the sheaf QT = X ×X×X T is in fact a scheme. Since U → X is étale,
surjective, and representable by schemes, so is U × U → X ×X. The base change
of T → X ×X by U × U → X ×X is a scheme T ′ which is surjective étale over T .
In the cartesian cube

QT ′ //

��

}}

T ′

��

{{

R //

��

U × U

��

QT //

}}

T

{{

X // X ×X,

(3.2.2)

QT is a sheaf on Schét while QT ′ is a scheme. Since R→ U × U is a separated and
locally quasi-finite morphism of schemes, so is QT ′ → T ′. (If X had a quasi-compact
diagonal, then by Zariski’s main theorem R→ U × U is quasi-affine and thus so is
QT ′ → T ′.) Since QT is a sheaf in the étale topology that pulls back to a scheme
QT ′ separated and locally quasi-finite over T ′, we may apply the Descent Criterion
for an Fppf Sheaf to be a Scheme (Proposition 2.3.16) to conclude that QT is a
scheme.

If X is an algebraic stack and U → X is a smooth presentation, we may imitate
the above argument. The fiber product R := U ×X U is an algebraic space. If
T → X ×X is a morphism from a scheme, its base change along U × U → X ×X
yields an algebraic space T1 which is surjective smooth over T . Choose an étale
presentation T2 → T1. Then T2 → T is a surjective smooth morphism of schemes
which has a section after an étale cover T ′ → T (Proposition A.3.4). The composition
T ′ → T2 → T1 → U ×U provides a lift of T → X ×X . We obtain a diagram similar
to (3.2.2) but where the left and right squares are not necessarily cartesian. Note
that QT is a sheaf as it is identified with IsomX (T )(a, a) by Exercise 2.4.37, where
a : T → X . The morphism QT ′ → QT is étale, surjective, and representable by
schemes (as T ′ → T is). Choosing an étale presentation V → QT ′ of the algebraic
space QT ′ , the composition V → QT ′ → QT yields an étale presentation showing
that QT is an algebraic space.

Corollary 3.2.3.
(1) If the diagonal of a stack X is representable (resp., representable by a scheme),

then every morphism U → X from a scheme is representable (resp., repre-
sentable by a scheme).
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(2) Every morphism from a scheme to an algebraic stack (resp., algebraic spaces)
is representable (resp., representable by schemes).

Proof. The first part follows from the cartesian diagram

T1 ×X T2 //

��

T1 × T2

��

X // X × X .

□

associated to any two maps T1 → X and T2 → X from schemes to an algebraic
stack. The second part follows directly from the first part and the Representability
of the Diagonal (Theorem 3.2.1).

Exercise 3.2.4.
(a) If X → Y is a representable morphism of algebraic stacks (e.g., a morphism of

algebraic spaces), then X → X ×Y X is representable by schemes.
(b) If X → Y is a morphism of algebraic stacks, then X → X ×YX is representable.

3.2.2 Stabilizer groups and the inertia stack

Now that we know the diagonal is representable, we can discuss its properties. One
of the most important features of the diagonal is that it encodes the stabilizer groups.

Definition 3.2.5 (Stabilizers). If X is an algebraic stack and x : Speck → X
is a field-valued point, the stabilizer of x is defined as the group algebraic space
Gx := AutX (k)(x).

By Exercise 2.4.37, we can identify Gx with the fiber product

Gx = AutX (k)(x)
//

��

Speck

(x,x)

��

X ∆ // X × X .

□

The sheaf Gx is representable by an algebraic space over K by Representability of
the Diagonal (Theorem 3.2.1). The stabilizer Gx is a group algebraic space, i.e., an
algebraic space Gx with multiplication, inverse, and identity morphisms satisfying
the commutativity conditions of Definition B.1.1 (or equivalently a group object in
the category of algebraic spaces). In fact, Gx is actually a group scheme locally of
finite type as long as the diagonal of X is quasi-separated (Corollary 4.4.31).

Remark 3.2.6. Let G be a group scheme over a field k acting on a k-scheme U
via σ : G× U → U , and let u ∈ U(k). The stabilizer of the image of u in [U/G] is
the usual stabilizer group scheme, i.e., the fiber product of (σ, p2) : G× U → U × U
along (u, u) : Speck→ U × U .

Exercise 3.2.7.
(a) Show that the stabilizer of a field-valued point of a fiber product of algebraic

stacks is the fiber product of stabilizers, i.e., for x′ ∈ (X ×Y Y ′)(k), then
Gx′ = Gx ×Gy

Gy′ where x, y and y′ are the images of x′.
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(b) Let f : X → Y be a morphism of algebraic stacks and x ∈ X (k) be a field
valued point. Show that the fiber of the diagonal X → X ×Y X over the point
(x, x, id) ∈ (X ×Y X )(k) is identified with ker(Gx → Gy). What is the fiber of
the diagonal over an arbitrary field-valued point of X ×Y X ?

Exercise 3.2.8. Let X be a Deligne–Mumford stack (quasi-separated Deligne–
Mumford stack). An algebraic stack is quasi-separated if for every morphism
(a, b) : S → X×X from a scheme, the fiber product IsomX (S)(a, b)

∼= X×∆,X×X ,(a,b)S
is quasi-compact over S; see also Definition 3.3.10.

(a) For a field-valued point x ∈ X (k), show that Gx is a separated (resp., finite)
étale group scheme over k.
Hint: First show that Gx is an etale group algebraic space over k which
becomes a scheme after the base change by a finite field extension k → k′.
Apply Proposition B.1.8 to conclude that Gx ×k k′ is separated. Then apply
the Descent Criterion for an Fppf Sheaf to be a Scheme (Proposition 2.3.16).

(b) If k is algebraically closed, show that Gx is the discrete and reduced (resp.,
finite and reduced) group scheme corresponding to the abstract group Gx(k).

(c) Show that the diagonal of X is unramified.
We will see later that these properties characterize Deligne–Mumford stacks; see
Theorem 3.6.4.

Varying the point x of X , the stabilizer group varies and naturally forms a
family. We have already seen this: if a : T → X is an object, then IsomX (T )(a)→ S
is a group algebraic space such that the fiber over a point s ∈ S is the stabilizer
of the restriction a|Specκ(s) of a to Specκ(s). Applying this to the identity map
idX : X → X yields the construction of the inertia stack.

Definition 3.2.9 (Inertia stack). The inertia stack of an algebraic stack X is the
fiber product

IX //

��

X

��

X // X × X .

□

In the relative setting of a morphism X → Y of algebraic stacks, the relative inertia
stack is IX/Y := X ×X×YX X .

The stack IX is equivalent to the category of pairs (x, α) where x ∈ X is an object
over S ∈ Sch and α ∈ AutX (S)(x) (see Exercise 3.2.14(a)). The fiber of IX → X over
a field-valued point x : X (k) is precisely the stabilizer Gx. We can therefore think
of IX as a group scheme (or really group algebraic space) over X incorporating all
of the stabilizers of X . If we let (Sch /X )ét be the big étale site of schemes over X ,
then IX can be viewed as a sheaf of groups on (Sch /X )ét where IX (a) = AutS(a) for
a ∈ X (S). If a′ → a is a morphism over S′ → S, there is a natural pullback functor
α∗ : AutS(a)→ AutS′(a′) defined as follows: for β ∈ AutS(a), the image α∗(β) is
the unique dotted arrow (provided by Axiom (2) of a prestack (Definition 2.4.1))
making the diagram

a′
α∗(β)

//

β◦α

&&
a′

α
// a (3.2.10)

commute. Note that if α : α→ α is an isomorphism over the identity, then α∗(β) =
α−1 ◦ β ◦ α is conjugation by α.
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Exercise 3.2.11. Let G→ S be a group scheme acting on a scheme U → S, and
let X = [U/G] be the quotient stack. Show that there is a cartesian diagram

SU //

��

U

��

IX // X

□

where SU → U is the stabilizer group scheme, i.e., the fiber product of the action
map G× U → U × U and the diagonal U → U × U .

Example 3.2.12. The inertia stack of the classifying stack BGm is IBGm
∼= Gm ×

BGm. Similarly, if we let Gm act on Gm × A1 via the product of the trivial and
the scaling action and we let V (x(t − 1)) ⊂ Gm × A1 be the Gm-invariant closed
subscheme, then I[A1/Gm]

∼= [V (x(t− 1))/Gm].

Exercise 3.2.13.
(a) If G is a smooth affine algebraic group over a field k, show that the inertia

stack of BG is the quotient [G/G] where G acts on itself via conjugation. In
particular, if G is abelian then IBG ∼= G×BG.

(b) More generally, show that if G acts on a k-scheme U , show that I[U/G]
∼=

[(G× U)/G] where the action is given by g · (h, u) = (ghg−1, gu).
(c) Let G be a group scheme over k corresponding to a finite abstract group. If G

acts on a k-scheme U , then

I[U/G] =
∐

g∈Conj(G)

[Ug/Cg],

where Conj(G) is the set of conjugacy classes of elements of G, Cg is the
centralizer of g, and Ug := {x ∈ U | gx = x} is the closed locus fixed by g.

(d) Explicitly compute the inertia stack for the quotient [A3/S3] of the permutation
action.

Exercise 3.2.14. Let f : X → Y be a morphism of algebraic stacks.
(a) Show that IX/Y is equivalent to the category of pairs (x, α) where x ∈ X

and α : x ∼→ x is an isomorphism such that f(α) = idf(x), and show that the
identity section e : X → IX/Y takes an object x to (x, idx).

(b) Show that there are morphisms IX/Y → IX → IY ×Y X of algebraic stacks
over X such that the induced morphisms on the fibers over a field-valued
point x ∈ X (k) correspond to a left exact sequence 1→ Kx → Gx → Gf(x) of
algebraic groups.

(c) Show that there is a cartesian diagram

IX //

��

IY ×Y X

��

X // X ×Y X .

□

Hint for (c): An object of IY ×Y X over a scheme S is a quadruple (y, α, x, β) where
y ∈ X (S), α : y ∼→ y, x ∈ X (S), and β : y ∼→ f(x). On the other hand, an object of
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X ×Y X over S is a triple (x1, x2, γ) where x1, x2 ∈ X (S) and γ : f(x1)
∼→ f(x2).

Define IY ×Y X → X ×Y X on fiber categories by (y, α, x, β) 7→ (x, x, β ◦ α ◦ β−1).
Construct a map IX (S) to the fiber product of X (S) and (IY ×Y X )(S) over (X ×Y
X )(S), and show that it is an equivalence.

3.3 First properties

3.3.1 Properties of morphisms

Recall that a morphism of prestacks X → Y over Schét is representable by schemes
(resp., representable) if for every morphism T → Y from a scheme, the base change
X ×Y T is a scheme (resp., algebraic space); see Definitions 3.1.1 and 3.1.3. Both
notions are clearly stable under base change. Morphisms representable by schemes
are also clearly stable under composition, and the following lemma shows the same
for representable morphisms.

Lemma 3.3.1.
(1) If X → Y is a representable morphism of prestacks over Schét and Y is an

algebraic space, then X is an algebraic space.
(2) The composition of representable morphisms is representable.

Proof. For the first statement, if V → Y is an étale presentation by a scheme V ,
the base change XV is an algebraic space. Since the diagonal X → X ×Y X base
changes under V → Y to a monomorphism XV → XV ×V XV , étale descent implies
that X → X ×Y X is also a monomorphism. Hence, X is equivalent to a sheaf
(Exercise 2.4.37). Moreover, the base change XV → X is a morphism of algebraic
spaces which is étale, surjective and representable by schemes. Letting U → XV be
an étale presentation, then the composition U → XV → X is étale, surjective, and
representable by schemes, and thus X is an algebraic space. The second statement
follows from the first.

Definition 3.3.2. Let P be a property of morphisms of schemes.
(1) We say that P is étale local on the source if for every étale surjection X ′ → X

of schemes, a morphism X → Y satisfies P if and only if X ′ → X → Y does,
and that P is étale local on the target if for every étale surjection Y ′ → Y of
schemes, a morphism X → Y satisfies P if and only if X ×Y Y ′ → Y does.
The notions of being smooth (resp., fppf, fpqc) local on the source/target are
defined similarly.

(2) If P is stable under composition and base change and is étale local (resp.,
smooth local) on the source and target, a morphism X → Y of Deligne–
Mumford stacks (resp., algebraic stacks) has property P if for all étale (resp.,
smooth) presentations (equivalently there exists presentations) V → Y and
U → X ×Y V yielding a diagram

U // X ×Y V //

��

V

��

X // Y,

□

the composition U → V has P.
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(3) A morphism X → Y of algebraic stacks representable by schemes has property
P if for every morphism T → Y from a scheme, the base change X ×Y T → T
has P . In particular, a morphism X → Y of algebraic stacks is an isomorphism,
open immersion, closed immersion, locally closed immersion, affine, or quasi-
affine if it is representable by schemes and has the corresponding property.

The properties of flatness, smoothness (resp., smoothness of relative dimension n),
surjectivity, locally of finite presentation, and locally of finite type are smooth local
on the source and target. By (1), these properties extend to morphisms of algebraic
stacks. Likewise, étaleness and unramifiedness are étale local on the source and
target, and thus extend to morphisms of Deligne–Mumford stacks. These properties
are stable under composition and base change.

Exercise 3.3.3. Show that the diagonal of a morphism X → Y of algebraic stacks
is locally of finite type.

We now show that certain representable morphisms are smooth local on the
target. They are even fppf local, but this is postponed until Proposition 6.2.3.

Proposition 3.3.4. Let P be one of the following properties of morphisms of
algebraic stacks: representable, isomorphism, open immersion, closed immersion,
affine, or quasi-affine. Consider a cartesian diagram

X ′ //

��

Y ′

��

X // Y

□

of algebraic stacks where Y ′ → Y is smooth and surjective. Then X → Y has P if
and only if X ′ → Y ′ has P.

Proof. We will show the (⇐) implications as the other directions are clear. For
representability, we may assume that Y and Y ′ are schemes. It suffices to show that
the every automorphism α : a → a of an object a ∈ X over a scheme T is trivial.
The base change T ′ of a : T → X by X ′ → X is a scheme since it is also identified
with T ×Y Y ′. Since smooth morphisms étale locally have sections (Corollary A.3.5),
there is an étale cover g : T̃ → T that factors through T ′. The automorphism α
defines a section of AutT (a) over T . Since AutT (a) is a sheaf on (Sch/T )ét and
g∗α = id, we have that α = id.

For the other properties, we already know that X → Y is representable and it
thus suffices to assume that Y, Y ′ and X ′ are schemes and that X is an algebraic
space. Fortunately we can apply Descent Criterion for an Fppf Sheaf to be a Scheme
(Proposition 2.3.16) to conclude that X is a scheme and that X → Y has property
P.

Example 3.3.5. If G→ S is a smooth affine group scheme acting on an algebraic
space U → S, then [U/G] → S is flat (resp., smooth, surjective, locally of finite
presentation, locally of finite type) if and only if U → S is. In particular, using the
quotient stack presentations in the proofs of Theorems 3.1.17 and 3.1.21, we conclude
thatMg is locally of finite type over Z and that both Cohr,d(C) and Bunr,d(C) are
locally of finite type over k.
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3.3.2 Properties of algebraic spaces and stacks
Definition 3.3.6 (Properties of algebraic spaces and stacks). Let P be a property
of schemes which is étale (resp., smooth) local, i.e., if X → Y is an étale (resp.,
smooth) surjection of schemes, then X has P if and only if Y has P. We say that
a Deligne–Mumford stack (resp., algebraic stack) X has property P if for an étale
(resp., smooth) presentation (equivalently for all presentations) U → X , the scheme
U has P.

bldg
The properties of being locally noetherian, reduced, or regular are smooth local

(Proposition 2.1.22).

Example 3.3.7. Let G→ S be a smooth affine group scheme acting on a scheme
U over S. Then [U/G] is locally noetherian, reduced, or regular if and only if U is.

Definition 3.3.8 (Substacks). If X is an algebraic stack, a substack Z ⊂ X is closed
(resp., open, locally closed) if the induced morphism Z → X is a closed immersion
(resp., open immersion, locally closed immersion).

Exercise 3.3.9. For an action of a smooth affine group scheme G→ S on a scheme
U over S, show that there is an equivalence between closed (resp., open) substacks
of [U/G] and G-invariant closed (resp., open) subschemes of U .

3.3.3 Separation properties
Separation properties for algebraic stacks are defined in terms of the diagonal.

Definition 3.3.10.
(1) A morphism of algebraic stack X → Y has affine diagonal (resp., quasi-affine

diagonal, separated diagonal) if the diagonal X → X ×Y X is affine (resp.,
quasi-affine, separated). An algebraic stack X has affine diagonal (resp.,
quasi-affine diagonal, separated diagonal) if X → SpecZ does.

(2) A morphism of algebraic stack X → Y is quasi-separated if the diagonal
X → X ×Y X and second diagonal X → X ×X×YX X are quasi-compact. An
algebraic stack X is quasi-separated if it is quasi-separated over SpecZ.

(3) A representable morphism X → Y of algebraic stacks is separated if the
morphism X → X ×Y X , which is representable by schemes (Exercise 3.2.4),
is proper. Separated morphisms are defined in general in Definition 3.8.1.

Conditions on the diagonal translate to conditions on the Isom sheaves since the
base change of X → X × X by a morphism (a, b) : S → X × X from a scheme S
is identified with IsomX (S)(a, b) (see Exercise 2.4.37), which is an algebraic space
by Representability of the Diagonal (Theorem 3.2.1(2)). In particular, X has
affine diagonal if and only if every algebraic space IsomX (S)(a, b) is a scheme affine
over S. Every algebraic stack with affine or quasi-affine diagonal is necessarily
quasi-separated.

Lemma 3.3.11. Let S be an affine scheme and G→ S be a smooth affine group
scheme acting on an algebraic space U over S. If U has affine diagonal (resp.,
quasi-affine diagonal), then so does [U/G].

Proof. Recall that we established that [U/G] is an algebraic stack in Theorem 3.1.10.
Representability of the Diagonal (Theorem 3.2.1(2)) implies that [U/G]→ [U/G]×S
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[U/G] is a representable morphism. Applying smooth descent to the cartesian
diagram

G×S U //

��

U ×S U

��

[U/G] // [U/G]×S [U/G]

□

of Exercise 2.4.35, it suffices to show that G×S U → U ×S U is affine (resp., quasi-
affine). Since G is affine, so is the composition G ×S U → U ×S U

p2−→ U . On
the other hand, p2 : U ×S U → U has affine diagonal (resp., quasi-affine diagonal)
since U does. The cancellation law implies that G×S U → U ×S U is affine (resp.,
quasi-affine).

The condition of having affine diagonal is satisfied by most moduli problems
(except for exampleM1).

Example 3.3.12. The moduli stacksMg and Bunr,d(C) have affine diagonal and
are thus quasi-separated. The statement for Mg follows from the above lemma
and the quotient presentation Mg = [H ′/PGL5g−5] in the proof of Theorem 3.1.17
where H ′ is locally closed subscheme of a projective Hilbert scheme. We will show
later that Mg is separated or in other words that the diagonal of Mg is a finite
morphism.

Similarly in Theorem 3.1.21, we expressed every quasi-compact open substack
of Bunr,d(C) as a quotient stack [Q′/GLN ] where Q′ is an open subscheme of a
projective Quot scheme. To see that Bunr,d(C) has affine diagonal, it suffices to
show that the base change of the along a morphism SpecA→ Bunr,d(C)×Bunr,d(C)
is affine. But such a morphism factors through U × U for some quasi-compact open
substack U ⊂ Bunr,d(C) and we know that U has affine diagonal.

Remark 3.3.13. A quasi-separated Deligne–Mumford stack has finite and reduced
stabilizer groups (see Exercise 3.2.8).

For morphisms of schemes, the definition of separatedness above agrees with the
usual notation as the diagonal of a morphism of schemes is a closed immersion if and
only if it is proper. We postpone the definition of separatedness for non-representable
morphisms until Definition 3.8.1.

Example 3.3.14. The non-separated union A∞⋃
A∞\0 A∞ is a typical example of

a non-quasi-separated scheme. For algebraic spaces and stacks, there are additional
pathologies coming from actions of non-quasi-compact group schemes. For instance,
[A1/Z] is a non-quasi-separated algebraic space (see Example 3.9.22) while BZ is a
non-quasi-separated algebraic stack (see Example 3.9.20).

Exercise 3.3.15. An action of an algebraic group G over a field k on an algebraic
space U is called proper if the action map

Ψ: G× U → U × U, (g, u) 7→ (gu, u)

is proper.
(a) Show that the action of G on U is proper if and only if [U/G] is separated.
(b) For u ∈ U(k), let Ψu : G→ U be the map defined by g 7→ gu (viewing Ψ as a

morphism over U via the projections on the second component, then Ψu is
the fiber of Ψ over u). Show that the following are equivalent:

(i) Ψu : G→ U is proper,
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(ii) u : Speck→ [U/G] is proper,
(iii) Gu ⊂ U is closed and Gu is proper.

Hint: To show that (i) or (ii) implies (iii), replace U with the reduced orbit
Gu, use Generic Flatness (3.3.30) to show that Speck→ [U/G] is faithfully
flat, and then use fppf descent.

3.3.4 The topological space of a stack

We can associate a topological space |X | to every algebraic stack X .

Definition 3.3.16 (Topological space of an algebraic stack). If X is an algebraic
stack, we define the topological space of X as the set |X | consisting of field-valued
morphisms x : SpecK → X . Two morphisms x1 : SpecK1 → X and x2 : SpecK2 →
X are identified in |X | if there exists field extensions K1 → K3 and K2 → K3 such
that x1|SpecK3

and x2|SpecK3
are isomorphic in X (K3). A subset U ⊂ |X | is open if

there exists an open substack U ⊂ X such that U = |U|.

A morphism of algebraic stacks X → Y induces a continuous map |X | → |Y|.

Exercise 3.3.17. Show that if X is an algebraic stack and U ⊂ |X | is an open
subset, then there exists a reduced closed substack Z ↪→ X such that |Z| = |X | \ U .

Example 3.3.18. The topological space of the quotient stack |[A1
k/Gm]| with the

standard scaling action consists of two points with representatives x0 : Spec k
0−→

A1 → [A1/Gm] and x1 : Spec k
1−→ A1 → [A1/Gm]. In particular, the inclusion of the

generic point Speck(x)→ A1 → [A1/Gm] is equivalent to x1.

While the stabilizer groupGx depends on the choice of representative x : Speck→
X of x ∈ |X |, its dimension—which we denote by dimGx—is independent of this
choice. Similarly, the properties of being smooth, unramified, affine, finite, and
reduced are also independent of this choice.

Exercise 3.3.19. Let x ∈ |X | be a point of an algebraic stack with two representa-
tives x1 : Speck1 → X and x2 : Speck2 → X .

(1) Show that the stabilizer group Gx1
is smooth (resp., étale, unramified, affine,

finite) if and only if Gx2
is.

(2) Show that dimGx1
= dimGx2

.
(3) If X is Deligne–Mumford and both k1 and k2 are algebraically closed, show that

the abstract discrete groups corresponding to Gx1
and Gx2

(see Exercise 3.2.8)
are isomorphic.

As a consequence of the above exercise, it makes sense to say that x ∈ |X | has
smooth (resp., étale, unramified, affine, finite) stabilizer. For a Deligne–Mumford
stack X , we define the geometric stabilizer of x as the discrete group G = Gx(k)
where x : Speck→ X is a geometric point representing x.

We can now define topological properties of algebraic stacks and their morphisms.

Definition 3.3.20. We say that an algebraic stack X is quasi-compact, connected,
or irreducible if |X | is, and we say that X is noetherian if it is locally noetherian,
quasi-compact and quasi-separated.
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Exercise 3.3.21. Show that an algebraic stack X is quasi-compact if and only if
there exists a smooth presentation SpecA→ X and that a quasi-separated algebraic
stack X is noetherian if and only if there exists a smooth presentation SpecA→ X
where A is a noetherian ring.

Example 3.3.22. The moduli stack Mg is noetherian and in particular quasi-
compact. This follows from the above exercise using the quotient presentation
Mg = [H ′/PGL5g−5] from Theorem 3.1.17. However, Bunr,d(C) is not quasi-
compact.

Exercise 3.3.23.
(a) Show that a morphism X → Y of algebraic stacks is surjective if and only if
|X | → |Y| is surjective.

(b) Show that if X → Y and Y ′ → Y are morphisms of algebraic stacks, then
|X ×Y Y ′| → |X | ×|Y| |Y ′| is surjective.

Exercise 3.3.24. If X is a quasi-compact and locally noetherian algebraic stack,
show that |X | is a noetherian topological space.

Exercise 3.3.25. Since the property of being universally open for a morphism of
schemes is smooth local on the source and target, we can define universally open
morphisms of algebraic stacks using Definition 3.3.2(1). This property includes
faithfully flat morphisms locally of finite presentation.

(a) If f : X → Y is a universally open morphism of algebraic stacks, show that
f(|X |) ⊂ |Y| is open and conclude that for every morphism Y ′ → Y of algebraic
stacks, the map |X ×Y Y ′| → |Y ′| is open.

Hint: Show that the image is identified with the open substack V ⊂ Y, whose
objects over a scheme T consist of morphisms T → Y such that XT → T is
surjective.

(b) Show that if U → X is a smooth presentation of an algebraic stack, then a set
Σ ⊂ |X | is open (resp., closed) if and only if its preimage in U is.

Definition 3.3.26. A morphism X → Y of algebraic stacks is quasi-compact if for
every morphism SpecB → Y, the fiber product X ×Y SpecB is quasi-compact. We
say that X → Y is of finite type if X → Y is locally of finite type and quasi-compact.

Example 3.3.27. The moduli stack Mg is finite type over Z. On the other hand,
Bunr,d(C) is locally of finite type over k but not of finite type.

Remark 3.3.28. A quasi-compact morphism X → Y induces a quasi-compact
morphism |X | → |Y| on topological spaces. The converse is true if Y is quasi-
separated but not in general, e.g., Speck→ BkZ (see Example 3.9.20).

Exercise 3.3.29.
(a) Let f : X → Y be a quasi-compact morphism of algebraic stacks. For a point

x ∈ |X |, show that f({x}) = {f(x)}.
(b) Generalize Chevalley’s criterion to algebraic stacks: if f : X → Y is a morphism

of algebraic stacks locally of finite presentation, then the image f(|X |) ⊂ |Y|
is constructible.

(c) Show an open morphism f : X → Y of algebraic stacks (i.e., |X | → |Y| is
open) satisfies the following lifting property: if x ∈ |X | is a point, then every
specialization y′ ⇝ f(x) lifts to a specialization x′ ⇝ x. Show that the
converse is true for morphisms locally of finite presentation.
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(d) If X is a quasi-separated algebraic stack, show that |X | is a sober topological
space, i.e., every irreducible closed subset has a unique generic point.

Exercise 3.3.30 (Generic Flatness). Generalize Theorem A.2.13 to algebraic stacks:
if X → Y is a finite type morphism of algebraic stacks with Y reduced, then there
exists a dense open substack U ⊂ Y such that the base change XU → U is flat and
of presentation.

Exercise 3.3.31. Extend the characterization of locally of finite presentation
morphisms given in Proposition A.1.1 to algebraic stacks: a morphism f : X → Y
of algebraic stacks is locally of finite presentation if and only if for every directed
system {SpecAλ}λ∈I of affine schemes over Y, the natural map

colimλMorY(SpecAλ,X )→ MorY(Spec(colimλAλ),X )

is bijective.

3.3.5 Quasi-finite morphisms
A morphism of schemes is locally quasi-finite if it is locally of finite type and every
fiber is discrete. Since this property is étale local on the source and target, we can
extend this property to morphisms of algebraic spaces using Definition 3.3.2.

Definition 3.3.32.
(1) A representable morphism X → Y of algebraic stacks is locally quasi-finite

if for every morphism T → Y from a scheme, the algebraic space X ×Y T is
locally quasi-finite over T .

(2) A morphism X → Y of algebraic stacks is locally quasi-finite if is locally of
finite type, the diagonal X → X ×Y X is locally quasi-finite, and for every
morphism Speck → Y from a field, the topological space |X ×Y Speck| is
discrete.

(3) A morphism X → Y of algebraic stacks is quasi-finite if it is locally quasi-finite
and quasi-compact.

To understand condition (2), recall that the diagonal X → X ×Y X is always a
representable morphism (Exercise 3.2.4). The diagonal is quasi-finite (resp., locally
quasi-finite) if and only if for every field-valued point x ∈ X (k) with image y ∈ Y(k),
the kernel ker(Gx → Gy) of the induced map of stabilizer groups is finite (resp.,
discrete); see Exercise 3.2.7. In particular, if Y is a scheme, the diagonal is quasi-
finite if and only if all stabilizers of Y are finite. For instance, if G is a finite group
scheme over a field k (e.g., µp), then BG → Speck is quasi-finite. On the other
hand, BGm → Speck is not quasi-finite despite that |BGm| is a single point.

Exercise 3.3.33 (easy). Show that a finite type morphism f : X → Y of algebraic
stacks is quasi-finite if and only if |X | → |Y| has finite fibers and for every field-valued
point x ∈ X (k), the map AutX (k)(x)→ AutY(k)(f(x)) has finite cokernel.

We will later establish that every separated, quasi-finite, and representable
morphism is quasi-affine (Proposition 4.4.5).

3.3.6 Étale and unramified morphisms
We will require that étale and unramified morphisms are relatively Deligne–Mumford.
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Definition 3.3.34. A morphism of stacks X → Y over Schét is relatively Deligne–
Mumford (or simply DM ) if for every morphism T → Y from a scheme, the fiber
product X ×Y T is a Deligne–Mumford stack.

We will see in Corollary 3.6.5 that relatively Deligne–Mumford morphisms are
characterized by the unramifiedness of the diagonal. A morphism X → Y satisfying
the weaker condition that the diagonal X ×Y X is locally quasi-finite is called
quasi-DM [SP, Tag 04YW].

For morphisms of schemes, étaleness and unramifiedness are étale local on the
source and smooth local on the target. These notions thus extend to relatively
Deligne–Mumford morphisms.

Definition 3.3.35. A morphism X → Y of algebraic stacks is étale (resp., unrami-
fied) if it is relatively Deligne–Mumford and for every smooth presentation V → Y
and étale presentation U → X ×Y V , the induced morphism U → V of schemes is
étale (resp., unramified).

A morphism is étale if and only if it is smooth and unramified, and a morphism is
unramified if and only if the diagonal is étale. These follows from the analogous facts
for morphisms of schemes (Theorems A.3.2 and A.3.3), noting that for a morphism
of schemes, the diagonal is étale if and only if it is an open immersion.

While étale morphisms are smooth and locally quasi-finite, the converse is not
true, e.g., over a characteristic p field k, the map Bkµµµp → Speck is smooth and
quasi-finite but is not étale as Bkµµµp is not Deligne–Mumford (see Exercise 6.2.12).
Similarly, étale morphisms are smooth of relative dimension 0, but again the converse
doesn’t hold, e.g., Bkµµµp → Speck in characteristic p or [A1

k/Gm] → Speck in any
characteristic.

Exercise 3.3.36 (technical). For a morphism f : X → Y of algebraic stacks, show
that the following are equivalent:

(1) the diagonal ∆f : X → X×YX is unramified (resp., separated, quasi-separated),
(2) the relative inertia IX/Y → X is unramified (resp., separated, quasi-separated),

and
(3) the double diagonal (or equivalently the identity section of the relative inertia)
X → IX/Y = X ×X×YX X is an open immersion (resp., closed immersion,
quasi-compact).

Hint: Extend the characterization of unramified (resp., separated, quasi-separated)
group schemes of Proposition B.1.8(4) to group algebraic spaces.

3.4 Equivalence relations and groupoids
Definition 3.4.1. An étale (resp., smooth) groupoid of schemes is a pair of schemes
U and R together with étale (resp., smooth) morphisms s : R→ U called the source
and t : R → U called the target, and a composition morphism c : R ×s,U,t R → R
satisfying:

(1) (associativity) the following diagram commutes

R×s,U,t R×s,U,t R
c×id

//

id×c
��

R×s,U,t R

c

��

R×s,U,t R
c // R,
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(2) (identity) there exists a morphism e : U → R (called the identity) such that
the following diagrams commute

U

e

��

id

��

id

��

U R
soo t // U

R
e◦s,id

//

id
$$

R×s,U,t R

c

��

R
e◦t,id
oo

id
zz

R,

(3) (inverse) there exists a morphism i : R→ R (called the inverse) such that the
following diagrams commute

R
i //

s
��

R
i //

t

��

R

s
��

U

R
s //

(i,id)

��

U

e

��

R×s,U,t R
c // R

R
t //

(id,i)

��

U

e

��

R×s,U,t R
c // R.

We will often denote this data as s, t : R⇒ U .
If (s, t) : R → U × U is a monomorphism, then we say that s, t : R ⇒ U is an

étale (resp., smooth) equivalence relation.
If U and R are algebraic spaces, and the source, target, and composition are

morphisms of algebraic spaces, we obtain the notion of an étale (resp., smooth)
groupoid of algebraic spaces and similarly an étale (resp., smooth) equivalence relation
of algebraic spaces.

An étale (resp., smooth) group scheme p : R → U is an example of an étale
(resp., smooth) groupoid with s = t = p. Group actions give additional examples
(Example 3.4.5).

We can view R as a scheme of relations on U : a point r ∈ R specifies a relation
on the points s(r), t(r) ∈ U , which we sometimes write as s(r) r−→ t(r). For every
scheme T , the morphisms R(T ) ⇒ U(T ) define a groupoid of sets, i.e., there is
composition morphism R(T )×s,U(T ),t R(T )→ R(T ) satisfying axioms analogous to
(1)–(3). We can think of an element r ∈ R(T ) as specifying a relation u r−→ v between
elements u, v ∈ U(T ). The composition morphism composes relations u r−→ v and

v
r′−→ w to the relation u

r◦r′−−→ w while the identity morphism takes u ∈ U(T ) to

u
id−→ u and the inverse morphism takes u r−→ v to v r−1

−−→ u. When R ⇒ U is an
equivalence relation, the morphism R(T )→ U(T )× U(T ) is injective, and there is
thus at most one relation between any two elements of U(T ).

Definition 3.4.2 (Orbits and stabilizers). Let R ⇒ U be a smooth groupoid of
algebraic spaces, and let x : Speck→ U be a field-valued point. The stabilizer Gx
of x is defined as the fiber product of (s, t) : R→ U ×U by (x, x) : Speck→ U ×U .
The orbit OR(x) is defined as the set s(t−1(x)) ⊂ U .

Remark 3.4.3. Assuming that U is defined over k and that x ∈ U(k), then the
k-points of Gx are relations ρ : x ∼→ x in R(k) while the orbit OR(x) consists of
points y ∈ U such that there exists a relation x ∼→ y in R.

Exercise 3.4.4. In Definition 3.4.1, show that the identity and inverse morphism
are uniquely determined.
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Example 3.4.5 (Group actions). If G→ S is an étale (resp., smooth) group scheme
with multiplication m : G×S G→ G acting on a scheme U over S via multiplication
σ : G× U → U , then

p2, σ : G×S U ⇒ U

is an étale (resp., smooth) groupoid of schemes. The inverse G×S U → G×S U is
given by (g, u) 7→ (g−1, gu) and the composition is

(G×S U)×σ,U,p2 (G×S U)→ G×S U,
(
(g′, u′), (g, u)

)
7→ (g′g, u).

where u′ = gu. Here (g, u) is a T -valued point of G×S U and can be viewed as the
relation u→ gu.

The following identifies projections in the groupoid with maps arising from the
group action:

U ×[U/G] U ×[U/G] U

p12

��

p13

��

p23

��

∼ // G×S G×S U

id×σ
��

m×id

��

p23

��

U ×[U/G] U

p1

��

p2

��

∼ // G×S U

p2

��

σ

��

U

��

U

[U/G].

The identification U ×[U/G] U
∼→ G ×S U is given by u2 ×g u1 7→ (g, u1) where

u2 ×g u1 is shorthand notation for the triple (u2, u1, g) (with u2 = gu1) defining
an element of the fiber product. Similarly U ×[U/G] U ×[U/G] U

∼→ G×S G×S U is
given by u3 ×g2 u2 ×g1 u1 7→ (g2, g1, u1).

More generally, the n-fold fiber product (U/[U/G])n of U over [U/G] is iden-
tified with Gn−1 × U via un ×gn−1 un−1 · · · ×g1 u1 7→ (gn−1, . . . , g1, u1). Under
these identifications, the projection pk̂ : (U/[U/G])

n+1 → (U/[U/G])n forgetting
the kth term is identified with that map Gn × U → Gn−1 × U taking an element
(gn, . . . , g1, u1) to (gn−1, . . . , g1, u1) for k = 1, to (gn, . . . , gk+1, gkgk−1, gk−2, . . . ,
g1, u1) for k = 2, . . . , n and to (gn, . . . , g2, g1u1) for k = n+ 1.

Example 3.4.6. Let X be a Deligne–Mumford stack (resp., algebraic stack) and
U → X be an étale (resp., smooth) presentation which we assume is not only
representable but representable by schemes. Define the scheme R := U ×X U , the
source morphism s = p1 : R → U , the target morphism t = p2 : R → U and the
composition morphism (s ◦ p1, t ◦ p2) : R ×s,U,t R→ R := U ×X U . This gives the
structure of an étale (resp., smooth) groupoid R⇒ U . If X is an algebraic space,
then R⇒ U is an étale equivalence relation.

Choosing different presentations yields different groupoids which are equivalent
under a notion called Morita equivalence; we will not use this notion in these notes.

3.4.1 Algebraicity of groupoid quotients

Definition 3.4.7 (Quotient stack of a smooth groupoid). Let s, t : R ⇒ U be a
smooth groupoid of algebraic spaces. Define [U/R]pre as the prestack whose objects
are morphisms T → U from a scheme T . A morphism (S

a−→ U) → (T
b−→ U) is
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the data of a morphism of schemes f : S → T and an element r ∈ R(S) such that
s(r) = a and t(r) = f ◦ b.

Define [U/R] to be the stackification of [U/R]pre in the big étale topology Schét.
If in addition R⇒ U is an equivalence relation, then [U/R] is isomorphic to a

sheaf (Exercise 3.4.8) and we denote it as U/R.

The fiber category [U/R]pre(T ) is the groupoid whose objects are U(T ) and
morphisms areR(T ). The identity morphism id : U → U defines a map U → [U/R]pre

and therefore a map p : U → [U/R].

Exercise 3.4.8. Let R⇒ U be a smooth groupoid of algebraic spaces. Show that
[U/R] is equivalent to a sheaf if and only if R⇒ U is an equivalence relation.

Exercise 3.4.9. Extend Exercise 2.4.35 to show that if s, t : R ⇒ U is a smooth
groupoid of algebraic spaces, the following diagrams are cartesian:

R
s //

t

��

U

p

��

U
p
// [U/R]

□ and

R
(s,t)

//

��

U × U

p×p
��

[U/R]
∆ // [U/R]× [U/R].

□

Exercise 3.4.10. Let R ⇒ U be a smooth groupoid of algebraic spaces and
x : Spec k → U be a field-valued point. Show that the stabilizer of x as defined
in Definition 3.4.2 is identified with the stabilizer of Speck→ [U/R] as defined in
Definition 3.2.5.

Theorem 3.4.11 (Algebraicity of Quotients by Groupoids).
(1) If R⇒ U is an étale (resp., smooth) groupoid of algebraic spaces. Then [U/R]

is a Deligne–Mumford stack (resp., algebraic stack) and U → [U/R] is an étale
(resp., smooth) presentation.

(2) If R⇒ U be an étale equivalence relation of schemes, then U/R is an algebraic
space and U → U/R is an étale presentation.

Remark 3.4.12. In Corollary 4.4.12, we show that in fact the quotient U/R of an
étale equivalence relation of algebraic spaces is an algebraic space, establishing that
one doesn’t obtain new algebro-geometric objects by considering sheaves which are
étale locally algebraic spaces. This result is delayed until §4.4 as it takes more work
to show that the diagonal of U/R is representable by schemes.

More generally, if R⇒ U is an fppf groupoid (resp., fppf equivalence relation) of
algebraic spaces, then [U/R] is an algebraic stack [SP, Tag 06FI] (resp., U/R is an
algebraic space [SP, Tag 04S6]). See also [Art74, Thm. 6.1] and [LMB00, Thm. 10.1].

Proof. For (1), we will show that U → X := [U/R] is surjective, smooth, and
representable. Let T → X be a morphism from a scheme T . It follows from the
definition of [U/R] as the stackification of [U/R]pre that there exists an étale cover
T ′ → T and a commutative diagram

T ′

��

// U

��

T // X .
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In the commutative cube

UT ′ //

��

}}

T ′

��

~~

R //

��

U

��

UT //

}}

T

~~

U // X

(3.4.13)

the front, back, top and bottom squares are cartesian where UT is a sheaf and UT ′

is a scheme. Since T ′ → T is a surjective étale morphism representable by schemes,
so is UT ′ → UT . This establishes that UT is an algebraic space. By descent UT ′ is
surjective and étale over T .

For (2), it suffices to show that the diagonal of the quotient sheaf X := U/R
is representable by schemes. Indeed, this implies that U → X is representable by
schemes via the argument of Corollary 3.2.3 and étale descent implies that U → X
is étale and surjective. Let T → X ×X be a morphism from a scheme and consider
the cartesian cube

QT ′ //

��

}}

T ′

��

{{

R //

��

U × U

��

QT //

}}

T

{{

X // X ×X,

(3.4.14)

as in (3.2.2). Since R→ U × U is separated and locally quasi-finite, so is QT ′ → T ′.
The Descent Criterion for an Fppf Sheaf to be a Scheme (Proposition 2.3.16) implies
that sheaf QT is a scheme.

As a consequence, we see that in Theorem 3.1.10, the hypothesis that the group
scheme G→ S is affine is not necessary for the quotient stack [X/G] and classifying
stack BG to be algebraic.

Exercise 3.4.15. Show that if X is an algebraic stack (resp., algebraic space) and
U → X is a smooth presentation, then X is isomorphic to the quotient stack [U/R]
(resp., quotient sheaf U/R) of the étale groupoid (resp., equivalence relation) R⇒ U
where R = U ×X U .

3.4.2 Inducing and slicing presentations
We provide here two useful techniques to build new presentations from given ones.

First, let X = [X/H] be a quotient stack of a smooth algebraic group H acting
on a scheme X over k and H ⊂ G be an inclusion of algebraic groups. Then H
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acts freely on G×X via h · (g, x) = (gh−1, hx) and we let G×H X be the algebraic
space quotient (G × X)/H. When H is finite, this quotient exists by definition
of an algebraic space and is affine (resp., quasi-projective, projective) when X is
by Theorem 4.3.6 (resp., Exercise 4.2.9). In the non-finite case, it follows from
Corollary 3.6.8 G×H X is an algebraic space if X is noetherian. There is an action
of G on G×H X via g · (g′, x) = (gg′, x).

Exercise 3.4.16. Show that [X/H] ∼= [(G×H X)/G].

The second method is sometimes referred to as slicing a groupoid. Let U → X
be a smooth presentation of an algebraic stack with the corresponding groupoid
s, t : R = U ×X U ⇒ U . If g : U ′ → U is a morphism, we define the restriction of
R⇒ U along U ′ → U to be the groupoid R|U ′ ⇒ U ′ defined by the fiber product

R|U ′
(t′,s′)
//

��

U ′ × U ′

��

R
(t,s)
// U × U

□

Exercise 3.4.17.
(a) Show that R|U ′ fits into a cartesian diagram

R|U ′ //

��

R×s,U U ′ //

��

U ′

g

��

U ′ ×U,t R

��

// R
s //

t

��

U

��

U ′ g
// U // [U/R]

Assume in addition that U ′ ×U,t R→ R
s−→ U is étale (resp., smooth).

(2) Show that R|U ′ ⇒ U ′ is an étale (resp., smooth) groupoid.
(3) Show that there is an open immersion [U ′/R|U ′ ]→ [U/R].
(4) Show that [U ′/R|U ′ ]→ [U/R] is an isomorphism if and only if for every point

u ∈ U , there exists a point u′ ∈ U and a relation u→ g(u′) in R.

3.5 Dimension, tangent spaces, and residual gerbes

3.5.1 Dimension
Recall that the dimension dimX of a scheme X is the Krull dimension of the
underlying topological space while the dimension dimxX at a point x ∈ X is the
minimum dimension of open subsets containing x.

We now extend these definitions to algebraic spaces and stacks.

Definition 3.5.1.
(1) Let X be a noetherian algebraic space and x ∈ |X|. We define the dimension

of X at x to be
dimxX = dimu U ∈ Z≥0 ∪∞

where U → X is an étale presentation and u ∈ U is a preimage of x.
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(2) Let X be a noetherian algebraic stack with smooth presentation U → X and
corresponding smooth groupoid s, t : R⇒ U , and let u ∈ U be a preimage of
x ∈ |X |. We define the dimension of X at x to be

dimx X = dimu U − dime(u)Ru ∈ Z ∪∞

where Ru is the fiber of s : R→ U over u and e : U → R denotes the identity
morphism in the groupoid.

(3) If X is a noetherian algebraic space or stack, we define the dimension of X to
be

dimX = sup
x∈|X|

dimx X ∈ Z ∪∞.

Proposition 3.5.2. The definition of the dimension dimx X of a noetherian algebraic
stack X at a point x ∈ |X | is independent of the presentation U → X and of the
choice of preimage u of x.

Proof. The dimension of an algebraic space at a point is well defined as étale
morphisms have relative dimension 0.

If U → X is a smooth presentation (with U a scheme) and u ∈ U is a preimage
of x with residue field κ(u), then the fiber Ru is identified with the fiber product

Ru //

��

R
t //

s

��

U

��

Specκ(u) // U // X ,

and is a smooth algebraic space over κ(u).
If U ′ → X is a second presentation and u′ ∈ U ′ a preimage of x, then define the

algebraic space U ′′ := U ×X U ′. Observe that there is a cartesian diagram

U ′′
u

��

// U ′′ //

��

U ′

��

Specκ(u) // U // X

(3.5.3)

where the fiber U ′′
u is identified with R′

u′ . By Exercise 3.5.5 applied to U ′′ → U , we
have the identity

dimu′′ U ′′ = dimu U + dimu′′ U ′′
u = dimu U + dime′(u′)R

′
u′ . (3.5.4)

Choose a representative SpecL→ U ′′ in |U ′′| mapping to u and u′. Note that the
compositions Specκ(u) → U → X , Specκ(u′) → U ′ → X and SpecL → U ′′ → X
all define the same point x ∈ |X |. Let R ⇒ U and R′ ⇒ U ′ be the corresponding
smooth groupoids, and set R′′

u′′ = U ′′ ×X SpecL.
We need to show that

dimu U − dime(u)Ru = dimu′ U ′ − dime′(u′)R
′
u′

and by symmetry between U and U ′, it suffices to show that

dimu U − dime(u)Ru = dimu′′ U ′′ − dime′′(u′′)R
′′
u′′
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where e′′(u′′) ∈ |R′′
u′′ | is the image of the map SpecL → R′′

u′′ = U ′′ ×X SpecL
defined by the identity automorphism of u′′. By (3.5.4), this is in turn equivalent to

dime′′(u′′)R
′′
u′′ = dime(u)Ru + dime′(u′)R

′
u′

This last fact follows from the cartesian cube

R′′
u′′ //

��

yy

R′
u′ ×κ(u′) L

��

yy
U ′′ //

��

U ′

��

Ru ×κ(u) L //

yy

SpecL

yy
U // X .

and properties of dimension (see Exercise 3.5.5).

Exercise 3.5.5.
(a) Show that the analogue of Proposition A.3.10 holds for algebraic spaces; that

is, if X → Y is a smooth morphism of noetherian algebraic spaces, and if
x ∈ |X| is a point with image y ∈ |Y |, then

dimx(X) = dimy(Y ) + dimx(Xy).

(b) If X and X ′ are noetherian algebraic spaces over a field k with k-points x and
x′, show that

dim(x,x′)X ×k X
′ = dimxX + dimx′ X ′.

(c) Let X be a noetherian algebraic space over a field k and k → L be a field
extension. Set XL = X ×k L. If x′ ∈ |XL| is a point with image x ∈ |X |, show
that dimx′ X ×k L = dimx X .

Example 3.5.6. If U is a scheme of pure dimension with an action of an affine
algebraic group G (which is necessarily of pure dimension) over a field k, then

dim[U/G] = dimU − dimG.

In particular, the classifying stack has dimension dimBG = −dimG and we see
that the dimension may be negative!

3.5.2 Tangent spaces
The dual numbers is the ring k[ϵ] := k[ϵ]/ϵ2 defined over a field k.

Definition 3.5.7. For an algebraic stack X and a point x : Speck→ X , we define
the Zariski tangent space or simply the tangent space of X at x as the set

TX ,x :=

2-commutative diagrams

Speck
x

##

� _

����

Speck[ϵ] τ //
s{α

X


/
∼
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or in other words the set of pairs (τ, α) where τ : Speck[ϵ] → X and α : x
∼→ τ |k.

Two pairs are equivalent (τ, α) ∼ (τ ′, α′) if there is an isomorphism β : τ
∼→ τ ′ in

X (k[ϵ]) compatible with α and α′, i.e., α′ = β|Spec k ◦ α

Proposition 3.5.8. If X is an algebraic stack with affine diagonal and x ∈ X (k),
then TX ,x is naturally a k-vector space.

Proof. Scalar multiplication of c ∈ k on (τ, α) ∈ TX ,x is defined as the composition
Speck[ϵ] → Speck[ϵ] τ−→ X where the first map is defined by ϵ 7→ cϵ and with the
same 2-isomorphism α. To define addition, we will show that there is an equivalence
of categories

X (k[ϵ1]×k k[ϵ2])→ X (k[ϵ1])×X (k) X (k[ϵ2]) (3.5.9)

or in other words that

Speck �
�

//
� _

��

Speck[ϵ1]� _

��

Speck[ϵ2] �
�

// Spec(k[ϵ1]×k k[ϵ2])

is a pushout among algebraic stacks with affine diagonal (see §B.4). Once this is
established, we define addition of (τ1, α1) and (τ2, α2) by the composition Speck[ϵ]→
Spec(k[ϵ1] ×k k[ϵ2]) → X where the first map is defined sending both (ϵ1, 0) and
(0, ϵ2) to ϵ.

Choose a smooth morphism (U, u) → (X , x) from an affine scheme U . Since
X has affine diagonal U → X is an affine morphism. Let SpecA0 = Speck×X U ,
SpecA1 = Speck[ϵ1]×X U and SpecA2 = Speck[ϵ2]×X U . Since Spec(A1×AA2) is
clearly the pushout of SpecA0 ↪→ SpecA1 and SpecA0 ↪→ SpecA2 in the category
of affine schemes, there are unique morphisms Spec(A1×AA2)→ Spec(k[ϵ1]×kk[ϵ2])
and Spec(A1 ×A A2)→ U completing the diagram

SpecA0
//

��

xx

SpecA2

��

tt

Speck //

��

Speck[ϵ1]

��

τ1

��

SpecA1
//

xx

Spec(A1 ×A A2)

tt
''

Speck[ϵ2] //

τ2 00

Spec(k[ϵ1]×k k[ϵ2])

**

U

wwX

By the Flatness Criterion over Artinian Rings (A.2.3), we see that the map
Spec(A1 ×A A2) → Spec(k[ϵ1] ×k k[ϵ2]) is faithfully flat. By repeating this ar-
gument on U ×X U , one argues that the Spec(A1 ×A A2) → U descends uniquely
and provides the desired dotted arrow.

Exercise 3.5.10. Show that TX ,x is naturally a representation of Gx which is given
set-theoretically by: g · (τ, α) = (τ, g ◦ α) for g ∈ Gx and (τ, α) ∈ TX ,x.

130



Example 3.5.11. Consider a smooth, connected, and projective curve [C] ∈Mg(k)
defined over k of genus g ≥ 2. Deformation Theory (C.1.11) implies that TMg,[C] =
H1(C, TC). Since deg TC < 0, H0(C, TC) = 0 and Riemann–Roch implies

dimTMg,[C] = dimH1(C, TC) = −χ(TC) = −(deg TC + (1− g)) = 3g − 3.

Example 3.5.12. Let C be a smooth, connected, and projective curve over k and
E ∈ Bunr,d(C)(k) be a vector bundle on C of rank r and degree d. Deformation
Theory (C.1.18) implies that TBunr,d(C),[E] = Ext1OC

(E,E) = H1(C,E ⊗ E∨). By
Riemann–Roch, χ(E ⊗E∨) = r2(1− g). Since dimAut(E) = dimk HomOC

(E,E) =
H0(C,E ⊗ E∨), we compute that

dimTBunr,d(C),[E] = dimExt1OC
(F, F ) = dimAut(F ) + r2(g − 1).

3.5.3 Residual gerbes
Attached to every point x ∈ X of a scheme is a residue field κ(x) and a monomorphism
Specκ(x)→ X with image x. The residual gerbe will provide us with an analogous
property for algebraic stacks. Note that non-trivial stabilizers prevent field-valued
points from being monomorphisms, e.g., BG for a finite abstract group G.

Definition 3.5.13. Let X be an algebraic stack and x ∈ |X | be a point. We say
that the residual gerbe at x exists if there is a reduced, locally noetherian algebraic
stack Gx and a monomorphism Gx ↪→ X such that |Gx| is a point mapping to x. The
algebraic stack Gx is called the residual gerbe at x.

We define gerbes later in Definition 6.2.18 and show that Gx is a gerbe over a
field κ(x), called the residue field (Proposition 6.2.36). While not apparent from the
definition, we will also show that residual gerbes are in fact unique. This will justify
our terminology of calling Gx the residual gerbe.

In the meantime, we will be content with verifying the existence of residual
gerbes at finite type points (see Definition 3.5.14 and Proposition 3.5.17). This
statement will suffice for most of our purposes, but we will later prove that residual
gerbes in fact exist for every point (as long as the stack is quasi-separated) in
Proposition 6.2.36—this result is postponed as we will utilize the Fppf Criterion for
Algebraicity (Theorem 6.2.1). In §6.2.6, we also provide other characterizations of
residual gerbes and fields.

Definition 3.5.14. A point x ∈ |X | in an algebraic stack is of finite type if there
exists a representative Speck→ X of x that is locally of finite type.2

Remark 3.5.15. If X is a noetherian scheme, a point x ∈ X is of finite type if and
only if x ∈ X is locally closed, and, in fact, a morphism Speck→ X from a field with
image x is of finite type if and only if the image x ∈ X is locally closed and κ(x)/k
is a finite extension. Indeed, to see the nontrivial implication (⇒), we replace X
with {x}, and since Speck→ X is of finite type with dense image, Generic Flatness
(A.2.13) implies that Speck→ X is fppf and thus its image is open.

An example of a finite type point of a scheme that is not closed is the generic
point of a DVR. On the other hand, if X is a scheme of finite type over a field k,
then every finite type point is a closed point. The analogous fact is not true for
algebraic stacks of finite type over k, e.g., 1: Speck → [A1/Gm] is an open finite
type point.

2If X has quasi-compact diagonal, e.g., X is quasi-separated (Definition 3.3.10), then every
field-valued point Spec k → X is automatically quasi-compact, and thus the locally of finite typeness
of Spec k → X is equivalent to finite typeness.

131



Exercise 3.5.16. Let X be an algebraic stack.

(a) Show that a point x ∈ |X | is of finite type if and only if there exists a scheme
U , a closed point u ∈ U , and a smooth morphism (U, u)→ (X , x).

(b) Show that any algebraic stack (resp., quasi-compact algebraic stack) has a
finite type point (resp., closed point).

Proposition 3.5.17 (Existence of Residual Gerbes I). If X is a noetherian algebraic
stack and x ∈ |X | is a finite type point, then the residual gerbe Gx exists at x and is
unique, and moreover satisfies the following:

(1) The algebraic stack Gx is regular and the morphism Gx ↪→ X is a locally closed
immersion.

(2) If in addition X is of finite type over a field k and x ∈ X (k) has a smooth
affine stabilizer Gx, then Gx ∼= BGx.

(3) If in addition X is a noetherian algebraic space, then Gx ∼= Specκ(x) for a
field κ(x), called the residue field of x.

Proof. We first show the existence. After replacing X with {x}, we may assume that
X is reduced and x ∈ |X | is dense. Let Speck→ X be a finite type representative
of x. By Generic Flatness (3.3.30), Speck → X is flat. Therefore the image of
Speck → X—which is {x} ⊂ |X |—is open (Exercise 3.3.25). The corresponding
open substack Gx ⊂ X satisfies the properties of being a residual gerbe. Since
Speck→ Gx is fppf and the property of being regular descends under fppf morphisms
(Proposition 2.1.22), Gx is regular.

For the uniqueness, suppose that G and G′ are reduced, locally noetherian
algebraic stacks with monomorphisms G ↪→ X and G′ ↪→ X such that |G| and |G′|
are singletons mapping to x. Then G′′ := G ×X G′ is a nonempty algebraic stack
with monomorphisms G′′ → G and G′′ → G′. Let Speck → G be a finite type
morphism from a field (which exists by Exercise 3.5.16); by Generic Flatness (3.3.30)
Speck → G is fppf. The base change G′′ ×G Speck is a nonempty algebraic space
equipped with a monomorphism to Speck. This implies that G′′×G Speck→ Speck
is an isomorphism, and by fppf descent G′′ → G is also an isomorphism. Similarly,
G′′ → G′ is an isomorphism.

Suppose now that X is of finite type over a field k and x ∈ X (k) has a smooth
affine stabilizer Gx. There is a monomorphism of prestacks BGpre

x → X : for a k-
scheme T , there is a unique object of BGpre

x over T , and this object gets mapped to
the composition T → Speck x−→ X . Similarly, a morphism over T ′ → T corresponds
to a map T ′ → Gx, and this gets mapped to the corresponding morphism in X .
Under stackification, this induces a monomorphism BGx → X , and thus BGx
satisfies the properties of a residual gerbe.

Exercise 3.5.18. Let X be a (possibly non-noetherian) algebraic stack and x ∈ X
be a finite type point such that the stabilizer is unramified (i.e., the stabilizer group
scheme of any representative is unramified). Show that the residual gerbe exists and
is unique. See also [SP, Tag 06G3].

Corollary 3.5.19. Let x ∈ |X | be a finite type point of a noetherian algebraic stack
X . If (U, u)→ (X , x) is a smooth morphism from a scheme U with u ∈ U a finite
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type point, then there is a cartesian diagram

O(u) �
�

//

��

U

��

Gx �
�

// X

□ (3.5.20)

where O(u) is identified set-theoretically with the orbit s(t−1(u)) of the induced
groupoid s, t : R := U ×X U ⇒ U .

Remark 3.5.21. If X = [U/G] is the quotient stack of a smooth affine algebraic
group over a field k acting on a noetherian k-scheme U and u ∈ U(k), there is a
cartesian diagram

Gu
� � //

��

U

��

BGx
� � // [U/G].

□

We recover the familiar fact that orbit Gu ↪→ U is locally closed (B.1.17(5)).

Corollary 3.5.22. A finite type point x ∈ |X| of a noetherian algebraic space
has a residue field κ(x), i.e., there is a field κ(x) and a locally closed immersion
Specκ(x) ↪→ X with image x.

Exercise 3.5.23. Let X be a noetherian algebraic stack and x ∈ |X | be a finite
type point with smooth stabilizer. Let x : Speck → X be a representative of x.
Show that dimGx = −dimGx.

3.6 Characterization of Deligne–Mumford stacks

3.6.1 Existence of minimal presentations
Theorem 3.6.1 (Existence of Minimal Presentations). Let X be a noetherian
algebraic stack and let x ∈ |X | be a finite type point with smooth stabilizer Gx.
Then there exists a scheme U , a closed point u ∈ U , and a smooth morphism
(U, u)→ (X , x) of relative dimension dimGx from a scheme U such that the diagram

Specκ(u)
� � //

��

U

��

Gx �
�

// X

□

is cartesian. In particular, if Gx is finite and reduced, there is an étale morphism
(U, u)→ (X , x) from a scheme.

Proof. Let (U, u)→ (X , x) be a smooth morphism of relative dimension n from a
scheme U such that u ∈ U is a finite type point. By Proposition 3.5.17, the residual
gerbe Gx at x exists, the inclusion Gx ↪→ X is locally closed, and Gx is regular of
dimension − dimGx (Exercise 3.5.23). We obtain a cartesian diagram

O(u) �
�

//

��

U

��

Gx �
�

// X .

□
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It follows that O(u) is a regular scheme of dimension c := n−dimGx. Let f1, . . . , fc ∈
OO(u),u be a regular sequence generating the maximal ideal at u. After replacing U
with an open affine neighborhood of u, we may assume that each fi is a global function
on U . We can consider the closed subscheme W := V (f1, . . . , fc) which by design
intersects O(u) transversely at U , i.e., W ∩O(u) = Specκ(u) scheme-theoretically.

By inductively applying the Slicing Criterion for Flatness (A.2.9) to the smooth
groupoid U ×X U ⇒ U at a preimage of u and the applying smooth descent, we
conclude that the composition W ↪→ U → X is flat at u. Since Gx is smooth, so is
Specκ(u)→ Gx. For flat morphisms, smoothness is a property that can be checked
on fibers and thus (again arguing on R⇒ U and using descent) W → X is smooth
at u. The statement follows after replacing W with an open neighborhood of u.

Remark 3.6.2. A smooth presentation p : U → X is called a miniversal at u ∈ U(k)
if TU,u → TX ,p(u) is an isomorphism of k-vector spaces. We will see that the above
presentations are miniversal in Proposition 3.7.5.

If the stabilizer Gx is not smooth, there are two candidates for ‘minimal presen-
tations.’ There still exists a miniversal presentation (U, u)→ (X , x), but its relative
dimension is equal to the dimension of the Lie algebra of Gx (rather than dimGx)
and the fiber product Gx×X U may thus be positive dimensional. For example, Bµµµp
is an algebraic stack in characteristic p (Proposition 6.2.10) and it can be realized
as the quotient of Gm acting on itself via t · x = tpx; here Gm → Bµµµp is a miniversal
presentation. On the other hand, there is an fppf (but not smooth) morphism
(U, u)→ (X , x) such that Gx ×X U ∼= Specκ(u). In particular, if X has quasi-finite
diagonal, then there is an fppf and quasi-finite morphism (U, u)→ (X , x). In our
example, the map Speck→ Bµµµp is such a presentation.

Exercise 3.6.3. If X is a (possibly non-noetherian) algebraic stack and x ∈ X is a
finite type point with unramified stabilizer, show that there is an étale morphism
(U, u)→ (X , x) from a scheme U where u ∈ U is a closed point.
Hint: Replicate the argument above using Exercise 3.5.18.

3.6.2 Equivalent characterizations

Theorem 3.6.4 (Characterization of Deligne–Mumford Stacks). Let X be an
algebraic stack. The following are equivalent:

(1) the stack X is a Deligne–Mumford;
(2) the diagonal X → X ×X is unramified; and
(3) every point of X has a finite and reduced stabilizer group.

Proof. The equivalence (2) ⇐⇒ (3) is essentially the definition of unramified:
since the diagonal X → X ×X is always locally of finite type (Exercise 3.3.3), it is
unramified if and only if every geometric fiber (which is either empty or isomorphic
to a stabilizer) is discrete and reduced. It is not hard to see that a Deligne–Mumford
stack has unramified diagonal (Exercise 3.2.8). For the converse, Existence of
Minimal Presentations (Theorem 3.6.1 and Exercise 3.6.3) shows that for every
finite type point x ∈ X , there is an étale morphism U → X from a scheme whose
image contains x. Thus X is Deligne–Mumford. See also [LMB00, Thm 8.1] and
[SP, Tag 06N3].

Corollary 3.6.5. A morphism X → Y of algebraic stacks is relatively Deligne–
Mumford (Definition 3.3.34) if and only if X → X ×Y X is unramified.
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Theorem 3.6.6 (Characterization of Algebraic Spaces). Let X be an algebraic stack
whose diagonal is representable by schemes. The following are equivalent:

(1) the stack X is an algebraic space;
(2) the diagonal X → X ×X is a monomorphism; and
(3) every point of X has a trivial stabilizer.

Remark 3.6.7. We will remove the pesky hypothesis that ∆X is representable by
schemes in Theorem 4.4.10.

Proof. Condition (2) is equivalent to the condition that X is a sheaf. The implication
(1) ⇒ (2) follows from the definition of an algebraic space. For the converse, if
X is a sheaf, then Theorem 3.6.1 implies that there exists a surjective, étale, and
representable morphism U → X from a scheme. Since ∆X is representable by
schemes, so is U → X . The equivalence (2) ⇐⇒ (3) follows from the fact
that a group scheme of finite type is trivial if and only if every fiber is trivial
(Proposition B.1.8).

Corollary 3.6.8. Let G→ S be a smooth and affine group scheme over a scheme
S. Let U be an algebraic space over S with an action of G. Then
(1) [U/G] is Deligne–Mumford if and only if every point of U has a discrete

and reduced stabilizer group, or equivalently if and only if the action map
G× U → U × U is unramified.

(2) [U/G] is an algebraic space if and only if every point of U has a trivial
stabilizer group, or equivalently if and only if the action map G× U → U × U
is a monomorphism.

Corollary 3.6.9 (Characterization of Representable Morphisms). Let X → Y be a
morphism of noetherian algebraic stacks whose diagonal is representable by schemes.
Then X → Y is representable if and only if for every geometric point x ∈ X (k), the
map Gx → Gf(x) on automorphism groups is injective.

Corollary 3.6.10. If g ≥ 2, Mg is a Deligne–Mumford stack of finite type over Z
with affine diagonal.

Proof. It only remains to show thatMg is Deligne–Mumford, and by the Character-
ization of Deligne–Mumford Stacks (3.6.4), it suffices to show that for every smooth,
connected, and projective curve C over k that Aut(C) is discrete and reduced, or in
other words that the dimension of the Lie algebra dimTAut(C),e = 0. Consider the
diagrams

Speck� _

��

e // Aut(C) //

��

Mg

��

Speck[ϵ] //

τ

99

Speck
([C],[C])

//Mg ×Mg

and

Speck� _

��

[C]
//Mg

��

Speck[ϵ]
p
//

33
CC

��
τ

Speck.

A lifting τ : Spec k[ϵ] → Aut(C) of the left diagram, i.e., a tangent vector τ ∈
TAut(C),e, translates into an automorphism τ of the trivial first order deformation
[C] ◦ p is trivial. By Deformation Theory (C.2.4), the automorphism group of the
trivial first order deformation is identified with H0(C, TC), but this vector space is
zero since the degree of TC = Ω∨

C is 2− 2g < 0.
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3.7 Smoothness and the Infinitesimal Lifting Crite-
ria

We prove the Infinitesimal Lifting Criteria (3.7.1) providing functorial criteria to
verify that moduli stacks are smooth, étale, and unramified. As an application, we
show that the moduli stacks Mg of smooth curves and Bunr,d(C) of vector bundles
are smooth (Propositions 3.7.6 and 3.7.8).

3.7.1 Infinitesimal Lifting Criteria
As the property of smoothness for a morphism of schemes is smooth-local on the
source and target, this property extends to morphisms of algebraic stacks using
Definition 3.3.2. On the other hand, étaleness and unramifiedness are smooth-local
on the target, but only étale-local on the source. Recall that a morphism X → Y of
algebraic stacks is relatively Deligne–Mumford if every base change by a map T → Y
from a scheme is Deligne–Mumford (Definition 3.3.34); this is equivalent to the
unramifiedness of the diagonal X → X ×Y X (Corollary 3.6.5). A morphism X → Y
of algebraic stacks is étale (resp., unramified) if it is relatively Deligne–Mumford
and every base change is étale (resp., unramified); see Definition 3.3.35.

Theorem 3.7.1 (Infinitesimal Lifting Criteria for Smoothness/Étaleness/Unramifedness).
Let f : X → Y be a locally of finite type morphism of locally noetherian algebraic
stacks. Considera 2-commutative diagram

SpecA0
//

� _

��

X

f

��

SpecA //

;;

Y,

(3.7.2)

of solid arrows where A → A0 is a surjection of artinian local rings with residue
field k such that ker(A→ A0) ∼= k. Then
(1) f is smooth if and only if there exists a lifting of every diagram (3.7.2);
(2) f is étale if and only if there exists a lifting, which is unique up to unique

isomorphism, of every diagram (3.7.2),
(3) f is unramified if and only if every two liftings of a diagram (3.7.2) are uniquely

isomorphic; and
(4) f has unramified diagonal if and only if every automorphism of a lifting of a

diagram (3.7.2) is trivial.

Remark 3.7.3. To be explicit, a lifting of a 2-commutative diagram

S
x //

g

��
|� α

X

f

��

T
y
// Y,

(3.7.4)

is a triple (x̃, β, γ) where x̃ : T → X is a map and β : x
∼→ x̃ ◦ g and γ : f ◦ x̃ ∼→ y

are 2-isomorphisms such that

f ◦ x
α

��

f(β)

��

y ◦ gf ◦ x̃ ◦ g g∗γ
//
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commutes. We may view a lifting as

S
x

//

g

��

β
��

X

f

��
γ�


T
y

//

x̃

>>

X .

A morphism (x̃, β, γ) → (x̃′, β′, γ′) of liftings is a 2-isomorphism Θ: x̃
∼→ x̃′ such

that β = g∗Θ ◦ β′ and γ = γ′ ◦ f(Θ).
We can also interpret liftings using the map

Ψ: X (T )→ X (S)×Y(S) Y(T )

of groupoids. A diagram (3.7.4) defines an object (x, y, α) ∈ X (S)×Y(S) Y(T ) and
the category of liftings is the fiber category over this object. The criteria above
states that f : X → Y is smooth (resp., is étale, is unramified, has unramified
diagonal) if and only if X (A)→ X (A0)×Y(A0) Y(A) is essentially surjective (resp.,
an equivalence, fully faithful, faithful).

Proof. We first handle the criterion for smoothness. Suppose that f : X → Y is
smooth and that we are given a diagram (3.7.2). By replacing Y with SpecA and X
with X ×Y SpecA, we may assume that Y = SpecA is affine, and we need to show
that a section over SpecA0

X

��

SpecA0
� � //

99

SpecA

]]

extends to a section over SpecA. If X is a scheme, the existence of a lifting is
provided by the Infinitesimal Lifting Criterion for Smoothness (A.3.1) for schemes.
If X is an algebraic space, we may apply Proposition 4.2.15 (proven later but
independently) to construct an étale presentation U → X from a scheme and a
lifting Speck→ U of Speck ↪→ SpecA0 → X . This gives a diagram

U

��

X

��

Speck �
�

//

99

SpecA0
� � //

99

AA

SpecA.

XX

Since U → X is representable by schemes, the Infinitesimal Lifting Criterion (A.3.1)
gives a lifting SpecA0 → U of SpecA0 → X . Since U → SpecA is a smooth
morphism of schemes, another application of the Infinitesimal Lifting Criterion gives
a lifting SpecA→ U of SpecA0 → U , and the composition SpecA→ U → X gives
the desired extension. Finally, if X is an algebraic stack, we can repeat the above
argument by applying Proposition 4.2.15 to construct a smooth presentation U → X
with a lifting Speck → U , where we use the representability of U → X and the
algebraic space case to construct the lifting SpecA0 → U .
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Conversely, suppose that every diagram (3.7.2) for f : X → Y has a lifting.
Choose smooth presentations V → Y and U → XV giving a commutative diagram

U //

  

XV //

��

X

f

��

V // Y.

□

Since U → XV is smooth, by the implication already proven, every diagram (3.7.2)
for U → XV has a lifting. Since every diagram (3.7.2) for XV → V also has a lifting
(as it is the base change of X → Y), so does the composition U → V . As U → V is
a morphism of schemes, the Infinitesimal Lifting Criterion (A.3.1) implies that it
is smooth. Since smoothness is a smooth-local property on the source and target,
X → Y is smooth.

Second, we handle the criterion for unramified diagonal. Let ∆f : X → X ×Y X
be the diagonal and ∆∆f

: X → IX/Y = X ×X×YX X be the double diagonal taking
an object a to (a, ida) ∈ IX/Y . By Exercise 3.3.36, ∆f is unramified if and only ∆∆f

is an open immersion. Consider 2-commutative diagrams of the form

SpecA0
x //

i

��
�� α

X

f

��

SpecA
y

// Y

and

SpecA0
x //

i

��
�	 β

X

e

��

SpecA
(x̃,Θ)

// IX/Y .

Assume that ∆f is unramified. Let (x̃, β, γ) be a lifting of the left diagram, where
β : x

∼→ x̃◦ i and γ : f ◦ x̃ ∼→ y are 2-isomorphisms satisfying f(β) = i∗γ ◦α. Let Θ be
an automorphism of (x̃, β, γ), which means that there is a 2-isomorphism Θ: x̃

∼→ x̃
such that β = i∗Θ ◦ β and γ = γ ◦ f(Θ). These relations imply that i∗Θ = idx̃◦i and
f(Θ) = idf◦x̃. Then (x̃,Θ) defines an object of IX/Y over SpecA, and induces the
diagram on the right where β expresses the 2-commutativity. Since e : X → IX/Y
is an open immersion, there is a lifting SpecA → X of the right diagram, which
implies that Θ = idx̃. Conversely, assume the every automorphism of a lifting of a
diagram on the left is trivial. Since e : X → IX/Y is a quasi-compact monomorphism
representable by schemes, we may apply the Infinitesimal Lifting Criterion (A.3.2)
for schemes to show that it is étale and thus an open immersion, which in turn
implies that ∆f is unramified. Given a diagram as in the right diagram, we set
y = f(x̃) ∈ Y and γ = idy. Since the 2-isomorphism β : x → x̃ ◦ i expressing the
commutativity of the right diagram satisfies β = i∗Θ ◦ β, it follows that i∗Θ = idx̃◦i.
Then the 2-isomorphism α := f(β) : f ◦ x ∼→ y ◦ i defines a commutative diagram
as in the left, (x̃, β, γ) defines a lifting, and Θ defines an automorphism of (x̃, β, γ).
Thus, Θ is the identity and the right diagram has a lifting.

Since étaleness is equivalent to smoothness and unramifiedness and since we have
already established the criterion for smoothness, the criterion for étaleness reduces
to the criterion for unramifiedness. By Corollary 3.6.5, f : X → Y is relatively
Deligne–Mumford if and only if ∆f is unramified, which we have shown is equivalent
to the triviality of any isomorphism of a lift of a diagram (3.7.2). Therefore, it
suffices to assume that f : X → Y is relatively Deligne–Mumford, and show that f
is unramified if and only if every two liftings of a diagram (3.7.2) are isomorphic.
Suppose that f is unramified, and that x̃1, x̃2 : SpecA → X are two liftings. By
base changing by the given map SpecA → Y, we can reduce to the case that
Y = SpecA and X is Deligne–Mumford. Apply Proposition 4.2.15 to construct
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an étale presentation U → X and a lifting Speck→ U of Speck ↪→ SpecA0 → X .
Since U → X is smooth and we have shown the criterion for smoothness, there exists
a lifting SpecA0 → U of SpecA0 → X and Speck→ U . We may also choose liftings
ũ1, ũ2 : SpecA→ U of x̃1 and x̃2. Since U → SpecA is unramified, the Infinitesimal
Lifting Criterion (A.3.3) for schemes implies that there is an isomorphism ũ1

∼→ ũ2.
This induces the desired isomorphism x̃1

∼→ x̃2. Conversely, suppose that every two
liftings of a diagram (3.7.2) for X → Y are isomorphic. Then the same holds for the
base change XV → V by a smooth presentation V → Y, and the same also holds
for étale presentation U → XV by the implication just proven. By the Infinitesimal
Lifting Criterion (A.3.3) for schemes, U → V is unramified and thus X → Y is
unramified. See also [LMB00, Prop. 4.15] and [SP, Tag 0DP0].

As a first application, we see that the presentation produced by the Existence of
Minimal Presentations (Theorem 3.6.1) is miniversal, i.e., induces an isomorphism
on tangent spaces at the chosen preimage, and we can also express the dimension of
a smooth algebraic stack in terms of its tangent space and stabilizer.

Proposition 3.7.5. Let X be a noetherian algebraic stack and x ∈ |X | be a finite
type point with smooth stabilizer. Let f : (U, u) → (X , x) be a smooth morphism
from a scheme such that Gx ×X U ∼= Specκ(u). Then U → X is miniversal at u,
i.e., TU,u → TX ,f(u) is an isomorphism of κ(u)-vector spaces. In particular, if X is
smooth over a field k and x ∈ X (F) is a point with smooth stabilizer over a finite
extension F/k, then

dimx X = dimTX ,x − dimGx.

Proof. Surjectivity of TU,u → TX ,f(u) follows from the Infinitesimal Lifting Criterion
(3.7.1). Let k = κ(u). Injectivity follows from the fact that

Speck �
�

//

��

U

��

Gx �
�

// X

□

is cartesian. Indeed, if τ : Speck[ϵ]→ U is an element of TU,u mapping to 0 ∈ TX ,f(u),
then the composition Speck[ϵ] → U → X factors through the residual gerbe Gx
and therefore also factors through the fiber product Speck. We conclude that
τ = 0. For the final statement, Existence of Minimal Presentations (3.6.1) produces
a smooth morphism f : (U, u) → (X , x) of relative dimension dimGx such that
Gx ×X U ∼= Specκ(u), and we have just shown that TU,u ∼= TX ,f(u). Therefore,
dimx X = dimu U − dimGx, and since U is smooth at u, dimu U = dimTU,u =
dimTX ,x.

3.7.2 Smoothness of moduli stacks

Combining the Infinitesimal Lifting Criterion for Smoothness (3.7.1) with deformation
theory allows for the verification of smoothness of a moduli stack and the computation
of its dimension.

Proposition 3.7.6. For g ≥ 2, the Deligne–Mumford stack Mg is smooth over
SpecZ of relative dimension 3g − 3.
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Proof. Let Speck →Mg be a morphism from a field k corresponding to smooth,
connected, and projective curve C over k. Consider a diagram

Speck

[C]

**
// SpecA0

//
� _

��

Mg

��

SpecA //

99

SpecZ,

(3.7.7)

where A → A0 is surjection of artinian local rings with residue field k such that
k = ker(A → A0). The map SpecA0 → Mg corresponds to a family of curves
C0 → SpecA0, and filling in (3.7.7) translates to filling in the cartesian diagram

C

��

� � // C0

��

� � // C

��

Speck �
�

// SpecA0
� � // SpecA

of solid arrows. By Deformation Theory (C.2.4), there is cohomology class obC ∈
H2(C, TC) such that there exists a lifting if and only if obC = 0. Since C is a curve,
H2(C, TC) = 0, and thus obC = 0 and there is a lifting. Finally, Deformation Theory
(C.2.4) also gives the identification TMg,[C] = H1(C, TC), which has dimension 3g−3
by a Riemann–Roch computation (see Example 3.5.11). Since dimAut(C) = 0, we
conclude using Proposition 3.7.5 that dim[C]Mg = 3g − 3.

Proposition 3.7.8. The algebraic stack Bunr,d(C) is smooth over Speck of dimen-
sion r2(g − 1).

Proof. Let [F ] ∈ Bunr,d(C)(F) be a vector bundle on CF = C ×k F of rank r
and degree d. Let A → A0 be a surjection of artinian local rings with residue
field F such that F = ker(A → A0). We need to check that every vector bun-
dle F0 on CA0

that restricts to F extends to a vector bundle F on CA. By
deformation theory (Proposition C.2.11), there is an element obF ∈ Ext2OC

(F, F )
such that obF = 0 if and only if there exists an extension. Since C is a smooth
curve, Ext2OC

(F, F ) = H2(CF, F ⊗ F∨) = 0. Deformation theory also provides
an identification TBunr,d(C),[F ] = Ext1OC

(F, F ) and a Riemann–Roch calculation
yields dimExt1OC

(F, F ) = dimAut(F ) + r2(g − 1) (see Example 3.5.12). Therefore
dim[F ] Bunr,d(C) = dimExt1OC

(F, F )− dimAut(F ) = r2(g − 1).

3.8 Properness and the Valuative Criterion

After defining universally closed, separated, and proper morphisms of algebraic
stacks, we prove Valuative Criteria for Universally Closed/Separated/Proper Mor-
phisms (3.8.2), providing a generalization of the usual valuative criteria for schemes
(Theorem A.4.5). These valuative criteria are essential in moduli theory and ap-
plied in this book to show that Mg is proper (Theorem 5.5.16) and Bunssr,d(C) is
universally closed.
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3.8.1 Definitions
With some care, we define separatedness and properness for morphisms of algebraic
stacks. Recall from Definition 3.3.10 that we say a representable morphism X → Y
of algebraic stacks is separated if the diagonal X → X ×Y X (which is representable
by schemes) is proper.

Definition 3.8.1.
(1) A morphism X → Y of algebraic stacks is universally closed if for every

morphism Y ′ → Y of algebraic stacks, the morphism X ×Y Y ′ → Y ′ induces a
closed map |X ×Y Y ′| → |Y ′|.

(2) A representable morphism X → Y of algebraic stacks is proper if it is universally
closed, separated, and of finite type.

(3) A morphism X → Y of algebraic stacks is separated if the representable
morphism X → X ×Y X is proper.

(4) A morphism X → Y of algebraic stacks is proper if it is universally closed,
separated, and of finite type.

As universal closedness is a smooth-local property on the target, X → Y is
universally closed if and only if X ×Y T → T is closed for all maps T → Y from
schemes, or equivalently X ×Y V is universally closed for a smooth presentation
V → Y.

For a morphism of schemes, properness is equivalent to the diagonal being a
closed immersion. This is also true for algebraic spaces as proper monomorphisms of
algebraic spaces are closed immersions (Corollary 4.4.14). This fails for morphisms
of algebraic stacks as the diagonal need not be a monomorphism. Recall that the
stabilizer Gx of a field-valued point x : Speck→ X is given by the cartesian diagram

Gx //

��

Speck

(x,x)

��

X // X × X .

□

If X is a separated algebraic stack over a scheme S, then Gx is a proper group
algebraic space over k, and even a group scheme by Theorem 4.4.28. If X is separated
and has affine diagonal, then Gx is proper and affine, thus finite. Since Bunr,d(C)
has affine diagonal (Example 3.3.12) and infinite automorphism groups, we see that
Bunr,d(C) is not separated.

3.8.2 Valuative Criteria
For moduli problems, the valuative criterion for properness translates to the geometric
question of whether an object over SpecK curve extends uniquely to a family over
SpecR. We will use the notions of liftings of 2-commutative diagrams and their
morphisms as defined formally in Remark 3.7.3.

Theorem 3.8.2 (Valuative Criteria for Properness/Universal Closedness/Separatedness).
Let f : X → Y be a quasi-compact and quasi-separated morphism of locally noetherian
algebraic stacks. Consider a 2-commutative diagram

SpecK //

��
�� α

X

f

��

SpecR // Y

(3.8.3)
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where R is a DVR with fraction field K. Then
(1) f is universally closed if for every diagram (3.8.3), there exists an extension

R→ R′ of DVRs with K → K ′ = Frac(R) of finite transcendence degree and
a lifting

SpecK ′ //

��

SpecK //

��

X

f

��

SpecR′ //

55

SpecR // Y;

(3.8.4)

(2) f is proper if and only if f is finite type and for every diagram (3.8.3), there
exists an extension R→ R′ of DVRs with the map K → K ′ on fraction fields
having finite transcendence degree and a lifting as in (3.8.4), which is unique
up to unique isomorphism;

(3) f is separated if and only if every two liftings of a diagram (3.8.3) are uniquely
isomorphic; and

(4) f has separated diagonal if and only if every automorphism of a lifting of a
diagram (3.8.3) is trivial.

Exercise 3.8.5 (good practice).
(a) If G is an abstract finite group, show that BG→ SpecZ is proper.
(b) Show that BGm → SpecZ is universally closed but not separated.

Try to give two arguments for each part—one using the definitions and the other
using the valuative criterion.

Exercise 3.8.6 (hard). Show that the stackM1,1 of stable elliptic curves introduced
in Exercise 3.1.19(c) is proper over SpecZ.

Are base changes necessary? For a morphism X → Y of schemes, for the
valuative criterion of properness (Theorem A.4.5), it is not necessary to allow
extensions of the DVR, i.e., there exists a unique lift

SpecK //

��

X

��

SpecR //

;;

Y.

The same holds for morphisms of algebraic spaces [SP, Tag 0A40]. For general
morphisms of algebraic stacks, it is necessary to allow extensions.

Example 3.8.7. Consider the structure morphism X = Bµµµn → Speck where k is a
field whose characteristic is prime to n. Let R = k[x](x) with fraction field K = k(x).
Then SpecK → SpecK, given by x 7→ xn, is a principal µµµn-torsor, and the classifying
map SpecK → Bµµµn does not extend to a map SpecR → Bµµµn. Note however the
principal µµµn-bundle SpecK → SpecK becomes trivial after base changing by the
field extension K(x1/n) of K, and therefore the composition SpecK(x1/n)→ Bµµµn
trivially extends to a map SpecR[x1/n]→ Bµµµn.

Example 3.8.8. Let X = SpecR be the spectrum of a DVR and X be the nth
root stack n

√
X/OX/π (Example 3.9.13). The morphism X → X is an isomorphism

over the generic point, but the section SpecK → X not extend to a global section
X → X .
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If G is a special algebraic group over a field (i.e., every principal G-bundle is
Zariski-locally trivial) such as SLn or GLn, then BG satisfies the valuative criterion
for universal closedness without a base change: any map SpecK → BG corresponds
to the trivial principal G-bundle and thus extends to a map SpecR→ BG. On the
other hand, base changes are necessary for B PGLn.

Exercise 3.8.9 (hard). Show that there is a principal PGLn-bundle over the fraction
field of a DVR that does not extend to the DVR.

For the valuative criterion of properness for Mg, extensions of the DVR are
necessary (see Example 5.5.6). On the other hand, the valuative criterion for
universal closedness for Bunr,d(C) holds without extensions.

3.8.3 Proof of the Valuative Criteria

We modify the proof of the valuative criterion for schemes given in §A.4. The
starting point is a lifting criterion for closed morphisms generalizing Lemma A.4.1.

Lemma 3.8.10. Let f : X → Y be a quasi-compact morphism of algebraic stacks.
Then f is closed if and only for every point x ∈ |X |, every specialization f(x)⇝ y0
lifts to a specialization x⇝ x0.

Proof. The statement is equivalent to the equality that f({x}) = {f(x)} (Exer-
cise 3.3.29(a)).

Specializations are induced by maps from DVRs, just as in the case of schemes
(Proposition A.4.2).

Proposition 3.8.11. If f : X → Y is a finite type morphism of noetherian algebraic
stacks, x ∈ |X | and f(x)⇝ y0 is a specialization, then there exists a diagram

SpecK //

��

X

f

��

x_

��

SpecR // Y f(x) // y0.

where R is a DVR with fraction field K, the image of SpecK → X is x and
SpecR→ Y realizes the specialization f(x)⇝ y0. In particular, every specialization
x ⇝ x0 in a noetherian algebraic stack is realized by a map SpecR → X from a
DVR.

Proof. Let V → Y be a smooth presentation and v0 ∈ V be a preimage of y0. Since
V → Y is smooth, it is an open morphism (Exercise 3.3.25), and thus there exists
a specialization v ⇝ v0 over f(x) ⇝ y0 (Exercise 3.3.29(c)). Let x′ ∈ |XV | be a
preimage of v ∈ V and x ∈ |X |. Let U → XV be a smooth presentation and u ∈ U
be a preimage of x′. Applying Proposition A.4.4 to the morphism U → V of schemes
and u 7→ v ⇝ v0 gives the desired diagram.

Proof of Theorem 3.8.2. The quasi-separatedness of f : X → Y means that the
diagonal ∆f : X → X ×Y X and the double diagonal of ∆∆f

: X → X ×X×YX X
are quasi-compact. The quasi-compactness of f , ∆f , and ∆∆f

are needed in the
proof for the implication that the valuative criterion implies universally closedness,
separatedness, and separated diagonal, respectively.
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We first establish the criterion for universal closedness. Suppose that the valuative
criterion holds and that f : X → Y is not universally closed. Since universal
closedness is a smooth-local property on the target, we may assume that Y = Y is a
noetherian scheme and there is a map T → Y of schemes such that fT : XT → T is
not closed. We will reduce to the case that T → Y is a finite type morphism. By
Lemma 3.8.10, there exists z ∈ |XT | and a specialization fT (z)⇝ t0 which doesn’t lift
to a specialization z ⇝ z0. This implies that Z = {z} ⊂ XT has trivial intersection
with the fiber (XT )t0 . If p : X → X is a smooth presentation, then the preimage
Z of Z under XT → XT does not meet the fiber (XT )t0 . Lemma A.4.8 shows
that after replacing T with an open neighborhood of t0, there exists a factorization
T

g−→ T ′ → Y and a closed subscheme Z ′ ⊂ XT ′ such that T ′ → Y is of finite type,
Z ∩ (XT ′)g(t0) = ∅, and im(Z ↪→ XT → XT ′) ⊂ Z ′. Letting z′ ∈ |XT ′ | be the image
of z ∈ |XT |, we have that z′ maps to g(fT (z)) ∈ T ′ and that there is a specialization
g(fT (z)) ⇝ g(t0) which does not lift to a specialization of z′. By Lemma 3.8.10,
XT ′ → T ′ is not closed.

If T → Y is a finite type morphism, the base change XT → T is a finite type
morphism of noetherian algebraic stacks which also satisfies the valuative criterion
for universal closedness. It therefore suffices to show that f : X → Y is closed. By
Lemma 3.8.10, we need to show that given a point x ∈ |X |, every specialization
f(x) ⇝ y0 lifts to a specialization x ⇝ x0. By Proposition 3.8.11, there exists a
diagram

SpecK //

��

X

f

��

x_

��

SpecR // Y f(x) // y0.

(3.8.12)

The valuative criterion implies the existence of a lift SpecR → X , which in turn
yields a specialization x⇝ x0 lifting f(x)⇝ y0.

Conversely, assume that f : X → Y is universally closed and that we are given a
diagram as in (3.8.12). By replacing Y with SpecR and X with X ×Y SpecR, we
may assume that Y = SpecR and that we have a diagram

SpecK //

%%

X

f

��

SpecR.

By replacing X with {x}, we may assume that X is integral with generic point
x. Since X → SpecR is closed, there exists a specialization x ⇝ x0 mapping to
the specialization of the generic point to the closed point in SpecR. Since f is
quasi-separated, SpecK → X is quasi-compact. Applying Proposition 3.8.11 to
SpecK → X yields a DVR R′ with fraction field K ′ and a commutative diagram

SpecK ′ //

��

SpecK

��

SpecR′ // X

such that SpecR′ → X realizes the specialization x ⇝ x0. As SpecR′ → SpecR
is surjective,R → R′ is an extension of DVRs and SpecR′ → X provides a lift of
(3.8.12).
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The criterion for separated diagonal follows exactly as the argument for the
Infinitesimal Lifting Criterion for Unramified Diagonal (3.7.1(4)), using instead that
∆f is separated if and only if ∆∆f

is a closed immersion (Exercise 3.3.36), and
noting that since ∆∆f

a quasi-compact monomorphism representable by schemes, the
Valuative Criterion (A.4.5) for schemes applies to verify that it is a closed immersion.
Assuming that f has separated diagonal, the valuative criterion for the separatedness
of f : X → Y translates to the valuative criterion for the universal closedness of
the diagonal ∆f : X → X ×Y X . Thus, the valuative criteria for properness and
separatedness follow from the valuative criterion for universal closedness. See also
[LMB00, Thm. 7.10], [Fal03, §4], and [SP, Tags 0CLQ, 0CLS, 0CLV, and 0CLY].

3.9 Further examples
This section provides examples of algebraic spaces, Deligne–Mumford stacks, and
algebraic stacks.

3.9.1 Examples of algebraic spaces
Example 3.9.1. As discussed in Example 0.5.5, there exists a smooth proper
complex 3-fold U with a free action of Z/2-action such that there is an orbit not
contained in an affine open subscheme. The quotient sheaf U/(Z/2) is an algebraic
space (Corollary 3.1.14) which is not a scheme.

Example 3.9.2 (The bug-eyed cover). Let k be field of char(k) ̸= 2. Let Z/2 = {±1}
act on the non-separated affine line U = A1

⋃
A1\0 A1 over k by swapping the origins

and by (−1) · x = −x for x ̸= 0. Since the orbit of an origin is not contained in an
affine, the quotient sheaf U/(Z/2) is not representable by a scheme; it is however an
algebraic space (Corollary 3.1.14).

For an alternative description, let Z/2 = {±1} act on A1 with multiplication
σ : Z/2× A1 → A1 defined by −1 · x = −x. If we remove the non-identity element of
the stabilizer of the origin, we obtain a scheme R = (Z/2× A1) \ {(−1, 0)} and an
equivalence relation σ, p2 : R⇒ A1. The algebraic space quotient A1/R is isomorphic
to U/(Z/2) (Exercise 3.9.3(a)) For another way to see that X = A1/R is not a
scheme, observe that the diagonal X → X ×X is not a locally closed immersion as
there is a cartesian diagram

(A1 \ 0)⨿ {0} //

��

A1

��

x_

��

R
(σ,p2)

//

��

A1 × A1

��

(x,−x)

X // X ×X.

Exercise 3.9.3.
(a) Show that X = A1/R is isomorphic to U/(Z/2).
(b) Show that there is a universal homeomorphism X → A1 which is ramified over

the origin.
(c) Show that every map to a scheme X → Z factors through X → A1. (In other

words, while A1 may be the categorical quotient of U by Z/2 (or equivalently
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the category quotient of R ⇒ A1) in the category of schemes, it is distinct
from the algebraic space quotient.

(d) Consider the SL2 action on Vd = Symd k2, the space of homogeneous polyno-
mials in x and y of degree d. Let W ⊂ V1 × V4 be the reduced locally closed
subscheme defined as the set (L,F ) such that L ̸= 0 and F is the square of a
homogeneous quadratic with discriminant 1. Show that the induced SL2-action
on W is free (i.e., SL2×W →W ×W is a monomorphism) and that quotient
sheaf W/SL2 is an algebraic space isomorphic to A1/R and U/(Z/2).
While the descriptions of X as A1/R and U/(Z/2) may seem pathological, this
exercise shows that in fact this algebraic space also arises as a quotient of a
quasi-affine variety by SL2.

Example 3.9.4. Let Z/2 = {±1} act on A1
C via conjugation over SpecR. Note that

the action defined over R of Z/2 on SpecC is free, and therefore the product action
of Z/2 on A1

C = A1
R ×R C (which is trivial on the first factor) is also free. Defining

R = (Z/2× A1
C) \ {(−1, 0)}, show that there is an equivalence relation σ, p2 : R⇒ U

such that the algebraic space X = A1
C/R is not a scheme. (The quotient X looks

like A1
R except that the origin has residue field C. )

3.9.2 Examples of stacks with finite stabilizers
In characteristic 0, the following examples are Deligne–Mumford stacks.

Example 3.9.5 (Classifying stacks). If G is an finite abstract group scheme over
a field k, then the classifying stack BG of G is the stack defined as the category
of pairs (T, P ) where T is a scheme and P → T is a G-torsor (Definition 2.4.14).
Then BG is a smooth and proper algebraic stack over k of dimension 0. Properness
follows from the fact the base change of BG→ BG×BG by the smooth presentation
Speck → BG × BG is the finite morphism G → Speck, and smoothness follows
because smoothness is a smooth-local property on the source and S → BG is a
smooth presentation).

Example 3.9.6 (Weighted projective stacks). For a tuple of positive integers
(d0, . . . , dn), let Gm act on An+1 via t · (x0, . . . , xn) = (td0x0, . . . , t

dnxn). We define
the weighted projective stack as

P(d0, . . . , dn) = [(An+1 \ 0)/Gm].

If the di are all 1, then we recover projective space Pn; otherwise, P(d0, . . . , dn) is
not an algebraic space.

More generally, if R is a finitely generated positively graded k-algebra, we can
define stacky proj as ProjR = [(Spec(R) \ 0)/Gm], where Gm acts such that the
weight of xi is the same as its degree.

For example, over Z[1/6] the stack of stable elliptic curvesM1,1 is isomorphic to
P(4, 6) by Exercise 3.1.19(c).

Exercise 3.9.7.
(a) If k is a field of characteristic p, show that P(d0, . . . , dn) is a Deligne–Mumford

stack if and only if p doesn’t divide each di.
(b) Classify all the points of P(3, 3, 4, 6) that have non-trivial stabilizers.
(c) We say that an algebraic stack X has generically trivial stabilizer if there exists

a dense open substack U ⊂ X which is an algebraic space. Provide conditions
for when P(d0, . . . , dn) has generically trivial stabilizer.
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(d) Show that there is a bijective morphism P(d0, . . . , dn) to weighted projective
space Proj k[x0, . . . , xn], where xi has degree di. (This is an example of a
coarse moduli space.)

Example 3.9.8. Suppose char(k) ̸= 2. Let Z/2 act on A2
k via −1 · (x, y) = (−x,−y).

Show that [A2
k/(Z/2)] is a smooth algebraic stack over a field k and that there is

a proper and bijective morphism [A2
k/(Z/2)] → Y where Y is the singular variety

Speck[x2, xy, y2] defined by the Z/2-invariants of Γ(A2
k,OA2

k
).

Example 3.9.9 (Stacky curves). A stacky curve is a one-dimensional Deligne—
Mumford stack of finite type over a field k.

Exercise 3.9.10. If d1 and d2 are relatively prime positive integers, show that
P(d1, d2) is a smooth and proper stacky curve with generically trivial stabilizer.

Exercise 3.9.11. We say that a stacky curve X over k is nodal if there exists a
étale presentation U → X from a nodal curve (equivalently every étale presentation
is a nodal curve); see Definition 5.2.1. Show that a nodal stacky curve has abelian
stabilizers.

We now discuss the important examples of root gerbes and root stacks, which
were first introduced in [Cad07, §2].

Example 3.9.12 (Root gerbes). Let X be a scheme and L be a line bundle.
This data determines a morphism [L] : X → BGm. Let r : BGm → BGm be the
morphism induced from the rth power map r : Gm → Gm, where t 7→ tr; alternatively
r : BGm → BGm is defined functorially on objects by the assignment L 7→ L⊗r.
For a positive integer r, define the rth root gerbe X( r

√
L) of X and L (sometimes

denoted as r
√
L/X) as the fiber product

X( r
√
L) //

��

BGm

r

��

X
[L]
// BGm.

□

Example 3.9.13 (Root stacks). Let X be a scheme, L be a line bundle, and
s ∈ Γ(X,L) be a section. This data determines a morphism [L, s] : X → [A1/Gm]
(see Example 3.9.16). Let r : [A1/Gm] → [A1/Gm] be the morphism induced from
the rth power map r : A1 → A1, given by x 7→ xr, which is equivariant under the rth
power map r : Gm → Gm; alternatively r : [A1/Gm]→ [A1/Gm] is defined functorially
by (L, s) 7→ (L⊗r, sr). For a positive integer r, define the rth root stack X( r

√
L, s)

of X and L along s (sometimes denoted as r
√

(L, s)/X) as the fiber product

X( r
√
L, s) //

��

[A1/Gm]

r

��

X
[L,s]

// [A1/Gm].

□

Caution: if s = 0 is the zero section, then X( r
√
L, 0) is not isomorphic to the root

gerbe X( r
√
L), even though they have the same reduced strutures and same coarse

moduli space.

147



Exercise 3.9.14. Let S be a scheme and r be an integer invertible in Γ(S,OS).
(This hypothesis ensures that µµµr,S → S is an étale group scheme; it will be removed
in Exercise 6.2.34.)

(a) Show that X( r
√
L) and X( r

√
L, s) are Deligne–Mumford stacks.

(b) Show that X( r
√
L) has the equivalent description as the category of tuples

(T
f−→ X,M,α) where f : T → X is a morphism from a scheme, M is a line

bundle on T and α : M⊗r ∼→ f∗L is an isomorphism. In particular, there is a
line bundle L1/r on X( r

√
L) and an isomorphism (L1/r)⊗r

∼→ π∗L.
(c) Show that X( r

√
L, s) has the equivalent description as the category of triples

(T
f−→ X,M,α, t) where f : T → X is a morphism from a scheme, M is a line

bundle on T , α : M⊗r → f∗L is an isomorphism, and t ∈ Γ(T,M) is a section
such that α(t⊗r) = f∗s. In particular, there is a line bundle L1/r on X( r

√
L, s)

with a section s1/r together with an isomorphism (L1/r)⊗r
∼→ π∗L identifying

(s1/r)⊗r with π∗s.
(d) If X = SpecA is an affine scheme over S and L = OX is trivial, show that

X(
r
√
L) ∼= [X/µµµr] and X( r

√
L, s) ∼= [Spec

(
A[x]/(xr − s)

)
/µµµr]

where µµµr acts trivially on X and acts on Spec
(
A[x]/(xr − s)

)
via t · x = tx.

(e) Show that the fiber of X( r
√
L)→ X at a point x ∈ X is isomorphic to Bµµµr,κ(x).

(f) Show that X( r
√
L, s)→ X is an isomorphism over Xs = {s ̸= 0} and that it

restricts to an infinitesimal extension of the root gerbe V (s)( r
√
(L|V (s))) over

V (s).
(You will show later in Exercise 6.2.34 that X( r

√
L) → X and the restriction of

X( r
√
L, s)→ X along V (s) are banded µµµr-gerbes.)

3.9.3 Examples of algebraic stacks

Example 3.9.15. The classifying stack BGLn over SpecZ classifies vector bundles
of rank n. When n = 1, BGm = BGL1 classifies line bundles. The stack BGLn is
a universally closed and smooth algebraic stack over SpecZ of relative dimension
−n2 with affine diagonal. However, BGLn is not separated nor Deligne–Mumford.

Example 3.9.16. If Gm acts on A1 over Z via scaling, the quotient stack [A1/Gm]
whose objects over a scheme T are pairs (L, s) where L is a line bundle on T and
s ∈ Γ(T, L). The stack [A1/Gm] is an algebraic stack universally closed and smooth
over SpecZ of relative dimension 0 with affine diagonal. The stack [A1/Gm] is not
separated nor Deligne–Mumford

Over a field k, [A1/Gm] has two points—one open and one closed—
corresponding to the two Gm-orbits (see Figure 0.13). There is an open immersion
and closed immersion

Speck ↪→ [A1/Gm]←↩ BGm.

The morphism [A1/Gm] → Speck identifies the two orbits and is an example of a
good moduli space.

Example 3.9.17. Working over a field k, let Gm act on A2 via t · (x, y) = (tx, t−1y).
The quotient stack X = [A2/Gm] is a smooth algebraic stack. An object of X
over a scheme T is a triple (L, s, t) where L is a line bundle on T , s ∈ Γ(T, L)
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and t ∈ Γ(T, L−1). The complement X \ 0 of the origin is isomorphic to the non-
separated affine line. There is a morphism X → A1 defined by (x, y) 7→ xy, which is
an isomorphism over A1 \ 0 and identifies the three orbits defined by xy = 0.

Example 3.9.18 (Toric stacks). A fan Σ on a lattice L = Zn defines a toric variety
X(Σ), i.e., a normal separated variety with an action of Gnm such that there is a
dense orbit with trivial stabilizer; see [Ful93].

Meanwhile, a stacky fan is a pair (Σ, β) where Σ is a fan on a lattice L and
β : L → N is a homomorphism of lattices. As L and N are lattices (i.e., finitely
generated free abelian groups), the Z-linear duals define tori TL := D(L∨) and
TN := D(N∨) (Example B.1.6) where TL is a torus for the toric variety X(Σ). The
map β induces a homomorphism Tβ : TL → TN , naturally identifying β with the
induced map on lattices of 1-parameter subgroups. We can then define Gβ = ker(Tβ)
and the toric stack

X(Σ, β) := [X(Σ)/Gβ ].

Example 3.9.19 (Picard schemes and stacks). If X is a scheme over a field k, the
Picard functor of X and Picard stack of X are defined as the sheaf Pic(X) and stack
Pic (X) on Schét by

Pic(X) = sheafification of T 7→ Pic(XT )

Pic (X)(T ) = {groupoid of line bundles L on XT }

A morphism (T, L)→ (T ′, L′) in Pic (X) is the data of a morphism f : T → T ′ of
schemes and an isomorphism α : L→ f∗L′ (or more precisely a morphism f∗L→ L′

whose adjoint is an isomorphism).
If X is proper over a field k, then Pic(X) is a proper scheme and the tensor

product of line bundles provides it with the structure of a group scheme, hence an
abelian variety. Moreover, Pic (X) is a smooth algebraic stack over k and there is a
morphism Pic (X)→ Pic(X) such that the fiber over a line bundle L is isomorphic
to BGm. The tensor product of line bundles provides Pic (X) with the structure of
a group stack, a notion which we will not spell out precisely.

Gerbes provide important examples of algebraic stacks, but we postpone our
treatment until §6.2.5.

3.9.4 Pathological examples
Example 3.9.20. If Z denotes the constant group scheme over SpecZ associated
to the abstract discrete group Z, the classifying stack BZ is a smooth algebraic stack
of dimension 0 whose diagonal is not quasi-compact (i.e., BZ is not quasi-separated).

Example 3.9.21. The non-separated affine line G := A1
⋃

A1\0 A1 is a group scheme
over A1, where every fiber is trivial except over the origin. The classifying stack BG
is a Deligne–Mumford stack whose diagonal is non-separated.

Example 3.9.22. We give an example of a non-quasi-separated étale group algebraic
space G over a field k of characteristic 0 that is not a scheme. The classifying stack
BG is Deligne–Mumford whose diagonal is not representable by schemes. Both G
and BG provide counterexamples to many results that hold for schemes or quasi-
separated algebraic spaces and Deligne–Mumford stacks, but fail in general. Let Z
act on A1 over k via n · x = x+ n for x ∈ A1 and n ∈ Z, and define the algebraic
space G := A1/Z is an algebraic space. As the action map Z × A1 → A1 × A1 is
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not quasi-compact, the diagonal of G is not quasi-compact. If G were a scheme,
then there would exist a non-empty open affine subscheme U = SpecA ⊂ G. Since
p : A1 → G is an étale presentation, we can compute A as the subring of Z-invariants
Γ(p−1(U),OA1)Z, which the reader can check consists of only the constant functions,
i.e., A = k. As G is obtained by gluing such affine schemes, it follows that G = Speck,
a contradiction.

Similarly, one can consider the algebraic space quotient A1
C/Z

2 where (a, b) · x =
x+ a+ ib. While the analytic quotient C/Z2 of this action is an elliptic curve over
C, the algebraic space quotient is a non-quasi-separated algebraic space that is not
a scheme.

Exercise 3.9.23. Let X = A1/Z be the algebraic space defined above.
(a) Show that X is locally noetherian and quasi-compact but not noetherian.
(b) Show that the generic point Speck(x)→ A1 → X is fixed under the Z-action.
(c) Show that Speck(x)→ X does not factor through a monomorphism SpecL→

X for a field L. (In other words, the generic point of X does not have a residue
field.)

Example 3.9.24 (Deligne–Mumford stacks with non-separated diagonal). Let
G → S be a finite étale group scheme. If H ⊂ G is a subgroup scheme over
S, then G/H is separated if and only if H ⊂ G is closed. For instance, taking
G = Z/2× A1 → A1 and the subgroup H = G \ {−1, 0}, the quotient Q = G/H is
the non-separated affine line and is a group scheme over A1 which is trivial away from
the origin and where the fiber over 0 is Z/2. In this case, BQ is a Deligne–Mumford
stack with non-separated diagonal; however, X is quasi-compact and quasi-separated
(i.e., BG, the first diagonal ∆BG and second diagonal ∆∆BG

are quasi-compact).
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Chapter 4

Geometry of Deligne–Mumford
stacks

4.1 Quasi-coherent sheaves and cohomology

4.1.1 Sheaves

The small étale site of a Deligne–Mumford stack can be defined analogously to the
small étale site of a scheme (Example 2.2.4).

Definition 4.1.1. If X is a Deligne–Mumford stack, the small étale site of X is the
category Xét of schemes étale over X . A covering of an X -scheme U is a collection
of étale morphisms {Ui → U} over X such that

∐
i Ui → U is surjective.

We can therefore discuss sheaves of abelian groups on Xét and their morphisms.
We denote Ab(Xét) as the category of abelian sheaves on Xét. For an abelian sheaf
F on Xét, the sections over an étale X -scheme U are denoted by F (U) or Γ(U,F );
you should remember that this group depends not only on U but the structure
morphism U → X .

Example 4.1.2 (Structure sheaf). The structure sheaf OX on a Deligne–Mumford
stack is defined by OX (U) = Γ(U,OU ) on an étale X -scheme U .

Example 4.1.3 (Differentials). If X is a Deligne–Mumford stack over a scheme S,
the relative sheaf of differentials ΩX/S is defined by ΩX/S(U) = Γ(U,ΩU/S).

Example 4.1.4 (Hodge bundle). Define the sheaf H on Mg (for g ≥ 2) as follows:
for every étale morphism U →Mg from a scheme corresponding to a family C → U
of smooth curves, we set H(U) = Γ(C,ΩC/U ). We will see later that H is a coherent
OMg -module which is locally free of rank g, i.e., a vector bundle.

While a sheaf F on Xét by definition only has sections defined on étale X -schemes,
one can extend the definition to a Deligne–Mumford stack U étale over X . Choose
étale presentations U → U and R→ U ×U U by schemes and define

F (U) := Eq(F (U)⇒ F (R)).

One checks that this is independent of the choice of presentation. In particular, it
makes sense to discuss global sections Γ(X , F ) := F (X ) over the identity id : X → X .
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Exercise 4.1.5. If F is an abelian sheaf on a Deligne–Mumford stack X , show that
Γ(X , F ) = HomAb(Xét)(Z, F ) where Z is the constant sheaf. If F is an OX -module,
show that Γ(X , F ) = HomOX (OX , F ).

Given a morphism f : X → Y of Deligne–Mumford stacks, there are functors

Ab(Xét)

f∗
,,

Ab(Yét)
f−1

ll

where f∗F (V ) := F (V ×Y X ) and f−1G is the sheafification of the presheaf

U 7→ lim
V→Y,U→V×YX

G(V ),

with the limit is taken over the category of pairs of étale morphisms V → Y
and U → V ×Y X (i.e., étale morphisms V → Y and a choice of factorization
of U → X → Y through V → Y). Note that when f : X → Y is étale, then
f−1G(U) = G(U) for an étale X -scheme.

Exercise 4.1.6. Show that f−1 is left adjoint to f∗.

Exercise 4.1.7. If X is a Deligne–Mumford stack, define instead the site Xét′ as
the category of algebraic spaces over X where coverings are étale coverings. Show
that the categories of sheaves on Xét and Xét′ are equivalent.

4.1.2 OX -modules
On a Deligne–Mumford stack X , the structure sheaf OX is a ring object in Ab(Xét)
and we define:

Definition 4.1.8. If X is a Deligne–Mumford stack, a sheaf of OX -modules (or
simply an OX -module) is a sheaf F on Xét which is a module object for OX in the
category of sheaves, i.e., for every étale X -scheme U , F (U) is an OX (U)-module and
the module structure is compatible with respect to restriction along étale morphisms
V → U of X -schemes.

We denote Mod(OX ) for the category of OX -modules. Given two OX -modules
F and G, we can define the tensor product F ⊗G := F ⊗OX G as the sheafification
of the OX -module given by (U → X ) 7→ F (U → X ) ⊗OX (U→X ) G(U → X ). The
Hom sheaf H omOX (F,G) has sections HomOU

(F |U , G|U ) over an étale morphism
f : U → X from scheme, where F |U = f−1F denotes the restriction of F to Uét.

Given a morphism f : X → Y of Deligne–Mumford stacks, there are functors

Mod(OX )

f∗
,,

Mod(OY)

f∗
mm

where for an OX -module F , f∗F is the pushforward as sheaves and is naturally
an OY -module. For an OY -module G, since there is a morphism f−1OY → OX of
sheaves of rings in Xét and f−1G is a f−1OY -module, it makes sense to define the
pullback OX -module

f∗G := f−1G⊗f−1OY OX .

Exercise 4.1.9. Show that f∗ is left adjoint to f∗.

Exercise 4.1.10. Show that Mod(OX ) is an abelian category.
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4.1.3 Quasi-coherent sheaves
Let F be an OX -module on a Deligne–Mumford stack X . For an étale X -scheme
U , we have the restriction F |U to the étale site of U and the further restriction
F |UZar

restricted to the Zariski topology of U . Note that when X is a scheme, OX
could refer to the structure sheaf either in Xét or XZar. If there is a possibility for
confusion, we write either OXZar

or OXét
.

Definition 4.1.11. Let X be a Deligne–Mumford stack. An OX -module F is
quasi-coherent if

(1) for every étale X -scheme U , the restriction F |UZar
is a quasi-coherent OUZar

-
module, and

(2) for every étale morphism f : U → V of étale X -schemes, the natural morphism
f∗(F |VZar

)→ F |UZar
is an isomorphism.

A quasi-coherent F on X is a vector bundle (resp., vector bundle of rank r, line
bundle) if F |UZar is for every morphism U → X from a scheme.

If in addition X is locally noetherian, we say F is coherent if F |UZar
is coherent

for every morphism U → X from a scheme.

We denote by QCoh(X ) and Coh(X ) (in the noetherian setting) the categories
of quasi-coherent and coherent sheaves. The property that a quasi-coherent sheaf
is a vector bundle, line bundle, or coherent (in the noetherian setting) is étale
local (Proposition 2.1.16), and thus it suffices to check the condition on an étale
presentation.

Example 4.1.12. The structure sheaf OX is always a line bundle, which is coherent
when X is locally noetherian.

Example 4.1.13. For a Deligne–Mumford stack X over a scheme S, the relative
sheaf of differentials ΩX/S of Example 4.1.3 is quasi-coherent since for an étale
morphisms f : U → V of étale X -schemes, f∗ΩV/S → ΩU/S is an isomorphism; it is
a vector bundle when X → S is smooth.

Example 4.1.14. ForMg (with g ≥ 2), the Hodge bundle H of Example 4.1.4 is a
vector bundle of rank g. This follows from Proposition 5.1.16(2): for a smooth family
π : C → V of genus g curves corresponding to aMg-scheme V , the construction of
π∗ΩC/V commutes with the base change along a map f : U → V , i.e., f∗(π∗ΩC/V )

∼→
πU,∗ΩCU/U ), which shows quasi-coherence of H. Moreover, π∗ΩC/V is a vector bundle
on V of rank g, which shows that H is also a vector bundle of rank g.

Example 4.1.15. If G is a finite abstract group viewed as a group scheme over a
field k, a quasi-coherent sheaf on BG corresponds to a representation V of G. If G
acts on an affine k-scheme SpecA, a quasi-coherent sheaf on [SpecA/G] is the data
of an A-module M equipped with a group homomorphism G→ EndA(M). These
descriptions follow from Exercise 4.1.18(1).

Exercise 4.1.16 (Equivalent definition). There is a general definition of a quasi-
coherent module on a site S with a sheaf of rings O (see [SGA4 1

2 ] and [SP, Tag
03DL]): an O-module F is quasi-coherent if for every object U ∈ S, there is a
covering {Ui → U} such that the restriction F |Ui

to the localized site S/Ui has a
free presentation

O⊕J
Ui
→ O⊕I

Ui
→ F |Ui

→ 0.

Show the definition of quasi-coherence above for a Deligne–Mumford stack X agrees
with this general definition on the ringed site (Xét,OX ).
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The following exercise tells us that quasi-coherence is consistent with the usual
one when X is a scheme.

Exercise 4.1.17. Let X be a scheme and F be an OXZar -module.
(a) Define a presheaf Fét on Xét as follows: for an étale map f : U → X from a

scheme, set Fét(U) = Γ(U, f∗F ). Show that Fét is a sheaf of OXét
-modules

and that the assignment F 7→ Fét defines an exact functor Mod(OXZar
) →

Mod(OXét
).

(b) Show that if F is a quasi-coherent OXZar
-module, then Fét is a quasi-coherent

OXét
-module, and that F 7→ Fét is an equivalence of categories between

quasi-coherent OXZar -modules and quasi-coherent OXét
-modules. See also [SP,

Tag 03DX].

Exercise 4.1.18 (Groupoid and functorial perspectives). Let X be a Deligne–
Mumford stack.

(1) Let U → X be an étale presentation from a scheme U . If G is a quasi-coherent
sheaf on U and α : p∗1G

∼→ p∗2G is an isomorphism on R := U ×X U satisfying
the cocycle condition p∗23α ◦ p∗12α = p∗13α, show that G descends to a unique
quasi-coherent sheaf on X .

(2) If F is a quasi-coherent sheaf on X and f : S → X is a morphism from a
scheme, then show that (f∗F )|SZar is a quasi-coherent sheaf on S.

Given a groupoid presentation R ⇒ U of X , (1) gives an equivalence between
quasi-coherent sheaves on X and quasi-coherent sheaves on U with descent datum.
Meanwhile, (2) above allows us to think of a quasi-coherent sheaf F on X as the data
of a quasi-coherent sheaf FS for every map S → X and compatible isomorphisms
f∗FT → FS for every map f : S → T over X . For instance, the Hodge bundle on
Mg is the data of the sheaf π∗ΩC/S for every smooth family of curves π : C → S

4.1.4 Pushforwards and pullbacks

Exercise 4.1.19 (Pushforward–Pullback Adjunction). Let f : X → Y be a morphism
of Deligne–Mumford stacks.

(a) Show that if G is a quasi-coherent OY -module, then f∗G is quasi-coherent.
Assume in addition that f is quasi-compact and quasi-separated.

(b) Show that if F is a quasi-coherent OX -module, then f∗F is quasi-coherent.
(c) Show that the functors

QCoh(X )
f∗
,,

QCoh(Y)
f∗
mm

are adjoints (with f∗ the right adjoint).

Exercise 4.1.20. Let G be a finite group and k be a field.

(a) Under the composition Speck p−→ BkG
π−→ Speck, show that for aG-representation

V , π∗V = V G where V G is the subspace of G-invariants and p∗V = V for-
getting the G-action, and that for a k-vector space W , π∗W = W with the
trivial G-action and p∗W =W ⊗ p∗k where p∗k is the regular representation
Γ(G,OG).
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(b) Given an action of G an an affine k-scheme SpecA, consider the diagram

SpecA
p
// [SpecA/G]

π //

q

��

SpecAG

BG

and recall from Example 4.1.15 that a quasi-coherent sheaf on [SpecA/G] is an
A-module M with a group homomorphism G→ EndA(M). Provide explicit
descriptions of the functors p∗, p∗, π∗, π∗, q∗ and q∗ on quasi-coherent sheaves.

Exercise 4.1.21. Let X be a noetherian Deligne–Mumford stack. Prove the
following two statements:

(a) Every quasi-coherent sheaf on X is a directed colimit of its coherent subsheaves.
(b) If U ⊂ X is an open substack, then every coherent sheaf on U extends to a

coherent sheaf on X .

This exercise extends [Har77, Exer II.5.15] from schemes to Deligne–Mumford stacks;
see also [LMB00, Prop. 15.4], [Ols16, Prop. 7.1.11] and [SP, Tag 01PD].

4.1.5 Quasi-coherent constructions

A quasi-coherent OX -algebra on a Deligne–Mumford stack is a quasi-coherent OX -
module with the compatible structure of a ring object in Ab(Xét). We define the
relative spectrum SpecX A as the stack whose objects over a scheme S consists of a
morphism f : S → X and a morphism f∗A → OS of OS-algebras.

Exercise 4.1.22. Show that SpecX A is an algebraic stack affine over X .

Example 4.1.23 (Reduction). Let X be a Deligne-Mumford stack and let Ored
X

be the sheaf of OX -algebras where Ored
X (U) = Γ(U,OU )red for an étale X -scheme

U . Then Ored
X is a quasi-coherent OX -algebra and Xred := SpecX Ored

X defines the
reduction of X .

Example 4.1.24 (Normalization). Let X be an integral Deligne-Mumford stack
and let A be the sheaf of OX -algebras whose sections over an étale morphism U → X
from a scheme is the normalization of Γ(U,OU ). Since normalization commutes
with étale extensions (Proposition A.7.4), A is a quasi-coherent OX -algebra. The
normalization of X is defined as X̃ := SpecX A.

Exercise 4.1.25. Let f : X → Y be a quasi-compact and quasi-separated morphism
of Deligne–Mumford stacks.

(a) Show that there is factorization f : X → Spec f∗OX → Y.
(b) Show that f is affine if and only if X → Spec f∗OX is an isomorphism.
(c) Show that f is quasi-affine if and only if X → Spec f∗OX is an open immersion.

Exercise 4.1.26. Use Exercise 4.1.21 to show that every quasi-coherent sheaf of
algebras on a noetherian Deligne–Mumford stack is a directed colimit of finite type
subalgebras.
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4.1.6 Cohomology

We develop a cohomology theory for abelian sheaves on Deligne–Mumford stacks.
Despite utilizing the cohomology of quasi-coherent sheaves on schemes throughout
these notes, we surprisingly have little need for cohomology on algebraic spaces
and Deligne–Mumford stacks, and many of the results here are included only for
completeness.

The existence of enough injective objects is shown analogously to the case of
schemes [Har77, Prop. 2.2].

Lemma 4.1.27. If X is a Deligne–Mumford stack, the categories Ab(Xét) and
Mod(OX ) have enough injectives. If in addition X is quasi-separated, then QCoh(X )
has enough injectives.

Proof. Recall that a functor R : A → B between abelian categories with an exact left
adjoint L preserves injectives: for an injective I in A, we have that HomB(−, R(I)) =
HomA(L(−), I) is exact.

By taking Λ to be the constant sheaf Z or the structure sheaf OX , the first
statement will follow if we show that the category Mod(Λ) of Λ-modules has enough
injectives for every sheaf of rings Λ on Xét. Let F be a Λ-module and let U → X be
an étale presentation. For each u ∈ U , we have a map ju : {u} ↪→ U → X from a
point and the stalk Fu = j−1

u F is an Λu-module. Choose an inclusion Fu ↪→ Iu into
an injective Λu-module. Adjunction gives a map F → ju,∗Iu, where ju,∗ is injective
since j−1

u is exact. By taking the product, we obtain an injection F →
∏
u∈U ju,∗Iu

into an injective Λ-module.
For the final statement, let F ∈ QCoh(X ) and let p : U =

∐
i SpecAi → X be

an étale presentation. Choose an injection p∗F ↪→ I into an injective quasi-coherent
OU -module. The composition F ↪→ p∗p

∗F ↪→ p∗I is injective and since p∗ is exact,
p∗I is injective.

Remark 4.1.28. The above argument for the existence of enough injectives in
Mod(OX ) extends to the category of O-modules in any ringed site with enough
points (see [Ols16, Thm. 2.3.2]) and is even true in any ringed site [SP, Tag 01DP].
The category of quasi-coherent sheaves on an arbitrary Deligne–Mumford stack (or
even algebraic stack) is a Grothendieck abelian category [SP, Tag 0781] and any
such category has enough injectives [Gro57], [SP, Tag 079H].

Definition 4.1.29 (Cohomology). Let X be a Deligne–Mumford stack and F a
sheaf of abelian groups on Xét. The cohomology group Hi(Xét, F ) is defined as the
ith right derived functor of the global sections functor Γ: Ab(Xét)→ Ab.

Given a morphism f : X → Y of Deligne–Mumford stacks, the higher direct image
Rif∗F is defined as the ith right derived functor of f∗ : Ab(Xét)→ Ab(Yét).

The following is a key input to the development of quasi-coherent cohomology.

Theorem 4.1.30. For a quasi-coherent OXét
-module F on an affine scheme X,

Hi(Xét, F ) = 0 for all i > 0.

We will prove this using Čech cohomology. Čech cohomology in the étale topology
is defined similarly to the case of the Zariski topology [Har77, III.4] replacing
intersections Ui0 ∩ · · · ∩ Uin with fiber products Ui0 ×X · · · ×X Uin and considering
all (possibly non-distinct) indices i0, . . . , in in any order.
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Definition 4.1.31 (Čech cohomology). Given an étale covering U = {Ui → X}i∈I
of a Deligne–Mumford stack and an abelian sheaf F on Xét, the Čech complex of F
with respect to U is Č•(U , F ) where

Čn(U , F ) =
∏

(i0,...,in)∈In+1

F (Ui0 ×X · · · ×X Uin)

with differential

dn : Čn(U , F )→ Čn+1(U , F ), (si0,...,in) 7→
( n+1∑
k=0

(−1)kp∗
k̂
si0,...,îk,...,in

)
(i0,...,in+1)

where pk̂ : Ui0×X · · ·×X Uin → Ui0×X · · ·×X Ûik×X · · ·×X Uin is the map forgetting
the kth component (with indexing starting at 0). The Čech cohomology of F with
respect to U is

Ȟi(U , F ) := Hi(Č•(U , F )).

The following is a standard result in Čech cohomology whose proof for sites is
analogous to topological spaces. It is often referred to as Cartan’s criterion; see
[God58, II.5.9.2], [Mil80, Prop. 2.12], [SP, Tag 03F9] or [Ols16, Prop. 2.3.15].

Lemma 4.1.32. Let X be a Deligne–Mumford stack and let F be an abelian
sheaf on Xét. Suppose Cov′(X ) ⊂ Cov(X ) is a subset of coverings of X such that
every covering of X has a refinement in Cov′(X ). If for every covering U ∈ Cov′,
Ȟi(U , F ) = 0 for i > 0, then Hi(Xét, F ) = 0.

With these preliminaries, we can prove Theorem 4.1.30.

Proof of Theorem 4.1.30. Let X = SpecA, F = M̃ be a quasi-coherent OX -module
and Fét be the corresponding quasi-coherent OXét

-module (Exercise 4.1.17). The
set of étale coverings of the form U = {SpecB → SpecA} is sufficient to refine any
other covering. For the covering U , faithful flat descent (Exercise 2.1.3) implies that
there is a long exact sequence

0→M →M ⊗A B →M ⊗A B ⊗A B →M ⊗A B ⊗A B ⊗A B → · · · ,

which is identified with the Čech complex Č•(U , F ). This shows that Ȟi(U , F ) = 0
for i > 0 and thus Lemma 4.1.32 implies that Hi(Xét, Fét) = 0.

As with ordinary topological spaces [Har77, Exc. III.4.11], Čech cohomology
can be computed using a covering with vanishing cohomology; see for instance [SP,
Tag 03F7].

Lemma 4.1.33. Let F be an abelian sheaf on Xét and (Ui → X )i∈I an étale
covering. If Hi(Uj0 ×U · · · ×U Ujn , F ) = 0 for all i > 0, n ≥ 0 and j0, . . . , jn ∈ I,
then Ȟi(U , F ) = Hi(Xét, F ).

On a scheme with affine diagonal, both the étale and Zariski cohomology of a
quasi-coherent sheaf can be computed on every affine open covering. We thus obtain:

Proposition 4.1.34. Let X be a scheme with affine diagonal. Let F be a quasi-
coherent OX-module and let Fét denote the corresponding quasi-coherent OXét

-module
(see Exercise 4.1.17). Then Hi(X,F ) = Hi(Xét, Fét) for all i.

Remark 4.1.35. The same result holds in the lisse-étale or fppf topology and
without the affine diagonal hypothesis; see [SP, Tag 03DW] and [Mil80, Prop. 3.7].
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Of course, in addition to being convenient to develop the theory of cohomology,
Čech cohomology is also an extremely effective tool to compute cohomology groups.
We have the following consequence of Theorem 4.1.30 and Lemma 4.1.33.

Proposition 4.1.36. Let X be a Deligne–Mumford stack with affine diagonal and
F be a quasi-coherent sheaf. If U = {Ui → X} is an étale covering with each Ui
affine, then Hi(Xét, F ) = Ȟi(U , F ).

To compare cohomologies computed in Ab(Xét), Mod(OX ) and QCoh(X ), we
have.

Proposition 4.1.37. Let X be a Deligne–Mumford stack.
(1) If F is an OX -module, then the cohomology Hi(Xét, F ) of F as an abelian

sheaf agrees with the ith right derived functor of Γ: Mod(OX )→ Ab.
(2) If X has affine diagonal and F is a quasi-coherent sheaf on X , then the

cohomology Hi(Xét, F ) of F as an abelian sheaf agrees with the ith right derived
functor of Γ: QCoh(X )→ Ab.

For a morphism f : X → Y of Deligne–Mumford stacks (resp., quasi-compact mor-
phism of Deligne–Mumford stacks with affine diagonals), then (1) (resp., (2)) holds
also for the higher direct images Rif∗F of an OX -module (resp., quasi-coherent
sheaf): it can be computed as the ith right derived functor of f∗ : Mod(OX ) →
Mod(OY) (resp., f∗ : QCoh(X )→ QCoh(Y)).

Proof. For (1), we need to show that an injective object in Mod(OX ) is acyclic
in Ab(Xét). This uses a standard technique in Čech cohomology. We need some
notation: given an étale covering U = {Ui → X}i∈I , we set Ui := Ui0 ×X · · · ×X Uin
with structure morphism ji : Ui → X . There is a chain complex ZU,• of presheaves
on X defined by

ZU,n :=
⊕

i∈In+1

ji,!Z

where Z denotes the constant presheaf and ji,!Z is the presheaf whose sections over
an X -scheme V are

⊕
MorX (V,Ui)

Z. The differentials of ZU,• are the alternating
sums of the natural maps. This complex of presheaves is exact in positive degrees
and has the property that for every presheaf F

Č(U , F ) = MorPAb(Xét)(ZU,•, F ) = MorPMod(OX )(ZU,• ⊗Z OX , F ),

where morphisms are computed in the categories PAb(Xét) and PMod(OX ) of
presheaves. If F ∈ Mod(OX ) is injective, then it is also injective as a presheaf of OX -
modules. It follows that Č(U , F ) is exact in positive degrees and thus Ȟi(U , F ) = 0
for i > 0. Therefore Lemma 4.1.32 implies that Hi(Xét, F ) = 0. For more details,
see [SP, Tag 03FD] or [Ols16, Cor. 2.3.16].

For (2), let F ∈ QCoh(X ) be an injective object. Let p : U =
∐
i SpecAi →

X be an étale presentation and choose an injection p∗F ↪→ G into an injective
object G ∈ QCoh(U). Then pushforward p∗G is injective (as the right adjoint
p∗ is exact) and we have an inclusion F ↪→ p∗p

∗F ↪→ p∗G of injectives which
splits. It thus suffices to show that p∗G is acyclic in Ab(Xét). Since X has affine
diagonal, p : U → X is an affine morphism. By descent and Flat Base Change
(Proposition A.2.12), p∗ is exact on the category of quasi-coherent sheaves. It follows
that Hi(Xét, p∗G) = Hi(Uét, G) = 0 by Theorem 4.1.30.

It follows from (2) that for a scheme X with affine diagonal and for a quasi-
coherent sheaf F , we have that Hi(X,F ) = Hi(Xét, Fét).
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Exercise 4.1.38 (Flat Base Change). Consider a cartesian diagram

X ′ g′
//

f ′

��

X

f

��

Y ′ g
// Y

□

of Deligne–Mumford stacks, and let F be a quasi-coherent sheaf on X . If g : Y ′ → Y
is flat and f : X → Y is quasi-compact and quasi-separated, the natural adjunction
map

g∗Rif∗F → Rif ′∗g
′∗F

is an isomorphism for all i ≥ 0.

Exercise 4.1.39. If X is a Deligne–Mumford stack and Fi is a directed system
of abelian sheaves in Xét, show that colimiH

i(Xét, Fi) → Hi(Xét, colimi Fi) is an
isomorphism.

Example 4.1.40 (Group cohomology). Let G be a finite abstract group viewed as a
group scheme over a field k, and let V be a G-representation. The group cohomology
Hi(G,V ) is defined as the ith right derived functor of Rep(G) → Vectk, V 7→ V G.
Since Hi(BGét, Ṽ ) can be computed in QCoh(BG) (Proposition 4.1.37(2)) where
Ṽ is the corresponding quasi-coherent sheaf on BG and there is an equivalence
Repk(G)

∼= QCoh(BG), we have the identification

Hi(G,V ) ∼= Hi(BGét, Ṽ ).

The Čech complex of Ṽ on BG corresponding to V with respect to the étale cover
U = {Speck→ BG} has terms

Čn(U , V ) := Ṽ ((Speck/BG)n+1) ∼= Γ(G,OG)⊗n ⊗ V.

To describe the differentials, let µk : Gn+1 → Gn for k = 0, . . . , n be defined
by sending (g1, . . . , gn+1) to (g1, . . . , gn) for k = 0 and to (g1, . . . , gk−1, gkgk+1,
gk+2, . . . , gn+1) for k = 1, . . . , n. Let σ : V → Γ(G,OG) ⊗ V be the coaction
map. The projection pk̂ : (Speck/BG)

n+2 → (Speck/BG)n+1 is identified with
µn+1−k ⊗ id for k = 0, . . . n and id⊗σ for k = n+ 1 (see Example 3.4.5). Thus the
differentials in Č•(U , V ) are described by

dn : Γ(G,OG)⊗n ⊗ V →Γ(G,OG)⊗(n+1) ⊗ V

f ⊗ v 7→
n∑
k=0

(−1)kµ∗
n+1−k(f)⊗ v + (−1)n+1f ⊗ σ(v)

In low degrees, we have d0(v) = v − σ(v) and d1(f1, v) = f1 ⊗ 1⊗ v − µ∗(f1)⊗ v +
f1 ⊗ σ(v) where µ = µ1 is group multiplication G×G→ G.

Since G is finite, there is an identification Γ(Gn,OGn)⊗ V ∼= Map(Gn, V ) with
set-theoretic maps, where a map ϕ : Gn → V is identified with

∑
g∈Gn egϕ(g) where

eg denotes the function which is 1 on g but otherwise 0. Thus the Čech complex
Č•(U , V ) can be equivalently described as

0→ V
d0−→ Map(G,V )

d1−→ Map(G2, V )
d2−→ · · · (4.1.41)

159



where the differential dn is defined by the formula

(dnϕ)(g1, . . . , gn+1) = ϕ(g1, . . . , gn)+
n∑
k=1

(−1)n+1−kϕ(g1, . . . , gk−1, gkgk+1, . . . , gn+1) + (−1)n+1g1ϕ(g2, . . . , gn)

for ϕ ∈ Map(Gn, V ). The complex (4.1.41) is sometimes referred to as the bar
resolution (except that the differential dn is usually multiplied by (−1)n+1), and is
an effective means to compute group cohomology. In low degrees, d0(v)(g) = v − gv
and d1(ϕ)(g1, g2) = ϕ(g1)− ϕ(g1g2) + g1ϕ(g2).

The following example illustrates that coherent sheaf cohomology on a Deligne–
Mumford stack can be nonzero in arbitrary high degrees. This doesn’t happen in
characteristic 0 or for tame Deligne–Mumford stacks (see Exercise 4.3.25).

Exercise 4.1.42. For a prime p, how that Hi(B(Z/pZ),OB(Z/pZ)) = Fp for each i.

Remark 4.1.43 (Comparison of topologies). One can also define the fppf coho-
mology groups Hi(Xfppf , F ) of an abelian sheaf on the small fppf site of X . There
are some cases when this agrees with the small étale cohomology. For instance,
if G → S is a smooth, commutative, and quasi-projective group scheme, then
Hi(Sét, G) = Hi(Sfppf , G) [Mil80, Thm. 3.9]. For Gm, there are identifications
Pic(X) = H1(XZar,O∗

X) = H1(Xét,Gm) = H1(Xfppf ,Gm) for a scheme X (Hilbert’s
Theorem 90, [Mil80, Prop. 4.9]).

On the other hand, if X is a smooth scheme over C and G is a finite abelian
group, then the classical complex cohomology Hi(X(C), G) agrees with the étale
cohomology Hi(Xét, G) of the constant sheaf associated to G [Mil80, Thm. 3.12].

Exercise 4.1.44 (Forms of group schemes). Let G be an algebraic group over a
field k. We say that a group scheme H → Speck is a form of G if there is an
isomorphism Gk

∼= Hk. We call G the trivial form of G.

(a) Show the algebraic group H = SpecR[x, y]/(x2 + y2 − 1) over R, with the
group structure induced from the embedding H ⊂ SL2 given by

(x, y) 7→
(
x y
−y x

)
,

is a non-trivial form of Gm,R.
(b) Assume that char(k) ̸= 2. Recall the orthogonal groups O(q) defined in

Exercise B.1.58 for a non-degenerate quadratic form q on an n-dimensional
vector space V . Show that every O(q) is a form of the subgroup On ⊂ GLn of
orthogonal matrices.

(c) If G is smooth and commutative, show that forms of G are classified by
H1((Sch/k)ét,Aut(G)).

Remark 4.1.45 (Other cohomology theories). See §6.1.6 for the development of
sheaf cohomology on an algebraic stack. See §6.1.7 for a discussion of the Chow
group of an algebraic stack, and §6.1.8 for a discussion of de Rham and singular
cohomology.
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4.2 Quotients by finite groups and the local struc-
ture of Deligne–Mumford stacks

Quotient stacks [SpecA/G] of affine schemes by finite abstract groups are a particu-
larly nice class of Deligne–Mumford stacks. Their geometry is theG-equivariant geom-
etry of SpecA. In this section, we show that the natural map [SpecA/G]→ SpecAG

is universal for maps to algebraic spaces (Theorem 4.3.6) and that every Deligne–
Mumford stack is étale locally isomorphic to a quotient stack of the form [SpecA/G]
(Theorem 4.2.12).

4.2.1 Quotients by finite groups
Definition 4.2.1 (Geometric quotients). If G is a finite abstract group (viewed as
a group scheme over Z) acting on an algebraic space U , a G-invariant morphism
U → X to an algebraic space is a geometric quotient if

(1) for every algebraically closed field k, the map U → X induces a bijection
U(k)/G ∼→ X(k), and

(2) U → X is universal for G-invariant maps to algebraic spaces, i.e., , every
G-invariant map U → Y to an algebraic space factors uniquely as

U

��   

X // Y.

If π : U → X is a geometric quotient, we often write X = U/G. In the case that
G acts freely on U (i.e., the action map G× U → U × U is a monomorphism), then
we have already defined the algebraic space quotient U/G and the map U → U/G is
a geometric quotient.

If a finite abstract group G acts on an affine scheme SpecA, then G also acts on
the ring A. We define the invariant ring as

AG = {f ∈ A | g · f = f for all g ∈ G}.

We will show shortly that SpecA→ SpecAG is a geometric quotient (Theorem 4.2.6).

Example 4.2.2. Assume char(k) ̸= 2. Let G = Z/2 acts on A1 = Speck[x]
via −1 · x = −x, then k[x]G = k[x2]. The geometric quotient is the map A1 =
Speck[x]→ Speck[x2] = A1 sending p to p2.

Let G = Z/2 acts on A2 = Speck[x, y] via −1 · (x, y) = (−x,−y). Then
k[x, y]G = k[x2, xy, y2] and the geometric quotient is A2 → A2/G = Speck[x2, xy, y2].
By setting A = x2, B = xy and C = y2, the invariant ring can be identified with
k[A,B,C]/(B2 −AC) so the quotient A2/G is a cone over a conic and in particular
singular.

Lemma 4.2.3. If G is a finite abstract group acting on a R-algebra A via R-algebra
automorphisms, then AG → A is integral. If R is noetherian and A is finitely
generated over R, then AG → A is finite and AG is finitely generated over R.

Proof. To see that AG → A is integral, for every element a ∈ A the product∏
g∈G(x−ga) ∈ AG[x] is polynomial with invariant coefficients which has a as a root.

If R is noetherian and R→ A is of finite type, then AG → A is also of finite type.
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As AG → A is integral, it is finite (c.f.,[AM69, Cor. 5.2]). Since R is noetherian, we
may conclude by the Artin–Tate Lemma (c.f.,[AM69, Prop. 7.8]) that R→ AG is of
finite type.

The invariant ring is compatible with flat base change.

Lemma 4.2.4. Let G be a finite abstract group acting on an affine scheme SpecA. If
AG → B is a flat ring homomorphism, then G acts on the affine scheme Spec(B⊗AG

A) and B = (B ⊗AG A)G.

Proof. By definition, the invariant ring is the equalizer

0→ AG → A
p1−−⇒
p2

∏
g∈G

A

where p1(f) = (f)g∈G and p2(f) = (gf)g∈G. Since AG → B is flat, we have that

0→ B → A⊗AG B
p1−−⇒
p2

∏
g∈G

A⊗AG B

is also exact and we conclude that B = (B ⊗AG A)G.

Exercise 4.2.5 (Base Change). Let AG → B be a ring homomorphism and consider
the commutative diagram

SpecB ⊗AG A

��

//

uu

SpecA

��

Spec(B ⊗AG A)G // SpecB // SpecAG.

□

(a) Show that Spec(B ⊗AG A)G → SpecB is an integral homeomorphism.
(b) If |G| is invertible in A, show that B → (B ⊗AG A)G is an isomorphism.
(c) Provide an example where B → (B ⊗AG A)G is not an isomorphism.

We now turn to the main theorem: SpecA→ SpecAG is a geometric quotient
(Definition 4.2.1).

Theorem 4.2.6. If G is a finite abstract group acting on an affine scheme SpecA,
then SpecA → SpecAG is a geometric quotient. If A is finitely generated over a
noetherian ring R, then AG is also finitely generated over R.

Proof. Consider the commutative diagram

U = SpecA

π̃

((��

X = [U/G]
π // X = SpecAG.

Since π̃ is integral and dominant, it is surjective. To see that π̃ is injective on
G-orbits of geometric points, let k be an algebraically closed field and x, x′ ∈ U(k)
with π̃(x) = π̃(x′) ∈ X(k). The base change U×X Speck = Spec(A⊗AG k) inherits a
G-action and the G-orbits Gx,Gx′ ⊂ U ×X AG are closed subschemes. If Gx ≠ Gx′,
then the orbits are disjoint and there exists a function f ∈ A⊗R k with f |Gx = 0
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and f |Gx′ = 1. Then f̃ =
∏
g∈G gf ∈ (A ⊗AG k)G is a G-invariant function with

f ′(x) = 0 and f ′(x′) = 1. But this implies that π̃(x) ̸= π̃(x′) ∈ X(k), which is a
contradiction.

The map π̃ : U → X is universal for G-invariant maps to algebraic spaces if and
only if π : X = [U/G]→ X is universal for maps to algebraic spaces. In other words,
we need to show that if Y is an algebraic space, then the natural map

Map(X,Y )→ Map(X , Y ) (4.2.7)

is bijective. We note that this is immediate when Y is affine as Γ(X ,OX ) = Γ(X,OX)
and the case when Y is a scheme can be reduced to this case without much effort:
if g : X → Y is a map, an affine covering Yi of Y induces an open covering Xi =
X \ π(X \ g−1(Yi)) of X, and g restricts to a map π−1(Xi) → Yi which factors
uniquely through Xi since π∗OX = OX ; see also [GIT, §0.6]. We need to work
harder to handle the case that Y is an algebraic space.

For the injectivity of (4.2.7), let h1, h2 : X → Y be two maps such that h1 ◦ π =
h2 ◦ π. Let E → X be the equalizer of h1 and h2, i.e., the pullback of the diagonal
Y → Y × Y along (h1, h2) : X → Y × Y . The equalizer E → X is a monomorphism
and locally of finite type. By construction π : X → X factors through E → X
and since π is universally closed and schematically dominant (i.e., OX → π∗OX
is injective), so is E → X. As every universally closed and locally of finite type
monomorphism is a closed immersion (see Corollary A.7.5 and Remark A.7.6), we
conclude that E → X is an isomorphism.

For the surjectivity of (4.2.7), let g : X → Y be a map. We claim that the
question is étale-local on X. Indeed, if V → X is an étale cover and h : V → Y is
a morphism such that the two compositions V ×X X → V

h−→ Y and V ×X X →
X g−→ Y agree, then by the injectivity of (4.2.7) applied to the good moduli space
V ×X V ×X X → V ×X V , the two compositions V ×X V ⇒ V

h−→ Y agree and
thus h : V → Y descends to a morphism h : X → Y . Étale descent also implies the
commutativity of g = h ◦ π.

Since X is quasi-compact, we may assume that Y is quasi-compact as g : X → Y
factors through a quasi-compact open algebraic subspace of Y . Let Y ′ → Y be an
étale presentation from an affine scheme and let X ′ := X ×Y Y ′. We claim that
after replacing X with an étale cover V → X and X with the base change X ×X V ,
there is a section s : X → X ′ of X ′ → X in the commutative diagram

X ′ //

g′

��

X
s
ww π //

g

��

X

~~

Y ′ // Y.

□

The surjectivity of (4.2.7) follows from this claim: since X and Y ′ are affine,

the equality Γ(X,OX) = Γ(X ,OX ) implies that X s−→ X ′ g′−→ Y ′ factors through
π : X → X via a morphism X → Y ′. The composition X → Y ′ → Y yields the
desired dotted arrow above.

We claim that limit methods allow us to reduce to the case that X = SpecAG

is the spectrum of a strictly henselian local ring. Indeed, for a closed point u of
U := SpecA over x ∈ |X |, the strict henselization Xsh := Osh

X,π(x) is the limit
limiXi over all affine étale neighborhoods Xi → X of π(x). The base change
U sh := U ×X Xsh is the limit of the affine schemes Ui := U ×X Xi. We also set
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X sh := X ×X Xsh = [U sh/G] and Xi := X ×X Xi = [Ui/G]. Since X ′ → X is locally
of finite presentation, the natural map

colimiMorX (Xi,X ′)→ MorX (X sh,X ′)

is an equivalence; this follows from Exercise 3.3.31 using that MorX (X sh,X ′) is the
equalizer of MorX (U sh,X ′) ⇒ MorX (G × U sh,X ′) and similarly for the left-hand
side. A section of X ′ ×X X sh → X sh is determined by a map X sh → X ′ over X .
This map extends to a morphism Xi → X ′ for some i, giving us the desired section.

Let κ be the residue field of AG. As AG → A is finite, A = A1 × · · · × Ar is a
product of strictly henselian local rings, each finite over AG (Proposition B.5.10).
If u ∈ SpecA1 ⊂ SpecA is a closed point, then SpecA1 is Gu-invariant and the
orbit Gu is in bijection with the r connected components of SpecA. There is an
isomorphism X ∼= [SpecA1/Gu]; this can be verified directly by for instance slicing
the groupoid G × SpecA ⇒ SpecA by SpecA1 ↪→ SpecA (as in Exercise 3.4.17).
We may thus replace X = [SpecA/G] with [SpecA1/Gu], and we can assume that
there is a unique closed point u ∈ SpecA which is set-theoretically fixed by G.
As Y ′ → Y is representable by schemes, we can write X ′ = [U ′/G] for a scheme
U ′. Let u′ ∈ U ′ be a preimage of u ∈ SpecA. As A is strictly henselian and
the G-equivariant morphism U ′ → U is the base change of the étale morphism
Y ′ → Y , we see that κ(u′) = κ(u) and Gu′ = Gu = G, and moreover the stabilizers
act trivially on the residue fields. Again using that A is strictly henselian, there
is a unique section s : SpecA → U ′ with s(u) = u′ (Proposition B.5.9). This
section is G-invariant because for every g ∈ G, both s ◦ g and g ◦ s are sections of

U ′ → SpecA
g−1

−−→ SpecA with u′ 7→ u and thus the sections agree. It follows that s
descends to a section X = [SpecA/G]→ [U ′/G] = X ′ of X ′ → X . This finishes the
proof that SpecA→ SpecAG is a geometric quotient.

The final statement follows from Lemma 4.2.3.

Corollary 4.2.8. Let G be a finite abstract group acting freely on an affine scheme
U = SpecA, then the algebraic space quotient U/G is isomorphic to SpecAG.

Exercise 4.2.9. Let R be a noetherian ring. Let G be a finite abstract group acting
on an affine (resp., quasi-affine, quasi-projective, projective) scheme U over a ring R.
Show that there exists a geometric quotient U → U/G such that U/G is an affine
(resp., quasi-affine, quasi-projective, projective) scheme over R.

Exercise 4.2.10. Suppose that G is a finite abstract group acting on an affine
scheme SpecA of finite type over a noetherian ring R. If x ∈ SpecA is a closed
point, show that there is an isomorphism

ÂGx ∼= ÂG

between the Gx-invariants of the completion at SpecA at x and the completion of
SpecAG at the image of x.

The following exercise generalizes Theorem 4.3.6 from quotients of finite groups
to quotients of finite flat groupoids.

Exercise 4.2.11. Let s, t : R ⇒ U be a finite flat groupoid of affine schemes,
and define AR ⊂ A as the subring of R-invariants, i.e., the subring of elements
a ∈ A such that s∗a = t∗a ∈ Γ(R,OR). Show that U → X := SpecAR induces a
bijection U(k)/R(k) ∼→ X(k) for every algebraically closed field k and that U → X
is universal for R-invariant maps to algebraic spaces. Moreover, show that if A is
finitely generated over a noetherian ring, then so is AR.
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4.2.2 The Local Structure Theorem
We show that a Deligne–Mumford stack X near a point x is étale locally the quotient
stack [SpecA/Gx] of an affine scheme by the stabilizer group scheme. Conceptually,
this tells us that just as schemes (resp., algebraic spaces) are obtained by gluing
affine schemes in the Zariski topology (resp., étale topology), Deligne–Mumford
stacks are obtained by gluing quotient stacks [SpecA/G] in the étale topology.1
This has the practical application of allowing one to reduce many properties of
Deligne–Mumford stacks to quotient stacks [SpecA/G]. We will take advantage of
this local structure to construct a coarse moduli space (Theorem 4.3.12).

The geometric stabilizer of a point x of a Deligne–Mumford stack X is the
abstract group defined as the stabilizer of any geometric point Speck → X with
image x.

Theorem 4.2.12 (Local Structure Theorem of Deligne–Mumford Stacks). Let X be
a separated Deligne–Mumford stack and x ∈ X be a finite type point with geometric
stabilizer Gx. There exists an affine étale morphism

f : ([SpecA/Gx], w)→ (X , x)

where w ∈ [SpecA/Gx] such that f induces an isomorphism of geometric stabilizer
groups at w.

Proof. Choose a geometric point Speck → X of representing x, and let d be the
cardinality of Gx. Viewing Gx has a group scheme over Speck, let BGx → X be
the induced map. Let (U, u)→ (X , x) be an étale representable morphism from an
affine scheme. Since X is separated, U → X is affine. Define the quasi-affine scheme

SECd := U ×X · · · ×X U︸ ︷︷ ︸
d times

\∆,

where ∆ is the union of all pairwise diagonals. A map S → SECd from a scheme
is classified by a morphism S → X and d sections s1, . . . , sd of US := U ×X S → S
which are disjoint (i.e., the intersection of si and sj is empty for i ̸= j. There is an
action of Sd on SECd given by permuting the sections and we define the quotient
stack

ETd := [SECd /Sd].

By the correspondence between principal Sd-bundles and finite étale covers of degree
d (Exercise B.1.52), an object of ETd over a scheme S corresponds to a diagram

Z
� � //

  

US //

��

U

��

S // X

□

where Z ↪→ US is a closed subscheme and Z → S is finite étale of degree d. The
fiber product BGx ×X U is a finite disjoint union of Speck’s, and choosing one of
them leads to a diagram

Speck �
�

//

%%

∐
Speck //

��

U

��

BGx // X

□

1Of course, Deligne–Mumford stacks are also étale locally schemes but the étale neighborhoods
([SpecA/Gx], w) → (X , x) produced by Theorem 4.2.12 preserve the stabilizer group at w.
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with Speck→ BGx finite étale of degree d. The further base change by Speck→
BGx defines a point w ∈ ETd(k).

There is an induced morphism ETd → X and a commutative diagram

SECd //
� _

��

ETd

!!

U ×X · · · ×X U // U // X

We claim that ETd → X is an étale morphism that induces an isomorphism of
stabilizer groups at w. The étaleness follows from étale descent as U×X · · ·×XU → X
is étale. To see that the induced map on stabilizers at w is an isomorphism, it suffices
to assume that X = BGx and U = Speck. In this case, there is an isomorphism
U ×X · · · ×X U ∼= Gd−1

x , which we can further identify with the quotient Gdx/Gx of
the diagonal action. Then SECd ⊂ U ×X · · · ×X U is identified with the quotient
(Gdx \∆)/Gx. The permutation Sd-action is transitive with stabilizer isomorphic to
Gx, and in fact SECd is Sd-equivariantly isomorphic to the quotient Sd/G of the
regular representation G ⊂ Sd. We thus see that ETd ∼= BGx.

Since ETd → X is separated, the relative inertia stack IETd /X → ETd is finite
and thus an isomorphism in an open substack [W/Sd] ⊂ ETd around w, where
W ⊂ SECd is a quasi-affine scheme. It follows that [W/Sd] → X is an étale
representable morphism inducing an isomorphism on stabilizer groups at w. By
quotienting out by Gx ⊂ Sd instead, the morphism [W/Gx] → X is also étale
representable inducing an isomorphism of stabilizer groups at w. Letting W ′ ⊂W
be an affine open subscheme containing w, we may replace W with the Gx-invariant
affine open subscheme

⋂
g∈Gx

g ·W ′.
It remains to show that [W/Gx]→ X is affine. Since X is separated, its diagonal

is affine and the morphism W → X from the affine scheme W is affine. The fiber
product

[W/Gx]×X W //

��

W

��

[W/Gx] // X

□

is affine over [W/Gx] and thus isomorphic to a quotient stack [SpecB/Gx]. On the
other hand, since [W/Gx] → X is representable, the quotient stack [SpecB/Gx]
is an algebraic space and the action of Gx on SpecB is free. By Corollary 4.2.8,
[SpecB/Gx] is isomorphic to the affine scheme SpecBGx . By étale descent [W/Gx]→
X is affine.

See also [LMB00, Thm. 6.2].

Exercise 4.2.13. Let X be a Deligne–Mumford stack. Show that X is isomorphic
to a quotient stack [U/G] where U is an affine scheme (resp., scheme, algebraic space)
and G is a finite abstract group if and only if there exists a finite étale morphism
V → X from an affine scheme (resp., scheme, algebraic space).

Hint: If V → X is a finite étale cover of degree d, consider the associated principal
Sd-torsor V ×X · · · ×X V︸ ︷︷ ︸

d times

\∆→ X ; see Exercise B.1.52.

Proposition 4.2.14. If R ⇒ U is a finite étale equivalence relation of affine
schemes, then the algebraic space quotient U/R is an affine scheme.
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Proof. By Exercise 4.2.13, the algebraic space U/R is isomorphism to V/G for the free
action of a finite group G on an affine scheme V = SpecB. Theorem 4.3.6 shows that
V/G→ SpecBG is universal for maps to algebraic spaces and thus an isomorphism.
Alternatively, this follows from Exercise 4.2.11: if U = SpecA, then U/R→ SpecAR

is universal for maps to algebraic spaces and thus an isomorphism.

With a similar technique to the proof of Theorem 4.2.12, we can prove the
following useful result asserting the existence of presentations with a lift of a given
field-valued point.

Proposition 4.2.15. If X is an algebraic stack with quasi-separated diagonal (resp.,
quasi-separated algebraic space) and x ∈ X (k) is a field-valued point, then there
exists a smooth (resp., étale) morphism U → X from an affine scheme and a point
u ∈ U(k) over x.

Proof. Let U → X be a smooth morphism from an affine scheme such that x is
contained in its image. Consider the fiber product

Ux //

��

U

��

Speck x // X .

□

Since X has quasi-separated diagonal, the morphism U → X is quasi-separated. As
Ux is finite type and quasi-separated over Speck, it is a noetherian algebraic space.
Choosing a closed point u ∈ Ux, by Existence of Residual Gerbes (3.5.17), there
is a closed immersion Specκ(u) → Ux from the residue field. The field extension
k→ κ(u) is finite and separable, and let d be its degree.

Following the notation of the proof of Theorem 4.2.12, we consider the open
subspace SECd ⊂ U ×X · · · ×X U parameterizing d disjoint sections of U → X
and the morphism ETd = [SECd /Sd] → X . As U → X is quasi-separated, SECd
and ETd are also quasi-separated. As Specκ(u) → Speck is finite étale of degree
d, the closed immersion Specκ(u) ↪→ Ux defines a k-point v of ETd. This gives a
commutative diagram

Speck

x

��

v

{{

SECd // ETd // X .

The point v ∈ ETd(k) does not necessarily lift to SECd, but we can use the
following trick to choose a different quotient presentation of ETd where v does
lift. Namely, choose a faithful representation Sd ⊂ GLn and write ETd ∼= [V/GLn]
where V = SECd×Sd GLn is a quasi-separated algebraic space. Then v : Speck→
[V/GLn] corresponds to a principal GLn-bundle P → Speck and a GLn-equivariant
map P → V . Since principal GLn-bundles are in bijection to vector bundles
(Exercise B.1.56), P is the trivial principal GLn-bundle and there is a section
Speck→ P . The composition V → [V/GLn]→ X is smooth and the composition
Speck→ P → V is a lift of x.

It remains to show that a k-point of a quasi-separated algebraic space V lifts
to an étale presentation by a scheme. We will use the fact that a quasi-separated
algebraic space has quasi-affine diagonal; this is proved in Corollary 4.4.8 using the
result Proposition 4.2.14 above and the theory of quasi-coherent sheaves (§4.1). We
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repeat the above argument by choosing an étale map U → V from an affine scheme
such that the image contains x. Then the space SECd of d disjoint sections with
respect to U → V is a quasi-affine scheme with a free action of Sd. The quotient
ETd = SECd /Sd is also quasi-affine (Exercise 4.2.9). The induced map ETd → X is
étale and by construction the k-point x lifts to a k-point of ETd.

See also [LMB00, Thm. 6.3].

4.3 Coarse moduli spaces and the Keel–Mori Theo-
rem

The goal of this section is to establish the Keel–Mori Theorem: every separated
Deligne–Mumford stack X of finite type over a noetherian scheme admits a separated
coarse moduli space π : X → X (see Theorem 4.3.12). One can view this theorem
as a way to remove the stackiness of a Deligne–Mumford stack; at the expense
of sacrificing universal properties of X (e.g., existence of a universal family), one
can replace X with an algebraic space without changing the underlying topological
space.

We will later apply this theorem to show that the Deligne–Mumford stackMg

parameterizing stable curves admits a coarse moduli space π :Mg →Mg where Mg

is a separated algebraic space, which we later show to be proper and then finally
projective.

To prove Theorem 4.3.12, we will apply the Local Structure Theorem (4.2.12)
to construct étale neighborhoods [Spec(Ai)/G]→ X and show that the geometric
quotients Spec(AGi ) glue in the étale topology to a coarse moduli space of X .

4.3.1 Coarse moduli spaces
We begin with the definition:

Definition 4.3.1. A morphism π : X → X from an algebraic stack to an algebraic
space is a coarse moduli space if

(1) for every algebraically closed field k, the induced map X (k)/∼ → X(k), from
the set of isomorphism classes of objects of X over k, is bijective, and

(2) π is universal for maps to algebraic spaces, i.e., every map X → Y to an
algebraic space factors uniquely as

X

π

��   

X // Y.

Remark 4.3.2. If G is a finite abstract group acting on an algebraic space U , then
[U/G]→ X is a coarse moduli space if and only if U → X is a geometric quotient
(Definition 4.2.1).

Remark 4.3.3. In practice, we desire coarse moduli spaces with additional properties
of π : X → X as otherwise it is difficult to work with this notion. For instance, it is
not clear that this notion is stable under étale base change (or even open immersions)
or that π∗OX = OX . However, we emphasize that the Keel–Mori Theorem produces
a coarse moduli space π : X → X with the additional properties: (a) it is stable under
flat base change, (b) π∗OX = OX , (c) π is proper (and in particular separated!) and
(d) π is a universal homeomorphism.
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Lemma 4.3.4. Let π : X → X be a coarse moduli space such that for every étale
morphism X ′ → X from an affine scheme, the base change X ×X X ′ → X ′ is a
coarse moduli space. Then the natural map OX → π∗OX is an isomorphism.

Proof. As π is universal for maps to algebraic spaces, we have that Map(X,A1)→
Map(X ,A1) is bijective or in other words Γ(X,OX) ∼= Γ(X ,OX ). For every étale
map X ′ → X, the base change X ′ = X×XX ′ → X ′ is also a coarse moduli space and
thus Γ(X ′,OX′) ∼= Γ(X ′,OX ′). This shows that OX → π∗OX is isomorphism.

The property that a given map is a coarse moduli space can be checked étale
locally.

Lemma 4.3.5. Let π : X → X be a morphism to an algebraic space. Suppose that
there is an étale covering {Xi → X} such that X ×X Xi → Xi is a coarse moduli
space for each i. Then π : X → X is a coarse moduli space.

Proof. Axiom (1) of a coarse moduli space is a condition on geometric fibers and can
thus be checked étale locally, while Axiom (2) follows from the fact that algebraic
spaces are sheaves in the étale topology.

Theorem 4.3.6. If G is a finite abstract group acting on an affine scheme SpecA,
then π : [SpecA/G]→ SpecAG is a coarse moduli space. Moreover,

(1) the base change of π along a flat morphism X ′ → SpecAG of algebraic spaces
is a coarse moduli space,

(2) the natural map OX → π∗OX is an isomorphism, and
(3) if A is finitely generated over a noetherian ring R, then AG is finitely generated

over R and π is a proper universal homeomorphism.

Proof. In Theorem 4.2.6, we showed that π : [SpecA/G] → SpecAG is a coarse
moduli space and that R→ AG is of finite type if R is noetherian and R→ A is of
finite type. To see (1), it suffices by Lemma 4.3.5 to consider flat morphisms Y ′ → Y
from an affine scheme. But in this case, the base change X ×Y Y ′ is isomorphic
to a quotient stack [SpecB/G] and Lemma 4.2.4 implies that Y ′ ∼= SpecBG. It
follows that X ×Y Y ′ → Y ′ is a coarse moduli space. Part (2) follows directly
from (1) by Lemma 4.3.4. For (3), it remains to show that π is a proper universal
homeomorphism. Since π is bijective and universally closed, its set-theoretic inverse
is continuous, and thus π is a homeomorphism. The base change of π along a
morphism SpecB → SpecAG factors as [Spec(B⊗AG A)/G]→ Spec(B⊗AG A)G →
SpecB where the first map is a homeomorphism by the above argument and the
second is a homeomorphism by Exercise 4.2.5. We conclude that π is a universal
homeomorphism.

4.3.2 Descending étale morphisms to quotients
Proposition 4.3.7. Let G be a finite abstract group and f : SpecA→ SpecB be a
G-equivariant morphism of affine schemes of finite type over a noetherian ring R.
Let x ∈ SpecA be a closed point. Assume that

(a) f is étale at x and
(b) the induced map Gx → Gf(x) of stabilizer group schemes is bijective.

Then there is an open affine neighborhood W ⊂ SpecAG of the image of x such that
W → SpecAG → SpecBG is étale and π−1

A (W ) ∼= W ×SpecBG [SpecB/G], where
πA : [SpecA/G]→ SpecAG.
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Remark 4.3.8. In other words, after replacing SpecAG with an affine neighborhood
W of πA(x) and SpecA with π−1

A (W ), it can be arranged that the diagram

[SpecA/G]

πA

��

f
// [SpecB/G]

πB

��

SpecAG // SpecBG

(4.3.9)

is cartesian where both horizontal maps are étale.
Condition (b) can be tested on a field-valued point Speck→ SpecA representing

x (e.g., the inclusion of the residue field).

The above proposition will be applied in the following form in the proof of the
Keel–Mori Theorem (Theorem 4.3.12).

Corollary 4.3.10. Let G be a finite abstract group and f : SpecA→ SpecB be a
G-equivariant morphism of affine schemes of finite type over a noetherian ring R.
Assume that for every closed point x ∈ SpecA,

(a) f is étale at x and
(b) the induced map Gx → Gf(x) of stabilizer group schemes is bijective.

Then SpecAG → SpecBG is étale and (4.3.9) is cartesian.

Proof of Proposition 4.3.7. Set y = f(x). We first claim that the question is étale
local around πB(y) ∈ SpecBG. Indeed, if Y ′ → Y := SpecBG is an affine étale
neighborhood of πB(y), we let X ′,X ′ and Y ′ denote the base changes of X :=
SpecAG, X := [SpecA/G], and Y := [SpecB/G]. By Lemma 4.2.4, we know that
Y ′ ∼= [SpecB′/G] with Y ′ ∼= SpecB′G and similarly for X ′ and X ′. If the result
holds after this base change, there is an open neighborhood W ′ ⊂ X ′ containing a
preimage of πA(x) such that W ′ ↪→ X ′ → Y ′ is étale and such that the preimage
of W ′ in X ′ is isomorphic to W ′ ×Y ′ Y ′. Taking W as the image of W ′ under
X ′ → SpecAG and applying étale descent yields the desired claim.

We now claim that this allows us to assume that BG is strictly henselian. To
see this, let Y sh = SpecOsh

Y,πB(y) and Xsh, X sh and Ysh be the base changes of X,
X and Y along Y sh → Y . Suppose U sh ⊂ Xsh is an open affine subscheme of the
unique point in Xsh over x and the closed point of Y sh such that U sh → Y sh is
étale with π−1

X sh(U
sh) ∼= U sh ×Y sh Ysh. Then Y sh = limλ Yλ is the limit of affine

étale neighborhood Yλ → Y of y and we set Xλ, Xλ, and Yλ to be the base changes
of X, X , and Y along Yλ → Y . By Proposition B.3.3, the morphism U sh → Xsh

descends to Uη → Xη for some η. Setting Uλ = Uη ×Xη
Xλ for λ > η, it follows

from Proposition B.3.7 that for λ≫ 0 (a) Uλ → Xλ is an open immersion, (b) the
composition Uλ → Xλ → Yλ is étale, and (c) π−1

Xλ
(Uλ) ∼= Uλ ×Yλ

Yλ (by arguing on
the étale presentations of X and Y).

Finally, As BG → B is finite (Lemma 4.2.3), B = B1 × · · · × Br is a product
of strictly henselian local rings (Proposition B.5.10). As in the proof of The-
orem 4.3.6, we may replace [SpecB/G] with [SpecB1/Gy] and [SpecA/G] with
[f−1(SpecB1)/G] to assume that G fixes x and y while acting trivially on the residue
fields κ(x) = κ(y). Thus SpecA→ SpecB has a unique section s : SpecB → SpecA
taking y to x. The section s is necessarily G-invariant (as in the proof Theorem 4.3.6).
Thus s descends to a section of SpecAG → SpecBG which gives our desired open
and closed subscheme W ⊂ SpecAG.
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Remark 4.3.11. Here is a conceptual reason why we should expect the induced map
of quotients to be étale. For simplicity, assume that R = k is an algebraically closed
field. Let Â and B̂ be the completions of the local rings at x and f(x). The stabilizers
Gx and Gf(x) act on Spec Â and Spec B̂, respectively, and the map Spec Â→ Spec B̂

is equivariant with respect to the map Gx → Gf(x). The completion ÂG of AG at the
image of x is isomorphic to ÂGx (Exercise 4.2.10) and similarly B̂G = B̂Gf(x) . Since
f is étale at x, B̂ → Â is an isomorphism and since Gx → Gf(x) is bijective, the
induced map B̂G → ÂG is an isomorphism which shows that SpecAG → SpecBG is
étale at the image of x.

4.3.3 The Keel–Mori Theorem

We now state and prove the Keel–Mori Theorem.

Theorem 4.3.12 (Keel–Mori Theorem). Let X be a Deligne-Mumford stack sep-
arated and of finite type over a noetherian algebraic space S. Then there exists a
coarse moduli space π : X → X with OX = π∗OX such that

(1) X is separated and of finite type over S,
(2) π is a proper universal homeomorphism, and
(3) for every flat morphism X ′ → X of algebraic spaces, the base change X ×X

X ′ → X ′ is a coarse moduli space.

Remark 4.3.13. The Keel–Mori Theorem [KM97] holds more generally with the
‘separated’ condition on X → S by the finiteness of the inertia IX → X ; see
Remark 4.3.15. In particular, it holds for algebraic stacks with finite but non-reduced
automorphism groups. The theorem also holds without any noetherian or finiteness
conditions; see [Con05b, Ryd13] and [SP, Tag 0DUK].

Proof. We first handle the case when S = SpecR is affine. The question is Zariski-
local on X : if {Xi} is a Zariski open covering of X with coarse moduli spaces
Xi → Xi, then since coarse moduli spaces are unique (Definition 4.3.1(2)), the Xi’s
glue to form an algebraic space X and a map X → X, which is a coarse moduli
space by Lemma 4.3.5. It thus suffices to show that every closed point x ∈ |X | has
an open neighborhood that admits a coarse moduli space.

By the Local Structure Theorem of Deligne–Mumford Stacks (4.2.12), there
exists an affine étale morphism

f :
(
W = [SpecA/Gx], w

)
→ (X , x)

such that f induces an isomorphism of geometric stabilizer groups at w.
We claim that since X is separated, the locus U consisting of points z ∈ |W|,

such that f induces an isomorphism of geometric stabilizer groups at z, is open. To
establish this, we will analyze the natural morphism IW → IX ×X W of relative
group schemes over W as the fiber of this morphism over z ∈ W(k) is precisely the
morphism Gz → Gf(z) of stabilizers. We will exploit the cartesian diagram

IW
Ψ //

��

IX ×X W

��

W // W ×X W;

□
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see Exercise 3.2.14. SinceW → X is representable, étale and separated, the diagonal
W →W ×X W is an open and closed immersion and thus so is Ψ. Since IX → X is
finite, so is p2 : IX ×X W →W . Thus p2(|IX ×X W| \ |IW |) ⊂ |W| is closed and its
complement, which is identified with the locus U , is open.

Let πW : W → W = SpecAGx be the coarse moduli space (Theorem 4.3.6).
Choose an affine open subscheme X1 ⊂W containing πW(w). Then X1 = π−1

W (X1)

is isomorphic to a quotient stack [SpecA1/Gx] such that X1 = SpecAGx
1 . This

provides an affine étale morphism

g : (X1 = [SpecA1/Gx], w)→ (X , x)

which induces a bijection on all geometric stabilizer groups.
We now show that the open substack X0 := im(f) admits a coarse moduli space.

Since g is affine and X1 = [SpecA1/Gx], the algebraic stack X2 := X1 ×X X1 is
isomorphic to [SpecA2/Gx] for an A1-algebra A2, and there is a coarse moduli
space π2 : X2 → X2 = SpecAGx

2 . By universality of coarse moduli spaces, there is a
diagram

X2

π2

��

//
// X1

π1

��

g
// X0 = im(g)

π0

��

X2
//
// X1

// X0

(4.3.14)

where the natural squares commute. Since g induces bijections of geometric stabilizer
groups at all points, the same is true for each projection X2 → X1.Corollary 4.3.10
implies that each map X2 → X1 is étale, and the natural squares of solid arrows in
(4.3.14) are cartesian.

The universality of coarse moduli spaces induces an étale groupoid structure
X2 ⇒ X1. To check that this is an étale equivalence relation, it suffices to check that
X2 → X1×X1 is injective on geometric points, but this follows from the observation
the |X2| → |X1| × |X1| is injective on closed points. Therefore there is an algebraic
space quotient X0 := X1/X2 and a map X1 → X0. By étale descent along X1 → X0,
there is a map π0 : X0 → X0 making the right square in (4.3.14) commute.

To argue that π : X0 → X0 is a coarse moduli space, we will use the commutative
cube

X2
//

��

}}

X1

��

}}

X1
//

��

X0

��

X2
//

}}

X1

}}

X1
// X0,

where the top, left, and bottom faces are cartesian. It follows from étale descent along
X1 → X0 that the right face is also cartesian and since being a coarse moduli space
is étale local on X0 (Lemma 4.3.5), we conclude that X0 → X0 is a coarse moduli
space. Except for the separatedness, the additional properties in the statement are
étale-local on X0, so they follow from the analogous properties of the coarse moduli
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space [Spec(A1)/Gx]→ Spec(AGx
1 ) from Theorem 4.3.6. As X0 → X0 is proper, the

separatedness of X0 is equivalent to the separatedness of X0.
Finally, the case when S is a noetherian algebraic space can be reduced to the

affine case by imitating the above argument to étale locally construct the coarse
moduli space of X .

Remark 4.3.15. The more general case when X is an algebraic stack with finite
inertia IX → X (see Remark 4.3.13) is proven in an analogous but more technical
manner. Namely, the use of the Local Structure Theorem for Deligne–Mumford
stacks (Theorem 4.2.12) is replaced by the existence of an étale neighborhoodW → X
around every closed point such that W admits a finite flat presentation V → W
from an affine scheme and the corresponding groupoid R := V ×W V ⇒ V is a
finite flat groupoid of affine schemes. This in turn is proven in an analogous way to
Theorem 4.2.12 where one chooses a quasi-finite and flat surjection U → X and one
replaces the use of [(U/X )d0/Sd]) with a Hilbert stack H whose objects over a scheme
S consists of a morphism S → X and a closed subscheme Z ↪→ US finite and flat
(rather than finite and étale) over S. (Aside: it is also possible to prove this without
reference to a Hilbert scheme by using étale localization of groupoidsand splitting
for groupoids; see [KM97, §4] or [SP, Tags 0DU4 and 04RJ]. Finally, the existence
of a coarse moduli space for quotients [V/R] is proven analogously to Theorem 4.3.6
(see Exercise 4.2.11).

The Local Structure Theorem of Deligne–Mumford Stacks (Theorem 4.2.12) can
also be formulated étale locally on a coarse moduli space:

Corollary 4.3.16 (Local Structure of Coarse Moduli Spaces). Let X be a Deligne–
Mumford stack of finite type and separated over a noetherian algebraic space S,
and let π : X → X be its coarse moduli space. For every closed point x ∈ |X | with
geometric stabilizer group Gx, there exists a cartesian diagram

[SpecA/Gx] //

��

X

π

��

SpecAGx // X

such that SpecAGx → X is an étale neighborhood of π(x) ∈ |X|.

Proof. This follows from the construction of the coarse moduli space in the proof
of Theorem 4.3.12. Alternatively, it follows from the Local Structure Theorem of
Deligne–Mumford stacks (Theorem 4.2.12) and Exercise 4.3.17.

Exercise 4.3.17. Establish the following generalization of Proposition 4.3.7: Let S
be a noetherian algebraic space. Let f : X → Y be a morphism of Deligne–Mumford
stacks separated and of finite type over S and

X

πX

��

f
// Y
πY

��

X // Y

be a commutative diagram where πX : X → X and πY : Y → Y are coarse moduli
spaces. Let x ∈ |X | be a closed point such that
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(1) f is étale at x and
(2) the induced map Gx → Gf(x) of geometric stabilizer groups is bijective.

Then there exists an open neighborhood U ⊂ X of πX (x) such that U → X → Y is
étale and πX (U) ∼= U ×Y Y.

4.3.4 Examples

Example 4.3.18. Consider the moduli stack M1,1 of elliptic curves over a field
k with char(k) ̸= 2, 3. The Weierstrass form y2 = x(x − 1)(x − λ) gives an
isomorphism M1,1

∼= [(A1 \ {0, 1})/S3] (see Exercise 3.1.19) where the S3-orbit of λ
is {λ, 1/λ, 1− λ, 1/(1− λ), λ/(λ− 1), (λ− 1)/λ}. The coarse moduli space is given
by j-invariant

j :M1,1 → A1, λ 7→ 28
(λ2 − λ+ 1)3

λ2(λ− 1)3
.

Indeed, one can verify k[λ]S3

λ(λ−1) = k[j(λ)].
Alternatively, the Weierstrass form y2 = x3 + ax + b gives an isomorphism

M1,1
∼= [A2

∆/Gm] (see Exercise 3.1.19(b)) where the action is given by t · (a, b) =
(t4a, t6b) and ∆ is the discriminant 4a3 + 27b2. As k[a, b]Gm

∆ = k[a3/∆] (noting that
β := b2/∆ is generated by α := a3/∆ under the relation 4α+ 27β = 1), the coarse
moduli space M1,1 → A1 is given by (a, b) 7→ a3/∆.

Exercise 4.3.19. (hard) Let char(k) ̸= 2 and G = Z/2.

(a) Let G act on the non-separated union X = A1
⋃
x̸=0 A1 by exchanging the

copies of A1. The quotient [X/G] is a Deligne–Mumford stack with quasi-finite
but not finite inertia, and in particular non-separated. Show nevertheless that
there is a coarse moduli space [X/G]→ A1.

(b) Let X be the non-separated union A2
⋃
x ̸=0 A2. Let G = Z/2 act on X by

simultaneously exchanging the copies of A2 and by acting via the involution
y 7→ −y on each copy. Show that [X/G] does not admit a coarse moduli space.

Example 4.3.20. Consider the action of PGL2 on the scheme Sym4 P1 ∼= (P1)4/S4

(which is the coarse moduli space of [P1)4/S4]) parameterizing four unordered
points in P1. Let X ⊂ [Sym4 P1/PGL2] be the open substack parameterizing tuples
(p1, p2, p3, p4) where at least three points are distinct. Consider the family (0, 1, λ,∞)
with λ ∈ P1. If λ /∈ {0, 1∞}, then we claim that Aut(0, 1, λ,∞) = Z/2× Z/2. To
see this, there is a unique element σ ∈ PGL2 such that σ(0) = ∞, σ(∞) = 0 and
σ(1) = λ which acts on P1 via σ([x, y]) = [y, λ, x] and thus σ(λ) = 1. Similarly, there
is an element interchanging 0 with 1 and λ with ∞ and an element interchanging
0 with λ and 1 with ∞. However, if λ ∈ {0, 1∞}, then Aut(0, 1, λ,∞) = Z/2. We
therefore see that the inertia IX → X while quasi-finite is not finite and that X is
not separated. Nevertheless, the map X → P1 taking (p1, p2, p3, p4) to its cross-ratio
is a coarse moduli space.

Exercise 4.3.21. Let X be a Deligne–Mumford stack of finite type and separated
over a noetherian algebraic space S, and let π : X → X be its coarse moduli space.

(a) Show that if X is normal, then so is X.
(b) If in addition X is regular, show that X → X is flat if and only if X is regular.
(c) Provide an example of a coarse moduli space X → X that is not flat.
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4.3.5 Tame coarse moduli spaces

Definition 4.3.22 (Tame stacks). A Deligne–Mumford stack X is tame if for every
geometric point x ∈ X (k), the order of AutX (k)(x) is invertible in Γ(X ,OX ). If in
addition X admits a coarse moduli space X → X, then we say that X → X is a
tame coarse moduli space.

Remark 4.3.23. If X is defined over a field k, then this means that the order of
every geometric stabilizer group is prime to the characteristic of k.

Lemma 4.3.24. Let X be a Deligne-Mumford stack separated and of finite type
over a noetherian algebraic space S. If π : X → X is a tame coarse moduli space,
then π∗ is exact.

Proof. The question is étale-local on X: if g : X ′ → X is an étale cover inducing a
cartesian diagram

X ′ g′
//

π′

��

X

π

��

X
g
// X

then by Flat Base Change (4.1.38) there is an identification g∗π∗ = π′
∗g

′∗ of functors
on quasi-coherent sheaves. Since g∗ is faithfully exact, we see that π∗ is exact if
and only π′

∗ is. We can therefore use Corollary 4.3.16 to reduce to the case that
X = [SpecA/G] and X = SpecAG, and this case follows from Exercise 4.2.5.

Exercise 4.3.25. If X is a tame and proper Deligne–Mumford stack over a noethe-
rian ring A, show that Hi(X , F ) = 0 for all i > dimX and coherent sheaves F .

Exercise 4.3.26 (Base change). Let X be a Deligne–Mumford stack of finite
type and separated over a noetherian algebraic space S. If π : X → X is a tame
coarse moduli space and X ′ → X is a morphism of algebraic spaces, show that
X ×X X ′ → X ′ is also a coarse moduli space.

On the other hand, Exercise 4.2.5(c) provides an example of a coarse moduli
space X → X and a map X ′ → X such that X ×X X ′ → X ′ is not a coarse moduli
space. In particular, it is does not automatically follow that Mg ×Z Fp is the coarse
moduli space of Mg ×Z Fp; see Question 5.5.18.

4.3.6 Descending vector bundles to the coarse moduli space

We begin with a Nakayama lemma for coherent sheaves.

Lemma 4.3.27. Let X be a Deligne-Mumford stack separated and of finite type
over a noetherian algebraic space S, and let π : X → X be its coarse moduli space.
Let x ∈ |X | be a closed point.

(1) If F is a coherent sheaf on X such that F |Gx
= 0, then there exists an open

neighborhood U ⊂ X of π(x) such that F |π−1(U) = 0.
(2) If ϕ : F → G is a morphism of coherent sheaves (resp., vector bundles of

the same rank) on X such that ϕ|Gx is surjective, then there exists an open
neighborhood U ⊂ X of π(x) such that ϕ|π−1(U) is surjective (resp., an isomor-
phism).
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Proof. For (1), the support Supp(F ) ⊂ |X | of F is a closed subset (which follows
from using descent along a presentation) and the open set U = X \ π(Supp(F ))
satisfies the conclusion. For (2), apply (1) to the coherent sheaf coker(ϕ) noting that
a surjection of vector bundles of the same rank is an isomorphism.

We say that a vector bundle F on X descends to its coarse moduli space π : X → X
if there exists a vector bundle F on X and an isomorphism F ∼= π∗F . Observe that
one necessary condition is that for every field-valued point x : Speck→ X , which
induces a commutative diagram

BGx
� � ix //

p

��

X

π

��

Speck �
�

// X,

the pullback i∗xF = p∗(F ⊗ k) is trivial or in other words Gx acts trivially on the
fiber F ⊗ k.

Proposition 4.3.28. Let X be a tame Deligne-Mumford stack separated and of
finite type over a noetherian algebraic space S, and let π : X → X be its coarse
moduli space. A vector bundle F on X descends to a vector bundle on X if and only
if for every field-valued point x : Speck→ X with closed image, the action of Gx on
the fiber F ⊗ k is trivial. In this case, π∗F is a vector bundle and the adjunction
map π∗π∗F → F is an isomorphism.

Remark 4.3.29. The above condition is insensitive to field extensions and equivalent
to the condition that the restriction of F to the residual gerbe is trivial.

Proof. To see that the condition is sufficient, consider the commutative diagram

Gx �
�

//

p

��

X

π

��

Specκ(x) �
�

// X.

We break down the proof into three steps.

Step 1: π∗π∗F → F is surjective. It suffices by Lemma 4.3.27 to show that
(π∗π∗F )|Gx

→ F |Gx
is surjective for every closed point x ∈ |X |. Since F → F |Gx

is surjective and π∗ is exact (Lemma 4.3.24), (π∗π∗F )|Gx
→ π∗(π∗(F |Gx

))|Gx
∼=

p∗p∗(F |Gx) is surjective. The hypotheses imply that the adjunction p∗p∗(F |Gx)→
F |Gx is an isomorphism and it follows that the composition (π∗π∗F )|Gx → p∗p∗(F |Gx)

∼→
F |Gx

is surjective.

Step 2: π∗F is a vector bundle. We can assume that the rank r of F is constant. Since
being a vector bundle is an étale-local property, we can assume that X = SpecA.
The surjection

⊕
s∈Γ(X,π∗F )A→ π∗F pulls back to a surjection

⊕
s∈Γ(X ,F )OX →

π∗π∗F and by Step 1, the composition
⊕

s∈Γ(X ,F )OX → π∗π∗F → F is surjective.
As F |Gx

∼= OrGx
is trivial, for each closed point x ∈ |X |, we can find r sections

ϕ : OrX → F such that ϕ|Gx is an isomorphism. By Lemma 4.3.27, there exists an
open neighborhood U ⊂ X of π(x) such that ϕ|π−1(U) is an isomorphism. Thus
π∗ϕ : OrX → π∗F is an isomorphism over U and we conclude that π∗F is a vector
bundle of the same rank as F .

Step 3: π∗π∗F → F is an isomorphism. Since π∗π∗F → F is a surjection of vector
bundles of the same rank, it is an isomorphism.
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Remark 4.3.30. The analogous statement for coherent sheaves is not true. For
example, if the characteristic is not 2, then letting Z/2 on A1 via x 7→ −x, we
have a tame coarse moduli space [A1/(Z/2)]→ A1 = Spec Spec k[x2]. The inclusion
BZ/2 ↪→ [A1/(Z/2)] of 0 is a closed substack and OBZ/2 is a coherent sheave which
does not descend. Observe that in this case, the pullback of the residue field of
0 ∈ A1 is k[x]/x2. This example also illustrated that the fibers of a coarse moduli
space X → X can be non-reduced and larger than the residual gerbe.

When X is not tame, we have the following variant for descending line bundles.

Proposition 4.3.31. Let X be a Deligne-Mumford stack separated and of finite type
over a noetherian algebraic space S, and let π : X → X be its coarse moduli space.

(1) If L is a line bundle on X , then for N sufficiently divisible L⊗N descends to
X.

(2) If X ′ → X is a proper representable morphism of Deligne–Mumford stacks
and L′ is a line bundle on X ′ relatively ample over X , then for N sufficiently
divisible L′⊗N descends to a line bundle on the coarse moduli space X ′ of X ′

which is relatively ample over X.

Proof. To be added.

Example 4.3.32. Show Pic(M1,1) = Z/12 generated by the Hodge bundle (see
Example 4.1.4).

4.4 When are algebraic spaces schemes?
We prove various results providing conditions for an algebraic space to be a scheme.
We show:

• a quasi-separated algebraic space is a scheme on a dense open subspace (Theo-
rem 4.4.1);

• Zariski’s Main Theorem for algebraic spaces (Theorem 4.4.9);

• an algebraic space separated and locally quasi-finite over a scheme is a scheme
(Corollary 4.4.7);

• if the diagonal of a Deligne–Mumford stack is separated and quasi-compact
diagonal, then the diagonal is quasi-affine (and in particular representable by
schemes) (Corollary 4.4.8);

• an algebraic stack with trivial stabilizers is an algebraic space (Theorem 4.4.10)
generalizing Theorem 3.6.6;

• Serre’s and Chevalley’s Criteria for Affineness (Theorems 4.4.16 and 4.4.20) for
algebraic spaces;

• if X is a quasi-separated algebraic space locally of finite type over a field k such
that Xk has the property that every finite set of points is contained in an affine
(e.g., Xk is quasi-projective), then X is a scheme (Proposition 4.4.27);

• quasi-separated group algebraic spaces locally of finite type over a field are schemes
(Theorem 4.4.28); and

• separated one-dimensional algebraic spaces are schemes (Theorem 4.4.32)

We also give applications to the algebraicity of quotients of étale and smooth
equivalence relations (Corollary 4.4.12).
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4.4.1 Algebraic spaces are schemes over a dense open
Theorem 4.4.1. Every quasi-separated algebraic space has a dense open subspace
which is a scheme.

Proof. We may assume that X is quasi-compact. Let f : V → X be an étale
presentation with V an affine scheme. Since X is quasi-separated, f : V → X
is quasi-compact and there exists an open algebraic subspace U ⊂ X such that
f−1(U)→ U is finite. By Exercise 4.2.13, U is isomorphic to a quotient stack [V/G]
for the free action of a finite abstract group G on a scheme V . If V1 ⊂ V is a
dense affine open subscheme, then V2 =

⋂
g∈G gV1 is a G-invariant quasi-affine open

subscheme of V and in particular separated. Repeating this argument, we can choose
a dense affine open subscheme V3 ⊂ V2 and now V4 =

⋂
g∈G gV3 is a G-invariant

affine open subscheme. Proposition 4.2.14 implies that V4/G ∼= SpecAG is a dense
affine open algebraic subspace of U .

Remark 4.4.2. See also [Knu71, II.6.7] and [SP, Tag 06NN]. The above result is
not necessarily true if X is not quasi-separated, e.g., A1/Z (Example 3.9.22).

Corollary 4.4.3. An integral quasi-separated algebraic space has a well-defined
fraction field.

Exercise 4.4.4. Let G be a finite abstract group acting on a quasi-separated
algebraic space U . Show that there is a G-invariant affine open subscheme of U .

4.4.2 Zariski’s Main Theorem for algebraic spaces
We prove Zariski’s Main Theorem (4.4.9) for algebraic spaces and Deligne–Mumford
stacks, which has the important application that separated and locally quasi-finite
morphisms of algebraic spaces are representable by schemes (Corollary 4.4.7). Its
proof relies on the theory of quasi-coherent sheaves, and, specifically, on the factor-
ization

f : X → SpecY f∗OX → Y

of a quasi-compact and quasi-separated morphism, which relies on the quasi-coherence
of f∗OX (Exercise 4.1.19). See Definition 3.3.32 for the definition of a quasi-finite
morphism of algebraic spaces and §A.7 for a discussion of Zariski’s Main Theorem
for schemes.

Proposition 4.4.5. A separated, quasi-finite, and representable morphism
f : X → Y of Deligne–Mumford stacks factors as the composition of an open immer-
sion X ↪→ SpecY f∗OX and an affine morphism SpecY f∗OX → Y. In particular, f
is quasi-affine.

Proof. Since the construction of f∗OX commutes with flat base change on Y (Exer-
cise 4.1.38), so does the formation of the factorization f : X → SpecY f∗OX → Y.
The statement is thus étale-local on Y. In particular, we can assume that Y = Y
is an affine scheme and that X = X is an algebraic space. After replacing Y with
SpecY f∗OX , we can assume that f∗OX = OY and we must show that f : X → Y
is an open immersion.

Since X is quasi-compact, there is an étale presentation π : U → X from an
affine scheme. Since X is separated, U → X is also separated. As the composition

U
π−→ X

f−→ Y
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is a quasi-finite morphism of schemes, we can apply Étale Localization of Quasi-
Finite Morphisms (Theorem A.7.1) around every point y ∈ Y : after replacing Y
with an étale neighborhood, we can assume that U = U1 ⨿ U2 with U1 → Y finite
and (U2)y = ∅. Then π(U1) is open (as π is étale) and closed (as U1 → Y is finite
and X → Y is separated). Thus X = X1 ⨿X2 with X1 = π(U1) and (X2)y = ∅.
This shows that OY = f∗OX is the product A1 ×A2 of quasi-coherent OX -algebras,
and thus we can also decompose Y as Y1 ⨿ Y2 such that y ∈ Y1 and f(Yi) ⊂ Xi

for i = 1, 2. After replacing Y with Y1, the composition U → X → Y is finite and
Lemma 4.4.6 implies that X is affine. Thus X = Y = SpecY f∗OX .

Lemma 4.4.6. Suppose that U → X is a surjective étale morphism of algebraic
spaces and that X → Y is a separated morphism of algebraic spaces. If the composi-
tion U → X → Y is finite, so is X → Y .

Proof. The statement is étale-local on Y so we can assume that Y and U are affine.
As X → Y is separated, U → X is also finite. Since X is identified with the
quotient U/R of the finite étale equivalence relation R := U ×X U ⇒ U of affine
schemes, Proposition 4.2.14 implies that X is affine. As U → Y is proper, so is
X → Y . As X → Y is a proper and quasi-finite morphism of schemes, it is finite
(Corollary A.7.5).

Corollary 4.4.7. A morphism of algebraic spaces which is separated and locally
quasi-finite is representable by schemes. In particular, an algebraic space separated
and locally quasi-finite over a scheme is a scheme.

Proof. It suffices to show that if X → Y = SpecA is a separated and locally quasi-
finite, then X is a scheme. Since being a scheme is a Zariski-local property, we can
assume that X is quasi-compact. In this case, Proposition 4.4.5 applies.

Corollary 4.4.8. The diagonal of a Deligne–Mumford stack with separated and
quasi-compact diagonal is quasi-affine. In particular, a quasi-separated algebraic
space has quasi-affine diagonal.

Proof. Since the diagonal is separated, quasi-finite, and representable, Proposi-
tion 4.4.5 applies. Note that the diagonal of an algebraic space is a monomorphism,
hence separated.

As in the case for schemes, we can refine Proposition 4.4.5 to obtain Zariski’s
Main Theorem.

Theorem 4.4.9 (Zariski’s Main Theorem). A separated, quasi-finite, and repre-
sentable morphism f : X → Y of noetherian Deligne–Mumford stacks factors as the
composition of a dense open immersion X ↪→ Ỹ and a finite morphism Ỹ → X .

Proof. Let A ⊂ f∗OX be the integral closure of OY → f∗OX : for a map T → Y from
a scheme, Γ(T → Y,A) is the integral closure of Γ(T,OT ) → Γ(X ×Y T,OX×YT ).
Since the integral closure is compatible with étale extensions (Proposition A.7.4), A
is a quasi-coherent sheaf of OY -algebras. Using Exercise 4.1.26, write A = colimAλ
as the colimit of finite type OY -algebras. As Y is quasi-compact, there exists an
étale presentation p : U → Y from an affine scheme. Then the base change XU → U
is a separated and quasi-finite morphism of algebraic spaces, thus a morphism of
schemes by Corollary 4.4.7. Since p∗A = colim p∗Aλ is identified with the integral
closure of OU → fU,∗OXU

, by Zariski’s Main Theorem (A.7) for schemes, it follows
that XU → SpecU p∗Aλ is an open immersion and SpecU p∗Aλ → U is finite for

179



λ≫ 0. By étale descent, X → SpecY Aλ is an open immersion and SpecY Aλ → Y
is finite. See also [Knu71, II.6.15], [LMB00, Thm. A.2], [Ols16, Thm. 7.2.10], and
[SP, Tag 05W7].

4.4.3 Characterization of algebraic spaces

We now can remove the hypothesis in Theorem 3.6.6 that the diagonal is representable
by schemes.

Theorem 4.4.10 (Characterization of Algebraic Spaces II). For an algebraic stack
X , the following are equivalent:
(1) the stack X is an algebraic space,
(2) the diagonal X → X ×X is a monomorphism, and
(3) every point of X has a trivial stabilizer.

Proof. We only need to show (2) ⇒ (1). As the diagonal of X is a monomorphism,
it is separated and locally quasi-finite. Corollary 4.4.7 implies that the diagonal X
is representable by schemes and thus Theorem 3.6.6 applies.

This allows us to prove a more general version of Corollary 3.6.9.

Corollary 4.4.11 (Characterization of Representable Morphisms II). A morphism
X → Y of algebraic stacks is representable if and only if for every geometric point
x ∈ X (k), the map Gx → Gf(x) on automorphism groups is injective.

Corollary 4.4.12.
(1) If X is a sheaf on Schét such that there exists a surjective, étale (resp., smooth),

and representable morphism U → X from an algebraic space, then X is an
algebraic space.

(2) If R⇒ U is an étale (resp., smooth) equivalence relation of algebraic spaces,
then the quotient U/R is an algebraic space.

Remark 4.4.13. The above statement holds with with ‘étale’ replaced with ‘fppf’;
see Theorem 6.2.1 and Corollary 6.2.4.

Proof. We first handle the étale case. For (1), by taking an étale presentation of U
by a scheme, we may assume that U is a scheme. Let T → X be a morphism from
a scheme, and we must show that the algebraic space U ×X T is a scheme. Since
U ×X T → U × T is the base change of X → X ×X, it is a monomorphism, thus
separated and locally quasi-finite. By Corollary 4.4.7, U×XT is a scheme. For (2), let
X = U/R be the quotient sheaf. By copying the argument of Theorem 3.4.11(1), we
see that U → X is representable. The statement then follows from (1). Alternatively,
Theorem 3.4.11(1) implies that U/R is an algebraic stack and the statement follows
from Theorem 4.4.10.

In the noetherian and smooth case, the sheaf X in (1) is an algebraic stack by
definiton and the quotient stack [U/R] is an algebraic stack by Theorem 3.4.11.
Theorem 4.4.10 implies that X and [U/R] are algebraic spaces.

Corollary 4.4.14. A proper and quasi-finite morphism (resp., proper monomor-
phism) of algebraic spaces is finite (resp., a closed immersion).
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Proof. Proper and quasi-finite morphisms are representable by schemes. Thus the
statement follows from the corresponding result for schemes (Corollary A.7.5) and
étale descent.

Exercise 4.4.15. Show that the prestack AlgSp over Schét, whose objects over a
scheme T are algebraic spaces over T and whose morphisms correspond to cartesian
diagrams of algebraic spaces, is a stack.

4.4.4 Affineness criteria

Theorem 4.4.16 (Serre’s Criterion for Affineness). Let X be a quasi-compact and
quasi-separated (resp., noetherian) algebraic space. If the functor Γ(X,−) is exact on
the category of quasi-coherent (resp., coherent) sheaves, then X is an affine scheme.

Proof. If X is noetherian, then every quasi-coherent sheaf is a colimit of coherent
sheaves (Exercise 4.1.21) and Γ(X,−) commutes with colimits. Assume that Γ(X,−)
is exact on coherent sheaves. Given a surjection p : F ↠ G of quasi-coherent sheaves
on X, write G = colimiGi as a colimit of coherent sheaves and choose coherent
subsheaves Fi ⊂ p−1(Gi) surjecting onto Gi. Then Γ(X,Fi) ↠ Γ(X,Gi) and the
composition colimi Γ(X,Fi)→ Γ(X,F )→ Γ(X,G) = colimi Γ(X,Gi) is surjective.
Thus Γ(X,F ) → Γ(X,G) is surjective and we conclude that Γ(X,−) is exact on
quasi-coherent sheaves.

We show that the canonical morphism π : X → Y := Spec Γ(X,OX) is a proper
monomorphism. This gives the result as Corollary 4.4.14 implies that X → Y is a
closed immersion so that that X is affine and X → Y is an isomorphism. As a first
step, we establish:

Claim: If g : Y ′ → Y is a morphism of algebraic spaces, then the base change
π′ : X ′ := X ×Y Y ′ → Y ′ has the following properties:
(a) π′

∗ induces an equivalence of the categories of quasi-coherent sheaves on X ′

and Y ′.
(b) OY ′ → π′

∗OX′ is an isomorphism.
(c) X ′ → Y ′ is a homeomorphism.

By Flat Base Change (Exercise 4.1.38), properties (a) and (b) are étale local on
Y ′ so we may assume Y ′ = SpecB. We will show that the adjunction morphisms
G→ π′

∗π
′∗G and π′∗π′

∗F → F are isomorphisms for quasi-coherent sheaves G and
F and Y ′ and X ′, respectively. For the first adjunction, choose a free presentation
O⊕J
Y → O⊕J

Y → g∗G → 0 of G as an OY -module. As π∗ is exact, we have a
morphism of right exact sequences

O⊕J
Y

//

��

O⊕I
Y

//

��

g∗G //

��

0

π∗π
∗(O⊕J

Y ) // π∗π
∗(O⊕I

Y ) // π∗π
∗g∗G // 0

The two left vertical arrows are isomorphisms since π∗OX = OY . Therefore g∗G→
g∗π∗π

∗G ∼= g∗π
′
∗π

′∗G is an isomorphism. Since g∗ is faithfully exact, G→ π′
∗π

′∗G
is also an isomorphism. We note that property (b) already follows from this fact
by taking G = OY ′ and the fact that affine morphisms are faithfully exact on
quasi-coherent sheaves.
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To see the second adjunction, let K and Q be the kernel and cokernel of π′∗π′
∗F →

F . As π∗ is exact and g∗ is faithfully exact, we see that π′
∗ is exact. Since π′

∗π
′∗π′

∗F →
π′
∗F is an isomorphism (using that the first adjunction is an isomorphism), we see

that π′
∗K = π′

∗Q = 0. It thus suffices to show that for a quasi-coherent sheaf F ′ on
X ′, then F ′ ̸= 0 implies π′

∗F
′ ̸= 0. If x : Speck→ X ′ is a geometric point such that

x∗F ̸= 0, then by base changing by the composition π′ ◦ x : Speck→ Y ′, we may
assume that Y ′ = Speck and that x : Speck → X ′ is a section of π′. Since every
k-point of an algebraic space defined over k is a closed point, x : Speck→ X ′ is a
closed immersion, and hence F → x∗x

∗F = F ⊗ k is surjective. It follows from the
exactness of π′

∗ that π′
∗F → F ⊗ k is surjective and hence π′

∗F ̸= 0. This finishes
the proof of (a) and (b).

To see (c), if y : Speck→ Y is a geometric point, then by (b) Γ(Xy,OXy) = k
as thus the fiber Xy is non-empty. On the other hand, if x, x′ ∈ Xy(k) were distinct
points each necessarily closed, then OXy

→ O{x,x′} is surjective. Since π∗ is exact,
we also get a surjection k = Γ(Xy,OXy

)→ k⊕ k, a contradiction. To see that π′ is
closed, let Z ⊂ X ′ be a closed subspace and q : Z → im(Z) denote the morphism
to its scheme-theoretic image. Then OZ → q∗Oim(Z) is an isomorphism and q∗ is
exact. Applying the surjectivity result above to q, we see that q is surjective, and
hence π′(Z) is closed.

With the claim established, we now show that X → Y is a monomorphism
and in particular separated. To see that the diagonal ∆: X → X ×Y X is an
isomorphism, observe that the pushforward of OX×YX → ∆∗X along the first
projection p1 : X ×Y X → X is an isomorphism. Thus (a) applied to p1 shows that
OX×YX → ∆∗X is an isomorphism. Zariski’s Main Theorem (A.7.3) implies that
∆ is an open immersion. Applying (c) to p1 shows that p1 : |X ×Y X| → |X| is
bijective. Hence ∆ must be an isomorphism.

It remains to show that X → Y is of finite type. Let U = SpecA → X be an
étale presentation. Since X is separated, R := U ×X U is a closed subscheme of
U ×Y U = SpecA⊗Γ(X,OX) A. Hence R = SpecB is affine. Letting s and t denote
the two maps A⇒ B, we have a commutative diagram

Γ(X,OX)

??

��

A

��

s

**

A

??

t

55A⊗Γ(X,OX) A
// // B.

Since U → X is étale, t : A→ B is of finite type and there are generators b1, . . . , bn ∈
B over t. For each i, choose a preimage

∑
j aij⊗a′ij ∈ A⊗Γ(X,OX)A of bi. Viewing B

as an A-algebra via t, then
∑
j a

′
ijs(aij) = bi and thus we have elements aij ∈ A such

that s(aij) generate B over t. Then aij ∈ Γ(X, p∗OU ) = A define a homomorphism
OX [zij ] → p∗OU of OX -algebras taking zij to aij . Its pullback via p is identified
with OU [zij ]→ p∗p∗OU ∼= t∗OR, where the last equivalence comes from Flat Base
Change (Exercise 4.1.38), and this map is surjective precisely because s(aij) generate
B over t. By étale descent, OX [zij ] → p∗OU is surjective and therefore so is
Γ(X,OX)[zij ] → A. Thus Γ(X,OX) → A is of finite type and by étale descent
X → Y is also of finite type.

See also [Knu71, Thm. III.2.5], [Ryd15, Thm. 8.7] and [SP, Tag 07V6].
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Corollary 4.4.17. Let X be a quasi-compact and quasi-separated (resp., noetherian)
algebraic space. Then X is an affine scheme if and only if Hi(X,F ) = 0 for every
quasi-coherent (resp., coherent) sheaf F and i > 0.

Proof. If X is affine, then Theorem 4.1.30 establishes the vanishing of quasi-coherent
cohomology. Conversely, the vanishing of quasi-coherent (resp., coherently) cohomol-
ogy implies that Γ(X,−) is exact on the category of quasi-coherent (resp., coherent)
sheaves: if 0→ F1 → F2 → F3 → 0 is exact, then Γ(X,F2)→ Γ(X,F3) is surjective
as H1(X,F1) = 0.

Remark 4.4.18. Given a quasi-compact and quasi-separated morphism f : X → Y
of Deligne–Mumford stacks, the condition that f∗ : QCoh(X )→ QCoh(Y) is exact
is fppf local on Y (see Lemma 6.3.16). Since Rif∗F can be computed in QCoh(X ),
the relative versions of Theorem 4.4.16 and Corollary 4.4.17 also hold: f is affine if
and only if f∗ : QCoh(X )→ QCoh(Y) is exact if and only if Rif∗F = 0 for all i > 0
and F ∈ QCoh(X ).

Proposition 4.4.19. Let X be a noetherian algebraic space. If Xred is a scheme
(resp., quasi-affine, affine), then so is X.

Proof. If Xred is affine, then one uses Corollary 4.4.17 to show that X is affine
exactly as in [Har77, Exc. III.3.1]: if F is a coherent sheaf on X and I ⊂ OX denotes
the nilpotent ideal defining Xred, then one shows the vanishing of Hi(X,F ) using
the filtration 0 = INF ⊂ IN−1F ⊂ · · · ⊂ IF ⊂ F , whose factors IkF/Ik+1F are
supported on Xred.

If Xred is quasi-affine, then Xred → Spec Γ(X,OX)red is an open immersion.
Thus X → Spec Γ(X,OX) is an open immersion and X is quasi-affine. If Xred is a
scheme, then every point x ∈ |X| has an open neighborhood U such that Ured is
affine. Thus U is affine and X is a scheme.

Theorem 4.4.20 (Chevalley’s Criterion for Affineness). Let Y be a noetherian
algebraic space and X → Y be a finite surjective morphism of algebraic spaces. If X
is affine, then so is X.

Proof. One can argue as in [Har77, Exc. 4.1] using Corollary 4.4.17.

There is also a cohomological criterion for ampleness generalizing [Har77, Prop.
5.3]:

Exercise 4.4.21. Let X be a proper algebraic space over a noetherian ring. For a
line bundle L on X, show that the following are equivalent:

(1) X is a scheme and L is ample;
(2) for every coherent sheaf F on X, there is an integer n0 such that Hi(X,F ⊗

Ln) = 0 for i > 0 and n ≥ n0.
See also [SP, Tag 0D2W].

The following generalizes [Har77, Exc. III.5.7].

Exercise 4.4.22. Let X be a proper algebraic space over a noetherian ring and L
be a line bundle on X. If f : X ′ → X is a finite surjective morphism, L is ample if
and only if f∗L is.

This generalizes Proposition B.2.9 to algebraic spaces. See also [SP, Tag 0GFB].

183

http://stacks.math.columbia.edu/tag/0D2W
http://stacks.math.columbia.edu/tag/0GFB


Exercise 4.4.23. A noetherian scheme has the Chevalley–Kleiman property if every
finite set of points is contained in an affine. Show that if X → Y is a finite surjective
morphism of noetherian algebraic spaces such that X has the Chevalley-Kleiman
property, then Y also has the Chevalley-Kleiman property. See [Kol12, Cor. 48].

The following generalizes Proposition B.2.10 to algebraic spaces.

Proposition 4.4.24 (Openness of Ampleness). Let X be an algebraic space proper,
flat, and finitely presented over a scheme S, and L be a line bundle on X. If for
some geometric point s : Speck→ S, the restriction Ls of L to the fiber Xs is ample,
then there exists an open neighborhood U ⊂ S of s such that XU is a scheme and
the restriction LU to XU is relatively ample over U . In particular, for all u ∈ U , Lu
is ample on Xu.

Proof. TO ADD.

4.4.5 Effective descent along field extensions

Lemma 4.4.25. Let X be a quasi-separated algebraic space locally of finite type
over a field k. If Xk is an affine scheme, then so is X.

Proof. By Chevalley’s Criterion for Affineness (Theorem 4.4.20), it suffices to show
that there is a finite field extension k→ K such that XK is affine. (Note that the
lemma follows directly from the strengthening of Chevelley’s Criterion to integral
surjective morphisms.)

The algebraic space X is necessarily quasi-compact and we choose an étale
presentation U → X be an affine scheme. We write k = colim kλ as the colimit of
finite field extensions kλ/k. Set Xλ := Xkλ and Uλ = Ukλ . By Flat Base Change
(Exercise 4.1.38), Γ(X,OX)⊗k kλ = Γ(Xλ,OXλ

) and Γ(X,OX)⊗k k = Γ(Xk,OXk
).

We have a cartesian diagram

Uk
//

��

Uλ //

��

U

��

Xk
//

∼

��

Xλ
//

��

X

��

Spec Γ(Xk,OXk
) // Spec Γ(Xλ,OXλ

) // Spec Γ(X,OX)

Since Uk → Spec Γ(Xk,OXk
) is an étale morphism of schemes, so is Uλ → Spec Γ(Xλ,OXλ

)
for λ≫ 0 (Proposition B.3.7). Thus Xλ → Spec Γ(Xλ,OXλ

) is étale for λ≫ 0. Let
R = U ×X U with base changes Rλ := Rkλ and Rk. Since Rk → Uk×k Uk is a closed
immersion, so is Rλ → Uλ ×kλ Uλ for λ≫ 0 (Proposition B.3.7) and in particular
Xλ are separated for λ ≫ 0. For λ ≫ 0, since Xλ is étale and separated over a
scheme, Xλ is a scheme (Corollary 4.4.7). We may therefore apply Proposition B.3.5
to X (or Proposition B.3.7 to X → SpecΓ(X,OX)) to conclude that Xλ is affine
for λ≫ 0.

Proposition 4.4.26. Let X be a quasi-separated algebraic space of finite type over a
field k. If Xk is a scheme, then there exists a finite separable field extension k→ K
such that XK is a scheme.
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Proof. Choose an étale presentation U → X be an affine scheme and set R = U×XU .
As in the proof of the previous lemma, we write k = colimkλ with kλ/k finite, and
set Xλ := Xkλ , Uλ = Ukλ and Rλ = Rkλ .

Let V ⊂ Xk be an open affine subscheme. We claim that for λ ≫ 0, there
exists an open subscheme Vλ ⊂ Xλ such that Z = Uλ ×kλ k. Indeed, the preimage
V ′ ⊂ Uk of V has the property that its two preimages in Rk are equal. Using
Proposition B.3.3 and Proposition B.3.7, for λ ≫ 0 there is an open subscheme
V ′
λ ⊂ Uλ with V ′ = V ′

λ ×kλ k such that the two preimages of V ′
λ in Rλ are equal. By

étale descent, V ′
λ descends to the desired closed subscheme Vλ ⊂ Uλ.

Lemma 4.4.25 implies that Vλ is a scheme. By covering Xk with finitely many
affines and choosing λ sufficiently large, we obtain a finite field extension K = kλ of
k such that Xλ is a scheme. If ks ⊂ K be the separable closure of k, then XK → Xks

is a finite universal homeomorphism and by Chevalley’s Theorem for Affineness
(Theorem 4.4.20), the image of an affine subscheme XK in Xks is also affine. We
conclude that Xks is a scheme.

With an additional condition on Xk, we can conclude that X is a scheme.

Proposition 4.4.27. Let X be a quasi-separated algebraic space locally of finite type
over a field k. If Xk is a scheme such that every finite set of k-points is contained
in an affine (e.g., Xk is quasi-projective), then X is a scheme.

Proof. We may assume that X is quasi-compact. We will show that every closed
point x ∈ X has an affine open neighborhood. Let Spec l ↪→ X be the inclusion of
the residue field of x (Corollary 3.5.22) and let ks be the separable closure of the
finite field extension k→ l. We have a cartesian diagram∐n

i=1 SpecAi
� � //

��

Xk
//

��

Speck

��

Spec l �
� x // X // Speck

where Ai is a artinian local k-algebra where n is the degree of the separable closure
κs ⊂ l of k; here we are using that ks ⊗k k =

∏n
i=1 k and that Spec l → Specks is

a finite universal homeomorphism. The hypotheses on Xk ensure that there is an
affine open subscheme U ⊂ Xk containing the images of each SpecAi.

By Proposition 4.4.26, there is a finite field extension k→ K such that XK is
a scheme. After enlarging K, we can arrange that U descends to an affine open
subscheme U ′ ⊂ UK by using Proposition B.3.3 to descend the morphism U → X,
Proposition B.3.7 to arrange that it is an open immersion, and Proposition B.3.5
to arrange affineness. Observe that U ′ contains all preimages of x under XK → X.
By taking the normal closure of K, we can assume K is normal over k. Let
G = Aut(K/k) so that KG is a purely inseparable field extension of k. Then G acts
on XK freely such that XK/G = XKG .

The intersection of the translates of U ′ by elements of G is a G-invariant quasi-
affine variety U ′′. Choosing an affine in U ′′ containing all of the preimages of x
and intersecting again the translates of G, we obtain a G-invariant affine V ⊂ XK

containing the preimages of x. Then the quotient V/G is an affine subscheme of
XKG containing the unique preimage of x (Theorem 4.3.6). Letting W be the image
of V/H under the finite universal homeomorphism XKG → X, Chevelley’s Criterion
for Affineness (Theorem 4.4.20) implies that W is an affine neighborhood of x.
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4.4.6 Group algebraic spaces are schemes
Every quasi-separated group algebraic space over a field k is a scheme. When k is
algebraically closed, this follows easily from Theorem 4.4.1 as we know there is a
dense open that is a scheme, and we can translate this around by rational points.
The general case relies on Proposition 4.4.27.

Theorem 4.4.28. A quasi-separated group algebraic space G locally of finite type
over a field k is a separated scheme. The connected component of the identity G0 is
quasi-projective.

Remark 4.4.29. If G is not quasi-separated, then the above corollary does not
hold, e.g., G = Ga/Z over k (Example 3.9.22).

Note that Proposition 4.4.19 implies that the result also holds over an Artinian
base. Over a general base scheme, the statement is not true; see [Ray70, Lem. X.14].

If in additionG is quasi-compact, thenG is quasi-projective by Proposition B.1.16(7).

Proof. It suffices to show that G is a scheme. Indeed, a group scheme locally of finite
type over a field is necessarily separated (B.1.16(1)) and the identity component G0

is quasi-compact (B.1.16(4)), thus quasi-projective (B.1.16(7)).
Assume first that k is algebraically closed. There is a non-empty open subscheme

U ofG (Theorem 4.4.1) with a point h ∈ U(k). For every g ∈ G(k), left multiplication
by gh−1 defines an isomorphism G

∼→ G and the image gh−1U of U is a scheme
containing g.

The general case follows from Proposition 4.4.27 using that Gk is a scheme with
the property that every finite set of points is contained in an affine (Lemma 4.4.30).

See also [Art69b, Lem. 4.2] and [SP, Tag 0B8D].

Lemma 4.4.30. Every group scheme G locally of finite type over an algebraically
closed field k has the property that every finite set of k-points is contained in an
affine open subscheme.

Proof. Let g1, . . . , gn ∈ G(k). We first use induction on n to assume that all of the
elements gi are in the same connected component. If not, we can write G =W1⨿W2

with r points in W1 and n− r points in W2 for 0 < r < n. By induction, there are
affine opens U1 ⊂W1 and U2 ⊂W2 containing the r and n− r points, respectively.
Then U1 ⨿ U2 is an affine containing each gi.

By translating by g−1
1 , we may assume that g1, . . . , gn ∈ G0(k). Let U ⊂ G0

be an affine open neighborhood of the identity. Since G0 is irreducible (B.1.16(4)),
Ug−1

1 ∩ · · · ∩ Ug−1
n is non-empty and contains a closed point h. Since h ∈ Ug−1

i ,
each gi is contained in the affine open h−1U .

See also [SP, Tag 0B7S]. It is also true that every group scheme of finite type
over a field is quasi-projective [SP, Tag 0BF7].

Corollary 4.4.31. Let X be an algebraic stack with quasi-separated diagonal. Then
the stabilizer of every field-valued point is a group scheme locally of finite type.

Proof. By Exercise 3.3.3, the diagonal of X is locally of finite type. As the stabilizer
is the base change of the diagonal, the statement follows from Theorem 4.4.28.

4.4.7 Separated one-dimensional algebraic spaces are schemes
Theorem 4.4.32. A separated noetherian algebraic space X with dimX ≤ 1 is a
scheme.

Proof. TO ADD. See also [SP, Tags 0ADD and 09NZ].
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4.5 Finite covers of Deligne–Mumford stacks
We prove Le Lemme de Gabber (4.5.1): a separated Deligne–Mumford stack has a
finite cover by a scheme. As a consequence, we obtain a Chow’s Lemma for Deligne–
Mumford Stacks (4.5.5): a separated Deligne–Mumford stack has a projective,
generically étale cover by a quasi-projective scheme. We also prove a stronger version
of Chow’s Lemma for Algebraic Spaces (4.5.6): a separated algebraic space has
a projective, birational cover by a quasi-projective scheme. Finally, we establish
various cohomological applications in §4.5.3.

4.5.1 Le Lemme de Gabber
A celebrated result attributed to Gabber asserts that a Deligne–Mumford stack has
a finite cover by scheme. Arguments were first published in [Del85] and [Vis89].

Theorem 4.5.1 (Le Lemme de Gabber). Let X be a Deligne-Mumford stack
separated and of finite type over a noetherian scheme S. Then there exists a finite,
generically étale, and surjective morphism Z → X from a scheme Z.

We provide two arguments, each of which uses normalization to construct a finite
cover.

Proof 1 (following [LMB00, Thm. 16.6]): By replacing X with the disjoint union of
the irreducible components with their reduced stack structure, we may assume that X
is irreducible and reduced. Every étale presentation U → X is separated, quasi-finite
and representable and thus factors as the composition of an open immersion U ↪→ X̃
and a finite morphism X̃ → X by Zariski’s Main Theorem (4.4.9). After replacing
X with X̃ , we may assume that X has a dense open subscheme. If p : U → X
is an étale presentation, there is therefore a dense open subscheme V ⊂ X such
that p−1(V )→ V is finite étale of degree d. We may choose a finite étale covering
V ′ → V such that p−1(V ) ×V V ′ → V ′ is a trivial étale covering; indeed as in
Proposition A.3.11, we may take V ′ to be the complement of all pairwise diagonals
in

(V ′/V )d = V ′ ×V · · · ×V V ′︸ ︷︷ ︸
d

.

Applying Zariski’s Main Theorem (Theorem 4.4.9) to the composition V ′ → V ↪→ X
gives a finite surjective morphism X̃ → X restricting to V ′ → V . Thus after
replacing X with X̃ , we may assume that there is an étale presentation U → X
which over a dense open subscheme j : V ↪→ X is a trivial étale covering, i.e., there
is a cartesian diagram ∐d

i=1 V

��

� � j
′
// U

p

��

V �
� j

// X .
We will construct a finite surjective morphism Z → X from a scheme that is

an isomorphism over V . Let A ⊂ j∗OX be integral closure of OX → j∗OX . Then
π∗A is the integral closure of OU in j′∗O⨿V = p∗j∗OV (Proposition A.7.4). The
idempotent ei ∈ Γ(U, j′∗O⨿V ) = Γ(⨿V,O⨿V ), defining the ith copy of V , is integral
over OU and thus defines a global section ei ∈ Γ(U, p∗A). Now write A = colimλ Cλ
as a filtered colimit of finite type OX algebra (Exercise 4.1.26). Since A is integral
over OX , each Cλ is a finite OX -algebra. For λ≫ 0, we have ei ∈ Γ(U, p∗Aλ). The
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Deligne–Mumford stack Z := SpecX Aλ is finite over X and we claim that Z is a
scheme. To see this, consider the cartesian diagram

Z ′ //

��

U

p

��

Z // X

noting that Z ′ is a scheme since it is finite over U . Each idempotent ei defines a
global section of Z ′ and thus yields a decomposition Z ′ =

∐d
i=1 Z

′
i. Each morphism

Z ′
i → Z is étale, separated and birational, thus an open immersion. Since Z ′ → Z is

surjective, the collection of Z ′
i defines an open covering of Z, and it follows that Z

is a scheme.

Proof 2 (following [Vis89, Prop. 2.6]): We first use limit methods to reduce to
the case that S is of finite type over Z to ensure that normalizations are finite.
By Noetherian Approximation (Proposition B.3.2), we may write S = limλ Sλ as
the limit of schemes with affine transition maps where each Si is of finite type
over Z. Let U → X be an étale presentation and set R = U ×X U ⇒ U be the
corresponding étale groupoid equipped with source, target, identity and compositions
morphisms s,t,i and c. There exists an index 0 and schemes U0 and R0 of finite
type over S0 such that U = U0×S0

S and R = R0×R0
S (Proposition B.3.3(1)). For

λ ≥ 0, set Uλ = U0 ×S0 Sλ and Rλ = R0 ×S0 Sλ. For λ≫ 0, there are morphisms
sλ, tλ : Rλ → Uλ, iλ : Rλ → Rλ and cλ : Rλ ×tλ,Uλ,sλ Rλ → Rλ that base change to
s,t,i and c (Proposition B.3.3(2)). Finally, for λ≫ 0, the morphisms sλ and tλ are
étale, and Rλ → Uλ ×Sλ

Rλ is finite (Proposition B.3.7). It follows that Rλ ⇒ Uλ
defines an étale groupoid of schemes and that the quotient stack Xλ := [Uλ/Rλ] is a
Deligne–Mumford stack separated and of finite type over Sλ such that X ∼= Xλ×Sλ

S.
A finite, generically étale cover of Xλ by a scheme will pull back to a finite, generically
étale cover of X by a scheme. This finishes the reduction.

By replacing X with the disjoint union of the irreducible components with their
reduced stack structure, we may assume that X is irreducible and reduced. Let X̃
be the normalization of X (Example 4.1.24). Then X̃ → X is finite and so after
replacing X with X̃ , we may assume that X is also normal.

Let X → X be the coarse moduli space (Theorem 4.3.12) and let U → X be
an étale presentation. As X is normal, so is X (Exercise 4.3.21(a). We can write
U =

∐
i Ui as the disjoint union of integral affine schemes Ui; each morphism Ui → X

is étale and in particular quasi-finite and dominant.
Each field extension Frac(X)→ Frac(Ui) of fraction fields is finite, and we let F

be a finite normal extension of Frac(X) containing each Frac(Ui). The normalization
Y → X of X in F is finite; here X is an algebraic space and the normalization
is well-defined by Proposition A.7.4. Meanwhile, by the universal property of the
normalization Y → X, the normalization Yi of Ui in F admits a morphism Yi → Y
over X. As Yi → Y is separated, quasi-finite, and birational, it is an open immersion.

The automorphism group G = Aut(F/Frac(X)) acts on Y over X and for each
pair α = (i, σ) of an integer i and σ ∈ G, we set Yα = σ(Yi). We claim that
Y =

⋃
α Yα. To see this, we first show that G acts transitively on the fibers of

Y → X. The fixed field FG is a purely inseparable field extension of Frac(X)
and the normalization X ′ → X of X in FG is a universal homeomorphism. Thus
to see that G acts transitively on the fibers, we may assume that Frac(X) → F
is a Galois extension. We may also assume that X = SpecA and Y = SpecB
with B the integral closure of A in F . Then G acts on B and we have inclusions
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A ⊂ BG ⊂ FG = Frac(X). Since A is normal and BG is integral over A, we see that
A = BG. By Theorem 4.3.6, [SpecA/G] → SpecB is a coarse moduli space, and
it follows that G acts transitively on the fibers of SpecA→ SpecB. To prove the
claim, observe that since

∐
i Yi →

∐
i Ui → X is surjective, each point x ∈ X has a

preimage y ∈ Yi for some i. Since G acts transitively on the fibers,
⋃
Yα contains

the fiber of Y → X over x.
The claim implies that Y is a scheme and that Y → X factors through X

Zariski-locally on Y . Indeed, each Yα is separated and quasi-finite over Ui and thus
a scheme by Corollary 4.4.7. Each Yα → X factors via sα : Yα → Ui → X . After
replacing X with Y and X with X ×X Y , we may assume that we have a coarse
moduli space X → X with X a scheme and an open covering X =

⋃
Xα together

with a commutative diagram
X

��

Xα

sα

==

� � // X

for each α. We will show that after replacing X with a finite cover, the sections
sα glue to a global section s. Such a section is necessarily finite since X is Deligne–
Mumford, and this then finishes the proof as X → X is a finite surjective morphism
from a scheme.

To show that the sections glue, we first claim that the diagonal ∆X : X → X×XX
is étale. This is a Zariski local question on X, so we may assume that there is a
section s : X → X of π : X → X. Then s : X → X is a dominant and unramified
(since ∆X is unramified) morphism of normal Deligne–Mumford stacks and thus
étale (Proposition A.3.12). It follows that ∆X : X → X ×X X is étale (and also that
π : X → X is étale).

Since the diagonal X → X ×X X is finite and étale, the scheme Jα,β :=
IsomXα,β

(sα|Xα,β
, sα|Xα,β

) of isomorphisms is finite and étale over Xα,β := Xα∩Xβ .
We may choose a finite étale cover Vα,β → Xα,β trivializing Jα,β → Xα,β (see
Proposition A.3.11). By Zariski’s Main Theorem (A.7.3), Vα,β → X factors as an
open immersion Vα,β ↪→ X̃ and a finite morphism X̃ → X. After replacing X with
X̃, we may assume that Jα,β → Xα,β is trivial.

The intersection
⋂
αXα is non-empty and we may choose a geometric point

x : Speck→
⋂
αXα. All objects in the fiber Xx(k) of X → X over x are isomorphic.

We may therefore choose an object t ∈ Xx(k) and isomorphisms µα : t
∼→ x∗sα for

each α. This allows us to define isomorphisms ϕα,β : x∗sα
µ−1
α−−→ t

µβ−−→ x∗sβ . It is
readily checked that the isomorphisms ϕα,β satisfy the cocycle ϕα,γ = ϕβ,γ ◦ ϕα,β .
Each ϕα,β defines a lift Speck→ Jα,β of x : Speck→ Xα,β which extends uniquely
to a section λα,β : Xα,β → Jα,β . The triple intersections Xα∩Xβ ∩Xγ are connected
and since the ϕα,β satisfy the cocycle condition, so does λα,β . The isomorphisms
λα,β between sα|Xα,β

and sα|Xα,β
therefore glue to a global section of X → X.

Remark 4.5.2. In fact, every separated algebraic stack of finite type over S has a
proper cover by a quasi-projective scheme [Ols05].

Exercise 4.5.3 (good practice). Let X be a normal algebraic space of finite type
over a noetherian scheme S. Show that there is a normal scheme U with an action
of a finite abstract group G such that X is the quotient of U by G, i.e., [U/G]→ X
is a coarse moduli space.

189



Hint: After reducing to the case that X is integral, choose a finite, generically étale
and surjective morphism U → X from a scheme. Let K be the Galois closure of
the finite separable field extension Frac(U)/Frac(X). Then take U to be the integral
closure of X in K (which is finite over X as K/Frac(X) is separable) and take
G = Gal(K/Frac(X)). See also [LMB00, Cor. 16.6.2].

Exercise 4.5.4 (Valuative criteria can be checked on dense opens).
(a) Let X be a Deligne–Mumford stack separated and of finite type over a noethe-

rian scheme S, and let U ⊂ X be a dense open substack. Show that X → S is
proper if and only if for every DVR R defined over S with fraction field K,
every map SpecK → U extends to a map SpecR→ X over S, after replacing
R with an extension of DVRs.

Hint: Use Corollary 4.5.5 to reduce to the case that X → S is quasi-projective.
(b) Let X be a Deligne–Mumford stack with separated and quasi-compact diagonal.

Show that a finite type morphism X → S to a noetherian scheme is separated
if and only if for every DVR R over S with fraction field K and every pair
h, g : SpecR→ X of morphisms over S, any isomorphism hK

∼→ gK of their
generic fibers extends to a unique isomorphism h

∼→ g.

Hint: Reduce to Part (a).

4.5.2 Chow’s Lemma

Corollary 4.5.5 (Chow’s Lemma for Deligne–Mumford Stacks). Let X be a Deligne-
Mumford stack separated and of finite type over a noetherian scheme S. Then there
exists a projective, generically étale, and surjective morphism Z → X from a scheme
Z quasi-projective over S.

Proof. Le Lemme de Gabber (4.5.1) reduces the statement to the case of schemes
(c.f [Har77, Exc. II.4.10]).

There is also a birational version of Chow’s Lemma for algebraic spaces.

Theorem 4.5.6. Let X be an algebraic space separated and of finite type over
a noetherian scheme S. Then there exists a projective, birational, and surjective
morphism Z → X from a scheme Z quasi-projective over S.

Proof. See [Knu71, IV.3.1] and [SP, Tag 088U].

4.5.3 Applications to cohomology

Most of the foundational theorems for coherent sheaf cohomology that hold for proper
schemes—Finiteness of Cohomology (A.5.3), Cohomology and Base Change (A.6.2),
Semicontinuity (A.6.4), Formal Functions (A.5.4), Grothendieck’s Existence Theorem
(C.5.3), and Stein Factorization [Har77, Cor. III.11.5]— also hold for proper Deligne–
Mumford stacks. They are necessary to prove Zariski’s Connectedness Theorem
(4.5.13), which is an essential ingredient in the proof of the irreducibility of Mg in
positive characteristic (Theorem 5.7.25).

Theorem 4.5.7 (Finiteness of Cohomology). Let f : X → Y be a proper morphism
of noetherian Deligne–Mumford stacks. For any coherent sheaf F on X and any
i ≥ 0, Rif∗F is coherent.
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Proof. By Flat Base Change (4.1.38), we can assume that Y = SpecA is an affine
scheme, and we need to show that Hi(X , F ) is a finite A-module for i ≥ 0. We will
use the following generalization of Dévissage (A.5.1), which is proved in the same
way: if P is a property of coherent sheaves on X such that (a) in a short exact
sequence in Coh(X ), if two out of the three satisfies P , then the third does too, and
(b) for all integral closed substacks Z ⊂ X with ideal sheaf IZ ⊂ OX , there exists a
coherent sheaf G on X satisfying P with IZG = 0 and a morphism F → G which is
an isomorphism over an open substack of Z, then every coherent sheaf on X satisfies
P . Taking P to be the property that Hi(X , F ) is a finite A-module for i ≥ 0, we see
that (a) holds. For (b), using Le Lemme de Gabber (4.5.1), let g1 : V0 → Z be a
finite surjective morphism from a scheme. Letting V1 = V0 ×Z V0 with projection
g2 : V1 → Z, there is a complex 0 → F → g0,∗g

∗
0F → g1,∗g

∗
1F , which is exact if

V0 → X is flat (Proposition 2.1.1). Defining G := ker(g0,∗g
∗
0F → g1,∗g

∗
1F ), there is

a map F → G. By Generic Flatness (3.3.30), V0 → X is flat over a nonempty open
substack U ⊂ Z, and it follows that F → G is an isomorphism over U . Since V0 and
V1 are proper over SpecA, g0,∗g∗0F and g1,∗g

∗
1F have finite cohomology, and thus

so does G. See also [Fal03, Thm. 1], [Ols05, Thm. 1.2], [LMB00, Thm. 15.6], and
[Ols16, Thm. 11.6.1].

Remark 4.5.8. Unlike schemes, Hi(X , F ) can be nonzero for arbitrary large i; see
Exercise 4.1.42.

Proposition 4.5.9 (Semicontinuity). Let X → Y be a proper morphism of noethe-
rian Deligne–Mumford stacks, and let F be a coherent sheaf on X which is flat over
Y. For each i ≥ 0, the function

|Y| → Z, y 7→ dimK Hi(XK , FK) (4.5.10)

where SpecK → Y is any point representing y, is upper semicontinuous.

Proof. We leave the reader to check that the function (A.6.5) is constructible.
It therefore suffices to check that it is upper semicontinuous with respect to a
specialization y ⇝ y0 in |Y|. By Proposition 3.8.11, this specialization is realized
by a morphism SpecR → Y from a DVR, and we may therefore assume that
Y = SpecR. Letting K and κ be the fraction and residual field of R, we need to
show that dimK Hi(XK , FK) ≤ dimκH

i(Xκ, Fκ). If π ∈ R denotes a uniformizer,
then π : F → F is injective since F is flat over R. Apply Hi(X ,−) to the short exact
sequence 0→ F → F → Fκ → 0, we obtain an exact sequence

· · · → Hi(X , F ) π−→ Hi(X , F )→ Hi(Xκ, Fκ)→ · · · .

This gives an injection Hi(X , F )/πHi(X , F ) ↪→ Hi(Xκ, Fκ). On the other hand,
Hi(X , F ) is a finite R-module by Finiteness of Cohomology (4.5.7) with Hi(X , F )⊗R
K = Hi(X , FK) by Flat Base Change (4.1.38). This gives

dimK Hi(XK , FK) ≤ dimκH
i(X , F )/πHi(X , F ) ≤ dimκH

i(Xκ, Fκ).

Exercise 4.5.11 (hard). Let X be a noetherian Deligne–Mumford stack proper
over a complete local noetherian ring (A,m). Let Xn = X ×A A/mn+1.

(a) (Formal Functions) If F is a coherent sheaf on X , there is a natural isomorphism

Hi(X ,F) ∼→ lim←−
n

Hi(Xn, F |Xn)

for every i ≥ 0.
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(b) (Grothendieck’s Existence Theorem) There is an equivalence of categories

Coh(X )→ lim←−Coh(Xn), F 7→ {F |Xn}.

See also [Ols05, Thm. 1.4] and [Con05a, Cor. 3.2, Thm. 4.1].

Theorem 4.5.12 (Stein Factorization/Zariski’s Connectedness Theorem). A proper
morphism f : X → Y of noetherian Deligne–Mumford stacks factors as

f : X f ′

−→ Y ′ = SpecY f∗OX
g−→ Y,

where f ′ has geometrically connected fibers and g is finite. In particular, if f∗OX = Y,
then f has geometrically connected fibers.

Proof. This is proved just as in the case of schemes—[Har77, Cor. III.11.5], [EGA,
III1.4.3.1], and [SP, Tag 03H2]—using Formal Functions. As f∗OX is coherent by
Finiteness of Cohomology (4.5.7), g is finite. We are thus reduced to showing that
f has geometrically connected fibers if f∗OX = Y. Since the question is étale
local, we can further assume that Y = S is affine. Moreover, since geometric
connectedness of a fiber Xs can be checked on separable finite field extensions of κ(s),
it suffices to verify that for every étale morphism S′ → S, the fibers of f ′ : XS′ → S′

are connected. By Flat Base Change (4.1.38), f ′∗OXS′ = OS′ , so it is enough
to verify that f has connected fibers. If a fiber Xs is disconnected, then setting
Sn = SpecOS,s/mn+1

s , there are compatible isomorphisms H0(X ×S Sn,OX×SSn)
∼=

An × Bn for nonzero coherent OSn-modules An and Bn. By Formal Functions
(4.5.11(b)), ÔS,s ∼= lim←−An × lim←−Bn, contradicting that ÔS,s is a local ring.

The following result will be applied to the morphismMg → SpecZ to show that
Mg×Z k is connected for any field k (see Theorem 5.7.25). This application requires
only the lower semincontinuity below, which relies on Stein Factorization (4.5.12)
but not Semicontinuity (4.5.9).

Corollary 4.5.13 (Zariski’s Connectedness Theorem II). Let f : X → Y be a proper
flat morphism of noetherian Deligne–Mumford stacks. The function

|Y| → Z, y 7→ #conn. cpts. of X ×Y SpecK, (4.5.14)

where SpecK → Y is any geometric point representing y, is lower semicontinuous.
If in addition f has geometrically reduced fibers, then (4.5.14) is locally constant.

Proof. By étale descent, we can assume that Y = S is a scheme. Let X f ′

−→ S′ → S
be the Stein Factorization (4.5.12). As S′ → S is finite, there are only finitely
many points s′1, . . . , s′m over a point s ∈ S. By Étale Localization of Quasi-Finite
Morphisms (A.7.1), after replacing S with an étale neighborhood of s, we can
arrange that S′ = S′

1 ⨿ · · · ⨿ S′
m with s′i ∈ S′

i and κ(s′i)/κ(s) purely inseparable.
Since X → S′ has geometrically connected fibers, each fiber Xs′i over κ(s′i) is
geometrically connected, and thus X → S has precisely m geometric fibers over
s ∈ S. As X → S is flat, the image Ui of f ′−1(S′

i) is open in S. In the open
neighborhood

⋂
i Ui of s, every geometric fiber has at least m connected components.

Assuming now that every fiber is geometrically reduced, the number of geometric
components over s ∈ S is precisely dimκ(s) H

0(Xs,OXs
). By Semicontinuity (4.5.9),

(4.5.14) is also upper semicontinuous. This was stated but unproven in [DM69,
Thm. 4.17] for Deligne–Mumford stacks. See [EGA, IV3.15.5.3-7] and [SP, Tags 0BUI
and 0E0N] for schemes, and [SP, Tags 0E1D and 0E1E] for algebraic spaces.
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Chapter 5

Moduli of stable curves

This chapter proves Theorem A: for g ≥ 2, Mg is a smooth, proper, and irreducible
Deligne–Mumford stack of dimension 3g− 3 which admits a projective coarse moduli
spaceMg →Mg. In terms of the six-step strategy to construct projective moduli
spaces outlined in §0.7.2, we proceed as follows.

① (Algebraicity) We express Mg as a substack of the stack of all curves Mall
g ,

and we prove that Mall
g is an algebraic stack locally of finite type over Z

(Theorem 5.4.6).
② (Openness of Stability)Mg ⊂Mall

g is an open substack (Proposition 5.3.22).
③ (Boundedness) Mg is finite type (Theorem 5.4.14).
④ (Stable reduction) Mg is proper (Theorem 5.5.16).
⑤ (Existence of a moduli space) Applying the Keel–Mori Theorem (4.3.12) gives

a coarse moduli spaceMg →Mg with Mg a proper algebraic space.
⑥ (Projectivity) Using Kollár’s Criterion for Ampleness (5.8.7), we show that
π∗(ω

⊗k
Ug/Mg

) is ample for k ≫ 0, where π : Ug → Mg is the universal family
(Corollary 5.8.22).

Along the way, we develop the foundational properties of nodal curves (§5.2) and
stable curves (§5.3 and §5.6). For the application to moduli theory, this necessitates
proving most properties for families of curves, which is one of the most technically
challenging facets of the exposition. The irreducibility ofMg is established in §5.7,
and an alternative GIT construction of Mg is given in §5.9.

5.1 Review of smooth curves
We review some basic properties of smooth curves, which we will generalize to nodal
curves in the section.

5.1.1 Curves
Definition 5.1.1. A curve over a field k is a one-dimensional scheme C of finite
type over k.

Proper curves are projective, which can be proven by reducing to the case of
smooth curves [Har77, Prop. I.6.7]. More generally, every one-dimensional separated
algebraic space is a quasi-projective scheme (Theorem 4.4.32).
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If C is a proper curve over a field k, we define the arithmetic genus of C or
simply the genus of C as

g(C) = 1− χ(C,OC),
which is equal to h1(C,OC) if C is geometrically connected and reduced. The
geometric genus of a reduced proper curve C is the (arithmetic) genus of the
normalization C̃.

For a connected, reduced, and projective curve C over an algebraically closed field
k, the degree of a very ample line bundle L on C is defined as the number of zeros
(counted with multiplicity) of any section of L. In other words, if C ↪→ Pn is the
projective embedding defined by L, then degL = dimk Γ(C ∩H,OC∩H), where H is
any hyperplane and C∩H is the scheme-theoretic intersection. Any line bundle on C
can be written as the difference of two very ample line bundles: if M is very ample on
C, then M ′ := L⊗Mn is very ample for n≫ 0, and L ∼=M ′⊗ (M⊗n)∨. In this way,
we also see that L = OC(D) for a divisor D =

∑
i nipi supported on the smooth locus

of C, i.e., each pi ∈ C is a smooth point. Note that deg(L⊗M) = degL+degM , and
that if C =

⋃
i Ci denotes the irreducible decomposition, then degL =

∑
i degL|Ci

.

Theorem 5.1.2 (Riemann–Roch). Let C be a connected, reduced, and projective
curve of genus g over an algebraically closed field k. If L is a line bundle on C, then

χ(C,L) = degL+ 1− g.

Proof. We can write L = OC(D) for a divisor D supported on the smooth locus.
Since Riemann–Roch holds for OC , it suffices by adding and subtracting points to
show that Riemann–Roch holds for OC(D) if and only if it holds for OC(D + p) for
a smooth point p ∈ C(k). This follows by considering the short exact sequence

0→ OC(D)→ OC(D + p)→ κ(p)→ 0

and the identity χ(C,OC(D+ p)) = χ(C,OC(D)) + 1. See also [Har77, Thm IV.1.3,
Exc. IV.1.9] and [Vak17, Exers. 18.4.B and S].

5.1.2 Smooth curves
If C is a smooth curve, then the sheaf of differentials ΩC is a line bundle. Serre
Duality states that ΩC is a dualizing sheaf on C; this is a deep result that is
indispensable in the study of curves.

Theorem 5.1.3 (Serre Duality for Smooth Curves). If C is a smooth projective
curve over a field k, then ΩC is a dualizing sheaf, i.e., there is a linear map
tr : H1(C,ΩC)→ k such that for every coherent sheaf F , the natural pairing

HomOC
(F ,ΩC)×H1(C,F)→ H1(C,ΩC)

tr−→ k

is perfect.

Proof. See [Ser88, Thm. II.8.2] and [Har77, Cor. III.7.12].

Remark 5.1.4. The pairing being perfect means that the HomOC
(F ,ΩC) is

identified with the dual H1(C,F)∨. If F is a vector bundle, HomOC
(F ,ΩC) ∼=

H0(C,F∨ ⊗ ΩC) and Serre Duality gives an isomorphism

H0(C,F∨ ⊗ ΩC) ∼= H1(C,F)∨.

Taking F = ΩC , we see that H1(C,ΩC) ∼= H0(C,OC)∨ and in particular that the
trace map tr : H1(C,ΩC)→ k is an isomorphism if C is geometrically connected and
reduced.
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Combining the above version of Riemann–Roch (5.1.2) with Serre Duality leads
to a more powerful version of Riemann–Roch.

Theorem 5.1.5 (Riemann–Roch II). Let C be a smooth, connected, and projective
curve of genus g over an algebraically closed field. If L is a line bundle on C, then

h0(C,L)− h0(C,ΩC ⊗ L∨) = degL+ 1− g.

Remark 5.1.6. This is often written in divisor form as h0(C,L)− h0(C,K − L) =
degL+ 1− g where K denotes a canonical divisor, i.e., ΩC = OC(K).

The theorem of Riemann–Hurwitz (5.7.3), akin to Riemann–Roch and Serre–
Duality, plays an indispensable role in the study of smooth curves, describing how
the sheaf of differentials behaves under finite covers. Our treatment is deferred until
we discuss branched covers in §5.7.1.

Exercise 5.1.7 (easy). For any g ≥ 0, show that there exists a smooth, connected,
and projective curve of genus g.

Automorphisms. If C is a smooth curve over a field k, we let Aut(C) denote the
abstract group of automorphisms of C over k. If p1, . . . , pn are distinct k-points of a
smooth curve C over k, an automorphism of (C, pi) is an automorphism α : C

∼→ C
such that α(pi) = pi for all i, and we let Aut(C, pi) denote the abstract group of
automorphisms.

Proposition 5.1.8. Let C be a smooth, connected, and projective curve of genus
g over an algebraically closed field k, and let p1, . . . , pn ∈ C(k) be distinct points.
The automorphism group Aut(C, pi) is finite if 2g − 2 + n > 0, i.e., either g ≥ 2, or
g = 1 and n ≥ 1, or g = 0 and n ≥ 3. Moreover, if g ≥ 2 and char(k) = 0, then
|Aut(C)| ≤ 84(g − 1).

Proof. This is a classical result of Hurwitz [Hur92]. See also [Har77, Exc. IV.5.2],
[ACGH85, Exc. I.F.4], and [Mir95, Thm. 4.18] for the finiteness and [Har77, Exc. IV.2.5],
[ACGH85, Exc. I.F.10], and [Mir95, Thm.3.9] for the explicit bound.

Exercise 5.1.9. Let C be a smooth, connected, and projective curve over an
algebraically closed field k of genus g ≥ 2. Show that there is no non-trivial
automorphism of C fixing more than 2g + 2 points.

While every hyperelliptic curve and thus every curve of genus 2 has a non-trivial
hyperelliptic involution, the following exercise will be used later to show that general
curves of higher genus are automorphism free.

Exercise 5.1.10. Show that if g ≥ 3 and k is an algebraically closed field, there
exists a smooth, connected, and projective curve C over k with trivial automorphism
group.

For further background on smooth curves, we recommend [Har77, §IV], [Vak17,
§20], [Liu02, §7], [ACGH85], and [Mir95].

5.1.3 Positivity of divisors on smooth curves
The following consequence of Riemann–Roch provides useful criteria to determine
whether a given line bundle is base point free (equivalently globally generated),
ample, or very ample.
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Corollary 5.1.11. Let C be a smooth, connected, and projective curve over an
algebraically closed field k, and let L be a line bundle on C.

(1) if degL < 0, then h0(C,L) = 0;
(2) if degL > 0, then L is ample;
(3) if degL ≥ 2g, then L is base point free; and
(4) if degL ≥ 2g + 1, then L is very ample.

Proof. See [Har77, Cor. IV.3.2].

Remark 5.1.12. If g > 1, we can use Riemann–Roch and Serre Duality to compute
that: (a) h0(C,ΩC) = h1(C,OC) = g, (b) h1(C,ΩC) = h0(C,OC) = 1, and (c)
ΩC has degree 2g − 2 and is thus ample on C. Similarly, if k > 1, we have: (a)
h0(C,Ω⊗k

C ) = (2k − 1)(g − 1), (b) h1(C,Ω⊗k
C ) = 0, and (c) Ω⊗k

C has degree 2k(g − 1)
and is very ample if k ≥ 3. Note that ΩC is not very ample precisely when C is
hyperelliptic. On the other hand, if g = 1 then ΩC ∼= OC , and if g = 0 then C = P1

and ΩC = O(−2).

5.1.4 Classification of rational curves
Over an algebraically closed field k, every connected, smooth, and proper curve of
genus 0 is isomorphic to P1

k. Over an arbitrary field, the classification is slightly
more involved.

Exercise 5.1.13 (Classificiation of the projective line). Show that the following
are equivalent for a proper curve C over a field k:

(a) C ∼= P1
k;

(b) C is smooth and geometrically irreducible over k, C has genus 0, and C(k) ̸= ∅.
(c) C is Gorenstein and geometrically integral over k, C has genus 0, and C has a

line bundle of odd degree;
(d) H0(C,OC) = k, C has genus 0, and C has a line bundle of degree 1;
(e) H1(C,OC) = 0 and C has a line bundle of degree 1.

See also [SP, Tag 0C6U].

There is also a classification of singular rational curves that will be convenient
to understand nodal rational curves as well as the classification of rational tails and
bridges in prestable curves.

Exercise 5.1.14 (Classification of singular rational curves). Let C be a singular
proper curve of genus 0 over a field k with H0(C,OC) = k, and let π : C ′ → C be
the normalization. Show the following:

(a) C has a unique singular point p, which is a k-rational point;
(b) π : C ′ → C is an isomorphism over C \ p and π−1(p) = {p′} for a k′-rational

point p′ ∈ C ′;
(c) C ′ ∼= P1

k′ for a finite field extension k′/k; and
(d) C is identified with the Ferrand Pushout (B.4.1)

Speck′
p′

//

��

C ′

π

��

Speck
p
// C.
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See also [SP, Tag 0DJB].

5.1.5 Families of smooth curves
Definition 5.1.15. A family of smooth curves (of genus g) over a scheme S is a
smooth and proper morphism C → S of schemes such that every geometric fiber is a
connected curve (of genus g).

Recall that the relative sheaf of differentials ΩC/S is a line bundle on C such that
for every geometric point s : Speck→ S, the restriction ΩC/S |Cs

is identified with
ΩCs . More generally, for every morphism T → S of schemes, the pullback of ΩC/S
to CT := C ×S T is canonically isomorphic to ΩCT /T . Generalizing Corollary 5.1.11,
we show that Ω⊗k

C/S is relatively very ample for k ≥ 3, and that its pushforward is a
vector bundle on S.

Proposition 5.1.16 (Properties of Families of Smooth Curves). Let π : C → S be a
family of smooth curves of genus g ≥ 2.
(1) π∗OC = OS;
(2) The pushforward π∗(Ω⊗k

C/S) is a vector bundle of rank

r(k) :=

{
g if k = 1
(2k − 1)(g − 1) if k > 1.

whose construction commutes with base change (i.e., for a morphism f : T → S
of schemes, f∗π∗(Ω⊗k

C/S)
∼= πT,∗(Ω

⊗k
CT /T

));

(3) R1π∗Ω
⊗k
C/S is isomorphic to OS if k = 1 and zero otherwise; and

(4) For k ≥ 3, Ω⊗k
C/S is relatively very ample. In particular, C → S is projective.

Proof. Items (1)–(3) follows from Cohomology and Base Change (A.6.8) as detailed
in Proposition A.6.10. For (4), observe that for every point s ∈ S, the fiber
Ω⊗k

C/S ⊗ κ(s) = Ω⊗k
Cs

is very ample by Corollary 5.1.11 as degΩ⊗k
Cs

= k(2g − 2) > 0.
Since H1(Cs,Ω⊗k

Cs
) = 0, we may apply Proposition B.2.10 to conclude that Ω⊗k

C/S is
relatively very ample.

It is also true that the relative sheaf of differentials ΩC/S is a relative dualizing
sheaf, i.e., satisfies a relative version of Serre Duality; see [Liu02, §6.4].

5.2 Nodal curves
After providing a Characterization of Nodes (5.2.3), we discuss the Genus Formula
(5.2.11), the dualizing sheaf (Definition 5.2.16), and the Local Structure of Nodal
Families (5.2.23).

5.2.1 Nodes
Definition 5.2.1 (Nodes). Let C be a curve over a field k.

• We say that p ∈ C(k) is a split node if there is an isomorphism ÔC,p ∼=
k[[x, y]]/(xy).

• We say that a closed point p ∈ C is a node if there exists a split node p ∈ Ck
over p.
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We say that a curve C is a nodal (or has at-worst nodal singularities) if C is pure
one-dimensional and every closed point is either smooth or nodal.

Figure 5.1: A node of a curve over C viewed algebraically (left-hand side) or
analytically (right-hand side).

Example 5.2.2.
(1) The curve C = Speck[x, y]/(xy) has a split node at 0. The normalization

C̃ ∼= A1⨿A1 has coordinate ring k[x]×k[y] and Γ(C,OC) = {(f, g) ∈ Γ(C̃,OC̃) |
f(0) = g(0)}, or in other words C is the Ferrand Pushout (B.4.1)

Speck⨿ Speck

��

0⨿0 // C̃

��

Speck 0 // C.

(2) The nodal cubic C = Speck[x, y]/(y2 − x2(x+ 1)) has a split node at 0. The
normalization C̃ ∼= A1 has a coordinate t = y/x with x = t2− 1 and y = t3− t,
and C is again the Ferrand Pushout obtained from C̃ by gluing the two
preimages of 0.

(3) The curve C = SpecR[x, y]/(x2 + y2) has a node at 0, but it is not a split
nodes as the quadratic form x2 + y2 does not split into linear factors.

(4) The curve SpecQ[x, y]/(x2 − 2)(y2 − 3) has a non-split node at the point p
defined by the maximal ideal (x2 − 2, y2 − 3). Note that unlike the previous
examples where the nodes are rational points, the node p is not a rational
point and the field extension Q→ κ(p) has degree 4.

(5) Let k→ k′ be a separable field extension of degree 2, and let C be the affine
curve over k defined by the k-algebra {f ∈ k′[x] | f(0) ∈ k}. In other words,
C is the Ferrand Pushout of the inclusion of the origin 0: Speck′ ↪→ A1

k′ along
Speck′ → Speck. The curve C has a non-split node at a k-rational point.

5.2.2 Equivalent characterizations of nodes

Recall that the singular locus Sing(C) of a curve C is defined scheme-theoretically as
the vanishing of the first fitting ideal sheaf of ΩC : locally if C = V (f1, . . . , fm) ⊂ An,
then Sing(C) is defined by the vanishing of all (n − 1) × (n − 1) minors of the
Jacobian matrix J = (

∂fj
∂xi

); note that if C = V (f) ⊂ A2 is a plane affine curve, then
Sing(C) = V (∂f∂x ,

∂f
∂y ) (see §A.3.4). We will also use properties of local complete

intersections as discussed in §A.3.5.
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Proposition 5.2.3 (Characterization of Nodes). Let C be a pure one-dimensional
curve over a field k, and let p ∈ C be a closed point with maximal ideal m ⊂ OC,p.
The following are equivalent:

(1) p ∈ C is a node;
(2) C is a local complete intersection at p, and Sing(C) is unramified over k at

p ∈ Sing(C);
(3) k→ κ(p) is separable, OC,p is reduced, dimm/m2 = 2, and there is a nonde-

generate quadratic form q ∈ Sym2 m/m2 mapping to 0 in m2/m3;

(4) k→ κ(p) is separable and ÔC,p ∼= κ(p)[[x, y]]/(q) where q is a nondegenerate
quadratic form; and

(5) there exists a finite separable field extension k→ k′ and a point p′ ∈ Ck′ such
that ÔCk′ ,p

′ ∼= k′[[x, y]]/(xy).

Proof. Assuming (1), let p ∈ Ck be a node over p and let Sing(C) ⊂ C be the
scheme-theoretic singular locus. Then Sing(C)×k k = Sing(Ck) and the preimage of
Sing(Ck) under Spec ÔCk,p

→ Ck is Sing(Spec ÔCk,p
) by properties of fitting ideals

(see §A.3.4). Since ÔCk,p
∼= k[[x, y]]/(xy), Sing(Spec ÔCk,p

) = V (x, y) = Speck.
Therefore Sing(C)→ Speck is unramified at p. Since ÔCk,p

is a complete intersection,
C is a local complete intersection at p (Proposition A.3.16). This gives (2).

Assuming (2), since Sing(C) is unramified at p, the field extension k → κ(p)
is separable and there is an open neighborhood U ⊂ C of p such that Sing(U) =
Sing(C) ∩ U = {p}. In particular, C and OC,p are generically reduced. On the
other hand, since C is a local complete intersection, OC,p is a one-dimensional
Cohen–Macaulay local ring and thus has no embedded primes. It follows that
OC,p is reduced. Using that C is a local complete intersection, we can write
ÔC,p = R/(f1, . . . , fn−1) where R is a regular complete local ring. As R contains the
base field k, the Cohen Structure Theorem (B.5.7) implies that R ∼= κ(p)[[x1, . . . , xn]].
Since Sing(C) is unramified at p, the (n − 1) × (n − 1) minors of the Jacobian
matrix

(
∂fj
∂xi

)
i,j

generate the maximal ideal m = (x1, . . . , xn) ⊂ ÔC,p. If ∂fj
∂xi
∈ R is

a unit for some i and j, then the sequence x1, . . . , x̂i, xn, fj also generates m/m2.
We may use Complete Nakayama’s Lemma (B.5.6(3)) to change coordinates by
replacing the generators x1, . . . , xn with x1, . . . , x̂i, xn, fj . Eliminating fj allows us
to write R = κ(p)[[x1, . . . , x̂i, xn]]/(f1, . . . , f̂j , . . . , fn−1). After finitely many such
replacements, we can assume that ∂fj

∂xi
∈ m for every i, j. This implies that every

(n− 1)× (n− 1) minor is in mn−1, but since these minors generate m, we must have
that n = 2. Therefore, ÔC,p = κ(p)[[x, y]]/(f) with f = f2 + f3 + · · · and each fi
homogeneous of degree i. Since the partials fx and fy generate (x, y), the quadratic
form q := f2 ∈ Sym2 m/m2 must be nondegenerate. This gives (3).

Assuming (3), we have that dimκ(p) m
d/md+1 = 2 for every d ≥ 1 since q maps to

0 in m2/m3. A choice of elements x0, y0 ∈ m mapping to a basis in m/m2 induces a
surjection κ(p)[[x, y]]→ ÔC,p by Complete Nakayama’s Lemma (B.5.6(3)). SinceOC,p
is reduced, Descent of Properties of Schemes (2.1.22), ÔC,p is also reduced. Since
κ(p)[[x, y]] is a UFD, we can write ÔC,p/κ(p)[[x, y]]/(f) for an element f expressed
as a product of distinct irreducible elements such that the quadratic component
q = ax2 + bxy + cy2 of f is a nondegenerate quadratic form. We claim that we can
modify our choice of coordinates x0, y0 ∈ m so that f = q, i.e., q(x0, y0) = 0 ∈ ÔC,p.
We will show inductively that for each N , there exists elements xi, yi ∈ mi+1 for
i = 0, . . . , N such that q(x0+· · ·+xN , y0+· · ·+yN ) ∈ mN+3. Since ÔC,p is complete,
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this would enable us to replace x0 and y0 with
∑
i xi and

∑
i yi and conclude that

ÔC,p ∼= κ(p)[[x, y]]/(q). Supposing that we have already chosen x′ = x0 + · · ·+ xN−1

and y′ = y0 + · · ·+ yN−1, then for every xN and yN ∈ mN+1, we have that

q(x′ + xN , y
′ + yN ) = q(x′, y′) + (2ax0 + by0)xN + (bx0 + 2cy0)yN mod mN+3

The nondegeneracy of q = ax2 + bxy + y2 implies that 2ax0 + by0 and bx0 + 2cy0
are linearly independent. Since dimκ(p) m

N+2/mN+3 = 2, we may choose xN and
yN such that Q(x′ + xN , y

′ + yN ) ∈ mN+3. This completes (4).
Assuming (4) and using that q is nondegenerate, we may choose a degree 2

separable field extension κ(p)→ k′ such that q splits as a product of linear forms.
Thus ÔC,p ⊗k k′ ∼= k′[[x, y]]/(xy), yielding (5). Finally, (5) implies that p is a node.

See also [SP, Tags 0C49, 0C4D, and 0C4E].

Exercise 5.2.4. (easy) Show that Speck[x, y]/(f) has a node at 0 if and only if

f(0) = fx(0) = fy(0) = 0 and det

(
fxx(0) fxy(0)
fyx(0) fyy(0)

)
is nonzero.

Exercise 5.2.5. (practice) Let C be a pure one-dimensional reduced curve over a
field k with normalization π : C̃ → C. Show that p ∈ C is a node if and only if k→
κ(p) is separable, dimκ(p)(π∗OC̃/OC)⊗ κ(p) = 1, and

∑
π(q)=p[κ(q) : κ(p)]sep = 2.

Hint: Identify (π∗OC̃/OC) ⊗ κ(p) with the quotient Ã/A where A = ÔC,p and
Ã is its normalization, using that normalization commutes with completion (see
Remark 2.1.25). To show (⇐), use that Ã is a product of complete DVRs to derive
the structure of A. See also [SP, Tag 0C4A].

Remark 5.2.6. The quantity dimκ(p)(π∗OC̃/OC) ⊗ κ(p) is referred to as the δ-
invariant of p, and the sum

∑
π(q)=p[κ(q) : κ(p)]sep is referred to as the number of

geometric branches over p. A cusp k[[x, y]]/(y2−x3) has δ-invariant one but has only
one geometric branch.

Proposition 5.2.7 (Local Structure of Nodes). Let C be a curve over a field k. If
p ∈ C is a node, then there exists a finite separable field extension k→ k′ and étale
neighborhoods

(U, u)

{{ ((

(C, p) (Spec k′[x, y]/(xy), 0).

(5.2.8)

Proof. Using the Characterization of Nodes (5.2.3(5)), there is a finite separable
field extension k → k′ such that ÔC,p ⊗k k′ ∼= k′[[x, y]]/(xy). The result is now a
consequence of Artin Approximation (B.5.21).

We will shortly generalize this to families of nodal curves (Theorem 5.2.23).

Example 5.2.9. Let us construct an explicit étale neighborhood for the nodal
cubic C = SpecC[x, y]/(y2 − x2(x − 1)). In fact, in Example 0.5.2 we essentially
already showed how do this: if we add a square root t =

√
x− 1, then y2 − x3 +

x2 = (y − xt)(y + xt). Therefore, we can take the elementary étale neighborhood
U = SpecC[x, y, t]t/(y2 − x3 + x2, t2 − x + 1) → C given by (x, y, t) 7→ (x, y) and
U → SpecC[x, y]/(xy) by (x, y, t) 7→ (y − xt, y + xt).
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Exercise 5.2.10. Provide a proof of the Local Structure of Nodes (5.2.7) without
appealing to Artin Approximation.
Hint: Use that the normalization of a strict henselization Osh

C,p has two components
to find an affine étale neighborhood (SpecR, u) → (C, p) with R̃ = R1 × R2. Use
the exact sequence 0 → R → R1 × R2 → κ(u) → 0 to construct elements x, y ∈ R
mapping to (1, 0), (0, 1) ∈ R1 ×R2, and argue that κ(u)[x, y]/(xy)→ R is étale.

5.2.3 Genus formula
Proposition 5.2.11 (Genus Formula). Let C be a connected, nodal, and projective
curve over an algebraically closed field k with δ nodes and ν irreducible components.
Let C =

⋃
i Ci be the irreducible decomposition and let C̃i be the normalization of

Ci with genus g(C̃i). The genus g of C satisfies

g =

ν∑
i=1

g(C̃i) + δ − ν + 1.

Proof. Let p1, . . . , pδ ∈ C denote the nodes of C. We claim that the normalization
π : C̃ → C induces a short exact sequence

0→ OC → π∗OC̃ →
δ⊕
j=1

κ(pj)→ 0.

It suffices to verify this étale-locally around a node pi ∈ C, and so by the Local
Structure of Nodes (5.2.7), we can assume that C = Speck[x, y]/(xy). In this case,
C̃ = Spec(k[x]× k[y]) and the sequence above corresponds to 0 → k[x, y]/(xy) →
k[x]× k[y]→ k→ 0. Alternatively, normalization commutes with completion and a
direct calculation as above shows that if A := ÔC,p ∼= k[[x, y]]/(xy), then Ã/A ∼= k.

The short exact sequence induces a long exact sequence on cohomology

0→ H0(C,OC)︸ ︷︷ ︸
1

→ H0(C̃,OC̃)︸ ︷︷ ︸
ν

→
⊕
j

κ(pj)︸ ︷︷ ︸
δ

→ H1(C,OC)︸ ︷︷ ︸
g

→ H1(C̃,OC̃)︸ ︷︷ ︸∑
i g(C̃i)

→ 0

where the labels underneath indicate the dimension. The statement follows.

Figure 5.2: An example of a nodal curve of genus 14.
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Remark 5.2.12. Notice that δ− ν +1 is precisely the number of connected regions
bounded by the curve C as in Figure 5.2. Thus, the genus of a nodal curve can be
easily computed from the picture by summing the geometric genera of the irreducible
components and adding the number of bounded regions. See Definition 5.3.7 for
another interpretation using dual graphs.

For non-nodal curves, there is an analogous formula for the genus involving the
delta invariants (see Exercise 5.2.5) of the singularities.

5.2.4 The dualizing sheaf

Since a nodal curve C over a field k is a locally a complete intersection, C is Gorenstein
and there is a dualizing line bundle ωC with a trace map trC : H1(C,ωC)

∼→ k; see
[Har77, III.7.11] or [Ser88, §IV]. In other words, for every coherent sheaf F , the
natural pairing

HomOC
(F, ωC)×H1(C,F )→ H1(C,ωC)

tr−→ k

is perfect.
Due to its importance in the study of stable curves, we now provide an explicit

description of ωC below in the case that k is algebraically closed. Let Σ := Csing be
the singular locus and U = C \Σ. Let π : C̃ → C be the normalization of C, and let
Σ̃ and Ũ be the preimages of Σ and U as in the diagram

Ũ �
�

//

∼

��

C̃

π

��

Σ̃? _oo

��

U
� � // C Σ.?

_oo

(5.2.13)

Let Σ = {z1, . . . , zn} be an ordering of the points and π−1(zi) = {pi, qi}. Since C̃
is smooth, the sheaf of differentials ΩC̃ is a dualizing line bundle. There is a short
exact sequence

0→ ΩC̃ → ΩC̃(Σ̃)→ OΣ̃ → 0 (5.2.14)

obtained by tensoring the sequence 0 → OC̃(−Σ̃) → OC̃ → OΣ̃ → 0 with ΩC̃(Σ̃).
As ΩC̃(Σ̃)|Ũ = ΩŨ , we can interpret sections of ΩC̃(Σ̃) as rational sections of ΩC̃
with at worst simple poles along Σ̃. Evaluating (5.2.14) on an open Ṽ ⊂ C̃ yields

0 // Γ(Ṽ ,ΩC̃)
// Γ(Ṽ ,ΩC̃(Σ̃))

//

s 7→ (resy(s))

//
⊕

y∈Ṽ ∩Σ̃ κ(y), (5.2.15)

where the last map takes a rational section s ∈ Γ(Ṽ ∩ Ũ ,ΩC̃) to the tuple whose
coordinate at y ∈ Ṽ ∩ Σ̃ is the residue resy(s) of s at y.

Definition 5.2.16. Let C be a nodal curve over an algebraically closed field k.
Using the notation of (5.2.13) and (5.2.15), we define the subsheaf ωC ⊂ π∗ΩC̃(Σ̃)
by declaring that sections along V ⊂ C consist of rational sections s of ΩC̃ along
π−1(V ) with at worst simple poles along Σ̃ such that for every node zi ∈ V ∩Σ with
preimages pi, qi ∈ π−1(V ),

respi(s) + resqi(s) = 0.
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The definition implies that ωC sits in the following two exact sequences:

0 // ωC // π∗ΩC̃(Σ̃)

s 7→ (respi(s) + resqi(s))

//
⊕

zi∈Σ k // 0

0 // π∗ΩC̃
// ωC

s 7→ (respi(s))

//
⊕

zi∈Σ k // 0

Example 5.2.17 (Local calculation). Let C = Speck[x, y]/(xy). Then C̃ = A1⨿A1

with coordinates x and y respectively. The singular locus of C is Σ = {0} with
preimage Σ̃ = {p, q} consisting of the two origins. Then Γ(C̃,ΩC̃) = Γ(A1,ΩA1)×
Γ(A1,ΩA1) and (dxx ,−

dy
y ) is a rational section of ΩC̃ with opposite residues at p and

q. In fact, every section of Γ(C,ωC) is of the form(
f(x)

dx

x
, g(y)

−dy
y

)
= (f(x) + g(y)− f(0)) · (dx

x
,
−dy
y

)

for polynomials f(x) and g(y) such that f(0) = g(0), which is precisely the condition
for (f, g) ∈ Γ(C̃,OC̃) to descend to a global function f(x) + g(y)− f(0) ∈ Γ(C,OC).
In other words, ωC ∼= OC with generator (dxx ,−

dy
y ).

Example 5.2.18. Let C be the nodal projective plane cubic and P1 → C be
the normalization with coordinates [x : y] such that 0 and ∞ are the fibers of
the node. Observe that the rational differential η := dx

x = −dyy on P1 satisfies
res0 η+ res∞ η = 0. It is easy to see that every local section of ωC is a multiple of η,
so ωC ∼= OC with generator η.

Exercise 5.2.19 (details). Let C be a connected, nodal, and projective curve over
an algebraically closed field k.

(a) Show that if π : C ′ → C is an étale morphism, then π∗ωC ∼= ωC′ .
Hint: Use the fact that normalization commutes with étale base change.

(b) Conclude that ωC is a line bundle.
(c) Show that ωC is a dualizing sheaf.

Hint: Reduce to the case of a smooth curve by considering the normalization.
(d) If T ⊂ C is a subcurve with complement T c := C \ T , show that

ωC |T = ωT (T ∩ T c).

Exercise 5.2.20 (good practice). Let C be a connected, nodal, and projective curve
over an algebraically closed field k. Let C̃ → C be the normalization and Σ̃ ⊂ C̃
the set of preimages of nodes. Show that there is an identification

HomOC̃
(ΩC̃(Σ̃),OC̃) ∼= HomOC

(ΩC ,OC),

or in other words that regular vector fields on C correspond to regular vector fields
on C̃ vanishing at the preimages of nodes.
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5.2.5 Nodal families
Recall that the relative singular locus Sing(C/S) of a morphism C → S with one-
dimensional fibers is defined by the first fitting ideal sheaf of ΩC/S ; see Defini-
tion A.3.14. Syntomic morphisms are fppf morphisms whose fibers are local complete
intersections; see §A.3.5.

Proposition 5.2.21. Let C → S be an fppf morphism of schemes and s ∈ S a point
such that the fiber Cs is pure one-dimensional. A point p ∈ Cs is a node if and only if
C → S is syntomic at p and the relative singular locus Sing(C/S)→ S is unramified
at p.

Proof. The conditions that C → S is syntomic at p and Sing(C)→ S is unramified
at p are both conditions on the fibers over s. Since Sing(C/S)s = Sing(Cs), the
result follows from the equivalence of (1) ⇐⇒ (4) of the Characterization of Nodes
(5.2.3).

The above characterization shows that the property of being a nodal family
descends under limits (Definition B.3.6).

Lemma 5.2.22. The following property of morphisms of schemes descends under
limits: an fppf morphism such that every fiber is a pure one-dimensional nodal curve.

Proof. From Descent of Properties of Morphisms under Limits (B.3.7), we know that
the properties of being fppf, syntomic, unramified, and having connected pure one-
dimensional fibers descend under limits. Since the relative singular locus commutes
with base change, the result follows from Proposition 5.2.21.

Later in Definition 5.3.17, we define a family of nodal curves to be a proper fppf
morphism C → S of schemes such that every geometric fiber Cs is a connected nodal
curve.

5.2.6 Local structure of nodal families
By the Local Structure of Smooth Morphisms (A.3.4), if C → S is a family of smooth
curves, then every point p ∈ C over s ∈ S is étale locally isomorphic to relative
one-dimensional affine space. More precisely, there is a commutative diagram

(C, p)

��

(C′, p′)? _
op
oo ét //

��

(S′ ×Z A1
Z, (s

′, 0))

ww

(S, s) (S′, s′)? _
op
oo

where the left horizontal maps are open immersions, the right-hand map is étale
map, and S′ ×Z A1

Z = A1
S′ → S′ is the base change of A1

Z → SpecZ. We give a
local structure of a family of nodal curves generalizing the Local Structure of Nodes
(5.2.7).

Theorem 5.2.23 (Local Structure of Nodal Families). Let π : C → S be an fppf
morphism such that every geometric fiber is a curve. Let p ∈ C be a node in the fiber
Cs over a point s ∈ S. There is a commutative diagram

(C, p)

��

(C′, p′)étoo ét //

��

(SpecA[x, y]/(xy − f), (s′, 0))

tt

(S, s) (SpecA, s′),
étoo

(5.2.24)
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where each horizontal map is étale and f ∈ A is a function vanishing at s′.

Remark 5.2.25. In other words, every family of nodal curves étale locally looks
like the top horizontal arrow in the fiber product

SpecA[x, y]/(xy − f) //

��

SpecA

f

��

SpecZ[x, y, t]/(xy − t) // SpecZ[t]

induced by a function f ∈ A.

Proof 1 (local-to-global).

Step 1: Reduce to the case where S is of finite type over Z. Use limit methods and
Lemma 5.2.22.

Step 2: Reduce to the case where ÔCs,p
∼= κ(s)[[x, y]]/(xy). By Proposition 5.2.3,

there is a finite separable field extension κ(s) → k′ and a point p′ ∈ Cs ×κ(s) k′
whose completion is isomorphic to k′[[x, y]]/(xy). Letting (S′, s′)→ (S, s) be an étale
morphism such that there is an isomorphism κ(s′) ∼= k′ over κ(s), we replace S with
S′.

Step 3: Show that ÔC,p ∼= ÔS,s[[x, y]]/(xy − f̂) for a function f̂ ∈ m̂s ⊂ ÔS,s. We
claim that there exists elements x̂, ŷ ∈ ÔC,p and f̂ ∈ m̂s ⊂ ÔS,s such that x̂ŷ− f̂ = 0.

To achieve this, we will inductively construct elements xn, yn ∈ ÔC,p and fn ∈ m̂s
for n ≥ 0 which are compatible (i.e., xn+1 ≡ xn(mod mn+1), etc.) such that

xnyn − fn ∈ m̂n+1
s ÔC,p. (5.2.26)

The claim follows by defining x̂ = limn xn, ŷ = limn yn, and f̂ = limn fn.
The base case n = 0 is handled by Step 2: letting x, y ∈ ÔCs,p be the images of

x and y under the isomorphism ÔCs,p
∼= κ(s)[[x, y]]/(xy), choose x0, y0 ∈ ÔC,p to be

any lifts of x and y under the surjection ÔC,p → ÔCs,p and set f0 = 0.
Assuming that we have constructed xn, yn, and fn satisfying (5.2.26), write

xnyn − fn =
∑
i

aibi, where ai ∈ m̂n+1
s and bi ∈ ÔC,p.

Since xn and yn generate the maximal ideal of p in the fiber Cs, we can use the
identity κ(s) = κ(p) on residue fields to find a′i ∈ ÔS,s and b′i, b′′i ∈ ÔC,p such that

bi − (xnb
′
i + ynb

′′
i + a′i) ∈ m̂sÔC,p.

We then define

xn+1 = xn −
∑
i

aib
′′
i , yn+1 = yn −

∑
i

aib
′
i, and fn+1 = fn +

∑
i

aia
′
i,
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and check that

xn+1yn+1 − fn+1 = (xn −
∑
i

aib
′′
i )(yn −

∑
i

aib
′
i)− (fn +

∑
i

aia
′
i)

= (xnyn − fn)− xn
∑
i

aib
′
i − yn

∑
i

aib
′′
i −

∑
i

aia
′
i +
∑
i,j

aiajb
′′
i b

′
j

=
∑
i

aibi − xn
∑
i

aib
′
i − yn

∑
i

aib
′′
i −

∑
i

aia
′
i +
∑
i,j

aiajb
′′
i b

′
j

=
∑
i

ai︸︷︷︸
m̂n+1

s

(bi − xnb′i − ynb′′i − a′i)︸ ︷︷ ︸
m̂sÔC,p

+
∑
i,j

aiaj︸︷︷︸
m̂

2(n+1)
s

b′′i b
′
j

is an element of m̂n+2
s ÔC,p.

With the claim established, we have a well-defined ÔS,s-algebra homomorphism

ÔS,s[[x, y]]/(xy − f̂)→ ÔC,p,

defined by x 7→ x̂ and y 7→ ŷ. This map is surjective by Complete Nakayama’s
Lemma (B.5.6(2)) as it is surjective modulo m̂s, and it is injective by a version of
the local criterion for flatness (Lemma A.2.8); it is thus an isomorphism.

Step 4 (formal-to-étale): Extend the isomorphism in Step 3 on formal neighorhoods
to étale neighborhoods. From Step 3, we have a diagram

C ×S Spec ÔS,s

''

Spec ÔS,s[x, y]/(xy − f̂)

vv

Spec ÔS,s

such that the points (p, s) ∈ C×SSpec ÔS,s and (s, 0) ∈ Spec ÔS,s[x, y]/(xy− f̂) have
isomorphic completion. A consequence of Artin Approximation (Corollary B.5.21)
implies that there are étale morphisms

(U, u)

))vv

(C ×S Spec ÔS,s, (p, s)) (Spec ÔS,s[x, y]/(xy − f̂), (s, 0))
(5.2.27)

defined over Spec ÔS,s. After replacing S with an open affine neighborhood of s, we
can assume that S = SpecA is affine. By Neron–Popescu (B.5.15), we may write
ÔS,s = colimBλ as a directed colimit of smooth A-algebras. Set Sλ = SpecBλ,
Cλ = C ×S Sλ, and Uλ = U ×S Sλ. For λ≫ 0, f̂ ∈ ÔS,s is the image of an element
fλ ∈ Bλ, and the pullbacks of x and y to Γ(U,OU ) are the pullbacks of elements in
Γ(Uλ,OUλ

) under U → Uλ. This yields a commutative diagram

Uλ

((~~

Cλ SpecBλ[x, y]/(xy − fλ)
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over Sλ which base changes to (5.2.27) under Spec ÔS,s → Sλ. By Descent of
Properties of Morphisms under Limits(B.3.7), étaleness descends under limits and so
the maps Uλ → Cλ and Uλ → SpecBλ[x, y]/(xy − fλ) are étale for λ≫ 0. Letting
uλ = (u, sλ) ∈ Uλ, we have a commutative diagram

(C, p)

��

(Uλ, uλ)
smoo ét //

��

(SpecBλ[x, y]/(xy − fλ), (sλ, 0))

tt

(S, s) (SpecBλ, sλ)
smoo

This gives our desired diagram (5.2.24) except that the left horizontal arrows are
smooth rather than étale. Since smooth maps étale locally have sections (Corol-
lary A.3.5), there is an étale map (SpecA, s′) → (S, s) and a map (SpecA, s′) →
(Sλ, sλ) over S. The result follows from setting C′ := Uλ×Sλ

SpecA and p′ = (uλ, s
′).

See also [SP, Tag 0CBY].

Proof 2 (avoiding Artin Approximation/Neron–Popescu). We can reduce to the case
where S is of finite type over Z by Lemma 5.2.22. By Proposition 5.2.21, we may
replace C with an open neighborhood of p such that C → S is syntomic and
Sing(C/S) → S is unramified. After replacing C and S with open neighborhoods,
we may also assume that C and S are affine and that the geometric fibers of C → S
are connected with at most two irreducible components. We can choose a closed
immersion S ↪→ AnZ, and we can apply Proposition A.3.7 to find a syntomic morphism
C′ → AnZ extending C → S. The fiber C′s has a node at p, and after replacing C → S
with C′ → AnZ, we may assume that the base S is regular. By the étale local structure
of unramified morphisms (Proposition A.3.6), after replacing C and S with étale
neighborhoods, we can arrange that Sing(C/S) ↪→ S is a closed immersion.

We claim that after replacing S with an open neighborhood of s, we can arrange
that Sing(C/S) = S or that Sing(C/S) ⊊ S is defined by a nonzerodivisor f ∈
Γ(S,OS). This holds over the completion of S at s by Step 3 in the first proof above:
since ÔC,p ∼= ÔS,s[[x, y]]/(xy − f̂) where f̂ ∈ m̂s, Sing(C/S) ×S Spec ÔS,s = V (f̂).
The claim then follows from using fppf descent along Spec ÔS,s → SpecOS,s and
properties of the ideal sheaf I defining Sing(C/S). Indeed, if f̂ = 0, then Is = 0 and
hence I is zero in an open neighborhood of s. If f̂ is a nonzerodivisor, then Is is a
line bundle (by Proposition 2.1.16) and hence I is defined by a nonzerodivisor in an
open neighborhood of s.

If Sing(C/S) = S, we first claim that after replacing C with an étale neighborhood,
we can arrange that C is the scheme-theoretic union C1∪C1 of closed subschemes such
that Sing(C/S) = C1 ∩ C2. The normalization Z̃ → SpecOh

C,p of the henselization
is a finite morphism, and since normalization commutes with completion (see
Remark 2.1.25), there are two preimages in Z̃ of the unique closed point. By
properties of the henselization (Proposition B.5.10), Z̃ can be written as a disjoint
union Z̃ = Z̃1 ⨿ Z̃2 of closed subschemes. Therefore, SpecOhC,p is the union of
the (closed) images of Z̃1 and Z̃2. This establishes the claim. After replacing C
with an open neighborhood, we can arrange that C1 and C2 are defined by global
functions g1, g2 ∈ B := Γ(C,OC) on C with g1g2 = 0. Letting S = SpecA, the
ring map A[x, y]/(xy) → B, defined by x 7→ g1 and y 7→ g2, induces a morphism
C → SpecA[x, y]/(xy) over S. This map is étale at p since it induces an isomorphism
of completions at p (using Step 3 of the first proof).
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If Sing(C/S) = V (f) with f ∈ A := Γ(S,OS) a nonzerodivisor, then the argument
above shows that C ×A (A/f) is the scheme-theoretic union Z1 ∪ Z1 of effective
Cartier divisors such that Sing(C/S) = Z1 ∩ Z2. After replacing C with an open
neighborhood, we can write each Zi = V (gi) for global functions gi ∈ B := Γ(C,OC).
As the restrictions of g1g2 and f define the same closed subscheme of Spec ÔC,p, we
have that f = ug1g2 for a unit u ∈ B after replacing C with an open neighborhood.
The ring map A[x, y]/(xy − f) → B, defined by x 7→ ug1 and y 7→ g2, induces a
morphism C → SpecA[x, y]/(xy) over S; this map is étale at p since it induces an
isomorphism of completions at p.

5.3 Stable curves

Stable curves were introduced in unpublished joint work by Mayer and Mumford
[MM64].

5.3.1 Definition and equivalences

An n-pointed curve is a curve C over an algebraically closed field k together with
an ordered collection of k-points p1, . . . , pn ∈ C; we call the points pi ∈ C marked
points. A point q ∈ C of an n-pointed curve is called special if q is a node or a
marked point.

Definition 5.3.1 (Stable, semistable, and prestable curves). An n-pointed geo-
metrically connected, nodal, and projective curve (C, p1, . . . , pn) of genus g over an
algebraically closed field k is stable if

(1) p1, . . . , pn ∈ C are distinct smooth points,
(2) C is not of genus 1 without marked points, i.e., (g, n) ̸= (1, 0), and
(3) every smooth irreducible rational subcurve P1 ⊂ C contains at least 3 special

points.

If (1)–(2) hold, and (3) is replaced with the condition that every smooth rational
subcurve contains at least 2 (rather than 3) special points, we say that (C, pi) is
semistable. If only (1)–(2) hold, we say that (C, pi) is prestable.

We have the implications:

stable ⇒ semistable ⇒ prestable ⇒ n-pointed nodal.

In the unpointed case, a curve is a prestable curve if it is nodal. When k is not
algebraically closed, the definition of stability needs to be amended; see Proposi-
tion 5.3.12

Remark 5.3.2. Note that there are no n-pointed stable curves of genus g if
(g, n) ∈ {(0, 0), (0, 1), (0, 2), (1, 0)}, or equivalently 2g − 2 + n ≤ 0. We often impose
the condition that 2g − 2 + n > 0 to exclude these special cases.
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Figure 5.3: Examples of stable, semistable, and prestable curves

An automorphism of a stable curve (C, p1, . . . , pn) is an automorphism α : C
∼→ C

such that α(pi) = pi. By Aut(C, p1, . . . , pn), we denote the (abstract) group of
automorphisms. Recall also that if C is a geometrically smooth, connected, and
projective curve of genus g ≥ 2, then Aut(C) is finite [Har77, Exc. III.2.5].

Proposition 5.3.3. Let (C, p1, . . . , pn) be an n-pointed prestable curve over an
algebraically closed field k. The following are equivalent:

(1) (C, p1, . . . , pn) is stable,
(2) Aut(C, p1, . . . , pn) is finite, and
(3) ωC(p1 + · · ·+ pn) is ample.

Proof. The equivalence (1) ⇐⇒ (2) follows from Exercise 5.3.5 and the fact that
the only way that a smooth prestable n-pointed curves (C, pi) can have a positive
dimensional automorphism group is if C = P1 with n ≤ 2 or if C is a genus 1 curve
with n = 0 (see Proposition 5.1.8).

To see the equivalence with (3), we will use the fact that for a subcurve T ⊂ C,
we have ωC |T = ωT (T ∩ T c) (Exercise 5.2.19). The line bundle ωC(p1 + · · ·+ pn) is
ample if and only if its restriction to each irreducible component T ⊂ C

ωC(p1 + · · ·+ pn)|T = ωT (
∑
pi∈T

pi + (T ∩ T c)) (5.3.4)

is ample. If the genus g(T ) of T is at least two, then ωT is ample and thus so is
(5.3.4). If g(T ) = 1, then (5.3.4) is ample if and only if n ≥ 1 or T must meet the
complement TC . If g(T ) = 0, then (5.3.4) is ample if and only if T contains at least
three special points.

Exercise 5.3.5 (Pointed normalization). Let (C, p1, . . . , pn) be an n-pointed prestable
curve. Let π : C̃ → C be the normalization of C, p̃i ∈ C̃ be the unique preimage of
pi, and q̃1, . . . , q̃m ∈ C̃ be an ordering of the preimages of nodes. We call (C̃, p̃i, q̃j)
the pointed normalization of (C, pi). Show that (C, pi) is stable if and only if every
pointed connected component of (C̃, p̃i, q̃j) (i.e., each connected component of C̃
together with the points p̃i and q̃j lying on it) is stable.
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Exercise 5.3.6. Let (C, p1, . . . , pn) be an n-pointed prestable curve.

(a) Show that the automorphism group scheme Aut(C, pi) is an algebraic group.
(b) Show that Aut(C, pi) is naturally a closed subgroup of the automorphism

group Aut(C̃, p̃i, q̃j) of the pointed normalization (C̃, p̃i, q̃j).

(c) Show that Aut(C, pi)
0 = Aut(C̃, p̃i, q̃j)

0 but that in general Aut(C, pi) ̸=
Aut(C̃, p̃i, q̃j).

Dual graphs. A vertex-weighted, n-marked graph Γ = (G,w,m) is the data of
a finite, connected, and undirected graph G with vertices V (G) and edges E(G)
(where loops and parallel edges are allowed), a weight function w : V (G) → Z≥0,
and an n-marking m : {1, . . . , n} → V (G). Each vertex m(i) ∈ V (G) is viewed as a
half-edge. The genus of Γ is

g(Γ) = g(G) +
∑

v∈V (G)

w(v),

where
g(G) = |E(G)| − |V (G)|+ 1

denotes the genus of G, i.e., the first Betti number of G considered as a 1-dimensional
CW complex. We say that a vertex-weighted, n-marked graph Γ is stable if for every
vertex v ∈ V (G)

2w(v)− 2 + val(v) + |m−1(v)| > 0,

where val(v) is the valence of v, defined as the number of edges containing v with
loops counted twice. In other words, stability means that for every vertex v either
(a) w(v) ≥ 2, (b) w(v) = 1 and v is contained in an edge or half-edge, or (c) w(v) = 0
and val(v) + |m−1(v)| ≥ 3.
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Figure 5.4: A genus 13 curve and its dual graph.

Definition 5.3.7 (Dual graph). The dual graph of an n-pointed prestable curve
(C, p1, . . . , pn) is defined as Γ = (G,w,m) where the vertices vi of G correspond to
irreducible components Ci of C, the weight w(vi) is the geometric genus of Ci, for
every node q of C lying on components Ci and Cj there is an edge eq between vi
and vj , and the marking m(i) is the vertex vj with pi ∈ Cj .

Exercise 5.3.8 (easy). Show that an n-pointed prestable curve (C, pi) is stable if
and only if its dual graph Γ is stable, and that the genus of C is equal to the genus
of Γ.
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The stack Mg,n of stable curves admits a stratification according to the dual
graph (Exercise 5.6.17).

I

2

2

1

1

1

1

1

11

1

Figure 5.5: There are seven genus 2 vertex-weighted graphs with no marked points.
Curves are displayed on the top while their dual graphs are displayed below. The
arrows indicate specialization. The dimension of the substacks ofM2 parameterizing
curves with a given dual graph are 3, 2, 1, and 0 in the columns going from left to
right.

Exercise 5.3.9.

(a) Classify stable, vertex-weighted 2-marked graphs of genus 1.
(b) Determine the number of isomorphism classes of stable, vertex-weighted 0-

marked graphs of genus 3.

5.3.2 Rational tails and bridges

Definition 5.3.10 (Rational tails and bridges). Let (C, p1, . . . , pn) be an n-pointed
prestable curve over a field k. We say that an irreducible smooth subcurve E ⊂ C
of genus 0 with nonempty complement Ec = C \ E is

• a rational tail if the scheme-theoretic intersection E ∩ Ec is a single reduced
point x, H0(E,OE) ∼= κ(x), and E contains no marked points, and

• a rational bridge if the scheme-theoretic intersection E ∩ Ec has degree 2 over
H0(E,OE) and E contains no marked points, or if E contains a single marked
point pj and E is a rational tail of (C, p1, . . . , p̂j , . . . , pn).

Over an algebraically closed field, every irreducible smooth rational subcurve E
is isomorphic to P1. The subcurve E is a rational tail if E · Ec = 1 and E has no
marked points, and is a rational bridge if either E · Ec = 2 and E has no marked
points or if E · Ec = 1 and E has precisely one marked point.

211























.-

EE E P E 2 p

e as e as
0 To 0 To

E P

yep
P

L a 2
Figure 5.6: (A) features a rational tail while (B) and (C) feature rational bridges.

Over an arbitrary field, the classification of rational tails and bridges is more
subtle, which is unsurprising given that the classification of rational curves is also
more involved (see Exercises 5.1.13 and 5.1.14).

Lemma 5.3.11. Let (C, pi) be an n-pointed prestable curve over a field k.
(1) If E is a rational tail with k′ := H0(E,OE) = κ(x), then k′ is a finite separable

field extension of k and E ∼= P1
k′ .

(2) If E is a rational bridge with no marked points, then k′ := H0(E,OE) is a
finite separable field extension of k and k′′ := H0(E ∩ Ec,OE∩Ec) is either a
degree 2 separable field extension of k′ or k′′ = k′ × k′.

If K/k is a field extension, (C, pi) has a rational tail (resp., rational bridge) if and
only if (C ×k K, pi ×k K) has a rational tail (resp., rational bridge).

Proof. In both cases, since E is reduced and connected, k′ = H0(E,OE) is a field.
For (1), the intersection x = E∩Ec is a node and hence k′ = κ(x) is a separable field
extension of k (Proposition 5.2.3). Viewing E as a scheme over k′ via structure map
E → Spec Γ(E,OE) = Speck′, we see that E ∼= P1

k′ since it is irreducible, smooth,
genus 0, and contains a rational point. For (2), the points of E ∩Ec are nodes in C
but smooth points in both E and Ec. As dimk′ k′′ = 2, we see that either k′′ is a
field, in which case it is separable over k by Proposition 5.2.3, or k′′ = k′ × k′.

If E is a rational tail (resp., bridge) of (C, pi), then the above characterization
implies that Ek′ is a disjoint union of rational tails (resp., bridges). Conversely, if
E′ ⊂ Ck′ is a rational tail (resp., bridge) of the base change, we claim that the image
E ⊂ C of E′ is also a rational tail (resp., bridge). As E′ is irreducible, so is E. Since
the complement (E′)c is nonempty, so is Ec. We observe that the base change EK is a
disjoint union of curves isomorphic to E′: to see this, it suffices to assume either that
K/k is Galois in which case EK = ⨿σ∈Gal(K/k)σ · E′, or K/k is purely inseparable
in which case EK = E′. It follows from descent that E is smooth over k of genus
0. By Flat Base Change (A.2.12) H0(EK ,OEK

) = H0(E,OE)⊗k K and it follows
that the natural map E → SpecH0(E,OE) pulls back to EK → SpecH0(E′,OE′).
It follows from descent that the composition E ∩Ec ↪→ E → SpecH0(E,OE) is an
isomorphism (resp., finite étale of degree 2) as the base change over K is. If E′

doesn’t have marked points (resp., E′ is a rational tail with a marked point), the
same holds for E.

Stability is equivalent to not containing a rational tail or bridge.

Proposition 5.3.12. Let (C, pi) be an n-pointed prestable curve of genus g over a
field k, and assume that (g, n) ̸= (1, 0). If K is an algebraically closed field containing
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k, then (C ×k K, pi ×k K) is stable (resp., semistable) if and only if (C, pi) contains
no rational tails or rational bridges (resp., no rational tails).

Proof. Over an algebraically closed field, stability (resp., semistability) is equivalent
to not containing a rational tail or bridge (resp., rational tail). Therefore, the
statement follows from Lemma 5.3.11 as the condition of having a rational tail or
bridge is insensitive to field extensions.

Remark 5.3.13 (Relationship to −1 and −2 curves). Suppose that C → ∆ = SpecR
is a family of nodal curves over a DVR R with algebraically closed residue field
k such that the generic fiber C∗ is smooth. If E ∼= P1 ⊂ C′0 is a smooth rational
subcurve in the central fiber, then E2 = −E ·Ec (which follows from the identity
0 = E · C0 = E · E + E · Ec). Thus if E is a rational tail (resp., rational bridge
without a marked point), then E2 = −1 (resp., E2 = −2).



























Ez E P E 2 p

sas sas

To

E P

yep

4 a 2

Figure 5.7: In (A) (resp., (B)), the exceptional component E meets the rest of the
curve at one point (resp., two points) and E2 = −1 (resp., E2 = −2).

The following exercise will be generalized later by the Stable Contraction of a
Prestable Family (5.6.4).

Exercise 5.3.14 (hard). Let C → ∆ = SpecR be a family of nodal curves over a
DVR R with smooth generic fiber. For any rational tail or bridge E ⊂ C0 in the
central fiber, show that there is a contraction C → C′ of E where C′ → ∆ is a family
of nodal curves.

Hint: Castelnuovo’s Contraction Theorem (B.2.6) gives the existence of the contrac-
tion C → C′. The challenge here is to show that the central fiber C′0 is nodal. You
may want to appeal to a fact in the minimal model program that C′0 is nodal if and
only if the pair (C′, C′0) is log canonical [Kol13, Cor. 2.32, Thm. 4.9(2)], and show
that the latter property holds because (C, C0) (resp., (C, C0 − E)) is log canonical.

5.3.3 Positivity of the dualizing sheaf

Exercise 5.3.15 (moderate, details). Let (C, p1, . . . , pn) be an n-pointed prestable
curve over an algebraically closed field k, and let L := ωC(p1 + · · ·+ pn).

(a) If (C, pi) is stable, show that L⊗k is very ample for k ≥ 3 and that H1(C, (ωC(p1+
· · ·+ pn))

⊗k) = 0 for k ≥ 2.
(b) For k ≥ 2, show that (C, pi) is semistable if and only if L⊗k is base point free.
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Hint: For (a), show that the global sections of L⊗k separate points and tangent
vectors. In other words, show that the maps

H0(C,L⊗k)→
(
L⊗k ⊗ κ(x)

)
⊕
(
L⊗k ⊗ κ(y)

)
H0(C,L⊗k)→ L⊗k ⊗OC,x/m2

x

are surjective. Establish this using Serre Duality and a case analysis on whether
x, y are smooth or nodal. See also [DM69, Thm. 2], [ACG11, Lem. 10.6.1], [SP,
Tag 0E8X], and [Ols16, Prop. 13.2.17].

Exercise 5.3.16 (good practice). If C is the nodal union C1 ∪ C2 of genus i and
g − i curves along a single node p = C1 ∩ C2, show that ωC has a base point at p.

5.3.4 Families of stable curves
Definition 5.3.17. A family of n-pointed curves over a scheme S is a proper, flat,
and finitely presented morphism C → S of algebraic spaces together with n sections
σ1, . . . , σn : S → C such that every geometric fiber Cs is a curve over Specκ(s) (e.g.,
a finite type κ(s)-scheme of dimension 1).

A family of n-pointed stable curves (resp., semistable, prestable, nodal) curves is
a family of n-pointed curves such that every geometric fiber (Cs, σ1(s), . . . , σn(s)) is
stable (resp., semistable, prestable, nodal).

Caution 5.3.18. If (C → S, σi) is a stable family over a scheme S, we will show
that C → S is necessarily projective (Proposition 5.3.19), hence C is a scheme. While
every one-dimensional separated algebraic space of finite type over a field is a scheme
(Theorem 4.4.32), in the relative setting, the total family C may not be a scheme.
There exists a families of prestable genus 0 curves [Ful10, Ex. 2.3] and smooth
genus 1 curves [Ray70, XIII 3.2] where the total families are not schemes; see also
Example 2.1.15. In the next section, we show that the stack of all curves (resp.,
nodal curves, semistable curves, prestable curves) are algebraic and in particular
satisfies the descent condition for families of curves, and this result requires that the
total family is an algebraic space.

For a family of n-pointed curves (resp., nodal curves), there is no condition on
whether the marked points are distinct or land in the relative smooth locus of C → S.
For stable, semistable, and prestable families, the marked points are distinct and
avoid the nodes.

If (C → S, σi) is a family of n-pointed prestable curves, then C → S is local
complete intersection morphism. Thus there is a relative dualizing line bundle
ωC/S that is compatible with base change T → S and in particular restricts to the
dualizing line bundle ωCs on every fiber of C → S; see [Har66c] or [Liu02, §6.4]. The
image of each section σi is a divisor contained in the smooth locus, and we can form
the line bundle ωC/S(σ1 + · · ·+ σn).

The following statement extends Proposition 5.3.3 to families.

Proposition 5.3.19. Let (C → S, σi) be a family of n-pointed prestable curves of
genus g over a scheme S. The following are equivalent:

(1) (C → S, σi) is a family of stable curves, and
(2) ωC/S(σ1 + · · ·+ σn) is relatively ample over S.

In particular, a family of n-pointed stable curves is a projective morphism of schemes.

Proof. Relative ampleness can be checked on geometric fibers by Proposition 4.4.24.
Since stability is also a condition on geometric fibers, the statement thus follows
from Proposition 5.3.3.
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Exercise 5.3.20 (not essential). Let (π : C → S, σi) be a family of n-pointed
prestable curves and let L = ωC/S(σ1 + · · ·+ σn). For k ≥ 2, show that (C → S, σi)
is semistable if and only if π∗π∗L→ L is surjective.

The following generalization of Properties of Families of Smooth Curves (5.1.16)
is proven in the same way using the very ampleness of ωC(p1 + · · · + pn)

⊗3 for a
stable n-pointed curve (C, pi) over an algebraically closed field (Exercise 5.3.15).

Proposition 5.3.21 (Properties of Families of Stable Curves). Let (C → S, σi)
be a family of n-pointed stable curves of genus g, and set L := ωC/S(

∑
i σi). If

k ≥ 3, then L⊗k is relatively very ample and π∗(L
⊗k) is a vector bundle of rank

(2k − 1)(g − 1) + kn.

Proposition 5.3.22 (Openness of Stability). Let (π : C → S, σi) be a family of
n-pointed curves. The locus of points s ∈ S such that (Cs, σi(s)) is stable (resp.,
semistable, prestable, nodal) is open.

Proof. We first claim that the nodal locus is open. When C is a scheme, this follows
from the Local Structure of Nodes (5.2.23): the locus C≤nod ⊂ C of points which
are smooth or nodal in their fiber is open, and therefore the locus of points s ∈ S
such that Cs has worse than nodal singularities is identified with the closed locus
π(C \ C≤nod) ⊂ S. In general, we can choose an étale cover C′ → C by a scheme and
use the fact that a point p ∈ C is a node in its fiber Cπ(p) if and only if a preimage
p′ ∈ C′ of p is a node in its fiber C′π(p).

Since the locus in S where σ1(s), . . . , σn(s) are distinct and smooth points in
Cs is open, the condition that Cs is prestable is open. For an n-pointed prestable
family (π : C → S, σi), the locus of points s ∈ S where Cs is semistable is identified
with the open locus over which π∗π∗L → L is surjective, where L := ωC/S(

∑
i σi)

(see Exercise 5.3.20).
To see that stability is an open condition in an n-pointed prestable (e.g.,

semistable) family, we provide two arguments. First, observe that Aut(C/S, σ1, . . . , σn)→
S is a finite type group scheme and that fiber dimension is upper semicontinuous
(B.1.8). Therefore, the locus of points s ∈ S such that Aut(Cs, σ1(s), . . . , σn(s)) is
finite is open. As this condition categorizes stability (Proposition 5.3.3(2)), this open
subset is identified with the stable locus. Second, by Openness of Ampleness (Propo-
sition 4.4.24), the locus of points s ∈ S such that ωC/S(

∑
i σi)|Cs

∼= ωCs
(
∑
i σi(s)) is

ample is open, and this condition also categorizes stability (Proposition 5.3.3(3)).

5.3.5 Deformation theory of stable curves

If C is a smooth curve over a field k, then every first-order deformation is locally
trivial (Proposition C.1.8) and the set Def(C) of isomorphism classes of first-order
deformations is naturally in bijection with H1(C, TC) (Proposition C.1.11). Moreover,
automorphisms, deformations, and obstructions of higher-order deformations are
classified by Hi(C, TC) for i = 0, 1, 2 (Proposition C.2.4). Nodal singularities,
on the other hand, have first-order deformations that are not locally trivial, e.g.,
Speck[x, y, ϵ]/(xy − ϵ) → Speck[ϵ]. In this section, we classify automorphisms,
deformations, and obstructions of nodal curves (Proposition 5.3.23), and describe
first-order deformations of a prestable curve in terms of the pointed normalization
and the singularities (Proposition 5.3.26).
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Proposition 5.3.23. Let A′ ↠ A be a surjection of artinian local rings with residue
field k. Suppose that J = ker(A′ → A) satisfies mA′J = 0. Let (C → SpecA, σi) be a
family of stable curves over A, and let (C, pi) be its base change to the residue field k.
There exists a deformation (C′ → SpecA′, σ′

i) of (C → SpecA, σi) over A′, every such
deformation has no non-trivial automorphisms, and the set of isomorphism classes
of all such deformations is a torsor under Ext1OC

(ΩC(
∑
i pi),OC ⊗k J). Moreover,

dimk Ext
1
OC

(ΩC(
∑
i pi),OC) = 3g − 3 + n.

Proof. Since nodal curves are generically smooth and local complete intersections, it
is a consequence of Proposition C.2.4 (unpointed case) and Exercise C.2.8 (pointed
case) that automorphisms, deformations, and obstructions of a nodal curve (C, pi)
are classified by ExtiOC

(ΩC(
∑
i pi),OC) for i = 0, 1, 2. It therefore suffices to show

that
dimk Ext

i
OC

(ΩC(
∑
i pi),OC) =

{
0 if i = 0, 2

3g − 3 + n if i = 1.

We may assume k = k, and for simplicity we handle the case that there are no
marked points. Let π : C̃ → C be the normalization, Σ = {q1, . . . , qs} ⊂ C be the set
of nodes of C, and Σ̃ = π−1(Σ). For Ext0OC

(ΩC ,OC), we will use the identification
HomOC̃

(ΩC̃(Σ̃),OC̃) ∼= HomOC
(ΩC ,OC) of Exercise 5.2.20. Since the pointed

normalization (C̃, Σ̃) is smooth and each pointed connected component is stable
(Exercise 5.3.5), the degree of the restriction of TC̃(−Σ̃) to each connected component
of C̃ is strictly negative. Thus, HomOC̃

(ΩC̃(Σ̃),OC̃) = H0(C̃, TC̃(−Σ̃)) = 0.
Since HomOC

(ΩC ,−) is the composition Γ◦H omOC
(ΩC ,−) of left exact functors,

there is a Grothendieck spectral sequence with E2-page

Ep,q2 = Hp(C,E xtqOC
(ΩC ,OC))

which converges to Extp+qOC
(ΩC ,OC) (c.f.,[Wei94, Thm. 5.8.3]). Since dimC = 1, we

have that Ep,q2 = 0 if p ≥ 2. We can thus draw the E2-page as:

The associated exact sequence of low-degree terms is

0→ H1(C,H omOC
(ΩC ,OC))︸ ︷︷ ︸

E1,0
2

→ Ext1OC
(ΩC ,OC)→ H0(C,E xt1OC

(ΩC ,OC))︸ ︷︷ ︸
E0,1

2

→ H0(C,E xt2OC
(ΩC ,OC))︸ ︷︷ ︸

E2,0
2

. (5.3.24)
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As ΩC is locally free away from the nodes, E xt1OC
(ΩC ,OC) and E xt2OC

(ΩC ,OC)
are zero-dimensional sheaves supported only at the nodes of C. It follows that that
E1,1

2 = H1(C,E xt1OC
(ΩC ,OC)) = 0 and

E0,1
2 = H0(C,E xt1OC

(ΩC ,OC)) =
⊕
j

Ext1ÔC,qj

(ΩÔC,qj
, ÔC,qj )

E0,2
2 = H0(C,E xt2OC

(ΩC ,OC)) =
⊕
j

Ext2ÔC,qj

(ΩÔC,qj
, ÔC,qj ).

To compute ExtiÔC,qj

(Ω1
ÔC,qj

, ÔC,qj ), write ÔC,qj = k[[x, y]]/(xy) and consider

the locally free resolution

0→ ÔC,qj

(
y
x

)
−−→ Ô⊕2

C,qj

(dx,dy)−−−−→ ΩÔC,qj
→ 0.

This shows that Ext1ÔC,qj

(ΩÔC,qj
, ÔC,qj ) = coker(Ô⊕2

C,qj

(x,y)−−−→ ÔC,qj ) = k and

Ext2ÔC,qj

(ΩÔC,qj
, ÔC,qj ) = 0. As E0,2

2 = E1,1
2 = E2,0

2 = 0, we have Ext2OC
(ΩC ,OC) =

0.
To compute Ext1(ΩC ,OC), we first observe that there are identifications

H1(C,H omOC
(ΩC ,OC)) ∼= H1(C, TC) ∼= H1(C̃, TC̃(−Σ̃)).

Indeed, the exact sequence (5.3.24) together with the identification of the first order
deformations of a nodal singularity A := k[[x, y]]/(xy) with Ext1A(ΩA, A) (Exer-
cise C.1.13) allows us to identify H1(C,H omOC

(ΩC ,OC)) with the group of locally
trivial deformations of C, which is classified by H1(C, TC) (Proposition C.1.11). For
the second equivalence, we will show that there is a bijective correspondence between
locally trivial first-order deformations of C and first-order deformations of the pointed
normalization (C̃, Σ̃), which by Exercise C.1.16 is classified by H1(C̃, TC̃(−Σ̃)). In-
deed, let q′j , q′′j ∈ C̃ be the preimages of the node qj ∈ C. If C ′ → Speck[ϵ] be a
locally trivial first-order deformation of C. Each node qj : Speck→ C extends to
a section q̃j : Spec k[ϵ] → C ′. The pointed normalization of C ′ along the sections
q̃j is a first-order deformation of the (possibly disconnected) pointed normalization
(C̃, q′j , q

′′
j ). This defines a map Def lt(C)→ Def(C̃, q′j , q

′′
j ). The inverse is provided by

gluing the sections of a first-order deformation (C̃ ′, σ′
j , σ

′′
j ) of (C̃, q′j , q′′j ) along nodes;

more precisely, the deformation C ′ is obtained as the Ferrand Pushout (B.4.1)

∐
j(Speck[ϵ]⨿ Speck[ϵ])

��

q′j⨿q
′′
j
// C̃ ′

��∐
j Speck[ϵ] // C ′,

which finishes the claim.
Finally, write C̃ =

∐ν
i=1 C̃i as a union of its connected components and define

Σ̃i = C̃i ∩ Σ̃. Using that ΩC̃i
is a line bundle, we compute using Serre Duality and

Riemann–Roch that

h1(C̃i, TC̃i
(−Σ̃i)) = h0(C̃i,Ω

⊗2

C̃i
(Σ̃i)) = 3g(C̃i)− 3 + |Σ̃i|.
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Thus, the exact sequence (5.3.24) implies that

dimk Ext
1
OC

(ΩC ,OC) = h1(C̃, TC̃(−Σ̃)) + |Σ|

=

ν∑
i=1

(
3g(C̃i)− 3 + |Σ̃i|

)
+ |Σ|

= 3

(
ν∑
i=1

g(C̃i)− ν + |Σ|

)
= 3g − 3,

where we have used the Genus Formula (5.2.11) g =
∑ν
i=1 g(C̃i)− ν + |Σ|+ 1. See

also [DM69, Prop. 1.5] and [ACG11, §11.3].

Remark 5.3.25 (Consequences of deformation theory). In Theorem 5.4.14, we will
use deformation theory to argue that Mg,n is a smooth Deligne–Mumford stack of
dimension 3g − 3 + n. Here is the central idea:

• Ext0: We have already seen that a stable curve (C, pi) has finitely many
automorphism (Proposition 5.3.3). The vanishing of Ext0 implies that an
n-pointed stable curve (C, pi) has no infinitesimal automorphisms, i.e., the
automorphism group scheme Aut(C, pi) is reduced, finite, and étale. This will
allow us to use the Characterization of Deligne–Mumford Stacks (3.6.4) to
conclude that Mg,n is Deligne–Mumford.

• Ext1: Since Ext1 parametrizes isomorphism classes of deformations of a stable
curve (C, pi) over a field k, it is identified with the Zariski tangent space of
Mg,n ×Z k at the k-point corresponding to (C, pi). The computation of Ext1

therefore implies thatMg,n has relative dimension 3g − 3 + n over SpecZ.

• Ext2: The vanishing of Ext2 implies that there are no obstructions to deforming
(C, pi), and thus the Infinitesimal Lifting Criterion (3.7.1) implies that Mg,n

is smooth over SpecZ.

The proof above shows more, namely it reveals an important relationship between
global and local deformations. We denote by Def(C, pi) (resp., Def lt(C, pi)) the
vector space of first-order deformations (resp., locally trivial first-order deformations)
of (C, pi).

Proposition 5.3.26 (Local-to-global Deformation Sequence). Let (C, pi) be an
n-pointed prestable curve over an algebraically closed field k, and let Σ ⊂ C be the
set of nodes. Let π : C̃ → C be the normalization and let Σ̃ = π−1(Σ). There is an
exact sequence

0→ Def lt(C, pi)→ Def(C, pi)→
⊕
q∈Σ

Def(ÔC,q)→ 0 (5.3.27)

and identifications

Def lt(C, pi) ∼= H1(C, TC) ∼= H1
(
C̃, TC̃(−

∑
i pi − Σ̃

) ∼= Def(C̃, pi, Σ̃)

Def(C, pi) ∼= Ext1OC
(ΩC(

∑
i pi),OC)

Def(ÔC,q) ∼= Ext1ÔC,q
(Ω1

ÔC,q
, ÔC,qj ) ∼= k, for q ∈ Σ.
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5.4 The stack of all curves
We show that the stack Mall

g,n of all n-pointed proper curves is algebraic (Theo-
rem 5.4.6) and that the open substack Mg,n ⊂ Mall

g,n of stable curves is a quasi-
compact Deligne–Mumford stack smooth over SpecZ of dimension 3g − 3 + n
(Theorem 5.4.14).

5.4.1 Families of arbitrary curves
Recall that a curve over a field k is a one-dimensional scheme of finite type over k,
and that the genus of a projective curve C is

g(C) = 1− χ(C,OC).

Curves may be non-pure dimensional, non-connected, and arbitrarily singular (e.g.,
non-reduced). We need to allow such curves as otherwise the stack of curves would
fail to be algebraic. For instance, a rational normal curve P1 ↪→ P3 degenerates in a
flat family a non-reduced curve C0, supported along a plane nodal cubic with an
embedded point at the node [Har77, Ex. 9.8.4], while C0 deforms in a flat family to
the disjoint union of a plane nodal cubic and a point in P3.

A family of n-pointed curves over a scheme S is a proper, flat, and finitely pre-
sented morphism C → S of algebraic spaces together with n sections σ1, . . . , σn : S →
C such that every fiber Cs is a curve. We say that a family (C → S, σi) has genus g
if every fiber Cs has genus g. Note that the marked points σi(s) may be non-distinct
and singular in a fiber Cs. For the stack of curves to be algebraic, it is necessary
that we allow the total family C to be an algebraic space (see Caution 5.3.18).

Proposition 5.4.1. If C → S is a family of curves over a scheme S, there exists
an étale cover S′ → S such that CS′ → S′ is projective.

Proof 1 (Local-to-global). We first reduce to the case that S is of finite type over
SpecZ. By Noetherian Approximation (B.3.2), we can write S = limλ∈Λ Sλ as a
limit of finitely presented Z-schemes with affine transition maps. By Descent of
Morphisms under Limits (B.3.3), there is an index 0 ∈ Λ and a finitely presented
morphism C0 → S0 such that C ∼= C0 ×S0

S, and moreover if we set Cλ = C0 ×S0
S

for λ ≥ 0, then C = limλ≥0 Cλ. By Descent of Properties of Morphisms under Limits
(B.3.7), Cλ → Sλ is a family of curves for λ≫ 0. Since projectivity is stable under
base change, after replacing S with Sλ, we can assume that S is of finite type over
SpecZ.

For a point s ∈ S, define Sn = SpecOS,s/mn+1
s and Ŝ = Spec ÔS,s. Consider

the cartesian diagram

Cs = C0

��

� � // C1

��

� � // · · · �
�

// Ĉ

��

// C

��

Specκ(s) = S0
� � // S1

� � // · · · �
�

// Ŝ // S.

Since separated one-dimensional algebraic spaces are schemes (Theorem 4.4.32) and
proper one-dimensional schemes are projective, there exists an ample line bundle
L0 on C0. By Proposition C.2.11, the obstruction to deforming a line bundle Ln
on Cn to Ln+1 on Cn+1 lives in H2(C0,OC0

⊗κ(s) mn). The obstruction vanishes
since dim C0 = 1, and there is a compatible sequence of line bundles Ln on Cn.
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By Grothendieck’s Existence Theorem (C.5.3), there exists a line bundle L̂ on Ĉ
extending Ln.

Applying Artin Approximation (Theorem B.5.18) to the functor

Sch/S → Sets, (T → S) 7→ Pic(CT ),

we obtain an étale neighborhood (S′, s′)→ (S, s) of s and a line bundle L′ on CS′

extending L0. Since L0 is ample and ampleness is an open condition in families
(Proposition B.2.10), after replacing S′ with an open neighborhood of s′, we can
arrange that L′ is relatively ample over S′.

Proof 2 (Explicitly extend an ample line bundle). Given an ample line bundle Ls on
a fiber Cs over a point s ∈ S, the idea here is to use geometric methods to find
an étale neighborhood S′ → S of s and a line bundle L on CS′ extending Ls. By
Openness of Ampleness (B.2.10), L will be ample after replacing S′ with an open
neighborhood. Using limit methods as above, one can first reduce to the case where
S is the spectrum of an strictly henselian local ring R. In this case, it suffices to
show that

Pic(C)→ Pic(Cs) (5.4.2)
is surjective.

Under the additional assumption that every fiber of C → S is generically reduced
(e.g., C → S is a prestable family), there is a straightforward argument. Choose
smooth points p1, . . . , pn ∈ Cs such that every irreducible one-dimensional component
of Cs contains at least one of the pi’s. Since the relative smooth locus Csm of C → S
surjects onto S, there are sections σi : S → Csm extending pi and the line bundle
L = OCS′ (σ1 + · · · + σn) extends the ample line bundle Ls := OCs

(p1 + · · · + pn).
See also [Ols16, Cor. 13.2.5].

In general, one can argue as follows. By applying Le Lemma de Gabber (4.5.1),
there exists a finite surjection C′ → C from a scheme. If we assume that (5.4.2) is
surjective, then C′ → S is projective and in particular C′ satisfies the Chevalley–
Kleiman property, i.e., every finite set of points is contained in an affine. By
Exercise 4.4.23, C also has the Chevalley–Kleiman property and in particular is a
scheme. We may therefore assume that C is a scheme.

Assuming that (5.4.2) is surjective when C is a reduced scheme, let L0 be an
ample line bundle on Cred. If I denotes the ideal sheaf defining Cred ↪→ C, then I
is nilpotent. By deformation theory, the obstruction to deformation a line bundle
from the nth nilpotent thickening to the n+1st thickening lies in H2(Cred, In) which
vanishes since Cred → SpecR is a curve. Therefore, there is a line bundle L on C
extending L0. We may therefore assume that C is a reduced scheme.

It suffices to show that a line bundle Ls = OCs
(−xs), for a closed point xs ∈ Cs,

extends to C. There is an affine open subscheme Us of xs and a nonzerodivisor
fs ∈ Γ(Us,OUs) with V (fs) = {xs}. Choose an open affine neighborhood U ⊂ C
such that U ∩ Cs = Us, and choose a global function f ∈ Γ(U,OU ) extending fs.
Then V (f) → S is quasi-finite and separated, and since S is the spectrum of a
henselian local ring, there is a decomposition V (f) = V1 ⨿ V2 such that V1 → S
finite and (V2)s = ∅ (Proposition B.5.9). After shrinking U , we can assume that
V (f)→ S is finite. Therefore V (f) is also closed in C and defines a cartier divisor
D ⊂ C such that OC(−D)|Cs = OCs(−xs). See also [SGA4 1

2 , IV.4.1] and [Hal13,
Lem. 1.2].

Remark 5.4.3. Raynaud gives an example of a family of smooth g = 1 curves over
an affine curve which is Zariski-locally projective but not projective [Ray70, XIII
3.1]. The examples in Caution 5.3.18 are not even Zariski-locally projective.
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5.4.2 Algebraicity of the stack of all curves
Definition 5.4.4. Let Mall

g,n be the prestack over Schét, where an object over a
scheme S is a family of curves C → S of genus g with n sections σ1, . . . , σn : S → C.
A morphism (C′ → S′, σ′

1, . . . , σ
′
n)→ (C → S, σ1, . . . , σn) is the data of a cartesian

diagram

C′

��

g
// C

��

S′ f
//

σ′
i

AA

S

σi

@@

such that g ◦ σ′
i = σi ◦ f .

As a stepping stone to the algebraicity of Mall
g,n, we show that the diagonal is

representable.

Lemma 5.4.5. The diagonal Mall
g,n →Mall

g,n ×Mall
g,n is representable.

Proof. For simplicity, we handle the case when n = 0. Let S be a scheme and
S →Mall

g ×Mall
g be a morphism corresponding to families of curves C1 → S and

C2 → S. Considering the cartesian diagram

IsomS(C1, C2) //

��

S

��

Mall
g

//Mall
g ×Mall

g ,

□

we need to show that IsomS(C1, C2) is an algebraic space. By Proposition 5.4.1,
there exists an étale cover S′ → S such that CS′ → S′ is projective. Since
IsomS(C1, C2) ×S S′ = IsomS′(C1,S′ , C2,S′), the morphism IsomS′(C1,S′ , C2,S′) →
IsomS(C1, C2) is surjective, étale, and representable. We may thus assume that C1
and C2 are projective over S.

Consider the inclusion of functors:

IsomS(C1, C2) ⊂ MorS(C1, C2) ⊂ HilbS(C1 ×S C2)

where the second inclusion assigns a morphism C1
α−→ C2 to the graph C1

Γα
↪→ C1×S C2

(and is similarly defined on T -valued points). Since the subfunctor of Mor(−, S),
parameterizing maps T → S where (C1)S → (C2)S is an isomorphism, is open
(Exercise 0.3.35), the first inclusion is a representable open immersion. Analyzing
the second inclusion, we see that a subscheme [Z ⊂ C1 ×S C2] ∈ HilbS(C1 ×S C2)(S)
is contained in the image of Mor(C1, C2)(S) if and only if the composition Z ↪→
C1 ×S C2

p1−→ C1 is an isomorphism (and similarly for T -valued points). Therefore,
Exercise 0.3.35 also establishes that the second inclusion is a representable open
immersion.

Theorem 5.4.6. Mall
g,n is an algebraic stack locally of finite type over SpecZ.

Proof. To see that Mall
g,n is a stack over Schét, suppose that {Si → S} is an étale

cover of schemes, (Ci → Si, σi,1, . . . , σi,n) is a family of n-pointed curves for each i,
and αij : Ci|Sij

→ Cj |Sij
is an isomorphism over Sij = Si ×S Sj compatible with the

sections and satisfying the cocycle condition. The quotient of the étale equivalence
relation ∐

i,j

Ci,j ⇒
∐
i

Ci

221



is an algebraic space C. Moreover, by étale descent of morphisms, there are sections
σ1, . . . , σn : S → C such that σk,i = σk|Si

. Thus (C → S, σk) is a n-pointed family of
curves that restricts to (Ci → Si, σi,k) for each i.

To see algebraicity, we claim that it suffices to handle the n = 0 case. Observe
that the map Mall

g,n+1 → Mall
g,n, defined by forgetting the last marked point, is

well-defined and representable: if S →Mall
g,n is a map corresponding to a n-pointed

family (C → S, σk), then S ×Mall
g,n
Mall

g,n+1
∼= C. (In fact, Mall

g,n+1 → Mall
g,n is

identified with the universal family; see Exercise 5.4.8.) Therefore, if U →Mall
g,n is

a smooth presentation by a scheme, then U ′ := U ×Mall
g,n
Mall

g,n+1 →Mall
g,n+1 is a

surjective, étale, and representable map from an algebraic space U ′. Choosing an
étale presentation V → U ′ by a scheme, the composition V → U ′ →Mall

g,n+1 is a
smooth presentation.

To show algebraicity of Mall
g , it suffices show that for every projective curve

X over a field k, there exists a smooth representable morphism U → Mall
g from

a scheme U of finite type over Z with [X] in the image. Choose an embedding
X ↪→ PN such that H1(X,OX(1)) = 0, and let P (t) be its Hilbert polynomial.
Let H := HilbP (PNZ /Z) be the Hilbert scheme, which is projective over Z by
Theorem 1.1.2. Considering the universal family

C �
�

//

��

PNH

~~

H,

there is a point h ∈ H(k) such that Ch = X as closed subschemes of PNk . Cohomology
and Base Change (A.6.8) implies that there exists an open neighborhood H ′ ⊂ H of
h such that for all s ∈ H ′, H1(Cs,OCs(1)) = 0. Consider the morphism

H ′ →Mall
g , [C ↪→ Pn] 7→ [C],

defined by forgetting the embedding. The representability of the diagonal ofMall
g

(Lemma 5.4.5) implies that H ′ →Mall
g is representable as every morphism from a

scheme is representable (Corollary 3.2.3).
We claim that H ′ →Mall

g is smooth. Even though we haven’t yet established
the algebraicity of Mall

g , we do know that H ′ →Mall
g is representable and this is

suffices to apply the Infinitesimal Lifting Criterion (3.7.1) to verify smoothness. To
this end, let A′ → A be a surjection of artinian local rings with residue field k such
that k = ker(A′ → A). For every embedded curve [C ⊂ PN ] ∈ H ′ and diagram

Speck

[C⊂PN
k ]

%%� � // SpecA
[C⊂PN

A ]
//

� _

��

H ′

��

SpecA′

[C′⊂PN
A′ ]

::

[C′]

//Mall
g ,

(5.4.7)

we need to show that there is a dotted arrow extending the diagram. This translates
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to the existence of a dotted arrow in the diagram

PNk PNA PNA′

��

C

��

� � //
, �

::

C

��

� � //
+ �

99

C′

��

, �

::

Speck �
�

// SpecA
� � // SpecA′.

The closed immersion C ↪→ PNA is defined by a very ample line bundle L on C and
sections s0, . . . , sN ∈ Γ(C, L). As the obstruction to deforming L to C′ lives in
H2(C,OC) = 0 (Proposition C.2.11), we may extend L to a line bundle L′ on C′. We
now argue that the sections si deform to sections s′i ∈ Γ(C′, L′). As ker(A′ → A) = k,
the ideal sheaf defining C ↪→ C′ is isomorphic to OC , and we have a short exact
sequence

0→ OC → OC′ → OC → 0.

Tensoring with L′ yields a short exact sequence

0→ L|C → L′ → L→ 0.

Since [C ⊂ PN ] ∈ H ′, we have that H1(C,L|C) = 0. Thus, H0(C′, L′)→ H0(C, L) is
surjective and we may lift the sections si to sections s′i. The sections si are base
point free, and Nakayama’s Lemma implies that so are the sections s′i. This gives
a morphism j′ : C′ → PNA′ restricting to C ↪→ PNA . The map j′ : C′ → PNA′ is proper
and quasi-finite, thus finite. To see that it is a closed immersion, it suffices to show
that OPN

A′
→ j′∗OC′ is surjective. The cokernel is a coherent sheaf whose restriction

to A vanishes, and thus Nakayama’s lemma implies that the cokernel vanishes.
See also [Hal13, Thm. 1.1] and [JHS11, Prop. 3.3]. This can also be established

using Artin’s Axioms; see Theorem C.7.7 and [SP, Tag 0D5A].

Exercise 5.4.8 (easy). Show that mapMall
g,n+1 →Mall

g,n forgetting the last marked
point is the universal family as defined in Definition 3.1.26. (We will see in Propo-
sition 5.6.8 that Mg,n+1 is also the universal family of Mg,n, but this is a more
remarkable fact since an n-pointed stable curve can become unstable if a marked
point is forgotten.)

Exercise 5.4.9 (technical). Show that Mall
g,n has quasi-compact and separated

diagonal, and in particularMall
g,n is quasi-separated.

Remark 5.4.10. The moduli stacks of varieties of higher dimension are not algebraic.
For instance, the stack parameterizing abstract K3 surfaces is not algebraic (see
Example C.7.15); on the other hand, there is an analytic stack parameterizing K3
surfaces (see [BHPV04, §VII.12] ) and an algebraic stack parameterizing polarized
K3 surfaces (i.e., K3 surfaces with a primitive ample line bundle).

Exercise 5.4.11 (good practice). Show that the stack P, parameterizing a family
of curves C → S and a line bundle L on C relatively ample over S, is algebraic, and
that the natural map P →Mall

g is smooth and representable.
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5.4.3 Algebraicity and boundedness of Mg,n

Consider the inclusions of prestacks

Mg,n ⊂Mg,n ⊂Mss
g,n ⊂Mpre

g,n ⊂M≤nodal
g,n ⊂Mall

g,n, (5.4.12)

where Mg,n (resp., Mss
g,n, Mpre

g,n, and M≤nodal
g,n ) denotes the full subcategory of

Mall
g,n consisting of n-pointed families (C → S, σ1, . . . , σn) of stable curves (resp.,

semistable, prestable, and nodal curves).

Corollary 5.4.13. The sequence of inclusions in (5.4.12) are open immersions,
and each prestack is an algebraic stack locally of finite type over SpecZ.

Proof. Theorem 5.4.6 establishes thatMall
g,n is algebraic and locally of finite type.

Openness of the stable (resp., semistabile, prestable, nodal) locus was proved in
Proposition 5.3.22, and this implies that each inclusion is an open immersion.

At this point, we know the following properties of Mg,n.

Theorem 5.4.14. Assuming that 2g − 2 + n > 0, the stack Mg,n is a non-empty,
quasi-compact, and Deligne–Mumford stack smooth over SpecZ such thatMg,n×Z k
has pure dimension 3g − 3 + n for every field k.

Proof. By Corollary 5.4.13, Mg,n is an algebraic stack of finite type over SpecZ.
As there are smooth curves of any genus (Exercise 5.1.7),Mg,n is non-empty. For
the boundedness ofMg,n (i.e., finite typeness or equivalently quasi-compactness),
we will appeal to the fact that if (C, p1, . . . , pn) is an n-pointed stable curve over a
field k, then L := (ωC/k(p1 + · · · pn)

)⊗3 is very ample (Exercise 5.3.15). Let P (t)
be the Hilbert polynomial of C ↪→ PNk embedded via L; this is independent of
[C, pi] ∈Mg,n. Consider the closed subscheme

H ⊂ HilbP (PNZ /Z)× (PN )n

parameterizing pairs (C ↪→ PN , p1, . . . , pn) such that pi ∈ C. Since HilbP (PNZ /Z) is
a projective scheme (Theorem 1.1.2) and in particular quasi-compact, so is H. The
image of the forgetful morphism

H →Mall
g,n [C ↪→ PN , p1, . . . , pn] 7→ [C, p1, . . . , pn]

contains Mg,n, and we conclude thatMg,n is quasi-compact.
To see the final assertions, we invoke each part of Proposition 5.3.23 characterizing

automorphisms, deformations, and obstructions of stable curve. This is analogous
to our proof of Proposition 3.7.6 asserting the same properties for the stack Mg

of smooth curves. Let (C, pi) be an n-pointed stable curve of genus g. Since
Ext0OC

(ΩC(
∑
i pi),OC) = 0, the Lie algebra of Aut(C, pi) is trivial and Aut(C, pi)

is a finite and reduced group scheme. By the Characterization of Deligne–Mumford
stacks (3.6.4),Mg,n is Deligne–Mumford. Since Ext2OC

(ΩC(
∑
i pi),OC) = 0, there

are no obstructions to deforming stable curves, and the Infinitesimal Lifting Criterion
(3.7.1) implies thatMg,n is smooth over SpecZ. Finally, since the Zariski tangent
space of [C, pi] ∈Mg,n ×Z k is bijective to Ext1OC

(ΩC(
∑
i pi),OC) and this vector

space has dimension 3g − 3 + n, we conclude that Mg,n → SpecZ has relative
dimension 3g − 3 + n.

Exercise 5.4.15. Show thatMg is algebraic by explicitly presenting it as a quotient
stack of a locally closed subscheme of the Hilbert scheme.
Hint: Follow the proof of Theorem 3.1.17.
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Exercise 5.4.16. Show that each of the stacksMss
g,n,Mpre

g,n,M≤nodal
g,n , andMall

g,n

are not quasi-compact.
Hint: Use the presence of rational bridges of arbitrary length.

Remark 5.4.17. There are various other open substacks ofMall
g parameterizing

particular classes of curves such as

MDM
g = {curves with finite, reduced automorphism group} [SP,Tag 0DST]

MCM
g = {Cohen–Macaulay curves} [SP,Tag 0E0H]

Mgeom-red
g = {geometrically reduced curves} [SP,Tag 0E0F]

MGor
g = {Gorenstein curves} [SP,Tag 0E1L]

Mlci
g = {local complete intersection curves} [SP,Tag 0E0J]

Miso
g = {curves with isolated singularities} [SP,Tag 0E0K].

The open substack MDM
g is identified with the maximal open Deligne–Mumford

substack ofMall
g . For any g, there are curves inMall

g \MDM
g with positive dimensional

and non-reduced automorphism group.
WhileMall

g,n is not smooth over SpecZ, the open substackMlci
g ∩Miso

g is smooth
[SP, Tag 0DZX]. The open substack Mg ⊂Mall

g is not dense: Mumford provided
examples of reduced, irreducible proper curves that do not deform to a smooth curve
[Mum75b]. However, we show in Proposition 5.7.21 thatMg is dense inMg, and it
is also true thatMg is dense inMlci

g ∩Miso
g [SP, Tag 0E86].

Exercise 5.4.18 (not important). Show that Mall
g → SpecZ satisfies the existence

part of the valuative criterion for properness but that it is not universally closed.
Hint: Consider a closed substack of Mall

g × A1
Z consisting of the disjoint union of

([Cn], n) over positive integers n, where Cn is the nodal union of a genus g curve
and a tree of P1 with n nodes. The argument should also show that Mpre

g is not
universally closed over any field.

5.5 Stable reduction and the properness of Mg,n

In this section, we discuss Deligne and Mumford’s celebrated theorem that Mg,n is
proper [DM69]. The key ingredient is the stable reduction theorem.

Theorem 5.5.1 (Stable Reduction). Let R be a DVR with K = Frac(R), and set
∆ = SpecR and ∆∗ = SpecK. If (C∗ → ∆∗, σ∗

1 , . . . , σ
∗
n) is a family of n-pointed

stable curves, then there exists an extension of DVRs R → R′ and an n-pointed
family (C → ∆′ = SpecR′, σ1, . . . , σn) of stable curves extending the base change of
(C∗ → ∆∗, σ∗

1 , . . . , σ
∗
n) to K ′ = FracR′.

While the theorem holds for any DVR, we give a complete proof in this section
only in characteristic 0, following [KKMS73, Ch. II], [HM98, §3.C], and [ACG11,
§X.4].

Remark 5.5.2. In characteristic 0, the stable reduction theorem was first stated in
[MM64, Lem. A] with a proof given in [May69]. The general version first appeared
in Deligne and Mumford’s seminar paper [DM69]. Their proof relied on semistable
reduction for abelian varieties, which had been established in [SGA7-I, SGA7-II], by
embedding the generic fiber C∗ into its Jacobian. Gieseker offerered a different proof
using GIT [Gie82]; as expressed in [SP, Tag 0C2Q], “this is quite an amazing feat: it
seems somewhat counterintuitive that one can prove such a result without ever truly
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studying families of curves over a positive dimensional base.” Later arguments due
to Artin–Winters [AW71] and Saito [Sai87] follow roughly the same strategy as we
provide but require additional techniques in positive characteristic; see Remark 5.5.5.

5.5.1 Proof of Stable Reduction

Throughout, we use the notation that ∆ = SpecR for a DVR R defined over Q,
∆∗ = SpecK where K = Frac(R), t ∈ R is a uniformizer, and 0 = (t) ∈ SpecR is the
unique closed point. We are given an n-pointed stable family (C∗ → ∆∗, σ∗

1 , . . . , σ
∗
n)

of curves of genus g.

Proof strategy

① Reduce to the case where C∗ → ∆∗ is smooth.
② Construct a flat extension C → ∆.
③ Replace C with a resolution of singularities such that the reduced

central fiber (C0)red is nodal.
④ Take a ramified base extension ∆′ → ∆ such that the normalization of
C ×∆ ∆ has reduced central fiber.

⑤ Arrange that the marked points are smooth and distinct.
⑥ Contract rational tails and bridges in the central fiber.

It may be useful to keep examples in mind while reading the proof. For a very
simple example, consider the family of elliptic curves (C∗ → ∆∗, σ∗) defined by the
equation

y2z = x(x− z)(x− tz) (5.5.3)

in P2×∆∗ and the section σ∗(t) = [0, 1, 0]. In this case, the stable limit is transparent
from our description of C∗: the family (C → ∆, σ), where C ⊂ P2 ×∆ is defined by
(5.5.3) and σ(t) = [0, 1, 0], is a stable family extending (C∗ → ∆∗, σ∗); see Figure 0.18.
The stable limit C0 is the nodal cubic y2z = x2(x − z). Additional examples are
given in the proof, and more involved examples are described in §5.5.2.

Proof of Stable Reduction (5.5.1) in characteristic 0.

Step 1: Reduce to the case where C∗ → ∆∗ is smooth. If C∗ has δ nodes, then after
replacing K and R with extensions, we can arrange that the jth node is given by a
K-point n∗j ∈ C∗ whose preimage under the normalization C̃∗ → C∗ consists of two K-
points q∗j and r∗j . We call (C̃∗ → ∆∗, σ∗

i , q
∗
j , r

∗
j ) the pointed normalization, and we let

(C̃∗k → ∆∗, q∗kl) be the pointed connected components, where {q∗kl} = {σ∗
i , q

∗
j , r

∗
j }∩C̃∗k .

Since C∗ is stable, each (C̃∗k → ∆∗, q∗kl) is also stable (Exercise 5.3.5).
By induction on the genus g, we can apply stable reduction to each (C̃∗k → ∆∗, q∗kl).

After replacing K and R with extensions, this gives stable families (C̃k → ∆, qkl)

extending (C̃∗k → ∆∗, q∗kl). For each j = 1, . . . , δ, we use a Ferrand Pushout (B.4.1)
to glue the sections qil and qi′l′ corresponding to q∗j and r∗j . By the étale local
structure of smooth morphisms (Proposition A.3.4) and the étale local nature of
pushouts (Proposition B.4.8(3)), there is an étale neighborhood of the pushout of
the form
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SpecR ⨿ SpecR
� � 0⨿0 //

��

A1
R ⨿ A1

R

��

SpecR // SpecA,

where
A = R

∐
R×R

R[x]×R[y]

= {(f, g) ∈ R[x]×R[y] | f(0) = g(0)}
= R[x, y]/(xy).

The sections qil and qi′l′ are glued to a node. This produces an n-pointed family
(C → ∆, σi) of nodal curves with δ additional sections picking out the nodes. The
pointed normalization of the central fiber C0 is the disjoint union of the central fibers
(C̃k)0, and it follows from Exercise 5.3.5 that (C0, σi(0)) is stable. We conclude that
(C → ∆, σi) is a stable family.

111

normalizealong
desandextend

q

blowup

gluefandi

E
F

d

I q
d Y

111
I

?

 

 

 

 

 

 

?

Figure 5.8: (Step 1) Consider a family C∗ → ∆∗ of stable curves with a single node,
e.g., a node degenerating to a cusp locally defined by y2 = x3 + tx2. The stable
limit is obtained by normalizing along the nodes, extending the 2-pointed family,
blowing up where the two sections q and r intersect, and then gluing the proper
transforms q̃ and r̃. If the normalization C̃∗ = C ×∆∗ is a constant family, then
the stable limit is the nodal union of C and a rational nodal curve.

Alternatively, using that Mg,n ⊂Mg,n is dense (Theorem 5.7.23) Exercise 4.5.4
asserts that it suffices to check the valuative criterion for properness under the
condition that ∆∗ →Mg,n factors through Mg,n.

Step 2: Find a flat extension (C → ∆, σi).

Using that
(
ωC∗/∆∗(

∑
i σ

∗
i )
)⊗3 is very ample (Proposition 5.3.21), we may embed

C∗ as a closed subscheme of PN ×∆∗. By the Flatness Criterion over Smooth Curves
(A.2.2), the scheme-theoretic image C of C∗ ↪→ PN × ∆ is flat over ∆ since the
closure doesn’t introduce any embedded points in the central fiber. This gives a
family of curves C → ∆ extending C∗ → ∆∗. (This is the same argument we used in
Proposition 1.4.2 to show the properness of the Hilbert scheme using the valuative
criterion.) The sections σ∗

i : ∆
∗ → C∗ extend to sections σi : ∆→ C by the Valuative

Criterion of Properness (A.4.5).
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Figure 5.9: (Step 2) The closure C := C∗ is a flat family over ∆. The central fiber
C0 may be generically non-reduced with embedded points; the numbers 3, 2, and
7 indicate the multiplicity of the irreducible components. The marked points
σi(0) ∈ C0 may be singular and non-distinct.

Step 3: Replace C with a resolution of singularities to arrange that the reduced central
fiber (C0)red is nodal.

By combining Existence of Resolutions (B.2.1) and Existence of Embedded
Resolutions (B.2.3), there is a projective birational morphism C̃ → C from a regular
scheme such that C̃ → C is an isomorphism over ∆∗ and such that the central fiber
C̃0 has set-theoretic normal crossings, i.e., (C̃0)red is nodal. By the Flatness Criterion
over Smooth Curves (A.2.2), C̃ → ∆ is flat. We then replace C with C̃ and the
sections σi with their strict transform.
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Figure 5.10: (Step 3) Suppose C → ∆ = k[t](t) is a generically smooth family
degenerating to a cusp y2 = x3 in the central fiber such that the local equation
in C around the singular point is y2 = x3+ t. We repeatedly blow up the singular
point in the central fiber using local coordinates x, y on the original surface and
x̃, ỹ on the new surface, where in the first chart of the blowup x̃ = x, ỹ = y/x
with exceptional divisor x̃ = 0, while in the second chart, x̃ = x/y, ỹ = y with
exceptional divisor ỹ = 0.

➝ For the first blowup, the preimage of the singularity in the first chart is
given by x̃2(ỹ2− x̃) and in the second chart by ỹ2(1− x̃3ỹ). The exceptional
divisor E1 has multiplicity 2. The normalization C̃ of C has genus g − 1.

➝ The second blowup has charts defined by x̃3(x̃ỹ3 − 1) and x̃2ỹ3(ỹ− x̃), and
the new exceptional divisor E2 has multiplicity 3.

➝ The final blowup has charts x̃6ỹ3(ỹ − 1) and x̃2ỹ6(1 − x̃), and the new
exceptional divisor E3 has multiplicity 6. The central fiber is non-reduced
and its reduction is nodal.
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Step 4: Take a ramified base extension ∆′ = SpecR′ → SpecR = ∆ such that the
central fiber of the normalization of C ×∆∆′ becomes reduced and nodal. This is the
most difficult step and is where the characteristic 0 assumption is used. The argument
can be viewed as a version of Abhyankar’s lemma on tame ramification (see [SGA1,
§XIII.5] and [SP, Tag 0EXT]). Since C is regular and t ∈ R is a nonzerodivisor, the
central fiber C0 is Cohen–Macaulay, and thus has no embedded points. On the other
hand, (C0)red is an effective Cartier divisor and thus is locally cut out by a single
equation. For every p ∈ C0, we can find an étale neighborhood and local coordinates
x, y such that the map C → ∆ is given explicitly by:

– if p ∈ (C0)red is a smooth point, then (x, y) 7→ xa and the multiplicity of the
irreducible component of C0 containing p is a, and

– if p ∈ (C0)red is a node , then (x, y) 7→ xayb and the two components of C0
containing p have multiplicities a and b. If p ∈ (C0)red is a non-separating node
(i.e., C0 \ p is connected), then a = b.

LetN be the least common multiple of the multiplicities of the irreducible components
of C0. After replacing R with an extension, we can assume that R contains a primitive
Nth root of unity ρ. Let ∆′ = SpecR′ → SpecR = ∆ be a totally ramified extension
of DVRs of degree N (i.e., the image of the uniformizer t ∈ R is t′N for uniformizer
t′ ∈ R′). Let C′ := C ×∆ ∆′ and p′ ∈ C′ be the unique preimage of p, and let C̃′ be
the normalization of C′.

– If p ∈ (C0)red is smooth, then C′ is defined étale locally by xa = tN near p′.
Since R is characteristic 0, there is a factorization

xa − tN =

a−1∏
i=0

(x− (ρit)N/a)

into distinct factors. (If the characteristic were positive and divided N , then C′
would be non-reduced.) In the normalization C̃′, the point p has a preimages,
each etale locally defined by x = ρitN/a. Each preimage is a smooth point in
both the total family C̃′ and the central fiber C̃′0.

– If p ∈ (C0)red is a node, then C′ is defined étale locally by xayb = tN near
p′. Let d = gcd(a, b). If d > 1, there is a factorization (again using the
characteristic 0 hypothesis)

xayb − tN =

d−1∏
i=0

(xa/dyb/d − (ρit)N/d).

Étale locally near p, the normalization factors as C̃′ → C′′ → C′ such that p has
d preimages in C′′, each described by xa/dyb/d − (ρit)N/d. Unless d = a = b,
the central fiber C′′0 is still non-reduced. The reduction (C′′0 )red is nodal at each
preimage of p but now the multiplicities of the two branches are relatively
prime.

Therefore, we can assume that gcd(a, b) = 1. After possibly exchanging x and
y, we can write 1 = αa− βb for positive integers α and β. The normalization
of the integral domain R[x, y]/(xayb − tN ) is given by

R[x, y]/(xayb − tN ) ↪→ R[u, v]/(uv − tN/(ab)), x 7→ ub

y 7→ va,
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where u = tαN/b/(xβyα) and v = xβyα/tβN/a. The central fiber C̃′0 is reduced
with a node at a unique preimage of p. If N = ab, C̃′ is smooth at this preimage;
otherwise C̃′ has an An−1-singularity where n = N/(ab).

We have arranged the central fiber to be reduced and nodal, but we have
also introduced An−1-singularities (i.e., xy − tn) into the total family. Repeatedly
blowing up each An−1-singularity replaces the singularity with the nodal union of
⌊n2 ⌋ smooth rational curves; this explicitly describes the minimal resolution of C as
in Theorem B.2.2. We now replace C with the minimal resolution of C̃′ so that the
total family C is regular and the central fiber C0 is reduced and nodal.
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Figure 5.11: (Step 4) Continuing from Figure 5.10, we base change C → ∆ =
Speck[t](t) by ∆′ = Speck[t](t) → Speck[t](t) = ∆, given by t 7→ t6, and then
normalize. The central fiber is now reduced and nodal. Each preimage of E1 and
E2 are smooth rational curves, while the preimage E′′

3 of E3 is a genus 1 curve.
To understand this description, it is convenient to break the base change into the
composition of the normalized base change by t 7→ t2 and the normalized base
change by t 7→ t3, which we describe in Example 5.5.8.

Step 5: Arrange that the marked points σi(0) ∈ C0 are smooth and distinct.
After repeatedly blowing up closed points in the central fiber C0 where the

marked points σi(0) are singular or collide, the strict transform of the sections
become distinct and smooth points of the central fiber. After replacing C with the
blowup and the sections σi with their strict transform, we have a prestable family
(C → ∆, σi) with regular total family.

STEP 5

blowup blowup contracte

fB

E E

Figure 5.12: (Step 5) Consider a constant family C ×∆→ ∆ with sections locally
defined by (σ1, σ2, σ3) = (t2,−t2, 4t). After blowing up twice, the sections become
disjoint but the central fiber is not stable as the exceptional component E1

∼= P1

only has one node and one marked point. As explained in the next step, the
stable limit is obtained by contracting the rational bridge E1.

Step 6: Contract rational tails and bridges in the central fiber.
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The central fiber C0 of the prestable family (C → ∆, σi) will be stable, unless
there are rational tails and bridges (see Definition 5.3.10). If E ⊂ C0 is a rational tail
or rational bridge with a marked point, then E2 = −1, while if E is a rational bridge
without a marked point, then E2 = −2 (see Remark 5.3.13). By Exercise 5.3.14,
contracting each rational tail and bridge yields a morphism C → C′ of families of
nodal curves over ∆ . Letting σ′

i : ∆
σi−→ C → C′, then n-pointed family (C′ → ∆, σ′

i)
is now stable! Alternatively, we can construct the stable family (C′ → ∆, σ′

i) using
the Stable Contraction of a Prestable Family (5.6.4).
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Figure 5.13: (Step 6) Continuing from Figure 5.11, the contraction of each rational
tail in red produces a stable family. The central fiber is the nodal union of the
normalization C̃ of the original central fiber (with a cusp) and an elliptic curve
E.

If we proceed with the six-step procedure above, but stop in Step 6 after contract-
ing only rational tails (but not raitonal bridges), then Castelnuovo’s Contraction
Theorem (B.2.6) implies that the total family is still regular. This important variant
is called semistable reduction.

Theorem 5.5.4 (Semistable Reduction). Let R be a DVR with K = Frac(R), and
set ∆ = SpecR and ∆∗ = SpecK. If (C∗ → ∆∗, s∗1, . . . , s

∗
n) is a family of n-pointed

smooth curves, then there exists an extension of DVRs R → R′ and an n-pointed
family (C → ∆′ = SpecR′, s1, . . . , sn) of semistable curves with regular total family
C extending the base change of (C∗ → ∆∗, s∗1, . . . , s

∗
n) to K ′ = FracR′.

Remark 5.5.5 (Proof in characteristic p). Our proof of stable reduction fails in
Step 4 if the residue field of R has characteristic p > 0 and any of the multiplicities
of the components of the central fiber are divisible by p. A different approach is
needed in positive characteristic. After resolving the singularities of C and arranging
that (C0)red is nodal (as we do in Step 3 above), Artin and Winters arrange that the
l-torsion of Pic(C∗K′) is isomorphic to (Z/lZ)2g for a sufficiently large prime l ̸= p,
and they show that this magically forces the central fiber to be reduced and nodal!
See [AW71], [Liu02, §10.4], and or [SP, Tag 0C2P].

Example 5.5.6 (Base changes are necessary). The stable reduction of the cusp
worked out in Figures 5.10, 5.11 and 5.13 demonstrates the necessity of allowing
for extensions of the DVR. Indeed, after Step 3, we have a generically smooth
family C → ∆ with a regular total family C and with a non-reduced central fiber C0.
Suppose that there is a stable family C′ → ∆ such that C|∆∗ ∼= C′|∆∗ . After resolving
the An-singularities in C′, there is semistable family C′′ → ∆ with C′′ regular and
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C′′0 semistable (and in particular reduced). Since C and C′′ are birational, by taking
a resolution of singularities of the closure of the graph of a rational map C 99K C′,
there is a regular two-dimensional scheme D and birational morphisms D → C and
D → C′′ over ∆, each which factors as a composition of blowups by Factorization of
Birational Maps (B.2.4). However, any blowup of C will have a non-reduced central
fiber, while any blowup of C′′ will have a reduced central fiber, and this yields a
contradiction.

5.5.2 Explicit stable reduction
In applications to the geometry of curves, it is often essential to explicitly describe
the stable limit. While the proof of Stable Reduction offers a strategy, additional
care is needed to get an explicit handle. The main challenge is determining the
normalization C̃ ′ of the base change C′ = C ×∆ ∆′ by a totally ramified extension
∆′ → ∆ in Step 4. It is often simpler to factor ∆′ → ∆ as a composition of prime
order base changes, because it is straightforward to determine the ramification locus
of prime order normalized base changes C̃′ → C.

Proposition 5.5.7. Let p be a prime integer. Let C → ∆ = SpecR be a generically
smooth family of curves, where R is a DVR of characteristic 0 containing a pth root
of unity. Assume that the reduced central fiber (C0)red is nodal. As a divisor on C,
we may write C0 =

∑
miDi where mi is the multiplicity of the irreducible component

Di. Let ∆′ = SpecR′ → SpecR = ∆ be a totally unramified extension of degree
p, and set C′ := C ×∆ ∆′ with normalization C̃′. Then C̃′ → C is ramified over a
divisor Di if and only if mi is relatively prime to p. If q′ ∈ C̃′0 is a preimage of a
point q ∈ Di which is a smooth point of (C0)red, then the multiplicity of C̃′0 around
q′ is mi/p if p divides mi and mi otherwise.

Proof. The point q ∈ C has an étale neighborhood with local coordinates x and y
such that C → ∆ is described as (x, y) 7→ xmi . The base change C′ is described étale
locally by Speck[x, y, t]/(xmi − tp) near q′. If p divides mi,

xmi − tp =
p−1∏
i=0

(xmi/p − ρit), where ρ is a pth root of unity,

and its normalization has p smooth components. The central fiber C̃′0 has multiplicity
mi/p near each of the p preimages of q. If mi = pm′

i + r with r ̸= 0, then
k[x, y, t]/(xmi − tp) is an integral domain with normalization

k[x, y, t′]/(xr − t′p), where t′ = t/xm
′
i .

Thus, C̃′ → C is ramified at q. The central fiber C̃′ → ∆ is defined by t = t′xm
′
i and

the multiplicity at the unique preimage of q can be computed as dimk k[x, t′]/(xr −
t′p, t′xm

′
i). Since the union of t′ixj for i = 0, . . . , p − 1 and j = 0, . . . ,m′

i − 1 and
xm

′
i , . . . , xm

′
i+r−1 forms a basis, the multiplicity is mi.

Example 5.5.8 (Stable reduction of a cusp). Let C → ∆ = Speck[t](t) be a
generically smooth family degenerating to a cusp y2 = x3 in the central fiber C := C0
such that the local equation in C around the singular point is y2 = x3 + t. As
described in Figure 5.10, after three blowups of C, we obtain a family C′ → ∆ such
that (C′0)red is the nodal union of the normalization C̃, which has multiplicity 1, and
three exceptional components E1, E2, and E3, which have multiplicities 2, 3, and 6.
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Figure 5.14: The numbers indicate the multiplicity of a component; if no number is
given, the multiplicity is 1. The thickened components indicate the ramification
locus under the normalized base change.

Using Proposition 5.5.7, the ramification locus of the first normalized base change
t 7→ t2 is the union of C̃ and E2. The preimage of E1 is the disjoint union E′

1 ⨿E′′
1

of two smooth rational curves. The preimage E′
3 of E3 is a curve which is a two-

to-one cover of E3 = P1 ramified at two points, and thus E3 = P1 but now with
multiplicity 2. For the second normalized base change, the ramification locus is
C̃ ⨿E′

1 ⨿E′′
1 (again by Proposition 5.5.7). The preimage of E2 is the union of three

smooth rational curves, while the preimage E′′
3 of E′

3 is a smooth curve which is a
three-to-one cover of E′

3 = P1 ramified at three points, each with ramification index
two. The genus gE′′

3
of E′′

3 can be computed to be 1 using Riemann–Hurwitz (5.7.3):
2gE′′

3
− 2 = 3(2(0)− 2) + 3(2) = 0. The final step contracts the five rational tails as

pictured in Figure 5.13, and the stable limit is the nodal union C̃ ∪ E′′
3 of a smooth

genus g − 1 curve C̃ (the normalization of the original central fiber) and a genus 1
curve.

Remark 5.5.9. Precisely which elliptic curve E′′
3 appears in the stable limit and

how does the stable limit depend on the choice of degeneration? The deformation
space of a cusp is y2 = x3 + a1(t)x+ a0(t) and, in other words, we are asking how
the stable limit depends on ai(t). For instance, what happens when the total family
of the surface is singular (e.g., y2 = x2k+1 + t2)? These questions are addressed in
detail in [HM98, §3.C].

Exercise 5.5.10 (good practice).
(a) Find the stable limit of a generically smooth family degenerating to a tacnode

y2 = x4.
(b) More generally, show that the stable limit of a generically smooth family

degenerating to a A2k singularity y2 = x2k+1 (resp., y2 = x2k+2) is the nodal
union of a genus g − k curve and a genus k hyperelliptic curve attached
at a Weierstrass point (resp., at two Weierstrass conjugate points). Here a
Weierstrass point of a hyperelliptic curve H is a ramification point under the
double cover H → P1, while two points are Weierstrass conjugate points if
their union is a fiber of H → P1.

Example 5.5.11 (Stable reduction of a double conic). Consider a generically smooth
family C → ∆ = Speck[t](t), where C ⊂ P2 ×∆ is defined by F 2 + tG where F is
a smooth conic and G is a smooth quartic. The central fiber is the double conic
defined by F 2. The total space has an A1-singularity with local equation x2 + yt
at each of the 8 intersection points p1, . . . , p8 of F ∩G. Each σi is resolved with a
single blowup with an exceptional divisor Ei = P1 of multiplicity 1. This gives a
family C2 → ∆ where the central fiber is 2C +

∑
iEi as a divisor. We then take the
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normalization C3 of the base change C2 ×∆ ∆′ by the ramified cover ∆′ → ∆, t 7→ t2.
By Proposition 5.5.7, C3 → C2 is ramified over the disjoint union of the Ei’s. The
preimage of C is a two-to-one cover of P1 branched over the 8 points σi, and hence
is smooth hyperelliptic genus 3 curve.

Expect
C E Es E Es E Es

Ei
y p 3blowups

E Eat É Eat
Ez

g

É
2 E

Ea
E

3 3 y
genus

Double conic

CVLF C H H

8blowups E E't E contractEi

Es Es

Z Z

Z

Figure 5.15: Stable reduction of a generically smooth family F 2 + tG degenerating
to a double conic C = V (F 2).

Meta-exercise 5.5.12. Read the exposition of [HM98, §3.C] and do the exercises.

5.5.3 Properness of Mg,n

Stable Reduction (5.5.1) implies the existence part of the valuative criterion for
properness for Mg,n. We must also show that the stable limit is unique, i.e., Mg,n

is separated.

Proposition 5.5.13. Let R be a DVR with K = Frac(R), and set ∆ = SpecR
and ∆∗ = SpecK. If (C → ∆, σ1, . . . , σn) and (D → ∆, τ1, . . . , τn) are families of
n-pointed stable curves, then every isomorphism α∗ : C ×∆ ∆∗ → D ×∆ ∆∗ over ∆∗

compatible with the restriction of the sections (i.e., τ∗i = α∗ ◦σ∗
i ) extends to a unique

isomorphism α : C → D over ∆ with τi = α ◦ σi.

Proof. For simplicity, we handle the case without marked points (n = 0). We claim
that we can reduce to the case where the generic fiber C∗ ∼= D∗ is smooth over ∆∗,
where C∗ := C ×∆ ∆∗. We will employ the same strategy as in the reduction to
the generically smooth case in Step 1 of the proof of Stable Reduction (5.5.1). By
flat descent, it suffices to construct α : C → D after an extension of DVRs ∆′ → ∆;
indeed, an isomorphism α′ : C ×∆ ∆′ → D ×∆ ∆′ will satisfy the cocycle condition
(by the separatedness of D → ∆) and thus descend to an isomorphism α. Therefore,
we may assume that each node of C∗ ∼= D∗ is given by a K-point whose preimage
under the normalization consists of two K-points. Each node extends to sections
∆→ C and ∆→ D. The pointed normalizations C̃ and D̃ are each disjoint unions of
pointed stable families, and we can use induction on the genus to extend the generic
isomorphism to an isomorphism C̃ → D̃ which descends to an isomorphism C → D.
Alternatively, using thatMg,n ⊂Mg,n is dense (proven later in Theorem 5.7.23), it
suffices to check the valuative criterion for separatedness under the condition that
∆∗ →Mg,n factors through Mg,n (Exercise 4.5.4).

Let C̃ → C and D̃ → D be the minimal resolutions (Theorem B.2.2). Let Γ be
the closure of the image of (id, α∗) : C∗ → C̃ ×∆ D̃, and let Γ̃ → Γ be its minimal
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resolution. This gives a commutative diagram

Γ̃

�� ��

C̃

��

D̃

��

C

  

D

~~

∆.

(5.5.14)

We will give two arguments that there is an isomorphism α : C → D extending
α∗. First, the local structure of C (resp., D) around a node in the central fiber is an
An singularity of the form xy = tn+1, where t ∈ R is a uniformizer. The preimage
of each node under C̃ → C (resp., D̃ → D ) is a chain E1 ∪ · · · ∪ En of rational
bridges with E2

i = −2. Since C and D are families of stable curves, they each have
no smooth rational −1 curves and thus neither do C̃ and D̃. By the Factorization of
Birational Maps (Theorem B.2.4), both Γ̃→ C̃ and Γ̃→ D̃ are the compositions of
finite sequences of blowups at closed points. Since Γ̃→ Γ is a minimal resolution, Γ̃
has no smooth rational −1 curves that get contracted under both Γ̃→ C̃ and Γ̃→ D̃.
We claim that both Γ̃ → C̃ and Γ̃ → D̃ are isomorphisms. This would finish the
proof as both C and D are obtained by contracting the smooth rational −2 curves
of C̃ ∼= D̃.

To see the claim, suppose for instance that Γ̃→ C̃ is not an isomorphism. Then
there is a smooth rational −1 curve E ⊂ Γ̃ not contracted under Γ̃ → D̃. Let
ED̃ ⊂ D̃ be its image. Since blowing up only decreases the self-intersection number
(indeed, if we write the pre-image of ED̃ in Γ̃ as E + F , then the projection formula
implies that E2

D̃
= E · (E + F ) = E2 + E · F ), we have that E2

D ≥ E2 = −1. On
the other hand, the Hodge Index Theorem for Exceptional Curves (B.2.5) implies
that E2

D̃
≤ −1. Hence E2

D̃
= −1. But ED̃ is not a smooth rational −1 curve so it

must be singular, and one of the blowups in the composition Γ̃→ D̃ must be at a
singular point of ED̃. But this implies that exceptional locus F of Γ̃→ D̃ intersects
E non-trivially, and thus E2

D̃
≥ E2 + 1, a contradiction.

Alternatively, we could argue as follows. The birational maps Γ̃→ C̃ and Γ̃→ D̃
of smooth projective surfaces are isomorphisms in codimension 2. As the relative
dualizing sheaves are line bundles, there are identifications of the pluricanonical
sections

Γ(C̃, ω⊗k
C̃/∆

) ∼= Γ(Γ̃, ω⊗k
Γ̃/∆

) ∼= Γ(D̃, ω⊗k
D̃/∆

)

for each non-negative integer k (c.f.,[Har77, Thm. II.8.19]). Using that C and D are
the stable contraction of the families C̃ and D̃ over ∆ (Theorem 5.6.4) arising as the
Proj of the graded ring of pluricanonical sections, we obtain an isomorphism

C ∼→ Proj
⊕
k

Γ(C̃, ω⊗k
C̃/∆

)
∼→ Proj

⊕
k

Γ(D̃, ω⊗k
D̃/∆

)
∼→ D

extending α∗ : C∗ → D∗.
See also [DM69, Lem. 1.12], [ACG11, Lem. 10.5.1], and [SP, Tag 0E97].
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Exercise 5.5.15 (details). Extend the proof above to the case of marked points.

Even though we have only proved Stable Reduction (5.5.1) in characteristic 0,
we state the next result over Z.

Theorem 5.5.16 (Properness of Mg,n and Mg,n). If 2g − 2 + n > 0, the Deligne–
Mumford stackMg,n is proper over SpecZ. Moreover, there is a coarse moduli space
Mg,n →Mg,n, where Mg,n is a proper algebraic space over SpecZ.

Proof. Using the Valuative Criterion (3.8.2), Stable Reduction (5.5.1) gives the
existence of limits, while Proposition 5.5.13 gives the uniqueness of a limit. As
Mg,n is separated, the Keel–Mori Theorem (4.3.12) gives a coarse moduli space
Mg,n →Mg,n, where Mg,n is an algebraic space separated and of finite type over
SpecZ. As Mg,n is proper over SpecZ, so is Mg,n.

Exercise 5.5.17. Show that the coarse moduli space of Mg,n ×Z Fp is the normal-
ization of Mg,n ×Z Fp.

Question 5.5.18 (Open). Is Mg,n ×Z Fp the coarse moduli space ofMg,n ×Z Fp?1

5.5.4 Aside: semistable reduction in higher dimension

We attempt a brief survey of generalizations of semistable reduction, providing
answers to the following question.

Question 5.5.19 (Semistable Reduction Problem). Given a scheme S and a flat, fi-
nite type, and generically smooth morphism X → S, when can we find a commutative
diagram

X ′ //

$$

X ×S S′ //

��

X

��

S′ // S

(5.5.20)

with X ′ → S′ flat such that the morphisms X ′ → S′, S′ → S, and X ′ → X ×S S′

satisfy additional ‘nice’ properties?

By a ‘semistable reduction theorem’, one usually requires that

– X ′ and S′ are regular, and the fibers of X ′ → S′ are reduced normal crossings
divisors,

– S′ → S an alteration, i.e., proper, generically quasi-finite, and dominant, and

– X ′ → X ×S S′ is a modification, i.e., proper and birational.

Kempf, Knudsen, Mumford, and Saint-Donat prove a semistable reduction
theorem in characteristic 0 when S is the spectrum of a DVR R and the generic
fiber XK is smooth over K = Frac(R) [KKMS73, p. 53]. Akin to our proof above,
their strategy is to first use Hironaka’s resolution of singularities to arrange that
X ′ is smooth over R and that (X ′

0)red has normal crossings, and then to perform
normalized base changes to arrange that the fibers are reduced. We also have the
related question:

1See https://mathoverflow.net/questions/9981/coarse-moduli-spaces-over-z-and-f-p
and https://mathoverflow.net/questions/72903/what-is-m-g-over-a-finite-field-really.
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Question 5.5.21 (Extension Problem). When does a flat family X → U over an
open subscheme U ⊂ S extends to a flat family X̃ → S after an alteration S′ → S,
and what addition properties do the fibers of X̃ → S satisfy?

Is it possible to further simplify the special fiber? For families of smooth
curves, Stable Reduction (5.6.4) arranges that that the special fiber of X ′ → SpecR′

is not just reduced and nodal, but stable. Is there a stable reduction theory
in higher dimension for a suitably defined notion of stability? This question is
essentially equivalent to the long-standing problem of compactifying moduli of
higher dimensional varieties. The last several decades has seen great progress in
this direction due to advances in singularity theory and the minimal model program.
Kollár and Shepherd-Barron introduce a stability condition for surfaces of general
type, called KSB stability, that has now been extended to any dimension. See §??
for a quick overview or [Kol23] for an exhaustive account.

Does semistable reduction hold in characteristic p? In other words, can
[KKMS73, p. 53] be extended to positive characteristic? While both resolution of
singularities and semistable reduction are both open problems in positive character-
istic, de Jong’s theory of alterations provides an alternative. First, for any variety
X over a field k, there is an alteration (i.e., a proper, generically quasi-finite, and
dominant morphism) X̃ → X from a regular variety [dJ96, Thm. 4.1], When S
is the spectrum of a complete DVR, the result of [KKMS73, p. 53] holds where
X ′ → X×S S′ is an alteration (instead of a proper birational map) [dJ96, Thm. 6.5].

Does semistable reduction hold over higher dimensional bases? As already
raised in [KKMS73, p. vii], it is natural to seek semistable reductions when the
base S has dim(S) > 1? Many interesting results were shown in [dJ96] and [dJ97],
including strong versions of semistable reduction for a family of curves X → S. It
was pointed out in [Kar99] that it is not possible to arrange that all fibers are normal
crossing divisors when the base S and the fibers X → S have dimension at least
2. In characteristic 0, Abramovich and Karu prove that that there is a diagram as
in (5.5.20), where X ′ → X ×S S′ is birational (but with X ′ possibly singular) and
X ′ → S′ toroidal with reduced fibers (but possibly not normal crossings divisors)
[AK00, Thm. 0.3].

Already with the techniques we have developed, we can show that Stable Re-
duction (5.5.1) has consequences for the Extension Problem (5.5.21) over any base
scheme S. If X → U is stable family of curves over an open subscheme, let U →Mg

be the corresponding map. Choose a finite cover V →Mg by a scheme using Le
Lemme de Gabber (4.5.1). The base change U ×Mg

V is a scheme finite over U , and
by Zariski’s Main Theorem there is a scheme S′ containing U ×Mg

V as a dense
open subscheme and a morphism S′ → S extending U ×Mg

V → U . By Stable
Reduction (5.5.1), V is proper. Thus, there is a projective birational map S′′ → S′

and a map S′′ → V extending the rational map S′ 99K V . The picture is:

S′′ brtl // ((
S′

fin

��

U ×Mg
V //

fin

��

? _
op

oo V

fin

��

S U //? _
op

oo Mg.

The composition S′′ → V →Mg corresponds to a stable family of curves X̃ → S′′

extending the base change of XU → U . This also holds for families of KSB stable
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varieties for the same reason: the stack parameterizing KSB varieties of fixed
dimension and volume is proper.
Is a base change necessary? For the Extension Problem (Question 5.5.21), when
is it possible to find an extension of a family X → U over an open immersion U ↪→ S
without performing a base change S′ → S? For Stable Reduction (5.5.1) (i.e., S is
the spectrum of a DVR and X → U is a family of smooth curves), base changes may
be necessary due to the non-triviality of automorphism groups of smooth curves (see
Example 5.5.6). Nevertheless, there are conditions that imply a base change is not
necessary. Deligne and Mumford showed that a family of smooth curves extends to
a family of stable curves if and only if the associated Jacobian family extends to a
family of semi-abelian varieties in [DM69, §2], while Grothendieck equated the latter
to the unipotence of the monodromy representation on the first homology of the
fibers. On the other hand, de Jong and Oort proved the following [dJO97, Thm. 5.1]:
if S is a regular scheme and U ⊂ S is an open subscheme whose complement S \ U
is a normal crossings divisor, then every family C → U of smooth curves (or more
generally stable curves of locally constant topological type) extends to a family
C̃ → S of stable curves as long as it extends over an open subset V ⊂ S containing
each generic point of ∆. This result built on ideas of Moret–Bailly, who prove a
simplified version [MB85]. There is also an analogous version for abelian varieties
due to Faltings and Chai [FC90, Thm. 6.7].

5.6 Contraction, forgetful, and gluing morphisms

In this section, we construct several important morphisms between moduli spaces of
curves.

– (Stable Contraction) There is a morphism Mpre
g,n → Mg,n, which maps a

prestable family (C → S, σi) to a stable family (Cst, σst
i ) by contracting all

rational tails and bridges (Theorem 5.6.4).

– (Forgetful) There is a morphism Mg,n+1 → Mg,n assign an n + 1-pointed
stable family (C → S, σ1, . . . , σn+1) to the stable contraction of the n-pointed
prestable family (C → S, σ1, . . . , σn) (Proposition 5.6.7). Moreover, we identify
Mg,n+1 →Mg,n with the universal family (Proposition 5.6.8).

– (Gluing) There is a morphismMi,k×Mg−i,n−k+2 →Mg,n, gluing a k-pointed
stable family of genus i curves to a n− k + 2-pointed stable family of genus
g − i curves along the final sections, and a morphism Mg−1,n+2 → Mg,n,
gluing the final two sections of an n+ 2-pointed stable family of genus g − 1
(Corollary 5.6.11).

As with the Local Structure of Nodal Families (5.2.23), the biggest challenge is
ensuring that the constructions hold for families over an arbitrary base. We conclude
this section in §5.6.4 with a discussion of boundary divisors and line bundles on
Mg,n.

5.6.1 Contracting rational tails and bridges

Rational tails and bridges of a prestable curve over a field were defined in Defini-
tion 5.3.10 and characterized in Lemma 5.3.11. We first show that rational tails and
bridges can be contracted to a stable curve over a field (Corollary 5.6.2), and then
we extend the construction to families (Theorem 5.6.4).
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Proposition 5.6.1 (Contracting a rational tail or bridge). Let (C, pi) be an n-
pointed prestable curve over a field k, and E be a rational tail or rational bridge.
Then there is a canonical morphism

c : C → C ′

contacting E to a point such that c∗OC = OC′ and R1c∗OC = 0. Moreover, C ′ is
identified with the pushout SpecΓ(E,OE) ⨿E C, and the formation of c : C → C ′

commutes with field extensions of k.

Proof. In both cases, we construct C ′ as the Ferrand Pushout (B.4.1)

E ∩ Ec

��

// Ec

��

Speck′ // C ′,

where k′ = Γ0(E,OE). Since scheme-theoretic unions are pushouts (Exercise B.4.6),
we have that C = E ⨿E∩Ec Ec. This induces a larger commutative diagram

E ∩ Ec

��

// Ec

��

E

��

// C

c

��

Speck′ // C ′,

where c : C → C ′ is the unique map making the diagram commute. Since the top
and outer squares are pushouts, so is the bottom square, i.e., C ′ = E ⨿Spec k′ C.
Since Ferrand pushouts commute with field extension (Proposition B.4.8(4)), so
does the construction of c : C → C ′.

If E is a rational tail or a rational bridge with a marked point, then E ∩ Ec =
Speck′ = Specκ(x) for a point x ∈ E ∩ Ec (see Lemma 5.3.11), and thus C ′ = Ec.
The map c : C → C ′ = Ec is the identity on Ec and contracts E to the point x ∈ Ec
via the structure morphism E → SpecΓ(E,OE) = Specκ(x). Consider the short
exact sequence

0→ OC → OE ⊕OEc → κ(x)→ 0.

Applying c∗ yields a long exact sequence

0→ c∗OC → ix,∗ ˜H0(E,OE)⊕OC′ → κ(x)→ R1c∗OC → ix,∗ ˜H1(E,OE)→ 0,

where ix : Specκ(x) ↪→ C ′ is the inclusion of x. Since H0(E,OE) = κ(x) and
H1(E,OE) = 0, we see that c∗OC = OC′ and R1c∗OC = 0.

If E is a rational bridge without marked points, set k′′ = H0(E∩Ec,OE∩Ec). By
Lemma 5.3.11, E ∩Ec is either a single point with k′′ a degree 2 separable extension
of k′ or two points with k′′ = k′ × k′. Since the construction of the pushout is étale
local (Proposition B.4.8(3)), the affine pushouts

Speck′′

��

0 // Speck′′[y]

��

Speck′ // Spec{f ∈ k′′[y] | f(0) ∈ k′},

and

Speck′ × k′

��

0
∐

0
// Speck′[y]× k′[z]

��

Speck′ // Speck′[y, z]/(yz)
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are étale neighborhoods of C at the image of E, depending on whether E ∩Ec is one
or two points. In both cases, the image of E is a node. One shows that c∗OC = OC′

and R1c∗OC = 0 as above using the short exact sequence 0→ OC → OE ⊕OEc →
OE∩Ec → 0. See also [SP, Tags 0E3H and 0E3M].

A curve can also contain a chain of rational tails and bridges of arbitrary length.



























Ez E P E 2 p

sas sas

o o

E P

yep
P

L a 2

Figure 5.16: Chains of rational tails and bridges

Corollary 5.6.2 (Stable Contraction). Let (C, pi) be an n-pointed prestable curve of
genus g over a field k such that 2g− 2 + n > 0. Then there is a canonical morphism

c : C → Cst,

called the stable contraction, contacting all rational tails and rational bridges to
points, such that (Cst, c(pi)) is an n-pointed stable curve of genus g, c∗OC = OCst ,
and R1c∗OC = 0. Moreover, the formation of c commutes with field extensions of k.

Proof. If E denotes the scheme-theoretic union of all rational tails and bridges, then
H0(E,OE) is a finite product of fields. Iteratively applying Proposition 5.6.1 yields
a pushout diagram

E

��

// C

c

��

SpecH0(E,OE) // Cst,

such that c∗OC = OCst and R1c∗OC = 0, with the construction of c commuting
with field extensions. Since (Cst, c(pi)) has no rational tails and bridges, it is stable
(Proposition 5.3.12). See also [SP, Tag 0E7Q].
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Exercise 5.6.3. Let (C, pi) be an n-pointed prestable curve over a field k.
(a) Show that the stabilization morphism c : C → Cst is the unique morphism

such that (Cst, c(pi)) is stable, c∗OC = OCst , and R1c∗OC = 0.
(b) If (C, pi) is semistable and L := ωC(

∑
i pi), show that Cst ∼= Proj

⊕
d≥0 H

0(C,L⊗d))
and that L ∼= c∗ωCst(

∑
i c(pi)).

The construction of the stable contraction extends to families of prestable curves.

Theorem 5.6.4 (Stable Contraction of a Prestable Family). If (C → S, σi) is a
family of n-pointed prestable curves of genus g such that 2g − 2 + n > 0, then there
exists a unique morphism c : C → Cst over S such that

(1) (Cst → S, σst
i ) is an n-pointed family of stable curves of genus g where σst

i =
c ◦ σi;

(2) OCst = c∗OC and R1c∗OC = 0;
(3) the construction of c : C → Cst is compatible with base change S′ → S; and
(4) for each s ∈ S, (Cs, σi(s))→ (Csts , σst

i (s)) is the stable contraction of rational
bridges and tails as in Corollary 5.6.2.

Moreover, if (C π−→ S, σi) is a semistable family, then ωC/S(
∑
i σi) is the pull-

back of the relatively ample line bundle L := ωCst/S(
∑
i σ

st
i ); in particular, Cst ∼=

ProjS
⊕

d≥0 π∗(L
⊗d).

Proof. This will be a local-to-global argument. For any s ∈ S, Corollary 5.6.2 yields
the stable contraction cs : Cs → Y0 over κ(s), and satisfies the uniqueness property by
Exercise 5.6.3(a). The key idea of the proof is the following: since cs,∗OCs

= OY0
and

R1cs,∗OCs
= 0, any infinitesimal deformation of Cs extends uniquely to a deformation

of Cs → Y0 (Exercise C.2.9). Setting Sn = SpecOS,s/mn+1, this yields compatible
morphisms

C ×S Sn → Yn

over Sn. Artin Approximation (B.5.18) then yields a morphism C ×S S′ → Y ′ after
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an étale cover S′ → S, which, by the uniqueness properties, descends to a morphism
C → Cst.

To make this argument work, we first reduce to the case that S is finite type
over Z using Limit Methods (§B.3). As in the first paragraph, we find compatible
morphisms C ×S Sn → Yn over Sn. The central fibers Cs and Y0 are schemes by
Proposition 4.4.19, thus so are C ×S Sn and Yn. Since Ŝ := Spec ÔS,s is noetherian,
Grothendieck’s Existence Theorem (Corollary C.5.8) yields a projective morphism
Ŷ → Ŝ := Spec ÔS,s extending Yn → Sn. By the Infinitesimal Criterion for Flatness
(A.2.5), Ŷ → Ŝ is flat. A consequence of Grothendieck’s Existence Theorem (C.5.11)
asserts that there is a morphism C ×S Ŝ → Ŷ over Ŝ extending C ×S Sn → Yn.

Letting τ̂i be the composition Ŝ σi×S Ŝ−−−−→ C×S Ŝ → Ŷ , the (Ŷ → Ŝ, τ̂i) is an n-pointed
family of curves. Since the central fiber Y0 is stable, Openness of Stability (5.3.22)
implies that (Ŷ → Ŝ, τ̂i) is a family of stable curves.

Since S is finite type over Z, Artin Approximation (B.5.18) gives an étale
neighborhood (S′, s′) → (S, s), a family of stable curves (Y ′ → S′, τi), and a
morphism c′ : C ×S S′ → Y ′ of algebraic spaces over S′ whose fiber at s′ corresponds
to Cs → Y0. By Exercise 5.6.6, after replacing S′ with an open neighborhood of
s′, we can assume that c∗OC×SS′ = OY ′ and R1c∗OC×SS′ = 0, and that this holds
after base change. Therefore, the existence of the desired family of stable curves
will follow from étale descent once we establish uniqueness.

To show uniqueness, let (Y → S, τi) and (Y ′ → S, τ ′i) be families of stable curves
over a noetherian scheme, let c : C → Y and c′ : C → Y ′ be morphisms over S, and
suppose that there is an isomorphism αs : Ys

∼→ Y ′
s compatible with cs and c′s such

that cs,∗OCs
= OYs

and R1cs,∗OCs
= 0. We need to show that there exists an open

neighborhood U ⊂ S of s and an isomorphism α : YU → Y ′
U extending αs, which

is compatible with cU and c′U . By Limit Methods (§B.3), we may assume that
S = SpecA is the spectrum of a noetherian local ring. Letting Y ′′ be the scheme-
theoretic image of C → Y ×S Y ′, it suffices to show that the projections Y ′′ → Y
and Y ′′ → Y ′ are isomorphisms. Since the scheme-theoretic image commutes with
flat base change, we may further assume that A is complete. By Exercise C.2.9,
the restrictions Y ′′

n → Yn and Y ′′
n → Y ′

n to the base change to SpecA/mn+1 are
isomorphisms. A consequence of Grothendieck’s Existence Theorem (C.5.11) yields
the desired isomorphism Y → Y ′. See also [SP, Tag 0E8A].

If (C → S, σi) is a family of semistable curves, then we claim that the natural map
c∗ωCst/S → ωC/S is an isomorphism. Indeed, since the relative dualizing sheaves are
line bundles, it suffices to show that this map is surjective. Since the relative dualizing
sheaves and the cokernel of the map are compatible with base change, by Nakayama’s
lemma, it suffices to show that the claim holds when S is the spectrum of a field, which
is the assertion in Exercise 5.6.3(b). By the projection formula, ωCst/S

∼= c∗c
∗ωCst/S ,

and thus the composition ωCst/S
∼= c∗c

∗ωCst/S → c∗ωC/S is an isomorphism. It
follows that ωCst/S(

∑
i σ

st
i )
∼= c∗(ωC/S(

∑
i σi)), which implies the statement as

ωCst/S is relatively very ample (Proposition 5.3.19). Alternatively, one can explicitly
construct the stable contraction globally by showing that the natural maps π∗(L⊗2)⊗
π∗(L

⊗d) → π∗(L
⊗d+2) are surjective for d ≥ 4. Thus,

⊕
d≥0 π∗(L

⊗4d) is a finite
type OS-algebra, and we can define Cst := ProjS

⊕
d≥0 π∗(L

⊗4d). Since for all d ≥ 0

the pushforward π∗(L
⊗4d) is a vector bundle and its construction commutes with

base change (Proposition 5.3.21), it follows that C → Cst is well-defined and Cst → S
is a family of stable curves. See [Knu83a, Prop. 2.1] and [ACG11, Prop. 10.6.7].

Corollary 5.6.5 (Stable Contraction Morphism). There is a morphism of algebraic
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stacks
Mpre

g,n →Mg,n, (C, pi) 7→ (Cst, c(pi)),

which is the identity on the open substack Mg,n ⊂Mpre
g,n.

Exercise 5.6.6 (details). Let f : X → Y be a morphism of families of curves over a
noetherian scheme S. Suppose that for a point s ∈ S, the morphism fs : Xs → Ys
satisfies fs,∗OXs

= OYs
and R1fs,∗OXs

= 0. Show that after replacing S with an
open neighborhood of s, f∗OX = OY and R1f∗OX = 0, and that this remains true
after base change by a morphism S′ → S. See also [SP, Tag 0E88].

5.6.2 The forgetful morphism and the universal family of
Mg,n

We give two consequences of the Stable Contraction Morphism (5.6.5): we show
that there is a map Mg,n+1 →Mg,n which is the stable contraction of forgetting
the last marked point, and that this map is identified with the universal family.

P
PzP

Pz

3

piP
P2

p Pn

O

Figure 5.18: In (A), the n+1th point is simply forgotten. In (B), if pn+1 is forgotten,
the curve is no longer stable, and we must contract the rational bridge.

Proposition 5.6.7 (Forgetful Morphism). There is a morphism of algebraic stacks

Mg,n+1 →Mg,n, (C, p1, . . . , pn+1) 7→ (Cst, c(p1), . . . , c(pn)),

where c : C → Cst is the stable contraction of (C, p1, . . . , pn).

Proof. The desired morphism is constructed as the composition

Mg,n+1 →Mpre
g,n →Mg,n,

where Mg,n+1 → Mpre
g,n is the morphism taking an n + 1-pointed stable family

(C → S, σ1, . . . , σn+1) to the n-pointed prestable family (C → S, σ1, . . . , σn) and
Mpre

g,n →Mg,n is the Stable Contraction Morphism (5.6.5).

By the Generalized 2-Yoneda Lemma (3.1.24), the identity morphismMg,n →
Mg,n corresponds to an object of Mg,n over the algebraic stack Mg,n, which in
turn corresponds via descent to an n-pointed family

(Ug,n →Mg,n, σ
univ
1 , . . . , σuniv

n )
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of stable curves, called the universal family. An object of Ug,n over a scheme S is an
n-pointed family of stable curves (C → S, σi) with an additional section τ : S → C
(that may land in the nodal locus C → S and may intersection non-trivially with
the sections σi). Given an n-pointed family of stable curves (C → S, σi), there is a
morphism S →Mg,n, unique up to unique isomorphism, and a cartesian diagram

C //

��

Ug,n

��

S //

σi

]]

Mg,n.

σuniv
i

ZZ

On the other hand, there is the Forgetful Morphism (5.6.7) Mg,n+1 → Mg,n

and a morphism Mg,n+1 → Ug,n of algebraic stacks taking an n+ 1-pointed stable
family (C → S, σi) to the n + 1-pointed family (Cst, σst

1 , . . . , σ
st
n , c ◦ σn+1), arising

as the Stable Contraction (5.6.4) c : C → Cst of the prestable family (C, σ1, . . . , σn).
This yields a commutative diagram

Mg,n+1
//

$$

Ug,n

��

Mg,n.

P p
3

P P
p

P p pies

P p
3 3

pl
o

P

P p pies

(A)

(A)

(B)

(B)

(C)

(C)

Figure 5.19: Examples of the map Mg,n → Ug,n.

Proposition 5.6.8. The morphism Mg,n+1 → Ug,n is an isomorphism over Mg,n.
In other words, the forgetful morphism Mg,n+1 →Mg,n is the universal family.

Proof. The stacksMg,n+1 and Ug,n are both proper and representable overMg,n

by Stable Reduction (5.5.1). Hence, the morphism Mg,n+1 → Ug,n is proper and
representable. For every algebraically closed field k, the induced mapMg,n+1(k)/∼→
Ug,n(k)/∼ on isomorphism classes is bijective. Hence, Mg,n+1 → Ug,n is proper
and quasi-finite, hence finite. On the other hand, Mg,n+1 → Ug,n is birational as
it induces an isomorphism between the open substack of Mg,n+1 parameterizing
pointed curves (C, p1, . . . , pn+1) such that (C, p1, . . . , pn) does not contain a rational
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bridge and the open substack of Ug,n parameterizing pointed curves (C, p1, . . . , pn+1)
such that pn+1 ∈ C is a smooth point that doesn’t coincide with pi for i = 1, . . . , n.
By Theorem 5.4.14, Mg,n+1 is smooth. Since Ug,n →Mg,n has Cohen–Macaulay
fibers and Mg,n is smooth, Ug,n is Cohen–Macaulay. The stack Ug,n is regular
in the open locus where pn+1 ∈ C is a smooth point, and since the complement
of this locus is codimension 2, Serre’s criterion for normality implies that Ug,n is
normal. We thus have a finite birational morphism Mg,n+1 → Ug,n between normal
Deligne–Mumford stacks, which is necessarily an isomorphism.

Remark 5.6.9. One can also explicitly construct the inverse morphism Ug,n →
Mg,n+1. Let (C → S, σi) be an n-pointed family of stable curves and τ : S → C be
an additional section defined by an ideal sheaf Iτ . Define the coherent OC-module
K by

0→ OC
(α,β)−−−→ I∨τ ⊕OC(σ1 + · · ·+ σn)→ K → 0,

where α is the dual of the inclusion Iτ ↪→ OC and β is the natural inclusion. Define

C̃ = ProjS SymK → C.

With some work, one can prove that τ∗(I∨τ /OC) is a line bundle [Knu83a, Lem. 2.2].
The surjection τ∗K → τ∗(K/OC) ∼= τ∗(I∨τ /OC) defines a section τ̃ : S → C̃. The
cokernel of the injection I∨τ ↪→ K is identified with OC(σ1 + · · ·+ σn)|⋃

i si
, and the

surjections σ∗
iK → σ∗

iOC(σ1 + · · · + σn) defines sections σ̃i : S → C̃. One checks
that (C̃ → S, σ̃1, . . . , σ̃n, τ̃) is an n + 1-pointed family of stable curves such that
c : C̃ → C is the stable contraction of the n-pointed prestable family (C̃, σ̃1, . . . , σ̃n)
with σi = c ◦ σ̃i and τ = c ◦ τ̃ . In many cases, C̃ → C can be constructed more
directly as a blow up: for instance, if C → S is a generically smooth family of stable
curves over the spectrum of a DVR such that C is regular and τ : S → C is a section
such that τ(0) ∈ C0 is a node, then C̃ → C is simply the blow up at τ(0) and τ̃ is
the strict transform of τ . See [Knu83a, Thm. 2.4] and [ACG11, §X.8].

5.6.3 Gluing morphisms

After showing how sections of families of curves can be glued to nodal fami-
lies (Proposition 5.6.10), we show that there are well-defined finite morphisms
Mi,k×Mg−i,n−k+2 →Mg,n andMg−1,n+2 →Mg,n Corollary 5.6.11, called gluing
morphisms (or sometimes clutching morphisms).

P
PzP

Pz
Pna

3

P
P P

p Pml

o

i
i

p
q

P

Figure 5.20: The nodal gluing of marked points p and q.
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Proposition 5.6.10 (Gluing Families Along Sections). Let (C → S, σ, τ) be a
2-pointed projective family of (possibly disconnected) curves over a scheme S such
that for every point s ∈ S, σ(s) and τ(s) are distinct smooth points of Cs. Then
there is a canonical finite morphism

g : C → C′

of schemes over S such that

(1) C′ → S is a family of curves with a section ν : S → C′ such that ν = g◦σ = g◦τ
and ν(s) ∈ Cs is a node for all s ∈ S;

(2) the morphism g restricts to an isomorphism C \ (σ(S) ∪ τ(S)) ∼→ C′ \ ν(S),
and there is an identification of the topological space |C′| with the quotient of
|C| under the equivalence relation σ(s) ∼ τ(s) for s ∈ S;

(3) C′ is identified with the Ferrand Pushout (B.4.1) of σ ⨿ τ : S ⨿ S → C and the
projection S ⨿ S → S; in particular, for every open subset U ⊂ C′,

Γ(U, C′) = {f ∈ Γ(g−1(U), C) | σ∗f = τ∗f};

and
(4) the construction is compatible with base change T → S.

Proof. Since C → S is projective, every two points of a fiber Cs are contained in an
affine open subscheme of C. Therefore, the Ferrand Pushout (B.4.1)

S
∐
S

σ⨿τ //

��

C

��

S
ν // C′

exists as a scheme C′. By the universal property of pushouts, there is a natural
map C′ → S. Since S

∐
S → S is finite, so is C → C′. Since S

∐
S → S is flat, the

construction is compatible with arbitrary base change by Properties of Pushouts
(B.4.8(4)). This gives (2)–(4).

To see (1), first observe that C′ → S is proper since C → C′ is finite. By
the Local Structure of Smooth Morphisms (A.3.4), for every s ∈ S, there is an
affine open neighborhood SpecA ⊂ S and étale neighborhoods C → SpecA[x] and
C → SpecA[y] of σ(s) and τ(s). By Properties of Pushouts (B.4.8(3)), the pushout
C′ has an étale neighborhood of ν(s) isomorphic to the pushout

SpecA×A

��

0⨿0 // SpecA[x]×A[y]

��

SpecA // SpecA[x, y]/(xy).

It follows that C′ → S is flat and ν(s) ∈ Cs is a node.
Alternatively, one can construct C′ using a global Proj construction in the case

that ωC/S(σ+τ) is a relatively very ample line bundle (as it will be in our application
to stable curves). Namely, there are well-defined morphisms qσ : ωC/S(σ+τ)→ Oσ(S)
and qτ : ωC/S(σ + τ) → Oτ(S). We then define C′ := ProjS

⊕
d≥0Ad, where Ad is
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the fiber product

Ad //

��

OS

∆

��

π∗(ωC/S(σ + τ)⊗d)× π∗(ωC/S(σ + τ)⊗d)
π∗(q

⊗d
σ )×π∗(q

⊗d
τ )
// OS ×OS

and π : C → S denotes the structure morphism. One can check C′ → S satisfies
the desired properties by essentially the same argument as above. See [Knu83a,
Thm. 3.4] and [ACG11, §X.7].

Corollary 5.6.11 (Gluing Morphisms). Assume that 2g − 2 + n > 0.
(1) If 2g1 − 2 + n1 > 0 and we set g2 = g − g1 and n2 = n − n1 + 2, there is a

finite morphism of algebraic stacks

Mg1,n1 ×Mg2,n2 →Mg,n(
(C, pi), (D, qi)

)
7→ (C ⨿pn1

∼qn2
D, p1, . . . , pn1−1, q1, . . . , qn2−1).

(2) If g ≥ 1, there is a finite morphism of algebraic stacks

Mg−1,n+2 →Mg,n

(C, pi) 7→ (C/pn+1∼pn+2
, p1, . . . , pn−2).

Proof. In both cases, Gluing Families Along Sections (5.6.10) directly yields mor-
phisms of algebraic stacks to Mpre

g,n. Since stability can be checked on geometric
fibers, it suffices to show that the nodal gluing C ⨿pn1

∼qn2
D and C/pn+1∼pn+2

are stable, but this is clear as stability is detected under pointed normalization
(Exercise 5.3.5). Since both maps are quasi-finite and representable morphisms of
proper Deligne–Mumford stacks, they are finite.

More generally, for a finite index set I, we can define the notion of an I-pointed
stable curve of genus g, and we denoteMg,I as the stack of such curves. A bijection
I ∼= {1, . . . , n} induces an isomorphism Mg,I

∼=Mg,n. With this notation, we have
the obvious generalization of Corollary 5.6.11: there are finite morphisms

Mg1,I1 ×Mg2,I2 →Mg1+g2,(I1∪I2)\{i1,i2} and Mg−1,J →Mg,J\{j1,j2},

gluing the marked points i1 ∈ I1 to i2 ∈ I2 (resp., j1, j2 ∈ J), subject to the
numerical conditions ensuring that each stack is non-empty.

5.6.4 Boundary divisors and line bundles on Mg,n

We define the boundary divisors δi,I of Mg,n and show that the total boundary
divisor δ is a normal crossings divisor (Proposition 5.6.13).

Definition 5.6.12 (Boundary Divisors). Suppose 2g − 2 + n > 0. Let 0 ≤ i ≤ g be
an integer and I ⊂ {1, . . . , n} be a subset such that 1−2i < |I| < 2(g− i)+n−1 > 0
(which ensures that both Mi,I∪{p} and Mg−i,Ic∪{q} are nonempty). The boundary
divisors are defined as the closed substacks of Mg,n

δi,I = im
(
Mi,I∪{p} ×Mg−i,Ic∪{q} →Mg,I∪Ic ∼=Mg,n

)
δ0 = im

(
Mg−1,n+2 →Mg,n

)
δ = δ0 ∪

⋃
i,I

δi,I
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with the convention that δ0 is empty if g = 0.

Note that δi,I = δg−i,Ic . If n = 0, then δ = δ0 ∪ · · · ∪ δ⌊ g
2 ⌋. If g = 0, then δ is

the union of δI over subsets I of size 2 ≤ |I| ≤ n− 2.

i

i g i i

do di I do di I
Figure 5.21: Examples of stable curves in the boundary.

A closed substack Z ⊂ X of a Deligne–Mumford stack is called a divisor (resp.,
normal crossings divisor) if there is an étale presentation U → X such that Z×X U ⊂
U is a divisor (resp., normal crossings divisor). Recall that a divisor U ⊂ X of a
regular scheme has normal crossings if for every u ∈ U , ÔU,u ∼= ÔX,x/(f1 · · · fk)
where the sequence f1, . . . , fk ∈ ÔX,x extends to a regular system of parameters
f1, . . . , fn.

Proposition 5.6.13. Over a field k, δ ⊂Mg,n is a normal crossings divisor.

Proof. An easy dimension count shows that δ has pure dimension 3g − 2 + n. To
see that δ has normal crossings, we may assume that k is algebraically closed.
Let (C, pi) ∈ Mg,n be a stable curve with nodes q1, . . . , qs ∈ C, and let (U, u) →
(Mg,n, [C, pi]) be an étale neighborhood where U is a scheme. By the Local-to-global
Deformation Sequence (5.3.26), there is a surjection

Def(C, pi)→
⊕
j

Def(ÔC,qj ) (5.6.14)

of first order deformations spaces with Def(ÔC,qj ) ∼= k.
Letting Artk be the category of local artinian k-algebras with residue field k,

define the functors
F,Gj : Artk → Sets,

by setting F (A) to be the set of isomorphism classes of pairs (C → SpecA, σi, α)
where (C → SpecA, σi) is a family of n-pointed stable curves and α : (C, pi)

∼→
(C×Ak, σi×Ak) is an isomorphism, and by setting Gj(A) to be the set of isomorphism
classes of pairs (B, β) where B is a flat A-algebra and β : ÔC,qj → B⊗AA/mA is an
isomorphism. The map Spec ÔU,u →Mg,n induces a miniversal formal deformation
of F over k[[x1, . . . , x3g−3+n]]. By Rim–Schlessinger’s Criterion (C.4.6), Gj admits
a miniversal formal deformation over k[[zj ]] (see Exercise C.4.16). Since (5.6.14)
is surjective, the natural morphism of functors F →

⊕
j Gj is versal (or formally

smooth), or in other words the natural map

ÔU,u ∼= k[[x1, . . . , x3g−3+n]]→ k[[z1, . . . , zs]] (5.6.15)

is surjective. We may therefore write ÔU,u ∼= k[[z1, . . . , zs, x′s+1, . . . , x
′
3g−3+n]] so

that (5.6.15) maps zi to itself. Letting δU = δ ×Mg,n
U , we conclude that ÔδU ,u ∼=
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ÔU,u/(z1 · · · zs). See also [DM69, Thm. 5.2], where it is shown more generally that
δ is a relative normal crossings divisor over Z.

Exercise 5.6.16. Show that M0,n has 2n−1 − n− 1 irreducible boundary divisors.

Exercise 5.6.17. The dual graph Γ = (G,w,m) of a stable curve C was defined in
Definition 5.3.7.

(a) Show that for every dual graph Γ, there is a locally closed substackMΓ ⊂Mg,n

parameterizing stable curves with dual graph Γ, and conclude that there is a
stratification

Mg,n =
∐
Γ

MΓ,

called the dual graph stratification.
(b) Given two dual graphs Γ and Γ′, provide a combinatorial condition for when
MΓ′ ⊂MΓ.

(c) The dual graph stratification for M2 was described in Figure 5.5. Describe
the stratifications forM2,1 and M3.

Definition 5.6.18 (Hodge line bundle). Letting π : Ug,n → Mg,n denote the
universal family, the Hodge vector bundle is defined as the pushforward E :=
π∗ωUg,n/Mg,n

. It is a vector bundle by Properties of Families of Stable Curves
(5.3.21). The Hodge line bundle is defined as the determinant of the Hodge vector
bundle λ := detE.

Exercise 5.6.19. Show that under every Forgetful Morphism (5.6.7) and Gluing
Morphism (5.6.11), λ pulls back to λ.

Definition 5.6.20 (The Psi line bundles). Let σi :Mg,n → Ug,n be the ith section
of the universal family. Define the line bundle ψi on Mg,n as the conormal bundle
of σi; namely, ψi = Iσi

/I2σi
where Iσi

⊂ OUg,n
is the ideal sheaf defining σi. The

line bundle ψ is defined (using additive notation) as

ψ = ψ1 + · · ·+ ψn.

There are identifications

ψi ∼= σ∗
iΩUg,n/Mg,n

∼= σ∗
i ωUg,n/Mg,n

∼= σ∗
iOUg,n(−σi(Mg,n)).

The Psi classes are defined as c1(ψi) ∈ CH1(Mg,n); see §6.1.7 for the definition of
the Chow group.

Exercise 5.6.21.
(a) If C is the nodal union C1 ∪ C2 of two smooth curves along p1 ∈ C1 and

p2 ∈ C2, show that there is a natural identification of vector spaces

δ ⊗ κ([C]) ∼= Tp1C1 ⊗ Tp2C2.

(b) Show that δ pulls back under the gluing morphism Mg,n+2 → Mg,n to
δ − ψn+1 − ψn+2 and pulls back under Mg1,n1 ×Mg2,n2 → Mg,n to (δ −
ψn1

)⊠ (δ − ψn2
).

(c) Conclude that δ − ψ pulls back to itself under every gluing morphism.
See also [HM98, Prop. 3.32].
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Definition 5.6.22 (Kappa classes). The ith kappa class is defined as

κi := π∗(ψ
i+1
n+1) ∈ CHi(Mg,n).

The first kappa class κ := κ1 is the class of a line bundle.

Definition 5.6.23 (Canonical line bundle). Over a field k, let ΩMg,n/k be the sheaf
of differentials (Example 4.1.3), which is a vector bundle since Mg,n is smooth.
Define the canonical line bundle as

K = KMg,n
:= detΩMg,n/k.

Remark 5.6.24 (Mumford’s Formula). An application of Grothendeick–Riemann–
Roch gives the relations

κ = 12λ− δ and K = 13λ− 2δ;

see [Mum83, §5] and [HM98, §3.E].

Exercise 5.6.25 (Comparison with coarse moduli space). Let ∆i,∆ ⊂Mg,n be the
image of δi, δ ⊂Mg,n under the coarse moduli space map π :Mg,n →Mg,n. Show
that

π∗∆i =

{
δi if i ̸= 1

2δ1 ifi = 1

π∗∆ = δ + δ1

π∗KMg,n
= KMg,n

− δ1.

5.7 Irreducibility

In your “appendix”, you refer to a result of Matsusaka I did not hear
of before, namely the connectedness or irreducibility of the variety of
moduli for curves of genus g, in any characteristic. I did not know there
was any algebraic proof for this (whatever way you state it). Yet I have
some hope to prove the connectedness of the Mg,n (arbitrary levels) using
the transcendental result in char. 0 and the connectedness theorem; but
first one should get a natural “compactification” of Mg,n which should be
simple over Z.

Grothendieck, letter to Mumford, 1961 [Mum10, p. 638]

We provide several arguments thatMg,n is irreducible:

– the classical topological argument due to Clebsch, Lüroth, and Hurwitz (Theo-
rem 5.7.16),

– a purely algebraic argument in characteristic 0 using degenerations of smooth
curves and the inductive nature of the boundary δ =Mg\Mg (Theorem 5.7.23),
and

– an proof in characteristic p > 0 by reduction to characteristic 0 (Theo-
rem 5.7.25)

These proofs rely fundamentally on the theory of branched covering as discussed in
§5.7.1.
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Equivalences. We begin with a few remarks regarding the equivalences between
the connectedness/irreducibility ofMg,n,Mg, and their coarse moduli spaces. Since
Mg,n is a smooth algebraic stack over a field k, its irreducibility is equivalent
to its connectedness. Moreover, since Mg,n+1 → Mg,n is the universal family
(Proposition 5.6.8) and has connected fibers, it suffices to verify the connectedness
ofMg. We thus have equivalences

Mg,n irreducible over k ⇐⇒ Mg,n connected over k
⇐⇒ Mg connected over k
⇐⇒ Mg connected over k and dense inMg

Finally, we note that since the coarse moduli space Mg,n → Mg,n induces a
homeomorphism |Mg,n|

∼→ |Mg,n| on topological spaces, each statement above can
be equivalently stated in terms of the coarse moduli space.

5.7.1 Branched coverings

Let f : C → D be a finite morphism of smooth, connected, and projective curves
over an algebraically closed field k. Assume that f is separable, i.e., the induced
map K(D)→ K(C) of functions fields is a separable extension. For a point p ∈ C(k)
with image q ∈ D(k), the ramification index at p is the integer ep such that s 7→ utep

under the map OD,Q → OC,p, where s and t are uniformizers and u is a unit. We
say that f is ramified at p if ep > 1

tamely ramified at p if ep > 1 and either char(k) = 0 or char(k)̸ | ep
unramified at p if ep = 1

If f is unramified at p, then the scheme-theoretic fiber over f(p) at p is isomorphic to
Specκ(p), and thus this agrees with the usual definition of unramified by Unramified
Equivalences (A.3.3). Moreover, since f is flat, f is unramified at p if and only if f
is étale at p.

There is a short exact sequence of differentials

0→ f∗ΩD → ΩC → ΩC/D → 0. (5.7.1)

Indeed, the sequence above is always right exact. Since f∗ΩD and ΩC are line bundles,
the left map is injective if and only if it is nonzero. However, K(D) → K(C) is
separable so ΩC/D ⊗K(C) = ΩK(C)/K(D) = 0, and thus f∗ΩD → ΩC is nonzero at
the generic point. Examining the sequence above at the stalks at a point p ∈ C(k),
the differential dt maps to d(usep) = eusep−1ds+ sepdu. If f is tamely ramified at p,
then (ΩC/D)p ∼= OC,p⟨ds⟩/(sep−1ds) and length(ΩC/D)p = dimΩC/D⊗κ(p) = ep−1.

Definition 5.7.2. Let k be an algebraically closed field.

(1) A branched covering is a finite separable morphism f : C → D of smooth,
connected, and projective curves over k.

(2) A simply branched covering is a branched covering such that there is at most
one ramification point in every fiber and every ramification point p ∈ C(k) is
tamely ramified with ramification index ep = 2.
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Figure 5.22: Examples of branched coverings over P1: (A) is simply branched while
(B) and (C) are not. While the picture may suggest that the source curve C is not
smooth, C is, in fact, smooth over the base field k. However, the map C → P1 is not
smooth, and the pictures above are designed to reflect the singularities of C over P1.

If f : C → D is a branched covering, the ramification divisor is defined as

R =
∑

p∈C(k)

length(ΩC/D)p · p
if f is tamely

ramified︷︸︸︷
=

∑
p∈C(k)

(ep − 1).

Theorem 5.7.3 (Riemann–Hurwitz). If f : C → D is a branched covering with
ramification divisor R, then ΩC ∼= f∗ΩD ⊗OC(R) and

2g(C)− 2 = deg(f)(2g(D)− 2) + degR.

In particular, f : C → P1 is simply branched, then it is ramified over 2g + 2d − 2
distinct points.

Proof. This follows directly from the exact sequence (5.7.1). See also [Har77, Prop.
IV.2.3]

Example 5.7.4. For a local model of a branched cover, consider the map f : A1 → A1

defined by x 7→ xn. The relative sheaf of differentials is ΩA1/A1 = k[x]⟨dx⟩/(nxn−1dx).
Thus, if char(k) does not divide n, f is a branched cover étale over A1\0 and ramified
at 0 with index n− 1.

Exercise 5.7.5. Show that every branched covering is étale locally isomorphic to
A1 → A1, x 7→ xn around a branched point of index n− 1.

Algebraic vs. holomomorphic vs. topological branched covers. A holomor-
phic (resp., topological) branched covering of P1 is a non-constant and holomorphic
(resp., continuous) morphism f : C → P1 of connected and compact Riemann sur-
faces (resp., connected, Hausdorff, and compact topological spaces such that f is a
covering space over the complement of finitely many points of P1).

Proposition 5.7.6. Over C, there are natural bijections

{C → P1 algebraic branched coverings} ←→ {C → P1 holomorphic branched coverings}
←→ {C → P1 topological branched coverings}

Proof. An algebraic branched covering is holomorphic and a holomorphic branched
covering is topological. Conversely, if f : C → P1 is a topological covering, then the
holomorphic structure on P1 induces naturally a holomorphic structure on C such
that f : C → P1 is analytic. It is a classical fact relying on the Implicit Function
Theorem that there are local charts of C and P1 such that f is described by z 7→ zk

[Mir95, Prop. II.4.1], which implies that C is algebraic.

252



Monodromy actions. Let f : C → P1 be a (topological) branched covering of
degree d over C and B ⊂ P1 its ramification locus, i.e., the smallest set of points
such that f−1(P1 \B)→ P1 \B is a covering space. Choose a base point q ∈ P1 \B.
The monodromy action of π1(P1 \B, q) on the fiber f−1(q) is defined as follows: for
γ ∈ π1(P1 \ B, q) and p ∈ f−1(q), then the path γ : [0, 1] → P1 lifts uniquely to a
path γ̃ : [0, 1]→ C such that γ̃(0) = p, and the action is defined by γ · p = γ̃(1).

F

P

flp q

Figure 5.23: Monodromy action

A choice of a bijection f−1(p) ∼= {1, . . . , d} defines a group homomorphism

ρ : π1(P
1 \B, q)→ Sd,

which we call the monodromy representation. The converse is also true: every such
group homomorphism is induced by a branched covering.

Proposition 5.7.7. Let B ⊂ P1 be a finite subset of size b, q ∈ P1 \B be a point,
and d > 0 a positive integer. The fundamental group π1(P1 \B, q) is identified with
the free group generated by the simple loops σi for i = 1, . . . , b around the points of
B. There is a natural bijection of isomorphism classes

simply branched
coverings C → P1 of
of degree d
branched over B

 /∼ ←→


group homomorphisms
ρ : π1(P1 \B, q)→ Sd such that
im(ρ) ⊂ Sd is a transitive subgroup
and each ρ(σi) is a transposition

 /∼,

where two branched covers are equivalent if they are isomorphic over P1, and two
homomorphisms ρ and ρ′ are equivalent if they differ by an inner automorphism of
Sd, i.e., ∃h ∈ Sd such that ρ′ = h−1ρh.

Proof. We have already explained a natural map from left to right. Conversely,
given a group homomorphism ρ : π1(P1 \ B, q) → Sd, we let H ⊂ π1(P1 \ B, q) be
the subgroup containing elements γ fixing 1. Since this subgroup has index d, it
corresponds to a covering space C∗ → P1 \ B, which one can show extends to a
finite morphism C → P1 of degree d. The connectedness of C translates into the
condition that im(ρ) ⊂ Sd is transitive, and the cover C → P1 being simply branched
translates into each ρ(σi) being a transposition. See [Mir95, Prop. III.4.9].
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5.7.2 Hurwitz moduli spaces
For positive integers g and b, we define and study the Hurwitz moduli space

Hurg,b := {simply branched coverings C → P1 of genus g over b ordered points}

of simply branched covers and its relation toMg. By Riemann–Hurwitz (5.7.3), if
C → P1 has degree d, then b = 2g + 2d− 2. In the literature, Hurwitz spaces are
sometimes indexed as Hurd,b or Hurd,g. The key diagram is

Hurg,b

{{ ##

Mg M0,b

(5.7.8)

where a simply branched covering (C → P1) ∈ Hurg,b gets mapped to C ∈Mg and
the b ordered branch points in M0,b.

The moduli space Hurg,b over C can be viewed analytically as the topological space
with the coarsest topology such that Hurg,b →M0,b is continuous. Algebraically, we
define it using, as usual, our functorial approach. To this end, we define a family
(C → D → S, σi) of coverings of P1 of genus g simply branched over b ordered points
over a scheme S as a family C → S of smooth genus g curves and a b-pointed
family (D → S, σi) of smooth genus 0 curves together with a finite, flat morphism
C → D of schemes over S of degree d such that for every geometric point s ∈ S(k),
Cs → Ds ∼= P1

k is simply branched over σ1(s), . . . , σb(s).

Definition 5.7.9 (Hurwitz functor). For positive integers g and d, set b = 2g+2d−2.
The Hurwitz functor is defined as the functor

Hurg,b : Sch→ Sets

S 7→
{

families (C → D → S, σi) of simply branched coverings
of P1 of genus g and degree d

}
/∼,

where two families (C → D → S, σi) and (C′ → D′ → S, σ′
i) are equivalent if there are

isomorphisms C ∼→ C′ and D′ ∼→ D′ compatible with the sections and the structure
morphisms C → D and C′ → D′.

There are morphisms Hurg,b →Mg and Hurg,b →M0,b of stacks taking a family
of coverings (C → D → S, σi) to C → S and (D → S, σi) giving Diagram (5.7.8).

Remark 5.7.10 (Variants). There are a few variants of the above definition that
are also referred to as Hurwitz moduli spaces in the literature. First, one can rigidify
the moduli problem by considering the functor Hurrigg,b : Sch→ S, where an object
over S is a finite, flat morphism C → P1

S over S from a family of smooth curves
of genus g together with disjoint ordered sections σ1, . . . , σb : S → P1

S such that
for every geometric point s ∈ S(k), Cs → P1

k is a covering simply branched over
σ1(s), . . . , σb(s). Here two families are equivalent if they are isomorphic over P1

S and
the sections are equal. There is a morphism Hurrigg,b → (P1)b \∆, where ∆ is the
union of all pairwise diagonals. The algebraic group PGL2 acts freely on Hurrigg,b and
the quotient is identified with Hurg,b, while the quotient of the PGL2-equivariant
morphism Hurrigg,b → (P1)b \∆ is identified with Hurg,b →M0,b

Another common variant, which was the version originally considered by Hurtwitz
in [Hur91], is to consider the branch locus as a set of unordered points. Let
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Hurrig,unordg,b : Sch → Sets be the functor, where an object over S is a finite, flat
morphism f : C → P1

S over S from a family of smooth curves of genus g such that
for every geometric point s ∈ S(k), Cs → P1

k is a covering simply branched over b
points. We claim that there is a morphism Hurrig,unordg,b → Symb P1 \∆ to the space
parameterizing b unordered distinct points. To see this, observe that the ramification
divisor Rf ⊂ C, defined as the relative singular locus of f : C → P1

S , is finite and
étale over S of degree b = 2g + 2d− 2. The complement Rf ×S · · · ×S Rf \∆ of the
pairwise diagonals is a principal Sb-torsor over S (see Exercise B.1.52) and the map
Rf ×S · · · ×S Rf \∆ → P1

S ×S · · · × P1
S \∆ is an Sb-equivariant morphism. This

defines an S-valued point of the quotient stack [
(
(P1)b \∆

)
/Sb] over S, which in

turn is identified with the scheme Symb P1 \∆. Note also that Symb P1 \∆ ∼= Pb \∆,
where the latter ∆ is the discriminant hypersurface.

The symmetric group Sb acts freely on Hurrigg,b with quotient Hurrig,unordg,b , and
the Sb-quotient of Hurrigg,b → (P1)b \∆ is identified with Hurrig,unordg,b → Symb P1 \∆.

The following exercise allows us to conclude that the map Hurg,b → M0,b is
a finite, étale, and surjective morphism, i.e., an algebraic covering space. When
working over a field k, we will abuse notation by also referring to Hurg,b as the base
change Hurg,b×Zk.

Exercise 5.7.11. Let k be an algebraically closed field of characteristic 0. Let g, b,
and d be positive integers with b = 2g + 2d− 2. Assume that d > 2.

(a) Show that the diagonal of Hurg,b over k is representable by schemes.
(b) If C → P1

k is a simply branched covering of degree d, show that every automor-
phism of C over P1 is trivial. Conclude that the automorphism group scheme
of a family of simply branched coverings of P1 of degree d is also trivial.
Hint: Use the fact that there are no non-trivial automorphisms of a smooth
curve fixing more than 2g + 2 points (Exercise 5.1.9).

(c) (hard) Show that Hurg,b →M0,b is a finite, étale, and representable morphism.
In particular, the functor Hurg,b is represented by a scheme. See also [Ful69,
Thm. 7.2], where it is shown more generally that Hurg,b is representable over
SpecZ, and the map Hurg,b → M0,b is étale (resp., finite étale over bases of
characteristic greater than d).

(d) Verify that the functors Hurrigg,b and Hurrig,unordg,b defined in Remark 5.7.10 are
also representable by schemes.

Remark 5.7.12. For the proof of the Clebsch–Hurtwitz–Lüroth Theorem (5.7.16) in
the next section, we only need to know that Hurg,b →M0,b is a topological covering
space, and this fact has an elementary argument. Consulting Figure 5.24, given a
simply branched covering f : C → P1 and a branched point p ∈ C, we can choose
an open neighborhood U ⊂ P1 around f(p) such that f−1(U)→ U is isomorphic to
an open neighborhood of the map C→ C given by x 7→ xn. For every other point
q′ ∈ U , we can construct a branched cover C ′ → P1 which outside U is the same
as C → P1 and over U is locally isomorphic to x 7→ xn but centered over q′ (rather
than f(p)).
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Figure 5.24

We turn now to studying the other map: Hurg,b →Mg.

Lemma 5.7.13. Let C be a smooth, connected, and projective curve of genus g
over an algebraically closed field k of characteristic 0. If L is a line bundle of degree
d ≥ 2g + 3 and V ⊂ H0(C,L) is a linear system of dimension 2, then a choice of
basis of V induces a simply branched covering C → P1.

Proof. We proceed with a dimension count. Since h1(C,L) = h0(C,ωC ⊗L∨) = 0 as
deg(ωC ⊗ L∨) < 0, Riemann–Roch implies that h0(C,L) = d+ 1− g, and it follows
that the dimension of the Grassmannian Gr(2,H0(L)) of 2-dimensional subspaces
is 2(d− g − 1). Since char(k) = 0, every finite morphism C → P1 is automatically
separable. Thus, if V does not induce a simply branched covering C → P1, then
one of the following three conditions must hold:

(a) V has a base point,
(b) there exists a ramification point with index greater than 2, or
(c) there exists two ramification points in the same fiber.

We claim that each condition is closed of codimension at least one. For condi-
tion (a), if p ∈ C(k) is a base point, then V ⊂ H0(C,L(−p)). Since d ≥ 2g,
we have that deg(ωC ⊗ (L(−p))∨) < 0, and thus h0(C,L(−p)) = d − g and
dimGr(2,H0(C,L(−p))) = 2(d − g − 2). Varying p ∈ C, we see that the locus
defining (a) has dimension 2(d− g − 2) + 1 = dimGr(2,H0(L))− 1. We leave cases
(b) and (c) for the reader. See also [Sev21] and [Ful69, Prop. 8.1].

Exercise 5.7.14 (details).
(a) Verify that conditions (b) and (c) above are closed of codimension at least one.
(b) Show that the argument holds as long as char(k) ̸= 2 and explain why it fails

if char(k) = 2.

Corollary 5.7.15. Let k be an algebraically closed field of characteristic 0. If g ≥ 2
and d ≥ 2g + 3 with b = 2g + 2d− 2, the morphism

Hurg,b →Mg, (C → P1, σi) 7→ C

is surjective.

5.7.3 The Clebsch–Hurwitz–Lüroth Theorem
We provide the classical argument due to Clebsch [Cle73], Hurwitz [Hur91], and
Lüroth [Lür71] that the Hurwitz moduli space Hurg,b is connected over C. From
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the surjectivity of the map Hurg,b → Mg, this allows us to conclude that Mg is
irreducible, a classical result of Klein [Kle82, §19] and Severi [Sev21, §F]. For a
modern treatment, see [Ful69, Prop. 1.5].

Theorem 5.7.16 (The Clebsch–Hurwitz–Lüroth Theorem). For g ≥ 2 and d ≥ 2
with b = 2g + 2d− 2, the Hurwitz moduli space Hurg,b over C is connected.

Proof. We utilize the morphism

β : Hurg,b →M0,b,

sending a simply branched cover to the ordered branch locus. By Exercise 5.7.11(c),
this map is a covering space. For every finite ordered set B = {q1, . . . , qb} ⊂ P1 of b
distinct points and q ∈ P1 \B, the fundamental group

π1(P
1 \B, q) = ⟨σi |σ1 · · ·σb = 1⟩,

where σi is a simple loop around qi, acts on the fiber f−1(p) of a simply branched
covering f : C → P1. Similarly, since β is a covering space, π1(M0,b, B) acts on the
fiber

Hurd,B := β−1(B) ⊂ Hurg,b

over B ∈M0,b. (Note the distinction between the use of the uppercase subscript ‘B’
and the lowercase ‘b’.) Using Proposition 5.7.7, we have bijections

Hurg,B = {genus g coverings C → P1 simply branched over B}/∼

∼=

 group homomorphisms ρ : π1(P1 \B, q)→ Sd
such that im(ρ) ⊂ Sd is a transitive subgroup
and each ρ(σi) is a transposition


/

conjugation by Sd

∼=
{

sequences (τ1, . . . , τb) ∈ (Sd)
b of transpositions

with product 1 generating a transitive subgroup

}/
conjugation by Sd.

The connectedness of Hurg,b is equivalent to the transitivity of the action of
π1(M0,b, B) on the fiber Hurd,B = β−1(B). Consider the sequence

τ :=
(
(12), (12), (13), (13), . . . , (1 d− 1), (1 d− 1)︸ ︷︷ ︸

2(d−2)

, (1d), (1d), . . . , (1d)︸ ︷︷ ︸
2g+2

)
∈ Hurd,B .

It suffices to show that every orbit of the action of π1(M0,b, B) on the fiber Hurd,B =
β−1(B) contains τ , and, to this end, we define the loop

Γi : [0, 1]→M0,b

t 7→ (q1, . . . , qi−1, γi(t), γ
′
i(t), qi+2, . . . , qb),

where γi and γ′i are paths as in Figure 5.25.
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Figure 5.25: Paths in P1

For an element (λ1, . . . , λb) ∈ Hurg,b, the action of Γi is given by

Γi · (λ1, . . . , λb) = (λ1, . . . , λi−1, λ
−1
i λi+1λi, λi, λi+2, . . . , λb).

It is now a combinatorial problem that we leave to the reader to show that there
exists a sequence Γi1 , . . . ,Γik of loops such that τ = Γi1Γi2 · · ·Γik · (λ1, . . . , λb).

Exercise 5.7.17. Solve the combinatorial problem at the end of the proof.

Corollary 5.7.18 (Irreducibility ofMg). For any field k of characteristic 0, Mg

is irreducible.

Proof. Since the morphsim Hurg,b →Mg is surjective (Corollary 5.7.15), the con-
nectedness of Hurg,b over C implies the connectedness of Mg over C. This, in turn,
implies thatMg is geometrically connected over Q, and thus connected over any field
k of characteristic 0. SinceMg is smooth over k (Theorem 5.4.14), its connectedness
is equivalent to its irreducibility.

The irreducibility of Mg can also be established using the Teichmüller space Tg
parameterizing complex structures on a topological surface Σg of genus g. It was
first proved in [Ber60b] that Tg is homeomorphic to a ball in C3g−3, and thatMg is
identified with the quotient Tg/Γg by the mapping class group Γg.

5.7.4 Irreducibility via degeneration

We now give a completely algebraic argument for the irreducibility ofMg in charac-
teristic 0. The key idea is to show every smooth curve degenerates to a singular stable
curve (Proposition 5.7.21)—this is the most challenging part of the argument and is
achieved with a technique inspired by the theory of admissible covers. This reduces
the connectedness ofMg to the connectedness of the boundary δ =Mg \Mg, which
we show using the inductive structure of the boundary and the Gluing Morphisms
(5.6.11). This argument is similar in spirit to Deligne and Mumford’s first proof of
the irreducibility of Mg in positive characteristic (see Remark 5.7.26). We follow
the treatment in Fulton’s appendix of Harris and Mumford’s paper [HM82].

We begin with a warmup—the genus 0 case.

Proposition 5.7.19. For every algebraically field k and every integer n ≥ 3, M0,n

is irreducible.
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Proof. As M0,n is smooth, it suffices to show it is connected. In the genus 0 case,
M0,n is obviously connected as it is identified with (P1 \ {0, 1,∞})n−3 \∆, where ∆
is the union of the pairwise diagonals (see Exercise 3.1.20). Therefore, it suffices
to show that the boundary δ =M0,n \M0,n does not have a connected component
consisting entirely of singular curves. Given a singular curve (C, pi) ∈M0,n(k), it
is easy to directly construct a stable family of curves (C → SpecR, σi) over a DVR
R whose generic fiber is smooth and whose special fiber is (C, pi): indeed, every
node of C has a Zariski-open neighborhood of the form Speck[x, y]/(xy) and we
can glue the deformations Speck[x, y]/(xy − π), where π ∈ R is a uniformizer, to
a family C → R. Alternatively, by deformation theory Proposition 5.3.23, there
are compatible stable families (Cn → Speck[t]/(tn+1), σn,i) with (C0, σ0,i) = (C, pi),
which by Grothendieck’s Existence Theorem (C.5.8) effectives to a stable family
(C → Speck[[t]]), σi) with smooth generic fiber.

We now give an alternative proof, which uses the identical strategy that we will
use shortly to show the connectedness ofMg,n. First, we claim that an n-pointed
curve (P1, pi) degenerates in a one-parameter family to a singular n-pointed stable
curve. Indeed, if we let the points p1 and p2 approach each other at different rates
and blow up the limit in the central fiber where they intersect, then the total family
together with the strict transform of the sections defines a family of stable n-pointed
genus 0 curves with singular central fiber. It therefore suffices to show that the
boundary δ =M0,n \M0,n is connected. The boundary divisor δ decomposes as a
union

δ =
⋃
I

δ0,I , where δ0,I = im
(
M0,I∪{p} ×M0,Ic∪{q} →M0,n

)
over subsets I ⊂ {1, . . . , n} of size 2 ≤ |I| ≤ n − 2, subject to the relation δ0,I =
δ0,Ic . By induction, we can assume that M0,k is irreducible for k < n, where the
base case holds as M0,3 = Speck. This implies that each δ0,I is connected. Let
I, J ⊂ {1, . . . , n} be two distinct subsets. After possibly replacing I with Ic, we can
assume that K := I ∩ J has size at least 2. If K ⊊ I and K ⊊ J , then by consulting
Figure 5.26, we see that δ0,I ∩ δ0,K ̸= ∅ and δ0,J ∩ δ0,K ̸= ∅. If I ⊂ J or J ⊂ I, then
δ0,I ∩ δ0,J ̸= ∅ for the same reason. The connectedness of δ follows.

g i j

g i i

i j c

d d o 8

T

T's t
a

Figure 5.26: A curve in δ0,I ∩ δ0,K as long as K ⊊ I.

Exercise 5.7.20. Show that every stable curve C over an algebraically closed field
k deforms a smooth curve. More precisely, show that there is a family of stable
curves π : C → T over a connected curve2 T over k and a point t ∈ T (k) such that
Ct ∼= C and π−1(T \ {t})→ T \ {t} is smooth.

The converse to the above exercise, i.e., that every smooth curve degenerates to
a stable curve, is more difficult.

2By our conventions, a curve (Definition 5.1.1) is necessarily of finite type over k.
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Proposition 5.7.21. Let C be a smooth, connected, and projective curve of genus
g ≥ 2 over an algebraically closed field k of characteristic 0. There exists a family
C → T of stable curves over a smooth connected curve T over k with points s, t ∈ T (k)
such that Cs ∼= C and Ct is a singular stable curve.

Proof. The essential strategy is as follows:

① For d≫ 0, choose a simply branched covering C → P1 of degree d branched
over distinct points q1, . . . , qb ∈ P1 where b = 2g + 2d− 2.

② Deform the covering C → P1 branched over qi to a covering C ′ → P1 branched
over general points q′i.

③ Degenerate (P1, q′i) ∈ M0,b to the stable curve (D, di) ∈ M0,b featured in
Figure 5.27.
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Figure 5.27: The degenerate curve (D, di) ∈M0,b

④ Degenerate the cover C ′ → P1 to a cover C ′′ → D branched over di such that
C ′′ is singular and stable.

For Step 1, Lemma 5.7.13 guarantees the existence of a simply branched covering
C → P1 of degree d ≫ 0 simply branched over b = 2g + 2d − 2 distinct points qi.
This defines a b-pointed stable curve (P1, qi) ∈ M0,b. For the remaining steps, we
first claim that it suffices to find a family C → T over a connected scheme T of
finite type over k. Indeed, this would show that C is in the same connected (hence
irreducible) componentM′ ⊂Mg as a singular stable curve C ′′. By Le Lemme de
Gabber (4.5.1), there is a finite cover Z →Mg by a scheme, and Z must have an
irreducible component Z ′ surjecting ontoM′. As any two k-points of an irreducible
scheme Z ′ of finite type over k are contained in an integral curve Q ⊂ Z ′, the claim
follows by considering the map Q̃→ Z ′ →Mg from the normalization of Q.

For Step 2, let H ⊂ Hurg,b be the connected component containing C → P1.
Since Hurg,b →M0,b is finite and étale (Exercise 5.7.11(c)) and thus both an open
and closed morphism, the composition H ↪→ Hurd,b →M0,b is surjective. As H is
connected, it suffices to find a single simply branched cover (C ′ → P1) ∈ H and a
family of stable curves C → T over a connected base T connecting C ′ to a singular
stable curve. This brings us to Step 3.

We claim that there is a commutative diagram

T \ {t}� _

��

// H �
� op& cl

//

## ##

Hurg,b

fin ét
��

T
t 7→(D,di)

// M0,b M0,b
? _oo

(5.7.22)

where T is a smooth connected curve and t ∈ T (k) maps to the stable curve (D, di)
of Figure 5.27. To see this, observe that since M0,b is irreducible (Proposition 5.7.19),
M0,n ⊂ M0,n is dense. We can thus choose a map Y → M0,n from a connected
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reduced curve and a point y ∈ Y (k) such that y 7→ (D, di) and such that the
image of every y′ ̸= y is smooth. Let Y ′ be a connected component of the base
change (Y \ {y})×M0,b

H, and let T be the normalization of the closure of the image
Y ′ →M0,b. There is a point t ∈ T mapping to (D, di) ∈M0,b, and after replacing
T with an open neighborhood of t, we can arrange that T \ {t} → M0,b factors
through H.

Diagram 5.7.22 gives a family (D → T, τi) of b-pointed stable curves of genus
0 together with a simply branched covering C∗ → D∗ over T ∗ := T \ {t} (where
D∗ ⊂ D is the preimage of T ∗) such that the sections τ∗i : T ∗ → D∗ pick out the
branch locus. We now claim that, after replacing (T, t) by a ramified cover, there
are dotted arrows completing the cartesian diagram

C∗ //

��

D∗ //

��

T ∗

��

C
f
// D //

□

T,

□

where C → T is a family of nodal curves. If we define C as the integral closure of
OD in K(C∗), then f : C → D is a finite morphism. Letting Dsm = D \ {di} be the
relative smooth locus of D → T , then Purity of the Branch Locus (A.3.13) implies
that the ramification locus of f−1(Dsm) → Dsm is a divisor. Therefore, C → D is
ramified only over the sections τ1, . . . , τb and possibly over the nodes di of D = Dt.
To see that C → S is nodal, observe that étale locally around each di ∈ D, C → D
has the form of a finite morphism U → V := Speck[x, y]/(xy − πk) where k ≤ d
and π is a local coordinate on an étale neighborhood of t ∈ T . The map U → V
is finite étale over V \ 0. Since Speck[x′, y′]/(x′ky′k − πk) \ 0 → V \ 0, defined by
(x′, y′) 7→ (xk, yk), is the universal cover, we see that the preimage of V \ 0 in U
must be isomorphic to Speck[x′′, y′′]/(x′′ly′′l − πk) \ 0 for some integer l dividing
k. Thus, U = Speck[x′′, y′′]/(x′′ly′′l − πk), and we see that the reduced scheme
structure of the fiber Ut, defined by π = 0, is nodal. It follows that (Ct)red is nodal.
By the same argument as in Step 4 of the proof of Stable Reduction (5.5.1), there
is ramified cover T ′ → T such that the central fiber of the normalization of C̃′ of
C′ = C ×T T ′ is reduced and nodal. After replacing C with the normalization of C̃′
and T with T ′, we have arranged that C → T is a family of nodal curves.
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Figure 5.28: Picture of C → D → T .
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The family C → D may not be stable, but using the Stable Contraction of a
Prestable Family (Theorem 5.6.4), we can contract rational tails and bridges to
obtain a stable family Cst → T . To show that Cst0 is singular, it suffices to show that
every smooth irreducible component of C0 has genus 0. Letting X ⊂ C0 be such a
component, the image of X under C0 → D0 = D is one of the P1’s. Let d′ be the
degree of the induced map X → P1. We know that X → P1 is ramified over the
marked points of the P1 and possibly ramified over the nodes of D contained in the
P1 with ramification index at most d′ − 1. If the P1 is at the end of the chain in D,
it contains two marked points and one node, and Riemann–Hurwitz (5.7.3) implies
that 2gX − 2 ≤ −2d′ + 2 + (d′ − 1), which implies that gX = 0. If the P1 is in the
middle, it contains one marked point and two nodes, and Riemann–Hurwitz implies
that 2gX − 2 ≤ −2d′ + 1 + 2(d′ − 1), which also implies that gX = 0.

Theorem 5.7.23 (Irreducibility of Mg,n). Let g and n be nonnegative integers
satisfying 2g − 2 + n > 0. For any field k of characteristic 0, Mg,n is irreducible
and contains Mg,n as a nonempty dense open substack.

Proof. We may assume that k is algebraically closed. There exists smooth curves
of every genus (Exercise 5.1.7). As P1 with n ≥ 3 distinct points is stable and a
smooth, connected, and projective genus 1 curve with n ≥ 1 distinct points is stable,
Mg,n is nonempty as long as 2g−2+n > 0. AsMg,n is smooth (Theorem 5.4.14), it
suffices to show thatMg,n is connected. AsMg,n+1 →Mg,n is the universal family
(Proposition 5.6.8), the connectedness of Mg,n implies the connectedness ofMg,n′

for n′ > n. We already know that M0,n is connected for n ≥ 3 (Proposition 5.7.19).
We also know that M1,1 is isomorphic to [(A2 \ 0)/Gm] and thus is connected
Exercise 3.1.19(c), and it follows thatM1,n is connected for n ≥ 1.

We are thus reduced to show thatMg is connected for g ≥ 2, and by induction we
can assume thatMg′ is connected for g′ < g. Since every smooth curve degenerates
to a singular stable curve in the boundary δ =Mg \Mg (Proposition 5.7.21), we
are further reduced to showing that the boundary δ is connected. We write δ =
δ0 ∪ · · · ∪ δ⌊g/2⌋ where δ0 = im(Mg−1,2 →Mg) and δi = im(Mi,1×Mg−i,1 →Mg),
using the Gluing Morphisms (5.6.11). By the inductive hypotheses, Mg−1,2 and
Mi,1 ×Mg−i,1 are connected, and thus so is each δi. But on the other hand, the
boundary divisors δi intersect! Namely, for every i, j = 0, . . . , ⌊g/2⌋, the intersection
δi ∩ δj contains curves as in Figure 5.29. See also Fulton’s appendix [HM82].

g i j

g i i

i j c

d d o S

Tn

7 É

Figure 5.29: The boundary divisors δi and δj have a nonempty intersection.

Remark 5.7.24 (Admissible Covers). The above argument was motivated by the
theory of admissible covers introduced by Harris and Mumford [HM82] to compute
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the Kodaira dimension of Mg. See also the exposition in [HM98, §3.G]. Admissible
covers are a generalization of simply branched covers C → P1 where the source and
target curves may have nodal singularities. The inspiration behind admissible covers
is to define a moduli stack Hurg,b fitting into the diagram

Hurg,b

|| ##

Mg M0,b

compactifying

Hurg,b

{{ ##

Mg M0,b.

An admissible cover of genus g is a surjective finite morphism f : C → B from a
prestable genus g curve to a stable b-pointed genus 0 curve (B, p1, . . . , pb) such that

(a) the preimage of the smooth locus Bsm under f is the smooth locus Csm and
the induced morphism Csm → Bsm is simply branched of degree d over the
points pi, i.e., each ramification index is 2 and there is at most one ramification
point in every fiber; and

(b) for every node q ∈ B and every node r ∈ C over q, the étale local structure
of C → B at r is of the form k[x, y]/(xy)→ k[x, y]/(xy) defined by (x, y) 7→
(xm, ym) for some m, i.e., the two branches have equal ramification indices at
the node.

This definition extends to families resulting in a proper Deligne–Mumford stack
Hurg,b. (Note that admissible covers may have non-trivial automorphism groups
unlike simply branched coverings, and consequently Hurg,b is not a scheme.) The
assignment (C → B) 7→ (B, pi) defines a morphism Hurg,b → M0,b. On the other
hand, the assignment (C → B) 7→ Cst definesHurg,b →Mpre

g , noting that the source
curve C of an admissible cover C → B need not be stable. Composing with the
Stable Contraction Morphism (5.6.5) Mpre →Mg gives a morphism Hurg,b →Mg.

The argument degenerating a smooth curve to a singular stable curve (Propo-
sition 5.7.21) can be rewritten in this language. For d≫ 0, given a smooth curve
C ∈Mg, we choose a preimage (C → P1) ∈ Hurg,b (Lemma 5.7.13). Let H ⊂ Hurg,b
be the connected component containing (C → P1), and let H ⊂ Hurg,b be its closure.
Since Hurg,b → M0,b is finite and étale (Exercise 5.7.11(c)), H surjects onto M0,b.
Choose a commutative diagram

T \ {t}� _

��

// H

proper
����

T
t7→(D,di)

//

;;

M0,b,

as in the proof of Proposition 5.7.21, where T is a smooth connected curve, t ∈ T (k)
maps to the stable curve (D, di) ∈M0,b of Figure 5.27, and there is some t′ ̸= t ∈ T (k)
mapping to a simply branched covering (C ′ → P1) ∈ H. By the valuative criterion
of properness, after replacing T with a ramified cover, there exists a lift T → H
where t maps to an admissible cover (C ′′ → D). One shows that every smooth
irreducible component of C ′′ has genus 0 as in the proof of Proposition 5.7.21.
Thus C ′ degenerates to the singular stable curve (C ′′)st, and since (C → P1) and
(C ′ → P1) are in the same connected component in Hurg,b, the original smooth
curve C also degenerates to (C ′′)st. (Note that the argument constructing the family
C → D → T of covers in the proof of Proposition 5.7.21 is one of the essential
ingredients in the proof of the properness of Hurg,b.)
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5.7.5 Irreducibility in positive characteristic

We prove that Mg is irreducible in positive characteristic following the historical
arguments of Deligne–Mumford [DM69] and Fulton [Ful69]. A central ingredient
in each argument is Zariski’s Connectedness Theorem (4.5.13): for a flat, proper
morphism of noetherian Deligne–Mumford stacks, the number of geometrically
connected components of a fiber is lower semicontinuous. This connectedness
theorem, stated but unproven in [DM69, Thm. 4.17], requires a surprisingly large
amount of the theory of Deligne–Mumford stacks.

Theorem 5.7.25 (Irreducibility ofMg,n). For g and n satisfying 2g − 2 + n > 0,
Mg,n is irreducible over any field.

Proof. As we already know that Mg,n is irreducible in characteristic 0 by Theo-
rem 5.7.16 (transcendental proof) or Theorem 5.7.23 (algebraic proof), it suffices
to show irreducibility over Fp. The morphism Mg,n → SpecZ is smooth (Theo-
rem 5.4.14) and proper (Theorem 5.5.16), and thus Zariski’s Connectedness Theorem
(4.5.13) implies that all geometric fibers have the same number of connected com-
ponents. As Mg,n is connected over Q, it is also connected, hence irreducible, over
Fp.

Remark 5.7.26 (Deligne and Mumford’s proofs). The above proof was the second
argument given by Deligne and Mumford [DM69, §5]. Keep in mind that this is the
same paper that introduced stacks (now called Deligne–Mumford stacks), introduced
stable curves, and proved Stable Reduction (5.5.1). It was quite a remarkable paper!
Their first irreducibility argument [DM69, §3], which they called an “elementary
derivation of the theorem”, was very similar in spirit to the proof of Theorem 5.7.23
using the degeneration of a smooth curve to a singular stable curve and the inductive
nature of the boundary. The proof relied on Stable Reduction and the topological
irreducibility ofMg. We now sketch their argument thatMg ×Z k is irreducible for
any field k.

Let Hg (resp., Hg) denote the locally closed subscheme of HilbP (P5g−6
Z /Z)

parameterizing smooth (resp., stable) curves. In [GIT, Thms. 5.11, 7.13], Mumford
had constructed the coarse moduli scheme Mg over SpecZ as the geometric quotient
Hg/PGL5g−6, and had shown that it is quasi-projective over SpecZ[1/p] for every
prime p. (It is also true thatMg admits a projective coarse moduli scheme Mg over
SpecZ which is identified with the geometric quotient Hg/PGL5g−6, but this was
only shown later.)

Step 1: No connected component of Mg ×Z k is proper over k. Let W (k) be the
Witt vectors for k; this is a complete noetherian local ring whose generic point η
has characteristic 0 and whose closed point 0 has residue field k. (For example,
W (Fp) = Zp is the ring of p-adics.) As Mg ×Z W (k) is quasi-projective, we can
choose a projective compactification

Mg ×Z W (k) �
�

//

''

X

��

SpecW (k)

containing Mg ×Z W (k) as a dense open subscheme. By the characteristic 0 result,
we know that the generic fiber Xη is connected. Since X is flat and proper over
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W (k), Zariski’s Connectedness Theorem (4.5.13) for schemes implies that the special
fiber X0 is also connected.

Suppose Y ⊂Mg ×Z k is a connected component proper over k. Then Y is an
open subscheme of X0 but also a closed subscheme since Y is proper. Since X0 is
connected, we conclude that Y must be all of Mg ×Z k, hence Mg ×Z k is proper and
irreducible. To obtain a contradiction, denote by Ag,k the moduli space of principally
polarized g-dimensional abelian varieties over k and consider the morphism

Θ: Mg ×Z k→ Ag,k, C 7→ Jac(C)

assigning to a smooth curve C its Jacobian Jac(C). The properness of Mg ×Z k
implies that the image is closed, but it was well known at the time that the closure
of the image of Θ contains products of lower dimensional Jacobians.

Step 2: There is no connected component of Hg ×Z k consisting entirely of smooth
curves. Let H

(1)

g , . . . ,H
(r)

g be the connected components of Hg ×Z k. Step 1 implies

that H(i)
g := H

(i)

g ∩(Hg×Zk) is not proper for each i. Therefore, there is a morphism
∆∗ = Speck((t))→ H

(i)
g that does not extend to ∆ = Speck[[t]]. By Stable Reduction

(5.5.1), after possibly replacing ∆ with a ramified extension, ∆∗ → H
(i)
g extends to a

morphism ∆→ H
(i)

g . This shows that H
(i)

g \H
(i)
g is non-empty. In other words, we

have shown that every smooth curve degenerates to a singular stable curves, giving
a proof of Proposition 5.7.21 in positive characteristic.

Step 3: The boundary δ ×Z k is connected, where δ = Mg \Mg. By Step 2, the
connectedness of Mg ×Z k follows from the connectedness of δ ×Z k. We will show
that δi×Z k is connected for each i and that each pairwise intersection (δi ∩ δj)×Z k
is nonempty. This is precisely what we showed in the proof of Theorem 5.7.23
using induction on the genera, the Gluing Morphisms (5.6.11), and the curves in
Figure 5.29 in (δi ∩ δj) ×Z k. Deligne and Mumford gave essentially the same
argument using ad hoc techniques rather than the formalism of the moduli space
Mg,n of n-pointed stable curves and the Gluing Morphisms (5.6.11), which were
only introduced later by Knudsen.

Interestingly, neither of Deligne and Mumford’s proofs relies essentially on the
theory of the stacks. Their second proof—see Theorem 5.7.25—is valid as long as
one knows the existence of a proper and flat coarse moduli space Mg,n → SpecZ.
However, both proofs rely fundamentally on the compactificationMg and Stable
Reduction (5.5.1).

Remark 5.7.27 (Fulton’s proof). In [Ful69], Fulton studied the variant of the Hur-
witz moduli space Hurrig,unordg,b parameterizing families C → P1

S of simply branched
coverings of degree d over b unordered points (see Remark 5.7.10), and showed that
the diagram

Hurrig,unordg,b

zzzz

ét

((

Mg Symb P1 \∆ = Pb \∆

is defined over Z such that Hurrig,unordg,b → Mg surjective if d ≥ g + 1 (which is a
better bound than we proved in Corollary 5.7.15) and that Hurrig,unordg,b → M0,n
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is finite étale over Zd!, i.e., after inverting all primes p ≤ d. Fulton established a
“reduction theorem”: if X is a smooth and projective scheme over a complete DVR
R with algebraically closed residue field k and characteristic 0 fraction field K and
∆ ⊂ X is relative divisor over R which is simple (i.e., each fiber of ∆ has no multiple
components), and if Y → X \∆ is a finite étale covering such that YK is irreducible,
then Yk is also irreducible. Using the irreducibility of the Hurwitz moduli space in
characteristic 0, Fulton’s reduction theorem applied to Hurrig,unordg,b → Symb P1 \∆
gives the irreducibility of Hurrig,unordg,b over fields of characteristic p > d. Taking
d = g + 1 gives the irreducibility of Mg over fields of characteristic p > g + 1.

5.8 Projectivity following Kollár

Still you may have a sentimental attachment to familiar old varieties.
It would appear especially that projective varieties play such a central
technical role in algebraic geometry that it may be virtually impossible to
eliminate their use even if you wanted to. In any case, it is very interesting
to prove, when possible, that [the space] is a projective variety.

Mumford [Mum76, p. 441]

We prove that the coarse moduli space Mg,n is projective (Corollary 5.8.22),
completing the proof of Theorem A. We follow the approach introduced by Kollár in
[Kol90] building on ideas of Viehweg [Vie95]. To introduce the general strategy for
projectivity, we need some terminology. Let π : Ug →Mg be the universal family
over SpecZ. For each integer k ≥ 1, define the kth pluricanonical bundle as

π∗(ω
⊗k
Ug/Mg

)

on Mg, which by Proposition 5.3.21 is a vector bundle of rank g if k = 1 or rank
(2k − 1)(g − 1) if k > 1. The determinants

λk := detπ∗(ω
⊗k
Ug/Mg

)

are line bundles on Mg. For k = 1, this is the Hodge line bundle from Defini-
tion 5.6.18.

Strategy for projectivity: Show that for k ≫ 0, a positive power of λk
descends to an ample line bundle on the coarse moduli space Mg.

The first proof of projectivity of Mg,n was due to Knudsen and Mumford in
[KM76, Knu83a, Knu83b] by relying on Torelli map Mg → Ag to the Satake com-
pactification of the moduli space of principally polarized abelian varieties. Mumford
and Gieseker jointly constructed Mg as a projective variety using GIT; see [Mum77]
and [Gie82].3 We sketch their argument in the next section.

Outline of this section. After discussing positivity and ampleness criteria for algebraic
spaces (§5.8.1), we prove Kollar’s Criterion for Ampleness (Theorem 5.8.7) for
ampleness. After establishing the nefness of pluricanonical bundles π∗(ω⊗k

Ug/Mg
)

(Theorem 5.8.17), we apply Kollár’s Criterion to obtain the Projectivity of Mg,n

(5.8.22).
3Despite the publications dates, [Knu83b] is considered the first proof.
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5.8.1 Positivity and ampleness criteria
After extending notions of positivity introduced in §B.2.2 from schemes to algebraic
spaces, we extend the Nakai–Moishezon Criterion for Ampleness to algebraic spaces
(Theorem 5.8.4), which we will need in the proof of Kollár’s Criterion (5.8.7).

Definition 5.8.1. A line bundle L on a quasi-compact algebraic stack X is called:
(1) base point free if for every x ∈ |X |, there exists s ∈ Γ(X,L) with s(x) ̸= 0, and
(2) semiample if L⊗n is base point free for some n > 0.

A line bundle L on a proper algebraic space X over a field k is called:
(3) ample if X is a scheme and L is ample in the usual sense (see Proposition B.2.8),
(4) nef (resp., strictly nef ) if for every integral closed curve4 C ⊂ X, L · C =

degL|C ≥ 0 (resp., > 0), and
(5) big if there is a constant C such that h0(Z,L|⊗mZ ) ≥ Cmdim(Z) for all m ≥ 0.

A vector bundle E on a proper algebraic space X is nef if OP(E)(1) is nef on P(E).

If f : X ′ → X is a finite surjective map of algebraic spaces, then a line bundle L
on X is ample if and only if f∗L is (Exercise 4.4.22).

Lemma 5.8.2. Let X be a proper algebraic space over a field k.
(1) If f : X ′ → X is a surjective proper morphism of algebraic spaces, then a

vector bundle E is nef if and only if f∗E is.
(2) If a vector bundle E is nef, then so is detE.
(3) Let f : X ′ → X be a birational proper morphism of algebraic spaces. If f∗L is

big, then so is L. The converse is true if X is normal.

Proof. It suffices to prove (1) for a line bundle L. This follows from the equality
deg(f∗L)|C′ = deg(C ′ → C) degL|C for an integral subcurve C ′ ⊂ X ′ with image
C ⊂ X. For (1), we apply Le Lemme de Gabber (4.5.1) to obtain a finite cover
f : X ′ → X by a scheme. By part (1), it suffices to show that f∗ det(E) =
det(f∗E) is nef, but this follows from the case of schemes (Proposition B.2.15).
Part (3) can be shown using the same short argument as in the case of schemes
(Proposition B.2.22).

We begin with a simple criterion generalizing Lemma B.2.26.

Lemma 5.8.3. Let X be a proper Deligne-Mumford stack over a field k with coarse
moduli space X → X. Suppose that L is a line bundle on X satisfying

(a) L is semiample, and
(b) for every map f : T → X from an integral proper curve over k such that

f(T ) ⊂ |X | is not a single point, deg f∗L > 0.
Then L⊗N descends to an ample line bundle on X for some N > 0, and X is
projective.

Proof. For N sufficiently divisible, L⊗N descends to a line bundle L on X (Proposi-
tion 4.3.31), and there is commutative diagram

X

&&��

X // P(H0(X , LN )).

4By Theorem 4.4.32, every such closed integral curve is a projective scheme.
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Property (a) ensures that X → P(H0(X , LN )) is well-defined. The existence of
the factorization X → P(H0(X , LN )) follows from the universal property of coarse
moduli spaces. Property (b) implies that X → P(H0(X , LN )) doesn’t contract
curves. Thus X → P(H0(X , LN )) is quasi-finite and proper, hence finite. As
L ∈ Pic(X) is the pullback of O(1), L is ample.

The semiampleness condition in (a) can be very challenging to verify in practice.
In the GIT approach, semiampleness is hard-coded into the definition of semistability
(Definition 6.7.5): given a reductive group G acting linearly on projective space
P(V ), then v ̸= 0 ∈ V is semistable if and only if there exists s ∈ Γ([P(V )/G],O(d))
with s(v) ̸= 0 and d > 0. In other words, the semistable locus P(V )ss is the largest
open subscheme such that O(1) is semiample on [P(V )ss/G], i.e., [P(V )ss/G] is the
stable base locus of O(1) on [P(V )/G]. The Hilbert–Mumford Criterion (6.7.16)
provides an effective way to verify semistability.

In the Nakai–Moishezon Criterion for Ampleness (B.2.28) for a scheme X, the
semiampleness of a line bundle L = OX(D) is obtained from the nefness of L and
the bigness of the restriction L|Z to any integral closed subscheme Z. It also holds
for algebraic spaces.

Theorem 5.8.4 (Nakai–Moishezon Criterion for Ampleness). Let X be a proper
algebraic space over an algebraically closed field k, and let L be a line bundle on X.
The following are equivalent:

(1) L is ample,
(2) L is nef and for every integral closed subscheme Z ⊂ X, L|Z is big, and
(3) L is strictly nef and for every integral closed subscheme Z ⊂ X, L|⊗mZ is

effective for some m > 0.

Remark 5.8.5 (Classical formulation). It is not hard to extend the definition of
intersection numbers to algebraic spaces. Namely, one shows that χ(Z,L|⊗mZ ) is a
rational polynomial, and one defines c1(L)dimZ · Z as the normalized coefficient of
mdimZ ; see [SP, Tag 0DN3]. For a nef line bundle L, χ(Z,L|⊗mZ ) = h0(Z,L|⊗mZ ) for
m≫ 0, and so the bigness of L is equivalent to c1(L)dimZ · Z > 0. This implies the
classical formulation of the Nakai–Moishezon Criterion:

L is ample ⇐⇒ c1(L)
dimZ · Z > 0 for every integral closed subspace Z ⊂ X.

Proof. The same argument as in the case of schemes (Theorem B.2.28) proves the
nontrivial direction (3) ⇒ (1).

Seshadri’s Criterion (B.2.30) holds for proper algebraic spaces [Cor93], while
Kleiman’s Criterion (B.2.29) is unknown in general for proper algebraic spaces (and
even proper schemes).

5.8.2 Kollár’s Criterion for Ampleness

We prove Kollár’s Criterion for Ampleness [Kol90, Lem. 3.9] with improvements from
[KP17, Thm. 4.1]. See also the excellent exposition in [CLM22]. Let X be a proper
algebraic space over a field k, and let W → Q be a surjection of vector bundles on
X of rank w and q. In our application toMg, we will use the multiplication map
Symd π∗(ω

⊗k
Ug/Mg

)→ π∗(ω
⊗dk
Ug/Mg

) on pluricanonical bundles, where π : Ug →Mg is
the universal family.
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We will assume that W has a reduction of structure group by G→ GLw (Defini-
tion B.1.61) where G is a reductive group. To explain what this means, recall that
the frame bundle FrW → X is the principal GLw-bundle corresponding to W under
the bijection between vector bundles and principal GL-bundles (see Exercise B.1.56),
and that FrW represents the functor Sch/X → Sets assigning f : T → X to the set
of trivializations O⊕w

T
∼→ f∗W (Exercise B.1.55). A reduction of structure group

by G → GLw is the data of a principal G-bundle F → T and an isomorphism
F ×G GLw

∼→ FrW of principal GLw-bundles. In our application to Mg, the vector
bundle Symd π∗(ω

⊗k
Ug/Mg

) has a reduction of structure group to GLv, where v is the

rank of the vector bundle π∗(ω⊗k
Ug/Mg

). It may be helpful to the reader to keep

in mind the case when the surjection W → Q is of the form SymdE → Q as it
simplifies several details of the proof (in addition to being one of the hypotheses
in characteristic p!)—the exposition [CLM22] proves Kollár’s Criterion under this
hypothesis.

The classifying map is the morphism

X → [Gr(q,kw)/G]
x 7→ [W ⊗ κ(x)↠ Q⊗ κ(x)].

It is well-defined because a choice of isomorphism W ⊗ κ(x) ∼= κ(x)w of the fiber of
W over x is well-defined up to the structure group G. The above definition extends
to functorial maps X(S) → [Gr(q,kw)/G](S) for k-schemes S. Alternatively, we
may construct the classifying map using the GLw-equivariant morphism FrW →
Gr(q,kw), where over f : T → X, a trivialization O⊕w

T
∼→ f∗W maps to the quotient

O⊕w
T

∼→ f∗W ↠ f∗Q. Letting F → X denote the principal G-bundle arising from
the reduction of structure group of W to G, the G-equivariant map

F
f 7→(f,id)−−−−−−→ F ×G GLw

∼→ FrW → Gr(q,kw)

defines a map X → [Gr(q,kw)/G] and a cartesian diagram

F //

��

Gr(q,kw)

��

X // [Gr(q,kw)/G].

□ (5.8.6)

Kollár’s Criterion deduces the projectivity of X from the projectivity of Gr(q,kw),
generalizing the fact that a proper scheme quasi-finite over Gr(q,kw) is projective.
Indeed, when W is the trivial vector bundle, there is a reduction of structure
group to the trivial group G = {1} and the quasi-finiteness of the classifying map
X → Gr(q,kw) implies that it is finite, and hence the pullback det(Q) of the Plücker
line bundle is ample.

Theorem 5.8.7 (Kollár’s Criterion for Ampleness). Let X be a proper algebraic
space over a field k. Let W ↠ Q be a surjection of vector bundles of rank w and q.
Suppose that

(a) W has a reduction of structure group by a homomorphism G → GLw from
an affine algebraic group G such that the closure of the image of G in the
projective space P(Matw,w) of w × w matrices is normal;

(b) W is nef;

269



(c) the classifying map X(k)→ Gr(q,kw)(k)/G(k) has finite fibers; and
(d) either G is linearly reductive (e.g., char(k) = 0 and G is reductive), or G = GLv

and W = Symd V for a nef vector bundle V of rank v.
Then detQ is ample.

The proof will proceed by reducing the ampleness of det(Q) to its bigness, which
we establish in Proposition 5.8.11.

Proof of Theorem 5.8.7. Since a line bundle is ample if and only if its pullback to
the normalization is ample (Exercise 4.4.22), we may assume that X is normal.
By the Nakai–Moishezon Criterion for Ampleness (5.8.4), it suffices to show that
det(Q) is nef and that det(Q)|Z is big for each integral subspace Z ⊂ X. Since W
is nef, so the quotient Q, and Lemma 5.8.2(1) implies that det(Q) is nef. For an
integral subspace Z ⊂ X, the hypotheses (a)–(d) hold for Z and WZ ↠ QZ . By
Chow’s Lemma (4.5.6), there is a proper birational map f : Z ′ → Z from an integral
projective scheme. While (a), (b), and (d) each hold for Z ′ and WZ′ ↠ QZ′ , (c) may
not hold as the classifying map Z ′(k) → Gr(q,kw)(k)/G(k) is only guaranteed to
generically have finite fibers. Nevertheless, Proposition 5.8.11 implies that det(QZ′)
is big. As Z ′ → Z is proper birational, Lemma 5.8.2(3) implies that det(Q) is
big.

Remark 5.8.8 (Unwinding quasi-finiteness). Condition (c) is equivalent to the
map |X| → |[Gr(q,kw)/G]| on topological spaces having finite fibers. It is weaker
than the quasi-finiteness of X → [Gr(q,kw)/G], which also requires that for every
x ∈ X(k) only finitely many elements of G(k) leave ker(W ⊗ k→ Q⊗ k) invariant
(see Exercise 3.3.33). The original statement [Kol90, Lem. 3.9] assumed the quasi-
finiteness of X → [Gr(q,kw)/G], and this was weakened in [KP17, Thm. 5.1] to
condition (c). Letting Γ: X → X × [Gr(q,kw)/G] be the graph of the classifying
map, condition (c) is equivalent to the quasi-finiteness of im(Γ) → [Gr(q,kw)/G],
which is what we use in the proof.

Remark 5.8.9 (Hypotheses (a) and (d)). In our application to Mg, W is the
symmetric product Symd V of a vector bundle V of rank v, and thus W has a
reduction of structure group by GLv → GLw. In this case, the closure of GLv
in P(Matw×w) is identified with P(Matv,v) and is hence normal. This shows that
hypothesis (a) holds. In other applications, (a) can be verified by appealing to results
on the normality of orbit closures; see [Tim03, DC04, BGMR11]. Hypothesis (d) in
positive characteristic can be relaxed to assuming that G = GLv1 × · · · ×GLvd with
G→ GLw a semipositive representation (i.e., it extends to a map Matv1,v1 × · · · ×
Matvd,vd → Matw,w); see [Kol90, Condition ∆ in Prop. 3.6].

Remark 5.8.10 (Stability). The above theorem does not require that the image
of X lands in the G-stable locus of Gr(q,kw). However, if this happens, then the
composition X → [Gr(q,kw)s/G] → Gr(q,kw)//G is a quasi-finite morphism of
proper algebraic spaces. It is hence finite and detQ is ample as it is the pullback of
an ample line bundle on Gr(q,kw)//G.

Assuming X is normal and projective, we establish the weaker conclusion that
detQ is big under the weaker hypothesis that the classifying map has generically
finite fibers. When W is trivial with a reduction of structure group to G = {1}, this
follows from the fact that a line bundle is big if and only if its pullback under a
surjective, generically quasi-finite, and proper morphism is big. The main idea of the
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proof below is to apply this fact to a morphism from a blowup of a compactification
of the projectivized frame bundle PFrW to Gr(q,kw).

Proposition 5.8.11. Let X be a normal integral projective scheme over a field k.
Let W ↠ Q be a surjection of vector bundles of rank w and q. Suppose that

(a) W has a reduction of structure group by a homomorphism G → GLw from
an affine algebraic group G such that the closure of the image of G in the
projective space P(Matw,w) of w × w matrices is normal;

(b) W is nef;

(c′) the classifying map X(k) → Gr(q,kw)(k)/G(k) generically has finite fibers;
and

(d) either G is linearly reductive (e.g., char(k) = 0 and G is reductive), or G = GLv
and W = Symd V for a nef vector bundle V of rank v.

Then detQ is big.

Proof. Define the relative projective space P := P(H omOX
(W,O⊕w

X )) over X, and
let PFrW ⊂ P be the open subscheme defined by the non-vanishing of the determinant
of the natural map

O⊕w
P →WP ⊗OP(1),

induced from the universal quotient H omOP(WP,O⊕w
P ) → OP(1), where WP is

the pullback of W via P → X. The principal PGLw-bundle PFrW → X is the
projectivized frame bundle of W (see Exercise B.1.55). The composition

O⊕w
P →WP ⊗OP(1)→ QP ⊗OP(1) (5.8.12)

is surjective over PFrW and defines a morphism PFrW → Gr(q,kw). In summary,
we have a commutative diagram

PFrW
� � //

((

P //

��

Gr(q,kw)

��

X // [Gr(q,kw)/PGLw].

Step 1: Construct a blowup P′ → P which is an isomorphism over PFrW such that
PFrW → Gr(q,kw) extends to a morphism P′ → Gr(q,kw). Note that there is no
need to blow up if the map (5.8.12) is surjective. Otherwise, taking the qth wedge
power of (5.8.12) gives a map

∧q O⊕w
P → det(QP)⊗OP(q), and we let I be the image

subsheaf. Let P′ → P be the blowup of the ideal sheaf I⊗det(QP)
∨⊗OP(−q) ⊂ OP.

Then P′ → P is an isomorphism over PFrW and there is a map P′ → Gr(q,kw)
extending PFrW → Gr(q,kw) yielding a commutative diagram

E H A

P′ //
++

P //

��

Gr(q,kw)

��

X // [Gr(q,kw)/PGLw],

where E ⊂ P′ is the exceptional divisor, H ⊂ P is the hyperplane class, and A is
the ample divisor on Gr(q,kw) corresponding to the Plücker embedding. Abusing
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notation, we also view det(Q) as a divisor on X. By using subscripts to denote the
pullback of divisors, we have the formula

det(Q)P′ + qHP′ = AP′ + E. (5.8.13)

Step 2: Relate the PGLw-action on Gr(q,kw) to the action by the image PG ⊂ PGLw

of G. Setting PG := im(G → GLw → PGLw) ⊂ PGLw, the quotient PGLw /PG
is quasi-projective (Proposition B.1.16(7)) and thus separated. This implies that
the morphism [Gr(q,kw)/PG]→ [Gr(q,kw)/PGLw] is separated. We have a large
commutative diagram

Q′ //
� _

cl

��

,,
Q� _

cl

��

Q∗ //? _
op

oo
� _

cl

��

Gr(q,kw)� _

cl

��

id

**

P′ //

11

P PFrW //

��

? _
op

oo B(PG)×B(PGLw) Gr(q,kw)
sep

//

��

Gr(q,kw)

��

X // [Gr(q,kw)/PG]
sep

// [Gr(q,kw)/PGLw]

with cartesian squares, where Q∗ is defined as the cartesian product, Q∗ ↪→ PFrW
is a closed immersion, Q is defined as the closure of Q∗ in P, and Q′ is defined as
P′×P Q. We will utilize the induced morphism Q′ → Gr(q,kw). The fibers of Q→ X
are identified with the closure of the image of G in P(Matw,w), and are thus normal
by hypothesis (a). Since X is also normal, it follows that Q is also normal (see
Remark 2.1.24).

Step 3: Use the generic quasi-finiteness to show that for any ample divisor D on X,
the line bundle OQ′(mAQ′ −DQ′) is effective for some m > 0. As G(k) → PG(k)
is surjective, the map X(k)→ Gr(q,kw)(k)/PG(k) is also generically quasi-finite.
(Note that if X → [Gr(q,kw)/PG] is generically quasi-finite, then Q′ → Gr(q,kw)
is as well. This implies that AP′ is big, and Kodaira’s Lemma (B.2.20) gives the
claim.)

The set-theoretic quasi-finiteness of X → [Gr(q,kw)/PG] implies that the projec-
tion morphism from im(X → X × [Gr(q,kw)/PG]) to [Gr(q,kw)/PG] is generically
quasi-finite. Therefore, letting Z := im(Q′ → Q′ × Gr(q,kw)), the morphism
Z → Gr(q,kw) is also generically quasi-finite, and we have a factorization

Q′ → Z → Gr(q,kw).

It follows that the pullback AZ is big. Viewing Z as a scheme over X via the
composition Z ↪→ Q′×Gr(q,kw)→ Q′ → X, Kodaira’s Lemma (B.2.20) implies that
mAZ −DZ is effective on Z for some m > 0. Therefore, the pullback mAQ′ −DQ′

to Q′ is also effective for some m > 0.

Step 4: Construct a nonzero map q∗OQ(mq)
∨ → OX(m det(Q) − D) by pushing

forward a section of mAQ′ −DQ′ under the composition

q′ : Q′ π−→ Q
q−→ X.

Restricting the identity (5.8.13) via Q′ ↪→ P′, we obtain an inclusion of line bundles

OQ′(mAQ′ −DQ′) ∼= OQ′(m det(Q)Q′ +mqHQ′ −mEQ′ −DQ′)

⊂ OQ′(m det(Q)Q′ +mqHQ′ −DQ′)

∼= π∗(q∗OX(m det(Q)−D)⊗OQ(mq)
)
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Choose a nonzero section OQ′ → π∗(q∗OX(mdet(Q)−D)⊗OQ(mq)
)
. Since Q is

normal and π : Q′ → Q is birational, π∗OQ′ = OP. Applying π∗ to the chosen section
and using the projection formula yields a nonzero section

OQ → q∗OX(mdet(Q)−D)⊗OQ(mq).

Applying q∗ gives a nonzero section OX → OX(m det(Q)−D)⊗ q∗OQ(mq), which
we rearrange as

(q∗OQ(mq))
∨ → OX(m det(Q)−D). (5.8.14)

Step 5: Show that the nefness of W implies the nefness of (q∗OQ(mq))
∨, and conclude

that det(Q) is big. Recall that Q is a closed subschemes of P := P(H omOX
(W,O⊕w

X )) =

P((W∨)⊕w) so that q factors as Q ↪→ P
p−→ X. There is an identification p∗OP(mq) ∼=

Symmq((W∨)⊕w). For m ≫ 0, the map p∗OP(mq) → q∗OQ(mq) is surjective and
dualizes to an inclusion

(q∗OQ(mq))
∨ ↪→ (p∗OP(mq))

∨ ∼= Symmq((W∨)⊕w)∨ (5.8.15)

of vector bundles onX. SinceW is nef, so is Symmq((W∨)⊕w)∨ (Proposition B.2.33(3)).
We now use hypotheses (d) to conclude that q∗OQ(mq))

∨ is nef. The (5.8.15) is
an inclusion of vector bundles with structure group G, which corresponds to a
G-invariant subspace of vector spaces. Therefore, if G is linearly reductive, this
subspace has a G-invariant complement, and thus (q∗OQ(mq))

∨ is a quotient of
(p∗OP(mq))

∨ ∼= Symmq(W⊕w), hence nef. On the other hand, if W = Symd V
for a nef vector bundle V of rank v, then P := P(H omOX

(V,O⊕v
X )) is the pro-

jectivized frame bundle of V , and (q∗OQ(mq))
∨ ∼= Symmq((V ∨)⊕v)∨ is nef by

Proposition B.2.33(3).
If (5.8.14) is surjective, we are done: m det(Q)−D is nef and thus m det(Q) is the

sum of an ample and nef divisor, which is not only big but even ample. Otherwise, if I
is the image subsheaf of (5.8.14), we blow up the ideal sheaf I⊗OX(m det(Q)−D)∨ ⊂
OX to obtain a birational morphism f : X ′ → X with exceptional divisor E′ and a
surjection

f∗(q∗OP(mq))
∨ ↠ N ∼= f∗

(
OX(mdet(Q)−D)

)
⊗OX′(−E′).

Since f∗(q∗OP(mq))
∨ is nef, so is N . This expresses f∗

(
OX(m det(Q))

)
as the sum

of a nef, a big, and an effective divisor, which is big. This in turn implies that det(Q)
is big.

5.8.3 Nefness of pluricanonical bundles
To apply Kollár’s Criterion for Ampleness to Mg, we will make use of multiplication
maps between pluricanonical bundles and their symmetric products. The construc-
tion will depend on positive integers k and d (which are the same two integers on
which the GIT construction depends). Given a family of stable curves π : C → S, we
consider the multiplication map

Symd π∗(ω
⊗k
C/S)→ π∗(ω

⊗dk
C/S ). (5.8.16)

For a stable curve C over a field k, this is the map SymdH0(C,ω⊗k
C )→ H0(C,ω⊗dk

C ),
whose kernel consists of degree d equations cutting out the image of |ω⊗k

C | : C →
P(H0(C,ω⊗k

C )). If k ≥ 3, ω⊗k
C/S is relatively very ample and C → S can be recovered

from the kernel of the multiplication map (5.8.16) for d≫ 0.
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Theorem 5.8.17. If T is a smooth, connected, and projective curve over a field k
and π : C → T is a family of stable curves, then π∗(ω

⊗k
C/T ) is nef for k ≥ 2.

Proof.
Step 1: Reduction to characteristic p. Assume that char(k) = 0. Since T and C are
of finite type over k, their defining equations involve finitely many coefficients of k.
Thus there exists a finitely generated Z-subalgebra A ⊂ k and a cartesian diagram

C

��

// C̃

��

T //

��

T̃

��

Speck // SpecA

where C̃ and T̃ are schemes of finite type over A. By (Proposition B.3.7 and
Lemma 5.2.22), we may further arrange that T̃ → SpecA is a smooth family of
curves and that C̃ → T̃ is a family of stable curves. Finally, by restricting along a map
SpecR→ SpecA, we may assume that A is a DVR whose closed and generic points
have characteristic p > 0 and 0, respectively. Since Nefness for Bundles is Stable
under Generization (B.2.34), it suffices to prove the theorem when char(k) = p > 0.

Step 2: Further reductions. We claim that we may also assume that
(a) π : C → T is generically smooth,
(b) the genus of T is at least 2, and
(c) C is a smooth minimal surface of general type.

The reduction to (a) is handled in Exercise 5.8.19. For (b), if g : T ′ → T is any finite
cover where T ′ is a smooth connected curve of genus g ≥ 2 and C′ := C ×T T ′, then
g∗π∗(ω

⊗k
C/T )

∼= π′
∗(ω

⊗k
C′/T ′) by properties of the dualizing sheaf. By Lemma 5.8.2(1),

the nefness of ω⊗k
C′/T ′ implies the nefness of ω⊗k

C/T . For (c), if f : C̃ → C is a resolution
of singularities, then f∗(ω⊗k

C̃/T
) ∼= ω⊗k

C/T , and thus we can assume that C is smooth. If
C contains a smooth rational −1 curve E, then E must be contained in a fiber of
C → T as otherwise there would be a finite cover E = P1 → T of a genus g ≥ 2 curve.
By Castelnuovo’s Contraction Theorem (B.2.6), there is a morphism f : C → C′
contracting E. Since f∗ω⊗k

C/T = ω⊗k
C′/T and the process of contracting smooth rational

−1 curves terminates in finitely many steps, we can assume that C is minimal. As
both T and the generic fiber of C → T are smooth and of general type, C is also of
general type.

Step 3: Positive characteristic case. If π∗(ω⊗k
C/T ) is not nef, then there exists a

quotient line bundle π∗(ω⊗k
C/T )↠M∨ where d = degM > 0. Consider the absolute

Frobenius morphisms F : C → C and F : T → T which fit into a commutative
diagram

C F //

π

��

C

π

��

T
F // T.
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Note that F ∗π∗(ω
⊗k
C/T ) = π∗(ω

⊗k
C/T ). Since degF ∗M = pd, we can apply Frobenius

repeatedly to arrange that d is as large as we want. Specifically, we can arrange that
M ∼= ω⊗k

T ⊗ L where L is a very ample line bundle on T . (This was the entire point
of reducing to characteristic p: to repeatedly apply Frobenius to arbitrarily increase
the degree of M .)

The surjection π∗(ω⊗k
C/T )↠M∨ ∼= (ω⊗k

T ⊗ L)∨ yields a surjection

π∗(ω
⊗k
C/T )⊗ ω

⊗k
T ⊗ L↠ OT

of vector bundles on T . Since dimT = 1, we obtain that

h1(T, π∗(ω
⊗k
C/T )⊗ ω

⊗k
T ⊗ L) ≥ h1(T,OT ) ≥ 2. (5.8.18)

To obtain a contraction, we examine h1(C, ω⊗k
C ⊗π∗L), which by the degeneration of

the Leray spectral sequence on the E2-page is bounded below by h1(T, π∗(ω
⊗k
C ⊗π∗L)).

We obtain an inequalities

h1(C, ω⊗k
C ⊗ π∗L) ≥ h1(T, π∗(ω

⊗k
C ⊗ π∗L))

= h1(T, π∗(ω
⊗k
C/T ⊗ π

∗ω⊗k
T ⊗ π

∗L)) (since ωC ∼= ωC/T ⊗ π∗ωT )

= h1(T, π∗(ω
⊗k
C/T )⊗ ω

⊗k
T ⊗ L) (projection formula)

≥ h1(T,OT ) ≥ 2 (by (5.8.18)).

As L is very ample, there is an effective divisorD which is the union of smooth fibers of
π : C → T such thatOC(D) ∼= π∗L. The above inequality contradicts Corollary B.2.36
applied to D. See also [Kol90, Thm. 4.3] and [CLM22, Thm. 6.10].

Exercise 5.8.19 (details). Let T be a smooth, connected, and projective curve over
a field k. For k ≥ 1, show that if π∗(ω⊗k

C/T ) is nef for every generically smooth stable
family, then it is also nef for every stable family.

5.8.4 Projectivity of M g

Recall that the line bundle λk on Mg is defined as detπ∗(ω
⊗k
Ug/Mg

), where π : Ug →
Mg is the universal family.

Theorem 5.8.20 (Projectivity of Mg). For g ≥ 2 and N sufficiently divisible, the
line bundle λ⊗N18g−18 on Mg descends to a line bundle on Mg which is relatively
ample over SpecZ. In particular, Mg is projective over SpecZ.

Proof. By Properness of Mg and Mg (5.5.16), Mg is a Deligne–Mumford stack
proper over SpecZ and the coarse moduli space Mg of Mg is an algebraic space
proper over SpecZ. By Proposition 4.3.31, λ⊗N18g−18 descends to a line bundle L
on Mg for N sufficiently divisible. Since Ampleness is Open (4.4.24), it suffices
show the result in the case thatMg is defined over a field k. By Fpqc Descent for
Ampleness (B.2.12), we may further assume that k is algebraically closed.

By Proposition 5.3.21, ω⊗3

Ug/Mg
is relatively very ample and π∗(ωUg/Mg

)⊗3 is a
vector bundle of rank 5g − 5. For a stable curve C of genus g, the complete linear
series |ω⊗3

C | embeds C as a degree d := 6g − 6 curve in P5g−6. As C is cut out by
degree d equations, the multiplication map

W := Symd π∗(ω
⊗3

Ug/Mg
)↠ π∗(ω

⊗3d

Ug/Mg
) =: Q
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is a surjection of vector bundles on Mg where W has rank w :=
(
5g−6+d

d

)
and

Q has rank q := (6d − 1)(g − 1). We will verify hypotheses (a)–(d) of Kollár’s
Criterion for Ampleness (5.8.7). For (a), W has a reduction of structure group by
G := GL5g−5 → GLw and, as we pointed out in Remark 5.8.9, the closure of the
image of G in P(Matw,w) is identified with P(Mat5g−5,5g−5) and is hence normal.
For (b), the nefness of W follows from the nefness of π∗(ω⊗3

Ug/Mg
) (Theorem 5.8.17)

and by the preservation of nefness under symmetric products (Proposition B.2.33(3)).
For (c), the classifying map

Mg → [Gr(q,kw)/G]

[C] 7→
[
SymdH0(C,ω⊗3

C )︸ ︷︷ ︸
Γ(P5g−6,O(d))

↠ H0(C,ω⊗3d
C )︸ ︷︷ ︸

Γ(C,O(d))

]
is injective as the kernel of the multiplication map uniquely determines C. By Le
Lemme de Gabber (4.5.1), we may choose a finite cover Z →Mg by a scheme. By
Kollár’s Criterion (5.8.7), the pullback of λ18g−18 = detQ to Z is ample. This shows
that the pullback of L under the finite morphism Z → Mg → Mg is ample, and
therefore Exercise 4.4.22 implies that L is ample on Mg.

Remark 5.8.21. In fact, the tricanonical embedding |ω⊗3
C | : C ↪→ P5g−6 of a stable

curve C is projectively normal and defined by quadratic equations; see [Mum70b,
p. 58]. Therefore, the multiplication map Sym2 π∗(ω

⊗3

Ug/Mg
) ↠ π∗(ω

⊗6

Ug/Mg
) is

surjective. Therefore, the same argument as above shows that a sufficiently divisible
tensor power of λ6 descend to an ample line bundle on Mg.

Corollary 5.8.22 (Projectivity of Mg,n). For integers g and n with 2g− 2+n > 0,
Mg,n is projective over SpecZ.

Proof. We know that M0,3 = SpecZ and M1,1 = P1. By the above theorem,
Mg is also projective for g ≥ 2. Since Mg,n+1 → Mg,n is the universal family
(Proposition 5.6.8), it is a family of stable curves and L := ωMg,n+1/Mg,n

is relatively
ample over Mg,n (Proposition 5.3.21). Therefore, some power of L descends to a
line bundle on Mg,n+1 relatively ample over Mg,n (Proposition 4.3.31(2)). Thus,
Mg,n+1 →Mg,n is a projective morphism, and we obtain by induction that Mg,n is
projective if 2g − 2 + n > 0.

Remark 5.8.23. Alternatively, the projectivity of Mg,n follows from Kollár’s
Criterion (5.8.7) using the nefness of π∗(L⊗3) where L := ωUg,n/Mg,n

(σ1 + · · ·+ σn)

and σ1, . . . , σn are sections of the universal family; see [Kol90, Prop. 4.7] and [CLM22,
Prop. 6.7].

Remark 5.8.24. In recent years, Kollár’s Criterion has been applied in more
and more general settings, e.g., Hassett’s moduli space of weighted pointed curves
[Has03], the moduli of stable varieties of any dimension [KP17], and the moduli of
K-polystable Fano varieties [CP21, XZ20, LXZ21].

5.9 Projectivity following Mumford
To add
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Chapter 6

Geometry of algebraic stacks

6.1 Quasi-coherent sheaves and quotient stacks
We will define quasi-coherent sheaves on an algebraic stack in the same way that we
did for Deligne–Mumford stacks in §4.1 but using the lisse-étale site on X instead of
the small étale site. The entirety of §4.1 on sheaves, OX -modules, and quasi-coherent
sheaves remains valid for algebraic stacks (with the same affine diagonal hypotheses).

6.1.1 Sheaves and OX -modules
To develop abelian sheaf theory on an algebraic stack, we use the lisse-étale site.

Definition 6.1.1 (Lisse-étale site). The lisse-étale site Xlis-ét on an algebraic stack
X is the category of schemes smooth over X where morphisms are arbitrary maps
of schemes over X . A covering {Ui → U} is a collection of morphisms such that∐
i Ui → U is surjective and étale.

This allows us to discuss sheaves of abelian groups on Xlis-ét and their morphisms.
Extending §4.1.1, we can define sections Γ(U , F ) or F (U) of an abelian sheaf
on an algebraic stack U smooth over X . The structure sheaf OX , defined as
OX (U) = Γ(U,OU ), is a ring object in the abelian category Ab(Xlis-ét). We can
therefore define OX -modules as in Definition 4.1.8 and the abelian category Mod(OX )
of OX -modules. Given a morphism f : X → Y of algebraic stacks, there are adjoint
functors

Ab(Xlis-ét)
f∗
--

Ab(Ylis-ét)
f−1

mm
Mod(OX )

f∗
--

Mod(OY).

f∗
ll

Given two OX -modules F and G, the tensor product F ⊗ G := F ⊗OX G is the
sheafification of U 7→ F (U)⊗OX (U) G(U), and the Hom sheaf H omOX (F,G) is the
sheaf given by U 7→ HomOU

(F |U , G|U ), where F |U denotes the restriction of F to
Ulis-ét.

6.1.2 Quasi-coherent sheaves
Following §4.1.3, given an OX -module F on an algebraic stack X and a smooth
X -scheme U , we let F |U be the restriction of F to the lisse-étale site of U and F |UZar

the further restriction to the small Zariski site.
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Definition 6.1.2. Let X be an algebraic stack. An OX -module F is quasi-coherent
if

(1) for every smooth X -scheme U , the restriction F |UZar
is a quasi-coherent OUZar

-
module, and

(2) for every morphism f : U → V of smooth X -schemes, the natural morphism
f∗(F |VZar

)→ F |UZar
is an isomorphism.

A quasi-coherent sheaf F on X is a vector bundle (resp., vector bundle of rank r,
line bundle) if F |UZar is for every smooth X -scheme U .

If in addition X is locally noetherian, we say F is coherent if F |UZar
is coherent

for every smooth X -scheme U

We denote by QCoh(X ) and Coh(X ) (in the noetherian setting) the categories
of quasi-coherent and coherent sheaves. We encourage the reader to check that the
equivalent formulations of quasi-coherent given in Exercises 4.1.16 to 4.1.18 still hold,
and that the above definition of quasi-coherence is consistent with the definition
of quasi-coherence on a Deligne–Mumford stack (Definition 4.1.11) and with the
usual definition on a scheme. For a quasi-compact and quasi-separated morphism
f : X → Y of algebraic stacks, f∗ and f∗ preserve quasi-coherence (by the same
argument as for Exercise 4.1.19).

Exercise 6.1.3. Let G be an affine algebraic group over a field k. Recall that a
G-representation is a k-vector space with a dual action σ : V → Γ(G,OG) ⊗k V
satisfying two natural compatibility conditions (see §B.1.12).

(a) Show that QCoh(BG) is equivalent to the category Rep(G) ofG-representations.
(b) If SpecA is an affine k-scheme with a G-action, show that a quasi-coherent

sheaf on [SpecA/G] is the data of an A-module M together with a coaction
σ : M → Γ(G,OG)⊗k M over k (i.e., a map of k-vector spaces giving M the
structure of a G-representation) such that multiplication A⊗k M →M is a
map of G-representations. This extends Example 4.1.15 where G is finite.

(c) Considering the diagram

SpecA
p
// [SpecA/G]

π //

q

��

SpecAG

BG,

extend Exercise 4.1.20 by providing descriptions of the functors p∗, p∗, π∗, π∗, q∗
and q∗ on quasi-coherent sheaves.

(d) If U is a k-scheme with an action of G, then a line bundle with a G-action is
a line bundle L on U together with an isomorphism α : σ∗L

∼→ p∗2L satisfying
a cocycle condition p∗23α ◦ (idG×σ)∗α = (µ× idU )

∗α; see B.1.27. Show that a
line bundle with a G-action is the same as a line bundle on the quotient stack
[U/G].

Example 6.1.4. If G and H are affine algebraic groups over a field k such that
BG ∼= BH, then G and H have equivalent categories of representations. For
example, if O(q) and O(q′) are orthogonal groups with respect to non-degenerate
quadratic forms q and q′ on an n-dimensional k-vector space V , then BO(q) ∼=
BO(q′) (see Exercise 3.1.13), and thus O(q) and O(Q′) have equivalent categories of
representations.
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Recall that one of the first examples we gave of a quasi-coherent sheaf on a
Deligne–Mumford stack was the Hodge line bundle on Mg (Example 4.1.4). The
more general pluricanonical line bundles λk on Mg played an important role in the
projectivity of Mg (see §5.8) and are equally essential in the study of its geometry.
Determinantal line bundles play a similar role in the study of the moduli stack of
vector bundles.

Example 6.1.5 (Determinantal line bundles). Consider the stack M := BunC,r,d
of vector bundles on a smooth, connected, and projective curve C over k. Consider
the diagram

C ×M
p1

{{

p2

$$

C M.

The projection p2 : C ×M→M is representable, projective, and smooth of relative
dimension 1. For every vector bundle F on C ×M, the cohomology Rip2,∗F (as
defined below) is computed as a 2-term complex [K0 → K1] of vector bundles and
that the line bundle

detRp2,∗F := det(K0)⊗ det(K1)
∨

is well-defined on M. Note that if rkK0 = rkK1, i.e., rkRp2,∗F = 0, then we
have a map detK0 → detK1 of line bundles and the corresponding map OM →
det(K0)∨ ⊗ det(K1) defines a section of the dual (detRp2,∗F )∨.

Let Euniv be the universal vector bundle on C ×M. For every vector bundle V
on C, we define the determinantal line bundle

LV :=
(
detRp2,∗(Euniv ⊗ p∗1V )

)∨
.

associated to V .

Example 6.1.6. If X is an algebraic stack of finite presentation over a scheme S,
then the relative sheaf of differentials ΩX/S on Xlis-ét, defined on a smooth X -scheme
U by ΩX/S(U) = ΩU/S , is not quasi-coherent. This is because for a non-étale map
f : U → V of smooth X -schemes, f∗ΩV/S → ΩU/S is not an isomorphism. This
differs from the Deligne–Mumford case where the sheaf ΩX/S on Xét is quasi-coherent
(Example 4.1.13). When X is Deligne–Mumford, ΩX/S extends to a quasi-coherent
sheaf on Xlis-ét by defining ΩX/S(U), for a smooth map f : U → X from a scheme,
to be the global sections of the sheaf f∗ΩX/S on Ulis-ét.

Exercises 4.1.21 and 4.1.38 generalize to algebraic stacks.

Proposition 6.1.7 (Flat Base Change). Consider a cartesian diagram

X ′ g′
//

f ′

��

X

f

��

Y ′ g
// Y

□

of algebraic stacks, and let F be a quasi-coherent sheaf on X. If g : Y ′ → Y is flat
and f : X → Y is quasi-compact and quasi-separated, the natural adjunction map

g∗f∗F → f ′∗g
′∗F

is an isomorphism.
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Proposition 6.1.8. Let X be a noetherian algebraic stack. Every quasi-coherent
sheaf on X is a directed colimit of its coherent subsheaves. If U ⊂ X is an open
substack, then every coherent sheaf on U extends to a coherent sheaf on X .

Exercise 6.1.9. Let X → Y be a smooth affine morphism of noetherian algebraic
stacks with affine diagonal.

(1) Show that there is a vector bundle ΩX/Y on X with the property that if
V → Y is a morphism from a scheme, the pullback of ΩX/Y to XV := X ×Y V
is ΩXV /V .

(2) Given a commutative diagram

SpecA0� _

��

f0 // X

��

SpecA

;;

// Y

where A ↠ A0 is a surjection of noetherian rings with square-zero kernel
J , show that the set of liftings is a torsor under HomA0(f

∗
0ΩX/Y , J) and in

particular is non-empty.
(3) Can you weaken the hypotheses?

6.1.3 Quasi-coherent constructions
Extending the constructions of §4.1.5 on a Deligne–Mumford stack to an algebraic
stack X , a quasi-coherent OX -algebra is a quasi-coherent OX -module A with a
compatible structure as a ring object. The relative spectrum SpecX A, defined
as the stack of pairs (f, α) where f : S → X is a morphism from a scheme and
α : f∗A → OS is a map of OS-algebras, is an algebraic stack affine over X . On a
noetherian algebraic stack, every quasi-coherent OX -algebra is a directed colimit of
finite type subalgebras.

The reduction of X is Xred := SpecX Ored
X where Ored

X is the sheaf of OX -
algebras defined by Ored

X (U) = Γ(U,OU )red for a smooth X -scheme U . If X is
integral, the normalization of X is defined as X̃ := SpecX A, where A is the OX -
algebra whose ring of sections over a smooth X -scheme U is the normalization
of Γ(U,OU ); this is well-defined since normalization commutes with smooth base
change (Proposition A.7.4). For a quasi-compact and quasi-separated morphism
f : X → Y of algebraic stacks, there is a factorization f : X → Spec f∗OX → Y.
The morphism f is affine if and only if X → Spec f∗OX is an isomorphism, and
quasi-affine if and only if X → Spec f∗OX is an open immersion. The proof of
Zariski’s Main Theorem (4.4.9) for Deligne–Mumford stacks extends to algebraic
stacks.

Theorem 6.1.10 (Zariski’s Main Theorem). A separated, quasi-finite, and repre-
sentable morphism f : X → Y of noetherian algebraic stacks factors as the composi-
tion of a dense open immersion X ↪→ Ỹ and a finite morphism Ỹ → X .

6.1.4 Picard groups
If X is an algebraic stack, we let Pic(X ) denote the set of isomorphism classes of
line bundles on X . It is an abelian group under tensor product.
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Example 6.1.11. If G is an affine algebraic group over a field k, then Pic(BG)
is equivalent to the group of characters G → Gm. For example, Pic(BGm) = Z,
Pic(BGLn) = Z, and Pic(PGLn) = {0}.

Exercise 6.1.12. Let X be a smooth and irreducible algebraic stack over a field k.
(a) If D ⊂ X is a reduced substack with complement U , show that there is a

naturally defined line bundle O(D) (generalizing the usual construction for
schemes) such that O(D)|U ∼= OU .

(b) If V is a vector bundle on X , show that

Pic(A(V )) = Pic(X ) and Pic(P(V )) = Pic(X )× Z.

Exercise 6.1.13. Let Gm acts on An over a field k with weights d1, . . . , dn. Let O(1)
be the line bundle on [An/Gm] corresponding to the projection [An/Gm]→ BGm.

(a) Show that Pic([An/Gm]) ∼= Z generated by O(1).
(b) Show that the restriction Pic([An/Gm]) → Pic(P(d1, . . . , dn)) is an isomor-

phism, where P(d1, . . . , dn) is the weighted projective stack (see Example 3.9.6).
(c) If f ∈ Γ(An,OAn) is a homogenous polynomial of degree d such that V (f) ⊂ An

is reduced, show that O(V (f)) ∼= O(d).

Exercise 6.1.14. Let k be a field with char(k) ̸= 2, 3.
(a) Show that Pic(M1,1) = Z.

Hint: Use the descriptionM1,1 = [(A2∖0)/Gm] of Exercise 3.1.19(c) where Gm
acts with weights 4 and 6. Show that the restriction Pic(A2/Gm])→ Pic(M1,1)
is an equivalence.

(b) Show that Pic(M1,1) = Z/12.

Hint: Show that the restriction Pic(M1,1)→ Pic(M1,1) is surjective and that
the image of O(∆) = O(12) is trivial. Show that the images of O(4) and
O(6) are non-trivial by considering their restrictions to the residual gerbes of
the unique elliptic curves with Z/4 and Z/6 automorphism groups. See also
[Mum65].

6.1.5 Global quotient stacks and the resolution property
Definition 6.1.15. An algebraic stack X is a global quotient stack if there exists
an isomorphism X ∼= [U/GLn] where U is an algebraic space.

In other words, X is a global quotient stack if and only if there is a principal GLn-
bundle U → X from an algebraic space, or equivalently a representable morphism
X → BGLn.

Exercise 6.1.16. Show that a noetherian algebraic stack X is a global quotient
stack if and only if there exists a vector bundle E on X such that for every geometric
point x : Speck→ X with closed image, the stabilizer Gx acts faithfully on the fiber
E ⊗ k.

Hint: Use the correspondence between principal GLn-bundles and vector bundles
from Exercise B.1.56.

Exercise 6.1.17. Let X → Y be a surjective, flat, and projective morphism of
noetherian algebraic stacks. If X is a quotient stack, show that Y is a quotient stack.
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Being a quotient stack is also related to the following notion:

Definition 6.1.18. A noetherian algebraic stack has the resolution property if every
coherent sheaf is the quotient of a vector bundle.

A smooth or quasi-projective scheme over a field has the resolution property. More
generally, a scheme admitting an “ample family” of line bundles has the resolution
property, and this implies that every noetherian normal Q-factorial scheme with
affine diagonal has the resolution property [BS03].

Proposition 6.1.19. Let G be an affine algebraic group over a field k acting on a
quasi-projective k-scheme U . Assume that there is an ample line bundle L with an
action of G (e.g., U is quasi-affine and L = OU). Then [U/G] has the resolution
property.

Remark 6.1.20. It is a general fact that every line bundle on a normal scheme
over k has a positive power that has a G-action.

Proof. The line bundle L corresponds to a line bundle L on [U/G] which is relatively
ample with respect to the morphism p : [U/G] → BG. For a coherent sheaf F on
[U/G], the natural map

L−N ⊗ p∗p∗(LN ⊗ F )↠ F

is surjective for N ≫ 0. The pushforward p∗(LN ⊗ F ) is a quasi-coherent sheaf on
BG, i.e., a G-representation, which we can write as a union of finite dimensional
G-representations Vi (B.1.17(1)). We therefore obtain a surjection colimi(L−N ⊗
p∗Vi)↠ F. Since F is coherent, L−N ⊗ p∗Vi ↠ F is surjective for i≫ 0.

Totaro established an interesting converse [Tot04], which was later generalized
by Gross [Gro17].

Theorem 6.1.21. Let X be a quasi-separated normal algebraic stack of finite type
over a field k. Assume that the stabilizer group at every closed point is smooth and
affine. Then the following are equivalent:

(1) X has the resolution property,
(2) X ∼= [U/GLn] with U quasi-affine, and
(3) X ∼= [SpecA/G] with G an affine algebraic group.

In particular, X has affine diagonal.

Remark 6.1.22. While the normal hypothesis on X and smoothness hypothesis
on the stabilizers are unnecessary, the affineness hypothesis on the stabilizers is
necessary, e.g., the classifying stack BE of an elliptic curve has the resolution
property.

Proof. The implications that (2) and (3) imply (1) were established in Proposi-
tion 6.1.19.

To see (3) ⇒ (2), it suffices to find a faithful representation G ↪→ GLN such that
GLN /G is quasi-affine. Indeed, in this case, [SpecA/G] ∼= [(SpecA×GGLN )/GLN ]
(Exercise 3.4.16) and SpecA×G GLN is affine over GLN /G. We begin by choosing
a faithful representation G ⊂ GLn. By B.1.17B.1.16, there is a GLn-representation
V and a k-point x ∈ P(V ) with stabilizer G. Under the action of GLn×Gm on A(V )
(where Gm acts via scaling), the stabilizer of a lift x̃ ∈ A(V ) of x is G. The map
(GLn×Gm)/G ↪→ A(V ), defined by g 7→ gx̃, is a locally closed immersion and thus
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(GLn×Gm)/G is quasi-affine. Under the natural inclusion GLn×Gm ↪→ GLn+1, the
quotient GLn+1 /(GLn×Gm) is affine (and is sometimes called the “Steifel manifold”).
The composition BG→ B(GLn×Gm)→ BGLn+1 is quasi-affine and therefore so
is GLn+1 /G.

Conversely for (2) ⇒ (3), we may choose a GLn-equivariant open immersion
U ↪→ SpecA into an affine scheme of finite type over k. Indeed, the morphism
p : [U/GLn] → BGLn is quasi-affine and [U/GLn] → SpecBGLn

p∗O[U/GLn] is an
open immersion. By writing p∗O[U/GLn] = colimλAλ as a colimit of finite type
OBGLn

-algebras, then limit methods imply that [U/GLn] → SpecBGLn
Aλ is an

open immersion for λ≫ 0. Let Z ⊂ SpecA be the reduced complement of U . By
Proposition B.1.18(2), there is a GLn-equivariant morphism f : SpecA→ Ar such
that f−1(0) = Z. This induces an affine morphism U → Ar ∖ 0. The complement
Ar \ 0 can be realized as the quotient GLr /H where H ⊂ GLr is the subgroup
consisting of matrices whose last row is (0, . . . , 0, 1); H is identified with the semi-
direct product Gr−1

a ⋊GLr−1. In the GLn-equivariant cartesian diagram

P

��

// GLr

��

U // Ar ∖ 0,

P is affine over GLr, thus affine. We conclude using the equivalent [U/GLn] ∼=
[P/(GLn×H)].

It remains to show (1) ⇒ (2). We first show that X ∼= [U/GLn] with U an
algebraic space. Given a vector bundle E on X of rank n, the frame bundle Fr(E)
is a principal GLn-torsor and X ∼= [Fr(E)/GLn] (Exercise 6.1.16).

For every closed point x ∈ X , let ix : Gx ↪→ X be the inclusion of the residual
gerbe (Proposition 3.5.17). Let κ(x)→ k be a finite field extension trivializing Gx, i.e.,
there is a map x̃ : Speck→ X representing x inducing a finite cover p : BGx̃ → Gx.
Since Gx̃ is affine, we can choose a faithful representation W . Using the resolution
property, there is a vector bundle E and a surjection E ↠ (ix◦p)∗W . The associated
frame bundle Fr(E)→ X has trivial stabilizers over x. In other words, the kernel
subgroup SE ⊂ IX of E (i.e., the subgroup stack of the inertia stack parameterizing
elements acting trivially on E) is trivial over x. If F is another vector bundle, then
SE⊕F ⊂ SE is a closed subgroup. Since IX is noetherian, we can inductively enlarge
the vector bundle E so that U := Fr(E) is an algebraic space and X ∼= [U/GLn].

Since X is normal, U is also normal and we may apply Exercise 4.5.3 to conclude
that U is the coarse moduli space of the action of a finite group H acting on a normal
scheme U ′. Let p : U ′ → U be the quotient morphism, and let U ′

1, . . . , U
′
r be an

affine covering of U ′ with reduced complements Z ′
1, . . . , Z

′
r. Then F := p∗(

⊕
i IZ′

i
)

is a coherent sheaf on U . Moreover, since q : U → [U/GLn] is affine, q∗q∗F ↠ F
is surjective, and by writing q∗F as a colimit of coherent sheaves, we may find a
coherent sheaf G on X ∼= [U/GLn] and a surjection q∗G → F . Since X has the
resolution property, we see that there is even a vector bundle G and a surjection
q∗G→ F . Since p : U ′ → U is affine, we have a surjection p∗q∗G↠ p∗F ↠

⊕
i IZ′

i
.

Let V = Fr(G) and consider the cartesian diagram

U ′
V

//

β

��

UV //

��

V

��

U ′ p
// U

q
// X
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where the horizontal arrows are principal GLn-bundles and the vertical arrows
are GLm-bundles where m = rk(G). Since the pullback of G to V is trivial, the
pullback β∗(

⊕
i IZ′

i
) is globally generated. This implies that β−1(Z ′

i) is defined
by global functions on U ′

V and that the complement β−1(U ′
i) is covered by affine

opens of the form {f ̸= 0} for f ∈ Γ(U ′
V ,OU ′

V
). This implies that OU ′

V
is ample

and that U ′
V is a quasi-affine scheme. Since β : U ′

V → UV is the quotient by a
finite group, UV is also quasi-affine (Exercise 4.2.9). We have thus shown that X ∼=
[UV /(GLn×GLm)]. Under the embedding GLn×GLm ↪→ GLn+m, the quotient
GLn+m /(GLn×GLm) is quasi-affine. Setting W = UV ×(GLn ×GLm) GLn+m, we
conclude that X ∼= [W/GLn+m].

6.1.6 Sheaf cohomology
Abelian sheaf cohomology for algebraic stacks can be developed using essentially
the same approach as we used in §4.1.6 for Deligne–Mumford stacks.

Lemma 6.1.23. If X is an algebraic stack, the categories Ab(Xlis-ét) and Mod(OX )
have enough injectives. If in addition X is quasi-separated, then QCoh(X ) has
enough injectives.

Proof. The argument of Lemma 4.1.27 generalizes.

Definition 6.1.24 (Cohomology). Let X be an algebraic stack and F a sheaf of
abelian groups on Xlis-ét. The cohomology group Hi(Xlis-ét, F ) is defined as the ith
right derived functor of the global sections functor Γ: Ab(Xlis-ét)→ Ab.

Given a morphism f : X → Y of algebraic stacks, the higher direct image Rif∗F
is defined as the ith right derived functor of f∗ : Ab(Xlis-ét)→ Ab(Ylis-ét).

Definition 6.1.25 (Čech cohomology). Given a smooth covering U = {Ui → X}i∈I
of algebraic stacks and an abelian sheaf F on Xlis-ét, the Čech complex of F with
respect to U is Č•(U , F ) where

Čn(U , F ) =
∏

(i0,...,in)∈In+1

F (Ui0 ×X · · · ×X Uin)

with differential

dn : Čn(U , F )→ Čn+1(U , F ), (si0,...,in) 7→
( n+1∑
k=0

(−1)kp∗
k̂
si0,...,îk,...,in

)
(i0,...,in+1)

where pk̂ : Ui0×X · · ·×X Uin → Ui0×X · · ·×X Ûik×X · · ·×X Uin is the map forgetting
the kth component (with indexing starting at 0). The Čech cohomology of F with
respect to U is

Ȟi(U , F ) := Hi(Č•(U , F )).

The arguments of Theorem 4.1.30 and Propositions 4.1.34, 4.1.36 and 4.1.37 as
well as Exercise 4.1.39 extend.

Theorem 6.1.26. For a quasi-coherent OXlis-ét-module F on an affine scheme X,
Hi(Xlis-ét, F ) = 0 for all i > 0.

Proposition 6.1.27. Let X be an algebraic stack with affine diagonal and F be a
quasi-coherent sheaf. If U = {Ui → X} is an étale covering with each Ui affine, then
Hi(Xlis-ét, F ) = Ȟi(U , F ).
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Proposition 6.1.28. If X is a scheme with affine diagonal and F be a quasi-
coherent sheaf, then Hi(X,F ) = Hi(Xlis-ét, Flis-ét) for all i, where Flis-ét is the sheaf
of OXlis-ét-module defined by Fét(U) = Γ(U, f∗F ) for a smooth map f : U → X from
a scheme.

Similarly, if X is a Deligne–Mumford stack with affine diagonal and F is a
quasi-coherent sheaf, then Hi(X , F ) = Hi(Xlis-ét, Flis-ét) for all i.

Proposition 6.1.29. Let X be an algebraic stack.
(1) If F is an OX -module, then the cohomology Hi(Xlis-ét, F ) of F as an abelian

sheaf agrees with the ith right derived functor of Γ: Mod(OX )→ Ab.
(2) If X has affine diagonal and F is a quasi-coherent sheaf on X , then the

cohomology Hi(Xlis-ét, F ) of F as an abelian sheaf agrees with the ith right
derived functor of Γ: QCoh(X )→ Ab.

For a morphism f : X → Y of algebraic stacks (resp., quasi-compact morphism
of algebraic stacks with affine diagonals), then (1) (resp., (2)) holds also for the
higher direct images Rif∗F of an OX -module (resp., quasi-coherent sheaf): it can
be computed as the ith right derived functor of f∗ : Mod(OX ) → Mod(OY) (resp.,
f∗ : QCoh(X )→ QCoh(Y)).
Remark 6.1.30. If X does not have affine diagonal, then the sheaf cohomology
Hi(Xlis-ét, F ) of a quasi-coherent sheaf may differ from the ith right derived functor
of Γ(X ,−) : QCoh(X )→ Ab.

Proposition 6.1.31. If X is an algebraic stack and Fi is a directed system of abelian
sheaves in Xlis-ét, then colimiH

i(X , Fi)→ Hi(X , colimi Fi) is an isomorphism.

6.1.7 Chow groups
Following [Tot99] and [EG98], we introduce the Chow groups of a quotient stack.
Let G be a smooth affine algebraic group over an algebraically closed field k of
dimension g, and let X be an n-dimensional scheme of finite type over k. For each i,
choose an r-dimensional G-representation V such that there is a nonempty open
subscheme U ⊂ A(V ) such that (a) G acts freely on U , (b) the quotient U/G is a
scheme, and (c) codimA(V ) \ U > n− i− g. Such representations exist. We define
the (i− g)th equivariant Chow group of X or equivariantly the ith Chow group of
[X/G] as

CHGi−g(X) = CHi([X/G]) := CHi+r(X ×G U).

This definition is independent of the choice of representation. The definition is
forced upon us if we desire invariance of Chow groups under vector bundles and
open immersions of high codimension:

X ×G U �
� open

// [(X × A(V ))/G]

vect bdl
��

CHi+r(X ×G U) CHi+r([(X × A(V ))/G])
∼oo

[X/G] CHi([X/G])

∼

OO

If [X/G] is smooth of pure dimension d = n− g, then we define

CHiG(X) = CHi([X/G]) := CHd−i([X/G])

CH∗
G(X) = CH∗([X/G]) :=

⊕
i

CHi((X/G]).
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The intersection product gives a ring structure, and we call CH∗
G(X) the equivariant

Chow ring of X and CH∗([X/G]) the Chow ring of [X/G].

Example 6.1.32 (CH∗(BGm)). Let V be the r-dimensional Gm-representation with
equal weights 1. Then Gm acts freely on An \ 0, and for −1 ≥ i > −r − 1, we have
that CHi(BGm) = CHi+r(Pr−1) = Z. It follows that CHi(BGm) = Z for i ≤ −1
and is 0 otherwise. Therefore CHj(BGm) = Z for j ≥ 0, and CH∗(BGm) = Z[x].
More generally, if T ∼= Grm is a rank r torus, then CH∗(BT ) is isomorphic to the
character ring Z[x1, . . . , xr] of T .

We summarize some of the important properties of equivariant Chow groups.

Properties 6.1.33.
(1) (Independent of quotient presentation) If [X/G] ∼= [X ′/G′], then CHGi (X) ∼=

CHG
′

i (X ′), and in particular the definition of CHi([X/G]) is independent of
the quotient presentation. The definition of Chow groups can be extended to
finite type algebraic stacks over k; see [Kre99].

(2) (Vector bundle invariance) If Y → X is G-equivariant and a Zariski-local
affine fibration of relative dimension r (e.g., the total space of a rank r vector
bundle), then CHG∗ (X) ∼= CHG∗+r(Y ).

(3) (Excision sequence) If Z ⊂ X = [X/G] is a closed substack with complement
U , then there is a right exact sequence

CH∗(Z)→ CH∗(X )→ CH∗(U)→ 0.

(4) (Comparison with coarse moduli space) If X ∼= [U/G] is a separated Deligne–
Mumford stack with coarse moduli space X, then CH∗(X )⊗ Q ∼= CH∗(X)⊗ Q.

(5) (Functoriality and self-intersection) Flat morphisms induce pullback maps on
Chow groups while proper morphisms induce pushforward maps. If X = [X/G]
is smooth and i : Z ↪→ X is a smooth substack of pure codimension d, then
there is pullback i∗ : CH∗(X ) → CH∗(Z) given by intersection with Z such
that i∗i∗α = cd(NZ/X ) ∩ α for α ∈ CH∗(Z), where cd is the top Chern class
of the normal bundle.

(6) Let T be a torus acting on a smooth scheme X such that T = T1×T2 is a product
of two tori with T2 acting trivially. Then CH∗

T (X) ∼= CH∗
T1
(X)⊗ CH∗(BT2).

(7) If G is a connected reductive group with maximal torus T , and X is a smooth
scheme with a G-action, then the Weyl group W = NG(T )/T acts on CH∗

T (X)
and CH∗

G(X)Q = CH∗
T (X)WQ .

Exercise 6.1.34.
(a) Let P(d0, . . . , dn) be the weighted projective stack of Example 3.9.6. Show

that CH∗(P(d0, . . . , dn)) ∼= Z[x]/(d1 · · · dnxn+1).
(b) If char(k) ̸= 2, 3, show that CH∗(M1,1) ∼= Z[x]/(12x) and CH∗(M1,1) ∼=

Z[x]/(24x2). (Compare with Exercise 6.1.14).
(c) Let Gm act on Pn with weights d0, . . . , dn. Show that A∗([Pn/Gm]) =

Z[h, t]/p(h, t) where p(h, t) =
∑n
i=0 h

iei(a0t, . . . , ant) and ei is the ith sym-
metric polynomial.

6.1.8 de Rham and singular cohomology
We quickly discuss the de Rham and singular cohomology of an algebraic stack
following [Beh04].
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Analyticification. If X is a smooth algebraic stack over C with affine diagonal,
there is an analyticification X an, analogous to the analyticification of a finite type
C-scheme, such that X an is a differentiable stack. If U0 → X is a smooth presentation
by a scheme so that X is the quotient of the smooth groupoid U1 := U0×X U0 ⇒ U0,
then Uan

0 → X an is a smooth presentation and X an is the quotient of the Lie groupoid
Uan
1 ⇒ Uan

0 .

De Rham cohomology of a differential stack. Given a differentiable stack X
with a smooth presentation U0 → X , we can define a simplicial manifold U•

· · ·U3 //
//
//
U2 //

// U1
// U0, where Up := U0 ×X · · · ×X U0︸ ︷︷ ︸

p times

(6.1.35)

with maps ∂i : Up → Up−1 forgetting the ith term along with degeneracy maps
si : Up−1 → Up inserting an identity morphism in the ith term. This defines a double
complex Ωq(Up) with differentials given by exterior differentiation d : Ωq−1(Up)→
Ωq(Up) and ∂ :=

∑p
i=0(−1)i∂∗i : Ωq(Up−1) → Ωq(Up). We define the de Rham

complex C•
dR(X ) as the total complex

CkdR(X ) :=
⊕
p+q=k

Ωq(Up),

with differential δ : CkdR(X ) → Ck+1
dR (X ) defined by δ(ω) = ∂(ω) + (−1)pd(ω) for

ω ∈ Ωp(Uq). The de Rham cohomology is

HndR(X ) := Hn(C•
dR(X )),

and is independent of the choice of presentation. As with the case of smooth
manifolds, there is an identification of HndR(X ) with the sheaf cohomology of the
constant sheaf R on the big smooth site of smooth manifolds over X .

Singular homology/cohomology of a topological stack. For a topological
stack X , one can replicate the constructions of singular homology and cohomology.
Let U0 → X be a presentation and U• be the simplicial topological space as in
(6.1.35). For each p, we have the singular chain complex C•(Up) with differentials
d : Cq(Up)→ Cq−1(Up). This defines a double complex Cq(Up) using the differential
∂ =

∑p
i=0(−1)i∂j : Cq(Up) → Cq(Up−1) induced by the maps ∂i : Up → Up−1. We

define the singular chain complex C•(X ) of X as the total complex

Ck(X ) :=
⊕
p+q=k

Cq(Up)

with the differential δ : Ck(X )→ Ck−1(X ) given by δ(γ) = (−1)p+q∂(γ)+ (−1)qd(γ)
for γ ∈ Cq(Up). For an abelian group A, we can therefore define the singular
homology groups of X with coefficients in A as

Hn(X , A) := Hn(C•(X )⊗Z A).

Dualizing, we define the singular cochain complex C•(X ) by Cn(X ) := Hom(Cn(X ),Z)
and the singular cohomology groups of X with coefficients in A as

Hn(X , A) := Hn(C•(X )⊗Z A).

Comparisons.
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• There are pairings Hk(X ,Z) ⊗ Hk(X ,Z) → Z which after tensoring with Q
gives identifications Hk(X ,Q) ∼= Hk(X ,Q)∨.

• If G is a topological group acting on a space U , then the equivariant cohomology
is defined as H∗

G(U,A) := H∗(EG×G U,A), where EG is a contractible space
with a free action of G, and there is an identification H∗([U/G], A) = H∗

G(U,A).

• For a differential stack X , there is an identification H∗
dR(X ) = H∗(X ,R).

• If X is a topological Deligne–Mumford stack (e.g., the topological stack associ-
ated to a separated Deligne–Mumford stack of finite type over C) with coarse
moduli space X → X, then H∗(X ,Q) = H∗(X,Q).

6.2 The fppf topology and gerbes

This section is not essential for the proofs of the two main theorems of this book and is
included for completeness. We prove that algebraic spaces/stacks are sheaves/stacks
in the fppf topology and that quotients by fppf groupoids/equivalence relations are
algebraic. One upshot is that BG is an algebraic stack for any (non-necessarily
smooth) algebraic group, e.g., µµµp in characteristic p.

We also introduce gerbes, a central topic in the theory of stacks. For us, we want
to know that residual gerbes are gerbes (justifying the terminology) and later that
the moduli stack Buns(C)r,d of stable vector bundles is a Gm-gerbe over its coarse
moduli space.

6.2.1 Fppf criterion for algebraicity

Theorem 6.2.1 (Fppf Criterion for Algebraicity).
(1) If X is a sheaf on Schfppf such that there exists an fppf representable morphism

U → X from a scheme, then X is an algebraic space.
(2) If X is a stack over Schfppf such that there exists an fppf representable morphism

U → X from a scheme, then X is an algebraic stack.

Proof. To add.

Algebraic spaces are by definition sheaves in the big étale topology but it turns
out they are also sheaves in the big fppf topology.

Proposition 6.2.2.
(1) An algebraic space X over a scheme S is a sheaf on (Sch/S)fppf .
(2) An algebraic stack X over a scheme S is a stack over (Sch/S)fppf .

Proof. To add.

This allows us to finally prove that many properties of representable morphisms
of algebraic stacks descend in the fppf topology, generalizing the case of smooth
descent from Proposition 3.3.4.

Proposition 6.2.3. Let P be one of the following properties of morphisms of
algebraic stacks: representable, isomorphism, open immersion, closed immersion,
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locally closed immersion, affine, or quasi-affine. Consider a cartesian diagram

X ′ //

��

Y ′

��

X // Y

□

of algebraic stacks where Y ′ → Y is fppf. Then X → Y has P if and only if X ′ → Y ′

has P.

6.2.2 Fppf groupoids and quotient stacks
If R ⇒ U is an fppf equivalence relation of algebraic spaces, we define U/R as
the sheafification in big fppf topology Schfppf of the presheaf T 7→ U(T )/R(T ).
Likewise, if s, t : R ⇒ U is an fppf groupoid of algebraic spaces, we define [U/R]
as the stackification in Schfppf of the prestack [U/R]pre, whose fiber category over
a scheme T is the category of T -points of U where a morphism from a ∈ U(T ) to
b ∈ U(T ) is an element r ∈ R(R) such that s(r) = a and t(r) = b.

The definitions of U/R and [U/R] are consistent with the quotient of a smooth
equivalence relation or groupoid as defined in Definition 3.4.7 using in the big étale
topology Schét. This is because the sheafification U/R in Schét is an an algebraic
space by Corollary 4.4.12 and thus a sheaf in the fppf topology by Proposition 6.2.2.
Similarly, the stackification [U/R] over Schét is an algebraic stack by Theorem 3.4.11
and thus a stack in the fppf topology by Proposition 6.2.2.

Corollary 6.2.4.
(1) If R⇒ U is an fppf equivalence relation of algebraic spaces, then the quotient

U/R is an algebraic space.
(2) If R⇒ U is an fppf groupoid of algebraic spaces, then the quotient [U/R] is

an algebraic stack.

Proof. To add.

We will now show that a quotient stack arising from the action of an fppf group
algebraic space is an algebraic stack; this was shown for the action of a smooth
affine group scheme in Theorem 3.1.10. We first need to generalize the definition
of a principal G-bundle given in Definition B.1.46 for an action by an fppf group
algebraic space.

Definition 6.2.5 (Principal G-bundles). If G→ S is an fppf group algebraic space,
then a principal G-bundle over an S-scheme T is an algebraic space P with an action
of G via σ : G ×S P → P such that P → X is a G-invariant fppf morphism and
(σ, p2) : G×S P → P ×T P is an isomorphism. Morphisms of principal G-bundles
are G-equivariant morphisms of schemes. We say that a principal G-bundle P → T
is trivial if there is a G-equivariant isomorphism P ∼= G× T .

When G→ S is smooth, then every principal G-bundle P → T is trivialized by
the smooth cover P → T and since smooth morphisms étale locally have sections,
there is an étale cover T ′ → T such that PT ′ is trivial.

Remark 6.2.6. It is important to require that P is an algebraic space and not a
scheme since we want principal G-bundles to satisfy descent and to be equivalent
to the notion of a G-torsor (Definition 6.2.13). If G → S is affine, then P is
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automatically a scheme and the above definition thus agrees with Definition B.1.46.
Indeed, P is a sheaf in the fppf topology (Proposition 6.2.2) and if U → P is an étale
presentation, then P → T pulls back under the fppf composition U → P → T to the
affine morphism G×S U → U . By fppf descent P → T is affine and in particular
that P is a scheme.

Raynaud provides an example of an abelian variety G and a principal G-bundle
that is not scheme [Ray70, XIII 3.2].

Definition 6.2.7 (Quotient stacks). Let G→ S be an fppf group algebraic space
acting on an algebraic space U over S. We define the quotient stack [U/G] as the
category over Sch/S whose objects over an S-scheme T are diagrams

P

��

// U

T

(6.2.8)

where P → T is a principal G-bundle and P → U is a G-equivariant morphism
of schemes. A morphism (P ′ → T ′, P ′ → U) → (P → T, P → U) consists of a
morphism T ′ → T and a G-equivariant morphism P ′ → P of schemes such that the
diagram

P ′

��

//
''

P

��

// U

T ′ // T

□

is commutative and the left square is cartesian.

Definition 6.2.9 (Classifying stacks). Let G→ S be an fppf group algebraic space.
The classifying stack BG of G is defined as the quotient stack [S/G]. It classifies
principal G-bundles P → T .

Proposition 6.2.10. If G → S is an fppf group algebraic space acting on an
algebraic space U over S, then the quotient stack [U/G] is an algebraic stack. In
particular, the classifying stack BG is algebraic.

Proof. Given a map T → [U/G] corresponding to an object (6.2.8), there is a
cartesian diagram

P //

��

U

��

T // [U/G]

□

of stacks over Schfppf ; this extends Exercise 2.4.35. As P → T is an fppf morphism
of algebraic spaces, U → [U/G] is an fppf representable morphism. It follows from
Theorem 6.2.1 that [U/G] is an algebraic stack.

Exercise 6.2.11. Let G→ S be an fppf group algebraic space acting on an algebraic
space U over S.

(a) Generalize Exercise 2.5.21 by showing that the stackification of the prestack
[U/G]pre in the fppf topology is [U/G].

(b) Provide an example where the stackification of [U/G]pre in the étale topology
is not isomorphic to [U/G].
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Recalling that µµµn,Z is the subgroup of Gm,Z defined by SpecZ[x]/(xn − 1), we
can now deduce that Bµµµn,Z is an algebraic stack. If k is a field of characteristic p,
then µµµn := µµµn,k is smooth if and only if p doesn’t divide n.

Exercise 6.2.12. Let k be a field.
(a) Exhibit an explicit smooth presentation of Bµµµn.
(b) Show that Bµµµn is equivalent to the stack over (Sch/k)ét whose objects over a

scheme T are pairs (L,α) consisting of a line bundle L on T and a trivialization
α : OT

∼→ L⊗n.
(c) Show that Bµµµn is a smooth and proper algebraic stack of dimension 0.
(d) Show that Bµµµn is a Deligne–Mumford stack if and only if n is prime to the

characteristic.
(e) If x : Speck→ Bµµµn denotes the canonical presentation, compute the tangent

space TBµµµn,x.

6.2.3 Torsors

If G is a sheaf of groups, then a G-torsor is a sheaf of sets locally isomorphic to G.

Definition 6.2.13 (Torsors). Let S be a site and G a sheaf of (not necessarily
abelian) groups on S. A G-torsor on S is a sheaf P of sets on S with a left action
σ : G× P → P of G such that

(1) for every object T ∈ S, there exists a covering {Ti → T} such that P (Ti) ̸= 0
for each i, and

(2) the action map (σ, p2) : G× P → P × P is an isomorphism.
If T ∈ S is an object and G is a sheaf of groups on the localized site S/T (Exam-
ple 2.2.11), then a G-torsor over T is by definition a G-torsor on the S/T .

Morphisms of G-torsors are G-equivariant morphisms of sheaves. We say that a
G-torsor P is trivial if P is G-equivalently isomorphic to G.

Exercise 6.2.14. Show that Any morphism of G-torsors is an isomorphism.

Example 6.2.15. Let X be a stack over a site S, and let a, b ∈ X be objects over
S ∈ S. The sheaf IsomS(a, b) of isomorphisms is a torsor for Aut(a) under the action
given by precomposition.

Given a morphism f : T ′ → T and a G-torsor P over T , the restriction P |T ′ is
the sheaf on S/T ′ whose whose sections over a T ′-scheme S are P (S); the restriction
P |T ′ is naturally a G-torsor over T ′.

Exercise 6.2.16. Let S be a site with a final object S and G be a sheaf of groups
on S.

(a) Show that Axiom (1) is equivalent to P → S being an epimorphism of sheaves.
(b) If P is a G-torsor, show that S is isomorphic to the quotient sheaf P/G.
(c) Show that a G-torsor P is trivial if and only if there exists a section s : S → P

of the structure morphism P → S.
(d) Show that a sheaf P of sets on S with a left action by G is a G-torsor if and

only if there exists a covering {Si → S} and isomorphisms P |Si
∼= G|Si

of
G|Si

-torsors.
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Example 6.2.17 (Principal G-bundles). If G→ S is an fppf group scheme, then
there is an equivalence of categories between G-torsors in the fppf topology and
principal G-bundles (as defined in Definition 6.2.5). To see this, first suppose that
P → T is a principal G-bundle over an S-scheme T , i.e., P → T is an fppf morphism
of algebraic spaces where G is equipped with a free and transitive action of G×S T .
Since algebraic spaces are sheaves in the fppf topology (Proposition 6.2.2), we
may view G×S T as a sheaf of groups on (Sch/T )fppf and P as a sheaf of sets on
(Sch/T )ét. Since every principal G-bundle is locally trivial in the fppf topology
(Proposition B.1.48), P is a G ×S T -torsor on (Sch/T )fppf . Conversely, given a
G ×S T -torsor P on (Sch/T )fppf , then by Exercise 6.2.16 there is an fppf cover
T ′ → T such that P ×T T ′ ∼= G×T T ′. Therefore, P ×T T ′ → P is an fppf morphism
from an algebraic space, and Corollary 6.2.4 implies that P is an algebraic space. It
follows that P → T is a principal G-bundle.

If in addition G→ S is smooth, then there is an equivalence of categories between
G-torsors in the étale topology and principal G-bundles. This holds because every
principal G-bundle P → T is étale locally trivial and therefore P is a G×S T -torsor
on (Sch/T )ét.

6.2.4 Gerbes
Gerbes are a 2-categorical generalization of torsors. While torsors are locally
isomorphic to a sheaf of groups G, gerbes are locally isomorphic to classifying stacks
BG. Gerbes are central figures in moduli theory; for the purposes of this book, our
main examples are residual gerbes (Proposition 6.2.36) and banded Gm-gerbes such
as the map PicX → PicX from the Picard stack to Picard scheme (Theorem 6.2.58)
and the map Bunsr,d(C) → M s

r,d(C) from the stack of stable vector bundles to its
coarse moduli space.

Definition 6.2.18 (Gerbes). A stack X over a site S is called a gerbe if
(1) for every object T ∈ S, there exists a covering {Ti → T} in S such that each

fiber category X (Ti) is non-empty; and
(2) for objects x, y ∈ X over T ∈ S, there exists a covering {Ti → T} and

isomorphisms x|Ti

∼→ y|Ti
for each i.

We say that a gerbe X is trivial if there is a section S → X of X → S. When S
has a final object S, then the triviality of a gerbe X is equivalent to the existence of
an element of X (S).

Example 6.2.19. If G is a sheaf of groups on a site S, then we extend Definition 6.2.9
by defining the classifying prestack of G as the category BG over S consisting of pairs
(P, T ) where T ∈ S and P is G-torsor over S/T (Definition 6.2.13). A morphism
(P ′, T ′) → (P, T ) is the data of a morphism T ′ → T in S and an isomorphism
P ′ → P |T ′ of G-torsors, where P |T ′ denotes the restriction of P along T ′ → T .

The classifying stack BG is a gerbe over S because every G-torsor over T is
locally isomorphic to the trivial G-torsor G× T .

Exercise 6.2.20 (Gerbes are locally classifying stacks). Let S be a site with a final
object S ∈ S, and let X be a stack over S. Show that X is a gerbe if and only if
there exists a covering {Si → S} and sheaves of groups Gi on the localized site S/Si
(Example 2.2.11) such that there is an isomorphism X ×S S/Si ∼= BGi over S/Si.

Exercise 6.2.21. Let S be a scheme and let X be a gerbe over (Sch/S)fppf . If the
diagonal X → X ×S X is representable, show that X is an algebraic stack.
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Important examples of gerbes X are those banded by a sheaf of groups. This
means that X is equipped with the additional data of a natural isomorphism
G(T )→ AutT (x) for every object x ∈ X (t).

Definition 6.2.22 (Banded G-gerbes). Let G be an abelian sheaf on a site S. A
stack X over S is a gerbe banded by G (or a banded G-gerbe or simply a G-gerbe) is
a gerbe together with the data of isomorphisms ψx : G|T → AutT (x) of sheaves for
each object x ∈ X (T ). We require that for each isomorphism α : x

∼→ y over T , the
diagram

G|T
ψy

$$

ψx

zz

AutT (x)
Innα // AutT (y).

(6.2.23)

commutes, where Innα(τ) = ατα−1. The data of the isomorphisms ψx is called the
band of X .

A morphism of banded G-gerbes is a morphism of stacks compatible with the
bands.

Remark 6.2.24. Here is another way to think about a band of a gerbe. Let XS be
the restricted site whose underlying category is X and where a covering of a ∈ X (S)
is a covering of S. Then the inertia stack IX = X ×X×X X is a sheaf of groups on
XS : for a ∈ X (S), we have IX (a) = IsomS(a). The compatibility condition (6.2.23)
ensures that there is an isomorphism ψ : G|X → IX of sheaves on XS .

Example 6.2.25 (The trivial banded gerbe). If G is an abelian sheaf on a site S
with a final object S, then the classifying stack BG of Example 6.2.19 is a banded
G-gerbe and is trivial (i.e., BG(S) ̸= ∅). A banded G-gerbe X over S is trivial if
and only if X ∼= BG. We refer to BG as the trivial banded G-gerbe.

Exercise 6.2.26 (Band associated to a gerbe). Let S be a site with a final object
S. Let X be an abelian gerbe over S, i.e., a gerbe X such that AutT (a) is abelian
for every object a ∈ X (T ). Show that there is a sheaf of groups G on S such that X
is banded by G.
Hint: Use Axiom (1) of a gerbe to find a covering {Xi → X} and elements ai ∈
X (Xi). Use Axiom (2) to glue the sheaves Gi := AutXi

(ai) to a sheaf G.

6.2.5 Algebraic gerbes

Attached to any algebraic stack Y is the big fppf site (Sch /Y)fppf of schemes over Y :
the underlying category of (Sch /Y)fppf is Y and a covering of an object y ∈ Y(T ) is
a covering of T . Moreover, if X → Y is a morphism of algebraic stacks, then X is a
stack over (Sch /Y)fppf thanks to Proposition 6.2.2.

Definition 6.2.27 (Gerbes and banded G-gerbes). A morphism X → Y of algebraic
stacks is a gerbe if X is a gerbe over the big fppf site (Sch /Y)fppf .

If G→ S is a commutative fppf group scheme, a morphism X → Y of algebraic
stacks over S is called a banded G-gerbe (or simply G-gerbe) if X is a gerbe over
(Sch /Y)fppf banded by the sheaf of groups G×S Y.

We say that an algebraic stack X is a gerbe (resp., banded G-gerbe) if there exists
a morphism X → X to an algebraic space which is a gerbe (resp., banded G-gerbe).
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If G→ S is a commutative fppf group scheme, the classifying stack BG→ S is
a banded G-gerbe. Note that a banded G-gerbe X → X over an algebraic space X
is trivial if and only if X ∼= BG×S X.

Proposition 6.2.28. Let X → Y be a morphism of algebraic stacks.
(1) The morphism X → Y is a gerbe if and only if there exists an fppf morphism

V → Y from a scheme and an fppf group algebraic space G → V such that
X ×Y V ∼= BG.

(2) If X → Y is a gerbe, then X → Y is a smooth morphism.
(3) If G → S is an fppf group scheme and X → X is a banded G-gerbe over

an algebraic space X, then there exists an étale cover X ′ → X such that
X ×X X ′ ∼= X ′ ×S BG.

Proof. We first prove (1). For (⇒), Exercise 6.2.20 implies that there is an fppf
morphism V → Y and a sheaf of groups G on V such that X ×Y V ∼= BG. Since
X ×Y V is an algebraic stack, its diagonal is representable, and thus G is an algebraic
space. Conversely, suppose that X ×Y V ∼= BG for an fppf morphism V → Y and
an fppf group algebraic space G→ V . To see Axiom (1) of a gerbe, if a ∈ (Sch /Y)
is an object over a scheme T , then VT := V ×Y T → T is an fppf covering and
since X ×Y VT ∼= BGVT

, there is an object of X over VT . Similarly for Axiom
(2), if x1, x2 ∈ X are objects over y ∈ Y(T ), then pull backs of x1 and x2 become
isomorphic under the fppf covering VT → T .

Part (2) follows from (1) since BG→ V is a smooth morphism; indeed smoothness
is an fppf local property on the source (Proposition 2.1.20). For part (3), X → X
has a section after base changing by the smooth and surjective morphism X → X.
Choosing a smooth presentation U → X , then the composition U → X → X is
smooth and the base change X ×X U → U has a section. Since smooth morphisms
étale locally have sections (Corollary A.3.5), there is an étale cover X ′ → X factoring
through U → X. It follows that X ×X X ′ → X ′ has a section or in other words that
X ×X X ′ ∼= X ′ ×S BG.

Exercise 6.2.29. Show that a morphism X → Y of algebraic stacks is a gerbe if
and only if X → Y and X → X ×Y X are fppf.

We will later show that an algebraic stack X is a gerbe if and only if IX → X is
fppf (Proposition 6.2.47).

Exercise 6.2.30. Show that there is a non-trivial isomorphism

α : B(Z/2)× (A1 ∖ 0)→ B(Z/2)× (A1 ∖ 0)

of trivial banded Z/2-gerbes over A1 which glues to a non-trivial banded Z/2-gerbe
over P1.

Exercise 6.2.31. Let 1 → K → G → Q → 1 be a short exact sequence of affine
algebraic groups over k such that K is commutative. Show that BG → BQ is a
banded K-gerbe which is trivial if and only if the sequence splits.

Exercise 6.2.32. Assume that char(k) ̸= 2, 3. Recall from Exercise 3.1.19(c) that
the moduli stack of stable elliptic curves has a quotient descriptionM1,1 = P(4, 6) :=
[(A2 ∖ 0)/Gm] where Gm acts with weights 4 and 6.

(a) Show that the j-line π :M1,1 → A1 is a trival banded Z/2-gerbe over A1 \
{0, 1728}.
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Hint: Construct a family of elliptic curves over A1
k\{0, 1728} via the Weierstrass

equation

y2z + xyz = x3 − 36

t− 1728
xz2 − 1

t− 1728
z3,

where t is the coordinate on A1, where the discriminant ∆ = t2/(t− 1728)3.
See [Sil09, Prop. III.1.4(c)].

(b) Consider the map M1,1 = P(4, 6) → P(2, 3) induced the homomorphism
Gm → Gm, t 7→ t2; note that P(2, 3) is the banded Z/2-gerbe obtained by
rigidifying along the hyperelliptic involution (see Proposition 6.2.47), and
the restriction along P(2, 3) \ {0, 1728,∞} is tje gerbe from (a). Show that
M1,1 → Y is non-trivial.

Hint: If it is trivial, show that there are torsion line bundles contradicting that
Pic(M1,1) = Z from Exercise 6.1.14(a).

(c) Show that the rigidification M1,1 → P(2, 3) \∞ is also non-trivial.

Hint: If it is trivial, show that M1,1 has three 2-torsion line bundles contra-
dicting that Pic(M1,1) = Z/12 from Exercise 6.1.14(b).

(d) For g ≥ 2, let Hg ⊂Mg be the closed substack classifying hyperelliptic curves.
Show that the rigidification Hg → Y along the hyperelliptic involution is a
non-trivial banded Z/2-gerbe.

Exercise 6.2.33.
(a) Show that every gerbe X over an algebraic space that is étale locally isomorphic

to BZ/2 is in fact banded by Z/2.
(b) Give an example of a gerbe over an algebraic space that is étale locally

isomorphic to BGm but not banded by Gm.

Hint: Consider the classifying stack of a form of Gm (see Exercise 4.1.44).

Exercise 6.2.34 (Root gerbes and root stacks revisited). Recall that root gerbes
and stacks were introduced in Examples 3.9.12 and 3.9.13.

(a) Since we now know how to construct quotient stacks by actions of µµµr over any
base scheme S, show that Exercise 3.9.14 still holds without the condition that
r is invertible in Γ(S,OS).

(b) Given a scheme X, a line bundle L, and a section s ∈ Γ(X,L), show that
X( r
√
L) → X and the restriction of X( r

√
L, s) → X along V (s) are banded

µµµr-gerbes.
(c) Show that X( r

√
L)→ X is the trivial µµµr-gerbe if and only if L has an rth root.

(d) Consider an exact sequence 1 → µr → Gm → Gm → 1 and a Gm-torsor P ′′

corresponding to a line bundle L′′. Show that X( r
√
L) is isomorphic to the

gerbe of trivializations GP ′′ defined in Exercise 6.2.40(b).

6.2.6 Residual gerbes revisited

Given an algebraic stack X and x ∈ |X |, recall from Definition 3.5.13 that the residual
gerbe at x (if it exists) is a reduced, locally noetherian algebraic stack Gx with a
monomorphism Gx ↪→ X such that |Gx| is a point mapping to x. We have already
shown that the residual gerbe at a finite type point exists (Proposition 3.5.17).

Residual gerbes are unique.
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Lemma 6.2.35. Let X be a noetherian algebraic stack and x ∈ |X | be a point. If
the residual gerbe at x exists, it is unique.

Proof. To add.

We now establish the existence of residual gerbes at all points and moreover
show that they are in fact gerbes.

Proposition 6.2.36 (Existence of Residual Gerbes II). If X is a noetherian algebraic
stack and x ∈ |X | is a point, then the residual gerbe Gx exists and is a gerbe over a
field κ(x), called the residue field of x.

Proof. To add.

If X is a quasi-separated algebraic stack of finite type over a field k and x ∈ X (k),
then Gx = BGx (Proposition 3.5.17). More generally, we have:

Exercise 6.2.37. Let X be a noetherian algebraic stack and x ∈ |X | be a finite
type point.

(1) For any representative x : Speck→ X of x, there is a cartesian diagram

BkGx

��

// Gx �
�

//

��

X

Speck // Specκ(x).

□

(2) If the stabilizer of x is smooth, show that there is a finite separable extension
κ(x)→ k and a representative of x over k.

Exercise 6.2.38. Let C ⊂ P2
k be a non-split quadric over a field k, and let k→ k′

be a quadratic extension such that C ×k k′ ∼= P1
k′ . Let D ⊂ C be a divisor of degree

6 and let X → P1
k′ be the double cover ramified over D×k k′. Show that the residual

gerbe of [X] ∈M2 is non-trivial and has residue field k.

To give some context for the above exercise, consider the rigidificationM2 → Y of
the hyperelliptic involution is a non-trivial banded Z/2-gerbe (see Exercise 6.2.32(d)).
The restriction to the locusM◦

2 ⊂M2 of curves whose only non-trivial automorphism
is the hyperelliptic involution is the coarse moduli space M◦

2 → M◦
2 . This is a

non-trivial banded Z/2-gerbe and the generic fiber (over the residue field of the
generic point of M2) is also a non-trivial gerbe. Exercise 6.2.38 on the other hand
shows that the reduced fibers of M◦

2 → M◦
2 over closed points can be non-trivial

gerbes. =

6.2.7 Cohomological characterization
The following exercises provide cohomological characterizations of torsors and gerbes
for an abelian sheaf G on the small fppf site Sfppf of a scheme S. If G is represented
by a smooth, commutative, and quasi-projective group scheme, then it turns out that
Hi((Sch/S)fppf , G) = Hi((Sch/S)ét, G) (see Remark 4.1.43) and thus in this case we
can use étale cohomology. For an extra challenge, try to prove these statements for
abelian sheaves over any site. The reader may consult [Gir71] and [Ols16, §12] for
detailed proofs.

Exercise 6.2.39 (Torsors). Let S be a scheme.
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(a) If G is an abelian sheaf on Sfppf , show that H1(Sfppf , G) is in bijective corre-
spondence with isomorphism classes of G-torsors.

Hint: Imitate the proof using Čech cohomology that H1(X,O∗
X) = Pic(X) for

a scheme X.
(b) Let 0→ G′ → G→ G′′ → 0 be an exact sequence of abelian sheaves on Sfppf ,

and let

0→ H0(Sfppf , G
′)→ H0(Sfppf , G) → H0(Sfppf , G

′′)
δ−→

→ H1(Sfppf , G
′)

α−→ H1(Sfppf , G)
β−→ H1(Sfppf , G

′′)→ · · ·

be the corresponding long exact sequence. Show that under the bijection in
(a), the boundary map δ assigns a section S → G′′ to the G′-torsor defined
by the fiber product G×G′′ S. Show also that α assigns a G′-torsor P ′ to the
quotient P ′ ×G′

G := (P ′ ×G)/G′ while β assigns a G-torsor P to P ×G G′′.

Exercise 6.2.40 (Gerbes). Let S be a scheme.
(a) If G is an abelian sheaf on Sfppf , show that H2(S, G) is in bijective correspon-

dence with isomorphism classes of G-banded gerbes.

Hint: Let 0 → G → I0
d0−→ I1

d1−→ I2
d2−→ · · · be an injective resolution.

For a cohomology class α ∈ H2(S, G), define a stack Gα over S as follows.
Choose τ ∈ Γ(S, I2) with d2(τ) = 0 such that the image of τ in H2(S, G) is
α. Define Gα as the category of pairs (S, σ) consisting of an object S ∈ S and
a section σ ∈ Γ(S, I1) with d1(σ) = τ |S. A morphism (S′, σ′)→ (S, σ) is the
data of a morphism f : S′ → S and an element ρ ∈ Γ(S′, I0) with boundary
d0(ρ) = σ′− f∗(σ). Show that Gα is a G-banded gerbe and that the assignment
α 7→ Gα gives the stated bijection.

Let 0→ G′ → G→ G′′ → 0 be an exact sequence of abelian sheaves on Sfppf , and
let

· · · → H1(Sfppf , G
′′)

δ−→ H2(Sfppf , G
′)

α−→ H2(Sfppf , G)
β−→ H2(Sfppf , G

′′)→ · · ·

be the corresponding long exact sequence.
(b) Show that under the bijection in (a), the boundary map δ assigns a G′′-torsor

P ′′ → S to the gerbe of trivializations GP ′′ . The objects of the prestack GP ′′

over an S-scheme T is a pair (P, α) consisting of a G-torsor P → T and a
trivialization α : P ×G G′′ ∼= P ′′ ×S T of G′′-torsors. Morphisms in GP ′′ are
morphisms of G-torsors compatible with the trivializations.

(c) Suppose that G′, G, and G′′ are represented by commutative and affine
algebraic groups over a field k. Show that if P ′′ → S is a G′′-torsor, then
GP ′′ is identified with both the quotient stack [P ′′/G] and the fiber product of
BG→ BG′′ and the map S → BG′′ corresponding the G′′-torsor P ′′.

Exercise 6.2.41 (Group structure). If G is an abelian sheaf on the small fppf site
Sfppf of a scheme S, show that the group laws of H1(Sfppf , G) and H2(Sfppf , G) can
be described geometrically as follows:

(a) The product of two G-torsors P1 and P2 is the contracted product P1 ∧G P2

defined as the sheaf quotient (P1 × P2)/G where h · (p1, p2) = (h−1p1, hp2)
with the G-action specified by g · (p1, p2) = (gp1, p2) = (p1, gp2). The inverse
of a G-torsor P is the sheaf P with the inverted G-action: g · p = g−1p.
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(b) The product of two banded G-gerbes (X1, ψ1,x) and (X2, ψ2,x) is the contracted
product X1∧GP2, which is defined as the rigidification (X1×X2)( G (see Propo-
sition 6.2.47) of the product X1×X2 along the subgroup (ψ1, ψ2) : G|X1×X2

→
IX1×X2

defined by the bands ψ1 and ψ2. The inverse (X , ψx)−1 = (X , ψ−1
x )

inverts the band.

Remark 6.2.42 (Banded µn-gerbes over P1). Over an algebraically closed field k,
isomorphism classes of banded µn-gerbes over P1 are in bijection with Z/nZ. To see
this, observe that the exact sequence 1 → µn → Gm

n−→ Gm → 1 induces an exact
sequence on cohomology

H1(P1
ét,Gm)

n−→ H1(P1
ét,Gm)→ H2(P1

ét, µn)→ H2(P1
ét,Gm).

Since H1(P1
ét,Gm) = Pic(P1

ét) = Z, we can use the fact that H2(P1
ét,Gm) = 0 to

conclude that H2(P1
ét, µn) = Z/nZ. The image of a line bundle O(d) is equivalent

to the root stack P1( n
√
O(d)), and this gerbe is trivial if and only if n divides d.

The gerbe P1( n
√
O(1)) is isomorphic to the quotient stack [(A2 ∖ 0)/Gm] where

t · (x, y) = (tnx, tny).

Exercise 6.2.43 (Gm-gerbes and twisted sheaves). Let X → X be a Gm-gerbe over
an algebraic space X. We say that a coherent sheaf F on X is 1-twisted if for every
field-valued point Speck→ X , the Gm-representation corresponding to the pullback
of E under BGm = BGx → X decomposes as a direct sum of one-dimensional
representations of weight one. Show that the Gm-gerbe X → X is trivial if and only
if there exists a 1-twisted line bundle on X .

Exercise 6.2.44 (Azumaya algebras). An Azumaya algebra of rank r2 over a
noetherian scheme X is a (possibly non-commutative) associative OX -algebra A
which is coherent as an OX -module and such that there is an étale covering X ′ → X
where A⊗OX

OX′ is isomorphic to the matrix algebra Mr(OX). We say that A is
trivial if it is isomorphic to Mr(OX). By Exercise B.1.67, Azumaya algebras are in
bijection with principal PGLr-bundles (which are also in bijection with Brauer–Severi
schemes).

Let A be an Azumaya algebra over a noetherian scheme X of rank r2.
(a) Define the gerbe of trivializations of A as the stack GA over (Sch/X)ét where

an object over a X-scheme T is a pair (E,α) consisting of a vector bundle E
on T of rank r and a trivialization α : EndOX

(E)
∼→ A⊗OX

OT . Morphisms in
GA(T ) are isomorphisms of vector bundles compatible with the trivializations.
Show that GA → X is a banded Gm-gerbe.

(b) Let PA be the principal PGLr-bundle corresponding to A. Identify GA with
the gerbe of trivializations GPA

defined in Exercise 6.2.40(b) with respect to
the PGLr-torsor PA and the surjection GLr → PGLr.

(c) The exact sequence 1 → Gm,X → GLr,X → PGLr,X → 1 of sheaves on Xét

induces a boundary map

δ : H1(Xét,PGLr)→ H2(Xét,Gm).

Show that δ(PA) = [GA] ∈ H2(Xét,Gm) and that this is an r-torsion element.
(d) Show that the Azumaya algebra A is trivial if and only if GA is trivial.
(e) Use the quarternions to construct a non-trivial Gm-gerbe over SpecR.
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Remark 6.2.45 (Brauer groups). Two Azumaya algebras A and A′ on a noetherian
scheme X are similar if there exists vector bundles E and E′ on X such that
A⊗OX

EndOX
(E) ∼= A⊗OX

EndOX
(A′). This defines an equivalence relation, and

the Brauer group of X is the set Br(X) of Azumaya algebras up to similarity. The set
Br(X) becomes a group under the operators [A] · [A′] = [A⊗A′] and [A]−1 = [Aop]
(where Aop is the opposite algebra with same elements and addition as A but with
multiplication reversed: a ·Aop

b = b ·A a).
The exact sequence 1→ Gm,X → GLr,X → PGLr,X → 1 induces a boundary map

H1(Xét,PGLr)→ H2(Xét,Gm). Viewing H1(Xét,PGLr) as the set of isomorphism
classes of Azumaya algebras of rank r2 and H2(Xét,Gm) as the set of isomorphism
classes of banded Gm-gerbes, the boundary map assigns an Azumaya algebra A to
the gerbe of trivializations GA, which is an r-torsion element (see Exercise 6.2.44).
Two Azumaya algebras A and A′ (of possibly different rank) are similar if and only
if GA ∼= GA′ , and thus there is an injective map

Br(X) ↪→ Br′(X) := H2(Xét,Gm)tors, A 7→ GA,

into the cohomological Brauer group Br′(X). See [Gro68] and [Mil80, §IV.2] for
additional background.

Grothendieck asked whether Br(X) ↪→ Br′(X) is surjective. This is known in
some cases. The strongest result is due to Gabber: Br(X) = Br′(X) if X admits
an ample line bundle (see [dJ03]). It is however open in general, even for smooth
separated schemes over a field.

Exercise 6.2.46. Let X be a noetherian scheme and X → X be a banded Gm-gerbe
corresponding to a cohomology class [X ] ∈ H2(Xét,Gm).

(a) Show that the following are equivalent:

(i) There exists an Azumaya algebra A on X such that X ∼= GA, i.e., [X ] is
in the image of Br′(X)→ Br(X),

(ii) X is a global quotient stack, and
(iii) there exists a 1-twisted vector bundle E on X (see Exercise 6.2.43).

(b) Let X be a normal separated surface over C such that H2(X,Gm) contains a
non-torsion element α; for an example, see [Gro68, II.1.11.b]. Conclude that
the banded Gm-gerbe corresponding to α is not a global quotient stack.

(c) Let Y = SpecC[x, y, z]/(xy−z2). Show that there is a non-trivial involution α
of (Y ∖0)×B(Z/2) such that the stack X , obtained by gluing the trivial banded
Z/2-gerbes over Y along α, is a banded Z/2-gerbe over the non-separated
union Y

⋃
Y∖0 Y which is not a global quotient stack.

See also [EHKV01].

6.2.8 Rigidification

Proposition 6.2.47. Let X be an algebraic stack such that IX → X is fppf. Let X
be the sheaf on Schfppf defined by the sheafification of the functor assigning a scheme
S to the set of isomorphism classes X (S)/ ∼ of objects. Then X is an algebraic
space and X → X is a gerbe.

Proof. To show that X is an algebraic space, it suffices to show that X → X is
a smooth representable morphism. In this case, a smooth presentation U → X
induces a smooth presentation U → X, and it follows from Corollary 4.4.12 (or
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Theorem 6.2.1) that X is an algebraic space. As gerbes are smooth morphisms, it
suffices to show that for every morphism S → X from a scheme, the fiber product
X ×X S → S is a gerbe. By construction, there is an fppf cover S′ → S and a
morphism a′ : S′ → X lifting the composition S′ → S → X. Since the property of
being a gerbe is fppf local, after replacing S with S′, we may assume that S → X
lifts to a map a : S → X . We claim that there is an isomorphism

Ψ: X ×X S → BAutS(a).

An object of the fiber product X ×X S consists of a pair (f, a′) where f : T → S

is a map of schemes and b ∈ X (T ) such that T → S → X and T
b−→ X → X

agree. Define Ψ(f, b) as the principal AutS(a)-bundle IsomT (f
∗a, b). Observe that

Ψ(f, f∗a) maps to the trivial bundle.
Since X ×X S and BAutS(a) are both stacks in the fppf topology, we may verify

that Ψ is essentially surjective fppf locally: if P → T is a principal AutS(a)-bundle,
then there is an fppf cover T ′ → T such that P ×T T ′ is the trivial bundle, which we
have seen is in the essential image. Similarly, we may verify that Ψ is fully faithful
fppf locally. Let (f, b), (f ′, b′) ∈ (X ×X S)(T ). Since the objects f∗a, b, b′ ∈ X (T )
map to the same T -valued point of X, by the construction of X, there is an fppf
cover T ′ → T such that their pullbacks become isomorphic. By replacing T with T ′,
we may assume that f∗a ≃ b ≃ b′ are isomorphic. In this case, the full faithfulness
claim is clear as both Ψ(f, b) and Ψ(f, b′) are trivial bundles.

Alternatively, we may construct X directly. Let U → X be a smooth presentation
and R ⇒ U the corresponding smooth groupoid. The stabilizer groupoid scheme
SU = R ×U×U U = IX ×X U is fppf over U . There is an fppf equivalence relation
SU ×U R⇒ R where one arrow is given by composition and the other is projection.
By Corollary 6.2.4, the fppf quotient R′ := R/(SU ×U R) is an algebraic space.
There is an induced fppf equivalence relation R′ ⇒ U and X is isomorphic to the
fppf quotient U/R′.

See also [LMB00, Cor. 10.8] and [SP, Tags 06QD and 06QJ].

We now consider a more general situation. If X is an algebraic stack, then
the inertia stack IX can be viewed as a group scheme over the big étale site
(Sch /X )ét of X . As a group functor, IX assigns an object a ∈ X (S) to the group
AutS(a), and a morphism α : a′ → a over S′ → S to the natural pullback map
α∗ : AutS(a) → AutS′(a′) (see (3.2.10)). Given a : S → X , there is a canonical
isomorphism IX ×X S ∼= AutS(a) of group schemes over S.

Suppose that H ⊂ IX is a closed subgroup scheme over X such that H → X
is fppf. This is equivalent to requiring that for every a ∈ X (S), there is a closed
fppf subgroup scheme Ha ⊂ AutS(a) over S such that if a′ → a is a morphism
over S′ → S, the canonical isomorphism AutS′(a′) ∼= AutS(a)×S S′ restricts to an
isomorphism Ha′ ∼= Ha ×S S′. If α : a ∼→ a is an automorphism over the identity,
then the canonical isomorphism α∗ : AutS(a) → AutS(a) is conjugation by α. In
particular, Ha ⊂ AutS(a) is a normal group scheme.

Frequently in applications when X is defined over scheme S, the closed subgroup
H ⊂ IX is obtained by the pullback of a fppf group scheme H → S, i.e., H = H×SX .

Definition 6.2.48 (Rigidification). Let X be an algebraic stack and H ⊂ IX be
an fppf closed subgroup scheme over X . The rigidification X( H is defined as
the stackification in Schfppf of the prestack with the same objects as X and where
the set of morphisms beteen b ∈ X (T ) and a ∈ X (S) over f : T → S is defined as
Mor(b, a) = MorX (T )(b, f

∗a)/H(T ).
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If X is defined over S and H = H ×S X is the base change of an fppf group
scheme H → S, then we write X( H := X( H.

One can think of the subgroup H as giving an action of BH on X and the
rigidification X( H as the quotient X/BH.

Example 6.2.49. If IX → X is fppf, then we can take H = IX and the rigidification
X( IX is the algebraic space X constructed in Proposition 6.2.47.

Proposition 6.2.50. Let X be an algebraic stack and H ⊂ IX be an fppf closed
subgroup scheme over X . The rigidification X( H is an algebraic stack such that

(1) the natural morphism π : X → X( H is a gerbe;
(2) for every object a ∈ X (S), the natural map AutS(a)→ AutS(π(a)) is surjective

with kernel H(S);
(3) a morphism f : X → Y factors uniquely through X( H if and only if for every

object a ∈ X (S), the composition H(S) ⊂ ker(AutX (S)(a)→ AutY(S)(f(a)));
and

(4) if H is a commutative group scheme, then H descends to an fppf group scheme
H → X such that X → X is banded H-gerbe. If in addition X is defined over
a scheme S and H = H ×S X is the pullback of a commutative fppf group
scheme H → S, then X → X is a banded H-gerbe.

Proof. To show that X is algebraic, it suffices to show that π : X → X( H is a
smooth representable morphism: if U → X is a smooth presentation, then so is the
composition U → X → X( H. If g : S → X( H, then by the definition of X( H
as the stackification, there is an fppf cover S′ → S such that S′ → S → X( H lifts
to a map a′ : S′ → X . By replacing S with S′, we may assume that g : S → X( H
lifts to a morphism a : S → X .

We claim that there is an isomorphism

Ψ: X ×X( H S → BHa.

Since Ha → S is fppf, the classifying stack BHa is algebraic (Proposition 6.2.10)
and smooth over S′ (Proposition 2.1.20), and the isomorphism Ψ would imply that
X → X( H is smooth and representable. An object of X ×X( H S consists of a
triple (f, b, α) where f : T → S, b ∈ X(T ), and α : g ◦ f ∼→ π ◦ b. Define Ψ(f, b, α) as
the principal Ha-bundle T ×IsomT (f∗a,b)/Ha

IsomT (f
a, b). Noting that Ψ(f, f∗a, id)

is the trivial bundle, the proof that Ψ is an isomorphism follows exactly as in
Proposition 6.2.47. The remaining statements are left to the reader.

See also [ACV03, Thm. 5.1.5], [AGV08, §C], [Rom05, §5], and [AOV08, §A].

Example 6.2.51 (Ridigification of Bunr,d(C)). Moduli stacks of sheaves provide
interesting examples of rigidification since there is a canonical scaling Gm-action on
sheaves. Recall that Bunr,d(C) is the moduli stack of vector bundles of rank r and
degree d on a fixed smooth, connected, and projective curve C over an algebraically
closed field k. For any vector bundle E on C × S where S is a k-scheme, there is
a canonical closed immerson iE : Gm,S → Aut(E) of group schemes over S. Thus,
Gm := Gm,Bunr,d

⊂ IBunr,d
is a closed fppf group scheme of the inertia stack, and we

can construct the rigidification

Bunr,d(C)( Gm.
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Over the substack Bunsimple
r,d (C) of simple bundles (i.e., vector bundles E with

Aut(E) = k∗), the rigidification Bunsimple
r,d (C)( is an algebraic space and Bunsimple

r,d (C)→
Bunsimple

r,d (C)( is a banded Gm-gerbe.

Exercise 6.2.52.
(a) If H is a commutative fppf group scheme over S, show that BH( H ∼= S.

More generally, show that if X → X is a banded H-gerbe, then X ∼= X( H.
(b) Let G→ S be an fppf group scheme acting on a S-scheme U . Suppose that

H ⊂ G is a central commutative fppf subgroup scheme acting trivially on U .
Show that [U/G]( H ∼= [U/(G/H)].

Exercise 6.2.53. Let X → S be a smooth, integral, and separated Deligne–Mumford
stack over a scheme S. Let SpecK → X be a representative of the generic point.
Show that the closure H ⊂ IX of generic fiber IX ×X K of the inertia is a closed
étale subgroup scheme and that the rigidification X( H is a smooth, integral, and
separated Deligne–Mumford stack over S with generically trivial inertia.

Exercise 6.2.54. Let X be an algebraic stack over a scheme S, H → S be an
fppf group scheme, and H ×S X ⊂ IX a closed subgroup scheme. Show that the
rigidification X( H can be given the moduli interpretation where an object over
a scheme S is a pair (G, f) where G → S is a banded H-gerbe and f : G → X
is an H-equivariant morphism (i.e., for every object a ∈ G(T ) over an S-scheme
T , the composition H(T )

∼→ AutT (a) → AutT (f(a)) agrees with the inclusion
H(T ) ↪→ AutT (f(a)) given by the subgroup H ×S X ⊂ IX ).

6.2.9 Picard stacks and spaces
If X → S is a proper flat morphism of noetherian schemes, define the Picard stack

PicX/S
as the stack over (Sch/S)ét whose objects over an S-scheme T are line bundles on
XT = X ×S T and whose morphisms are isomorphisms of line bundles. This is an
open substack of Coh(X/S) whose objects over an S-scheme T are coherent sheaves
on XT flat over T . The stack Coh(X/S) is an algebraic stack locally of finite type
over S. When X → S is strongly projective, one can given an explicit presentation
using the Quot scheme (see Exercise 3.1.23), and in general, Artin’s Axioms can be
used to verify algebraicity (see Theorem C.7.7). Therefore PicX/S is also algebraic
and locally of finite type over S.

On the other hand, there are several candidates for Picard functors:
(1) The naive Picard functor (or absolute Picard functor) is

PicnaiveX/S : Sch/S → Gps, (T → S) 7→ Pic(XT ).

(2) The Picard functor
PicX/S : Sch/S → Gps,

is the fppf sheafification of PicnaiveX/S .
(3) The relative Picard functor is

PicrelX/S : Sch/S → Gps, (T → S) 7→ Pic(XT )/Pic(T ),

where an object over an S-scheme T is a line bundle L on XT , and two line
bundles L and L′ on XT are identified if there exists a line bundle M ∈ Pic(T )
such that L ∼= L′ ⊗ f∗TM .
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(4) We can define the rigidification of the Picard stack

PicX/S( Gm

under the hypothesis that OT
∼→ fT,∗OXT

is an isomorphism for any map
T → S. This hypothesis implies that for a line bundle L on XT , there is a
canonical isomorphism

Gm(T ) = Γ(T,OT )∗
∼→ Γ(XT ,OXT

)∗ = Aut(L),

which further implies that the inertia stack IPicX/S
is isomorphic to fppf group

scheme Gm := Gm,PicX/S
over PicX/S .

While the Picard functor PicX/S and the rigidification PicX/S( Gm are sheaves
in the big fppf topology by definition, it may seem surprising that PicrelX/S is also a
sheaf under relatively mild hypotheses.

Proposition 6.2.55. Let f : X → S be a proper flat morphism of noetherian
schemes such that OS

∼→ f∗OX is an isomorphism and this holds after base change,
i.e., for every map g : T → S, the map OT

∼→ fT,∗OXT
is an isomorphism. Then

(1) PicX/S is representable by an algebraic space locally of finite type over S,
(2) the map PicX/S → PicX/S from the Picard stack is a banded Gm-gerbe and

PicX/S
∼= PicX/S( Gm, and

(3) if in addition there is a section s : S → X, then PicX/S
∼= PicrelX/S.

If in addition the geometric fibers of f are integral, then PicX/S is separated over S.

Remark 6.2.56. If f : X → S is a proper flat proper morphism with geometrically
connected and reduced fibers, then OS

∼→ f∗OX is an isomorphism (and remains so
after base chagne) by Lemma A.6.12. In [FGAV, Thm. 3.1], Grothendieck proved
that PicX/S is a scheme in the case that X → S is projective. See [Mum66, §20-21],
[AK80], and [Kle05, §9.4] for alternative expositions and various generalizations.
The representability as an algebraic space above was first established by Artin
[Art69b, Thm. 7.3], and this holds with the slighly weaker hypothesis that f is
cohomologically flat in dimension 0, i.e., the formation of f∗OX commutes with base
change.

Proof. As pointed out above, the condition that OS
∼→ f∗OX holds after base change

implies that the inertia stack of PicX/S is isomorphic to the fppf group scheme Gm :=
Gm,PicX/S

. Therefore Proposition 6.2.47 (or alternatively Proposition 6.2.50) implies
that the rigidification PicX/S( Gm is an algebraic space locally of finite type over S.
Moreover, PicX/S( Gm is identified with the Picard functor PicX/S by the definition
of rigidification. This gives both (1) and (2). When the fibers are geometrically
integral, the separatedness of PicX/S over S follows from Proposition A.6.17 and
Remark A.6.19.

To identify PicrelX/S with PicX/S , it suffices to prove that PicrelX/S is a sheaf in the
big fppf topology. To this end, it will be convenient to identify PicrelX/S with the
prestack Ps−rig, called the s-rigidification, whose fiber category over an S-scheme T
is

Ps−rig(T ) =
{
(L,α) | L ∈ Pic(XT ) and α : OT

∼→ s∗TL
}
,

where a morphism (L,α) ∼ (L′, α′) is the data of an isomorphism β : L→ L′ of line
bundles such that α′ = s∗Tβ ◦ α.
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The advantage of considering Ps−rig is that it is a straightforward application of
fppf descent of quasi-coherent sheaves to check that Ps−rig is a stack over the big
fppf topology (Sch/S)fppf . To show that PicrelX/S is a sheaf, we can therefore verify
that the natural map

Ps−rig → PicrelX/S , (L,α) 7→ L (6.2.57)

is an equivalence.
We first check that Ps−rig is equivalent to a functor, i.e., the functor (6.2.57)

is faithful. We must show that if β : L ∼→ L is an automorphism with s∗Tβ =
ids∗TL, then β = idL. Since OT → fT,∗OXT

is an isomorphism, the pullback map
f∗T : H

0(T,OT )→ H0(XT ,OXT
) is an isomorphism; as sT is a section, its inverse is

given by s∗T . The composition

s∗T : HomOXT
(L,L) ∼= H0(XT ,OXT

)
s∗T−−→ H0(T,OT ) ∼= HomOT

(s∗TL, s
∗
TL)

is an isomorphism of groups, and thus β = idL.
To see that (6.2.57) is full (i.e., the induced map on the functors of isomorphism

classes is injective), let (L,α) ∈ Ps−rig(T ) be an element such that there is a line
bundle M on T and an isomorphism β : L

∼→ f∗TM . The isomorphism

γ : OXT
= f∗TOT

f∗
Tα−−→ f∗T s

∗
TL

f∗
T s

∗
T β−−−−→ f∗T s

∗
T f

∗
TM = f∗TM

satisfies s∗T γ = s∗Tβ ◦α and shows that (L,α) is isomorphic to (OXT
, id) ∈ Ps−rig(T ).

Finally, to see that the functor (6.2.57) is essentially surjective, let L ∈ Pic(XT )
and define

L′ = L⊗ (f∗T s
∗
TL)

∨.

The images of L and L′ are equal in PicrelX/S(T ), and s∗TL
′ ∼= s∗TL⊗(s∗T f∗T s∗TL)∨ ∼= OT

defines an isomorphism α′ : OT
∼→ s∗TL

′ such that L ∈ PicrelX/S(T ) is the image of
(L′, α′) ∈ Ps−rig(T ).

Over an algebraically closed field k, it is remarkably easy to verify that the
Picard functor PicX := PicX/k is a scheme.

Theorem 6.2.58. Let X be a proper integral scheme over an algebraically closed
field k.
(1) PicX is an algebraic group over k, and in particular a disjoint union of

quasi-projective schemes.
(2) PicX

∼= PicrelX and PicX → PicX is a banded Gm-gerbe,
(3) If X is smooth, the connected component of the identity Pic0X is projective.
(4) If char(k) = 0, then PicX is smooth of dimension h0(X,OX). In particular,

Pic0X is an abelian variety.

Proof. As k is algebraically closed and X is integral, the structure map f : X →
Speck has a section and OT

∼→ fT,∗OXT
is an isomorphism for any k-scheme T .

Proposition 6.2.55 implies that PicX is an algebraic space locally of finite type
over k, and that (2) holds. The Picard stack PicX is quasi-separated (it even has
affine diagonal) and it follows that PicX is also quasi-separated. This is enough
to show that PicX is a separated scheme and that Pic0X is quasi-projective. It is
a direct consequence of Theorem 4.4.28, but it is worth recalling the argument:
PicX has a dense open subspace which is a scheme (Theorem 4.4.1), the group
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structure PicX allows us to translate this open to show that PicX is an algebraic
group, which is automatically separated with quasi-projective connected components
(Proposition B.1.16). This gives (1).

For (3), it suffices to show that Pic0X is proper. As we already know it is separated,
we only need to verify the existence part of the valuative criterion for properness:
let R be a DVR over k with fraction field K and L be a line bundle on XK . As
XR is regular, the line bundle L extends to a line bundle L̃ on XR (for instance, if
L = O(D) for a divisor D ⊂ XK , then take L̃ = O(D)).

The smoothness in (4) follows from the fact that algebraic groups are smooth in
characteristic 0 (Proposition B.1.16). If L is a line bundle on X, then the Zariski
tangent spaces of the Picard stack and Picard scheme agree, and deformation theory
(Proposition C.1.18) implies that TPicX ,L

∼= H1(X,OX).

Remark 6.2.59. As a consequence of the representability of PicX ∼= PicrelX , there is
a universal family (or Poincaré family) P on X × PicX that satisfies the following:
for any k-scheme T and any line bundle L on XT , there is a unique morphism
T → PicX such that

L ∼= P|X×T ⊗ p∗2M

for some line bundle M on T .
The connected component of the identity Pic0X has the functorial description

of parameterizing line bundles L algebraically equivalent to OX (i.e., there is a
connected k-scheme T with points t0, t1 ∈ T (k) and a family of line bundles L on XT

such that Lt0 ∼= L and Lt1 ∼= OX). When X is a smooth curve, Pic0X parameterizes
degree 0 line bundles.

Remark 6.2.60. The theorem’s conclusion holds if X is an integral proper algebraic
space. The only missing ingredient is the algebraicity of the Picard stack, and this
can be shown using Artin’s Axioms similar to Theorem C.7.7.

In characteristic p, Igusa showed that PicX may fail to be reduced [Igu55]. We
also note that when X is not normal (e.g., a nodal or cuspidal curve), then Pic0X is
not projective. Altman and Kleiman [AK80] provide a compactification of Pic0X by
classifying rank 1 torsion free sheaves.

Picard functors and schemes have a fascinating history as they were one of the
first examples of moduli spaces constructed in algebraic geometry. See Kleiman’s
article [Kle05] for a beautiful account of the history and a broader discussion of the
properties of Picard schemes.

6.3 Affine Geometric Invariant Theory and good
moduli spaces

Good moduli spaces capture the stack-intrinsic properties of quotients that appear
in Geometric Invariant Theory (GIT). In the affine case, GIT concerns the action
of a linearly reductive group on an affine scheme. Recall that an affine algebraic
group G over a field k is linearly reductive if the functor Rep(G)→ Vectk, taking a
G-representation V to its G-invariants V G, is exact. Examples include:

• finite discrete groups G whose order is not divisible by char(k) (Maschke’s
Theorem (B.1.37));

• tori Gnm and diagonalizable group schemes (Proposition B.1.15); and
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• reductive algebraic groups (e.g., GLn, SLn and PGLn) in char(k) = 0 (Theo-
rem B.1.42).

See §B.1.4 for further equivalences, properties, and a discussion of linearly reductive
groups.

Given an action of G on an affine k-scheme SpecA, the inclusion AG ↪→ A
induces a commutative diagram

SpecA

��

π̃

&&

[SpecA/G]
π // SpecAG.

Let us observe the following two properties of π : [SpecA/G]→ SpecAG:
(1) Γ([SpecA/G],O[SpecA/G]) = AG; this follows from the definition of global

sections.
(2) The functor π∗ : QCoh([SpecA/G]) → QCoh(SpecAG) is exact. This holds

because functor π∗ takes a quasi-coherent OX -module M̃ , corresponding to an
A-module M with a G-action, to M̃G (Exercise 6.1.3) and is therefore exact
by the defining property of linear reductivity.

In this case, following the terminology of Mumford and Seshadri, we say that
SpecA → SpecAG is a good quotient or GIT quotient, and SpecAG is sometimes
denoted as (SpecA)//G. See §6.7 for a more general discussion of good quotients
and the projective case of GIT.

6.3.1 Good moduli spaces
The definition of a good moduli space is inspired by properties of GIT quo-
tients and specifically properties of the morphisms π : [SpecA/G]→ SpecAG and
π : [Xss/G] → Xss//G := Proj

⊕
d≥0 Γ(X,OX(d))G, where G is linearly reductive

and X ⊂ P(V ) is a G-invariant closed subscheme of a projectivized G-representation.

Definition 6.3.1 (Good moduli spaces). A quasi-compact and quasi-separated
morphism π : X → X from an algebraic stack X to an algebraic space X is a good
moduli space if

(1) OX → π∗OX is an isomorphism, and
(2) π∗ : QCoh(X )→ QCoh(X) is exact.

Example 6.3.2 (Basic example: affine GIT). If G is a linearly reductive group over
a field k acting on an affine k-scheme SpecA, then [SpecA/G]→ SpecAG is a good
moduli space.

Example 6.3.3 (Concrete examples). If Gm acts on An over a field k via t ·
(x1, . . . , xn) = (tx1, . . . , txn), then [An/Gm] → Speck is a good moduli space. Ob-
serve that a nonzero k-point [An/Gm] is not closed and contains 0 in its closures, or in
other words every Gm-orbit contains 0 in its closure. Note that [An/Gm] \ 0 = Pn−1.

If Gm acts on A2 via t · (x, y) = (tx, t−1y), then [A2/Gm] → Speck[xy] = A1

is a good moduli space. The fiber over a ̸= 0 ∈ A1 under the good quotient
A2 → A1 is the hyperbola xy = a in A2 and the fiber under the good moduli space
[A2/Gm] → A1 is the point Speck ∼= [V (xy − a)/Gm). The fiber over the origin is
the union of the three orbits {(x, 0)|x ̸= 0} ∪ {(0, y)|y ̸= 0} ∪ {0, 0} in A2. Note that
[A2/Gm] \ 0 = A1

⋃
A1\0 A1 is the non-separated affine line.
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Example 6.3.4 (Tame coarse moduli spaces). If X is a separated Deligne–Mumford
stack of finite type over a noetherian scheme S, then the Keel–Mori Theorem (4.3.12)
implies that there exists a coarse moduli space π : X → X. We say that the coarse
moduli space X → X is tame if every automorphism group has order prime to the
characteristic, i.e., invertible in Γ(S,OS). A tame coarse moduli space is a good
moduli space. Indeed, this will follow from the fact that the property of being a
good moduli space is local on the base in the étale topology (Lemma 6.3.21) and the
Local Structure of Coarse Moduli Spaces (4.3.16). If X has quasi-finite stabilizers,
then in fact every good moduli space π : X → X is a coarse moduli space and π is
separated; see Proposition 6.3.32.

The goal of this section is to establish the following theorem.

Theorem 6.3.5. Let π : X → X be a good moduli space where X is a quasi-separated
algebraic stack defined over an algebraic space S. Then

(1) π is surjective and universally closed;
(2) For closed substacks Z1,Z2 ⊂ X , im(Z1 ∩ Z2) = im(Z1) ∩ im(Z2). For

geometric points x1, x2 ∈ X (k), π(x1) = π(x2) ∈ X(k) if and only if {x1} ∩
{x2} ≠ ∅ in |X ×S k|. In particular, π induces a bijection between closed points
in X and closed points in X;

(3) If X is noetherian, so is X. If X is of finite type over S and S is noetherian,
then X is of finite type over S and π∗ preserves coherence, i.e., for F ∈ Coh(X ),
π∗F ∈ Coh(X); and

(4) If X is noetherian, then π is universal for maps to algebraic spaces.

Remark 6.3.6. In (2), the images and intersections are taken scheme-theoretically.
Note that since π is closed, the set-theoretic image of a closed substack Z is identified
with the topological space of its scheme-theoretic image im(Z). If I ⊂ OX is the
sheaf of ideals defining Z, the image im(Z) is defined by π∗I ⊂ π∗OX = OX .

In the case of affine GIT where we have a good moduli space π : [SpecA/G]→
SpecAG and a good quotient π̃ : SpecA→ SpecAG, this theorem translates to:

Corollary 6.3.7 (Affine GIT). Let G be a linearly reductive algebraic group over
an algebraically closed field k. Then π̃ : U = SpecA → U//G := SpecAG satisfies:
Then

(1) π̃ is surjective and for every G-invariant closed subscheme Z ⊂ U , im(Z) ⊂
U//G is closed. The same holds for the base change T → U//G by a morphism
from a scheme;

(2) For closed G-invariant closed subschemes Z1, Z2 ⊂ U , im(Z1∩Z2) = im(Z1)∩
im(Z2). In particular, for x1, x2 ∈ X(k), π̃(x1) = π̃(x2) if and only if
Gx1 ∩Gx2 ̸= ∅ and π̃ induces a bijection between closed G-orbits of k-points
in U and k-points of U//G.

(3) If A is noetherian, so is AG. If A is finitely generated over k, then AG is also
finitely generated over k and for every finitely generated A-module M with a
G-action, MG is a finitely generated AG-module; and

(4) If A is noetherian, then π̃ is universal for G-invariant maps to algebraic
spaces.

Remark 6.3.8. If Z ⊂ U = SpecA is defined by a G-invariant ideal I, then (1)
implies that π(Z) is defined by IG ⊂ AG. If Z1, Z2 are defined by G-invariant ideals
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I1, I2 ⊂ A, then (2) implies that (I1 + I2)
G = IG1 + IG2 . In particular, if Z1 and

Z2 are disjoint, then so are im(Z1) and im(Z2) and we can write 1 = f1 + f2 with
f1 ∈ IG1 and f2 ∈ IG2 ; the function f1 restricts to 0 on Z1 and 1 on Z2. We see that
G-invariant functions separate disjoint G-invariant closed subschemes.

Remark 6.3.9 (Hilbert’s 14th problem). Hilbert’s 14th problem asks when the
invariant ring AG is finitely generated. While it is not true for every group G,
Hilbert showed it is true when G is linearly reductive—this is what (3) above asserts.
Hilbert’s original argument in [Hil90] is so elegant and played such an important
role in the development of modern algebra that we reproduce it here. Our proof of
Theorem 6.3.5(3)—while similar in spirit—will not be as explicit.

Let f1, . . . , fn be k-algebra generators of A and let V ⊂ A be a finite dimensional
G-invariant subspace containing each fi (Proposition B.1.17(1)). Then we have a
surjection Sym∗ V = k[x1, . . . , xm]↠ A of k-algebras with G-actions and we set I =
ker(k[x1, . . . , xm]→ A). Since G is linearly reductive, AG = (k[x1, . . . , xm]/I)G =
k[x1, . . . , xm]G/IG and we can assume that A = k[x1, . . . , xm] is the polynomial
ring so that AG is a graded k-algebra whose degree 0 component is k. It therefore
suffices to show that the ideal J+ :=

∑
d>0A

G
d ⊂ AG is finitely generated since its

generators would then generate AG as a k-algebra.
Hilbert first showed that every ideal in A = k[x1, . . . , xn] is finitely generated—

this is what is referred to today as Hilbert’s Basis Theorem and was developed
by Hilbert precisely to make this argument. It follows that J+A ⊂ A is finitely
generated by homogenous invariants f1, . . . , fn ∈ AG. We will show that they also
generate J+ as an ideal in AG. For f ∈ AGd , we can write

f =

n∑
i=1

figi (6.3.10)

with gi ∈ A a homogeneous (not necessarily invariant) function of degree d− deg fi
(with gi = 0 if deg fi > d). Since G is linearly reductive, there is a k-linear map
R : A→ AG called the Reynolds operator (see Remark B.1.41), which is the identity
on AG, respects the grading, and satisfies R(xy) = xR(y) for x ∈ AG and y ∈ A.
Applying R to (6.3.10) shows that f = R(f) =

∑
i fiR(gi) with R(gi) ∈ AG and

thus f lies in the ideal in AG generated by the fi.1
Hilbert gave a constructive proof of this theorem in [Hil93], which required the

development of the Syzygy Theorem, the Nullstellensatz, a version of Noether nor-
malization, and a version of the Hilbert–Mumford criterion. We strongly encourage
you to read [Hil90] and [Hil93] (or Hilbert’s translated lecture notes [Hil93]).

Remark 6.3.11 (Reductivity in positive characteristic). In characteristic p, every
smooth linear reductive group is an extension of a torus by a finite étale group
scheme prime to the characteristic. In particular, GLn is not linearly reductive (see
Example B.1.43). In characteristic p, there are the following variant notions for an
affine algebraic group G over an algebraically closed field k:

(1) G is reductive if G is smooth and every smooth, connected, unipotent, and
normal subgroup of G is trivial, and

(2) G is geometrically reductive if for every surjection V →W of G-representations
and w ∈WG, there exists n > 0 such that wp

n

is in the image of Sympn V →
Sympn W .

1For an alternative argument that AG is noetherian, linear reductivity can be used to show
that JA ∩ AG = J for every ideal J ⊂ AG (see Lemma 6.3.24(5)). If J1 ⊂ J2 ⊂ · · · ⊂ AG is an
ascending chain of ideals, then the ascending chain J1A ⊂ J2A ⊂ · · · ⊂ A terminates, which implies
that the original sequence J1 = J1A ∩AG ⊂ J2 = J2A ∩AG ⊂ · · · ⊂ AG also terminates.
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It is a deep theorem due to Haboush [Hab75] that these notions are equivalent when
G is smooth. See also §B.1.4 for further properties, equivalences, and discussion.

Geometric reductivity (sometimes called semi-reductivity) was introduced by
Mumford in [GIT, preface] in an effort to extend GIT—originally developed for
linearly reductive groups—to reductive groups in positive characteristic. Indeed, it is
precisely the geometric reductivity property that yield the same geometric properties
that we saw for affine GIT quotients by linearly reductive groups: if G is geometrically
reductive acting on an affine k-scheme SpecA, then π̃ : SpecA→ SpecAG satisfies
Corollary 6.3.7(1)–(4) (with the exception that the noetherianness of A does not
necessarily imply the noetherianness of AG). The arguments are not substantially
more complicated than the linearly reductive case. See [Nag64], [MFK94, App. 1.C],
[New78, §3], [Dol03, §3.4], [Spr77, §2] and [DC71, §2].

Likewise, the notion of a good moduli space can be extended to characterize
quotients by geometrically reductive groups: in [Alp14], a quasi-compact and quasi-
separated morphism π : X → X, from an algebraic stack to an algebraic space,
is called an adequate moduli space if (1) OX → π∗OX is an isomorphism and (2)
for every surjection A → B of quasi-coherent OX -algebras, then every section s
of π∗(B) over a smooth morphism SpecA → Y has a positive power that lifts
to a section of π∗(A)). An adequate moduli space satisfies Theorem 6.3.5(1)–(4)
(except again for the noetherian implication). If G is geometrically reductive, then
π : [SpecA/G] → SpecAG is an adequate moduli space. In characteristic 0, an
adequate moduli space is necessarily good.

In this book, we restrict to linearly reductive groups and good moduli spaces
since the proofs of the basic properties are more elementary in this case and probably
best seen first. In addition, there is currently no analogue of the Local Structure
Theorem for Algebraic Stacks (6.5.1) around points with reductive stabilizers.

6.3.2 Cohomologically affine morphisms
The exactness condition on the pushforward π∗ in the definition of a good moduli
space (Definition 6.3.1(2)) is a non-representable analogue of affineness.

Definition 6.3.12 (Cohomologically affine). A quasi-compact and quasi-separated
morphism f : X → Y of algebraic stacks is cohomologically affine if

f∗ : QCoh(X )→ QCoh(Y)

is exact. A quasi-compact and quasi-separated algebraic stack X is cohomologically
affine if X → SpecZ is.

Example 6.3.13. An affine algebraic group G over a field k is linearly reductive
(Definition B.1.33) if and only if BG is cohomologically affine.

Remark 6.3.14. By Serre’s Criterion for Affineness (4.4.16), an algebraic space
is cohomologically affine if and only if it is an affine scheme. An algebraic stack X
with affine diagonal is cohomologically affine if and only if Hi(X , F ) = 0 for all i > 0
and every quasi-coherent sheaf F ; this follows because the cohomology Hi(X , F ) can
be computed in QCoh(X ) for such stacks X by Proposition 6.1.29(2). This is not
true for algebraic stacks with non-affine diagonal, e.g., BE for an elliptic curve E.

Likewise, a morphism f : X → Y of algebraic stacks, with both X and Y having
affine diagonal, is cohomologically affine if and only if Rif∗(F ) = 0 for all i > 0
and every quasi-coherent sheaf F . If in addition f is representable, then f is
cohomologically affine if and only if it is affine (see Corollary 6.3.17 below).
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Remark 6.3.15 (Noetherian case). If X is noetherian, then a quasi-compact, quasi-
separated morphism f : X → Y is cohomologically affine if and only if f∗ : Coh(X )→
QCoh(Y) is exact. This holds because every quasi-coherent sheaf is a colimit
of coherent sheaves (Proposition 6.1.8) and f∗ commutes with colimits. Since
cohomology also commutes with colimits (Proposition 6.1.31), a morphism f : X → Y
of noetherian algebraic stacks, both with affine diagonal, is cohomologically affine if
and only if Rif∗(F ) = 0 for all i > 0 and every coherent sheaf F .

Lemma 6.3.16. Consider a cartesian diagram

X ′ g′
//

π′

��

X

π

��

Y ′ g
// Y.

of algebraic stacks.
(1) If g is faithfully flat and π′ is cohomologically affine, then π is cohomologically

affine.
(2) If Y has quasi-affine diagonal (e.g., a quasi-separated algebraic space) and π

is cohomologically affine, then π′ is cohomologically affine.

Proof. For (1), by Flat Base Change (6.1.7) there is an equivalence g∗π∗ ≃ π′
∗g

′∗ of
functors defined on categories of quasi-coherent sheaves. Since π′

∗ and g′∗ are exact
and g∗ is faithfully exact, π∗ is exact.

For (2), we first show that if g is quasi-affine and π is cohomologically affine, then
π′ is also cohomologically affine. It suffices to handle the cases that g is an open
immersion and g is affine. If g is an open immersion and F ′ ↠ G′ is a surjection
in QCoh(X ′), we define G = im(g′∗F

′ → g′∗G
′). Note that g′∗G ∼= G′. Since π∗

is exact, π∗g′∗F ↠ π∗G. If we apply g∗ and use the identifies g∗π∗ ≃ π′
∗g

′∗ and
g′∗g′∗ ≃ id, we obtain a surjection π′

∗F
′ ↠ π′

∗g
′∗G ∼= π′

∗G
′. On the other hand, if

g is affine then g∗ is faithfully exact. Since π∗ and g′∗ are are exact, the identity
g∗π

′
∗ ≃ π∗g′∗ implies that π′

∗ is also exact. To show (2), we may assume that Y and
Y ′ are quasi-compact and we can choose a smooth presentation Y = SpecA→ Y,
which will be quasi-affine (since Y has quasi-affine diagonal). Then the base change
XY → Y of π along Y → Y is cohomologically affine. To check that the base change
X ′
Y → Y ′

Y is cohomologically affine, it suffices by (1) to check this after base changing
by a smooth presentation Y ′ = SpecA′ → Y ′ ×Y Y but this holds as Y ′ → Y is
affine. Since X ′

Y → Y ′
Y is cohomologically affine so is π′ : X ′ → Y ′ by invoking (1)

again.

Corollary 6.3.17. Let f : X → Y be a representable and cohomologically affine
morphism of algebraic stacks where Y has quasi-affine diagonal, then f is affine.

Proof. Under the hypotheses, both affine and cohomologically affine morphisms
descend under faithfully flat morphisms, and we can reduce to the case where X is
an algebraic space and Y is an affine scheme which is Serre’s Criterion for Affineness
(4.4.16).

6.3.3 Properties of linearly reductive groups
Recall that an affine algebraic group G over a field k is linearly reductive if the
functor Rep(G)→ Vectk, defined by V 7→ V G, is exact (Definition B.1.33). This is
equivalent to the map BG→ Speck being cohomologically affine.
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Proposition 6.3.18. Let 1 → K → G → Q → 1 be an exact sequence of affine
algebraic groups over a field k. Then G is linearly reductive if and only if both K
and Q are.

Proof. We will use the cartesian diagram

Q //

��

BK

��

// Speck

��

Speck // BG //

□

BQ

□

of Exercise 2.4.38(c). To see (⇒), note that BK → BG is affine by descent since
Q is affine. Therefore the composition BK → BG → Speck is cohomologically
affine and K is linearly reductive. If V is a Q-representation, then its pullback
under q : BG → BQ is the G-representation induced by the projection G → Q
and in particular K acts trivially. On the other hand, the pushforward of a G-
representation W under q : BG → BQ is the Q-representation WK . Thus, the
adjunction V → q∗q

∗V is an isomorphism and Γ(BQ,−) = Γ(BG, q∗−) is exact.
For the converse, descent (Lemma 6.3.16(2)) implies that BG→ BQ is cohomo-

logically affine and thus so is the composition BG→ BQ→ Speck.

Proposition 6.3.19. Let H be a linearly reductive algebraic group over an alge-
braically closed field k. If H acts freely on an affine scheme U over k, then the
algebraic space quotient U/H is affine.

Proof. The algebraic space U/H and the good quotient SpecAH are both universal
for maps to algebraic spaces Theorem 6.3.5(4). Alternatively, the composition
U/H → BH → Speck is an affine morphism followed by a cohomologically affine
morphism. It follows from Serre’s Criterion for Affineness (4.4.16) that U/H is
affine.

In particular, if H is a linearly reductive subgroup of an affine algebraic group
G, then the quotient G/H is affine. Matsushima’s Theorem provides a converse.

Proposition 6.3.20 (Matsushima’s Theorem). Let G be a linearly reductive group
over an algebraically closed field k.

(1) A subgroup H of G is linearly reductive if and only if G/H is affine.
(2) Given an action of G on an algebraic space U of finite type over k and a

k-point u ∈ U with stabilizer Gu, then Gu is linearly reductive if and only if
the orbit Gu is affine.

Proof. Part (2) follows from (1) since Gu = G/Gu. For (1), the (⇒) implication
follows from Proposition 6.3.19. For the converse, consider the cartesian diagram

G/H //

��

Speck

��

BH // BG.

□

If G/H is affine, then by smooth descent BH → BG is affine and therefore BH →
BG→ Spec k is cohomologically affine, i.e., H is linearly reductive.
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6.3.4 First properties of good moduli spaces
Lemma 6.3.21. Consider a cartesian diagram

X ′ g′
//

π′

��

X

π

��

X ′ g
// X

□

of algebraic stacks where X and X ′ are quasi-separated algebraic spaces.
(1) If g is faithfully flat and π′ is a good moduli space, then π is a good moduli

space.
For the remaining statements, assume in addition that π is a good moduli space.

(2) The morphism π′ is a good moduli space.
(3) For F ∈ QCoh(X ) and G ∈ QCoh(X), the adjunction map π∗F ⊗ G →

π∗(F⊗π∗G) is an isomorphism. In particular, the adjunction map G ∼→ π∗π
∗G

is an isomorphism.
(4) For F ∈ QCoh(X ), then the adjunction map g∗π∗F

∼→ π′
∗g

′∗F is an isomor-
phism.

(5) For a quasi-coherent sheaf of ideals J ⊂ OX , the natural map J → π∗(π
−1J ·

OX ) is an isomorphism.

Proof. If g : X ′ → X is flat, then the pullback of the natural map OX → π∗OX
under g is the map OX′ → π′

∗OX ′ . Thus (1) and the case of (2) when g is flat
follows from Lemma 6.3.16 and descent. Note that since X ′ is quasi-separated, it
has quasi-affine diagonal (Corollary 4.4.8).

Before proving the general case of (2), we first prove (3). Choose an étale
presentation U → X with U the disjoint union of affine schemes. Since the base
change πU : XU → U is a good moduli space (by the flat case of (2)) and the
adjunction map id→ π∗π

∗ pulls back to the adjunction map id→ πU,∗π
∗
U , we may

assume that X = SpecA is affine. If G2 → G1 → G→ 0 is a free presentation, then
the projection maps π∗F ⊗Gi → π∗(F ⊗ π∗Gi) are isomorphisms. Since π∗F ⊗−
and π∗(F ⊗ π∗−) are right exact, we have a commutative diagram

π∗F ⊗G2
//

��

π∗F ⊗G1
//

��

π∗F ⊗G //

��

0

π∗(F ⊗ π∗G2) // π∗(F ⊗ π∗G1) // π∗(F ⊗ π∗G) // 0

Since the left two vertical maps are isomorphisms, so is the right one.
For (2), we must show that OX′ → π′

∗OX ′ is an isomorphism as Lemma 6.3.16(2)
already established that π′

∗ is exact. We can assume that X and X ′ are affine. In
this case, g∗ is faithfully exact so it suffices to show that

g∗OX′ → g∗π
′
∗OX ′ ∼= π∗g

′
∗OX ′ ∼= π∗π

∗g∗OX′ (6.3.22)

is an isomorphism, where the last equivalence uses the identity g′∗π′∗OX′ ∼= π∗g∗OX′

following from the affineness of g. Thus the composition (6.3.22) is the adjunction
isomorphism of (3) applied to F = g∗OX′ .

For (4), we know by Flat Base Change (6.1.7) that (4) is fppf local on X and
X ′ and that it holds when g is flat. We may therefore reduce to when X ′ → X
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is a morphism of affine schemes. By factoring X ′ → X as a closed immersion
followed by a flat morphism, we can further reduce to the case that X ′ ↪→ X is a
closed immersion defined by a quasi-coherent sheaf of ideals J ⊂ OX . We aim to
show that π∗F/Jπ∗F ∼= π∗(F/(π

−1J · OX )F ). Using the exactness of π∗, this is
equivalent to the inclusion Jπ∗F ↪→ π∗((π

−1J · OX )F ) being surjective. The sheaf
(π−1J ·OX )F is the image of π∗J⊗F → F . By the exactness of π∗, the pushforward
π∗((π

−1J · OX )F ) is the image of π∗(π∗J ⊗ F )→ π∗F , but by (3) this is identified
with the image of J ⊗ π∗F → π∗F .

For (5), if Z ⊂ X is the closed subspace defined by J , then the preimage ideal
sheaf π−1J · OX defines the preimage π−1(Z). The exactness of π∗ implies that
there is a commutative diagram of short exact sequences

0 // J //

��

OX //

��

OZ //

��

0

0 // π∗(π
−1J · OX ) // π∗OX // π∗Oπ−1(Z)

// 0.

As X → X and π−1(Z)→ Z are good moduli spaces, the right two vertical arrows
are isomorphisms and so is the left arrow.

Remark 6.3.23. The isomorphism π∗F ⊗ G → π∗(F ⊗ π∗G) in (3) is similar to
the projection formula but holds even if G is not locally free. It holds as long as π
is cohomologically affine.

Lemma 6.3.24. Let π : X → X be a good moduli space with X quasi-separated.
(1) If A is a quasi-coherent sheaf of OX -algebras, then SpecX A → SpecX π∗A is

a good moduli space.
(2) If Z ⊂ X is a closed substack defined by a sheaf of ideals I and imZ ⊂ X

is the scheme-theoretic image, i.e., the closed subspace defined by π∗I ⊂ OX ,
then Z → imZ is a good moduli space.

Proof. For (1), since X ×X SpecX π∗A → SpecX π∗A is cohomologically affine by
Lemma 6.3.16 and SpecX A → X ×X SpecX π∗A is affine, it follows that SpecX A →
SpecX π∗A is cohomologically affine and therefore a good moduli space as the
push forward of OSpecX A is OSpecX π∗A by construction. Applying (1) to Z =
SpecX (OX /I) recovers (2) using that π∗(OX /I) = OX/π∗I.

The above lemmas allow us to give quick proofs of the first two parts of Theo-
rem 6.3.5.

Proof of Theorem 6.3.5(1). As X is quasi-separated, so is X. For every field-valued
point x ∈ X(k), consider the base change X ×X Speck. By Lemma 6.3.21(2),
Xx → Speck is a good moduli space and in particular Γ(Xx,OXx

) = k. It follows
that Xx is non-empty and that π : X → X is surjective. For a closed substack Z ⊂ X ,
Lemma 6.3.24(2) implies that Z → imZ is a good moduli space and therefore also
surjective. Thus, the set-theoretic image π(Z) is identified with the scheme-theoretic
image imZ and is therefore closed. Since good moduli spaces are stable under base
change, they are universally closed.

Proof of Theorem 6.3.5(2). For two substacks Z1,Z2 ⊂ X defined by ideal sheaves
I1, I2 ⊂ OX , we apply the exact functor π∗ to the short exact sequence 0→ I1 →
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I1 + I2 → I2/I1 ∩ I2 → 0 and surjection I2 → I2/I1 ∩ I2 to obtain a commutative
diagram

π∗I2

(( ((��

0 // π∗I1 // π∗(I1 + I2) // // π∗I2/π∗(I1 ∩ I2) // 0.

It follows that the natural inclusion π∗I1 + π∗I2 → π∗(I1 + I2) is surjective.

6.3.5 Finite typeness of good moduli spaces

To show that a good moduli space X → X preserves finite typeness, i.e., if X is of
finite type over a base, then so is X (Theorem 6.3.5(3)), we will use that X → X is
universally submersive, and exploit the following result asserting that finite typeness
descends under universally submersive maps. Recall from §A.4.2 that a morphism
f : X → Y of schemes is universally submersive if f is surjective and Y has the
quotient topology, and these properties are stable under base change. This notion
extends to morphisms of algebraic stacks. Fppf morphisms and universally closed
morphisms of noetherian schemes are universally submersive.

Proposition 6.3.25 (Universally Submersive Descent for Finite Typeness). Let
X ′ → X be a universally submersive morphism of noetherian schemes. If X → Y is
a morphism of noetherian schemes and X ′ → X → Y is of finite type, then so is
X → Y .

Proof. We can assume that Y = SpecA and X = SpecB are affine. Since a
noetherian ring B is of finite type over A if and only if the reductions of the
irreducible components of SpecB are of finite type over A, we can assume that B is
an integral domain. By Generic Flatness (A.2.13) and Raynaud-Gruson Flatification
(A.2.18), there is a commutative diagram

Z ′ //

��

X ′

f

��   

Z
g
// X // Y

where Z = BlI X → X is the blowup along an ideal I ⊂ B, Z ′ is the strict transform
of X ′, i.e., the closure of (Z \ g−1(V (I)))×X X ′ in the base change Z ×X X ′, and
Z ′ → Z is flat. We claim that Z ′ → Z is surjective. As g : Z → X is an isomorphism
over U = X \ V (I) and f : X ′ → X is surjective, we know that g−1(U) ⊂ Z is
contained in the image. If z ∈ Z is a point, we can choose a map SpecR→ Z from
a DVR whose generic point maps to g−1(U) and whose special point maps to z.
Since X ′ → X is universally submersive, there exists an extension of DVRs R→ R′

and a lift SpecR′ → X ′ (see Exercise A.4.9). The induced map SpecR′ → Z ×X X ′

factors through Z ′, and we see that z is thus in the image of Z ′.
Since X ′ is of finite type over Y , so is Z ′. By faithfully flat descent (Propo-

sition 2.1.20(1)), Z → Y is also of finite type. To show that X → Y is of finite
type, we may choose generators f1, . . . , fn ∈ I so that Z =

⋃
i SpecBi where

Bi = B⟨fj/fi⟩ ⊂ K = Frac(B) is the subalgebra generated by B and the elements
fj/fi for j ̸= i. Write B =

⋃
λBλ as a union of its finitely generated A-subalgebras.

For λ≫ 0, each fi ∈ Bλ and we set Iλ = (f1, . . . , fn) ⊂ Bλ. Since Z is finite type
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over B, each Bi is finitely generated over B, and thus for λ≫ 0, we see that in the
diagram

Bλ,i� _

��

Bλ⟨fj/fi⟩ �
�

// Frac(Bλ)� _

��

Bi B⟨fj/fi⟩ �
�

// Frac(B)

the inclusion Bλ,i ↪→ Bi is surjective. It follows that Z = BlI SpecB = BlIλ SpecBλ
for λ≫ 0. Considering the composition

gλ : Z
g−→ X = SpecB

pλ−→ SpecBλ,

the pushforward of the injection OX ↪→ g∗OZ along pλ yields an inclusion pλ,∗OX ↪→
gλ,∗OZ . But gλ,∗OZ is coherent, hence so is pλ,∗OX . This shows that B is a finite
Bλ-module and thus finitely generated as an A-algebra.

Proof of Theorem 6.3.5(3). If X is noetherian, if I1 ⊂ I2 ⊂ · · · is an ascending chain
of ideal sheaves of OX , then π−1I1 · OX ⊂ π−1I2 · OX ⊂ is an ascending chain of
ideal sheaves of OX which terminates. By Lemma 6.3.24(5), In = π∗(π

−1In · OX )
and therefore the chain I1 ⊂ I2 ⊂ · · · terminates and X is noetherian.

Assume now that S is noetherian and X is of finite type over S. As X → X is
universally closed (Theorem 6.3.5(1)), it is also universally submersive. Choose a
smooth presentation U → X from a scheme. Since U → X is universally submersive,
so is the composition U → X → X. Since U → S is of finite type and X is
noetherian, Proposition 6.3.25 implies that X → S is also of finite type.

Given a coherent sheaf F on X , to show that the pushforward π∗F is coherent,
we may assume that X = SpecA is affine and that X is irreducible. We first handle
the case when X is reduced. By noetherian induction, we can assume that π∗F is
coherent if Supp(F ) ⊊ X . The maximal torsion subsheaf Ftors ⊂ F has support
strictly contained in X . Using the exact sequence 0 → Ftors → F → F/Ftors → 0
and the exactness of π∗, we see the coherence of π∗(F/Ftors) implies the coherence
of π∗F . In other words, we can assume that F is torsion free. In this case, every
section s : OX → F is injective. We now argue by induction on the dimension of
the vector space ξ∗F where ξ : SpecK → X is a field-valued point whose image is
the generic point. If F has no sections, then π∗F = 0 is coherent. Otherwise, a
section induces a short exact sequence 0→ OX → F → F/OX → 0 and ξ∗(F/OX )
has strictly smaller dimension. By again appealing to the exactness of π∗, we
see that the coherence of π∗(F/OX ) implies the coherence of π∗F . Finally, to
reduce to the reduced case, let I ⊂ OX be the ideal sheaf defining Xred ↪→ X .
Then for some N > 0, we have that IN = 0. By examining the exact sequences
0→ π∗(I

k+1F )→ π∗(I
kF )→ π∗(I

kF/Ik+1F )→ 0 and using that π∗(IkF/Ik+1F )
is coherent (since IkF/Ik+1F is supported on Xred)), we conclude by induction that
π∗F is coherent.

6.3.6 Universality of good moduli spaces

We now complete the proof of Theorem 6.3.5 by showing that π : X → X is universal
for maps to algebraic spaces. Our argument follows the same logic for coarse moduli
spaces in Theorem 4.3.6.
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Proof of Theorem 6.3.5(4). We need to show that every diagram

X

π

��

f

  

X // Y

(6.3.26)

has a unique filling, or in other words that the natural map Mor(X,Y )→ Mor(X , Y )
is bijective.

The uniqueness follows as in the proof of Theorem 4.3.6 and uses only that π : X →
X is universally closed, schematically dominant and surjective: if h1, h2 : X → Y
are two fillings of (6.3.26), then π : X → X factors through the equalizer E → X of
h1 and h2. Since E → X is universally closed, locally of finite type, surjective, and
a monomorphism, it is an isomorphism.

For existence, the case when Y is affine is easy:

Mor(X,Y ) = Hom(Γ(Y,OY ),Γ(X,OX)) =

Hom(Γ(Y,OY ),Γ(X ,OX )) = Mor(X , Y ).

(Although unnecessary for the argument below, the case when Y is a scheme is
also straightforward: if {Yi} is an affine cover of Y and we set Xi := f−1(Yi) ⊂ X
with complement Zi, then X \ π−1(π(Zi))→ X \ π(Zi) is a good moduli space and
X\π−1(π(Zi)) ⊂ Xi. By the affine case, we have unique factorizationsX\π(Zi)→ Yi
and since

⋂
i π(Zi) = ∅, these maps glue to the desired map X → Y ; see also [GIT,

§0.6].)
For the general case, since X is quasi-compact, the map X → Y factors through a

quasi-compact subspace, so we can further assume that Y is quasi-compact. We can
also use étale descent and limit methods to reduce to the case that X = SpecA where
A is a strictly henselian local ring. This reduction works just as in the case of coarse
moduli spaces (Theorem 4.3.6). Since A is local, there is a unique closed point x ∈ X ;
let Gx ↪→ X be the closed immersion of the residual gerbe (Proposition 3.5.17).

Let (Y ′ = SpecB, y′) → (Y, f(x)) be an étale presentation. The base change
X ′ := X ×Y Y ′ → X is an étale, separated, surjective and representable morphism.
Let x′ ∈ X ′ be a preimage of x ∈ X and U ′ ⊂ X ′ be a quasi-compact open substack
containing x′.

U ′ � � // X ′ //

��

X

π

��

f

��

X

Y ′ // Y

Then U ′ → X is a quasi-finite, separated, and representable morphism, and Zariski’s
Main Theorem (6.1.10) implies that there is a factorization U ′ → X̃ → X with U ′ ↪→
X̃ an open immersion and X̃ → X a finite morphism. Writing X̃ = SpecX A for a
coherent sheaf of algebras A, Lemma 6.3.24(1) implies that π̃ : X̃ → X̃ := SpecX π∗A
is a good moduli space and we know from Theorem 6.3.5(3) that π∗A is coherent.
As X̃ → X = SpecA is finite with A henselian, we can write X̃ =

∐
i SpecAi with

each Ai a henselian local ring (Proposition B.5.9). Replace X̃ with the copy of
X̃i := π̃−1(SpecAi) containing x′ and replace U ′ with X̃i ∩U ′. Then X̃ has a unique
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closed point which is the point x′ ∈ U ′ and thus the complement X̃ \ U ′ is empty,
i.e., U ′ = X̃ . We conclude that U ′ → X is a finite étale morphism, and since it
induces an isomorphism of residual gerbes at x′, the map has degree one; it follows
that U ′ → X is an isomorphism. Since Y ′ is an affine, the morphism X ∼= U ′ → Y ′

factors through a map X → Y ′, and thus f : X → Y factors through the composition
X → Y ′ → Y .

6.3.7 Luna’s Fundamental Lemma
We will apply the following result in our construction of good moduli spaces (Theo-
rem 6.8.1), in the refinements of the Local Structure Theorem for Algebraic Stacks
(6.5.1), and in the proof of Luna’s Étale Slice Theorem (6.5.4), but it appears in
many other arguments as well.

Theorem 6.3.27 (Luna’s Fundamental Lemma). Consider a commutative diagram

X ′

π′

��

f
// X

π

��

X ′ g
// X

(6.3.28)

where f : X ′ → X is a separated and representable morphism of noetherian algebraic
stacks, each with affine diagonal, and where π and π′ are good moduli spaces. Let
x′ ∈ X ′ be a point such that
(a) f is étale at x′,
(b) f induces an isomorphism of stabilizer groups at x′, and
(c) x′ ∈ X ′ and x = f(x′) ∈ X are closed points.

Then there is an open neighborhood U ′ ⊂ X ′ of π′(x′) such that U ′ → X is étale
and such that U ′ ×X X ∼= π′−1(U ′).

Remark 6.3.29. This result is really saying two things: (1) g is étale at π′(x′)
and (2) after replacing X ′ with an open neighborhood of π′(x′) the diagram (6.3.28)
is cartesian. In the case of quotients by finite groups, this was established in
Proposition 4.3.7. Luna’s original formulation [Lun73, p. 94] was the case when
X ′ ∼= [SpecA′/G] and X ∼= [SpecA/G] with G linearly reductive and where X ′ → X
is induced by a G-equivariant map SpecA′ → SpecA.

Proof. We will adapt the argument of Theorem 6.3.5(4). Since the question is étale
local on X, limit methods (see the proof of Proposition 4.3.7) allow us to assume
that X = SpecA with A a strictly henselian local ring. If U ′ ⊂ X ′ is the étale locus
of f , then X ′ \ π′−1(π′(X ′ \ U ′)) contains x′ since π′(x′) and π′(X ′ \ U ′) are disjoint
by Theorem 6.3.5(2). We can therefore replace X ′ with X ′ \ π′−1(π′(X ′ \ U ′)) and
assume that f is étale.

By Zariski’s Main Theorem (6.1.10), we may choose a factorization X ′ → X̃ =

SpecX A → X with X ′ ↪→ X̃ an open immersion and X̃ → X a finite morphism.
Then X̃ → X̃ := SpecX π∗A is a good moduli space and X̃ → X is finite. As
A is henselian, we can write X̃ =

∐
i SpecAi with each Ai a henselian local ring.

If U ′ = SpecAi denotes the connected component containing the image of x′,
then π̃−1(U ′) ⊂ X̃ is an open substack containing a unique closed point, which is
necessarily x′; it follows that X ′ = π−1(U ′). Since X ′ → X is a finite étale morphism
of degree one (as it preserves residual gerbes at x′), we see that f : X ′ → X is an
isomorphism and thus so is g : X ′ → X.
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Corollary 6.3.30. With the same hypotheses as Theorem 6.3.27, suppose that f is
étale and that for all closed points x′ ∈ X ′

(a) f(x′) ∈ X is closed, and
(b) f induces an isomorphism of stabilizer groups at x′.

Then g : X ′ → X is étale and (6.3.28) is cartesian.

6.3.8 Finite covers of good moduli spaces

Proposition 6.3.31. Consider a commutative diagram

X ′

π′

��

f
// X

π

��

X ′ g
// X

where X and X ′ are noetherian algebraic stacks with affine diagonal, and π and π′

are good moduli spaces. Assume that

(a) f : X ′ → X is quasi-finite, separated and representable,
(b) f maps closed points to closed points, and
(c) g is finite.

Then f is finite.

Proof. By Zariski’s Main Theorem (6.1.10), there is a factorization X ′ → X̃ =

SpecX A → X with X ′ ↪→ X̃ an open immersion and X̃ → X a finite morphism.
Then X̃ = SpecX π∗A is a finite over X and X̃ → X̃ is a good moduli space. By
replacing X → X with X̃ → X̃, we can assume that f is an open immersion. By
replacing X with the fiber product X ′ ×X X , we can further reduce to the case that
X ′ = X. For every closed point x ∈ X, let x′ ∈ X ′ be the unique closed point over
x. By (b), f(x′) ∈ X is the unique closed point over x. Since X ′ contains all the
closed points of X , f : X ′ → cX is an isomorphism.

Proposition 6.3.32. Suppose X is a noetherian algebraic stack with affine diagonal
and a good moduli space π : X → X. If the diagonal X → X ×X is quasi-finite, then
it is finite (i.e., π : X → X is separated).

Proof. We claim that X ×X X → X is a good moduli space. By Lemma 6.3.16,
the projection p1 : X ×X X → X is cohomologically affine and therefore so is the
composition X ×X X

p1−→ X π−→ X. On the other hand, if U → X is a smooth
presentation, then p1 : U ×X X → U is a good moduli space (Lemma 6.3.21) and in
particular OU

∼→ p1,∗OU×XX . It follows from descent that OX
∼→ p1,∗OX×XX and

thus OX
∼→ (π ◦ p1)∗OX×XX ; the claim follows.

The diagonal X → X ×X X is a quasi-finite, separated, and representable
morphism that sends closed points to closed points and induces an isomorphism on
good moduli spaces. Proposition 6.3.31 implies that X → X ×X X is finite. Note
that since X has affine diagonal, the finiteness of the diagonal is equivalent to its
properness.
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6.3.9 Descending vector bundles
Proposition 6.3.33. Let X be a noetherian algebraic stack and π : X → X be a
good moduli space. A vector bundle F on X descends to a vector bundle on X if
and only if for every field-valued point x : Speck→ X with closed image, the action
of Gx on the fiber F ⊗ k is trivial. In this case, π∗F is a vector bundle and the
adjunction map π∗π∗F → F is an isomorphism.

Proof. We follow the argument in the case of a tame coarse moduli space (Proposi-
tion 4.3.28). The condition is clearly necessary. To see that the condition is sufficient,
consider the commutative diagram

Gx �
�

//

p

��

X

π

��

Specκ(x)
� � // X.

We first claim that π∗π∗F → F is surjective. For every closed point x ∈ X ,
the hypotheses imply that p∗p∗(F |Gx

) ∼= F |Gx
. Applying π∗π∗(−)|Gx

to the sur-
jection F → F |Gx

and using the exactness of π∗, we obtain that (π∗π∗F )|Gx
→

π∗(π∗(F |Gx
))|Gx

∼= p∗p∗(F |Gx
) ∼= F |Gx

is surjective. The claim now follows from
Lemma 6.3.34.

To show that π∗F is a vector bundle, we may assume that X = SpecA is
affine and that the rank r of F is constant. The surjection

⊕
s∈Γ(X,π∗F )A→ π∗F

pulls back to a surjection
⊕

s∈Γ(X ,F )OX → π∗π∗F and by the above claim, the
composition

⊕
s∈Γ(X ,F )OX → π∗π∗F → F is surjective. As F |Gx

∼= OrGx
is trivial,

for each closed point x ∈ |X |, we can find r sections ϕ : OrX → F such that ϕ|Gx
is an

isomorphism. By Lemma 6.3.34, there exists an open neighborhood U ⊂ X of π(x)
such that ϕ|π−1(U) is an isomorphism. Thus π∗ϕ : OrX → π∗F is an isomorphism over
U and we conclude that π∗F is a vector bundle of the same rank as F . Finally, since
π∗π∗F → F is a surjection of vector bundles of the same rank, it is an isomorphism.

The case of a good quotient is due to Kempf. See also [KKV89, Prop. 4.2],
[Alp13, Thm. 10.3] and [Ryd20, Thm. B].

Lemma 6.3.34. Let X be a noetherian algebraic stack and π : X → X be a good
moduli space. Let x ∈ |X | be a closed point.

(1) If F is a coherent sheaf on X such that F |Gx = 0, then there exists an open
neighborhood U ⊂ X of π(x) such that F |π−1(U) = 0.

(2) If ϕ : F → G is a morphism of coherent sheaves (resp., vector bundles of
the same rank) on X such that ϕ|Gx

is surjective, then there exists an open
neighborhood U ⊂ X of π(x) such that ϕ|π−1(U) is surjective (resp., an isomor-
phism).

Proof. The argument of Lemma 4.3.27 applies.

6.4 Coherent Tannaka duality and coherent com-
pleteness

We prove a version of Tannaka duality for noetherian algebraic stacks with affine
diagonal (Theorem 6.4.1). We also introduce the notion of an algebraic stack X
being coherently complete along a closed substack X0 (Definition 6.4.5) and show
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that certain quotient stacks with a unique closed point are coherently complete
(Theorem 6.4.12). This includes the important examples of [A1/Gm]R and ϕR defined
in §6.8.2 where R is a complete DVR.

The combined power of Tannaka duality and coherent completeness allows us
to extend compatible maps Xn → Y from the nth nilpotent thickenings of X0 to a
morphism X → Y (Corollary 6.4.9). This technique is used in an essential way in the
proof of the Local Structure Theorem for Algebraic Stacks (6.5.1) and also appears
in many other arguments—it becomes a powerful new addition in our algebraic stack
toolkit.

6.4.1 Coherent Tannaka Duality
A classical theorem of Gabriel [Gab62] states that two noetherian schemes X and
Y are isomorphic if and only if their abstract categories Coh(X) and Coh(Y ) of
coherent sheaves are equivalent, or in other words that a scheme X can be recovered
from the category Coh(X). In representation theory, classical Tannaka duality by
Saavedra Rivano [SR72] (see also Deligne and Milne’s article [DMOS82, Ch. II])
asserts that an affine group scheme G over a field k can be recovered from the tensor
category Repfd(G) of finite dimensional representations and its forgetful functor
Repfd(G)→ Vectk.

Combining these two facts, one might hope that an algebraic stack X is recovered
by the tensor category Coh(X ).2 Following a brilliant observation of Lurie [Lur04],
we will not only confirm this expectation, but we will show that in fact a tensor
functor Coh(Y) → Coh(X ) is enough to recover a morphism X → Y of algebraic
stacks.

Theorem 6.4.1 (Coherent Tannaka Duality). For noetherian algebraic stacks X
and Y with affine diagonal, the functor

Mor(X ,Y)→ Mor⊗(Coh(Y),Coh(X )), f 7→ f∗ (6.4.2)

is an equivalence of categories, where Mor⊗(Coh(Y),Coh(X )) denotes the category
of right exact additive tensor functors Coh(Y) → Coh(X ) of symmetric monoidal
abelian categories where morphisms are tensor natural transformations.

Remark 6.4.3. A symmetric monoidal category is a category A endowed with a
bifunctor ⊗ : A×A → A and a unit 1 ∈ A together with associativity isomorphisms
αA,B,C : A⊗ (B⊗C)

∼→ (A⊗B)⊗C, left and right unit isomorphisms lA : 1⊗A ∼→
A

∼→ A and rA : A⊗1
∼→ A, and commutativity isomorphisms sA,B : A⊗B ∼= B⊗A

(with sA,B ◦ sB,A = id) satisfying certain coherence conditions [Mac71, §XI.1]. A
tensor functor F : A → B between symmetric monoidal abelian categories is a functor
equipped with isomorphisms ΦA,B : F (A)⊗F (B)

∼→ F (A⊗B) and φ : 1B
∼→ F (1A)

compatible with the isomorphisms αA,B,C , lA, rA and sA,B [Mac71, §XI.2]. A
tensor natural transformation between tensor functors is a natural transformation of
functors compatible with the isomorphisms ΦA,B and φ [Mac71, §XI.2].

A symmetric monoidal abelian category (resp., symmetric monoidal R-linear
abelian category for a ring R) is a symmetric monoidal (resp., R-linear) abelian
category A such that ⊗ : A×A → A is additive (resp., R-linear) in each variable.
A tensor functor is additive or R-linear if the underlying functor is. When X and Y
are defined over a noetherian ring R, then Theorem 6.4.1 induces an equivalence

MorR(X ,Y)
∼→ Mor⊗R(Coh(Y),Coh(X ))

2The structure as an abelian category is not enough, e.g., Coh(BZ/2) ∼= Coh(Spec k
∐

Spec k)
in char(k) ̸= 2.
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between morphisms over R and right exact R-linear tensor functors.

Proof. Since every quasi-coherent sheaf on a noetherian algebraic stack is a colimit
of its coherent subsheaves (Proposition 6.1.8), every right exact tensor functor
F : Coh(Y) → Coh(X ) extends to a tensor functor F : QCoh(Y) → QCoh(X )
preserving colimits. Likewise every tensor natural transformation between functors
of coherent sheaves extends uniquely to one defined on quasi-coherent sheaves.

Fully faithfulness: Let f, g : X → Y . Choose a smooth presentation p : U → Y where
U is an affine scheme. Since the question is smooth-local on X , after replacing X
with X ×f,Y,p U , we may assume there is a factorization f : X f̃−→ U

p−→ Y . Likewise,

we may assume there is a factorization g : X g̃−→ V
q−→ Y where V is an affine scheme.

Since Y has affine diagonal, p : U → Y is affine and we have identifications

MorY(X , U) ∼= HomOY−alg(p∗OU , f∗OX ) ∼= HomOX−alg(f
∗p∗OU ,OX )

Therefore f̃ and g̃ correspond to sections sf̃ : f
∗p∗OU → OX and sg̃ : g∗q∗OV → OX .

A 2-isomorphism α : f → g (i.e., a morphism in Mor(X ,Y)) is identified with a
factorization

X
(f̃ ,g̃,α)

//

id
##

U ×X V

π

��

X
which is the same data as a section sα of OX → f∗π∗OU×XV . Letting α∗ : f∗ → g∗

be the image of α under (6.4.2), i.e., the pullback tensor natural transformation, the
section sα can be written as

f∗π∗OU×XV
∼= f∗(p∗OU )⊗ f∗(q∗OV )

id⊗α∗
q∗OV−−−−−−−→ f∗(p∗OU )⊗ g∗(q∗OV )

s
f̃
⊗sg̃

−−−−→ OS .

To see the faithfulness of (6.4.2), if α, α′ : f → g are 2-isomorphisms with
α∗ = α′∗, then α∗

q∗OV
= α′∗

q∗OV
and therefore the two sections sα and sα′ are

equal and α = α′. For the fullness of (6.4.2), let β : f∗ → g∗ be a tensor natural
transformation. Then id⊗βq∗OV

defines a section f∗π∗OU×XV → OS and thus
a 2-isomorphism α : f → g such that βq∗OV

= α∗
q∗OV

. To see that βE = α∗
E for

every E ∈ QCoh(Y), note that the factorization g = q ◦ g̃ yields a splitting of
g∗E → g∗(q∗q

∗E). Since f∗ and g∗ commute with direct sums, it suffices to assume
that E = q∗G for G ∈ QCoh(V ). Writing G = colim(O⊕I

V → O⊕J
V ) as a colimit of

free OV -modules, we can conclude that βq∗G = α∗
q∗G

since f∗ and g∗ commute with
colimits and q∗ is exact.

Essential surjectivity: Let F : QCoh(Y)→ QCoh(X ) be a tensor functor preserving
colimits.

The affine case: If X = SpecA and Y = SpecB are noetherian affine schemes, then
we have a map

ϕ : B ∼= End(OY)
F−→ End(OX ) = A.

We claim that ϕ is a ring homomorphism and that there is a functorial isomorphism
F (N) = N ⊗B A for N ∈ ModB . For b, b′ ∈ B, consider the commutative diagrams

OY ⊗OY

b⊗b′

��

// OY

bb′

��

OY ⊗OY // OY

F7−→

A⊗A

ϕ(b)⊗ϕ(b′)
��

// A

ϕ(bb′)

��

A⊗A // A
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where the horizontal maps correspond to multiplication. The commutativity of
the right square is implied by the fact that F preserves tensor products. This
shows that ϕ(b)ϕ(b′) = ϕ(bb′). For a B-module N , choose a free presentation
B⊕J → B⊕I → N → 0. Since both F and −⊗BA are right exact and preserve direct
sums, applying them to the free presentation yields an identification F (N) ∼= N⊗BA
as both are cokernels of A⊕J → A⊕I . One checks similarly that this identification is
functorial.

Reduction to the case that X is affine: Choose a smooth presentation g : U → X
from an affine scheme and consider the diagram

U ×X U

p2

��

p1

��

U

g

��

g∗◦F

##
X F // Y

where the dashed arrow X // Y is denoting that we have a tensor functor
QCoh(Y)→ QCoh(X ) in the other direction. Assuming that the result holds when
U is affine, there is a morphism h : U → Y and an isomorphism h

∼→ g∗ ◦ F of
functors. By full faithfulness, there is an isomorphism p1 ◦ h

∼→ p2 ◦ h satisfying the
cocycle condition, and thus smooth descent implies that there is a unique morphism
f : X → Y with F ≃ f∗.

Reduction to the case that Y is affine: Let X = SpecA and choose a smooth
presentation q : V = SpecC → Y. Since Y has affine diagonal, q is an affine
morphism. Define B := F (q∗OV ) which is an A-algebra since q∗OV is an OY -
algebra. Consider the diagram

SpecB

��

F ′
// V = SpecC

q

��

SpecA = X F // Y

where F ′ : ModC → ModB is the right exact tensor functor sending M to F (q∗M̃)

(which is a module over B = F (q∗OV ) because q∗M̃ is a q∗OV -module). By the
affine case, F ′ is induced by a morphism f ′ : SpecB → SpecC. We can extend the
above diagram into

SpecB ⊗A B
f ′′

//

�� ��

V ×Y V

�� ��

SpecB

��

f ′
// V = SpecC

q

��

SpecA = X F // Y.

Since q is affine, V ×Y V is affine and the top square (under either set of projections)
is cartesian.
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If we could show that A → B is faithfully flat, we would be done as the full
faithfulness in the affine case would imply that f ′ descends to our desired morphism
f : X → Y . This seems hard to directly check, but we do know already that the maps
B ⇒ B ⊗A B are faithfully flat as they correspond to base changes of the smooth
maps V ×Y V ⇒ V . We will show instead that A→ B is universally injective. Since
faithful flatness descends under universal injectivity maps (Proposition A.2.24(4)),
the faithful flatness of A→ B follows from the universal injectivity.

Universal injectivity of A→ B: Recall from Definition A.2.22 that an injective map
of A-modules is called universally injective if it remains injective after tensoring by
every A-module. By Proposition A.2.24(3), this notion is local under faithfully flat
morphisms and thus extends to morphisms F → G of quasi-coherent sheaves on an
algebraic stack.

Since q : V → Y is faithfully flat, OY → q∗OV is universally injective (Propo-
sition A.2.24(1)). We write q∗OV = colimQi as a colimit of coherent subsheaves
(Proposition 6.1.8) and we may assume that each Qi contains the image of OY →
q∗OV . Then OY → Qi is also universally injective and since Qi is coherent, OY → Qi
is a split injection smooth-locally on Y (Proposition A.2.24(2)). Applying F to
OY → q∗OV = colimQi and using that it preserves colimits, we have a factorization

F (Qi)

��

A = F (OY)

44

// B = F (q∗OV ) = colimF (Qi).

It suffices to show that A → F (Qi) is universally injective. We will show in fact
that it is a split injection. As OY → Qi is smooth-locally split, the map on duals
Q∨
i → O∨

Y = OY is surjective. Applying F , we have a surjection F (Q∨
i )→ F (OY) =

A (using right exactness) and we can choose an element λ ∈ F (Q∨
i ) mapping to

1. Under the natural map F (Q∨
i ) → F (Qi)

∨, the element λ is sent to a map
F (Qi)→ A, which one checks to be a section of the given map A→ F (Qi).

See also [Lur04], [HR19b], [BHL17] and [SP, Tag 0GRR].

Remark 6.4.4 (Relation to classical Tannaka duality). If G is an affine group scheme
over a field k, then the category C = Repfd(G) of finite dimensional representations is
a symmetric monoidal k-linear category and there is a tensor functor ω : Repfd(G)→
Vectk. For k-algebra R, let ωR denote the composition Repfd(G) → Vectk

−⊗kR−−−−→
ModR and let Aut⊗(ωR) denote the group of tensor natural isomorphisms of ωR.
Then G is recovered as the functor Aut⊗(ω) on affine k-schemes assigning R to
Aut⊗(ωR) [DMOS82, II.2.8].

On the other hand, Coherent Tannaka Duality for Algebraic Stacks (Theo-
rem 6.4.1) implies that for every noetherian k-algebra R, there is an equivalence of
categories

Mork(SpecR,BG)
∼→ Mor⊗(Rep(G)fd,ModR).

In this way, we see that Rep(G)fd determines BG. To recover G, the fiber functor
ω : Repfd(G) → Vectk corresponds to a morphism p : Spec k → BG and G =
Autk(p). For example, if O(q) and O(q′) are orthogonal groups with respect to
non-degenerate quadratic forms q and q′ of the same dimension, then Rep(O(q)) ∼=
Rep(O(q′)) even though O(q) and O(q′) may not be isomorphic; in this case the two
maps Speck→ BO(q) and Speck→ BO(q′) define two different fiber functors on
the same category.
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The classical version also provides conditions when the data of (C, ω) is isomorphic
to the category of representations of a group scheme. Namely, we say C is rigid if
for every object of X ∈ C, there is a ‘dual’ X∨ ∈ C, i.e., an object X∨ such that
X∨⊗− : C → C is right adjoint to X⊗− : C → C. If C is a rigid symmetric monoidal
k-linear abelian category with End(1) = k and ω : C → Vectk is an exact faithful
k-linear tensor functor, then Aut⊗(ω) is represented by an affine group scheme G
over k and there is a tensor equivalence C ∼= Repfd(G) under which ω corresponds
to the forgetful functor [DMOS82, II.2.11]. Moreover, G is of finite type over k if
and only if C has a tensor generator.

6.4.2 Coherent completeness
Coherent Tannaka Duality becomes especially powerful when combined with coherent
completeness.

Definition 6.4.5. A noetherian algebraic stack X is coherently complete along a
closed substack X0 if the natural functor

Coh(X )→ lim←−Coh(Xn), F 7→ (Fn)

is an equivalence of categories, where Xn denotes the nth nilpotent thickening of X0

and Fn is the pullback of F to Xn.
Remark 6.4.6. If I ⊂ OX is the coherent sheaf of ideals defining X0, then Xn
is defined by In+1. Letting in : Xn ↪→ Xn+1 denote the natural inclusion, an
object in lim←−Coh(Xn) corresponds to a sequence Fn ∈ Coh(Xn) of coherent sheaves
together with maps αn : in,∗Fn → Fn+1 inducing isomorphism Fn → i∗nFn+1. A
morphism (Fn, αn) → (F ′

n, α
′
n) is a sequence of maps ϕn : Fn → F ′

n such that
ϕn+1 ◦ αn = αn+1 ◦ in,∗ϕn.
Example 6.4.7. If (R,m) is a complete noetherian local ring, then the Artin–Rees
Lemma (B.5.4) implies that SpecR is coherently complete along SpecR/m. The
same is true if R = limR/In is a noetherian I-adically complete ring.

Example 6.4.8. Grothendieck’s Existence Theorem (C.5.3) asserts that if X is
a proper scheme over a complete local ring (R,m) and X0 = X ×R R/m, then
X is coherently complete along X0. If X is a proper Deligne–Mumford stack or
more generally a proper algebraic stack over SpecR, the same is true. The result
also holds if R is an I-adically complete noetherian ring. See [Ols05, Thm. 1.4] or
[Con05a, Thm. 4.1].

Corollary 6.4.9 (Coherent Tannaka Duality). Let X and Y be noetherian algebraic
stacks with affine diagonal. Suppose that X is coherently complete along X0. Then
there is an equivalence of categories

Mor(X ,Y)→ lim←−Mor(Xn,Y), f 7→ (fn),

where fn : Xn → Y denotes the restriction of f to the nth nilpotent thickening Xn of
X0.

Proof. This follows from the equivalences

Mor(X ,Y) ≃ Mor⊗
(
Coh(Y),Coh(X )

)
(Coherent Tannaka Duality)

≃ Mor⊗
(
Coh(Y), lim←−Coh

(
Xn
))

(coherent completeness)

≃ lim←−Mor⊗
(
Coh(Y),Coh

(
Xn
))

≃ lim←−Mor
(
Xn,Y

)
(Coherent Tannaka Duality).
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Remark 6.4.10. If X and Y are defined over a noetherian ring R, then there is an
equivalence MorR(X ,Y)→ lim←−MorR(XnY). This follows in the same way using the
Tannaka duality equivalence between the category of morphisms X → Y over R and
the category of right exact R-linear tensor functors (Remark 6.4.3).

For example, to show that there is map SpecA → Y from the spectrum of a
noetherian I-adically complete ring A, it suffices to construct compatible maps
SpecA/In → Y. This is only easy to see directly if A is local.

Exercise 6.4.11. LetG be an affine algebraic group acting on a separated noetherian
algebraic space W over k. Let W0 ⊂ W be a G-invariant closed subspace and let
Wn be its nth nilpotent thickenings. Suppose that [W/G] is coherently complete
along a closed substack [W0/G]. For every noetherian algebraic space X over k with
affine diagonal equipped with an action of G, the natural map on equivariant maps

MorG(W,X)→ lim←−
n

MorG
(
Wn, X

)
is bijective.
Hint: reduce to Corollary 6.4.9 by using that a G-equivariant map W → X corre-
sponds to a morphism [W/G]→ [X/G] over BG, i.e MorG(W,X) = {∗}×Mor([W/G],BG)

Mor([W/G], [X/G]).

6.4.3 Coherent completeness of quotient stacks

The coherent completeness result that we will exploit through the rest of the book
and in particular in the proof of the Local Structure Theorem for Algebraic Stacks
(6.5.1) is the following:

Theorem 6.4.12. Let k be an algebraically closed field and R be a complete noethe-
rian local k-algebra with residue field k. Let G be a linearly reductive group over k
acting on an affine scheme SpecA of finite type over R. Suppose that AG = R and
that there is a G-fixed k-point x ∈ SpecA. Then [SpecA/G] is coherently complete
along the closed substack BG defined by x.

Example 6.4.13. If Gm acts diagonally on Ar, then [Ar/Gm] is coherently complete
along the origin BGm. In other words a Gm-equivariant coherent sheaf on Ar is equiva-
lent to a compatible family of Gm-equivariant modules over k[x1, . . . , xr]/(x1, . . . , xr)n+1.

Remark 6.4.14. We have a commutative diagram

BG �
�

// [SpecA/G]×AG k

��

� � // [SpecA/G]

��

Speck �
�

// SpecAG.

□

A formal consequence of the above theorem is that [SpecA/G] is also coherently
complete with respect to the fiber [SpecA/G]×AG k. This version is analogous to
Grothendieck’s Existence Theorem (6.4.8), but the coherent completeness along
BG is a substantially stronger statement, e.g., for [An/Gm] where the fiber of
[An/Gm]→ Speck is everything.
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Proof of Theorem 6.4.12. We need to show that Coh(X )→ lim←−Coh(Xn) is an equiv-
alence of categories, where X = [SpecA/G] and Xn is the nth nilpotent thickening
of BG ↪→ X of the inclusion of the residual gerbe at x.

Full faithfulness: Suppose that F and F ′ are coherent OX -modules, and let Fn and
F ′
n denote the restrictions to Xn, respectively. We need to show that

HomOX (F, F
′)→ lim←−HomOX (Fn, F

′
n)

is bijective. Since X has the resolution property (Proposition 6.1.19), we can find a
resolution F2 → F1 → F → 0. by vector bundles. This induces a diagram

0 // HomOX (F, F
′) //

��

HomOX (F1, F
′) //

��

HomOX (F2, F
′)

��

0 // lim←−HomOX (Fn, F
′
n) // lim←−HomOX (F1,n, F

′
n) // lim←−HomOX (F2,n, F

′
n)

with exact rows. We may therefore assume that F is a vector bundle. In this case,

HomOX (F, F
′) = HomOX (OX , F

∨ ⊗ F ′)

HomOX (Fn, F
′
n) = HomOX

(
OXn , (F

∨
n ⊗ F ′

n)
)
.

Therefore, we can also assume that F = OX and we are reduced to showing that

Γ(X , F ′)→ lim←−Γ
(
Xn, F ′

n

)
(6.4.15)

is an isomorphism. Writing F ′ = M̃ where M is a finitely generated A-module with
an action of G and letting m ⊂ A be the maximal ideal for x, then Γ(Xn, F ′

n) =
MG/(mnM)G since G is linearly reductive. We must therefore verify that

MG → lim←−M
G/(mnM)G (6.4.16)

is an isomorphism. To this end, we first show that⋂
n≥0

(
mnM

)G
= 0. (6.4.17)

or in other words that (6.4.16) is injective. Let N :=
⋂
n≥0 m

nM . The Artin–Rees
Lemma (B.5.4) applied to N ⊂M implies that there exists an integer c such that
mnM ∩N = mn−c(mcM ∩N) for all n ≥ c. Taking n = c+ 1, we see that N = mN
so N ⊗A A/m = 0. Since the support of N is a closed G-invariant subscheme of
SpecA which does not contain x, it follows that N = 0.

Note also that since G is linearly reductive, MG is a finitely generated AG-module
(Corollary 6.3.7(3)). We next establish that (6.4.16) is an isomorphism if AG is
artinian. In this case, {(mnM)G} automatically satisfies the Mittag–Leffler condition
(it is a sequence of artinian AG-modules). Therefore, taking the inverse limit of the
exact sequences 0→ (mnM)G → MG → MG/(mnM)G → 0 and applying (6.4.17)
yields an exact sequence

0→ 0→MG → lim←−M
G/(mnM)G → 0

and shows that (6.4.16) is an isomorphism. To establish (6.4.16) in the general case,
let J = (mG)A ⊂ A and observe that

MG ∼= lim←−M
G/
(
mG
)n
MG ∼= lim←−

(
M/JnM

)G
, (6.4.18)
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since G is linearly reductive. For each n, we know that(
M/JnM

)G ∼= lim←−
l

MG/
(
(Jn +ml)M

)G (6.4.19)

using the artinian case proved above. Finally, combining (6.4.18) and (6.4.19)
together with the observation that Jn ⊂ ml for n ≥ l, we conclude that

MG ∼= lim←−
n

(
M/JnM

)G
∼= lim←−

n

lim←−
l

MG/
(
(Jn +ml)M

)G
∼= lim←−

l

MG/
(
mlM

)G
.

Essential surjectivity: The linear reductivity of G implies that every coherent sheaf
F = M̃ on [SpecA/G] decomposes as a direct sum

M =
⊕
ρ∈Γ

M (ρ), (6.4.20)

where Γ denotes the set of isomorphism classes of irreducible representations of G
and M (ρ) is the isotypic component corresponding to ρ; explicitly if Wρ denotes the
irreducible representation corresponding to ρ, then M (ρ) = HomG

k (Wρ,M) ⊗Wρ.
Moreover, the decomposition (6.4.20) is compatible with the A-module structure of
M and the decomposition A =

⊕
ρ∈ΓA

(ρ).
Let us also note that if F = M̃ ∈ Coh(X ) with restrictions Mn = M/mn+1M ,

then applying (6.4.16) toM⊗W∨
ρ shows thatM (ρ) = lim←−M

(ρ)
n . By Theorem 6.3.5(3),

we also know that M (ρ) is a finitely generated AG-module. In particular, A(ρ) =
lim←−(A/m

n+1)(ρ) is a finitely generated AG-module.
This suggests that if Fn = M̃n is a compatible system of coherent OXn -modules

with Mn =
⊕

ρM
(ρ)
n , we define

M (ρ) := lim←−M
(ρ)
n and M :=

⊕
ρ∈Γ

M (ρ). (6.4.21)

To see that M is an A-module with a G-action, let ρ, γ ∈ Γ be irreducible represen-
tations and let Λ ⊂ Γ denote the finite set of nonzero irreducible representations
appearing Wρ⊗Wγ . Taking limits of the maps A(ρ)

n ⊗(A/mn+1)GM
(γ)
n →

⊕
λ∈ΛM

(λ)
n ,

defines multiplication

A(ρ) ⊗AM (γ) → lim←−
(
A(ρ)
n ⊗(A/mn+1)G M

(γ)
n

)
→ lim←−

(⊕
λ∈Λ

M (λ)
n

) ∼=⊕
λ∈Λ

M (λ).

Note that we also have M/mn+1M ∼=Mn by construction.
We need to show that the A-module M of (6.4.21) is finitely generated. The

coherent sheaf F0 = M̃0 on X0 = BG is a finite dimensional G-representation and
we can consider the coherent OX -module F0 ⊗OX0

OX or equivalently the A-module
M0 ⊗k A with its natural G-action. Since X is cohomologically affine, the functor

HomOX (F0 ⊗OX0
OX ,−) = Γ(X , (F∨

0 ⊗OX0
OX )⊗OX −)
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is exact. Apply the functor to the surjection M ↠M0 induces a map

M0 ⊗k A→M (6.4.22)

which we would like to show is surjective. We do know that the restrictions
M0 ⊗k (A/m

n+1)→ Mn are surjective as its cokernel is a coherent module on Xn
not supported at the unique closed point.

As above, we first handle the case that AG is artinian. Since A(ρ) ∼→ lim←−(A/m
n)(ρ)

is a finitely generated AG-module, it follows that (A/mn)(ρ) stabilizes to A(ρ) for
n ≫ 0. Since (6.4.22) induces surjections M0 ⊗k (A/m

n+1) → Mn, it follows that
the modules M (ρ)

n stabilize to M (ρ)
∞ for n ≫ 0 and that M =

⊕
ρM

(ρ)
∞ is finitely

generated. In the general case, let Xm = SpecAG/(m ∩AG)m+1 and consider the
cartesian diagram

X ×X Xm
� � im //

πm

��

X ×X Xm+1
� � //

πm+1

��

· · · �
�

// X

π

��

Xm
� � jm // Xm+1

� � // · · · �
�

// X.

For each m, we may consider the nth nilpotent thickenings Zm,n of X0 ↪→ X ×X Xm

which are closed substacks Xn. Since Xm is the spectrum of artinian ring, the
restrictions Fn|Zm,n

extend to a coherent sheaf Hm = Ñm on X ×X Xm. Moreover,
there is a canonical isomorphism between Hm and the restriction of Hm+1 to
X ×X Xm. By Lemma 6.3.21(4), the adjunction morphism j∗mπm+1,∗

∼→ πm,∗i
∗
m

is an isomorphism on quasi-coherent sheaves. This implies that N (ρ)
m+1 = Γ(X ×X

Xm+1, Hm+1⊗W∨
ρ ) restricts to N (ρ)

m and that M (ρ) = lim←−N
(ρ)
m is a finitely generated

AG-module. By Nakayama’s lemma, the map (6.4.22) is surjective on each ρ-
isotypical component. Thus (6.4.22) is surjective and M is finitely generated.

For an alternative (but similar) argument for essential surjectivity, we first choose
a surjection E ↠ F0 from a vector bundle E on X . For this we can either apply
the resolution property of X (Proposition 6.1.19) or take E = F0 ⊗OX0

OX as
above. Since each Fn+1 → Fn is surjective and HomOX (E,−) = Γ(X , E∨ ⊗OX −)
is exact, we can lift E ↠ F0 to compatible maps E → Fn, each which is surjective
(Nakayama’s lemma). The sequence (ker(En → Fn)) not necessarily an adic sytem
of coherent sheaves on Xn as the restriction ker(En+1 → Fn+1) to Xn may not be
ker(En → Fn). But we can modify it as follows: For each l ≥ m ≥ n, the images of
ker(El → Fl) in Em stabilize to K ′

m for l ≫ m and K ′
m/m

n+1K ′
m stabilize to Kn

for m≫ n (see also [SP, Tag 087X]). Then (Kn) ∈ lim←−Coh(Xn) is an adic sequence.
Repeating the construction, we can find a vector bundle E′ on X and compatible
surjections E′ → Kn. By full faithfulness, there is a morphism E′ → E extending
the maps E′

n → En. Then coker(E′ → E) is a coherent OX extending (Fn).
See also [AHR20, Thm. 1.3] and [AHR19, Thm. 1.6].

Exercise 6.4.23. If S is a noetherian affine scheme, show that [A1/Gm]S is coherently
complete along BGm,S .

6.5 Local structure of algebraic stacks
We establish a local structure theorem for algebraic stack around points with linearly
reductive stabilizer. The main theorem (Theorem 6.5.1) implies that quotient stacks
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of the form [SpecA/G], where G is linearly reductive, are the building blocks of
algebraic stacks near points with linearly reductive stabilizers in a similar way to
how affine schemes are the building blocks of schemes and algebraic spaces. When
X is Deligne–Mumford, we have already seen an analogous Local Structure Theorem
for Deligne–Mumford Stacks (4.2.12). The local structure theorem will be applied to
construct good moduli spaces in a similar way to how the result for Deligne–Mumford
stacks was used to prove the Keel–Mori Theorem (4.3.12) on the existence of coarse
moduli spaces.

Theorem 6.5.1 (Local Structure Theorem for Algebraic Stacks). Let X be an
algebraic stack of finite type over an algebraically closed field k with affine diagonal.
For every point x ∈ X (k) with linearly reductive stabilizer Gx, there exists an affine
étale morphism

f : ([SpecA/Gx], w)→ (X , x)

which induces an isomorphism of stabilizer groups at w.

Remark 6.5.2. In the case that x ∈ X is a smooth point, then one can say more:
there is also an étale morphism

([SpecA/Gx], w)→ ([TX ,x/Gx], 0)

where TX ,x is the Zariski tangent space equipped as a Gx-representation. This
addendum follows from the proof but also follows from applying Luna’s Étale Slice
Theorem (6.5.4) to [SpecA/Gx]. The upshot is that we can reduce étale local
properties of X to Gx-equivariant properties of TX ,x; for moduli problems, this
translates into studying the first-order deformation space as a representation under
the automorphism group.

By combining this theorem with Luna’s Fundamental Lemma (6.3.27), we obtain
the following result.

Corollary 6.5.3 (Local Structure for Good Moduli Spaces). Let X be an algebraic
stack of finite type over an algebraically closed field k with affine diagonal. Suppose
that there exists a good moduli space π : X → X. Then for every closed point x ∈ X ,
there exists an étale neighborhood W → X of π(x) and a cartesian diagram

[SpecA/Gx] //

��

X

π

��

W = SpecAGx // X.

□

Section outline: We first discuss Luna’s Étale Slice Theorem (6.5.4), a beautiful
argument providing an explicit construction of an étale neighborhood in the case
that X is already known to have the form [SpecB/G] with G reductive. The proof
of the Local Structure Theorem (6.5.1) is far less explicit requiring: (1) deformation
theory, (2) coherent completeness, (3) Coherent Tannaka Duality and (4) Artin
Approximation or Equivariant Artin Algebraization.

Letting T = [TX ,x/Gx], deformation theory produces an embedding Xn ↪→ Tn of
the nth nilpotent thickenings of x and 0. The key step in the proof is to show that the
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system of closed morphisms {Xn → X} algebraizes. The first step is effectivization:
the fiber product T̂ := T ×T Spec ÔT,π(0), where π : T → T := TX ,x//Gx, is
coherently complete (Theorem 6.4.12). We can thus construct a closed substack
X̂ ↪→ T̂ extending Xn ↪→ T and then apply Coherent Tannaka Duality (6.4.9) to
construct a morphism X̂ → X extending Xn → X .

If x ∈ X is smooth, Artin Approximation over the GIT quotient TX ,x//Gx
produces an étale neighborhood U → TX ,x//Gx such that π−1(U)→ X algebraizes
T̂ → X . In the general case, Artin Approximation cannot handle this final step and
we need to establish an equivariant version of Artin Algebraization (Theorem 6.5.17).

6.5.1 Luna’s Étale Slice Theorem
The local structure theorem was inspired by Luna’s étale slice theorem in equivariant
geometry.

Theorem 6.5.4 (Luna’s Étale Slice Theorem). Let G be a linearly reductive group
over an algebraically closed field k and let X be an affine scheme of finite type over
k with an action of G. If x ∈ X(k) has linearly reductive stabilizer, then there exists
a Gx-invariant, locally closed, and affine subscheme W ⊂ X such that the induced
map

[W/Gx]→ [X/G] (6.5.5)

is affine étale. If in addition the orbit Gx ⊂ X is closed, then there is a cartesian
diagram

[W/Gx]

��

// [X/G]

��

W//Gx // X//G

□

where W//Gx → X//G is also étale.
Moreover, if x ∈ X is a smooth point and if we denote by Nx = TX,x/TGx,x the

normal space to the orbit, then it can be arranged that there is an Gx-invariant étale
morphism W → Nx which is the pullback of an étale map W//Gx → Nx//Gx of GIT
quotients.

Remark 6.5.6. One can also formulate the statement G-equivariantly: G acts
naturally on the quotient G×Gx W := (G×W )/Gx and there is an identification
[W/Gx] ∼= [(G×GxW )/G] and likewise W//Gx ∼= (G×GxW )//G (see Exercise 3.4.16).
The morphism (6.5.5) corresponds to an étale G-equivariant morphism G×Gx W →
X.

If the orbit Gx is closed, then Matsushima’s Theorem (6.3.20) implies that the
stabilizer Gx is linearly reductive.

The proof will rely on the existence of a Gx-invariant morphism X → TX,x, which
we refer to as the Luna map. The use of Tx,x here is an abuse of notation—TX,x is
a vector space over k and we view it as a scheme via Spec(Sym∗ T∨

X,x).

Lemma 6.5.7 (Luna map). Let G be a linearly reductive group over an algebraically
closed field k and let X be an affine scheme of finite type over k with an action of G.
If x ∈ X(k) has linearly reductive stabilizer, there exists a Gx-equivariant morphism

f : X → TX,x (6.5.8)

sending x to the origin. If X is smooth at x, then f is étale at x.
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Proof. Letting X = SpecA and m ⊂ A be the maximal ideal of x, then m and m/m2

are Gx-representations and we see that Gx acts naturally on the tangent space
TX,x := Spec(Sym∗ m/m2). Since Gx is linearly reductive, the surjection m→ m/m2

of Gx-representations has a section m/m2 ↪→ m. This induces a Gx-equivariant
ring map Sym∗ m/m2 → A and thus a Gx-equivariant morphism f : SpecA→ TX,x
sending x to the origin. If x ∈ X is smooth, then since f induces an isomorphism of
tangent spaces at x, we conclude that f is étale at x (Theorem A.3.2).

Proof of Theorem 6.5.4. Since X is affine and of finite type, we can choose a finite
dimensional G-representation V and a G-equivariant closed immersion X ↪→ A(V )
(Proposition B.1.18). If W ⊂ A(V ) is an affine Gx-invariant locally closed subscheme
such that [W/Gx]→ [A(V )/G] is étale, then the same is true for W ′ :=W ∩X ⊂ X
and [W ′/Gx]→ [X/G]. We can therefore immediately reduce to the case that x ∈ X
is smooth. In this case, there is a Luna map f : X → TX,x (see (6.5.7)) which is Gx-
invariant, étale at x, and with f(x) = 0. The subspace TGx,x ⊂ TX,x is Gx-invariant
and again since Gx is linearly reductive, the surjection TX,x → Nx = TX,x/TGx,x
has a section Nx ↪→ TX,x. We define W as the preimage of Nx under f :

W� _

��

// Nx� _

��

X
f
// TX,x.

□

Since the maps f : [W/Gx]→ [X/G] and g : [W/Gx]→ [Nx/Gx] induce an isomor-
phism of tangent spaces and stabilizer groups at w, they are both étale at x ∈W
(or equivalently the G-equivariant maps G×Gx W → X and G×Gx W → G×Gx Nx
are étale at (id, x)). We have a commutative diagram

[Nx/Gx]

��

[W/Gx]

��

g
oo

f
// [X/G]

��

Nx//Gx W//Gx //oo X//Gx

where both f and g are étale at x, preserve stabilizer groups at x and map x to closed
points. We can therefore apply Luna’s Fundamental Lemma (6.3.27) to replace W
with a Gx-equivariant, open, and affine neighborhood of x so that the above squares
are cartesian.

When X is already known to be a quotient stack of a normal quasi-projective
scheme, the Local Structure Theorem follows from a direct argument. This case is
sufficient to handle many moduli problems, e.g., Bunssr,d(C) in characteristic 0.

Exercise 6.5.9. If G is a connected affine algebraic group over an algebraically
closed field k acting on a normal finite type k-scheme X, and x ∈ X(k) has linearly
reductive stabilizer, show that there is a Gx-invariant, locally closed, and affine
subscheme W ↪→ X such that [W/Gx]→ [X/G] is étale.

Hint: Sumihiro’s Theorem on Linearizations (B.1.29) to reduce to the case that
X = P(V ). Choose a homogenous polynomial f not vanishing at x such that P(V )f
is Gx-invariant and then argue as in the proof of Luna’s Étale Slice Theorem by
considering the Gx-equivariant étale map P(V )f → TxP(V ).
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6.5.2 Deformation theory
In our proof of the Local Structure Theorem (6.5.1), we will need some deformation
theory of algebraic stacks in the form of the following two propositions.

Proposition 6.5.10. Consider a commutative diagram

W� _

��

f
// X

��

W ′ //

>>

Y

of noetherian algebraic stacks with affine diagonal where X → Y is smooth and affine
and W ′ ↪→W ′ is a closed immersion defined by a square-zero sheaf of ideals J . If
W is cohomologically affine, there exists a lift in the above diagram.

Proof. When W is affine, the statement follows from the Infinitesimal Lifting Crite-
rion (A.3.1). To reduce to this case, let U ′ →W ′ be a smooth presentation with U ′

an affine scheme and set U = U ′ ×W′ W. Since W has affine diagonal, each n-fold
fiber product (U/W)n := U ×W · · · ×W U is affine. We have a commutative diagram

(U/W)2� _

��

//
// U� _

��

q1 // W� _

��

f
// X

��

(U ′/W ′)2
p2

//

p1 // U ′ //

f ′
U

77

W ′ //

f ′

??

Y.

where we have chosen a lift f ′U : U ′ → X . Defining the coherent sheaf F =
f∗(Ω∨

X/Y) ⊗ J on W, we know by Exercise 6.1.9 that the set of lifts U ′ → X
is a torsor under Γ(U, q∗1F ) so that any other lift differs from f ′U by an element of
Γ(U, q∗1F ). Because X → Y is representable, to check that f ′U descends to a mor-
phism f ′ : W ′ → X , we need to arrange that f ′U ◦p1 = f ′U ◦p2. Let qn : (U/W)n →W .
The difference f ′U ◦ p1 − f ′U ◦ p2 can be viewed an element of Γ((U/W)2, q∗2F ).

Since q1 : U →W is a surjective, smooth, and affine morphism, there is an exact
sequence of quasi-coherent sheaves

0→ F → q1,∗q
∗
1F → q2,∗q

∗
2F → q3,∗q

∗
3F → · · · ;

see Exercise 2.1.3. Since W is cohomologically affine, taking global sections yields
an exact sequence

Γ(U, q∗1F )
d0 // Γ((U/W)2, q∗2F )

d1 // Γ((U/W)3, q∗3F )

s � // p∗1s− p∗2s

s
� // p∗12s− p∗13s+ p∗23s.

One checks that d1(f ′U ◦ p1 − f ′U ◦ p2) = 0 so there exists an element s ∈ Γ(U, q∗1F )
with d0(s) = f ′U ◦ p1 − f ′U ◦ p2. After modifying the lift f ′U by s, we see that
f ′U ◦ p1 − f ′U ◦ p2 = 0 so that f ′U descends to f ′ : W ′ → X .

Remark 6.5.11. Alternatively, one can show that the obstruction to this defor-
mation problem lies in Ext1OW

(f∗ΩX/Y , J) = H1(W, f∗(Ω∨
X/Y)⊗ J), which vanishes

since W is cohomologically affine. The above result holds more generally [Ols06,
Thm. 1.5].
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Proposition 6.5.12. Let W ↪→ W ′ be a closed immersion of algebraic stacks of
finite type over k with affine diagonal defined by a square-zero sheaf of ideals J . Let
G be an affine algebraic group over k. If W is cohomologically affine, then every
principal G-bundle P → W extends to a principal G-bundle P ′ →W ′.

Proof. Our proof will use smooth descent and the deformation theory of principal G-
bundles over schemes (Exercise C.2.6). Let U ′ →W ′ be a smooth presentation from
an affine scheme and let U :=W ×W′ U ′. Since W has affine diagonal, each n-fold
fiber products (U/W)n = U ×W · · · ×W U is affine and we denote the projection by
qn : (U/W)n →W. By descent theory, the principal G-bundle P → W corresponds
to a principal G-bundle P → U together with an isomorphism α : p∗1P

∼→ p∗2P on
(U/W)2 satisfying the cocycle condition p∗23α ◦ p∗12α = p∗13α on (U/W)3. Letting
F = g⊗ J be the coherent sheaf on W where g denotes the Lie algebra of G (viewed
as an OW -module by pulling back along W → Speck), we know by Exercise C.2.6
that the deformation theory of q∗nP → (U/W)n with respect to the closed immersion
(U/W)n ↪→ (U ′/W ′)n is controlled by q∗nF .

Since U is affine, we can choose a deformation P ′ → U ′ of P → U . We can
also choose an isomorphism α′ : p∗1P

′ ∼→ p∗2P
′ on (U ′/W ′)2 lifting α where any

other choice of an isomorphism differs by an element of Γ((U/W)2, q∗2F ). The
isomorphism (p∗13α

′)−1 ◦ p∗23α′ ◦ p∗12α′ restricts to the identity on (U/W)3 and thus
corresponds to an element Ψ ∈ Γ((U/W)3, q∗3F ). If Ψ = 0, then descent theory
implies that P ′ → U ′ descends to the desired principal G-bundle P ′ →W ′. Since
0→ F → q1,∗q

∗
1F → q2,∗q

∗
2F → · · · is an exact sequence and W is cohomologically

affine, taking global sections gives an exact sequence

Γ((U/W)2, q∗2F )
d2 // Γ((U/W)3, q∗3F )

d3 // Γ((U/W)4, q∗4F )

s � // p∗12s− p∗13s+ p∗23s

s � // p∗123s− p∗134s+ p∗124s− p∗234s.
(6.5.13)

While Ψ may be nonzero, one can check that d3(Ψ) = 0 and thus there exists an
element s ∈ Γ((U/W)2, q∗2F ) such that d2(s) = Ψ. Thus modifying the isomorphism
α′ by s, we see that we can arrange the cocycle condition to hold.

Remark 6.5.14. The deformation question is equivalent to deforming the morphism
f : W → BG classified by P → W to a morphism W ′ → BG, which is analogous
to Proposition 6.5.10 except that X = BG → Y = Speck is not affine. The
obstruction to deforming a principal G-bundle lies in the group H2(W, g⊗J). When
W → BG is representable, one can see this as a consequence of [Ols06, Thm. 1.5]
(see Remarks C.3.6 and C.7.6): the obstruction lies in Ext1OW

(Lf∗LBG/k, J). Under
the composition Speck p−→ BG → Speck, we have an exact triangle p∗LBG/k →
Lk/k → Lk/BG. Since Lk/k = 0, we obtain that p∗LBG/k = Lk/BG[−1] ∼= g∨[−1] and
LBG/k ∼= g∨[−1], where the Lie algebra g is equipped with the adjoint representation.
Thus Ext1OW

(Lf∗LBG/k, J) = H1(W, f∗g[1] ⊗ J) = H2(W, g ⊗ J). Since W is
cohomologically affine with affine diagonal, this cohomology group is 0 and the
obstruction vanishes.

Here is a third approach in the case that W = [SpecA/G] where G is linearly
reductive and AG is an artinian k-algebra. Since W is a global quotient stack, there
exists a vector bundle E on W such that the stabilizer groups act faithfully on the
fibers (Exercise 6.1.16). Generalizing the deformation theory of vector bundles on
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schemes (Proposition C.2.11), the obstruction to deforming E to a vector bundle E′

lies in H2(W,E ndOW (E)⊗J) which vanishes asW is cohomologically affine. Since the
stabilizer groups also act faithfully on the fibers of E′, we have that W ′ ∼= [V ′/GLn]
where V ′ is an algebraic space. Then W ∼= [V/GLn] with Vred = V ′

red. Since W
is cohomologically affine and V → W is affine, V is cohomologically affine and
thus affine by Serre’s Criterion for Affineness (4.4.16). It follows that V ′ is also
affine (Proposition 4.4.19). Since Γ(W ′,OW′) is an artinian k-algebra and has no
non-trivial affine étale covers, Luna’s Étale Slice Theorem (6.5.4) implies that we
can arrange that W ′ ∼= [SpecA′/G].

We will also need the following criteria for morphisms to be closed immersions
or isomorphisms.

Lemma 6.5.15. Let f : X → Y be a representable morphism of algebraic stacks
of finite type over an algebraically closed field k with affine diagonal. Assume that
|X | = {x} and |Y| = {y} consist of a single point and that f induces an isomorphism
X0 := BGx with Y0 := BGy. Let mx ⊂ OX and my ⊂ OY be the ideal sheaves
defining X0 and Y0, and let f1 : X1 → Y1 be the induced morphism between the first
nilpotent thickenings of X0 and Y0.

(1) If f1 is a closed immersion, then so is f .
(2) If f1 is a closed immersion and there is an isomorphism

⊕
n≥0 m

n
y/m

n+1
y
∼=⊕

n≥0 m
n
x/m

n+1
x of graded OX0

-modules, then f is an isomorphism.

Proof. Choose a smooth presentation V = SpecB → Y from an affine scheme such
that V ×Y Y0 ∼= Speck (Theorem 3.6.1). Then B is a local artinian k-algebra as Y
consists of only one point. The base change U = V ×Y X is an algebraic space and
since Ured = Vred is a point, it follows from Proposition 4.4.19 that U = SpecA with
A a local artinian k-algebra. We can therefore assume that f : SpecA→ SpecB is
a morphism of local artinian schemes.

For (1), we need to show that if B/m2
B → A/m2

A is surjective, so is B → A. We
first claim that the inclusion mBA ↪→ mA is surjective. By Nakayama’s Lemma,
it suffices to show that mBA/mAmBA → mA/m

2
A is surjective, but this follows

from the hypothesis that the composition mA/m
2
A → mBA/mAmBA → mA/m

2
A is

surjective. Since B/mB → A/mBA = A/mA is surjective, another application of
Nakayama’s Lemma shows that B → A is surjective. See also [Har77, Lem. II.7.4]
for a related criterion.

For (2), since dimk m
n
B/m

n+1
B = dimk m

n
A/m

n+1
A , the surjections mnB/m

n+1
B →

mnA/m
n+1
A are isomorphisms and it follows that f is an isomorphism.

6.5.3 Proof of the Local Structure Theorem—smooth case
Proof of Theorem 6.5.1—smooth case. Since the k-point x ∈ X is locally closed
(Proposition 3.5.17), by replacing X by an open substack we may assume that x ∈ X
is a closed point. Let I be the coherent sheaf of ideals defining X0 := BGx ↪→ X
and set Xn to be the nth nilpotent thickening defined by In+1. The Zariski tangent
space TX ,x can be identified with the normal space (I/I2)∨ to the orbit, viewed as
a Gx-representation. (Note that when X = [X/G] with G a smooth affine algebraic
group, then TX ,x is identified with the normal space to the orbit TX,x̃/TGx,x̃ for a
point x̃ ∈ X(k) over x.)

Define the quotient stack T = [TX ,x/Gx] and let T0 = BGx be the closed
substack supported at the origin and Tn its nth nilpotent thickenings. We claim
that there are compatible isomorphisms Xn ∼= Tn. Since Gx is linearly reductive,
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X0 = BGx is cohomologically affine. By the deformation theory of principal Gx-
bundles (Proposition 6.5.12), we can inductively extending the principal Gx-bundle
Speck → X0 to principal Gx-bundles SpecAn → Xn. This yields isomorphisms
Xn ∼= [SpecAn/Gx] and affine morphisms Xn → BGx. We have a closed immersion
X0 ↪→ T and we can inductively find lifts

Xn� _

��

// T

��

Xn+1

;;

// BGx

since T → BGx is smooth and affine (Proposition 6.5.10). The induced morphism
X1 → T1 is an isomorphism since it is a morphism between deformations BGx ↪→ X1

and BGx ↪→ T1 of the coherent sheaf I/I2 and any such morphism is an isomorphism
(by reducing to Lemma C.1.7 by smooth descent). (In fact, both X1 and T1 are trivial
deformations as they admit retractions to BGx.) Lemma 6.5.15(2) now implies that
the maps Xn → Tn are isomorphisms.

Let π : T → T = TX ,x//Gx be the morphism to the GIT quotient. The fiber
product T̂ := Spec ÔT,π(0)×T T is a quotient stack of the form [SpecB/G] where B is
of finite type over the complete noetherian local k-algebra BG = ÔT,π(0). Therefore T̂
is coherently complete along T0 (Theorem 6.4.12) and Mor(T ,X ) ∼→ lim←−Mor(Tn,X )
is an equivalence by Coherent Tannaka Duality (6.4.9). It follows that the morphisms
Xn ∼= Tn ↪→ X extend to a morphism T̂ → X filling in the diagram

Xn ∼= Tn // ))T̂ //

��

((T

��

X

Spec ÔT,π(0) //

□

T.

The functor parameterizing isomorphism classes of morphisms

F : Sch /T → Sets, (T ′ → T ) 7→
{
T ′ ×T T → X

}
/ ∼

is limit preserving as X is of finite type over k (see Exercise 3.3.31). The morphism
T̂ → X yields an element of F over Spec ÔT,π(0). By Artin Approximation (B.5.18),
there exists an étale morphism (U, u)→ (T, 0) where U is an affine scheme with a k-
point u ∈ U and a morphism (U×T T , (u, 0))→ (X , x) agreeing with (T̂ , 0)→ (X , x)
to first order. Since U ×T T is smooth at (u, 0) and X is smooth at x, and since
U ×T T → X induces an isomorphism of tangent spaces and stabilizer groups at
(u, 0), the morphism U ×T T → X is étale at (u, 0). Observe that U ×T T is of the
form [SpecA/Gx] for a finitely generated k-algebra A such that U = SpecAGx . We
can arrange that [SpecA/Gx] → X is étale everywhere after replacing U with an
open affine subscheme and SpecA with its preimage. That [SpecA/Gx]→ X can
be arranged to be affine follows from Proposition 6.5.16.

Proposition 6.5.16. Let X be an algebraic stack of finite type over an algebraically
closed field with affine diagonal. Let f : [SpecA/G]→ X be a finite type morphism
with G linearly reductive. If w ∈ SpecA has closed G-orbit and f induces an
isomorphism of stabilizer groups at w, then there exists a G-invariant, affine, and
open subscheme U ⊂ SpecA containing w such that f |[U/G] is affine.
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Proof. Set W = [SpecA/G] with π : W → SpecAG. Since f : W → X is quasi-finite
on an open subset U , then {π(w)} and π(W \ U) are disjoint closed subspaces and
choosing an affine open V ⊂ SpecAG \ π(W \ U) containing π(w), we may replace
W with π−1(V ) and we can assume that f : W → X is quasi-finite.

Choose a smooth presentation V = SpecB → X and consider the fiber product

WV
//

��

V = SpecB

��

W = [SpecA/G] // X .

□

Since X has affine diagonal, SpecB → X is affine and therefore WV is cohomo-
logically affine. As WV has quasi-finite diagonal, Proposition 6.3.32 implies that
WV → V is separated, and it follows from descent thatW → X is also separated and
that the relative inertia IW/X →W is finite. Since the fiber over w ∈ W is trivial,
there is an open neighborhood U over which the relative inertia is trivial. As in the
first paragraph, we may replace U with an open substack of the form [SpecC/G]
containing w. Since f |U : U → X is a representable and cohomologically affine
morphism, Serre’s Criterion for Affineness (6.3.17) implies that f |U is affine.

6.5.4 Equivariant Artin Algebraization
The smoothness hypothesis of x ∈ X was used above to establish that Tn ∼= Xn
and that U ×T T → X is étale. More critically, it implied that lim←−Γ(Xn,OXn),
which is identified with the Gx-invariants of a miniversal deformation space, is the
completion of a finitely generated k-algebra, namely ÔT,0. If x ∈ X is not smooth, it
seems difficult to directly establish that lim←−Γ(Xn,OXn

) is the completion of a finitely
generated k-algebra. Recall that we encountered a similar issue when discussing
Artin Algebraization (C.6.8). When the complete local ring R is known to be the
completion of a finitely generated algebra, then Artin Algebraization is an easy
consequence of Artin Approximation (see Remark C.6.9). To circumvent this issue
in our general proof of Artin Algebraization, we wrote R = ÔV,v/I where V is a
finite type k-scheme and used Artin Approximation to simultaneously approximate
both the given object over R and the equations defining I. We follow a similar
strategy but proceed G-equivariantly this time.

We will use the following extension of the notion of formal versality introduced in
Definition C.4.2: for an algebraic stack T̂ with a unique closed point t, a morphism
ξ̂ : T̂ → X of prestacks over Sch is formally versal at t if every commutative diagram

Z //� _

��

T̂

ξ̂

��

Z ′ //

??

X

has a lift, where Z ↪→ Z ′ is a closed immersion of noetherian algebraic stacks with
affine diagonal, |Z| = |Z ′| consists of a single point and the image of Z → T̂ is t.

Theorem 6.5.17 (Equivariant Artin Algebraization). Let k be an algebraically
closed field and R be a complete noetherian local k-algebra with residue field k. Let
T̂ = [SpecB/G] be an algebraic stack of finite type over R = BG, where G is linearly
reductive. Assume that the unique closed point t ∈ T̂ has stabilizer equal to G. If X
is a limit preserving prestack over Sch/k and η : T̂ → X is a morphism of prestacks
formally versal at t, then there exists

336



(1) an algebraic stack W = [SpecA/G] of finite type over k and a closed point
w ∈ W;

(2) morphisms f : W → X and φ : T̂ → W such that in the diagram

T̂
η

  

φ

��

W
f
// X

(6.5.18)

the induced morphisms φn : T̂n → Wn between the nth nilpotent thickenings
of t and w are isomorphisms, and there exists compatible 2-isomorphisms
ηn

∼→ fn ◦ φn.
Moreover, if X is an algebraic stack of finite type over k with affine diagonal, then

it can be arranged that (6.5.18) is commutative and that φ induces an isomorphism
T̂ → Ŵ :=W ×W Spec ÔW,π(w), where π : W →W = SpecAG.

Remark 6.5.19. If one takes G to be the trivial group, one recovers the classical
version of Artin Algebraization (C.6.8).

As in the proof of Theorem C.6.8, we will apply Artin Approximation to a
well-chosen integer N to construct W such that there are isomorphisms Wn

∼= T̂n
for n ≤ N and such that the Artin–Rees Lemma (B.5.4) implies that there are
also isomorphisms Wn

∼= T̂n for n > N . To get control over the constant in the
Artin–Rees Lemma, we need to generalize Definition C.6.3: for a noetherian algebraic
stack X with a closed point x defined by a a sheaf of ideals mx and an integer c ≥ 0,
we say that (AR)c holds at x for a map φ : E → F of coherent sheaves on X if

φ(E) ∩mnxF ⊂ φ(mn−cx E), ∀n ≥ c.

When X is a scheme, (AR)c holds for all sufficiently large c by the Artin–Rees Lemma,
and it even holds replacing {x} with a closed subscheme. By smooth descent, (AR)c
also holds for algebraic stacks for c≫ 0.

Proof. The morphism η : T̂ → X and the structure morphism T̂ → BG induce a
morphism T̂ → X ×BG. We let T̂ = SpecR be the GIT quotient of T̂ = [SpecB/G].
Since R is the colimit of its finitely generated k-subalgebras and X ×BG is limit
preserving, limit methods (§B.3) imply that there is a commutative diagram

T̂ //

��

,,

S //

��

X ×BG

��

T̂ // S //

□

Speck

where S = SpecR′ is an affine scheme of finite type over k, S is an algebraic stack
of finite type over S with affine diagonal such that T̂ = T̂ ×S S, and T̂ → X ×BG
factors as T̂ → S → X × BG. Moreover, we can arrange that S → BG is affine.
Let s̃ ∈ S and s ∈ S be the images of t. By possibly adding generators to R′ so
that R′ → R→ R/m2

R is surjective, we can arrange that ÔS,s → R is surjective by
Complete Nakayama’s Lemma (B.5.6(3)), or in other words that T̂ → Ŝ := Spec ÔS,s
is a closed immersion.
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Note that T̂ is a closed substack of S ×S Ŝ. By choosing a resolution O⊕r
Ŝ
→

OŜ ↠ R and pulling it back S ×S Ŝ, we obtain a resolution

ker(β)
α

↪−−→ O⊕r
S×S Ŝ

β−−→ OS×S Ŝ
↠ OT̂ . (6.5.20)

Consider the functor F : Sch/S → Sets assigning (U → S) to the set of isomor-
phism classes of complexes

L
α−→ O⊕r

S×SU

β−→ OS×SU

of finitely presented, quasi-coherent OS×SU -modules. By standard limit arguments,
F is limit preserving. The complex (6.5.20) defines an element (α, β) ∈ F (Ŝ) such
that coker(β) = OT̂ . Let N be an integer such that (AR)N holds for α and β at
(s̃, s).

Artin Approximation (B.5.18) gives an étale neighborhood (S′, s′)→ (S, s) and
an element (α′, β′) ∈ F (S′) such that (α, β) = (α′, β′) in F (OS,s/mN+1

s ). We let
W ↪→ S ×S S′ be the closed substack defined by coker(β′) and set w = (s̃, s′) ∈ W.
Letting Sn, S′

n and T̂n be the nth nilpotent thickenings of S, S′ and T̂ at the images
of t ∈ T , we have that T̂ ×T̂ T̂N and W ×S′ S′

N are equal as closed substacks of
S ×S SN . This gives (1)–(2) for n ≤ N . In particular, we have an isomorphism
φN : T̂N →WN and we let ψN : WN → T̂N be its inverse.

Using that η : T̂ → X is formally versal, we can inductively find compatible lifts
for n ≥ N

Wn
ψn //

� _

��

T̂

η

��

Wn+1
//

ψn+1

77

X .

On the other hand, applying Lemma C.6.4 (generalized to stacks by smooth descent)
on S ×S Ŝ with c = N to the complex (6.5.20) and the restriction of the complex
defined by (α′, β′), we obtain an isomorphism Grmt

OT̂
∼= Grmw

OW of graded OBG-
modules. By Lemma 6.5.15, the induced morphisms ψn : Wn → T̂n are isomorphisms
for all n. As T̂ is coherently complete (Theorem 6.4.12), Coherent Tannaka Duality
(6.4.9) implies that the inverses φn = ψ−1

n : T̂n → Wn effectivize to a morphism
φ : T̂ → W. This completes (1)–(2).

For the final statement, when X is algebraic, we again apply Coherent Tannaka
Duality, using the coherent completeness of both T̂ and W. By applying Corol-
lary 6.4.9 to the inverses ψn = φ−1

n , we can construct an inverse ψ : Ŵ → T̂ of φ.
Thus φ : T̂ → Ŵ is an isomorphism. Using the fully faithfulness of Corollary 6.4.9,
there is a 2-isomorphism η → f ◦φ extending the given 2-isomorphisms ηn

∼→ fn ◦φn
and thus T̂ → Ŵ is a morphism over X .

6.5.5 Proof of the Local Structure Theorem—general case
Proof of Theorem 6.5.1. We may assume that x ∈ X is a closed point. Let T :=
[TX ,x/Gx], let π : T → T = TX ,x//Gx be the morphism to the GIT quotient, and let
T̂ := Spec ÔT,π(0) ×T T . Let T0 = BGx be the closed substack supported at the
origin and Tn its nth nilpotent thickenings.

We will construct compatible closed immersions Xn ↪→ Tn. Since Gx is linearly
reductive, X0 = BGx is cohomologically affine. By deforming the principalGx-bundle
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Speck→ X0 using Proposition 6.5.12, we can inductively construct isomorphisms
Xn ∼= [SpecAn/Gx]. By the deformation theory of the smooth and affine morphism
T̂ → BGx (Proposition 6.5.10), we can inductively find lifts

Xn� _

��

// T

��

Xn+1

;;

// BGx.

As in the smooth case, X1 → T1 is an isomorphism. By Lemma 6.5.15(1), each
morphism Xn → Tn is a closed immersion.

If In denotes the ideal sheaf defining Xn ↪→ Tn, then OTn
/In is a system of

coherent OTn
-modules. Since T̂ is coherently complete (Theorem 6.4.12), there

exists a coherent sheaf of ideals I ⊂ OT̂ such that the surjection OT̂ → OT̂ /I

extends the surjections OTn
→ OXn

. The closed immersion X̂ ↪→ T̂ defined by I
extends the given closed immersions Xn ↪→ Tn yielding a commutative diagram

Xn� _

��

� � //
((X̂� _

��

η
// X

Tn �
�

// T̂ //

��

T

��

Spec ÔT,0 //

□

T.

of solid arrows. Since X̂ is also coherently complete, Coherent Tannaka Duality
(6.4.9) gives a morphism η : X̂ → X extending the above diagram. Since X̂ has the
same nilpotent thickenings of X̂ , the morphism η : X̂ → X is formally versal at 0.
By Equivariant Artin Algebraization (6.5.17) with G = Gx, we obtain a morphism
f : W = [SpecB/Gx]→ X from an algebraic stack W of finite type over k with a
closed point w ∈ W and a morphism φ : X̂ → W over X inducing an isomorphism
X̂ → W ×W Spec ÔW,π(w) where π : W → SpecBGx . Since f : W → X induces
isomorphisms Wn → Xn, f is étale at w. After replacing W with an open substack,
we can arrange that f is étale everywhere. By Proposition 6.5.16, we can also
arrange that f is affine.

See also [AHR20, AHR19, AHLHR22].

6.5.6 The coherent completion at a point
We say that (X , x) is a complete local stack if X is a noetherian algebraic stack with
affine stabilizers and with a unique closed point x such that X is coherently complete
along the residual gerbe Gx. An important example is ([SpecA/G], x) where G is
linearly reductive over an algebraically closed field k, AG is a complete noetherian
local k-algebra with residue field k, A is of finite type over R, and the unique closed
point x is fixed by G (Theorem 6.4.12). For instance, ([An/Gm], 0) is complete local.

The coherent completion of a noetherian algebraic stack X at a point x is a
complete local stack (X̂x, x̂) together with a morphism η : (X̂x, x̂)→ (X , x) inducing
isomorphisms of nth infinitesimal neighborhoods of x̂ and x. If X has affine stabilizers,
then the pair (X̂x, η) is unique up to unique 2-isomorphism by Coherent Tannaka
Duality (6.4.9).
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Theorem 6.5.21. Let X be an algebraic stack of finite type over an algebraically
closed field k with affine diagonal. For every point x ∈ X (k) with linearly reductive
stabilizer Gx, the coherent completion X̂x exists. Moreover,

(1) The coherent completion is a quotient stack X̂x = [SpecB/Gx] such that the
invariant ring BGx is the completion of a finite type k-algebra and BGx → B
is of finite type.

(2) Let f : (W, w) → (X , x) be an étale morphism where W = [SpecA/Gx], the
point w ∈ |W| is closed, and f induces an isomorphism of stabilizer groups
at w. Then X̂x =W ×W Spec ÔW,π(w), where π : W →W = SpecAGx is the
morphism to the GIT quotient.

(3) If π : X → X is a good moduli space, then X̂x = X ×X Spec ÔX,π(x).

Proof. The Local Structure Theorem (6.5.1) gives an étale morphism f : (W, w)→
(X , x), whereW = [SpecA/Gx] and f induces an isomorphism of stabilizer groups at
the closed point w. The main statement and Parts (1) and (2) follow by taking X̂x =

W×W Spec ÔW,π(w) and B = A⊗AGx ÂGx . Indeed, X̂x = [SpecB/Gx] is coherently
complete by Theorem 6.4.12. Part (3) follows from (2) using Corollary 6.5.3.

We have the following stacky generalization of the fact that completions determine
the étale local structure of finite type schemes (Corollary B.5.21).

Theorem 6.5.22. Let X and Y be algebraic stacks of finite type over an algebraically
closed field k with affine diagonal. Suppose x ∈ X and y ∈ Y are k-points with linearly
reductive stabilizer group schemes Gx and Gy, respectively. Then the following are
equivalent:

(1) There exist compatible isomorphisms Xn → Yn.
(2) There exists an isomorphism X̂x → Ŷy.
(3) There exist an affine scheme SpecA with an action of Gx, a point w ∈ SpecA

fixed by Gx, and a diagram of étale morphisms

[SpecA/Gx]

f

yy

g

%%
X Y

such that f(w) = x and g(w) = y, and both f and g induce isomorphisms of
stabilizer groups at w.

If, in addition, the points x ∈ X and y ∈ Y are smooth, then the conditions above
are equivalent to the existence of an isomorphism Gx → Gy of group schemes and an
isomorphism TX ,x → TY,y of tangent spaces which is equivariant under Gx → Gy.

Proof. The implications (3)⇒(2)⇒(1) are immediate. We also have (1)⇒(2) by Co-
herent Tannaka Duality (6.4.9) To show that (2)⇒(3), let (W = [SpecA/Gx], w)→
(X , x) be an étale neighborhood as given by the Local Structure Theorem (6.5.1).
Let π : W → W = SpecAGx denote the good moduli space. Then X̂x = W ×W
Spec ÔW,π(w). The functor

F : Sch /W → Sets, (T →W ) 7→ Hom(W ×W T,Y)

is locally of finite presentation. Artin Approximation (B.5.18) applied to F and
α ∈ F (Spec ÔW,π(w)) provides an étale morphism (W ′, w′)→ (W,w) and a morphism
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φ : W ′ := W ×W W ′ → Y such that φ|W′
1
: W ′

1 → Y1 is an isomorphism. Since
Ŵ ′

w′ ∼= X̂x ∼= Ŷy, it follows that φ induces an isomorphism Ŵ ′ → Ŷ by Lemma 6.5.15.
After replacing W ′ with an open neighborhood, we thus obtain an étale morphism
(W ′, w′) → (Y, y). The final statement is clear from Luna’s Etale Slice Theorem
(6.5.4).

6.5.7 Applications to equivariant geometry

Sumihiro’s Theorem on Torus Action (B.1.30) asserts that for a normal scheme of
finite type over k with the action of a torus T , every k-point has a T -invariant affine
open neighborhood. If X is not normal, there are not necessarily T -invariant affine
open neighborhoods, e.g., consider nodal cubic X equipped with a Gm-action near
its node x ∈ X. However, there is always a T -equivariant affine étale neighborhood.

Theorem 6.5.23. Let X be an algebraic space locally of finite type over an alge-
braically closed field k with affine diagonal. Suppose that X has an action of an affine
algebraic group G. If x ∈ X(k) has linearly reductive stabilizer, then there exists a
G-equivariant étale neighborhood (SpecA, u)→ (X,x) inducing an isomorphism of
stabilizer groups at u.

If G is a torus, then every point has a G-invariant étale neighborhood (SpecA, u)→
(X,x) inducing an isomorphism of stabilizer groups at u.

Proof. By the Local Structure Theorem (6.5.1), there is an étale neighborhood
([SpecA/Gx], u)→ ([X/G], x) such that w is a closed point and f induces an isomor-
phism of stabilizer groups at w. By Proposition 6.5.16, after replacing SpecA with
a Gx-invariant open affine neighborhood of w, we can arrange that the composition
[SpecA/Gx]→ [X/G]→ BG is affine. Therefore, W := [SpecA/Gx]×[X/G]X is an
affine scheme and W → X is a G-equivariant étale neighborhood of x.

When G is a torus, then any subgroup of G and in particular each stabilizer
group is linearly reductive.

6.6 Gm-actions, one-parameter subgroups, and fil-
trations

We show that the fixed locus of a linearly reductive group action on a smooth variety
is smooth (Theorem 6.6.2) and prove the representability and properties of the
attractor locus with respect to a Gm-action (Theorem 6.6.8). After establishing
a general version of the Białynicki-Birula Stratification (Theorem 6.6.13), we dis-
cuss applications to computing cohomology (§6.6.18). The Cartan Decomposition
(Theorem 6.6.30) is used to prove the Destabilization Theorem (Theorem 6.6.35),
which will be used to prove the Hilbert–Mumford Criterion in the next section.
Finally, we interpret maps from Θ = [A1/Gm] into quotient stacks as the data of a
one-parameter subgroup and a point whose limit exists (Proposition 6.6.39) and into
a stack of coherent sheaves as a filtration of a vector bundle (Proposition 6.6.43).
Many of these results will be useful for the development of both Geometric Invariant
Theory in §6.7 and the existence of good moduli spaces in §6.8.
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6.6.1 Fixed loci
Definition 6.6.1 (Fixed locus). If X is an algebraic space over a field k equipped
with an action of an affine algebraic group G, we define the fixed locus as the functor

XG := MorG(Speck, X) : Sch/k→ Sets

assigning a k-scheme S to the set of G-equivariant maps from S to X, where S is
endowed with the trivial G action.

Theorem 6.6.2. Let X be an algebraic space of finite type over an algebraically
closed field k with affine diagonal equipped with an action of a linearly reductive
algebraic group G. Then

(1) The fixed locus XG is represented by a subscheme of X;
(2) If G is a torus, then XG is a closed subscheme.
(3) If X is smooth, so is XG.

Proof. If G is connected and U → X is a G-invariant étale morphism, we claim that

UG
� � //

��

U

��

XG �
�

// X

□ (6.6.3)

is cartesian. Indeed, suppose S → U is a map such that S → U → X is G-invariant.
Let US → S be the base change of U → X by S → X. Since US → S is G-invariant,
it suffices to show that the section j : S → US is G-invariant. As U → X is étale,
j : S → US is an open immersion. Because G is connected, for each point s ∈ S, the
G-orbit Gj(s) ⊂ US is connected and thus contained in S.

For (1), given a fixed point x ∈ XG(k), Theorem 6.5.23 produces a G-invariant
étale neighborhood (U, u)→ (X,x) with U affine and u ∈ UG(k). If G is connected,
then UG → XG is étale and representable by (6.6.3). Thus it suffices to show that
UG is representable. Since U is affine, we can choose a G-equivariant embedding
U ↪→ A(V ) into a finite dimensional G-representation. In this case, A(V )G = A(V G)
and thus UG = U ∩A(V )G is representable. In general, let G0 ⊂ G be the connected
component of the identity, and let g1, . . . , gn ∈ G(k) be representatives of the finitely
many cosets G(k)/G0(k). Then G/G0 acts on XG0 and XG =

⋂
i(X

G0)gi , where
(XG0)gi is identified with the fiber product of the diagonal XG → XG ×XG and
the map XG → XG ×XG given by x 7→ (x, gx).

For (2), every subgroup of G is linearly reductive and Theorem 6.5.23 therefore
produces a G-invariant étale surjective morphism U → X from an affine scheme. As
G is connected, the argument above shows that UG ↪→ U is a closed immersion and
thus by étale descent so is XG ↪→ X.

For (3), if x ∈ XG(k), there is a G-invariant étale morphism (U, u) → (X,x)
from an affine scheme and a G-invariant étale morphism U → TU,u as in the proof
of Luna’s Étale Slice Theorem (see (6.5.8)). Since TGU,u is a linear subspace, it is
smooth. Since UG → XG and UG → TGU,u are étale at u, the statement follows from
étale descent. See also [Ive72, Prop. 1.3] and [Mil17, Thm. 13.1].

6.6.2 Limits under Gm-actions and attractor loci
Definition 6.6.4 (Limits). Given a Gm-action on an algebraic space X over a field
k and a point u ∈ U(k), we say that the limit limt→0 t · u exists if there exists an
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extension of the diagram

Gm
t 7→t·u //

� _

��

U

A1

88

The valuative criteria for separatedness and properness imply that the limit is
unique if X is separated and that there is always a unique limit if X is proper.

Definition 6.6.5 (Attractor locus). Let X be a separated algebraic space of finite
type over k equipped with an action of Gm. Define the attractor locus as the functor

X+ := MorGm(A1, X) : Sch/k→ Sets

assigning a k-scheme S to the set of Gm-equivariant maps from S × A1 to X, where
Gm acts trivially on S and with the usual scaling action on A1

Evaluation at 0 defines a morphism of functors

ev0 : X
+ → XGm .

On k-points, X+(k) is the set of points x ∈ X(k) such that limt→0 t · x exists, and
ev0(x) is this limit. Since X is separated, the limit is unique if it exists. If X is
proper, the limit always exists and X+(k) = X(k). The functorial definition of X+

endows it with an interesting scheme-structure, e.g., when Gm acts on X = P1 via
t · [x : y] = [tx : y], then X+ = A1

∐
{∞}.

Exercise 6.6.6 (Affine case). If X = SpecA is affine, then the Gm-action induces a
grading A =

⊕
d∈A Ad. Show that the functors XGm and X+ are representable by

the closed subschemes of X defined by the ideals
∑
d̸=0Ad and

∑
d<0Ad.

Example 6.6.7 (Centralizers and parabolics). Let G be an affine algebraic group
over an algebraically closed field k. A one-parameter subgroup λ : Gm → G induces
a Gm-action on G via conjugation t · g := λ(t)gλ(t)−1. Under this action, the
fixed locus GGm = Cλ is identified with the centralizer of λ and the attractor locus
G+
λ = Pλ is identified with the subgroup consisting of elements g ∈ G such that

limt→0 λ(t)gλ(t)
−1 exists. The unipotent subgroup Uλ is identified with kernel of

ev0 : Pλ → Cλ. When G is reductive, Pλ ⊂ G is a parabolic subgroup or in other
words G/Pλ is projective. See §B.1.3 for more properties of these subgroups.

We say that a map X → Y is an affine fibration (resp., Zariski-local affine
fibration) if there exists an étale (resp., Zariski) cover {Yi → Y } such that X×Y Yi ∼=
AnYi

over Yi. Since the transition functions are not required to be linear, this notion
is more general than a vector bundle.

Theorem 6.6.8. Let X be a separated algebraic space of finite type over an alge-
braically closed field k equipped with an action of Gm. The functor X+ is repre-
sentable by an algebraic space of finite type over k and ev0 : X

+ → XGm is an affine
morphism.

Assume in addition that X is smooth (resp., smooth scheme). Then XGm

is also smooth and ev0 : X
+ → XGm is an affine fibration (resp., Zariski-local

affine fibration). If x ∈ XGm and TX,x = T>0 ⊕ T0 ⊕ T<0 is the Gm-equivariant
decomposition into nonnegative, zero, and positive weights, then TXi,x = T0 ⊕ T>0,
TFi,x = T0, and Xi → Fi has relative dimension dimT>0.
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Proof. If X = SpecA is affine, then XGm and X+ are closed subschemes of X
(Exercise 6.6.6). In the special case that X = A(V ) where V is a finite dimensional
G-representation, then XGm = A(V G) and X+ = A(V≥0) where V≥0 is the direct
sum of the non-negative isotypic components, and moreover ev0 : X

+ → XGm is a
relative affine space.

We claim that if U → X is a Gm-invariant étale morphism, then the diagram

U+ ev0 //

��

UGm �
�

//

��

U

��

X+ ev0 // XGm �
�

//

□

X

□ (6.6.9)

is cartesian. The right square was verified in the proof of Theorem 6.6.2. For the
left square, we need to show that there exists a unique Gm-equivariant morphism
filling in a Gm-equivariant diagram

Speck× S //

��

U

��

A1 × S //

::

X

(6.6.10)

where S is an affine scheme of finite type over k, and the vertical left arrow is the
inclusion of the origin. For each n ≥ 1, the formal lifting property of étaleness yields
a unique Gm-equivariant map Spec k[x]/xn × S → U such that

Speck× S //

��

U

��

Spec(k[x]/xn)× S //

77

X

commutes. As [A1/Gm]× S is coherently complete along BGm,S (Exercise 6.4.23),
Coherent Tannaka Duality in the form of Exercise 6.4.11 yields a unique Gm-
equivariant morphism A1 × S → U such that (6.6.10) commutes.

Choose a Gm-invariant étale surjective morphism U → X from an affine scheme
(Theorem 6.5.23). Then (6.6.9) implies that U+ → X+ is etale and representable,
and since U+ is an affine scheme of finite type, it follows that X+ is an algebraic space
of finite type. Since U+ → UGm is affine, étale descent implies that X+ → XGm is
also affine.

If X is smooth, then XGm is smooth by Theorem 6.6.2. As U is also smooth,
for each u ∈ UGm(k), there is a Gm-equivariant morphism U → TU,u étale at u with
f(u) = 0 (Lemma 6.5.7). Then U+ → T+

U,u is also étale at u. Let V ⊂ U be the
open locus where U+ → T+

U,u is étale. Since V is Gm-equivariant, if v ∈ V Gm , then
ev−1

0 (v) ⊂ V . Choosing an affine subscheme V ′ ⊂ V Gm containing u and replacing
U+ with ev−1

0 (V ′), we may assume that U+ → T+
U,u is everywhere étale. By (6.6.9),

we have a cartesian diagram

T+
U,u

��

U+oo //

��

X+

��

TGm

U,u UGmoo //

□

XGm

□ (6.6.11)
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where the horizontal arrows are étale. With TX,x = T>0 ⊕ T0 ⊕ T<0, there are
identifications TGm

X,x = T0 and T+
X,x = T>0 ⊕ T0. Since T+

U,u → TGm

U,u a surjection
of vector spaces, U → UGm is a Zariski-local affine fibration. By étale descent,
X → XGm is an affine fibration of relative dimension dimT>0.

If X is a smooth scheme, then by Sumihiro’s Theorem on Torus Actions (B.1.30),
we may choose U =

∐
i Ui → X such that {Ui} is a Gm-invariant affine open covering.

Then (6.6.11) implies that X+ → XGm is a Zariski-local affine fibration.
See also [Dri13, Prop. 1.2.2, Thm. 1.4.2] and [AHR20, Thm. 5.16].

Remark 6.6.12. Another approach to establish the algebraicity of X+ in Theo-
rem 6.6.8 is to show that the stack Mor([A1/Gm],X ), whose objects over a k-scheme
S are morphisms [A1/Gm]S → X , is algebraic when X has affine diagonal. This can
be shown by verifying Artin’s Axioms (C.7.4) where the crucial step is to verify
the effectivity condition (AA5): this follows from the coherent completeness of
[A1/Gm]R, where R is a noetherian local k-algebra, along the unique closed point
(Theorem 6.4.12) together with Coherent Tannaka Duality (6.4.9).

When X = [X/Gm], then a Gm-equivariant morphism A1 → X corresponds to a
morphism [A1/Gm]→ [X/Gm] over BGm (Exercise 3.1.16), and there is a cartesian
diagram

MorGm(A1, X) //

��

Mor([A1/Gm], [X/Gm])

��

Speck // Mor([A1/Gm], BGm).

□

The algebraicity of the stacks of morphisms implies that MorGm(A1, X) is an algebraic
space.

6.6.3 The Białynicki-Birula Stratification

Theorem 6.6.13 (Białynicki-Birula Stratification3). Let X be a separated algebraic
space of finite type over an algebraically closed field k with an action of Gm. Let
XGm =

∐n
i=1 Fi be the fixed locus with connected components Fi. There exists an

affine morphism Xi → Fi for each i and a monomorphism
∐
iXi → X. Moreover,

(1) If X is proper, then
∐
iXi → X is surjective.

(2) If X is smooth (resp., smooth scheme), then Fi is smooth and Xi → Fi is a
(resp., Zariski-local) affine fibration. If x ∈ Fi and TX,x = Tx,>0⊕Tx,0⊕Tx,<0 is
the Gm-equivariant decomposition into nonnegative, zero, and positive weights,
then TXi,x = Tx,>0 ⊕ Tx,0, TFi,x = Tx,0, and Xi → Fi has relative dimension
dimTx,>0.

(3) The map Xi ↪→ X is a locally closed immersion under any of the following
conditions:

(a) X is affine,
(b) X is a smooth scheme, or
(c) there exists a Gm-equivariant locally closed immersion X ↪→ P(V ) where

V is a Gm-representation (e.g.„ X is a normal quasi-projective variety).
3This is frequently referred to as the ‘Białynicki-Birula Decomposition’ as some authors prefer

to reserve the term ‘stratification’ to a decomposition where each stratum has a neighborhood
which is topologically locally trivial.
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(4) If X is smooth, irreducible, and quasi-projective, then the stratification X+ =∐
iXi is filterable, i.e., there is an ordering of the indices such that X≥i :=⋃
j≥iXj is closed for each i. If in addition there are finitely many fixed

points {x1, . . . , xn}, then Txi,0 = 0 and Xi = A(Txi,>0) is an affine space; in
particular,

X+ = X≥1 ⊃ X≥2 ⊃ · · · ⊃ X≥n ⊃ ∅
is a cell decomposition, i.e., each X≥i \X≥i−1 = Xi is an affine space.

Proof. By Theorem 6.6.8, X+ is representable and there is affine morphism ev0 : X
+ →

XGm of finite type. We define Xi as the preimage ev−1
0 (Fi). Since X is separated,

the inclusion X+ ↪→ X is a monomorphism. This gives the main statement. If X is
proper, then X+ → X is surjective (i.e., (1) holds) as limt→0 t · x exists for every
x ∈ X(k). Statement (2) follows directly from Theorem 6.6.8.

For (3), if X = SpecA and A =
⊕

dAd is the grading induced by the Gm-action,
then X+ is the closed subscheme defined by the ideal

∑
d<0Ad (Exercise 6.6.6) and

in particular affine. If X is a smooth scheme, then there exists a Gm-invariant affine
open cover (Theorem B.1.29). For any point x ∈ X+, let x0 be the image of x under
ev0 : X

+ → X0, and choose a Gm-invariant affine open neighborhood U ⊂ X of x0.
This induces a diagram

U+ �
�

//� r

$$

ev−1
1 (U) //
� _

��

U� _

��

X+ ev1 // X.

(6.6.14)

Since U+ → U is a closed immersion (as U is affine) and X+ → X is separated (it is a
monomorphism), U+ → ev−1

1 (U) is a closed immersion. Since U+ = X+×X0U0 (see
(6.6.9)), x ∈ U+ and U+ → X+ is an open immersion. In particular, U+ ⊂ ev−1

1 (U)
is an open and closed subscheme containing x. On the other hand, Xi is smooth
and connected (as Xi → Fi is an affine fibration), thus irreducible. It follows that
Xi ∩ U+ = Xi ∩ ev−1

1 (U) and that Xi ∩ ev−1
1 (U)→ U is a closed immersion which

in turn implies that Xi → X is a locally closed immersion. The final case (3)(c)
easily reduces to the case of X = P(V ) in which a direct calculation shows that each
Xi is of the form P(W ) \ P(W ′) for linear subspaces W ′ ⊂W ⊂ V . See also [BB73,
Thm. 4.1], [Hes81, Thm. 4.5,p. 69], [Dri13, Thm. B.0.3], [AHR20, Thm. 5.27], and
[?, Thm. 1.5].

For (4), by Sumihiro’s Theorem on Linearizations (B.1.29), we can choose
a G-equivariant locally closed immersion X ↪→ Pn, where Gm acts on Pn via
t · [x0 : . . . : xn] = [td0x0 : . . . : tdnxn] with d0 ≤ · · · ≤ dn. Let D1, . . . , Ds be the
distinct weights and set Ji = {j | dj = Di} so that J1 ∪ · · · ∪ Js is a partition of
{0, 1, . . . , n}. Then (Pn)Gm =

⊔s
i=1 Fi where Fi = V (xj | j ∈ Ji). The preimage of

Fi under the morphism ev0 : Pn → (Pn)Gm , given by p 7→ limt→0 t · p, is

Pi := ev−1
0 (Fi) =

{
[x0 : . . . : xn]

∣∣∣∣ xj = 0 for all j ∈ J1 ∪ · · · ∪ Ji−1

xk ̸= 0 for some k ∈ Ji

}
,

Moreover, the union

P≥i :=
⋃
j≥i

Pj = V (xk | k ∈ J1 ∪ · · · ∪ Ji−1) ⊂ Pn

is closed. The fixed locus for X is XGm = (Pn)Gm ∩X =
∐
i Fi ∩X. For each i, we

write Fi ∩X =
∐li
j=1 Fij and Pi ∩X =

∐li
j=1Xij as the irreducible decompositions.
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Then ev0 : Pn → (Pn)Gm restricts to morphisms ev0 : Xij → Fij . For j ̸= k, the
strata Xij and Xik are disjoint, and thus Xij ∩Xik ⊂ P≥i+1 ∩X. It follows that

(P≥i+1 ∩X) ∪Xi1 ∪ · · · ∪Xij ⊂ X

is closed for each j = 1, . . . , s. Ordering the strata as X11, . . . , X1l1 , . . . , Xs1, . . . , Xsl

establishes the claim. See also [Bir76, Thm. 3].

Remark 6.6.15. It is not true in general that Xi ↪→ X is a locally closed immersion.
Based on Hironaka’s example of a proper, non-projective, smooth 3-fold, Sommese
constructed a smooth algebraic space X such that Xi ↪→ X is not a locally closed
immersion [Som82]. On the other hand, Konarski provided an example of a normal
proper toric variety X such that Xi ↪→ X is not a locally closed immersion [Kon82].

Remark 6.6.16 (Morse stratifications). The Białynicki-Birula stratification of X
can be obtained as the Morse stratification corresponding to the non-degenerate
Morse function µ : X → Lie(S1)∨ = R: a point x ∈ X lies in Xi if only if the limit
of its forward trajectory under the gradient flow of µ lies in Fi. See [CS79].

Example 6.6.17. Suppose Gm acts on X = P2 via t · [x : y : z] = [x : ty : t2].
Then XGm = F1

∐
F2

∐
F3 where F1 = {[1 : 0 : 0]}, F2 = {[0 : 1 : 0]}, and

F3 = {[0 : 0 : 1]}, and X1 = {x ≠ 0} = A2, X2 = {[0 : y : z] | y ̸= 0} = A1 and
X3 = F3.

Let X̃ be the blowup BlpX at the fixed point p = [0 : 1 : 0]. Then Gm acts on the
exceptional divisor E ∼= P1 via t · [u : v] = [u : t2v] with fixed points q1 = [1 : 0] and
q2 = [0 : 1]. The fixed locus X̃Gm contains four points F̃1 = {[1 : 0 : 0]}, F̃2 = {q1},
F̃3 = {q2}, and F̃4 = {[0 : 0 : 1]}. We have that X̃1 = X1

∼= A2, X̃2 = X2
∼= A1 ,

X3 = E \ {q2} ∼= A1, and X̃4 = X4 = F̃4 as illustrated in Figure 6.1. Observe that
X3 \X3 = {q2} is not the union of other strata.

Figure 6.1: Białynicki-Birula stratifications for P2 (left) and Blp P2 (right).

6.6.4 Applications of the Białynicki-Birula Stratification to
cohomology

Proposition 6.6.18. Let X be a smooth, irreducible, and quasi-projective scheme
over an algebraically closed field k with an action of Gm such that there are only
finitely many fixed points. Then Ai(X) is a free Z-module generated by the closures
of the i-dimensional cells. If in addition k = C, then the cycle map CHi(X) →
HBM

2i (X,Z) to Borel–Moore homology is an isomorphism and HBM
2i+1(X,Z) = 0.
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Remark 6.6.19. When X is compact (e.g., projective), then HBM
2i (X,Z) is ordinary

integral singular homology.

Proof. The Białynicki-Birula Stratification (6.6.13(4)) implies that X has a cell
decomposition, and the statement follows from [Ful98, Ex. 19.1.11]. See also [Bri97,
§3.2].

Example 6.6.20 (Chow groups of Hilbn(A2)). Let X = Hilbn(A2) be the Hilbert
scheme of n points; this is a smooth irreducible scheme (see 1.5.3). The natural
action of T = G2

m induces a T -action on X. Under the Gm-action induced by a
one-parameter subgroup Gm → T given by positive weights, the evaluation map
ev0 : X

+ → X is surjective, and the Gm-fixed points correspond to subschemes
Z = V (I) ⊂ A2 supported at the origin where I is a monomial ideal. We see that
there are only finitely many Gm-fixed points. We may therefore use Proposition 6.6.18
to compute CH∗(X).

For a monomial ideal I ⊂ R := k[x, y], for each integer i, define

ai := min{j | xiyj ∈ I}

and let r be the largest integer such that ar > 0. Then a0 ≥ . . . ≥ ar is a partition of
n and I = (ya0 , xya1 , . . . , xr+1). We need to compute the dimension of the positive
weight space TI,>0 of the Gm-action on the tangent space

TI = HomR(I,R/I)

of X at the monomial ideal I; see Exercise 1.5.5 for the identification of the tangent
space. To accomplish this, we first argue that

TI =
∑

0≤i≤j≤r

aj−1∑
s=aj+1

(χi−j−1
1 χai−s−1

2 + χj−i1 χs−ai2 ), (6.6.21)

as T = G2
m representations, where χi : T → Gm denotes the one-dimensional repre-

sentation giving by (t1, t2) 7→ t−1
i . There are∑

0≤i≤j≤r

2(aj − aj+1) = 2
∑

0≤i≤r

ai = 2n = dimTI

one-dimensional representations appearing on the right-hand side, and they are
linearly independent. It thus suffices to show that each of them occurs in TI . An
R-module map ϕ : I → R/I is given by the values ϕ(xiyai) subject to the relations

ϕ(xi+1yai) = xϕ(xiai) and ϕ(xiyai−1) = yai−1−aiϕ(xiai).

Let 0 ≤ i ≤ j ≤ r and aj+1 ≤ s < aj . Defining

ϕi,j,s : I → R/I, xlyal 7→
{
xl+j−iyal+s−ai if l ≤ i
0 otherwise

ψi,j,s : I → R/I, xlyal 7→
{
xl+i−j−1yal+s−ai if l ≥ j + 1
0 otherwise,

one checks that ϕi,j,s and ψi,j,s are R-module maps that are eigenvectors for
χj−i1 χs−ai2 and χi−j−1

1 χai−s−1
2 . Thus (6.6.21) holds.
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Choose λ = (λ1, λ2) : Gm → T with λ1 ≫ λ2. Under our sign conventions, a
character χa1χb2 appearing in (6.6.21) has positive weight with respect to λ if a < 0,
or if a = 0 and b < 0. Thus

TI,>0 =
∑

0≤i≤j≤r

aj−1∑
s=aj+1

χi−j−1
1 χai−s−1

2 +

r∑
j=0

aj−1∑
s=aj+1

χj−i1 χs−ai2

and

dimTI,>0 =

( r∑
i=0

r∑
j=i

(aj − aj+1)

)
+

( r∑
j=0

(aj − aj+1)

)

=

( r∑
i=0

ai

)
+ a0 = n+ a0

Since there is a bijection between monomial ideals I ⊂ R = k[x, y] with dimkR/I = n
and partitions a0 ≥ · · · ≥ ar of n, for every d ≥ 0, the number of monomial ideals I
such that dimTI,>0 = d is equal to

P (2n− d, d− n) := # {partitions a1 ≥ · · · ≥ ar of 2n− d with each ai ≤ d− n}.
(6.6.22)

It follows from Proposition 6.6.18 that

dimCHd(Hilbn(A
2))Q = P (2n− d, d− n).

See also [ESm87, Thm. 1.1] and [Göt94, §2.2].

Exercise 6.6.23 (Chow groups of Hilbn(P2)). Follow the above strategy to show
that the dth Betti number bd of Hilbn(P2) (or equivalently dimCHd(Hilbn(P2))) is
equal to

bd =
∑

n0+n1+n2=n

∑
p+r=d−n1

P (p, n0 − p)P (n1)P (2n2 − r, r − n2),

where P (a) is the number of partitions of a and P (a, b) is defined by (6.6.22).

Remark 6.6.24. Göttsche used the Weil conjectures in [Göt90, Thm. 0.1] (see also
[Göt94, Thm. 2.3.10]) to show that for any smooth projective surface S over C or Fq
that the Poincaré polynomial p(S[n], z) =

∑
i bi(S

[n])zn of S[n] := Hilbn(S) satisfies
∞∑
n=0

p(S[n], z)tn =

∞∏
m=1

(1 + z2m−1tm)b1(S)(1 + z2m+1tm)b3(S)

(1− z2m−2tm)b0(S)(1− z2mtm)b2(S)(1− z2m+2tm)b4(S)

In particular, the Betti numbers of S[n] only depend on the Betti numbers of S. While
each term p(S[n], z) does not admit a particularly nice expression, the generating
function involving all n does.

On the other hand, Nakajima constructed an action of the Heisenberg algebra
on H∗(S

[n]), which can be used to recover the Betti number formula above as well
as additional properties of the cohomology ring [Nak97] (see also [Nak99b]).

We can also use the Białynicki-Birula Stratification to compute equivariant Chow
rings CH∗

G(X) (or equivalently the Chow ring CH∗([X/G]) of the quotient stack)
as introduced in §6.1.7. The following statements can also be made in de Rham or
singular cohomology (§6.1.8) where instead of the excision sequence above, one uses
the Thom–Gysin long exact sequence.

We will use the following two lemmas, which we state in a generality that we
can also apply to the HKKN stratification of §6.7.6.
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Lemma 6.6.25. Let X be a smooth irreducible scheme over an algebraically closed
k with an action of a smooth affine algebraic group G. Let S1, . . . , Sr ⊂ X be
nonempty, disjoint, smooth, irreducible, and locally closed G-invariant subschemes
such that X =

∐
i Si and such that S≥i :=

⋃
j≥i Sj is closed for each i. Let di be

the codimension of Si in X. If the top Chern class cGdi(NSi/X) ∈ CH∗
G(Si)Q is a

nonzerodivisor for each i, then

dimCHkG(X)Q =

r∑
i=1

dimCHk−diG (Si)Q

for each k.

Proof. By assumption, S≤i =
⋃
j≤i Sj is open for each i, and Si ⊂ S≤i is a closed

subscheme with open complement S<i. We have a commutative diagram

CHk−diG (Si) //

&&

CHkG(S≤i) //

��

CHkG(S<i) // 0

CHkG(Si)

where the top row is the right exact excision sequence (6.1.33(3)) and the vertical
downward arrow is given by intersecting with Si. By the self-intersection formula
(6.1.33(5)), the composition CHk−diG (Si)→ CHkG(Si) is multiplication by cGdi(NSi/X).
By hypothesis, this map is injective after tensoring with Q. It follows that the top
row is an exact sequence after tensoring with Q, and that

dimCHkG(S≤i)Q = dimCHk−diG (Si)Q + dimCHkG(S<i)Q.

The formula follows from induction. See [AB83, Prop. 1.9].

Remark 6.6.26. If [Si/G] is Deligne–Mumford, then CHkG(Si) vanishes for k ≫ 0
and cGdi(NSi/X) is a zero divisor.

The following gives a condition for the top Chern class to be a nonzerodivisor.

Lemma 6.6.27. Let X be a smooth irreducible scheme over an algebraically closed
k with an action of a connected, smooth, and affine algebraic group G, and let N
be a G-equivariant vector bundle of rank d on X. Suppose that there is a subgroup
Gm ⊂ G acting trivially on X and a point x ∈ X(k) such that N ⊗ κ(x) contains no
Gm-invariant vectors. Then cGd (N) ∈ CH∗

G(X)Q is a nonzerodivisor.

Proof. Choose a maximal torus T containing Gm and a character T → Gm such
that the composition Gm ↪→ T → Gm is given by t 7→ td for d > 0. By (6.1.33(7)),
CH∗

G(X)Q = CH∗
T (X)WQ where W is the Weyl group. Since CH∗

G(X)Q is a subring
of CH∗

T (X)Q, we are reduced to show that cTd (N) ∈ CH∗
T (X)Q is a nonzerodivisor.

If we write T as the product of the given Gm and a subtorus T ′, then

CH∗
T (X) ∼= CH∗

T ′(X)⊗ CH∗(BGm) ∼= CH∗
T ′(X)[z]

by (6.1.33(6)). For x ∈ X(k), we can write

cTd (N) =
∑

cT
′

i (N)⊗ cGm

d−i(N ⊗ κ(x))

= 1⊗ cGm

d (N ⊗ κ(x)) + higher degree terms.
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If a1, . . . , ad denote the Gm-weights of N ⊗κ(x), then by hypothesis each ai ̸= 0 and

cGm

d (N ⊗ κ(x)) =
(∏

i

ai
)
zd ∈ CH∗(BGm)Q

∼= Q[z]

is a nonzerodivisor,and therefore cTd (N) is also a nonzerodivisor.
See also [AB83, Prop. 13.4] and [Bri97, §3.2].

We define theG-equivariant Chow–Poincaré polynomial of aG-equivariant scheme
X as

pG(X, t) =

∞∑
d=0

(
dimCHdG(X)Q

)
td.

We also denote p(X, t) =
∑∞
d=0

(
dimCHd(X)Q

)
td as the (non-equivariant) Chow–

Poincaré polynomial.

Proposition 6.6.28. Let X be a smooth, irreducible, and quasi-projective scheme
over an algebraically closed field k with an action of Gm such that X+ → X is
surjective (i.e., X is projective). Let X =

∐r
i=1Xi and XGm =

∐r
i=1 Fi be the

Białynicki-Birula Stratification (6.6.13), and let di be the codimension of Xi in X.
Then

pGm
(X, t) =

r∑
i=1

p(Fi) · tdi(1− t)−1.

Proof. Since each Fi is smooth and Xi → Fi is a Zariski-local affine fibration
(Theorem 6.6.8), the pullback map CH∗

Gm
(Fi)

∼→ CH∗
Gm

(Xi) is an isomorphism
(6.1.33(2)). Under this isomorphism, NXi/X is the image of its restriction (NXi/X)|Fi .
For x ∈ Fi, NXi/X⊗κ(x) = Tx,<0 has no Gm-invariant vectors and thus Lemma 6.6.27
implies that cGm

di
((NXi/X)|Fi) is a nonzerodivisor. Lemma 6.6.25 therefore implies

that pGm
(X, t) =

∑
i pGm

(Xi, t). Since

CH∗
Gm

(Xi) ∼= CH∗
Gm

(Fi) ∼= CH∗(Fi)⊗ CH∗(BGm) ∼= CH∗(Fi)[z],

where the second equality uses (6.1.33(6)), we have the identity pGm(Fi, t) = p(Fi)(1−
t)−1 and the statement follows.

6.6.5 One-parameter subgroups and the Cartan Decomposi-
tion

If G is an algebraic group over a field k, a one-parameter subgroup is a homomorphism
λ : Gm → G of algebraic groups. Despite the terminology, we do not require that
a one-parameter subgroup is injective, e.g., Gm → Gm, t 7→ t2 is a one-parameter
subgroup. See §B.1.3 for more background and examples.

Given an action of G on an algebraic space X, the limit limt→0 λ(t) · x exists if
the multiplication map Gm → X, defined by t 7→ λ(t) · x extends to a map A1 → X.
If X is separated, then the limit is unique if it exists, while if X is proper, then
there is always a unique limit.

Example 6.6.29. If X = P(V ) where V is a finite dimensional representation
of G and λ : Gm → G is a one-parameter subgroup, then we can choose a basis
of V such that λ(t) · (x1, . . . , xn) = (td1x1, . . . , t

dnxn) with d1 ≤ · · · ≤ dn. If
d = min{di | xi ≠ 0}, then limt→0 λ(t) · [x0 : . . . : xn] = [x′0 : . . . : x′n] where x′i = xi
for all i such that di = d and is 0 otherwise.
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We now state and prove the Cartan Decomposition: an element g ∈ G(K) over
the fraction field K of a DVR R can be multiplied on the left and right by elements
of G(R) such that it is induced from a one-parameter subgroup. For a one-parameter
subgroup λ : Gm → G, we denote by λ|K ∈ G(K) the image of the composition

SpecK → Gm
λ−→ G

where the first map is defined by the k-algebra map k[t]t → K taking t to a
uniformizer in R.

The Cartan Decomposition will provide the key algebraic input in the proof of
the Hilbert–Mumford Criterion (6.7.16).

Theorem 6.6.30 (Cartan Decomposition4). Let G be a reductive algebraic group.
Let R be a complete DVR over k with residue field k and fraction field K. Then for
every element g ∈ G(K), there exists h1, h2 ∈ G(R) and a one-parameter subgroup
λ : Gm → G such that

g = h1λ|Kh2.

Proof. As our proof will utilize that BG is S-complete (Definition 6.8.13), a concept
developed §6.8, we postpone the proof until Proposition 6.8.57. In fact, we show not
only that the theorem holds for reductive groups but that it characterizes reductivity.
See also [IM65, Cor. 2.17], [Ses72, Thm. 2.1] and [BT72, §4].

Remark 6.6.31 (Equivalent formulation). Let T ⊂ G be a maximal torus. The
above theorem is equivalent to the identity

G(K) = G(R)T (K)G(R).

To see how the theorem implies the above identity, choose h ∈ G(R) such that
hλ|Kh−1 ∈ T (K). Then

g = h1λ|Kh2 = (h1h
−1)︸ ︷︷ ︸

∈G(R)

(hλ|Kh−1)︸ ︷︷ ︸
∈T (K)

(hh2)︸ ︷︷ ︸
∈G(R)

.

Conversely, suppose g = h1th2 for h1, h2 ∈ G(R) and t ∈ T (K). If we write T ∼= Grm
and π ∈ R as the uniformizing parameter, then t = (u1π

d1 , . . . , urπ
dr) for units

ui ∈ R× and integers di ∈ Z. After replacing h1 with h1 · (u1, . . . , ur), we can
write g = h1λ|Kh2 where λ : Gm → T ⊂ G is the one-parameter subgroup given by
t 7→ (td1 , . . . , tdr ).

Remark 6.6.32 (Case of GLn). The Cartan Decomposition for GLn can be estab-
lished by an elementary linear algebra argument. Let g = (gij) ∈ GLn(K). After
performing row and column operations, we can assume that g1,1 = πd has minimal
valuation among the gij , where π ∈ R is a uniformizer. For each k ≥ 2, we write
gk,1 = uπe. Now perform the row operations where the nth row rn is exchanged for
rn − uπe−dr1. In this way, we can arrange that gk,1 = 0 for k ≥ 2. By performing
analogous column operations, we can also arrange that g1,k = 0 for k ≥ 2. The
statement is thus established by induction.

Exercise 6.6.33. Let k be a field.
4This is sometimes also referred to as the Iwahori Decomposition or the Cartan–Iwahori–

Matsumoto Decomposition
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(a) Let X ⊂ P(V ) be a Gm-equivariant locally closed subscheme where V is
a finite dimensional Gm-representation. Show that [X/Gm] is separated if
and only if X has no Gm-fixed points, or in other words that the diagonal
[X/Gm]→ [X/Gm]× [X/Gm] is finite if and only if it is quasi-finite.

(b) Let G be a reductive algebraic group acting on an algebraic space X over k.
Show that [X/G] is separated if and only if for every one-parameter subgroup
λ : Gm → G, the corresponding quotient stack [X/Gm] is separated.

Hint: Verify the valuative criterion by applying the Cartan Decomposition.

Remark 6.6.34. Unlike the case of Gm in (a), it is not true [X/G] is separated for
an action of an affine algebraic group G acting linearly on a quasi-projective scheme
X with finite stabilizers. See Exercise 3.9.3(d) for such an example by a free action
of SL2 on a quasi-affine variety.

6.6.6 The Destabilization Theorem
Theorem 6.6.35 (Destabilization Theorem). Let G be a reductive algebraic group
over an algebraically closed field k acting on an affine scheme X of finite type over
k. Given x ∈ X(k), there exists a one-parameter subgroup λ : Gm → G such that
x0 := limt→0 λ(t) · x exists and has closed G-orbit.

Proof. Let R = k[[t]] with fraction field K = k((t)). We can choose an element
g ∈ G(K) and a commutative diagram

SpecK //
� _

��

Gx� _

��

SpecR
g̃

// X

where the top map is given by the composition SpecK
g−→ G → Gx and such

that y := g̃(0) has closed G-orbit. By the Cartan decomposition, there exists
h1, h2 ∈ G(R) and a one-parameter subgroup λ : Gm → G such that h1g = λ|Kh2.
By applying the general fact that for a ∈ G(R) and b ∈ X(R), (a · b)(0) = a(0) · b(0)
to h1 ∈ G(R) and g̃ ∈ X(R), we obtain that

lim
t→0

λ(t)h2(t) · x = lim
t→0

h1(t)g(t) · x = h1(0) · g̃(0) = h1(0) · y ∈ Gy. (6.6.36)

We claim that the related but possibly different limit limt→0 λ(t)h2(0) · x exists and
is also contained in the closed orbit Gy. Once this is established, the theorem would
be established by using the one-parameter subgroup h2(0)−1λh2(0):

lim
t→0

(h2(0)
−1λh2(0))(t) · x = h−1

2 (0) · lim
t→0

λ(t)h2(0) · x ∈ Gy.

First, to see that limt→0 λ(t)h2(0) · x exists, we may apply Proposition B.1.18(1)
below to reduce to the case that X = A(V ) is a G-representation. We may choose
a basis of V ∼= kn such that the λ-action has weights λ1, . . . , λn. We may also
write h2 · x = (a1, . . . , an) ∈ X(R) with each ai ∈ k[[t]] and further decompose
ai = ai(0) + a′i with a′i ∈ (t). Since

lim
t→0

λ(t)h2(t) · x = lim
t→0

(tλ1(a1(0) + a′1), . . . , t
λn(an(0) + a′n)) (6.6.37)

exists, we see that for each i with λi < 0, we must have that ai(0) = 0, which in
turn implies that limt→0 λ(t)h2(0) · x exists.
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Finally, to see that this limit lies in Gy, we may apply Proposition B.1.18(2)
to obtain a G-equivariant map f : X → A(W ) such that f−1(0) = Gy. We are
thus reduced to showing that limt→0 λ(t)h2(0) · f(x) = 0. By computing the
limit limt→0 λ(t)h2(t) · f(x) as in (6.6.37), the same argument shows that since
limt→0 λ(t)h2(t) · f(x) = 0, we must also have that limt→0 λ(t)h2(0) · f(x) = 0. See
also [GIT, p. 53] and [Kem78, Thm. 1.4].

Corollary 6.6.38 (Destabilization Theorem II). Let X be an algebraic stack of
finite type over an algebraically closed field k with affine diagonal. Let x⇝ x0 be
a specialization of k-points such that the stabilizer Gx0

is linearly reductive. Then
there exists a morphism [A1/Gm]→ X representing the specialization x⇝ x0.

Proof. The Local Structure Theorem (6.5.1) yields an étale morphism [SpecA/Gx0
]→

X and a point w0 mapping to x0. After possibly replacing SpecA with aGx0
-invariant

affine subscheme, we can assume that w0 is a closed point. The specialization x⇝ x0
lifts a specialization w ⇝ w0 in [SpecA/Gx0 ], and we can choose a representative
w̃ ∈ SpecA of the orbit corresponding to w. The Destabilization Theorem gives a
one-parameter subgroup λ : Gm → G such that w̃0 = limt→0 λ(t) · w̃ exists and has
closed orbit. By Affine GIT (6.3.7), there is a unique closed orbit in Gw̃ and thus
w̃0 ∈ SpecA maps to w0. The Gm-equivariant extension A1 → X of t 7→ λ(t) · w̃ de-
fines a morphism of algebraic stacks [A1/Gm]→ [SpecA/Gx0 ] such that the image of
the specialization 1⇝ 0 is w ⇝ w0. The composition [A1/Gm]→ [SpecA/Gx0 ]→ X
yields the desired map.

354



6.6.7 Maps from Θ = [A1/Gm]

We define the quotient stack
Θ = [A1/Gm]

over SpecZ; when we are working over a field k, we will abuse notation by also using
Θ to denote Θk = [A1

k/Gm,k].
While a map X → Θ from an algebraic stack is classified by a line bundle and a

section (Example 3.9.16), maps Θ→ X from Θ often also have geometric significance.
We provide such descriptions for maps from Θ to quotient stacks, stacks of coherent
sheaves, and the stack of all curves. These descriptions will be useful to interpret
the valuative criteria of Θ and S-completness introduced in §6.8.2. In fact, we will
provide descriptions of maps from ΘR := Θ×k R where R is a k-algebra; the reader
is encouraged to consider the case that R = k on a first reading.

Quotient stacks

Given a quotient stack [X/G], a one-parameter subgroup λ : Gm → G, and a point
x ∈ X(k) such that limt→0 λ(t) ·x ∈ X exists, the Gm-equivariant extension A1 → X
induces a morphism [A1/Gm] → [X/G] of algebraic stacks. The next proposition
asserts that the converse is also true, i.e., any map [A1/Gm]→ [X/G] is induced by
a one-parameter subgroup λ and a point x ∈ X(k).

Recall from §B.1.3 that if λ : Gm → G is a one-parameter subgroup, then Pλ ⊂ G
denotes the subgroup of elements g ∈ G such that limt→0 λ(t)gλ(t)

−1 exists. If G is
reductive, then Pλ is a parabolic .

Proposition 6.6.39. Let G be a smooth affine algebraic group over an algebraically
closed field k, and let X be a separated algebraic space of finite type over k. For
every complete noetherian local k-algebra R with algebraically closed residue field F,
there is an equivalence of groupoids

Mork(ΘR, [X/G])
∼→
{
(x ∈ X(R), λ : Gm → G) | lim

t→0
λ(t) · x ∈ X(R) exists

}
;

a morphism (x, λ)→ (x′, λ′) is an isomorphism class of a pair (g, h) with g ∈ Pλ(R)
and h ∈ G(k) such that x′ = hgx and λ′ = hλh−1 where (g, h) ∼ (c−1g, hc) for
c ∈ Cλ.

Under this correspondence, the morphism ΘR → [X/G] sends 1 to x and 0 to
limt→0 λ(t) · x.
Remark 6.6.40. Observe that over R = k an isomorphism (x, λ)

∼→ (x′, λ) is given
by an element g ∈ Pλ(k) such that x′ = gx. In particular, the automorphism group
of (x, λ) is Pλ ∩Gx.
Proof. Given (x, λ), the Gm-equivariant mapmx,λ : Gm,R → X defined by t 7→ λ(t)·x
extends to a commutative diagram

Gm,R
mx,λ

//
� _

��

X

A1
R

m̃x,λ

==

The extension is Gm-equivariant and induces a morphism of quotient stacks fx,λ : ΘR →
[X/G]. We will show that this defines a functor

{(x, λ) | lim
t→0

λ(t) · x exists} → Mork(ΘR, [X/G])

(x, λ) 7→ fx,λ.
(6.6.41)
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Given a morphism (g, h) : (x, λ)→ (x′, λ′), we need to define a 2-morphism fx,λ
∼→

fx′,λ′ . Since h determines a canonical isomorphism fx′,λ′
∼→ fh−1x′,λ, it suffices to

define a 2-morphism fx,λ
∼→ fh−1x′,λ. Since g ∈ Pλ(R), the map t 7→ λ(t)gλ(t)−1

extends to a map g̃ : A1
R → G such that m̃h−1x′,λ = g̃ · m̃x,λ (as h−1x′ = gx).

The element g̃ defines an isomorphism fx,λ
∼→ fh−1x′,λ. For c ∈ Cλ, the pairs

(g, h) and (c−1g, hc) define the same isomorphism: indeed this follows from the
observation that if c ∈ Gx, then (c−1, c) defines the identify automorphism of fx,λ.
Conversely, any isomorphism fx,λ

∼→ fx′,λ is an induced by element g̃ ∈ G(A1)
satisfying m̃x′,λ = g̃ · m̃x,λ, and we see that (6.6.41) is a fully faithful functor.

To see essential surjectivity of (6.6.41), let f : ΘR → [X/G] be a morphism. In
the fiber diagram

P

��

// X

��

ΘR
f
// [X/G]

□

P → ΘR is a principal G-bundle. The restriction P|BGm,F along the unique closed
point 0: BGm,F → ΘR, corresponds to a Gm-equivariant principal G-bundle P on
SpecF. After choosing an isomorphism P ∼= G, we see that P corresponds to a
one-parameter subgroup λ′ : Gm,F → GF.

Choose a maximal torus T ⊂ G over k. Since all maximal tori of GF are conjugate
(Proposition B.1.19), there exists an element q ∈ G(F) such that the image of qλ′q−1

is contained in TF. Letting n = dimT , there are equivalences

Homk(Gm, T ) ∼= Zn ∼= HomF(Gm,F, TF),

where the composition is given by λ 7→ λ×kF. It follows that there is a one-parameter
subgroup λ : Gm → T whose base change λ ×k F is conjugate to λ′. On the other
hand, every one-parameter subgroup λ induces a Gm-action on the product A1

R ×G
by t · (x, g) = (tx, gλ(t)−1) and thus a principal G-bundle Pλ := [(A1

R × G)/Gm]
over ΘR. We claim that there is an isomorphism α : P → Pλ of principal G-
bundles. By construction, we have an isomorphism α0 : P|BGm,F → Pλ|BGm,F .
Since IsomΘR

(P,Pλ) → ΘR is smooth (as it is a principal G-bundle and G is
smooth), we may use deformation theory (Proposition 6.5.10) to construct compatible
isomorphisms αn : P|Xn

→ Pλ|Xn
over the nilpotent thickenings Xn of 0: BGm,F ↪→

ΘR. Coherent Tannaka Duality (6.4.9) coupled with the coherent completeness of
ΘR along BGm,F (Theorem 6.4.12) implies that the isomorphisms αn extend to an

isomorphism α : P → Pλ. Restricting the composition A1
R ×G→ Pλ

α−1

−−→ P → X
to the identity in G yields a Gm-equivariant morphism A1

R → X. One checks that
this corresponds to the given map f : ΘR → [X/G] on quotient stacks. Letting
x ∈ X(R) be the image of 1, we see that fx,λ is 2-isomorphic to f .

Remark 6.6.42. Proposition 6.6.39 can be upgraded to a description of the stack
of morphisms from [A1/Gm] to [X/G]. Namely, there is a decomposition

Mor([A1/Gm], [X/G]) ∼=
∐
λ

[X+
λ /Pλ]

where λ varies over conjugacy classes of one-parameter subgroups. The loci X+
λ are

often locally closed subschemes (see Theorem 6.6.13(3)), and Pλ ⊂ G is a parabolic
subgroup if G is reductive.

The algebraicity of this stack was discussed already in Remark 6.6.12. See also
[HL14, Thm. 1.37].
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Stacks of coherent sheaves

Given a projective scheme X, let Coh(X) denote the algebraic stack of coherent
sheaves on X (see Exercise 3.1.23).

Proposition 6.6.43. Let X be a projective scheme over an algebraically closed field
k. For a noetherian k-algebra R, Mork(ΘR,Coh(X)) is equivalent to the groupoid
of pairs (E,E•) where E is a coherent sheaf on XR flat over R and

E• : 0 ⊂ · · · ⊂ Ei−1 ⊂ Ei ⊂ Ei+1 ⊂ · · · ⊂ E

is a Z-graded filtration such that Ei = 0 for i ≪ 0, Ei = E for i ≫ 0, and each
factor Ei/Ei−1 is flat over R. A morphism (E,E•)→ (E′, E′

•) is an isomorphism
E → E′ of coherent sheaves compatible with the filtration.

Under this correspondence, the morphism ΘR → Coh(X) sends 1 to E and 0 to
the associated graded grE• :=

⊕
iEi/Ei−1, and factors through Bun(X) ⊂ Coh(X)

if and only if E and each factor Ei/Ei−1 is a vector bundle.

Proof. A morphism ΘR → Coh(X) corresponds to a coherent sheaf F on C ×ΘR

flat over ΘR. By smooth descent, this corresponds to a coherent sheaf on C×A1
R flat

over A1
R together with a Gm-action. Pushing forward F along the affine morphism

C ×ΘR → C ×BGm,R, we see that F also corresponds to a graded OCR
[x]-module

flat over R[x]. Writing F =
⊕

iEi with each Ei a coherent sheaf on CR, then
multiplication by x induces maps x : Ei → Ei+1 which are necessarily injective as F
is flat over R[x], hence torsion free. Since F is finitely generated as a graded R[x]-
module, there exists finitely many homogeneous generators with bounded degree.
Thus Ei = E for i ≫ 0. On the other hand, considering the OCR

[x]-submodule
E≥d :=

⊕
i≥nEi ⊂ F , the ascending chain · · · ⊂ E≥d ⊂ E≥d−1 ⊂ · · · ⊂ F must

terminate as F is noetherian. It follows that Ei = 0 for i ≪ 0. Since F is flat as
an R[x]-module, the quotient F/xF =

⊕
iEi/Ei−1 is flat as an R-module and thus

each factor Ei/Ei−1 is flat over R.
Conversely, given E and a filtration E• satisfying the above conditions, consider

the graded OCR
[x]-module F :=

⊕
iEi; this is frequently referred to as the ‘Rees

construction’. We will show by induction that E≥d :=
⊕

i≥dEi is flat and finitely
generated over R[x]; this implies that F is flat and finitely generated over R[x]
since Ei = 0 for i ≪ 0. For d ≫ 0, E≥d is isomorphic to the graded R[x]-module
(E ⊗R R[x])⟨d⟩, where ⟨d⟩ denotes the grading shift, and is thus flat and finitely
generated. For every d, we have an exact sequence

0→ (Ed ⊗R R[x])⟨d⟩ → E≥d → ((Ed+1/Ed)⊗R R[x])⟨d+ 1⟩ → 0.

The flatness of E and the quotients Ed+1/Ed implies the flatness of each Ed. Thus
the left and right term above are flat and finitely generated as R[x]-modules, and
thus so is the middle term.

Stack of all curves

Proposition 6.6.44. Let Mall
g be the algebraic stack of all proper curves (Theo-

rem 5.4.6) over an algebraically closed field k. For every k-algebra R, Mork(ΘR,Mall
g )

is the groupoid whose objects are Gm-equivariant families of proper curves C → A1
R,

where Gm acts on A1
R with the usual scaling action. Morphisms are Gm-equivariant

morphisms.

Proof. The statement follows from smooth descent applied to A1
R → ΘR.
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Remark 6.6.45. A similar description holds for other moduli stacks of varieties.
Such Gm-equivariant maps are often called ‘test configurations’ in the literature.

6.7 Geometric Invariant Theory (GIT)
Geometric Invariant Theory (GIT) was developed by Mumford in [GIT] as a means
to construct quotients and moduli spaces in algebraic geometry. For expository
accounts, we recommend [New78], [Kra84], [Dol03], [Muk03], and [Stu08].

6.7.1 Good quotients
Let G be an affine algebraic group over an algebraically closed field k acting on
an algebraic space U of finite type over k. In the following cases, we have already
established the existence of a geometric quotient U/G (Definition 4.3.1), i.e., a G-
invariant map U → U/G inducing a bijection U(k)/G(k)→ (U/G)(k) and universal
for G-invariant maps to algebraic spaces; in other words [U/G]→ U/G is a coarse
moduli space.

• If G is the group scheme corresponding to a finite abstract group and the action
is free (i.e., the action map G×U → U ×U is a monomorphism), then U/G :=
[U/G] exists as an algebraic space of finite type over k (Corollary 3.1.14).
This also holds in the non-finite case: if G is an algebraic group and the
action is free, then [U/G] is an algebraic stack (Proposition 6.2.10) such that
[U/G]→ [U/G]× [U/G] is a monomorphism and therefore U/G := [U/G] is
an algebraic space (Theorem 4.4.10).

• If G is finite and U = SpecA is affine, then U/G := SpecAG is a geometric
quotient (Theorem 4.3.6).

• If G is finite and U is projective (resp., quasi-projective, quasi-affine), then
the quotient U/G exists as a projective (resp., quasi-projective, quasi-affine)
k-scheme (Exercise 4.2.9).

• If G is finite and U is separated, then U/G exists as a separated algebraic
space as a consequence of the Keel–Mori Theorem (4.3.12). This also holds
in the non-finite case: if G is an affine algebraic group, the stabilizers of the
action are finite and reduced, and the action map G× U → U × U is proper,
then [U/G] is a separated Deligne–Mumford stack (Theorem 3.6.4) and the
existence of a geometric quotient follows from the Keel–Mori Theorem.

GIT studies the case where G is linearly reductive5 but not necessarily finite.
GIT allows for the possibility of points u ∈ U where the stabilizer Gu may not be
finite and the orbit Gu may not be closed, e.g., Gm acting on A1.

In Corollary 6.3.7, we have already considered the affine case of GIT where G is
a linearly reductive algebraic group over an algebraically closed field k acting on an
affine k-scheme SpecA. In this case, we have a commutative diagram

SpecA

��

π̃

))

[SpecA/G]
π // (SpecA)//G := SpecAG

5GIT can be developed in the more general setting of actions by reductive algebraic groups; see
Remark 6.3.11.
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where π : [SpecA/G]→ SpecAG is a good moduli space and π̃ : SpecA→ SpecAG

is a good quotient.

Definition 6.7.1 (Good quotients). Given an action of a linearly reductive algebraic
group G over an algebraically closed field k on an algebraic space U over k, a G-
invariant map π̃ : U → X is a good quotient if

(1) OX → (π∗OU )G is an isomorphism (where (π∗OU )G(V ) = Γ(UV ,OUV
)G for

an étale X-scheme V ) and
(2) π̃ is affine.6

The good quotient of U by G is often denoted as U//G = X.

Remark 6.7.2. The map π̃ : U → X is a good quotient if and only if π : [U/G]→ X
is a good moduli space. To see the equivalence, we may assume that X = SpecB is
affine since both properties are étale local (Lemma 6.3.21(1)). For (⇒), U = SpecA
is also affine and B = AG, and thus [SpecA/G]→ SpecAG is a good moduli space.
To see (⇐), observe that since U → [U/G] is affine and π∗ is exact on quasi-coherent
sheaves, the pushforward π̃∗ is exact on quasi-coherent sheaves and thus π̃ is affine
by Serre’s Criterion for Affineness (4.4.16).

Proposition 6.7.3. Let G be a linearly reductive algebraic group over an algebraically
closed field k acting on an algebraic space U over k. If π̃ : U → X is a good quotient,
then

(1) π̃ is surjective and the image of a closed G-invariant subscheme is closed. The
same holds for the base change T → X by a morphism from a scheme;

(2) for closed G-invariant closed subschemes Z1, Z2 ⊂ U , im(Z1 ∩Z2) = im(Z1)∩
im(Z2). In particular, for x1, x2 ∈ X(k), π̃(x1) = π̃(x2) if and only if
Gx1 ∩Gx2 ≠ ∅, and π̃ induces a bijection between closed G-orbits in U and
k-points of X;

(3) if U is noetherian, so is X. If U is finite type over k, then so is X, and for
every coherent OU -module F with a G-action, (π∗F )G is coherent; and

(4) π̃ is universal for G-invariant maps to algebraic spaces.

Proof. This follows from Theorem 6.3.5 as [U/G]→ X is a good moduli space.

Remark 6.7.4 (Semistable reduction in GIT). Since [U/G] → X is universally
closed (Theorem 6.3.5(1)), it satisfies the valuative criterion for universal closedness
(Theorem 3.8.2). This translates into the following: for every DVR R over k with
fraction field K and every map SpecR→ X with a lift η : SpecK → U , there exists
an extension R→ R′ of DVRs, an element g′ ∈ G(K ′) over the fraction field of R′,
and a lift in the commutative diagram

SpecK ′

g′·η|K′

&&

��

SpecK
η

//

��

U

π̃

��

SpecR′ //

55

SpecR // X.

In fact, if R = k[[x]], it can be arranged that R→ R′ is finite; see [Mum77, Lem. 5.3]
and [AHLH18, Thm. A.8].

6A good quotient is sometimes defined as an affine G-invariant morphism π̃ : U → X such that
OX

∼→ (π∗OU )G and properties Proposition 6.7.3(1)–(2) holds, c.f.,[Ses72, Def. 1.5].
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6.7.2 Projective GIT
Let U be a projective scheme over an algebraically closed field k with an action
of a linearly reductive algebraic group G. Suppose that there is a G-equivariant
embedding U ↪→ P(V ), where V is a finite dimensional G-representation; this is
equivalent to giving a very ample line bundle OU (1) with a G-action, i.e., a very
ample G-linearization (see §B.1.27).

Definition 6.7.5. We define the semistable and stable locus as

U ss := {u ∈ U | there exists f ∈ Γ(U,OU (d))G with d > 0 such that f(u) ̸= 0},

U s :=

u ∈ U
∣∣∣∣∣∣∣∣∣∣

there exists f ∈ Γ(U,OU (d))G with d > 0 such that
−f(u) ̸= 0,
−the orbit Gu ⊂ Uf is closed, and
−the function U → Z, x 7→ dimGx is constant in an open

neighborhood of u7

 .

A point u ∈ U is called semistable (resp., stable) if u ∈ U ss (resp., u ∈ U s).8 The
nullcone N̂ ⊂ A(V ) is by definition the affine cone over U \ U ss: it is set of points u
in the affine cone Û ⊂ A(V ) such that f(u) = 0 for every non-constant G-invariant
polynomial on A(V ).

We stress that the stable and semistable loci depend on the choice ofG-equivariant
embedding U ↪→ P(V ). When U is a normal projective variety, then every line
bundle L has a positive tensor power L⊗n that has a G-linearization by Sumihiro’s
Theorem on Linearizations (B.1.29). For example, O(1) on Pn does not have a
PGLn+1-linearization, but O(n+ 1) does.

Let R =
⊕

d≥0 Γ(U,OU (d)) be the projective coordinate ring. We consider the
map

π̃ : U ss → U ss//G := ProjRG. (6.7.6)

Note that U ss may be empty in which case ProjRG is the empty scheme. If U ss is
non-empty, it is precisely the locus where the rational map ProjR 99K ProjRG is
defined.

Theorem 6.7.7. Let G be a linearly reductive algebraic group over an algebraically
closed field k. Let U ⊂ P(V ) be a G-equivariant closed subscheme where V is a finite
dimensional G-representation. Then there is a cartesian diagram

U s �
�

//

��

U ss

π̃
��

� � // U

U s/G �
�

// U ss//G

□

where U s/G ⊂ U ss//G is an open subscheme, the map π̃ of (6.7.6) is a good quotient,
and the restriction π̃|Us : U s → U s/G is a geometric quotient. Moreover, U ss//G is
projective with an ample line bundle L such that π̃∗L ∼= OU (N) for some N .

If in addition the action of G on U has generically finite stabilizers, then the
action of G on U s is proper (i.e., the action map G× U s → U s × U s is proper) or
in other words [U s/G] is separated.

7Since the function x 7→ dimGx is upper semi-continuous, this condition is automatic if
dimGu = 0.

8In the literature, a point u ∈ U is sometimes called ‘unstable’ if it is not semistable; we avoid
this potentially misleading terminology.
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Proof. Since U is projective, R =
⊕

d≥0 Γ(U,OU (d)) is finitely generated over k.
Thus by Corollary 6.3.7(3), RG is also finitely generated over k and U ss//G = ProjRG

is projective. As localization commutes with taking invariants, (RG)(f) = (R(f))
G

for every homogeneous element f ∈ RG of positive degree. We thus have a cartesian
diagram

Uf = SpecR(f)
� � //

��

U ss �
�

//

π̃

��

U

Uf//G = (U ss//G)f
� � // U ss//G.

□

Since the property of being a good quotient is Zariski local and since the loci
(U ss//G)f cover U ss//G, we conclude that π̃ : U ss → U ss//G is a good quotient. By
construction, U ss//G is projective and there is an integerN such that L := OUss//G(N)
is an ample line bundle which pulls back to OU (N)|Uss .

To show that U s → U s/G is a geometric quotient, it suffices to show that every
G-orbit in U s is closed. Since the dimension of the stabilizer increases under orbit
degeneration, it in fact suffices to show that the dimension of the stabilizers in U s is
locally constant. Every point u ∈ U s has by definition an open neighborhood V ⊂ U
such that dimGv = dimGu for all v ∈ V . Since dimG = dimGv + dimGv, we see
that the dimension of the orbit is constant on V . Finally, if there is a dense open
subset of U which has dimension 0 stabilizers, then it follows from the definition
of stability that every u ∈ U s has a finite (possibly non-reduced) stabilizer. Since
[U s/G]→ Us/G is also a good moduli space and [U s/G] has quasi-finite diagonal, it
follows from Proposition 6.3.32 that [U s/G] is separated.

Example 6.7.8. Given Gm acting on P2 via t · [x : y : z] = [tx : t−1y : z], the
semistable locus is the complement of V (xy, z) = {[0 : 1 : 0], [1 : 0 : 0]} and the good
quotient is (P2)ss → Projk[xy, z] = P1. The fiber over xy = 0 is the union of three
orbits and its complement is the stable locus. Observe that the restriction to z ̸= 0
is the good quotient A2 → A1, given by (x, y) 7→ xy, while the fiber over z = 0 is the
line at infinity with [0 : 1 : 0] and [1 : 0 : 0] removed.

Example 6.7.9. Consider the diagonal action of SL2 on X = (P1)4 and the
SL2-equivariant Segre embedding

(P1)4 → P15, ([x1 : y1], . . . , [x4 : y4]) 7→ [x1x2x3x4, . . . , y1y2y3y4].

This corresponds to the SL2-linearization of L := O(1)⊠ · · ·⊠O(1). The invariant
ring

⊕
d≥0 Γ(X,L

⊗d) is generated in degree 1 by the generalized cross ratios

I1 = (x1y2 − x2y1)(x3y4 − x4y3)
I2 = (x1y3 − x3y1)(x2y4 − x4y2)
I3 = (x1y4 − x4y1)(x2y3 − x3y2)

with the linear relation I1 − I2 + I3 = 0. The invariant ring is k[I1, I2] and the
quotient Xss// SL2 = P1. The semistable locus Xss consists of tuples where at most
two points are equal, while the stable locus consists of tuples of distinct points.
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Figure 6.2: 4 unordered points up to projective equivalence

An ordered tuple (p1, . . . , p4) of distinct points is mapped to the cross ratio

(p1 − p2)(p3 − p4)
(p1 − p3)(p2 − p4)

.

In particular, two stable tuples are projectively equivalent (i.e., in the same SL2

orbit) if and only if they have the same cross ratio. The complement Xss \ Xs

contains 3 closed orbits: the SL2-orbits of (0, 0,∞,∞), (0,∞, 0,∞), and (0,∞,∞, 0).
Tuples such as (0, 0, 1,∞) or (1,∞, 0, 0) have non-closed SL2-orbits in Xss with
SL2 ·(0, 0,∞,∞) in the orbit closure. See Example 6.7.20 to see the computations of
the stable and semistable locus for the more general case of n ordered points in P1.

Remark 6.7.10 (Symplectic reduction). There is an interesting connection between
GIT and symplectic geometry. Let G be a reductive algebraic group over C acting
on a smooth projective variety U ⊂ P(V ) where V is an n + 1 dimensional G-
representation. Let ω be a symplectic form on U , and let K ⊂ G be a maximal
compact subgroup K and k its Lie algebra. There is a moment map

µ : U → k∨

which is K-equivariant with respect to the coadjoint action on k∨ and satisfies
dµ(x)(ξ) · a = ωx(ξ, vx) for u ∈ U , ξ ∈ TxU , and a ∈ k, where vx is the vector field
on U obtained by the infinitesimal action of K on U . Then

u ∈ U is semistable ⇐⇒ Gu ∩ µ−1(0) ̸= ∅

and the inclusion µ−1(0) ↪→ U induces a homeomorphism µ−1(0)/K → U ss//G. See
[MFK94, §8].

Exercise 6.7.11 (Affine GIT with respect to a character). Let U = SpecA be a finite
type scheme over an algebraically closed field k with an action of an affine algebraic
group G specified by a coaction σ : A→ Γ(G,OG)⊗A. Let χ : G→ Gm = Speck[t]t
be a character. Define the semistable and stable locus as

U ss :=

{
u ∈ U

∣∣∣∣ there exists f ∈ A such that f(u) ̸= 0
and σ(f) = χ∗(t)d ⊗ f for d > 0

}

U s :=

u ∈ U
∣∣∣∣∣∣

there exists f ∈ A such that f(u) ̸= 0, σ(f) = χ∗(t)d ⊗ f
for d > 0, the orbit Gu ⊂ Uf is closed, and the function
x 7→ dimGx is constant in an open neighborhood of u

 .

Defining U ss//G := Proj
⊕

d≥0Ad where Ad = {f ∈ A | σ(f) = χ∗(t)d ⊗ f}, show
that the conclusion of Theorem 6.7.7 holds except that U ss//G is projective over
AG = A0 (rather than k).
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For example, under the scaling Gm-action on U = An and with respect to the
the identity character χ = id, then U ss = U s = An \ 0 and the quotient is Pn−1.

Exercise 6.7.12 (Projective GIT over an affine). Let U be a projective scheme
over a finitely generated k-algebra B, where k is an algebraically closed field, and let
G be an affine algebraic group acting on U . Suppose that there is a G-equivariant
embedding U ↪→ P(E), where E is a vector bundle with a G-action. Defining the
semistable locus U ss and stable locus U s exactly as in Definition 6.7.5, show that the
conclusion of Theorem 6.7.7 holds except that U ss//G is projective over BG (rather
than k).

6.7.3 Hilbert–Mumford Criterion
The stable and semistable locus can often be effectively computed using the Hilbert–
Mumford Criterion. To set up the formulation, let U ⊂ P(V ) be a G-equivariant
closed subscheme where V is a finite dimensional G-representation, and let u ∈ U
be a k-point with a lift ũ ∈ A(V ). Given a one-parameter subgroup λ : Gm → G, we
can choose a basis V ∼= kn such that λ(t) · (v1, . . . , vn) = (td1v1, . . . , t

dnvn).

Definition 6.7.13 (Hilbert–Mumford index). The Hilbert–Mumford index of u with
respect to λ is

µ(u, λ) := max
i,ũi ̸=0

−di. (6.7.14)

This definition depends on ample G-line bundle L defining the projective em-
bedding U ⊂ P(V ), and to emphasize this dependence, we sometimes write the
Hilbert–Mumford index as µL(u, λ). The Hilbert–Mumford index can be equivalently
defined as follows: if u0 = limt→0 λ(t) · u ∈ P(V ) (which exists since P(V ) is proper),
then Gm fixes u0 and µ(u, λ) is the opposite of the weight of the induced Gm-action
on the line Lu0

⊂ V classified by u0.

Remark 6.7.15. From the definition of the Hilbert–Mumford index, we see that
(a) limt→0 λ(t) · ũ exists if and only if µ(u, λ) ≤ 0,
(b) limt→0 t · ũ = 0 if and only if µ(u, λ) < 0, and
(c) µ(gx, gλg−1) = µ(x, λ).

Theorem 6.7.16 (Hilbert–Mumford Criterion). Let G be a linearly reductive alge-
braic group over an algebraically closed field k acting on a G-equivariant closed sub-
scheme U ⊂ P(V ), where V is a finite dimensional G-representation. Let u ∈ P(V )
be a k-point with a lift ũ ∈ A(V ). Then

u ∈ U ss ⇐⇒ 0 /∈ Gũ
⇐⇒ lim

t→0
λ(t) · ũ ̸= 0 for all λ : Gm → G

⇐⇒ µ(u, λ) ≥ 0 for all λ : Gm → G.

If in addition the action of G on U has generically finite stabilizers, then

u ∈ U s ⇐⇒ Gũ ⊂ A(V ) is closed
⇐⇒ µ(u, λ) > 0 for all non-trivial λ : Gm → G.

Remark 6.7.17. The criterion that is now referred to as the “Hilbert–Mumford
Criterion” was first developed by Hilbert in [Hil93, § 15-16] and then adapted by
Mumford in [GIT, p. 53]. It holds more generally when G is reductive.
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Proof. For semistability, the first (⇒) implication is clear: if 0 ∈ Gũ, then for
every non-constant invariant function,we have that f(ũ) = f(0) = 0; hence u /∈
U ss. For the converse, if 0 /∈ Gũ, then 0 and Gũ are disjoint closed G-invariant
subschemes of A(V ). Therefore their images in A(V )//G = Spec(Sym∗ V ∨)G are
disjoint (Corollary 6.3.7(2)). We may thus find an invariant function f ∈ (Sym∗ V ∨)G

with f(0) = 0 and f(ũ) ̸= 0 which we may assume to be homogeneous of positive
degree, i.e f ∈ Symd V ∨ = Γ(P(V ),O(d)) for d > 0. In the second equivalence, (⇒)
is again clear: if there is a λ such that limt→0 λ(t) · ũ = 0, then 0 ∈ Gũ. Conversely,
if 0 ∈ Gũ, Theorem 6.6.35 provides a one-parameter subgroup λ such that the
limit of u under λ is 0. The third equivalence follows from the definition of the
Hilbert–Mumford index (see Remark 6.7.15).

For stability, we may assume that u ∈ U ss; otherwise 0 is in the closure of Gũ and
thus Gũ is not closed. By definition, there is an invariant section f ∈ Γ(U,O(d))G
of positive degree not vanishing at u. After possibly increasing d, we can arrange
that f extends to an invariant section f ∈ Γ(P(V ),O(d))G: this follows from the
exact sequence 0→ IU → OP(V ) → OU → 0 using the vanishing of H1(P(V ), IU (N))
for N ≫ 0 and the exactness of taking invariants (i.e., the linear reductivity of G).
We may thus view f as a homogeneous polynomial of degree d on A(V ). Letting
α = f(ũ), we have a commutative diagram

G
Ψũ //

Ψu ##

V (f − α) �
�

//

��

A(V )

P(V )f

where Ψu(g) = g · u and Ψũ(g) = g · ũ. By assumption, we have that dimGu =
dimGũ = 0 so both stabilizers are finite, thus proper. By Exercise 3.3.15(b),
Gu ⊂ P(V )f is closed if and only if Ψu is proper, and Gũ ⊂ A(V ) is closed if and
only if Ψũ is proper. On the other hand, V (f − α)→ P(V )f is proper, and thus Ψu
is proper if and only if Ψũ is. Thus Gu ⊂ Uf is closed if and only if Gũ ⊂ A(V ) is
closed giving the first equivalence. For the second equivalence, if Gũ is not closed,
then there exists a one-parameter subgroup λ : Gm → G such that limt→0 λ(t) · ũ
exists and is not contained in Gũ. This gives a non-trivial λ with µ(u, λ) ≤ 0.
Conversely, if Gũ is closed, then Ψũ is proper and therefore for every non-trivial
λ, the map Gm → A(V ), defined by t 7→ λ(t) · ũ, is also proper. This implies
that limt→0 λ(t)ũ does not exist as otherwise the limit would define an extension
A1 → A(V ) of Gm → A(V ) and applying the valuative criterion

Gm� _

��

Gm

��

A1 //

<<

A(V )

would yield a contradiction. Since the limit doesn’t exist, µ(u, λ) > 0.

We also provide a stack-theoretic criterion for a point u ∈ [U/G] to be semistable,
i.e., u is contained in the open substack [U ss/G]. The data of a G-equivariant
embedding U ⊂ P(V ) is classified by a line bundle L on [U/G] such that the pullback
of L under U → [U/G] is very ample. Since the stable and semistable locus are
G-invariant, they define open substacks of [U/G]. The data of a point u ∈ U(k)
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and a one-parameter subgroup λ : Gm → G up to conjugation is classified by a map
fu,λ : [A1/Gm]→ [U/G] such that the induced map

BGm
0
↪→ [A1/Gm]

fu,λ−−−→ [U/G]→ BG

corresponds λ. The Hilbert–Mumford index is µ(u, λ) = −wt(f∗u,λL)|BGm
.

Corollary 6.7.18 (Hilbert–Mumford Criterion). Let G be a linearly reductive
algebraic group over an algebraically closed field k acting on a projective k-scheme
U . Let L be a line bundle on [U/G] corresponding to a very ample G-linearization.
Then u ∈ [U/G] is semistable if and only if wt((f∗L)|BGm

) ≥ 0 for all maps

f : [A1/Gm]→ [U/G], with f(1) ≃ u.

If in addition the action of G on U has generically finite stabilizers, then u is stable if
and only if wt((f∗L)|BGm

) > 0 for all maps f : [A1/Gm]→ [U/G] such that f(1) ≃ u
and the induced map Gm → Gf(0) on stabilizers is non-trivial.

Exercise 6.7.19 (Affine Hilbert-Mumford Criterion). Let G be a linearly reductive
group over an algebraically closed field k acting on an affine scheme U = SpecA of
finite type. Let χ : G→ Gm be a character, and let U ss and U s be the semistable
and stable locus with respect to χ as defined in Exercise 6.7.11. For u ∈ U(k), show
that

u ∈ U ss ⇐⇒ for all one-parameter subgroups λ : Gm → G such that
lim
t→0

λ(t) · u exists, ⟨χ, λ⟩ ≥ 0

where ⟨−,−⟩ is the natural pairing of characters and one-parameter subgroups. If
in addition the action of G on U has generically finite stabilizers, show that u ∈ U s

if and only if the same condition holds with strict inequality ⟨χ, λ⟩ > 0.

Hint: Consider the action of G on U × A1 induced by χ defined by g · (u, z) =
(g ·u, χ(g)−1 · z), and show that u /∈ U ss if and only if G · (u, 1)∩ (U ×{0}) ̸= ∅. Use
the Destabilization Theorem (6.6.35) to show that this is equivalent to the existence
of a one-parameter subgroup λ such that

lim
t→0

λ(t) · (u, 1) = lim
t→0

(λ(t) · u, t−⟨χ,λ⟩) ∈ U × {0}.

6.7.4 Examples
Example 6.7.20. Consider the diagonal action of SL2 on X = (P1)n, and consider
the SL2-equivariant Segre embedding (P1)n → P2n−1 (or equivalently the SL2-
linearization O(1)⊠ · · ·⊠O(1)). We claim that

Xs = {(p1, . . . , pn) | for all q ∈ P1, #{i | pi = q} < n/2}
Xss = {(p1, . . . , pn) | for all q ∈ P1, #{i | pi = q} ≤ n/2}.

To see this, let (p1, . . . , pn) ∈ X(k) and λ : Gm → SL2 be a one-parameter sub-
group. There exists g ∈ SL2(k) such that gλg−1 = λd0 for some d ∈ Z where

λ0(t) =

(
t−1 0
0 t

)
. We can assume d ≥ 0 as the case d < 0 is handled sim-

ilarly. Since µ(x, λ) = µ(gx, λd0) = dµ(gx, λ0), it suffices to compute µ(gx, λ0).
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Since µ(−, λ0) is symmetric with respect to the Sn-action, we can assume that
gx = (0, . . . , 0, pk, . . . , pn) with pk, . . . , pn ≠ 0. A coordinate of the Segre embed-
ding is of the form (

∏
i∈Σ xi)(

∏
i/∈Σ yi) for a subset Σ ⊂ {1, . . . , n}, and its weight

is n − 2(#Σ). The coordinate where gx is nonzero with the largest weight is
y1 · · · ykxk+1 · · ·xn with weight 2k − n. Thus µ(gx, λ0) = n− 2k. Therefore, if no
more than (resp., less than) n/2 of the points pi are the same, then x is semistable
(resp., stable) if and only if n ≥ 2k (resp., n > 2k). Conversely, if more than (resp.,
at least) n/2 of the same, then after translating by an element of SL2 and using
the symmetry of the Sn-action, we can write u = (0, . . . , 0, pk, . . . , pn) with k > n/2
(resp., k ≥ n/2) and λ0 = diag(t−1, t) destabilizes u.

If n is odd, then Xss = Xs and Xss → Xss// SL2 is a geometric quotient. If n
is even, the map Xss → Xss// SL2 identifies (p1, . . . , pn) and (q1, . . . , qn) if there is
a subset Σ ⊂ {1, . . . , n} of size n/2 such that pi = pj and qi = qj for all i, j ∈ Σ;
in this case, the unique closed orbit in fiber is the orbit of the n-tuple with 0’s in
positions in Σ and ∞’s elsewhere. The complement Xss \Xs has precisely 1

2

(
n
n/2

)
closed orbits.

A modification of the argument yields the same stable and semistable locus
for the action of PGL2 on (P1)n under the PGL2-linearization O(2) ⊠ · · · ⊠O(2).
Since Aut(P1) = PGL2, the quotient Xss// SL2 = Xss//PGL2 can be viewed as a
compactification of the moduli of n ordered points in P1 up to projective equivalence.

Exercise 6.7.21.
(a) Under the action of SL2 on the projectivization P(Γ(P1,O(n))) ∼= Pn of binary

forms of degree n, show that the semistable (resp., stable) locus consists of
binary forms f(x, y) such that every linear factor has multiplicity less than or
equal to (resp., less than) n/2.

(b) Under the SL2-linearization O(a1)⊠ · · ·⊠O(an) on (P1)n with each ai > 0,
show that the semistable (resp., stable) locus consists of tuples (p1, . . . , pn)
such that for all q ∈ P1(k),

∑
pi=q

ai ≤ (

n∑
i=1

ai)/2

(resp., strict inequality holds).
(c) Under the SLr+1 action on (Pr)n and the SLr+1-linearization O(a1)⊠ · · ·⊠
O(an) with each ai > 0, show that the semistable (resp., stable) locus consists
of tuples (p1, . . . , pn) such that for every linear subspace W ⊊ Pr

∑
pi∈W

ai ≤
dimW + 1

r + 1

( n∑
i=1

ai)

(resp., strict inequality holds).

Exercise 6.7.22 (Cubic curves). Consider the action of SL3 on the projective space
P(H0(P2,O(3))) of cubic curves in P2. Show that the stable (resp., semistable) locus
consists of smooth (resp., at worst nodal) curves.

Remark 6.7.23 (Quartic curves). A more involved calculation shows that under the
SL3 action on P(H0(P2,O(4))), a quartic curve is semistable if and only if it doesn’t
contain a triple point and is not the union of a cubic curve and an inflection tangent
line, and is stable if and only if it has at worst nodal and cuspidal singularities. See
also [Mum77, §1.13].
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Remark 6.7.24 (Cubic surfaces). Under the action of SL4 on P(H0(P3,O(3))), a
cubic surface is stable (resp., semistable) if and only if it has finitely many singular
points and the singularities are ordinary double points (resp., ordinary double points
or rank two double points whose axes are not contained in the surface). See [Muk03,
Thm. 7.14] and [Hil93].

Exercise 6.7.25 (Quiver GIT). A quiver Q = (Q0, Q1) is a directed graph where
Q0 is a finite set of vertices and Q1 is a finite set of arrows; there are source and
target maps s, t : Q1 → Q0. A k-representation of Q consists of a vector space Vi for
every i ∈ Q0 together with linear maps Lα : Vi → Vj for every arrow α : i → j. If
each Vi is finite dimensional with di = dimVi, we say that d = (di) is the dimension
vector of V .

Fix d = (di) and consider the space

R(Q, d) =
∏
α∈Q1

Hom(ks(α),kt(α))

of representations with dimension vector d. This inherits an action of
∏
iGLdi via

(gi) · (Lα) = (gt(α)Lαg
−1
s(α)). The diagonal subgroup Gm ⊂

∏
iGLdi consisting of

tuples (t idkdi ) of scalar matrices for t ∈ Gm is normal and acts trivially. Therefore
the quotient G := (

∏
iGLdi)/Gm also acts on R(Q, d).

For any tuple a = (ai)i∈Q0
of integers such that

∑
i aidi = 0, consider the

character
χa : G→ Gm, (gi) 7→

∏
i

det(gi)
ai .

Use the Affine Hilbert–Mumford Criterion (6.7.19) to show that a representation
V ∈ R(Q, d) is semistable (resp., stable) with respect to χ if and only if for every
subrepresentation W ⊂ V (i.e., subspaces Wi ⊂ Vi such that Lα(Ws(α)) ⊂Wt(α)),∑

i

ai dimWi ≥ 0

(resp., strict inequality holds). See also [Kin94, Prop. 3.1].

Remark 6.7.26 (Cox construction of toric varieties). Let X = X(Σ) be a proper
toric variety with fan Σ ⊂ NR and torus TN , where N is a lattice with dual M .
Letting Σ(1) denote the rays of the fan, the divisors Dρ associated to ρ ∈ Σ(1)
generate the class group. There is a short exact sequence

0→M → ZΣ(1) → Cl(X)→ 0.

The algebraic group G := Hom(Cl(X),Gm) is diagonalizable (hence linearly reduc-
tive) and sits in a short exact sequence

1→ G→ GΣ(1)
m → TN → 1

obtained by applying Hom(−,Gm) to the above sequence. The group G acts naturally
on AΣ(1).

For a cone σ ∈ Σ, let xσ :=
∏
ρ∈σ(1) xρ. Define the closed subset Z ⊂ AΣ(1) by

the vanishing of the ideal generated by the monomials xσ as σ varies over maximal
dimensional cones; this set can also be described as the union

⋃
C V (xρ | ρ ∈ C)

where the union runs over primitive collections C ⊂ Σ(1), i.e., subsets C such that
C is not contained in σ(1) for any σ ∈ Σ and such that for any C ′ ⊊ C, there exists
σ ∈ Σ with C ′ ⊂ σ(1). This locus Z is G-invariant.
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The main theorem here is that X is isomorphic to the good quotient (AΣ(1) \
Z)//G. This is the so-called ‘Cox construction of X’, and it gives X homogeneous
coordinates in a similar fashion to how An+1 gives homogeneous coordinates for
Pn = (An+1 \ 0)/Gm. When Σ is a simplicial fan, X is a geometric quotient
(AΣ(1) \Z)/G. Moreover, the class group Cl(X) is identified with group of character
X∗(G), and if L is an ample line bundle on X corresponding to a character χ, then
AΣ(1) \ Z is the semistable locus for the action of G on AΣ(1) with respect to the
character χ. See [Cox95] and [CLS11, §5].

Example 6.7.27 (Variation of GIT for Gm-actions). Consider a Gm-action on an
affine scheme X = SpecA of finite type over k. In this example, we will consider
how the GIT quotients (with respect to a character in the sense Exercise 6.7.11)
vary as we vary the character of Gm. There is a bijection Hom(Gm,Gm) ∼= Z and
we write χd(t) = td as the character corresponding to d ∈ Z.

Let A =
⊕

n∈Z An be the induced grading. There are three cases for the
semistable locus Xss

χd
with respect to the character χd:

(1) d = 0: Xss(0) := Xss
χ0

= X and Xss
χ0
//Gm = SpecA0.

(2) d > 0: Xss(+) := Xss
χd

= X \ V (
∑
n<0An) and Xss

χd
= Proj

⊕
d≥0And is

independent of d; moreover Xss(0) is identified with X+
χd

with respect to the
one-parameter subgroup χd (Exercise 6.6.6).

(3) d < 0: Xss(−) := Xss
χd

= X \V (
∑
n>0An) = X+

χd
and Xss

χd
= Proj

⊕
d≥0A−nd

is independent of d.
There is a commutative diagram

Xss(+) �
�

//

��

X

��

Xss(−)

��

? _oo

Xss(+)//Gm // X//Gm Xss(−)//Gmoo

where the vertical maps are good quotients, the top maps are open immersions, and
the bottom maps are projective. The Affine Hilbert–Mumford Criterion (6.7.19)
implies that there are identifications of the stable loci with respect to χ0, χ1,
and χ−1: Xs(0) = X \ (Xss(+) ∩ Xss(−)), Xs(+) = Xss(+) = X \ Xss(−), and
Xs(−) = Xss(−) = X\Xss(+). Therefore, we see that if bothXss(+) andXss(−) are
nonempty, then Xss(+)/Gm → X//Gm and Xss(−)/Gm → X//Gm are isomorphisms
over Xs(0)/Gm, and in particular birational. We also see that if the complements of
Xss(+) and Xss(−) in X each have codimension at least two, then the birational
map Xss(+)//Gm 99K Xss(−)//Gm is an isomorphism in codimension 2 such that
the divisor O(1) (which is relatively ample over X//Gm) pushes forward to a divisor
on Xss(−)//Gm whose dual is relatively ample, i.e., Xss(+)//Gm 99K Xss(−)//Gm is
a flip with respect to O(1).

Remark 6.7.28 (Variation of GIT). Extending the previous example, consider a
projective variety X over k with an action of a linearly reductive group G. Two line
bundles (resp., G-linearizations) L1 and L2 on X are algebraically equivalent (resp.,
G-algebraically equivalent) if there is a connected variety T , points t1, t2 ∈ T (k),
and a line bundle (resp., G-linearization) L on X × T such that Li = L|X×{ti}.
The Neron–Severi group NS(X) (resp., G-equivariant Neron–Severi group NSG(X))
of line bundles (resp., G-linearizations) on X up to (G-)algebraic equivalence is
finitely generated. The kernel of NSG(X)R → NS(X) is identified with the rational
character group X∗(G)R. We let EffG(X) ⊂ NSG(X)R be the cone of G-effective
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linearizations, i.e., G-linearizations L such that there is a nonzero section of L⊗d) for
some d > 0 or in other words such that Xss

L ̸= ∅. We also let AmpG(X) ⊂ NSG(X)R

be the cone of ample G-linearizations.
The main results of variation of GIT can be formulated as follows. The semistable

locus Xss
L only depends on the G-algebraic equivalence class of L. There is a

polyhedral decomposition of the cone AmpG(X) ∩ EffG(X) defined by codimension
1 walls such that the semistable locus is constant in any open chamber. If L0 is
on a wall while L+ and L− are on opposite adjacent chambers, then there is a
commutative diagram

Xss
L+

� � //

��

Xss
L0

��

Xss
L−

��

? _oo

Xss
L+
//G // Xss

L0
//G Xss

L−
//Goo

where the vertical maps are good quotients, the top maps are open immersions,
and the bottom maps are projective. If Xss

L+
and Xss

L−
are non-empty, the bottom

maps are birational; when the bottom maps are isomorphisms in codimension 2,
then Xss

L+
//G 99K Xss

L−
//G is a flip with respect to the line bundle O(1) on Xss

L+
//G,

which is relatively ample over Xss
L0
//G and which pulls back to L+|Xss

L+
.

See [Tha96] and [DH98].

Remark 6.7.29 (Mori Dream Spaces). There is an interesting connection between
the Mori program and variation of GIT. A normal Q-factorial projective variety X
is a Mori dream space if (1) Pic(X)Q = NS(X)Q, (2) the cone Nef(X) of nef line
bundles is the affine hull of finitely many semiample line bundles, and (3) there are
finitely many birational maps fi : X 99K Xi, which are isomorphisms in codimension
1, to a Q-factorial normal projective variety Xi such that the movable cone Mov(X)
is the union of f−1

i (Amp(Xi)Q); a line bundle is movable if its stable base locus has
codimension at least 2. In other words, X is a Mori dream space if Mov(X) has a
finite wall and chamber decomposition such that the projective variety determined
by the line bundle is constant within an open chamber.

Equivalently, X is a Mori dream space if Pic(X)Q = NS(X)Q and the Cox ring

Cox(X) :=
⊕

(d1,...,dn)∈Nn

Γ(X,Ld11 ⊗ · · · ⊗ Ldnn )

is finitely generated, where L1, . . . , Ln is a basis for Pic(X)Q such that their affine
hull contains Eff(X)Q. If X is a Mori dream space, then X along with each birational
model Xi is a GIT quotient of the semistable locus of Spec(Cox(X)) by the torus
Gnm with respect to a character. Moreover, there is an identification of the Mori
chambers of Mov(X) with the variation of GIT chambers for the action of Gnm on
Spec(Cox(X)). See also [HK00].

Example 6.7.30 (Partial desingularization). If U is a smooth variety and U → X
is a geometric quotient by a linearly reductive group, then X necessarily has finite
quotient singularities; this is a consequence of the Local Structure Theorem (4.3.16).
On the other hand, if U → X is a good quotient, then X can have worse singularities.
Nevertheless, there is a canonical procedure to partially resolve the singularities of
X so that they become finite quotient singularities.

Suppose that there is an open subset X ′ ⊂ X such that π0(X ′) → X ′ is a
geometric quotient; this happens for example if U = V ss is the semistable locus with
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respect to the action of G on a projective variety V ⊂ PN and the stable locus V s is
nonempty. Then there is a commutative diagram

Un //

πn

��

Un−1
//

πn−1

��

· · · // U = U0

π0

��

Xn
// Xn−1

// · · · // X = X0

such that:

• Each Ui+1 is a G-invariant open subscheme of the blowup BlZ Ui, where Z
is a G-invariant smooth closed subscheme whose stabilizers are of maximal
dimension, and Ui+1 ⊂ BlZ Ui is the complement of the strict transform of
π−1
i (πi(Z)). If U = V ss is the semistable locus of a projective variety with

respect to a G-linearization L, then Ui+1 is the semistable locus with respect
to (q∗L)⊗n ⊗ O(−E) for n ≫ 0, where q : BlZ Ui → Ui and E denotes the
exceptional divisor.

• The maps Xi+1 → Xi are projective birational.

• The maps πi : Ui → Xi are good quotients by G, and the map πn : Un → Xn

is a geometric quotient. In particular, Xn has finite quotient singularities.

For a simple example of this procedure in action, consider the Gm-action on A2

with weights 1 and −1. In this case, the quotient A2//Gm ∼= A1 is smooth but not a
geometric quotient. The procedure tells us to take the blowup Bl0 A2 at the origin
and the complement U1 of the strict transform of V (xy). Then Gm-acts with finite
stabilizers on U1 and U1 → A2 is Gm-invariant birational (but neither proper nor
surjective) map inducing an isomorphism U1/Gm → A2//Gm on quotients.

See [Kir85], [Rei89], and [ER21].

6.7.5 Kempf’s Optimal Destabilization Theorem
Given an algebraic group G over an algebraically closed field k, we define X∗(G)
as the set of one-parameter subgroups Gm → G. Recall that for a torus T ∼= Gnm,
X∗(T ) ∼= Zn (see Example B.1.21).

Definition 6.7.31. A length ∥−∥ on X∗(G) is a non-negative real-valued function
on X∗(G) which is conjugation invariant, i.e.,

∥∥gλg−1
∥∥ = ∥λ∥ for λ ∈ X∗(G) and

g ∈ G(k), and such that for every maximal torus T ⊂ G, there is a positive definite
integral-valued bilinear form (−,−) on X∗(T ) with (λ, λ) = ∥λ∥2 for λ ∈ X∗(T ).

Example 6.7.32. If G = GLn, then any one-parameter subgroup λ is conjugate
to a one-parameter subgroup of the form t 7→ diag(td1 , . . . , tdn) and we can define
∥λ∥ =

√
d21 + · · ·+ d2n.

Example 6.7.33. For every reductive algebraic group G, there is a length ∥−∥
on X∗(G). To see this, let T ⊂ G be a maximal torus and choose a positive
definite integral-valued bilinear form (−,−) on X∗(T ), which is invariant under
the conjugation action of the Weyl group W := N(T )/T . There is a bijection
X∗(G)/G ∼= X∗(T )/W between conjugacy classes of X∗(G) under G and conjugacy
classes of X∗(T ) under W . In other words, for every λ ∈ X∗(G) there exists g ∈ G(k)
such that gλg−1 ∈ X∗(T ), and moreover for any other element g′ ∈ G(k) such that
g′λg′−1 ∈ X∗(T ), then gλg−1 and g′λg′−1 are conjugate under W . It follows that
∥λ∥2 := (gλg−1, gλg−1) is well-defined.
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Let X = SpecA be an affine k-scheme with the action of G and let x0 ∈ X(k)
be a point with closed orbit. For every point x ∈ X(k) with Gx0 ⊂ Gx and a
one-parameter subgroup λ : Gm → G such that limt→0 λ(t) · x exists, we define the
Hilbert–Mumford index of x with respect to λ as

µ(x, λ) = −deg f−1
x,λ(Gx0). (6.7.34)

where fx,λ : A1 → X is the map extending Gm → X, t 7→ λ(t) · x. Note that if
limt→0 λ(t) · x /∈ Gx0, then µ(x, λ) = 0.

Since µ(x, λn) = n·µ(x, λ), it natural to consider the normalized Hilbert–Mumford
index

µ(x, λ)

∥λ∥

as a measure of how quickly λ(t) · x approaches the closed orbit Gx0. The more
negative the normalized Hilbert–Mumford index is, the faster λ(t) · x approaches
Gx0. Kempf proved that there is a one-parameter subgroup minimizing this index
and that it is unique up to conjugation.

Theorem 6.7.35 (Kempf’s Optimal Destabilization Theorem—affine version). Let
G be a reductive algebraic group over an algebraically closed field k with a length
∥−∥ on X∗(G). Let X = SpecA be an affine scheme of finite type over k with
an action of G. Let x0 ∈ X(k) be a point with a closed orbit. For every point
x ∈ X(k) with Gx0 ⊂ Gx, there exists a one-parameter subgroup λ0 : Gm → G such
that µ(x, λ0)/ ∥λ0∥ achieves a minimal value M(x) over all λ ∈ X∗(G) such that
limt→0 λ(t) · x ∈ Gx0.

If λ′0 is another such one-parameter subgroup, then P (λ0) = P (λ′0) and λ′0 =
uλ0u

−1 for a unique element x ∈ X(λ0). Every maximal torus T ⊂ Pλ0 contains a
unique indivisible element achieving this minimum value.

Remark 6.7.36. The subgroup Pλ0
= {g ∈ G | limt→0 λ0(t)gλ0(t)

−1 exists} is the
parabolic associated to λ0 and Uλ0

= {g ∈ G | limt→0 λ0(t)gλ0(t)
−1 = 1} is the

unipotent radical of Pλ0
.

In the projective case where there is a G-equivariant embedding X ↪→ P(V ),
we have already defined the Hilbert–Mumford index µ(x, λ) in (6.7.14) as follows:
choosing a basis of V such that Gm acts on A(V ) = An with weights d1, . . . , dn and
a lift x̂ = (u1, . . . , un) ∈ A(V ) of x, then −µ(x, λ) is defined as the smallest di with
ui ̸= 0. If limt→0 λ(t) · x̂ exists, then this agrees with the definition in (6.7.34). To
see this, observe that the extension fx̂,λ : A1 → An of the map t 7→ λ(t) · x̂ is the
map t 7→ (tdiui) and f−1

x̂,λ(0) = Speck[t]/(td) where d is the smallest di with ui ̸= 0.
The projective version below follows from applying the affine version (Theo-

rem 6.7.35) to a lift x̂ ∈ A(V ) of a non-semistable point x ∈ P(V ). In this case, the
closed orbit in Gx̂ is the fixed point 0. The following theorem also holds for reduc-
tive groups, but we restrict to linearly reductive groups as we have only discussed
semistability in that context.

Theorem 6.7.37 (Kempf’s Optimal Destabilization Theorem—projective version).
Let G be a linearly reductive algebraic group over an algebraically closed field k with
a length ∥−∥ on X∗(G). Let X ⊂ P(V ) be a G-equivariant closed subscheme where V
is a finite dimensional G-representation. For every non-semistable point x ∈ X(k),
there exists a one-parameter subgroup λ0 : Gm → G such that µ(x, λ0)/ ∥λ0∥ achieves
a minimal value M(x) over all λ ∈ X∗(G).

371



If λ′0 is another such one-parameter subgroup, then Pλ0 = Pλ′
0

and λ′0 = gλ0g
−1

for a unique element g ∈ X(λ0). Every maximal torus T ⊂ Pλ0
contains a unique

indivisible element achieving this minimum value.

Definition 6.7.38. We call any λ0 satisfying Theorem 6.7.35 or Theorem 6.7.37 a
Kempf optimal destabilizing one-parameter subgroup for x, and we call M(x) the
optimal normalized Hilbert–Mumford index for x.

Proof of Theorem 6.7.35. The proof is simpler when x0 ∈ Gx is a fixed point, such as
in the projective version when the closed orbit is 0 ∈ A(V ); the reader is encouraged
to keep this case in mind. By Proposition B.1.18, we may choose finite dimensional
G-representations V and W along with G-equivariant maps

A(V )

X
) 	

i 66

f
((

A(W ),

(6.7.39)

where i : X ↪→ A(V ) is a closed immersion with i(x0) = 0 and f : X → A(W ) is
a morphism with f−1(0) = Gx0. When x0 is a fixed point, we can take f = i in
(6.7.39).

A one-parameter subgroup λ : Gm → G induces Gm-actions on V and W , and
thus gradings V =

⊕
d∈Z Vd and W =

⊕
d∈Z Wd. We define

m(i(x), λ) = min{d | the projection of i(x) to Vd is nonzero},
m(f(x), λ) = min{d | the projection of f(x) to Wd is nonzero}.

For any g ∈ G, we have the identitiesm(i(v), λ) = m(i(g·v), gλg−1) andm(f(v), λ) =
m(f(g · v), gλg−1).

It is easy to see that if limt→0 λ(t) · x exists, then µ(x, λ) = −m(f(x), λ), and
that

lim
t→0

λ(t) · x exists ⇐⇒ m(i(x), λ) ≥ 0,

lim
t→0

λ(t) · x ∈ Gx0 ⇐⇒ m(i(x), λ) ≥ 0 and m(f(x), λ) > 0.

By the Destabilization Theorem (6.6.35), there exists λx ∈ X∗(G) such that
m(i(x), λx) ≥ 0 and m(f(x), λx) > 0.

Case of a torus: Let T ⊂ G be a maximal torus containing λx. We can decompose
V =

⊕
χ∈X∗(T ) Vχ as a T -representation where X∗(T ) denotes the set of characters

of T . We define the state of i(x) ∈ V with respect to T to be the set

StateT (i(x)) = {χ ∈ X∗(T ) | the projection of i(x) to Vχ is nonzero}.

Likewise, we have the state StateT (f(x)) ⊂ X∗(T ) of f(x) ∈W with respect to T .
Let ⟨−,−⟩ be the natural pairing X∗(T ) × X∗(T ) → Z. For a one-parameter

subgroup λ ∈ X∗(T ), we have identifications

m(i(x), λ) = min
χ∈StateT (i(x))

⟨χ, λ⟩ and m(f(x), λ) = min
χ∈StateT (f(x))

⟨χ, λ⟩.

We claim that the function λ 7→ m(f(x), λ)/ ∥λ∥ achieves a maximum value on the
set {λ ̸= 0 ∈ X∗(T ) |m(i(x), λT ) ≥ 0} at a one-parameter subgroup λT , and that
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any other one-parameter subgroup achieving this minimum is a positive multiple of
λT . This is precisely the conclusion of Lemma 6.7.40 below applied to the lattice
L = X∗(T ) ∼= Zr and the subsets of X∗(T ) ∼= HomZ(L,Z) given by F := StateT (i(x))
and G := StateT (f(x)).

General case: If T ⊂ G is a maximal torus and g ∈ G(k), then there is an iden-
tification X∗(T ) ∼= X∗(gTg−1) given by identifying χ ∈ X∗(T ) with the character
gTg−1 → Gm defined by gtg−1 7→ χ(t). Under this identification, StateT (i(x)) =
StategTg−1(i(gx)). Given a one-parameter subgroup λ ∈ X∗(G), we have seen that
m(f(x), λ) = m(f(gx), gλg−1) for g ∈ G(k). We claim that in fact m(f(x), λ) =
m(f(x), pλp−1) for p ∈ Pλ. By symmetry, it suffices to show that m(f(x), λ) ≤
m(f(x), pλp−1). Interpreting −m(f(x), λ) as the smallest integer d such that
limt→0 t

dλ(t) · f(x) ∈ A(W ) exists, we need to show that limt→0 t
dpλ(t)p−1 · f(x) ∈

A(W ) exists. This follows from the computation

lim
t→0

(
tdpλ(t)p−1 · f(x)

)
= lim
t→0

(
p ·
(
λ(t)p−1λ(t)−1

)
·
(
tdλ(t)f(x)

))
= p ·

(
lim
t→0

λ(t)p−1λ(t)−1
)
·
(
lim
t→0

tdλ(t)f(x)
)
.

We now show that the function λ 7→ m(f(x), λ)/ ∥λ∥ achieves a minimum value
on

Σ := {λ ∈ X∗(G) |m(i(x), λ) ≥ 0}.

If T is a maximal torus, by the torus case, we know that for every g ∈ G(k) there is
a minimum value on each non-empty set X∗(gTg

−1) ∩ Σ, and that the minimum
is determined by the subsets of X∗(T ) given by StategTg−1(i(x)) ∼= StateT (i(g

−1u))
and StategTg−1(f(x)) ∼= StateT (f(g

−1u)). Since these subsets are contained in the
finite set of characters χ with Vχ ̸= 0 (resp., Wχ ̸= 0), there are only finitely
many minimum values as g ranges over G(k). Since the image of any λ ∈ X∗(G) is
contained in gTg−1 for some g ∈ G(k), it follows that there is a global minimum
value achieved by a one-parameter subgroup λ0 ∈ Σ. We may assume that λ0 is
indivisible, i.e., λ0 cannot be written as a positive multiple of another one-parameter
subgroup.

To establish the uniqueness, we choose a maximal torus T ⊂ G containing λ0.
By the torus case, λ0 ∈ X∗(T ) ∩ Σ is the unique indivisible one-parameter subgroup
achieving the minimal value. For p ∈ Pλ0

, the conjugate one-parameter subgroup
pλ0p

−1 also achieves this minimal value. Since any other maximal torus T ′ ⊂ Pλ0 is
pTp−1 for some p ∈ Pλ0 , we see that X∗(T

′) ∩ Σ also contains a unique indivisible
element achieving the minimum value. Finally, let λ1 ∈ X∗(G) be another indivisible
element achieving the minimum value. The intersection Pλ0

∩Pλ1
contains a maximal

torus T of G (Proposition B.1.25(d)), and we can write λT = p0λ0p
−1
0 = p1λ1p

−1
1

for p0, p1 ∈ PλT
. It follows that Pλ0

= PλT
= Pλ1

, and that λ0 and λ1 are conjugate
by a unique element element of UλT

(Proposition B.1.25(c)).
See also [Kem78, Thm. 3.4].

The argument above used the following lemma in convex geometry.

Lemma 6.7.40. Let Λ be a finite dimensional lattice, and let F and G be non-empty
finite subsets of Λ∨ = HomZ(Λ,Z). Assume that ΛR = Λ⊗Z R has a positive definite
inner product which is integral valued on Λ. Define

fmin : ΛR → R, λ 7→ min
f∈F

f(λ) and gmin : ΛR → R, λ 7→ min
g∈G

g(λ).
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Suppose that there exists λ ∈ ΛR such that fmin(λ) ≥ 0 and gmin(λ) > 0. Then the
function

CF := {λ ̸= 0 ∈ ΛR | fmin(λ) ≥ 0} → R,

λ 7→ gmin(λ)/ ∥λ∥

obtains a maximum value M , and there exists a unique element λ0 ∈ CF ∩ Λ
such that M = gmin(λ0)/ ∥λ0∥ and such that any other element λ ∈ CF ∩ Λ with
M = gmin(λ)/ ∥λ∥ is an integral multiple of λ0.

Proof. The set {λ ∈ CF | gmin(λ) ≥ 1} is closed and convex, and therefore contains
a unique point λ′ closest to the origin. Since gmin(αλ

′) = αgmin(λ
′) for α ∈ R, we

must have that gmin(λ
′) = 1 and that λ′ ∈ CF is the unique point with gmin(λ

′) = 1
and gmin(λ

′)/ ∥λ′∥ =M .
We now argue that the ray spanned by λ′ contains an integral point. If λ′ is

in the interior of {λ ∈ CF | gmin(λ) ≥ 1}, i.e., f(λ′) > 0 for all f ∈ F and there
is a unique g ∈ G with g(λ′) = 1, then λ′ is the closed point to the origin on the
affine plane defined by g = 1. We claim that λ′ = g∗/⟨g∗, g∗⟩ where g∗ ∈ ΛR is
the unique point such that ⟨g∗, λ⟩ = g(λ) for all λ ∈ ΛR. Indeed, the point λ′ is
contained in the plane g = 1, and for any other point λ on this plane, we have
that ⟨λ′, λ⟩ = 1/⟨g∗, g∗⟩ = ⟨λ′, λ′⟩ and the Cauchy–Schwarz inequality implies that
⟨λ′, λ′⟩2 = ⟨λ′, λ⟩2 ≤ ⟨λ′, λ′⟩⟨λ, λ⟩ so that ⟨λ′, λ′⟩ ≤ ⟨λ, λ⟩. Since the inner product
and g take integral values, g∗ ∈ Λ. We then take λ0 to be the unique indivisible
element in the ray spanned by g∗.

To reduce to this case, let f1, . . . , ft ∈ F be the functions satisfying fi(λ′) = 0,
and let g1, . . . , gs ∈ G be the functions satisfying gi(λ′) = gmin(λ

′). Since each fi
and gj take integral values, we may restrict to the subspace

W :=

{
λ ∈ ΛR

∣∣∣∣ f1(λ) = · · · = ft(λ) = 0
g1(λ) = · · · = gs(λ)

}
,

and the lattice W ∩ Λ. Then λ′ is in the interior of {λ ∈ CF ∩W | gmin(λ) ≥ 1}
and thus is the closest point to the origin contained in the affine plane define by
g1 = 1.

Corollary 6.7.41. In the setting of Theorem 6.7.35 or Theorem 6.7.37, there is a
unique morphism f : [A1/Gm]→ [X/G] with f(1) ≃ x and f(0) ≃ x0.

Proof. By Proposition 6.6.39, a morphism [A1/Gm] → [X/G] is determined by a
one-parameter subgroup λ such that limt→0 λ(t)x ∈ Gx0, and that λ is unique up
to conjugation by Pλ. Since any two of Kempf’s worst one-parameter subgroups are
conjugate under Uλ (and thus Pλ), the statement follows.

Example 6.7.42. We revisit the SL2 action on (P1)n with the linearization given
by the Segre embedding (P1)n ↪→ P2n−1 (Example 6.7.20). The non-semistable
consists of tuples x = (p1, . . . , pn) where more than n/2 points are equal. Suppose
that precisely k > n/2 points are equal. Since the Hilbert–Mumford index is
symmetric, we can assume that the first k are equal. If λ : Gm → SL2 is a one-
parameter subgroup, we can choose g ∈ SL2(k) with gλg−1 = λd0 where d ∈ Z and

λ0(t) =

(
t−1 0
0 t

)
. After rescaling the norm, we can assume that ∥λ0∥ = 1. We

also assume that d ≥ 0 as the d < 0 case can be handled similarly. Then

µ(x, λ)

∥λ∥
=
µ(gx, gλg−1)

∥gλg−1∥
= µ(gx, λ0)
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This index is negative if and only if gx = {0, . . . , 0, pk+1, . . . , pn} in which case
µ(gx, λ0) = n−2k. It follows that λ0 (resp., g−1λ0g) is a Kempf optimal destabilizing
one parameter subgroup for gx (resp x). Observe that the parabolic Pλ0

⊂ SL2

of lower triangular matrices is also the stabilizer of 0 ∈ P1, and thus Ggx ⊂ Pλ0
.

For any h ∈ Pλ0
, h−1λ0h (resp., (hg)−1λ0hg) is also a Kempf optimal destabilizing

subgroup for gx (resp., x).

Exercise 6.7.43. Let G be a reductive algebraic group over an algebraically closed
field k with a length ∥−∥ on X∗(G). Let X = SpecA be an affine scheme of finite
type over k with an action of G. Let x0 ∈ X(k) have closed G-orbit. Let x ∈ X(k)
be a point such that Gx0 ⊂ Gx, and let Px be the parabolic determined by Kempf’s
Optimal Destabilization Theorem (6.7.35).

(a) Show that for all g ∈ G(k) that gPxg−1 = Pgx.

Hint: Show that if Px = Pλ for a one-parameter subgroup λ, then Pgx = Pgλg−1 .
(b) Show that Gx ⊂ Px.

Hint: Use that for a parabolic P , NG(P ) = P (Proposition B.1.25).

The following criterion can sometimes be used to check stability/semistability by
computing Hilbert–Mumford indices only for one-parameter subgroups in a fixed
maximal torus.

Exercise 6.7.44 (Kempf–Morrison Criterion). Let G = GL(W ) or SL(W ), where W
is finite dimensional vector space over an algebraically closed field k of characteristic
0. Let X ⊂ P(V ) be a G-invariant closed subscheme, where V is a finite dimensional
G-representation. Let x ∈ X(k). Assume that there is a linearly reductive subgroup
H ⊂ Gx such that W decomposes as a direct sum of distinct H-representations. Let
T ⊂ G be a maximal torus compatible with this decomposition. Show that

x ∈ Xss ⇐⇒ µ(x, λ) ≤ 0 for all λ : Gm → T,

x ∈ Xs ⇐⇒ µ(x, λ) < 0 for all λ : Gm → T.

Hint: If u /∈ Xss, let λ0 : Gm → G be a Kempf optimal destabilization one-parameter
subgroup and 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vk = V be the filtration induced by the parabolic
Pλ0

. Use Exercise 6.7.43 to conclude that each Vi is H-invariant, and use the
hypothesis on the H-representation V to show that each Vi is T -invariant; thus
T ⊂ Pλ0

. Apply Kempf’s Optimal Destabilization Theorem again to find λ in T with
µ(x, λ) < 0. If u /∈ Xs, letting x̂ ∈ A(V ) be a lift of x and x̂0 ∈ Gx̂ be a point with
closed orbit, repeat the above argument using the affine version of Kempf’s Optimal
Destabilization Theorem.

Exercise 6.7.45 (Existence of destabilizing one-parameter subgroups over a perfect
field). Let X be an affine scheme of finite type over a perfect field k, and let G be a
reductive algebraic group over k acting on X. This exercise will show that for every
point x ∈ X(k), there exists a one-parameter subgroup λ : Gm → G defined over k
such that limt→0 λ(t) · x has closed G-orbit. See also [Kem78, §4].

(1) Show that if Gal := Gal(k/k) is the geometric Galois group, then Gal acts on
the set X∗(Gk) of one-parameters subgroups such that X∗(G) = X∗(Gk)

Gal.
(2) Show that there exists a length ∥−∥ on X∗(Gk) which is invariant under the

action of Gal.
(3) Show that the subsets {λ ∈ X∗(Gk) | limt→0 λ(t) · x ∈ X(k) exists} and
{λ ∈ X∗(Gk) | limt→0 λ(t) · x ∈ Gkx0} are Gal-invariant where Gkx0 is
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the unique closed orbit in Gku. Moreover, show that if V and W are G-
representations as in (6.7.39), then the functions m(i(x), λ) and m(f(x), λ)
are Gal-invariant.

(4) Generalize Theorem 6.7.35 and Theorem 6.7.37 to the case when k is a perfect
field and x ∈ X(k).

In particular, if G has no non-trivial one-parameter subgroups defined over k, then
the G-orbit of any k-point is closed.

Finally, we record the following consequence of the proof of Kempf’s Optimal
Destabilization Theorem (6.7.35). This will play a key role in the proof of the HKKN
Stratification (6.7.47).

Proposition 6.7.46. Let G be a reductive algebraic group over an algebraically
closed field k with a length ∥−∥ on X∗(G). Let X = SpecA be an affine scheme of
finite type over k with an action of G with a unique closed orbit Gx0. Fix a maximal
torus T ⊂ G. There are finitely many one-parameter subgroups λ1, . . . , λn ∈ X∗(T )
and numbers M1, . . . ,Mn ∈ R<0 such that for every point x ∈ X(k), there exists a
unique i = 1, . . . , n such that λi is an optimal Kempf one-parameter subgroup for gx
for some g ∈ G, and such that Mi = µ(x, λi)/ ∥λi∥.

Proof. We will use the notation of the proof of Theorem 6.7.35. For x ∈ X(k),
the unique parabolic subgroup of a Kempf optimal destabilization one-parameter
subgroup is determined by the subsets StategTg−1(i(x)) ∼= StateT (i(gx)) ⊂ X∗(T )
and StategTg−1(f(x)) ∼= StateT (f(gx)) ⊂ X∗(T ) as g ranges over G(k). These
subsets are contained in the finite subset of characters χ ∈ X∗(T ) with Vχ ≠ 0 or
Wχ ̸= 0. Thus there are only finitely many possibilities for an optimal destabilizing
subgroup of T , and the statement follows.

6.7.6 The Hesselink–Kempf–Kirwan–Ness Stratification
For an action of a reductive group G on a projective variety X ⊂ Pn, we show
that the non-semistable locus admits a stratification into locally closed subschemes
according to the normalized Hilbert–Mumford index

M(x) := µ(x, λ)/ ∥λ∥ ∈ R<0

of a Kempf optimal destabilizing one-parameter subgroup λ of a point x ∈ X \Xss.
The more negative the index M(x) is, the more non-semistable (or ‘unstable’)
the point x is. The strata will be indexed by pairs (λ,M) where λ ∈ X∗(G) and
M ∈ R<0.

Recall from the Białynicki-Birula decomposition that for a one-parameter sub-
group λ : Gm → G, the attractor locus X+

λ = MorGm(A1, X) for the induced Gm-
action is a disjoint union of locally closed subschemes.

Theorem 6.7.47 (The HKKN Statification). Let G be a linearly reductive algebraic
group over an algebraically closed field k with a maximal torus T and a length ∥−∥
on X∗(G). Let X ⊂ P(V ) be a G-equivariant closed subscheme where V is a finite
dimensional G-representation. There is a finite subset Σ ⊂ X∗(T ) × R<0 and a
stratification of the non-semistable locus into G-invariant locally closed subschemes

X \Xss =
∐

(λ,M)∈Σ

Sλ,M

such that for each (λ,M) ∈ Σ,
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(1) X+
λ,M := {x ∈ X+

λ |M(x) = M} is a Pλ-invariant locally closed subscheme
of X consisting of points x such that λ is a Kempf optimal destabilizing
one-parameter subgroup for x, and Sλ,M = G ·X+

λ,M ;

(2) a point x ∈ X+
λ,M if and only if ev0(x) = limt→0 λ(t) · x ∈ X+

λ,M ∩Xλ; thus
Zλ,M := {x ∈ Xλ |M(x) =M} is a Cλ-invariant closed subscheme of X+

λ,M

such that X+
λ,M = ev−1

0 (Zλ,M ).

(3) the natural map G ×Pλ X+
λ,M → Sλ,M is finite, surjective, and universally

injective; if char(k) = 0, then G×Pλ X+
λ,M → Sλ,M is an isomorphism.

(4) the locus ⋃
(λ′,M ′)∈Σ,M ′≤M

Sλ′,M ′

is closed and in particular contains Sλ,M ;
(5) if X is smooth, then so is each X+

λ,M ; in char(k) = 0, the strata Sλ,M is also
smooth.

Remark 6.7.48. The locus Sλ,M is called a stratum while X+
λ,M and Zλ,M are

sometimes called a blade and center of the stratum. In characteristic 0, we have
stack-theoretic equivalences [X+

λ,M/Pλ]
∼= [Sλ,M/G] and a stratification

[(X \Xss)/G] =
∐

(λ,M)∈Σ

[Sλ,M/G].

For each (λ,M), there is a diagram

[Zλ,M/Cλ]
i
// [X+

λ,M/Pλ]
∼= [Sλ,M/G]

� � //

ev0

ss

[X/G] (6.7.49)

such that ev0 ◦i = id.

Proof. Let X̂ ⊂ A(V ) be the affine cone of X, and let N̂ ⊂ X̂ be the nullcone, i.e.,
the affine cone of X \ Xss. Then 0 ∈ N̂ is the unique closed G-orbit. Applying
Proposition 6.7.46 to the nullcone N̂ ⊂ A(V ), there is a finite subset Σ ⊂ X∗(T )×R<0

such that for every point x̂ ∈ N̂ \ 0, there is a unique (λ,M) ∈ Σ such that λ is a
Kempf optimal destabilizing one-parameter subgroup for x̂ with M = µ(x̂, λ)/ ∥λ∥.

Since N̂ is affine, the locus N̂+
λ ⊂ N̂ is a closed subscheme for each (λ,M) ∈ Σ

(Exercise 6.6.6). Since G is reductive, Pλ ⊂ G is parabolic and

[N̂+
λ /Pλ]

∼= [G×Pλ N̂+
λ /G]→ [N̂/G]

is projective. The image of this morphism is a closed substack corresponding to a
closed G-invariant subscheme Ŝλ such that Ŝλ = G · N̂+

λ . The loci N̂+
λ and Ŝλ are

invariant under scaling and are thus the affine cones over closed subschemes Nλ and
Sλ of X \Xss such that Sλ = G ·Nλ.

The locus X+
λ,M := {x ∈ X+

λ |M(x) =M} is identified with the points x ∈ Nλ
with M(x) = M . Moreover, Sλ,M := {x ∈ Sλ |M(x) = M} is identified with
G ·X+

λ,M . There are identifications

X+
λ,M = X+

λ \
⋃

(λ′,M ′),M ′<M

X+
λ′,M ′ and Sλ = Sλ,M \

⋃
(λ′,M ′),M ′<M

Sλ′,M ′ .
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Thus X+
λ,M and Sλ,M are open in X+

λ and Sλ, and each are locally closed in U \U ss.
From the conclusion of Proposition 6.7.46, the loci Sλ,M are disjoint and cover
U \ U ss. This gives (1).

For (2), if x ∈ X ⊂ P(V ), then the limit x0 = limt→0 λ(t) · x is the projection
onto the subspace W = ⊕Vχ ranging over characters χ ∈ X∗(T ) such that the
projection projχ(x) of x to Vχ is nonzero and ⟨χ, λ⟩ = −µ(x, λ). By Lemma 6.7.40,
λ lies on the ray spanned by the unique point closest to the origin in the closed
convex set of Cx = {λ ∈ X∗(T )R | ⟨χ, λ⟩ ≥ 1,projχ(x) ̸= 0}. It follows that λ is also
the closest point to the origin in the analogously defined set Cx0

. Alternatively, one
can check that if λ0 ∈ X∗(T ) is a optimal destabilizing one-parameter subgroup for
x0, then µ(x0, λ0)/ ∥λ0∥ ≤ µ(x, λ)/ ∥λ∥ (giving the implication x0 ∈ X+

λ,M ⇒ x ∈
X+
λ,M ) and µ(x, λNλ0)/

∥∥λNλ0∥∥ ≤ µ(x, λ)/ ∥λ∥ for N ≫ 0 (giving the implication
x ∈ X+

λ,M ⇒ x0 ∈ X+
λ,M ).

For (3), for x ∈ X+
λ,M we claim that

Pλ = {g ∈ G(k) | gx ∈ X+
λ,M}. (6.7.50)

Since X+
λ,M is Pλ-invariant, we have the inclusion ‘⊂’. Conversely, if gx ∈ X+

λ,M ,
then both λ and gλg−1 are optimal destabilization one-parameter subgroups for
x. By Kempf’s Optimal Destabilization Theorem (6.7.35), the parabolics Pλ and
Pgλg−1 = gPλg

−1 are equal. Since NG(Pλ) = Pλ (Proposition B.1.25), we conclude
that g ∈ Pλ. Since [X+

λ /Pλ]→ [X/G] is proper, so is [X+
λ,m/Pλ]→ [Sλ,M/G]. The

map [X+
λ,m/Pλ]→ [Sλ,M/G] is surjective by construction, and injective on k-points

by (6.7.50); it is thus finite, surjective, and universally injective, and moreover an
isomorphism if char(k) = 0.

For (4), given M < 0, assume by induction that
⋃

(λ′,M ′)∈Σ,M ′<M Sλ′,M ′ is closed.
Then for each (λ,M), we have that

Sλ,M = Sλ \
⋃

(λ′,M ′)∈Σ,M ′<M

Sλ′,M ′

and it follows that
⋃

(λ′,M ′)∈Σ,M ′≤M Sλ′,M ′ is closed.
For (5), if X is smooth, then each X+

λ is smooth (Theorem 6.6.8). Since
X+
λ,M ⊂ X

+
λ is open, X+

λ,M is also smooth. In char(k) = 0, Sλ,M = G×Pλ X+
λ,M by

Part (3) and thus also smooth.
See also [Hes81, §3], [Hes79, §4] and [Kir84, §12-13].

Remark 6.7.51. When X is a smooth projective variety over C, the HKKN
stratification coincides with the Morse stratification of the square-norm of the
moment map ∥−∥2 : X → R. Given x ∈ X, the optimal destabilizing one-parameter
subgroup corresponds to the path of steepest descent starting from x. The centers
Zλ,M correspond to the set of critical values of ∥−∥2 while the strata Sλ,M are the
locally closed submanifolds consisting of points which flow to Zλ,M . See [Kir84, §6]
and [Nes84].

Example 6.7.52. Let Gm act linearly on X = P2 with weights −1, 2, 3. Letting λ =
id be the identity one-parameter subgroup, the non-semistable locus is V (x2y, x3z)
has the stratification Sλ−1,−1 ∪ Sλ,−2 ∪ Sλ,−3 where Sλ−1,−1 = {[1 : 0 : 0]}, Sλ,−2 =
{[0 : y : z] | y ̸= 0}, and Sλ,−3 = {[0 : 0 : 1]}.

Example 6.7.53. Revisiting the action of SL2 onX = (P1)n with the Segre lineariza-
tion (Example 6.7.42), let λ0 : Gm → SL2 be the one-parameter subgroup defined
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by λ0(t) = diag(t−1, t). The strata are indexed by (λ0,−1), (λ0,−3), . . . , (λ0,−n)
if n is odd and by (λ0,−2), (λ0,−4), . . . , (λ0,−n) if n is even. The strata Sλ0,n−2k

consists of tuples with precisely k > n/2 points in common and has codimension
k− 1. The blade X+

λ0,n−2k consists of tuples where precisely k points are 0 while the
center Zλ0,n−2k is the set of Gm-fixed points where k points are 0 and n− k points
are ∞.

Remark 6.7.54 (Θ-stratifications). As indicated in Remark 6.6.42, there is an
identification

Mor([A1/Gm], [X/G]) =
∐

λ∈X∗(G)/∼

[X+
λ /Pλ],

where X∗(G)/ ∼ represents the set of one-parameter subgroups up to conjugation.
A Θ-stratification of an algebraic stack X locally of finite type over k is the data

of a totally ordered set Σ with a minimal element 0 ∈ Σ and a stratification into
locally closed substacks

X =
∐
λ∈Σ

Sλ

such that:
(1) for each λ ∈ Σ, X≤λ :=

⋃
ρ≤λ Sρ is an open substack of X ,

(2) for each λ ∈ Σ, there is a union of connected components (called a Θ-stratum
of X≤λ)

S ′λ ⊂ Mor([A1/Gm],X≤λ)

such that ev0 : S ′λ → X≤λ is a closed immersion mapping isomorphically onto
Sλ, and

(3) for every x ∈ |X |, the set {λ ∈ Σ |x ∈ |X≤λ} has a minimal element.
See [HL14]. The semistable locus X ss is by definition the open substack X≤0 = S0.
Let Z ′

λ be the preimage of S ′λ under the map

i : Mor(BGm, [X/G])→ Mor([A1/Gm],X ).

The map ev0 : Mor([A1/Gm], [X/G]) → Mor(BGm,X ) obtained by restricting to 0
is a section of i, and there is a diagram analogous to (6.7.49)

Z ′
λ

i // S ′λ
� � //

ev0

zz

X .

In characteristic 0, the HKKN stratification is an example of a Θ-stratification,
where one orders the indices (λ,M) first by −M and then arbitrarily by λ. In the
next chapter, we will see that the moduli stack Bunr,d(C) has a Θ-stratification
called the Harder–Narasimhan–Shatz stratification.

Recall that the Chow–Poincare polynomial of a G-equivariant scheme X is
pG(X, t) =

∑∞
d=0

(
dimCHdG(U)Q

)
td.

Proposition 6.7.55 (Kirwan Surjectivity). Under the hypotheses of Theorem 6.7.47,
assume further assume that X is smooth and irreducible, and that char(k) = 0.
Suppose that for all (λ,M), the stratum Sλ,M is equidimensional of codimension
dλ,M . Then

dimCHkG(X)Q = dimCHkG(X
ss)Q +

∑
(λ,M)

dimCH
k−dλ,M

Cλ
(Zλ,M )Q
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and
pG(X, t) = pG(X

ss, t) +
∑

(λ,M)

pCλ
(Zλ,M , t)t

dλ,M .

Proof. From Theorem 6.7.47, we know that [Sλ,M/G] ∼= [X+
λ,M/Pλ]. From The-

orem 6.6.8, we know that ev0 : X
+
λ,M → Zλ,M sending a point to its limit is a

Zariski-local affine fibration and equivariant with respect to Pλ → Cλ. We claim
that [X+

λ,M/Pλ]→ [Zλ,M/Cλ] induces an isomorphism

CH∗
Cλ

(Zλ,M )→ CH∗
Pλ

(X+
λ,M ). (6.7.56)

By the definition of the equivariant Chow groups, CHiPλ
(X+

λ,M ) is identified by
CHi(X+

λ,M ×Pλ V ) where V is an open subspace A(W ) of a Pλ-representation such
that Pλ acts freely on V and A(W ) \ V has sufficiently high codimension. On the
other hand, CHiCλ

(Zλ,M ) is identified with CHi(Zλ,M ×Cλ V ) and the map (6.7.56)
corresponds to the pullback map on Chow induced from the composition

X+
λ,M ×

Pλ V → Zλ,M ×Pλ V → Zλ,M ×Cλ V.

The first map is a Zariski local affine fibration and the second map is a principal
bundle under Uλ = ker(Pλ → Cλ). Since Uλ is unipotent, Uλ is isomorphic to affine
space and principal Uλ-bundles are locally trivial in the Zariski topology (see §B.1.2).
We conclude that (6.7.56) is an isomorphism.

We also claim that cdλ,M
(NSλ,M/X) ∈ CH∗

G(Sλ,M ) is a nonzerodivisor. Since
NSλ,M/X |Zλ,M

is identified with NSλ,M/X under CH∗
Cλ

(Zλ,M ) ∼= CH∗
G(Sλ,M ), it

suffices to show that cdλ,M
((NSλ,M/X)|Zλ,M

) ∈ CH∗
Cλ

(Zλ,M )Q is a nonzerodivisor
where d = dλ,M . By Theorem 6.6.8, λ acts on a fiber of the normal bundle with
nonzero weights. Thus Lemma 6.6.27 implies that cdλ,M

((NSλ,M/X)|Zλ,M
) is a

nonzerodivisor.
We therefore can apply Lemma 6.6.25 with the strata Sλ,M ordered first by

−M and then with any ordering of the λ’s; the semistable locus U ss is viewed as a
stratum with the smallest index. This yields

dimCHkG(X)Q = dimCHkG(X
ss)Q +

∑
(λ,M)

dimCH
k−dλ,M

G (Sλ,M )Q

= dimCHkG(X
ss)Q +

∑
(λ,M)

dimCH
k−dλ,M

Cλ,M
(Zλ,M )Q.

Remark 6.7.57. This formula was established for de Rham cohomology in [Kir84,
Thm. 5.4]. Instead of the excision sequence

CH
k−dλ,M

G (Sλ,M )→ CHkG(S≤(λ,M))→ CHkG(S<(λ,M))→ 0,

one uses the Thom–Gysin long exact sequence

· · · → H
k−dλ,M

G (Sλ,M )→ HkG(S≤(λ,M))→ HkG(S<(λ,M))→ · · · .

In this case, the surjectivity of the right map for all (λ,M) is equivalent to the
injectivity of the left map for all (λ,M), and the latter condition is verified as above
by the showing the top Chern class of the normal bundle is a nonzerodivisor.
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Example 6.7.58. As an application, we can compute the dimension of the rational
Chow groups of [(P1)n,ss/ SL2] using the computation of the stratification in Exam-
ple 6.7.53. When n is odd, this also gives the dimension of the rational Chow groups
of the GIT quotient (P1)n,ss/SL2 by Properties 6.1.33(4).

Since [(P1)n/ SL2] → B SL2 is an iterated P1-bundle and CH∗(SL2) ∼= Z[T ]
generated in degree 2,

CH∗([(P1)n/ SL2]) ∼= CH∗((P1)n)⊗ CH∗(B SL2)

∼= Z[H1, . . . ,Hn]/(H1, . . . ,Hn)
2 ⊗ Z[T ]

and the Chow–Poincare polynomial is pSL2
((P1)n, t) = (1 + t)n(1 − t2)−1. On

the other hand, the strata Sλ,n−2k where precisely k points are the same has
codimension k − 1 and its center Zλ,n−2k consists of

(
n
k

)
Gm-fixed points. Thus

pGm
(Zλ,n−2k, t) =

(
n
k

)
(1− t)−1 and

pG((P
1)ss, t) = (1 + t)n(1− t)−1 −

∑
k>n/2

(
n

k

)
tk−1(1− t)−1

= 1 + nt+ · · ·+
(
1 + (n− 1) +

(
n− 1

2

)
+ · · ·+

(
n− 1

min(d, n− 3− d)

))
td

+ · · ·+ ntn−4 + tn−3.

See also [Kir84, §16.1].

6.8 Existence of good moduli spaces

In this section, we provide necessary and sufficient conditions for the existence of a
separated good moduli space in characteristic 0.

Theorem 6.8.1 (Existence Theorem of Good Moduli Spaces). Let X be an alge-
braic stack, of finite type over an algebraic closed field k of characteristic 0, with
affine diagonal. There exists a good moduli space π : X → X with X a separated
algebraic space if and only if X is Θ-complete (Definition 6.8.8) and S-complete
(Definition 6.8.13).

Moreover, X is proper if and only if X satisfies the existence part of the valuative
criterion for properness.

The conditions of Θ-completeness and S-completeness are defined and discussed
in detail in §6.8.2.

6.8.1 Strategy for constructing good moduli spaces

We first explain how the Local Structure Theorem for Algebraic Stacks (6.5.1) gives
us a natural strategy to construct the good moduli space X. Namely, for each closed
point x ∈ X , we have an étale quotient presentation

W = [SpecA/Gx]
f
//

��

X

W = SpecAGx
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where f is affine étale, and there is a preimage w ∈ W of x such that f induces an
isomorphism of stabilizer groups at w. We want to show that the GIT quotients
W = SpecAGx as x ranges over closed points provide étale models that can be glued
to a good moduli space of X . To this end, we need to construct an étale equivalence
relation on W . Since f is affine, the fiber product R :=W ×X W is isomorphic to a
quotient stack [SpecB/Gx] and we have a diagram

R

��

p1 //

p2
// W

��

f
// X

R
q1 //

q2
// W

where R = SpecBGx . If q1, q2 : R ⇒ W defines an étale equivalence relation,
the algebraic space quotient W/R gives a candidate for a good moduli space of
f(W) ⊂ X .

Luna’s Fundamental Lemma (6.3.30) provides condition on when q1, q2 : R⇒W
are étale: we need that for all closed points r ∈ R that

(a) p1(r), p2(r) ∈ W are closed points; and
(b) p1 and p2 induce isomorphisms of stabilizer groups at r.

On the other hand, we know that f(w) ∈ X is closed and f induces an isomorphism
of stabilizer groups at the given preimage w of x. We want to show that there
is an open neighborhood U of w such that the restriction f |U satisfies: (a) f |U
sends closed points map to closed points and (b) f |U induces isomorphisms of
stabilizer groups at closed points, and moreover that these conditions are stable
under base change. While property (a) is stable under base change, property (b)
is not, and we will introduce a stronger condition below—called Θ-surjectivity
(Definition 6.8.35)—which is stable under base change and implies (b).

The role of Θ-completeness and S-completeness in the construction of the good
moduli space is the following: the Θ-completeness of X implies that Θ-surjectivity
holds (and thus condition (a) and its base changes hold) in an open neighborhood
of w (Proposition 6.8.40) while S-completeness implies that condition (b) holds in
an open neighborhood of w (Proposition 6.8.47).

Counterexamples

The following examples do not admit good moduli spaces. We will explain why the
approach outlined above fails and then later explain how they violate the conditions
of Θ-completeness and S-completeness. We work over an algebraically closed field k.

Example 6.8.2. Consider the action of Gm on P1 given by t · [x : y] = [tx : y].
The quotient stack X = [P1/Gm] does not admit a good moduli space. Note that
Theorem 6.3.5(2) implies that every k-point has a unique closed point in its closure.
Here we see that [1 : 1] specializes to two closed points [1 : 0] and [0 : 1]. Alternatively,
if there were a good moduli space, it would have to be X → Speck (which is universal
for maps to algebraic spaces), but then the composition P1 → X → Speck would be
affine by Serre’s Criterion for Affineness (4.4.16), a contradiction.

There are two open substacks U1,U2 ⊂ [P1/Gm] isomorphic to [A1/Gm] each
which admits a good moduli space πi : Ui → Speck but they do not glue to a good
moduli space of X : the intersection U1 ∩U2 is the open point in both U1 and U2 and
not the preimage of an open subscheme under πi. To see how the approach above
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fails, observe that the étale presentation f : W := U1
∐
U2 → X satisfies (a) and (b)

but the base changes p1, p2 : W ×X W = U1
∐
U2
∐
U1 ∩ U2 →W fails (b), i.e., the

closed point in U1 ∩ U2 is mapped to a non-closed point under either projection.

Example 6.8.3. For a related example, let C be the projective nodal cubic with its
Gm-action. The quotient X = [C/Gm] has two points—one open and one closed—but
while there is no topological obstruction as above, X again does not admit a good
moduli space because C is projective, not affine. Viewing the nodal cubic as the
quotient of nodal union X ′ of two P1’s along 0 and ∞ modulo the rotation action of
Z/2, we have a finite étale cover [X ′/Gm]→ [X/Gm]. Removing one of the origins,
we have an affine étale cover W = [Spec(k[x, y]/xy)/Gm] → X where Gm acts via
t · (x, y) = (tx, t−1y). Again, this map sends closed points to closed points, but the
projections W ×X W ⇒W do not.

Example 6.8.4. Let Gm act on A2 via t · (x, y) = (tx, y) and set X = [A2/Gm]∖ 0.
The point p = (1, 0) ∈ X is closed with trivial stabilizer, and the open immersion
f : A1 ↪→ X , sending z to (z, 1), is an étale quotient presentation. Note that while
f(0) is closed, the image f(z) is not closed for z ̸= 0. The map X → A1 defined by
(x, y) 7→ y is not a good moduli space as A2 ∖ 0 is not affine.

We will see in the next section that the previous examples violate Θ-completeness.
Similar phenomena can naturally occur in moduli, e.g., by removing a single
polystable but not stable vector bundle from Bunr,d(C)

ss. The next examples
violate S-completeness.

Example 6.8.5. Suppose char(k) ̸= 2 and let G = Z/2 act on the non-separated
union U = A1

⋃
x ̸=0 A1 by exchanging the copies of A1. The quotient stack [U/G]

has a Z/2 stabilizer everywhere except at the origin. This is a Deligne–Mumford
stack with quasi-finite but not finite inertia; in fact we have seen this before in
Exercise 4.3.19 to illustrate the necessity of the separatedness condition in the
Keel–Mori Theorem (4.3.12). By precomposing by the inclusion of one of the A1’s,
we have an affine étale morphism A1 → [U/G] which is stabilizer preserving at 0 but
not in any open neighborhood of 0.

For a related example, the Deligne–Mumford locus XDM in the moduli stack X =
[Sym4 P1/PGL2] of four unordered points in P1 is not separated (see Example 4.3.20).
Note however that the stable locus X s consisting of four distinct points is separated
and the semistable locus X ss = XDM ∪ {[0 : 0 : ∞ : ∞]} has a projective good
moduli space.

Example 6.8.6. Consider the action of G = Gm ⋊ Z/2 on X = A2 ∖ 0 via
t · (a, b) = (ta, t−1b) and −1 · (a, b) = (b, a). Note that every point (a, b) ∈ X with
ab ̸= 0 is fixed by the order 2 element (a/b,−1) ∈ G. The quotient stack [X/G] is a
non-separated Deligne–Mumford stack which does not admit a good moduli space;
note however that [A2/G]→ Speck[xy] is a good moduli space.

6.8.2 The valuative criteria: Θ- and S-completeness
We define the stack ‘Theta’ as

Θ := [A1/Gm]

over SpecZ.9 If R is a DVR with fraction field K and residue field κ, we define
ΘR := Θ× SpecR and set 0 ∈ ΘR to be the unique closed point. Observe that ΘR

9The symbol Θ is used as it resembles the picture of the two orbits of Gm on the complex plane.
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is a local model of the quotient stack [A2/Gm] with weights 0, 1 as it is identified
with the base change of the good moduli space [A2/Gm]→ Speck[x] along the map
SpecR→ Speck[x] where x maps to a uniformizer π in R.

The following cartesian diagram gives a schematic picture of ΘR (where x is the
coordinate on A1 and π ∈ R is the uniformizer).

SpecR� q
x̸=0

##

BGm,R
M m

x=0

{{

SpecK
, �

::

� r

%%

ΘR BGm,κ
2 R

dd

L l

yy

ΘK
- 

π ̸=0

;;

Θκ
1 Q

π=0

cc
(6.8.7)

where the maps to the left are open immersions and to the right are closed immersions.
In particular, a morphism ΘR∖0 = SpecR

⋃
SpecK ΘK → X to an algebraic stack

is the data of morphisms SpecR→ X and ΘK → X together with an isomorphism
of their restrictions to SpecK.

Definition 6.8.8. A noetherian algebraic stack X is Θ-complete10 if for every DVR
R, every commutative diagram

ΘR ∖ 0 //

��

X

ΘR

;;

(6.8.9)

of solid arrows can be uniquely filled in.

Remark 6.8.10. We can state an equivalent formulation using the stack Mor(Θ,X )
classifying morphisms Θ→ X . Evaluation at 1 gives a morphism

ev1 : Mor(Θ,X )→ X , f 7→ f(1)

of stacks, and the Θ-completeness of X is equivalent to the morphism ev1 satisfying
the valuative criterion for properness. If X is of finite type over an algebraically
closed field k, then the stack Mor(Θ,X ) is an algebraic stack locally of finite type
over k; see Remark 6.6.42 where an explicit description is given when X is a quotient
stack. The stack Mor(Θ,X ) is however rarely quasi-compact, e.g., for X = BGm,
and ev1 is thus rarely proper.

For a DVR R with fraction field K, residue field κ, and uniformizer π, we define

ϕR := [Spec
(
R[s, t]/(st− π)

)
/Gm], (6.8.11)

where s and t have Gm-weights 1 and −1 respectively.11 The quotient ϕR is a
local model of the quotient stack [A2/Gm] with weights 1,−1 as it is identified with
the base change of the good moduli space [A2/Gm] → Speck[xy] along the map
SpecR→ Speck[xy] given by xy 7→ π.

10In the literature, the term ‘Θ-reductive’ is often used.
11The symbol ϕ is used because it looks like the non-separated affine line with an additional origin.

In the literature, STR is used as it is a compactification of STR = STR∖0 = SpecR
⋃

SpecK SpecR,
which is the ‘standard test’ scheme for separatedness.
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The locus where s ̸= 0 in ϕR is isomorphic to [Spec
(
R[s, t]s/(t− π/s)

)
/Gm] ∼=

[Spec(R[s]s)/Gm] ∼= SpecR and the locus where t ̸= 0 has a similar description. We
thus have cartesian diagrams analogous to (6.8.7)

SpecR� q
s̸=0

##

ΘκN n

s=0

}}

SpecK
, �

99

� r

%%

ϕR BGm,κ
1 Q

cc

M m

{{

SpecR
- 

t̸=0

;;

Θκ
0 P

t=0

aa
(6.8.12)

where the maps to the left are open immersions and to the right are closed immersions.
In particular, a morphism ϕR ∖ 0 = SpecR

⋃
SpecK SpecR→ X to an algebraic

stack is the data of two morphisms ξ, ξ′ : SpecR→ X together with an isomorphism
ξK ≃ ξ′K over SpecK.

Definition 6.8.13. A noetherian algebraic stack X is S-complete if for every DVR
R, every commutative diagram

ϕR ∖ 0 //

��

X

ϕR

;;

(6.8.14)

of solid arrows can be uniquely filled in.12

Remark 6.8.15. There are obvious extensions of the definition of Θ-completeness
and S-completeness to morphisms f : X → Y but we will not need such notions.

Lemma 6.8.16. A noetherian algebraic stack with affine diagonal is Θ-complete
(resp., S-complete), if and only if every diagram (6.8.9) (resp., (6.8.14)), there
exists a lift after an extension of DVRs R ⊂ R′. In particular, Θ-completeness and
S-completeness can be verified on complete DVRs with algebraically closed residue
fields.

Proof. We begin with the observation that if X → Y has affine diagonal and
j : U → T is an open immersion of algebraic stacks over Y with j∗OU = OT ,
then two extensions f1, f2 : T → X of a Y-morphism U → X are canonically 2-
isomorphic. Indeed, since IsomT (f1, f2)→ T is affine, the section over U induced
by the 2-isomorphism f1|U

∼→ f2|U extends uniquely to a section of T .
Consider a diagram (6.8.9), an extension of DVRs R ⊂ R′, and a lifting ΘR′ → X .

The open immersion j : ΘR ∖ 0→ ΘR satisfies j∗OΘR∖0 = OΘR
and by Flat Base

Change (6.1.7) the same property holds for the morphisms obtained by base changing
j along ΘR′ → ΘR, ΘR′ ×ΘR

ΘR′ → ΘR, and ΘR′ ×ΘR
ΘR′ ×ΘR

ΘR′ → ΘR. By the
above observation, there exists a canonical 2-isomorphism between the two extensions
ΘR′ ×ΘR

ΘR′ ⇒ ΘR′ → X which necessarily satisfies the cocycle condition. By fpqc
descent, the lifting ΘR′ → X descends to a lifting ΘR → X . The same argument
works for S-completeness.

12The ‘S’ stands for ‘Seshadri’ as S-completeness is a geometric property reminiscent of how the
S-equivalence relation on sheaves implies separatedness of the moduli space.
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Remark 6.8.17. It is even true that when X is of finite type over k, these criteria
can be verified on DVRs essentially of finite type over k; see [AHLH18, §4]. We will
not use this fact.

Lemma 6.8.18. Let f : X → Y be an affine morphism of noetherian algebraic
stacks. If Y is Θ-complete (resp., S-complete), so is X .

Proof. Since ΘR is regular and 0 ∈ ΘR is codimension 2, the pushforward of the
structure sheaf along ΘR ∖ 0 → ΘR is the structure sheaf. We therefore have
canonical equivalences

MorY(ΘR ∖ 0,X ) ∼= MorOY−alg(f∗OX , (ΘR ∖ 0→ Y)∗OΘR∖0)
∼= MorOY−alg(f∗OX , (ΘR → Y)∗OΘR

)
∼= MorY(ΘR,X ).

The case of S-completeness is identical.

Proposition 6.8.19. If G is a reductive group over an algebraically closed field k,
then every quotient stack [SpecA/G] is Θ-complete and S-complete.

Proof. We first show that BGLn is Θ-complete. A morphism ΘR ∖ 0→ X corre-
sponds to a vector bundle E on ΘR ∖ 0. The algebraic stack ΘR is regular and
0 ∈ ΘR is a codimension 2 point. If Ẽ is a coherent sheaf on ΘR extending E, then
the double dual Ẽ∨∨ is a vector bundle extending E. (In fact the pushforward of
E along ΘR ∖ 0 ↪→ ΘR is a vector bundle.) This provides the desired extension
ΘR → X . As G is affine, we can choose a faithful representation G ⊂ GLn. As G is
reductive, the quotient GLn /G is affine by Matushima’s Theorem (B.1.44). Using
the cartesian diagram

GLn /G //

��

Speck

��

BG // BGLn

□

and smooth descent, we see that BG→ BGLn is affine. We conclude that BG and
[SpecA/G] are Θ-complete by Lemma 6.8.18.

As a result, we see that the hypotheses of Θ-completeness and S-completeness in
Theorem 6.8.1 are necessary.

Corollary 6.8.20. Let X be an algebraic stack of finite type over an algebraically
closed field k with affine diagonal. If π : X → X be a good moduli space, then X is
Θ-complete. Moreover, X is S-complete if and only if X is separated.

Proof. For a k-algebra A, the map ΘA → SpecA is a good moduli space, and thus
every map ΘA → X factors through SpecA by the universality of good moduli
spaces (Theorem 6.3.5(4)). If R is a DVR with fraction field K, then every map
ΘR → X (resp., ΘK → X) factors through SpecR (resp., SpecK). To see that X is
Θ-complete, it therefore suffices to find a lift of every commutative diagram

ΘR ∖ 0 //

��

X

π

��

SpecR

;;

// X
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of solid arrows. By the Local Structure for Good Moduli Spaces (6.5.3), there
exists an étale morphism SpecB → X containing the image of SpecR such that
X ×X SpecB ∼= [SpecA/G] with G linearly reductive and B = AG. Since SpecR→
X lifts to SpecB after an extension of DVRs and since Θ-completeness can be
checked after an extension (Lemma 6.8.16), we are reduced to the case of [SpecA/G].
This is Proposition 6.8.19.

If X is separated, then X is S-complete as ϕR∖ 0 = SpecR∪SpecK SpecR→ X
factors through SpecR by the valuative criterion for separatedness. The above
argument can be repeated to show that X is S-complete. Conversely, suppose
f, g : SpecR→ X are two maps such that f |K = g|K . After possibly an extension
of R, we may choose a lift SpecK → X of f |K = g|K . Since X → X is universally
closed (Theorem 6.3.5(1)), after possibly further extensions of R, we may choose
lifts f̃ , g̃ : SpecR → X of f, g such that f̃ |K ∼= g̃|K by the Valuative Criterion for
Universal Closedness (3.8.2). Since X is S-complete, we can extend f̃ and g̃ to a
morphism ϕR → X . As ϕR → SpecR is a good moduli space and hence universal
for maps to algebraic spaces, the morphism ϕR → X descends to a unique morphism
SpecR→ X which necessarily must be equal to both f and g. We conclude that X
is separated by the Valuative Criterion for Separatedness.

Lemma 6.8.21. Let X be a noetherian algebraic stack with affine and quasi-finite
diagonal. If R is a complete DVR, every map ΘR → X (resp., ϕR → X ) factors
through ΘR → SpecR (resp., ϕR → SpecR).

Proof. Since good moduli spaces are universal for maps to algebraic spaces, we
already know the claim when X is an algebraic space. In fact, we will reduce to the
case when X is affine, in which case the factorizations follow easily from the fact
that Γ(ΘR,OΘR

) = Γ(ϕR,OϕR
) = R.

Let x ∈ X (κ) be the image of 0 ∈ ΘR. Since Gm has no nontrivial finite quotients,
the induced map Gm → Gx on stabilizers is trivial. By Proposition 4.2.15, we may
find a smooth presentation U → X from an affine scheme together with a lift
u ∈ U(κ) of x. The map BGm,κ → X factors through u : Specκ → U and thus
lifts to a map BGm,κ → Specκ

u−→ U . Letting Tn be the nth nilpotent thickening of
BGm,κ ↪→ ΘR, deformation theory (Proposition 6.5.10) implies that we may find
compatible lifts Tn → U of Tn ↪→ ΘR → X . By Coherent Tannaka Duality (6.4.9),
there is an extension ΘR → U . Since ΘR → U factors through SpecR, so does
ΘR → X .

Proposition 6.8.22. Every noetherian algebraic stack X with affine and quasi-
finite diagonal (e.g., a Deligne–Mumford stack with affine diagonal) is Θ-complete.
Moreover, X is S-complete if and only if it is separated.

Proof. By Lemma 6.8.16, Θ-completeness and S-completeness can be tested on a
complete DVR R. Lemma 6.8.21 implies that that X is Θ-complete and also implies
that X is S-complete if only if every diagram

SpecR
⋃

SpecK SpecR //

��

X

SpecR

77

has a lift, which is the usual valuative criterion for separatedness.

Example 6.8.23. The examples in Examples 6.8.5 and 6.8.6 of non-separated
Deligne–Mumford stacks are not S-complete.
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6.8.3 Examples of Θ- and S-completeness

We discuss the valuative criteria of Θ-completeness and S-completeness for quotient
stacks, stacks of coherent sheaves, and the stack of all curves.

Quotient stacks

By Proposition 6.6.39, a map Θ → [U/G] is classified by a point u ∈ U and a
one-parameter subgroup λ : Gm → G such that limt→0 λ(t) · u exists. We apply this
to provide a geometric characterization of Θ-completeness for quotient stacks. Recall
that the attractor locus U+

λ represents the functor MorGm

k (A1, U) (Theorem 6.6.8).
The evaluation map ev1 : U

+
λ → U is defined by sending f : A1 → U to f(1).

Proposition 6.8.24. Let G be a smooth linearly reductive group over an algebraically
closed field k, and U be a separated algebraic space of finite type over k with an
action of G. Then

[U/G] is Θ-complete ⇐⇒ for every map u : SpecR→ U from a complete
DVR over k with algebraically closed residue field
and one-parameter subgroup λ : Gm → G such that
limt→0 λ(t) · uK ∈ U(K) exists, then
limt→0 λ(t) · u ∈ U(R) also exists;

⇐⇒ for every one-parameter subgroup λ : Gm → G,
the morphism ev1 : U

+
λ → U is a closed immersion.

Proof. Since G is linearly reductive, BG is Θ-complete (Proposition 6.8.19). There-
fore Θ-completeness of [U/G] is equivalent to the existence of a lift in every diagram

ΘR ∖ 0� _

��

// [U/G]

��

ΘR //

::

BG

(6.8.25)

where R is a complete DVR with algebraically closed residue field (Lemma 6.8.16).
By Proposition 6.6.39, the map ΘR → BG corresponds to a one-parameter subgroup
λ : Gm → G while ΘR ∖ 0→ [U/G] corresponds to a map u : SpecR→ U such that
limt→0 λ(t) · uK ∈ U(K) exists. In other words, we have a commutative diagram

SpecK

��

// U+
λ

ev1

��

SpecR
u //

;;

U

(6.8.26)

of solid arrows. A lift of (6.8.25) corresponds to the existence of limt→0 λ(t)·u ∈ U(R)
or equivalently to a lift of (6.8.26). Since ev1 : U

+
λ → U is a monomorphism of finite

type, it is closed immersion if and only if it is proper or equivalently satisfies the
existence part of the valuative criterion.

Example 6.8.27. When U = SpecA is affine, a one-parameter subgroup λ : Gm →
G induces a grading A =

⊕
d∈Z Ad, and U+

λ is represented by V (
∑
d<0Ad) (Exer-

cise 6.6.6). We see thus that ev1 : U
+
λ ↪→ U is a closed immersion; this recovers the

fact that [U/G] is Θ-complete (Proposition 6.8.19).
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Example 6.8.28. We can use this criterion to see that Examples 6.8.2 to 6.8.4
are not Θ-complete. For [P1/Gm] with action t · [x : y] = [tx : y], taking λ = id we
have that (P1)+λ = A1

∐
{∞}. For the quotient [C/Gm] of the nodal cubic C with

normalization P1 → C identifying 0 and ∞, then C+
∞ = P1 \∞ for λ = id. Finally,

for [X/Gm] with X = A2 ∖ 0 with action t · (x, y) = (tx, y), then X+
λ = {y ̸= 0} for

λ = id.

Example 6.8.29. We can also provide a interpretation using the algebraic stack
Mor(Θ, [X/G]) of morphisms which decomposes as a disjoint union

∐
λ[X

+
λ /Pλ]

where λ varies over conjugation classes of one-parameter subgroups λ : Gm → G
(Remark 6.6.42). The evaluation morphism ev0 : [X

+
λ /Pλ]→ [X/G] is induced by

the inclusion X+
λ → X. The Θ-completeness of [X/G] corresponds to the properness

of the maps [X+
λ /Pλ]→ [X/G].

One can also give a criteria for when [U/G] is S-complete in terms of one-
parameter subgroups λ : Gm → G and properties of the morphism MorGm

A1 (A2, U ×
A1)→ U × U × A1, where the maps to U are obtained by restricting along the two
maps A1 → A2 given by x 7→ (x, 1) and x 7→ (1, x).

Stacks of coherent sheaves

Given a projective scheme X, let Coh(X) denote the algebraic stack of coherent
sheaves on X (see Exercise 3.1.23). Recall that maps Θ→ Coh(X) correspond to
filtrations (Proposition 6.6.43).

Proposition 6.8.30. For every projective scheme X over an algebraically closed
field k, the algebraic stack Coh(X) is Θ-complete and S-complete.

Proof. Given a DVR R, Proposition 6.6.43 implies that a map ΘR ∖ 0→ Coh(X)
corresponds to a coherent sheaf E on XR flat over R and a Z-graded filtration
F• : · · ·Fi−1 ⊂ Fi ⊂ · · · ⊂ EK such that Fi = EK for i≫ 0, Fi = 0 for i≪ 0, and
Fi/Fi−1 is flat over R. Viewing E is a subsheaf of EK , we define Ei := Fi ∩ E as
the intersection in EK . Since Ei/Ei−1 is a subsheaf of Fi/Fi−1, it is torsion free,
hence flat as an R-module. The filtration E• defines an extension ΘR → Coh(X).
(Aside: this is exactly the argument for the valuative criterion of properness of the
Quot scheme (Proposition 1.4.2). Note also that if we let j : ΘR ∖ 0 ↪→ ΘR, let
jx : SpecR ↪→ ΘR and let jπ : ΘK → ΘR denote the open immersions and we let E
be the coherent sheaf on C × (ΘR \ 0) denoting the union of E and F•, then the
extension is given by (id×j)∗E = jx,∗E ∩ jπ,∗F• = E[x±1]∩ F• = E•, where E[x±1]
is the Z-graded filtration given by placing E in every degree.)

For S-completeness, suppose we are given a map ϕR∖0→ Coh(X) corresponding
to coherent sheaves E and F flat over R and an isomorphism α : EK → FK . Recalling
the quotient presentation ϕR = [Spec(R[s, t]/(st− π))/Gm], we have several natural
open immersions: j : ϕR ∖ 0 ↪→ ϕR, js, jt : SpecR ↪→ ϕR (with s ̸= 0 and t ̸= 0),
and jst : SpecK → ϕR (with st ̸= 0). We compute the pushforward as the equalizer

0 // (id×j)∗E // (id×js)∗E ⊕ (id×jt)∗F // (id×jst)∗FK

(a, b) � // a− α(b).
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The pushforwards can be computed as graded modules over R[s, t]/(st− π):

(id×jst)∗FK = FK ⊗R R[t±1] =
⊕
n∈Z

FKt
n,

(id×js)∗E = E ⊗R R[t±1] =
⊕
n∈Z

Etn,

(id×jt)∗F = F ⊗R R[s±1] ∼=
⊕
n∈Z

(π−n · F )tn ⊂ (id×jst)∗FK

where we have used that s = t−1π. Thus

j∗E ∼=
⊕
n∈Z

(
E ∩ (π−n · F )

)
tn ⊂ (id×jst)∗FK .

Each R-module E ∩ (π−n · F ) ⊂ E is finitely generated since E is. Moreover, the
ascending chain · · · ⊂ E ∩ (π−n · F ) ⊂ E ∩ (π−n−1 · F ) ⊂ · · · terminates to E and
it follows that j∗E is coherent. To show that j∗E is flat over ϕR, we only need to
check that it is flat over 0. By the Local Criterion for Flatness (Theorem A.2.5), we
need to show that TorA1 (A/m, j∗E) = 0 where A = R[s, t]/(st − π) and m = (s, t).
The Koszul complex gives a resolution of the residue field κ = A/m = R/π:

0→ A
(t,−s)−−−−→ A⊕A (s,t)−−−→ A→ κ→ 0.

Tensoring with j∗E yields a complex

0→ j∗E
(t,−s)−−−−→ j∗E ⊕ j∗E

(s,t)−−−→ j∗E . (6.8.31)

The pushforward of the exact sequence

0→ OϕR∖0
(t,−s)−−−−→ OϕR∖0 ⊕OϕR∖0

(s,t)−−−→ OϕR∖0 → 0

along id×j : C × ϕR ∖ 0 ↪→ C × ϕR is a left exact sequence of vector bundles and
tensoring with j∗E yields a left exact sequence which identified with (6.8.31). Thus
TorA1 (A/m, j∗E) = 0.

The description in Proposition 6.6.43 interpreting maps from Θ as filtrations
allows us to prove simple criteria for an open substack U ⊂ Coh(X) to be Θ-complete
or S-complete. We call two Z-graded filtrations

E• : 0 ⊂ · · · ⊂ Ei−1 ⊂ Ei ⊂ Ei+1 ⊂ · · · ⊂ E

and
F • : F ⊃ · · · ⊃ F i−1 ⊃ F i ⊃ F i+1 ⊃ · · · ⊃ 0

are opposite if Ei/Ei−1
∼= F i/F i+1 for all i. Observe that F• defined by Fi = F−i

is a Z-graded filtration with the same indexing as E• and being opposite means that
grE• is isomorphic as a Z-graded sheaf to grF• with the opposite grading. A map
[(Speck[x, y]/xy)/Gm]→ Coh(X), where t · (x, y) = (tx, t−1y), is the same data as
two opposite filtration E• and F • such that Ei = 0 and F i = F for i ≪ 0, and
Ei = E and F i = 0 for i≫ 0; in this case, under this map (1, 0) 7→ E, (0, 1) 7→ F ,
and (0, 0) 7→ grE•.

Proposition 6.8.32. Let C be a smooth, connected, and projective scheme over an
algebraically closed field k, and let U ⊂ Coh(C) be an open substack.
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(1) The substack U is Θ-complete if and only if for every DVR R (with fraction
field K and residue field κ), coherent sheaf E on CR flat over R, and Z-graded
filtration E• with Ei = 0 for i≪ 0, Ei = E for i≫ 0 and with each Ei/Ei−1

flat over R, then if E and gr(E•|K) are in U , so is gr(E•|κ).
(2) The substack is S-complete if and only if for every pair of opposite filtrations

E• and F • of E,F ∈ U(k), the associated graded grE• is in U .

Remark 6.8.33. For a projective scheme of arbitrary dimension, Part (1) and the
(⇐) implication in (2) hold with the same proof.

Proof. Since we already know that Coh(C) is S-complete and Θ-complete, the
valuative criteria for U are equivalent to the existence of lifts for all commutative
diagrams

ΘR ∖ 0� _

��

// U� _

��

ΘR //

99

Coh(C)

and

ϕR ∖ 0� _

��

// U� _

��

ϕR //

99

Coh(C)

where R is a DVR. In other words, we need to show that the images of 0 under the
unique fillings ΘR → Coh(C) and ϕR → Coh(C) are contained in U . Therefore (1)
holds as the image of 0 under ΘR → Coh(C) is gr(E•|κ).

For the (⇐) implication in (2), the restriction of ϕR → Coh(C) along π = 0
yields a map [Spec(k[x, y]/xy)/Gm]→ Coh(C) corresponding to opposite filtrations
E• and F •. If grE• ∈ U(k), then the image of ϕR → Coh(C) is contained in U .
Conversely, let [Spec(k[x, y]/xy)/Gm] → Coh(X) be a map such that the images
of (1, 0) and (0, 1) are in U but the image of (0, 0) is not in U . Let Xn be the nth
nilpotent thickening of the closed immersion [Spec(k[x, y]/xy)/Gm] ↪→ ϕR. Since the
obstruction to lifting a coherent sheaf E lies in the second coherent cohomology of
X0 and since X0 is cohomologically affine, deformation theory and Coherent Tannaka
Duality (6.4.9) yield an extension ϕR → Coh(X) with the image of ϕR∖0 contained
in U .

Remark 6.8.34. If the genus of C is at least 2, then the stack of vector bundles
Bun(C) is not Θ-complete nor S-complete. Let p ∈ C be a point defined by
the vanishing of a section s ∈ Γ(C,O(p)), and let I ⊂ OCR

be the ideal sheaf
of (p, 0) ∈ C × SpecR. The injection (s,−π) : OCR

(−p) ↪→ OCR
⊕ OCR

(p) has
quotient I, which is torsion free, hence flat over R, but is not a vector bundle. By
Proposition 6.8.32, we see that Bun(C) is not Θ-complete.

Let L and M be line bundles on C, and let p ∈ C be a point such that
Ext1OC

(M,L(p)) and Ext1OC
(L,M(p)) are nonzero; if L and M have the same

degree, then a Riemann–Roch calculation shows that both Ext1 groups are nonzero.
Let Q (resp., Q′) be a nontrivial extension of M by L(p) (resp., L by M(p)). Then

E• : 0 ⊂ L ⊂ L(p) ⊂ Q and F • : Q′ ⊃M(p) ⊃M ⊃ 0

define opposite filtrations where E0 = L and F 0 = Q′. The associated graded
grE• = L⊕ κ(p)⊕M is not a vector bundle, and thus Bun(C) is not S-complete by
Proposition 6.8.32.

We will apply the above criteria later to verify that the stack Bunssr,d(C) of
semistable vector bundles on a smooth, connected, and projective curve is both
Θ-complete and S-complete.
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Stack of all curves

The stacks Mg and Mg of smooth and stable curves are both Θ-complete and
S-complete as they are separated Deligne–Mumford stacks. While maps from Θ to
the stack of all curves correspond to test configurations (Proposition 6.6.44), there
is unfortunately no known simple criteria—similar to the above criteria for quotient
stacks and stacks of coherent sheaves—to verify whether a given substack of the
stack Mall

g of all curves is Θ-complete or S-complete.

6.8.4 Θ-completeness and Θ-surjectivity
The property that a morphism X → Y sends closed points to closed points is not
stable under base change (see Examples 6.8.2 and 6.8.3). We introduce a stronger
and better behaved property called Θ-surjectivity. The main result of this section
is that an étale quotient presentation ([SpecA/Gx], w)→ (X , x) is Θ-surjective in
an open neighborhood of w as long as X is Θ-complete (Proposition 6.8.40). As
motivated in §6.8.1, this result will be crucial in proving the main existence theorem
(Theorem 6.8.1) of this section.

Definition 6.8.35. Let f : X → Y be a morphism of algebraic stacks and x ∈ X (k)
be a geometric point. We say that f is Θ-surjective at x if every diagram

Speck x //
� _

1

��

X

f

��

Θk //

<<

Y

(6.8.36)

has a lift. We say that f is Θ-surjective if it is Θ-surjective at every geometric point.

This notion is clearly stable under base change. Every morphism f : X → Y of
noetherian algebraic stacks where Y has affine and quasi-finite diagonal is Θ-surjective
since in this case every map Θk → Y factors through Speck (Lemma 6.8.21). The
next lemma gives conditions for when the lift is unique and when the definition is
independent of the choice of geometric point.

Lemma 6.8.37. Let f : X → Y be a separated, representable, and finite type
morphism of noetherian algebraic stacks.

(1) Every lift of (6.8.36) is unique.
(2) If f is Θ-surjective at a geometric point x ∈ X (k), then f is Θ-surjective at

every other geometric point x′ ∈ X (k′) representing the same point in |X | as
x.

Proof. Part (1) follows from descent and the valuative criterion for separatedness.
To show (2), it suffices to show that given an extension k→ k′ of algebraically closed
fields, a lift Θk′ → X implies the existence of a lift Θk → X . We write k′ =

⋃
λAλ as

a union of finitely generated k-subalgebras. By Limit Methods (§B.3), there exists a
lift ΘAλ

→ X of SpecAλ → X . Restricting along a closed point of SpecAλ provides
a lift over k.

Proposition 6.8.38. Let f : X → Y be a morphism of algebraic stacks, each of
finite type over an algebraically closed field k with affine diagonal. Suppose that
the closed points of Y have linearly reductive stabilizer. If f is Θ-surjective, then f
sends closed points to closed points.
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Proof. Let x ∈ X be a closed point. Let f(x)⇝ y0 be a specialization to a closed
point. By Corollary 6.6.38, this specialization can be realized by a map Θ → Y.
Since f is Θ-surjective, this can be lifted to a map g : Θ→ X with g(1) = x. But
x ∈ X is a closed point, so this lift must correspond to the trivial specialization
x⇝ x. It follows that f(x) = y0 is a closed point.

Remark 6.8.39. The converse is not true. In Example 6.8.3, where C is the nodal
cubic with Gm-action, the étale morphism [Spec(k[x, y]/(xy))/Gm]→ [C/Gm] sends
closed points to closed points but is not Θ-surjective.

Proposition 6.8.40. Let X be an algebraic stack of finite type over an algebraically
closed field k with affine diagonal such that the closed points of X have linearly
reductive stabilizers. Let x ∈ X be a closed point, let f : ([SpecA/Gx], w)→ (X , x)
be an affine étale morphism inducing an isomorphism of stabilizer groups at w,
and let π : [SpecA/Gx] → SpecAGx . If X is Θ-complete, there exists an open
affine neighborhood U ⊂ SpecAGx of π(w) such that f |π−1(U) : π

−1(U) → X is
Θ-surjective.

Proof. Let W = [SpecA/Gx] and define Σf ⊂ |W| as the set of points y ∈ W such
that f is Θ-surjective at y. We first show that Σf ⊂ W is open if X ∼= [SpecB/G]
with G linearly reductive. Zariski’s Main Theorem (6.1.10) provides a factorization

f : W
j
↪→ X̃ ν−→ X

where j is an open immersion and ν is a finite morphism. By Lemma 6.8.18,
[SpecB/G] is Θ-complete, and by Proposition 6.8.19, X̃ is also Θ-complete. As ν is
finite, Σj = Σf and we may assume that f is an open immersion. Let Z ⊂ X be
the reduced complement of W and let π : X → SpecBG denote the good moduli
space. We claim that |W|∖Σf = π−1(π(|Z|))∩ |W|. The inclusion “⊂” is clear: the
morphism X ∖ π−1(π(|Z|)) ↪→ X is the base change of the Θ-surjective morphism
X ∖ π(|Z|) ↪→ X of algebraic spaces. Conversely, let y ∈ π−1(π(|Z|)) ∩ |W|
represented by a geometric point SpecF → X . Let z ∈ |ZF| be the unique closed
point in the closure of y ∈ |ΘF| and let ΘF → XF be a morphism representing the
specialization y ⇝ z (Corollary 6.6.38). Since ΘF → X does not lift to W, y /∈ Σf .

We now claim that Σf ⊂ W is constructible. Use the Local Structure Theorem
(6.5.1) to choose an affine, étale, and surjective morphism g : X ′ = [SpecB/G]→ X
with G linearly reductive. Let W ′ = W ×X X ′ with projections g′ : W ′ →W and
f ′ : W ′ → X ′. Since we already know that Σf ′ is open, the claim follows from
Chevalley’s Theorem (3.3.29) once we show that W \Σf = g′(W ′ \Σf ′). To see this,
it suffices to show that for an algebraically closed field K, every map h : ΘF → X
lifts to a map h′ : ΘF → X ′. Let x′ ∈ X ′(F) be a preimage of h(0) ∈ X (F). Since g is
representable and étale, the induced map Gx′ → Gh(0) on stabilizers is injective with
finite cokernel. Thus the map Gm,F → Gh(0) on stabilizers induced by h : ΘF → X
factors through Gx′ . We may therefore lift the map h|BGm,F to a map BGm,F → X ′.
Letting Xn be the nth nilpotent thickening of BGm,F ↪→ ΘF, there are compatible
lifts Xn → X ′ of Xn → X by deformation theory (Proposition 6.5.10) which extends
to a lift ΘF → X ′ by Coherent Tannaka Duality (6.4.9).

Since Σf ⊂ W is constructible and w ∈ Σf , to show that Σf is open, it suffices to
show that for every generization ξ ⇝ w of w is contained in Σf . Let h : SpecR→W
be a morphism from a complete DVR representing the specialization ξ ⇝ w. Letting
K and κ be the fraction and residue field of R, we claim that there exists a lift
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(necessarily unique as f is separated)

SpecK� _

��

hF // W

f

��

ΘK
g
//

g̃

;;

X .

(6.8.41)

This claim implies that f is Θ-surjective at ξ, i.e., ξ ∈ Σf . To show the claim, we
first apply the Θ-completeness of X to construct a lift

ΘR ∖ 0
(f◦h)∪g

//
� _

��

X

ΘR.

q

;;

Since W → X is stabilizer preserving at w, we have a lift BGm,κ →W of q|BGm,κ .
Since ΘR is coherently complete along BGm,κ (6.4.12), we may apply deformation
theory (Proposition 6.5.10) and Coherent Tannaka Duality (6.4.9) to construct a lift

BGm,κ� _

��

// W

f

��

ΘR

q̃

;;

q
// X

The restriction q̃|SpecR is 2-isomorphic to h since it agrees at the closed point and f
is étale. It follows that g̃ := q̃|ΘK

is a lift of (6.8.41).

The topology of k-points of Θ-complete stacks is analogous to the topology of
quotient stacks arising from GIT.

Proposition 6.8.42. Let X be an algebraic stack of finite type over an algebraically
closed field k with affine diagonal. Assume that X is Θ-complete and that the closed
points of X have linearly reductive stabilizer. Then the closure of every k-point
contains a unique closed point.

Proof. Assume that x and x′ are two closed points in the closure of p ∈ X (k). By
Corollary 6.6.38, there are maps f, f ′ : Θ→ X realizing the specializations p⇝ x
and p⇝ x′. Under the action of G2

m on A2 given by (t1, t2) · (y1, y2) = (t1y1, t2y2),
the maps f and f ′ glue to define a map [A2/G2

m]∖ 0→ X . By considering only the
diagonal Gm-action, the map [A2/Gm]∖ 0→ X extends to Ψ: [A2/Gm]→ X by the
Θ-completeness of X . Then Ψ(0, 0) is a common specialization of x = Ψ(1, 0) and
x′ = Ψ(0, 1). Since x and x′ are closed points, we have that x = Ψ(0, 0) = x′.

Exercise 6.8.43. With the hypotheses of Proposition 6.8.42, show that if in addition
X has a unique closed point, then X ∼= [Spec(A)/Gx] such that AGx is an artinian
local k-algebra with residue field k.

6.8.5 Unpunctured inertia
We prove that an S-complete stack X has ‘unpunctured inertia’ (Theorem 6.8.50) and
the consequence that an étale quotient presentation f : ([SpecA/Gx], w)→ (X , x) is
stabilizer preserving in an open neighborhood of w (Proposition 6.8.47).
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Definition 6.8.44. We say that a noetherian algebraic stack has unpunctured inertia
if for every closed point x ∈ |X | and every formally versal morphism p : (T, t)→ (X , x)
where T is the spectrum of a local ring with closed point t, every connected component
of the inertia group scheme AutX (p)→ T has non-empty intersection with the fiber
over t.

Remark 6.8.45. Here (T, t)→ (X , x) is formally versal if the map T̂ → X from
the completion is is formally versal at t as in Definition C.4.2.

Remark 6.8.46. Unpuncturedness is related to the purity of the morphism
AutX (p) → T as defined in [GR71, §3.3] (see also [SP, Tag 0CV5]). If T is the
spectrum of a strictly henselian local ring, then purity requires that if s ∈ T is an
arbitrary point and γ is an associated point in the fiber AutX (p)s, then the closure
of γ in AutX (p) has non-empty intersection with the fiber over the closed point t of
T .

Proposition 6.8.47. Let X be an algebraic stack of finite type over an algebraically
closed field k with affine diagonal. Let x ∈ X be a closed point with linearly reductive
stabilizer. Let f : ([SpecA/Gx], w)→ (X , x) be an affine étale morphism inducing
an isomorphism of stabilizer groups at w, and let π : [SpecA/Gx]→ SpecAGx . If X
has unpunctured inertia, there exists an open affine neighborhood U ⊂ SpecAGx of
π(w) such that f |π−1(U) : π

−1(U)→ X induces isomorphisms of stabilizer groups at
all points.

Proof. Set W = [SpecA/Gx]. It suffices to find an open neighborhood U ⊂ W of
w such that f |U : U → X induces an isomorphism IU → U ×X IX . Consider the
cartesian diagram

IW //

��

W ×X IX

��

W // W ×X W;

□

see Exercise 3.2.14. Since f is separated and étale, the morphism IW →W ×X IX
is finite and étale. We set Z ⊂ W ×X IX to be the open and closed substack over
which IW →W ×X IX is not an isomorphism. Since f is stabilizer preserving at w,
the point w is not contained in the image of Z under p1 : W ×X IX →W.

Consider a formally smooth morphism (T, t)→ (X , x) from the spectrum of a
local ring with closed point t. Since X has unpunctured inertia, the preimage of Z
in W×X IX ×X T is empty; indeed, if there were a non-empty connected component
of this preimage, it must intersect the fiber over t non-trivially contradicting that
w /∈ p1(Z). This in turn implies that w /∈ p1(Z). Therefore, if we set U =W\p1(Z),
the induced morphism IU → U ×X IX is an isomorphism.

Proposition 6.8.48. Let X be a noetherian algebraic stack.
(1) If X has quasi-finite inertia, then X has unpunctured inertia if and only if X

has finite inertia.
(2) If X has connected stabilizer groups, then X has unpunctured inertia.

Proof. If X has finite inertia, then AutX (p) → T is finite, so clearly the image of
each connected component contains the unique closed point t ∈ T . For the converse,
we may assume that T is the spectrum of a Henselian local ring, in which case
AutX (p) = G

∐
H where G → T finite and the fiber of H → T over t is empty

(Proposition B.5.9). If T is nonempty (i.e., AutX (p) → T is not finite), then any
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connected component of T doesn’t meet the central fiber and thus X does not have
unpunctured inertia.

For (2), by definition, all fibers of AutX (p)→ U are connected, so every connected
component of AutX (p) intersects the component containing the identity section.

Remark 6.8.49. For algebraic stacks with connected stabilizer groups (e.g., the mod-
uli stack Bunssr,d(C) of semistable vector bundles on a curve), Proposition 6.8.48(2)
implies unpunctured inertia. The deeper result below (Theorem 6.8.50) is therefore
unneeded in the proof of the existence of a good moduli space of Bunssr,d(C).

The rest of this section is dedicated to proving the following theorem.

Theorem 6.8.50. Let X be an algebraic stack of finite type over an algebraically
closed field k with affine diagonal. Assume that the closed points have linearly
reductive stabilizers. If X is S-complete, then X has unpunctured inertia.

Proof. Let x ∈ |X | be a closed point, let p : (U, u)→ (X , x) be a formally smooth
morphism from the spectrum of a local ring, and let H ⊂ AutX (p) be a connected
component. The image of the projection H → U is a constructible set whose closure
contains u. It follows that we can find a DVR R with residue field k and a map
SpecR→ U whose special point maps to u and whose generic point lies in the image
of H → U . Let ξ : SpecR → U

p−→ X denote the composition. After a residually-
trivial extension of DVRs, we may assume that the generic point SpecK → U lifts
to H. This gives a commutative diagram

SpecK //

��

SpecR

��

ξ

##

H // U
p
// X .

Let HK be the base change of H → U along SpecK → U . We claim we can
choose a finite type point g ∈ HK of finite order. If g ∈ HK is a finite type point,
then after replacing K with a finite field extension, we can decompose g = gsgu under
the Jordan decomposition, where gs is semisimple and gu is unipotent (see §B.1.2).
Now consider the reduced Zariski closed K-subgroup H ′ ⊂ AutX (p)K generated by
gs. Because gs is semisimple, H ′ is a diagonalizable group scheme over K, and we
may replace gs with a finite order element in H ′ which still commutes with gu. If
char(K) > 0, then gu has finite order and we are finished. If char(K) = 0, then gu
lies in the identity component of G, so g lies on the same component as the finite
order element gs. This gives the desired element.

We claim that after replacing R with a residually-trivial extension, there is a map
ξ′ : SpecR→ X such that ξ′K ≃ ξK and g ∈ HK extends to an automorphism of ξ′.
This would finish the proof: since the closure of g meets the fiber of AutX (p)→ U
over u, the component H must also meet the central fiber.

If X ∼= [SpecA/GLn], then this claim is precisely the content of Proposition 6.8.51
below. We will use the Local Structure Theorem (6.5.1) to reduce to this case: let
f : (SpecA/Gx], w)→ (X , x) be an étale quotient presentation. After replacing R
with a residually-trivial extension, we may lift ξ to a map ξ̃ : SpecR→ [SpecA/Gx]

such that ξ̃(0) = w. To show that g lifts to an element g̃ ∈ Aut(ξ̃K), we will use
S-completeness. We may glue ξ to itself along g to define a morphism

SpecR
⋃

SpecK

SpecR = ϕR \ 0→ X .
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Since X is S-complete, this map extends to a morphism h : ϕR → X . Since ξ(0) = x
and x is a closed point, the image h(0) of 0 ∈ ϕR is also x. Since f is stabilizer
preserving at w, we may lift h|BGm

to a map h̃0 : BGm → [SpecA/Gx] with image
w. By Deformation Theory (6.5.10), we may find compatible lifts to [SpecA/Gx] of
the restrictions of h to the nilpotent thickenings of ϕR along 0, and by Coherent
Tannaka Duality (6.4.9), we may find construct a lift h̃ below

BGm
h̃0 //

� _

��

[SpecA/Gx]

f

��

ϕR

h̃
88

h // X .

Since f is affine and étale, both restrictions h̃|s ̸=0 and h̃|t̸=0 to SpecR are isomorphic
to ξ̃ and thus h̃|ϕR\0 gives a lift g̃ ∈ Aut(ξ̃K) of g. Finally, we apply Proposition 6.8.51
to construct a map ξ̃′ : SpecR → [SpecA/Gx] with ξ̃′(0) = w such that ξ̃K ≃ ξ̃′K
and g̃ extends to an automorphism of ξ̃′. The composition ξ′′ := f ◦ ξ̃′′ : SpecR→ X
then satisfies the claim.

See also [AHLH18, Thm. 5.2].

Our proof used the following valuative criterion for a quotient stack.

Proposition 6.8.51. Let X = [SpecA/G] where SpecA is an affine scheme of
finite type over an algebraically closed field k equipped with an action by a linearly
reductive group G. Let x ∈ X be a closed point. Then X satisfies the following
property:
(⋆) For every DVR R with residue field k and fraction field K, for every morphism

ξ : SpecR → X with ξ(0) ≃ x, and for every K-pint g ∈ AutX (ξK) of finite
order, there is an extension R → R′ of DVRs (with K ′ = Frac(R′)) and a
morphism ξ′ : SpecR′ → X such that ξ′(0) ≃ x, ξ′K′ ≃ ξK′ and g|K′ extends
to an automorphism of ξ′.

Remark 6.8.52. In other words, for every map ξ : SpecR→ SpecA and element
g ∈ GξK ⊂ G(K) of finite order, there exists after an extension R ⊂ R′ of DVRs
and an element h ∈ G(K ′) such that h · ξK′ extends to a map ξ′ : SpecR′ → SpecA
with ξ′(0) ∈ Gx and such that h−1g|K′h extends to an R′-point of G.

To illustrate this criterion, consider the the action of G = Gm ⋊ Z/2 on A2 via
t·(a, b) = (ta, t−1b) and−1·(a, b) = (b, a). Note that every point (a, b) ∈ A2 with ab ̸=
0 is fixed by the order 2 element (a/b,−1) ∈ G. Consider ξ : SpecR = k[[z]]→ A2 via
z 7→ (z2, z). The element g = (z−1,−1) ∈ G(k((z))) stabilizes ξK but does not extend
to G(k[[z]]). However, we may take the degree 2 ramified extension k[[z]]→ k[[

√
z]]

and define ξ′ : Spec k[[
√
z]]→ A2 by

√
z 7→ ((

√
z)3, (

√
z)3). Over the generic point,

there is an isomorphism ξ′k((
√
z))
≃ ξk((√z)) given by h = (

√
z,−1) ∈ G(k((

√
z))) and

the element g|k((√z)) = (
√
z,−1)−1 · g|K′ · (

√
z,−1) = (1,−1) ∈ G(k((

√
z))) extends

to an element of G(k[[
√
z]])-point.

Proof. After choosing an embedding G ↪→ GLn and replacing [SpecA/G] with
[(SpecA×Gx GLn)/GLn], we may assume that G = GLn.

We first verify (⋆) for quotient stacks [SpecA/G] = SpecA×BG with a trivial
action. As R is local and G = GLn, the composition SpecR→ [SpecA/G]→ BG
corresponds to the trivial G-bundle. We need to prove that every finite order element
g ∈ G(K) is conjugate to an element of G(R) after passing to an extension of the
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DVR R. We can conjugate g to its Jordan canonical form (after an extension of R).
Since g has finite order, the diagonal entries of the resulting matrix are rth roots of
unity for some r. Because the group µr of rth roots of unity is a finite group scheme
over SpecR, the entries of the Jordan canonical form must lie in R.

If X = [X/G] with X proper over k, we show that (⋆) holds except that ξ′(0)
may not be isomorphic to x. Since p : X → BG is proper and representable,
for every morphism ξ : SpecR → X from a DVR, we have a closed immersion
AutX (ξ) ↪→ AutBG(p ◦ ξ) of group schemes over SpecR. Moreover, any lift of the
generic point of a morphism SpecR→ BG to [X/G] extends to a unique morphism
SpecR → BG. Therefore, given an element g ∈ AutX (ξK), we use that (⋆) holds
for BG to find (after replacing R with an extension) a morphism η : SpecR→ BG
such that ηK ≃ (p ◦ ξ)K and g|K extends to a R-point of AutBG(η). If we lift η to
a morphism ξ′ : SpecR→ [X/G] such that ξ′K ≃ ξK , then the element g|K extends
to an automorphism of ξ′.

In verifying (⋆) for [SpecA/G], we may assume that A is reduced. Viewing
[SpecA/G] as an algebraic stack which is affine and of finite type over SpecAG×BG,
we can choose a vector bundle E on SpecAG ×BG and a G-equivariant embedding
SpecA ↪→ A(E|SpecAG) over AG. Viewing A(E|SpecAG) as an open subscheme of
P(E|SpecAG⊕OSpecAG), we let X be the closure of SpecA in P(E|SpecAG⊕OSpecAG).
This gives a G-equivariant diagram

SpecA
� � //

%%

X

��

SpecAG

(6.8.53)

where X is a reduced projective scheme and the complement X\SpecA is the support
of an ample G-invariant Cartier divisor E. We also claim that SpecA is precisely the
semistable locus of X with respect to OX(E) in the sense of Exercise 6.7.12. Indeed
the tautological invariant section s : OX → OX(E) restricts to an isomorphism over
SpecA and thus SpecA ⊂ Xss. Conversely, sn defines an isomorphism

AG
∼→ Γ(X,OX(nE))G

for all n ≥ 0. Under this isomorphism, for every invariant global section f ∈
Γ(X,OX(nE))G, the restriction f |SpecA agrees with a section of the form gsn, where
g is the pullback of a function under the map X → SpecAG. It follows that f = g ·sn
because X is reduced. This shows that Xss ⊂ SpecA.

We now verify that (⋆) holds for [SpecA/G]. Let ξ : SpecR→ [SpecA/G] be a
map with ξ(0) ≃ x, and let g ∈ AutX (ξK) be a finite order K-point. By applying
the above result to [X/G], there exists (after an extension of R) a map ξ′ : SpecR→
[X/G] such that ξ′K ≃ ξK and g extends to an element of AutX (ξ′) but where ξ′(0)
may not be isomorphic to x. The stabilizer group scheme StabG(X) ⊂ X × G is
a closed subscheme equivariant with respect to the product action of G on X ×G
where G acts on itself via conjugation. The pair (ξ′, g) defines a morphism

η : SpecR→ [StabG(X)/G].

We will show that after an extension ofR, there is a map η′ : SpecR→ [StabG(SpecA)/G]
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with η′K ≃ ηK . Similar to (6.8.53), we have a G-equivariant diagram

StabG(SpecA)
� � //

((

StabG(X)

��

SpecAG ×G

with StabG(X) projective over SpecAG × G. We claim that the semistable lo-
cus of StabG(X) for the action of G with respect to the pullback of OX(E) is
precisely StabG(SpecA) in the sense of Exercise 6.7.12. The invariant section
s ∈ Γ(X,OX(E))G pulls back to an invariant section on StabG(X) and thus
StabG(SpecA) ⊂ StabG(X)ss. To see the converse, suppose that (y, h) ∈ StabG(X)
with y /∈ Xss = SpecA. Applying Kempf’s Optimal Destabilizing Theorem (6.7.37)
to a lift ŷ of y to the affine cone X̂ → SpecAG of X yields a one-parameter subgroup
λ : Gm → G such that limt→0 λ(t) · ŷ ∈ X̂ exists and is contained in the zero section
SpecAG. Moreover, since Gy ⊂ Pλ (Exercise 6.7.43), limt→0 λ(t) · (ŷ, h) also exists
and is contained in the zero section of the affine cone over of StabG(X); thus (y, h)
is not semistable.

The induced morphism StabG(SpecA)//G→ (SpecAG×G)//G of GIT quotients
is proper, and the good moduli space [StabG(SpecA)/G] → StabG(SpecA)//G is
universally closed. By the valuative criterion, the composition

SpecR
η−→ StabG(X)→ SpecAG ×G→ (SpecAG ×G)//G

lifts a morphism χ : SpecR → [StabG(SpecA)/G] such that χK ≃ ξK after an
extension of R. The composition ξ′ : SpecR

χ−→ [StabG(SpecA)/G] → [SpecA/G]
has the property that ξ′K ≃ ξK and that g extends to an element of AutX (ξ′). To
arrange that ξ′(0) ≃ x, we apply Lemma 6.8.54 below.

Lemma 6.8.54. Let X = [SpecA/G] where SpecA is an affine scheme of finite
type over an algebraically closed field k equipped with an action of a reductive group
G. Let ξ, ξ′ : SpecR→ X be morphisms from a DVR with residue field k such that
ξK ≃ ξ′K and ξ(0) ∈ X is a closed point. For every element g ∈ AutX (ξ′), there
exists (after replacing R with an extension) a morphism ξ′′ : SpecR→ X such that
ξ′′K ≃ ξ′K , g|K extends to an automorphism of ξ′′, and ξ′′(0) ≃ ξ(0).

Proof. Since ξ(0) and ξ′(0) lie in the same fiber of X → SpecAG, the closure of
ξ′(0) in |X | must contain ξ(0). Kempf’s Criterion (6.7.35) yields a canonical map
f : Θ→ [SpecA/G] with f(1) ≃ ξ′(0) and f(0) ≃ ξ(0). Since f is canonical, every
automorphism of f(1) extends to an automorphism of the map f . In particular the
restriction of g ∈ AutX (ξ′) to f(1) = ξ′(0) extends uniquely to an automorphism gf
of f .

We now apply the Strange Gluing Lemma (6.8.55), which after replacing R
with R[π1/N ] and precomposing f with the map Θ → Θ defined by x 7→ xN for
N ≫ 0, yields a unique map γ : ϕR → X , such that γ|s=0 ≃ f and γ|t ̸=0 ≃ ξ′.
The uniqueness γ guarantees that the automorphism g of ξ′ and gf of f extends
uniquely to an automorphism gγ of γ. Finally, we construct the desired map ξ′′ as
the composition

ξ′′ : Spec(R[
√
π])

q−→ ϕR
γ−→ X ,

where in (s, t, π) coordinates the first map q is defined by (
√
π,
√
π, π). Under q,

the special point of Spec(R[
√
π]) maps to the point 0 ∈ ϕR. By construction,
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ξ′′(0) ≃ ξ(0) and the automorphism g of γ restricts to an automorphism of ξ′′
extending g|K(

√
π).

Lemma 6.8.55 (Strange Gluing Lemma). Let X be an algebraic stack of finite type
over an algebraically closed field k with affine diagonal. Let R be a DVR with residue
field k. Let f : Θ → X and ξ : SpecR → X be morphisms with an isomorphism
f(1) ≃ ξ(0). For N ≫ 0, after replacing R with R[π1/N ] and f with the composition
Θ

N−→ Θ
f−→ X , there is a unique morphism γ : ϕR → X such that γ|s=0 ≃ f and

γ|t̸=0 ≃ ξ.

Proof. For n > 0, define

ϕn,1R = [Spec(R[s, t]/(stn − π))/Gm]

where the Gm-acts with weight n on s and −1 on t. We have a closed immersion
Θ ↪→ ϕn,1R defined by s = 0 and an open immersion SpecR ↪→ ϕn,1R defined by
t ̸= 0. Note that any morphism ϕn,1R → X restricts to morphisms f : Θ → X and
ξ : SpecR → X along with an isomorphism ξ(0) ≃ f(1). We will show conversely
that for n ≫ 0, any f : Θ → X and ξ : SpecR → X with ξ(0) ≃ f(1) extends
canonically to a map ϕn,1R → X .

Letting C = R[t, π/t, π/t2, . . .] ⊂ R[t]t, the diagram

Speck[t]t //

��

Speck[t]

��

SpecR[t]t // SpecC

is a pushout in the category of schemes (Theorem B.4.1). This diagram is Gm-
equivariant, and the diagram obtained by taking the fiber product with Gm is also a
pushout. Properties of Pushouts (B.4.8) can be used to show that taking quotients
by Gm yields a pushout square

Speck //

��

Θ

��
f

��

SpecR //

ξ //

[Spec(C)/Gm]

Ψ

&& X

(6.8.56)

in the category of algebraic stacks with affine diagonal. This induces the dotted
arrow Ψ. We can write C as a union C =

⋃
Cn where Cn := R[t, π/tn] ⊂ R[t]t.

Note that Cn ∼= R[s, t]/(stn− π) so in particular [Spec(Cn)/Gm] ∼= ϕn,1R . As X → S
is locally of finite presentation, for n ≫ 0 the morphism Ψ factors uniquely as
[Spec(C)/Gm]→ ϕn,1R → X (Exercise 3.3.31).

To finish the proof, compose the uniquely defined map ϕn,1R → X with the
canonical map ϕR[π1/n] → X induced by the map of graded algebras R[s, t]/(stn −
π)→ R[π1/n][s1/n, t]/(s1/nt− π), where s1/n has weight 1.

6.8.6 S-completeness and reductivity
We have already seen that S-completeness characterizes separatedness (Proposi-
tion 6.8.22 and Corollary 6.8.20). We have also seen that it implies unpunctured
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inertia (Theorem 6.8.50) and therefore implies the existence of stabilizer preserving
local quotient presentations (Proposition 6.8.47). We now prove a third remarkable
property of S-completeness: it characterizes reductivity. More precisely, a smooth
affine algebraic group G is reductive if and only if BG is S-complete if and only if G
has Cartan Decompositions (Proposition 6.8.57). This also completes the proof of
Theorem 6.6.30

Proposition 6.8.57. Let G be a smooth affine algebraic group over an algebraically
closed field k. The following are equivalent:

(1) G is reductive,
(2) BG is S-complete, and
(3) G satisfies the Cartan Decomposition: for every complete DVR R over k with

residue field k and fraction field K and for every element g ∈ G(K), there
exists elements h1, h2 ∈ G(R) and a one-parameter subgroup λ : Gm → G such
that

g = h1λ|Kh2.

In particular, if X is an S-complete algebraic stack and x ∈ X is a closed point with
smooth affine stabilizer Gx, then Gx is reductive.

Proof. For (2)⇒ (3), observe that since ϕR∖0 = SpecR
⋃

SpecK SpecR, an element
g ∈ G(K) determines a morphism

ρg : ϕR ∖ 0→ BG

by gluing two trivial G-torsors over SpecR via the isomorphism induced by g of
their restrictions to SpecK. Since BG is S-complete, we have a lift

ϕR ∖ 0
ρg
//

��

BG

ϕR.

h

;;

(6.8.58)

Restricting h to the origin gives a map BGm ↪→ ϕR
h−→ BG which corresponds

to a map λ : Gm → G (up to conjugation); this provides us with our candidate
one-parameter subgroup. We make two observations:

• If g, g′ ∈ G(K) are elements, the morphisms ρg, ρg′ : ϕR ∖ 0 → BG are
isomorphic if and only if there are elements h, h′ ∈ G(R) such that hg = g′h′.

• If λ : Gm → G is a one-parameter subgroup and λ|ϕR∖0 denotes the composition
ϕR ∖ 0 ↪→ ϕR → BGm

λ−→ BG, then λ|ϕR∖0 and ρg′ , where g′ = λ|K , are
isomorphic.

It therefore suffices to show that the extension h in (6.8.58) is isomorphic to
λ|ϕR

: ϕR → BGm
λ−→ BG. To see this, let P and P ′ denote the principal G-bundles

over ϕR classifying h and λ|ϕR
. Since G is smooth and affine, IsomϕR

(P,P ′)→ ϕR
is smooth and affine. We have a section over the inclusion X0 := BGm ↪→ ϕR of
0. Letting Xn denote the nth nilpotent thickening, deformation theory (Propo-
sition 6.5.10) and the cohomological affineness of Xn implies that we may find
compatible sections over Xn. Coherent Tannaka Duality (6.4.9) and the coherent
completeness of ϕR along BGm (Theorem 6.4.12) implies that the map

MorϕR
(ϕR, IsomϕR

(P,P ′))→ lim←−MorϕR
(Xn, IsomϕR

(P,P ′))
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is an equivalence. We thus obtain a section of IsomϕR
(P,P ′) → ϕR, i.e., an

isomorphism between P and P ′.
To see that (3) ⇒ (2), it suffices to show that every map ϕR ∖ 0→ BG extends

to a map ϕR → BG where R is a complete DVR over k with residue field k
(Lemma 6.8.16). Since every principal G-bundle over SpecR is trivial, the map
ϕR∖0→ BG is isomorphic to ρg for some element g ∈ G(K). Writing g = h1λ|Kh2,
the two observations above show that ϕR → BGm → BG is an extension.

We have already seen that (1) ⇒ (2) in Proposition 6.8.19. Conversely, if G is
not reductive, there is a normal subgroup Ga ◁ Ru(G) of the unipotent radical. As
G/Ru(G) and Ru(G)/Ga are both affine, the composition BGa → BRuG→ BG is
affine. By Lemma 6.8.18, this would imply that BGa is S-complete but this is a
contradiction: taking R = k[[x]] and K = k((x)) the element x ∈ Ga(K) cannot be
written as h1λ|Kh2.

See also [AHHL21, Thm. A].

6.8.7 Proof of the Existence Theorem of Good Moduli Spaces
The necessity of Θ-completeness and S-completeness for the existence of a good
moduli space was established in Corollary 6.8.20. We now establish the sufficiency
following the strategy outlined in §6.8.1.

Proof of Theorem 6.8.1. Since X is S-complete and char(k) = 0, the stabilizer Gx
of every closed point x ∈ X is linearly reductive (Proposition 6.8.57). By the Local
Structure Theorem (6.5.1), there exists an affine étale morphism f : ([SpecA/Gx], w)→
(X , x) inducing an isomorphism of stabilizer groups at x. Since X is Θ-complete
and S-complete, we may assume that f is Θ-surjective and stabilizer preserving
at all points after replacing [SpecA/Gx] with an open neighborhood of x (Propo-
sitions 6.8.40 and 6.8.47). Since X is quasi-compact, there exists finitely many
closed points xi ∈ X and morphisms fi : [SpecAi/Gxi

]→ X as above whose images
cover X . Choosing embeddings Gxi

↪→ GLn for some n, there are equivalence
[SpecAi/Gxi

] ∼= [(SpecAi ×Gxi GLn)/GLn]. Setting A =
∏
i(Ai ×Gxi GLn), there

is an surjective, affine, and étale morphism

f : X1 := [SpecA/GLn]→ X

which is Θ-surjective and stabilizer preserving at all points. Since char(k) = 0, there
is a good moduli space X1 → X1 := SpecAGLN .

Set X2 = X1 ×X X1. The projections p1, p2 : X2 → X1 are also affine, étale,
Θ-surjective, and stabilizer preserving. Since f is affine, X2

∼= [SpecB/GLn] and
there is a good moduli space X2 → X2 := SpecBGLn . This provides a commutative
diagram

X2

p1 //

p2
//

��

X1
f
//

��

X

��

X2

q1 //

q2
// X1

// X

(6.8.59)

which each square on the left is cartesian by Luna’s Fundamental Lemma (6.3.30).
Moreover, by the universality of good moduli spaces (Theorem 6.3.5(4)), the étale
groupoid structure on X2 ⇒ X1 induces a étale groupoid structure on X2 ⇒ X1.

We claim that X2 ⇒ X1 is an étale equivalence relation, i.e., that the quotient
stack [X1/X2] is an algebraic space. By the Characterization of Algebraic Spaces
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(3.6.6), it suffices to show that if x1 ∈ X1 is a k-point, then (x1, x1) has a unique
preimage under (q1, q2) : X2 → X1 ×X1. Let x2, x′2 ∈ X2 be two points mapping
to (x1, x1) ∈ X1 × X1, and let x̃2, x̃′2 ∈ X2 be the unique closed points in their
preimages. Since f is Θ-surjective, the images p1(x̃2), p2(x̃2), p1(x̃′2), and p2(x̃

′
2)

are all closed points of X1 over x1, and therefore they are all identified with the
unique closed point x̃1 over x1. On the other hand, since f is stabilizer preserving,
the stabilizer groups of x̃2 and x̃′2 are the same as the stabilizer groups of x̃1 and
of its image in X . Let us denote this stabilizer group by G. It follows that the
fiber product of (p1, p2) : X2 → X1 × X1 along the inclusion of the residual gerbe
G(x̃1,x̃1) = BG×BG→ X1 ×X1 is isomorphic to BG and thus identified with the
residual gerbe of a unique closed point. Therefore x2 = x′2.

Since X2 ⇒ X1 is an étale equivalence relation, the quotient X = X1/X2 is an
algebraic space. From étale descent, there is a morphism X → X which pulls back
under X1 → X to the good moduli space X1 → X1. By descent of good moduli
spaces (Lemma 6.3.21(2)), X → X is a good moduli space. Finally, we use that X
is S-complete to conclude that X is separated (Corollary 6.8.20).
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Appendix A

Morphisms of schemes

We recall definitions and properties of morphisms of schemes—locally of finite
presentation, flat, smooth, étale, unramified, quasi-finite, and proper. As we intend
to highlight results important in moduli theory, we pay close attention to functorial
properties, i.e., properties of schemes and their morphisms characterized by their
functors.

While first courses in algebraic geometry (e.g., [Har77]) often impose noetherian
hypotheses, we try to state results in the non-noetherian setting when possible.
Since we define moduli functors and stacks on the entire category of schemes, it is
essential to work with non-noetherian schemes. Limit Methods (B.3) allow one to
reduce properties of general schemes to noetherian schemes.

A.1 Morphisms locally of finite presentation

A morphism of schemes f : X → Y is locally of finite type (resp., locally of fi-
nite presentation) if for all affine open subschemes SpecB ⊂ Y and SpecA ⊂
f−1(SpecB), there is surjection A[x1, . . . , xn]→ B of A-algebras (resp., a surjection
A[x1, . . . , xn]→ B with finitely generated kernel). If in addition f is quasi-compact
(resp., quasi-compact and quasi-separated), we say that f is of finite type (resp.,
of finite presentation). When Y is locally noetherian, being locally of finite type
(resp., finite type) is equivalent to being locally of finite presentation (resp., finite
presentation). In the non-noetherian setting, even closed immersions may not be
locally of finite presentation, e.g., SpecC ↪→ SpecC[x1, x2, . . .]. Morphisms of finite
presentation are better behaved than morphisms of finite type. Many standard
results (e.g., Semicontinuity (A.6.4)) for proper flat morphisms do not hold in the
non-noetherian setting without a finite presentation condition; see [Vak17, §28.2.11]
and [SP, Tag 05LB]. Therefore, in this text, when we define for instance a family of
stable curves π : C → S (Definition 5.3.17), we require not only that π is proper and
flat but also of finite presentation.

The functorial characterization of locally of finite presentation morphisms uses
the notion of an inverse system in a category C: a partially ordered set (I,≥) which
is directed, i.e., for every i, j ∈ I there exists k ∈ I such that k ≥ i and k ≥ j,
together with a contravariant functor I → C.

Proposition A.1.1. A morphism f : X → Y of schemes is locally of finite presen-
tation if and only if for every inverse system {SpecAλ}λ∈I of affine schemes over
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Y , the natural map

colimλMorY (SpecAλ, X)→ MorY (Spec(colimλAλ), X) (A.1.2)

is bijective.

Proof. See [EGA, IV.8.14.2] or [SP, Tag 01ZC], where (A.1.2) is also shown to be
bijective for inverse systems of quasi-compact and quasi-separated schemes with
affine transition maps.

This is not a deep result: requiring that every map SpecA→ X over Y factors
through some SpecAλ → SpecA is essentially the condition that SpecA → X
depends on only finite data, i.e., there are only finitely many generators and relations
for the ring maps locally defining X → Y .

Exercise A.1.3. Verify Proposition A.1.1 in the case of a morphism SpecA →
SpecB of affine schemes.

Proposition A.1.1 is a functorial condition as it only depends on the functor
MorY (−, X), and therefore we can extend the definition of locally of finite presenta-
tion to functors.

Definition A.1.4. Let Y be a scheme. A contravariant F : Sch /Y → Sets is locally
of finite presentation (or limit preserving) if for every inverse system {SpecAλ}λ∈I
of affine schemes over Y , the natural map

colimλ F (Aλ)→ F (colimλAλ)

is bijective.

By Proposition A.1.1, a scheme X is locally of finite presentation over Y if and
only if the functor MorY (−, X) is locally of finite presentation.

A.2 Flatness
You cannot get very far in moduli theory without flatness. While its definition is
seemingly abstract and algebraic, it is a magical geometric property of a morphism
X → Y that ensures that fibers Xy ‘vary nicely’ as y ∈ Y varies. This principle is
nicely evidenced by Flatness via the Hilbert Polynomial (A.2.4). It is the reason
why we define objects of our moduli stacks as flat families.

A.2.1 Flatness criteria
A module M over a ring A is flat if the functor

−⊗AM : Mod(A)→ Mod(A)

is exact. We recall the following criteria:
(1) (Stalk Criterion) M is flat over A if and only if Mp is flat over Ap for every

prime (equivalently maximal) ideal p. More generally, if A→ B is a ring map,
a B-module N is flat if and only if for every prime q ⊂ B with preimage p ⊂ A,
Nq is flat over Ap.

(2) (Ideal Criterion) M is flat if and only if for every finitely generated ideal I ⊂ A,
the map I ⊗AM →M is injective [Eis95, Prop. 6.1]. (When A is a PID, this
implies that M is flat if and only if M is torsion free.)
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(3) (Tor Criterion) M is flat if and only if TorA1 (A/I,M) = 0 for all finitely
generated ideals I ⊂ A [Eis95, Prop. 6.1].

(4) (Finitely Presented Criterion) M is finitely presented and flat over A if and
only if M is finite and projective if and only if M is finite and locally free (i.e.,
Mp is finite and free for all prime—or equivalently maximal—ideals p); see
[SP, Tag 00NX]. (Without the finitely presented hypothesis, Lazard’s Theorem
states that M is flat over A if and only if M can be written as a directed colimit
colimi∈IMi of free finite A-modules Mi; see [Eis95, A6.6] or [SP, Tag 058G].)

(5) (Equational Criterion) M is flat if and only if for every relation
∑n
i=1 aimi = 0

with ai ∈ A and mi ∈ M , there exists m′
j ∈ M for j = 1, . . . , r and a′ij ∈ A

such that
∑r
j=1 a

′
ijm

′
j = mi for all i and

∑n
i=1 a

′
ijai = 0 for all j [Eis95,

Cor. 6.5].
If f : X → Y is a morphism of schemes, then a quasi-coherent OX -module F

is flat if for all affine opens SpecB ⊂ Y and SpecA ⊂ f−1(SpecB), the B-module
Γ(SpecA,F) is a flat.

Proposition A.2.1 (Flat Equivalences). Let f : X → Y be a morphism of schemes
and F be a quasi-coherent OX-module. The following are equivalent:

(1) F is flat over Y ;
(2) There exists a Zariski-cover {SpecBi} of Y and {SpecAij} of f−1(SpecBi)

such that Γ(SpecAij ,F) is flat as an Bi-module under the ring map Bi → Aij ;
(3) For all x ∈ X, the OX,x-module Fx is flat as an OY,y-module.
(4) The functor

QCoh(Y )→ QCoh(X), G 7→ f∗G ⊗OX
F

is exact.

Proof. See [Har77, §III.9] or [SP, Tag 01U2].

We say that a morphism f : X → Y of schemes is flat at x ∈ X (resp., a quasi-
coherent OX -module F is flat at x ∈ X) if there exists a Zariski open neighborhood
U ⊂ X containing x such that f |U (resp., F|U ) is flat over Y . This is equivalent to
the flatness of OX,x (resp., Fx) as an OY,y-module.

Proposition A.2.2 (Flatness Criterion over Smooth Curves). Let C be an integral
and regular scheme of dimension 1 (e.g., the spectrum of a DVR or a smooth
connected curve over a field), and let X → C be a morphism of schemes. A quasi-
coherent OX-module F is flat over C if and only if every associated point of F maps
to the generic point of C.

Proof. A short argument shows that this follows from the fact that a module over a
DVR is flat if and only if it is torsion free; see [Har77, III.9.7].

Over higher dimensional bases, it is sometimes possible to check flatness by
reducing to the above criterion over a smooth curve. This is called the valuative
criterion for flatness: if f : X → S is a finite type morphism of noetherian schemes
over a reduced scheme S and F is a coherent OX -module, then F is flat at x ∈ X if
and only if for every map (SpecR, 0)→ (S, f(x)) from a DVR, the restriction F|XR

is flat over R at all points in XR := X ×S SpecR over 0 and x [EGA, IV.11.8.1].
Despite providing a conceptual geometric criterion for flatness, it is surprisingly
rarely used in moduli theory.
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Proposition A.2.3 (Flatness Criterion over Artinian Rings). A module over an
artinian ring is flat if and only if it is free if and only if it is projective.

Proof. See [SP, Tag 051E].

Recall that if X ⊂ PnK is a subscheme and F is a quasi-coherent OX -module, the
Hilbert polynomial of F is PF (z) = χ(X,F(z)) ∈ Q[z].

Proposition A.2.4 (Flatness via the Hilbert Polynomial). Let S be a connected,
reduced, and noetherian scheme, and let X ⊂ PnS be a closed subscheme. A coherent
OX-module F is flat over S if and only if the function

S → Q[z], s 7→ PF|Xs

assigning a point s ∈ S to the Hilbert polynomial of the restriction F|Xs to the fiber
Xs ⊂ Pnκ(s) is constant.

Proof. See [Har77, Thm. 9.9].

Theorem A.2.5 (Local and Infinitesimal Criteria for Flatness). Let A→ B be a
local homomorphism of noetherian local rings, and let M be a finite B-module. The
following are equivalent:
(1) M is flat over A,
(2) (Local Criterion) TorA1 (A/mA,M) = 0, and
(3) (Infinitesimal Criterion) M/mnAM is flat over A/mnA for every n ≥ 1.

Proof. See [Eis95, Thm. 6.8, Exc. 6.5] or [SP, Tag 00MK].

The following consequence of the Local Criterion for Flatness is particularly
useful in deformation theory.

Corollary A.2.6. Let A↠ A0 be a surjective homomorphism of noetherian rings
with kernel I such that I2 = 0. An A-module M is flat over A if and only if

(1) M0 :=M ⊗A A0 is flat over A0, and
(2) the map M0 ⊗A0 I →M is injective.

Proof. For (⇒), condition (1) holds by base change and condition (2) holds by
tensoring the exact sequence 0 → I → A → A0 → 0 with M and using the
identification M ⊗A I ∼= M0 ⊗A0

I. For (⇐), by the Local Criterion for Flatness
(A.2.5) it suffices to show that TorA1 (A/p,M) = 0 for all prime ideals p ⊂ A. Let
p0 := p/I ⊂ A. Consider the following diagram which is obtained by tensoring the
exact sequences 0→ I → p→ p0 → 0 and 0→ I → A→ A0 → 0 with M :

TorA1 (M,A/p) //

��

TorA0
1 (M0, A0/p0)

��

0 // M ⊗A I // M ⊗A p

��

// M0 ⊗A0
p0

��

// 0

0 // M ⊗A I // M //

����

M0
//

����

0

M ⊗A A/p // M0 ⊗A0
A0/p0

407

http://stacks.math.columbia.edu/tag/051E
http://stacks.math.columbia.edu/tag/00MK


Condition (2) implies that the second row is exact, and it follows that the first row is
also exact, where we have used the identification M ⊗A p0 ∼=M0 ⊗A0

p0. Condition
(1) implies that TorA0

1 (M0, A0/p0) = 0 and it follows from the snake lemma that
TorA1 (M,A/p) = 0. See also [Har10, Prop. 2.2].

Remark A.2.7. Applying this with A = k[ϵ]/(ϵ2) being the dual numbers and A′ =

k, we recover the fact that an A-module M is flat if and only if M ⊗k[ϵ]/(ϵ2) k
ϵ−→M

is injective. This also follows from the fact that a module N over a ring B is flat if
and only if for every ideal I ⊂ B, the map I ⊗BM →M is injective, and using that
the only ideal in k[ϵ]/(ϵ2) is (ϵ).

The following convenient facts are closely related to the Local Criterion of
Flatness (A.2.5).

Lemma A.2.8. Let (A,mA)→ (B,mB) be a local ring homomorphism of noetherian
local rings.

(1) Let M be a flat A-module and N be a finitely generated B-module. If ϕ : N →
M is a morphism of R-modules such that N/mN →M/mM is injective, then
ϕ : N →M is injective and M/ϕ(N) is flat over A.

(2) If in addition A→ B is flat and f ∈ mB is a nonzerodivisor in B ⊗A A/mA,
then A→ B/(f) is flat.

Proof. The proofs are elementary (see [Mat89, Thm. 22.5] or [SP, Tag 00ME]). Note
that Part (2) follows directly from (1).

Part (2) can be viewed as a ‘slicing criterion for flatness’ and is often applied
inductively to regular sequences. It has the following geometric interpretation.

Corollary A.2.9 (Slicing Criterion for Flatness). Let f : X → S be a morphism
locally of finite presentation, and let x ∈ X be a point with image s ∈ S. If f is
flat at x and the image of h ∈ mx ⊂ OX,x in the local ring OXs,x of the fiber is
a nonzerodivisor, then there exists an open neighborhood U ⊂ X of x such that h
extends to a global function on U and the composition V (h) ↪→ U → S is locally of
finite presentation and flat at x.

Proof. The noetherian case is a direct consequence of Lemma A.2.8(2), and the
general case can be reduced to the noetherian case using the limit methods of §B.3.
See also [SP, Tag 056X].

Theorem A.2.10 (Fibral Flatness Criterion). Consider a commutative diagram

X //

��

Y

��

S

of schemes, and let F be a quasi-coherent OX-module of finite presentation. Assume
that X → S is locally of finite presentation and Y → S is locally of finite type. Let
x ∈ X with images y ∈ Y and s ∈ S. If the stalk Fx is nonzero, then the following
are equivalent:

(1) F is flat over S at x, and Fs := F|Xs
is flat over Ys at x, and

(2) Y is flat over S at y and F is flat over Y at x.

Proof. See [SP, Tag 039A].
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If A → B is a local ring map of noetherian local rings, then dimB = dimA+
dimB/mAB. The following is a partial converse.

Theorem A.2.11 (Miracle Flatness). Let A → B be a local homomorphism of
noetherian local rings. Assume that

1. A is regular,
2. B is Cohen–Macaulay, and
3. dimB = dimA+ dimB/mAB.

Then A→ B is flat.

Proof. See [Nag62, Thm. 25.16] or [SP, Tag 00R4].

A.2.2 Properties of flatness

Proposition A.2.12 (Flat Base Change). Consider a cartesian diagram

X ′ g′
//

f ′

��

X

f

��

Y ′ g
// Y

□

of schemes, and let F be a quasi-coherent sheaf on X. If g : Y ′ → Y is flat and
f : X → Y is quasi-compact and quasi-separated, the natural adjunction map

g∗Rif∗F → Rif ′∗g
′∗F

is an isomorphism for all i ≥ 0.

Proof. See [Har77, Prop. III.9.3] or [SP, Tag 02KH].

Theorem A.2.13 (Generic Flatness). Let f : X → S be a finite type morphism of
schemes and F be a finite type quasi-coherent OX-module. If S is reduced, there
exists a dense open subscheme U ⊂ S such that XU → U is flat and of presentation
and such that F|XU

is flat over U and of finite presentation as on OXU
-module.

Proof. See [SP, Tag 052B].

Proposition A.2.14 (Fppf Morphisms are Open). Let f : X → Y be a morphism
of schemes. If f is flat and locally of finite presentation, then for every open subset
U ⊂ X, the image f(U) ⊂ Y is open.

Proof. See [SP, Tag 01UA].

Proposition A.2.15. A flat monomorphism locally of finite presentation (e.g., an
étale monomorphism) is an open immersion.

Proof. This is a nice application of descent theory. By the previous result, it suffices
to assume that f : X → Y is surjective, hence fppf. SinceX → Y is a monomorphism,
the base change X ×Y X → Y is an isomorphism. Since being an isomorphism is an
Fpqc Local Property on the Target (2.1.19), X → Y is an isomorphism.
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Theorem A.2.16 (Existence of Flattening Stratifications). Let X → S be a
projective morphism of noetherian schemes, OX(1) be a relatively ample line bundle
and F be a coherent sheaf on X. For each polynomial P ∈ Q[z], there exists a locally
closed subscheme SP ↪→ S such that a morphism T → S factors through SP if and
only if the pullback FT of F to XT is flat over T and for every t ∈ T , the pullback
Fκ(t) to Xκ(t) has Hilbert polynomial P .

Moreover, there exists a finite indexing set I of polynomials such that S =∐
P∈I SP set-theoretically. The closure of SP in S is contained set-theoretically in

the union
⋃
P≤Q SQ, where P ≤ Q if and only if P (z) ≤ Q(z) for z ≫ 0.

Proof. See [FGAIV] or [Mum66, §8].

Remark A.2.17. When X → S is only proper, there is a universal flattening, i.e.,
an algebraic space S′ and a morphism S′ → S such that a map T → S factors
through S′ → S if and only if the pullback F|XT

to XT := X×S T is flat over T [SP,
Tag 05UG]. In general, S′ may not be a disjoint union of locally closed subschemes
of S; see [Kre13].

Theorem A.2.18 (Raynaud-Gruson Flatification). Let Y be a quasi-compact and
quasi-separated scheme and X → Y be a finitely presented morphism which is flat
over a quasi-compact open subscheme U ⊂ Y . Then there is a commutative diagram

X̃ //

��

X

f

��

Y ′ p
// Y

where p : Y ′ → Y is a blowup of a finitely presented closed subscheme Z ⊂ Y disjoint
from U and the strict transform X̃ of X is flat over Y ′.

The strict transform X̃ above is by definition the closure of (Y ′ \ p−1(Z))×Y X
in the base change Y ′ ×Y X.

Proof. See [GR71, Thm. I.5.2.2] or [SP, Tag 0815].

A.2.3 Faithful flatness
A moduleM over a ringA is faithfully flat if the functor−⊗AM : Mod(A)→ Mod(A)
is faithfully exact, i.e., a sequence N ′ → N → N ′′ of A-modules is exact if and only
if N ′ ⊗AM → N ⊗AM → N ′′ ⊗AM is exact

for every nonzero map ϕ : N → N ′ of A-modules, the induced map ϕ⊗AM : N⊗A
M → N ′ ⊗AM is also nonzero.

Proposition A.2.19 (Faithfully Flat Equivalences). Let A be a ring and M be a
flat A-module. The following are equivalent:
(1) M is faithfully flat;
(2) for every nonzero map ϕ : N → N ′ of A-modules, the induced map ϕ ⊗A

M : N ⊗AM → N ′ ⊗AM is also nonzero;
(3) for every nonzero A-module N , the tensor product N ⊗AM is nonzero;
(4) for every prime ideal p ⊂ A, the tensor product M ⊗A κ(p) is nonzero; and
(5) for every maximal ideal m ⊂ A, the tensor product M ⊗A κ(m) ∼=M/mM is

nonzero.
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Proof. See [SP, Tag 00H9].

When M = B is an A-algebra, then by (4) a flat ring map A→ B is faithfully
flat if SpecB → SpecA is surjective, or equivalently by (5) every maximal ideal of
A is in the image of SpecB → SpecA. The latter equivalence implies that any flat
local ring map is faithfully flat.

A morphism f : X → Y of schemes is faithfully flat if f is flat and surjective.
This is equivalent to the condition that f∗ : QCoh(Y ) → QCoh(X) is faithfully
exact. It is also equivalent to the condition that a quasi-coherent OY -module (resp.,
a morphism of quasi-coherent OY -modules) is zero if and only if its pullback is.
Faithfully flat morphisms play an important role in descent theory; see §2.1.

A.2.4 Fppf and fpqc morphisms

Fppf and fpqc morphisms are acronyms for ‘fidèlement plate de présentation finie’
and ‘fidèlement plat et quasi-compact,’ respectively. Despite this terminology, an
fpqc morphism is more general than a faithfully flat and quasi-compact map.

Definition A.2.20. A morphism f : X → Y of schemes is:
(1) fppf if f is faithfully flat and locally of finite presentation, and
(2) fpqc if f is faithfully flat and every quasi-compact open subset of Y is the

image of a quasi-compact open subset of X.

Remark A.2.21. A quasi-compact and faithfully flat morphism is fpqc. In addition,
an open and faithfully flat morphism is fpqc: for a quasi-compact open subset V ⊂ Y ,
we can write f−1(V ) =

⋃
i Ui as a union of affines, and since each f(Ui) ⊂ V is open

and V is quasi-compact, we see that V is the image of finitely many of the Ui’s.
Fppf Morphisms are Open (A.2.14) gives the implication: fppf ⇒ fpqc.

An fpqc morphism f : X → Y can be equivalently characterized by either
requiring that there exists an affine covering {Yi} of Y such that each Yi is the
image of quasi-compact open subset of X, or by requiring that every point x ∈ X
has an open (resp., quasi-compact open) neighborhood U such that f(U) is open
and U → f(U) is quasi-compact; see [Nit05, Prop. 2.33].

An fppf (resp., fpqc) cover {Xi → X} is a collection of morphisms such that∐
iXi → X is fppf (resp., fpqc).

A.2.5 Universally injective homomorphisms

The defining characteristic of a flat module is that it preserves every injection under
tensoring. The dual notion of an injection of modules, which is preserved under
tensoring by every module, is also a very useful property.

Definition A.2.22. A homomorphism M → N of A-modules is universally in-
jective if for every A-module P , the map M ⊗A P → N ⊗A P is injective. A ring
homomorphism A→ B is universally injective if it is as a map of A-modules.

Remark A.2.23. This should not be confused with a universally injective or radiciel
morphism of schemes X → Y , i.e., an injective map that remains injective after any
base change; see [SP, Tag 01S2].

We will use this notion in a fundamental way in our proof of Coherent Tannaka
Duality (Theorem 6.4.1). To this end, the following properties will be used:
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Proposition A.2.24.
(1) A faithfully flat ring homomorphism A→ B is universally injective.
(2) A split injective M → N of A-modules is universally injective. The converse

is true if N/M is finitely presented.
(3) If A→ A′ is faithfully flat, then a map M → N of A-modules is universally

injective if and only if M ⊗A A′ → N ⊗A A′ is.
(4) If A→ B is universally injective and B → B ⊗A B, defined by b 7→ b⊗ 1, is

faithfully flat, then A→ B is faithfully flat.

Proof. For (1), (2), and (4), see [SP, Tags 08WP, 058L, and 08XD]. Part (3) follows
directly from the faithful exactness of −⊗AA′. See also [Laz69] or [Lam99, §4J].

Remarkably universally injective ring maps are precisely those maps that satisfy
effective descent for modules; see Remark 2.1.6.

A.3 Étale, smooth, and unramified morphisms

A morphism f : X → Y of schemes is

– smooth if f is locally of finite presentation, flat, and for every y ∈ Y , the
geometric fiber X

κ(y)
= X ×Y Specκ(y) is regular,

– étale if f is smooth of relative dimension 0, i.e., dimXy = 0 for all y ∈ Y , and

– unramified if f is locally of finite type1 and every geometric fiber is discrete
and reduced, i.e., for all y ∈ Y , the Xy

∼=
∐
i SpecKi where each Ki is a

separable field extension of κ(y).

We say that a morphism f : X → Y of schemes is smooth (resp., étale, unramified)
at x ∈ X if there exists an open neighborhood U ⊂ X of x such that f |U : U → Y is
smooth (resp., étale, unramified). In §A.3.5, we discuss local complete intersections
and syntomic morphisms. There are the following implications:

unramified ⇐= étale⇒ smooth⇒ syntomic⇒ fppf⇒ fpqc.

A.3.1 Equivalences

Smooth, étale, and unramified morphisms have many equivalent characterizations.
These equivalences take considerable work to establish, and we recommend [Mil80,
Ch. 1] and [Liu02, §4.3] for accessible accounts.

Theorem A.3.1 (Smooth Equivalences). Let f : X → Y be a locally of finite
presentation morphism of schemes (resp., locally noetherian schemes). The following
are equivalent:

(1) f is smooth;
(2) (Differential Criterion) for every point x ∈ X, f is flat at x and the OX,x-

module ΩX/S,x can be generated by at most dimxXf(x) elements (equivalently
is free of rank dimxXf(x));

1We are following the conventions of [GR71] and [SP] rather than [EGA] as we only require
that f is locally of finite type rather than locally of finite presentation.
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(3) (Infinitesimal Lifting Criterion) for every surjection A → A0 of rings with
nilpotent kernel (resp., surjection of local artinian rings with ker(A→ A0) ∼=
A/mA) and every commutative diagram

SpecA0
//

� _

��

X

f

��

SpecA //

;;

Y

of solid arrows, there exists a dotted arrow filling in the diagram;
(4) (Jacobian Criterion) for every point x ∈ X, there exists affine open neigh-

borhoods SpecB of f(x) and SpecA ⊂ f−1(SpecB) of x and an A-algebra
isomorphism

B ∼= A[x1, . . . , xn]/(h1, . . . , hr)

for some h1, . . . , hr ∈ A[x1, . . . , xn] with r ≤ n such that the determinant
det(

δhj

δxi
)1≤i,j≤r ∈ B of the Jacobi matrix, defined by the partial derivatives

with respect to the first r xi’s, is a unit. (The map SpecA→ SpecB is called
a standard smooth morphism.).

If in addition X and Y are locally noetherian and x ∈ X has image y ∈ Y with
κ(x) = κ(y), then f : X → Y is smooth at x if and only if

(4) there is an isomorphism ÔX,x ∼= ÔY,y[[x1, . . . , xr]] of ÔY,y-algebras.
If in addition X and Y are smooth over an algebraically closed field k, then f is
smooth at x ∈ X(k) if and only if

(5) the induced map TX,x → TY,y on tangent spaces is surjective.

Proof. See [Har77, Exc. II.8.6, Prop. III.10.4], [EGA, 0.22.6.1, IV4.17.5,14], and [SP,
Tags 01V9, 02H6, and 02HX].

We say that f : X → Y is smooth of relative dimension n if f is smooth and
every fiber is equidimensional of dimension n, or equivalently if f is fppf, all fibers
are equidimensional of dimension n, and ΩX/S is locally free of rank n. If f is only
fppf and ΩX/S is locally free of dimension d, it is not necessarily true that f is
smooth of relative dimension d, e.g., SpecFp[x]→ SpecFp[xp].

Theorem A.3.2 (Étale Equivalences). Let f : X → Y be a locally of finite presen-
tation morphism of schemes (resp., locally noetherian schemes). The following are
equivalent:

(1) f is étale;
(2) f is smooth and ΩX/Y = 0;
(3) f is smooth and unramified;
(4) f is flat and unramified;
(5) (Infinitesimal Lifting Criterion) for every surjection A → A0 of rings with

nilpotent kernel (resp., surjection of local artinian rings with ker(A→ A0) ∼=
A/mA) and every commutative diagram

SpecA0
//

� _

��

X

f

��

SpecA //

;;

Y

of solid arrows, there exists a unique dotted arrow filling in the diagram; and
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(6) (Jacobi Criterion) for every point x ∈ X, there exists affine open neighborhoods
SpecB of f(x) and SpecA ⊂ f−1(SpecB) of x and an A-algebra isomorphism

B ∼= A[x1, . . . , xn]/(h1, . . . , hn)

for some h1, . . . , hn ∈ A[x1, . . . , xn] such that the determinant det( δhj

δxi
)1≤i,j≤n ∈

B is a unit. (The map SpecA→ SpecB is called a standard étale morphism.)
If in addition X and Y are locally noetherian and x ∈ X has image y ∈ Y with
κ(x) = κ(y), then f : X → Y is smooth at x if and only if

(6) ÔX,x ∼= ÔY,y.
If in addition X and Y are smooth over an algebraically closed field k, then f is
étale at x ∈ X(k) if and only if

(7) the induced map TX,x → TY,y on tangent spaces is an isomorphism.

Proof. See [Har77, Exc. III.10.3], [EGA, IV4.17.14.1-2, IV4.17.6.3], and [SP, Tags 02GH
and 02HF].

Theorem A.3.3 (Unramified Equivalences). Let f : X → Y be morphism of schemes
locally of finite type. The following are equivalent:

(1) f is unramified;
(2) ΩX/Y = 0;
(3) the diagonal ∆f : X → X ×Y X is an open immersion;
(4) (Infinitesimal Lifting Criterion for Unramifiedness) for every surjection A→ A0

of rings with nilpotent kernel (resp., surjection of local artinian rings with
ker(A→ A0) ∼= A/mA) and every commutative diagram

SpecA0
//

� _

��

X

f

��

SpecA //

;;

Y

of solid arrows, there exists at most one dotted arrow filling in the diagram.
If in addition X and Y are locally noetherian and x ∈ X has image y ∈ Y with
κ(x) = κ(y), then f : X → Y is smooth at x if and only if

(4) ÔY,y → ÔX,x is surjective.

Proof. See [EGA, IV4.17.14.1-2, IV4.17.6.3], and [SP, Tags 02G3, 02H7, and 02GE].

A.3.2 Étale-local structure of smooth, étale, and unramified
morphisms

Every smooth morphism is étale-locally relative affine space.

Proposition A.3.4 (Local Structure of Smooth Morphisms). A morphism X → Y
of schemes is smooth at x ∈ X if and only if there exists affine open subschemes
SpecA ⊂ X and SpecB ⊂ Y with x ∈ SpecA, and a commutative diagram

X

��

SpecA

��

? _
op

oo ét // AnB

{{

Y SpecB? _
op

oo
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where SpecA→ AnB is étale.

Proof. See [SP, Tag 039P] and [EGA, IV4.17.11.4].

An important consequence is that smooth morphisms have sections étale locally.

Corollary A.3.5. Let f : X → Y be a morphism of schemes smooth at x ∈ X.
Then there exists an étale neighborhood Y ′ → Y of f(x) such that X ×Y Y ′ → Y ′

has a section.

Proof. After applying the proposition, observe that the morphism AnB → SpecB
admits the zero section SpecB → AnB . The scheme Y ′ := SpecB×An

B
SpecA is étale

over Y , and the composition Y ′ → SpecA ↪→ X defines a section Y ′ → X ×Y Y ′ of
X ×Y Y ′ → Y ′.

Every étale (resp., unramified) morphism is étale-locally an isomorphism (resp.,
closed immersion).

Proposition A.3.6. Let f : X → S be a separated morphism of schemes étale (resp.,
unramified) at x ∈ X. Then there exists an étale neighborhood (U, u) → (S, f(x))
and a finite disjoint union decomposition

XU =W ⨿
∐
i

Vi

such that each Vi → U is an isomorphism (resp., closed immersion) and the the fiber
Wu contains no point over x.

Proof. See [SP, Tags 04HM and 04HG].

It is sometimes convenient to know that étale and smooth morphisms of affine
schemes can be lifted along closed immersions. It is also holds for syntomic morphisms
(see Definition A.3.17).

Proposition A.3.7. Consider a diagram

SpecA0

��

� � // SpecA

��

SpecB0
� � // SpecB

□

of solid arrows where SpecB ↪→ SpecB0 is a closed immersion. If SpecA0 →
SpecB0 is étale (resp., smooth), then there exists an étale (resp., smooth) morphism
SpecA→ SpecB making the above diagram cartesian.

Proof. See [SP, Tags 04D1 and 07M8].

A.3.3 Further properties
Proposition A.3.8 (Fibral Étaleness/Smoothness/Unramifiedness Criteria). Con-
sider a diagram

X

��

//

S

Y

��

of schemes where X → S and Y → S are locally of finite presentation. Let x ∈ X
with image s ∈ S. Then
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(1) X → Y is unramified at x if and only if Xs → Ys is unramified at x, and
(2) if X → S is flat at x, then X → Y is étale (resp., smooth) at x if and only if

Xs → Ys is étale (resp., smooth) at x.

Proof. Let y ∈ Y be the image of x ∈ X. Part (1) holds since unramified is defined
as a condition on the fiber and the fiber Xy is identified with the fiber of Xs → Ys
over y ∈ Ys. For the nontrivial direction (⇐) of (2), the Fibral Flatness Criterion
(A.2.10) implies that X → Y is flat at x. Therefore, the smoothness (resp., étaleness)
of X → Y at x is equivalent to the smoothness (resp., étaleness) of Xy → Specκ(y)
at x. The latter condition holds by the smoothness (resp., étaleness) of Xs → Ys at
x.

While smoothness is clearly an open condition on the source, it is also an open
condition on the target when the morphism is proper.

Corollary A.3.9. If f : X → Y is a proper, flat, and locally of finite presentation
morphism, then the set of points y ∈ Y where Xy → Specκ(y) is smooth is open.

Proof. If y ∈ Y is a point such that Xy → Specκ(y) is smooth, then f : X → Y
is smooth in an open neighborhood of Xy. If Z ⊂ X is the closed locus where
f : X → Y is not smooth, then f(Z) ⊂ Y is precisely the locus where the fibers of f
are not smooth. Since f is proper, f(Z) is closed.

Proposition A.3.10. Let X → Y be a smooth morphism of noetherian schemes.
For every point x ∈ X with image y ∈ Y ,

dimx(X) = dimy(Y ) + dimx(Xy).

Proof. See [SP, Tag 0AFF].

Proposition A.3.11. If X → Y is a finite étale morphism, there exists a finite
étale cover Y ′ → Y such that X ×Y Y ′ → Y ′ is a trivial covering, i.e., X ×Y Y ′ is
isomorphism to

∐
i Y

′ over Y ′.

Proof. We may assume that the degree d of X → Y is constant. The scheme

(X/Y )d = X ×Y · · · ×Y X︸ ︷︷ ︸
d

represents the functor Sch/Y → Sets assigning a Y -scheme T to the set of d sections
of X×Y T → T . Each pairwise diagonal (X/Y )d−1 → (X/Y )d is an open and closed
immersion, and we set (X/Y )d0 ⊂ (X/Y )d to be the complement of all pairwise
diagonals. The projection morphism (X/Y )d0 → Y is finite étale and the functorial
description gives d disjoint sections of X ×Y (X/Y )d0 → (X/Y )d0.

Proposition A.3.12. A dominant unramified morphism X → Y of schemes with
Y normal and X connected is étale.

Proof. See [SGA1, Cor. I.9.11].

The following result is often called ‘Nagata–Zariski Purity’.

Proposition A.3.13 (Purity of the Branch Locus). Let f : X → Y be a quasi-finite
morphism of integral noetherian schemes such that X is normal and Y is regular.
Then the locus of points in X where f is not étale is either empty or codimension 1.

Proof. See [Zar58], [Nag59], [SGA1, Thm. X.3.1], and [SP, Tag 0BMB].
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A.3.4 Fitting ideals and the singular locus
Fitting ideals allows for a scheme-theoretic description of the singular locus of
a scheme. We use fitting ideals in the Characterization of Nodes (5.2.3). For
background references on fitting ideals, we recommend [SP, Tag 07Z6] and [Eis95,
§20].

If R is a ring and M is a finitely generated R-module, the kth fitting ideal Fitk(M)
of M is the ideal generated by the (n− k)× (n− k) minors of a matrix A defining a
presentation ⊕

i∈I
R

A−→ Rn →M → 0.

Of course, when M is finitely presented (e.g., R is noetherian), then the left-hand
term can be assumed to be a finite free module Rm, in which case A is an m× n
matrix and Fitk(M) is a finitely generated ideal. The fitting ideal is independent of
the choice of presentation, and defines an increasing sequence of ideals

0 = Fit−1(M) ⊂ Fit0(M) ⊂ Fit1(M) ⊂ · · ·R

such that Fitk(M) = R if M can be generated by k elements. The R-module M
is locally free of rank r if and only if Fitr−1(M) = 0 and Fitr(M) = R, and in
this case Fitk(M) = 0 for all k < r. There is an identification Fitk(M ⊗R S) =
Fitk(M)S for a ring map R → S. In particular, Fitk(Mf ) = Fitk(M)f for f ∈ R,
Fitk(Mp) = Fitk(M)p for a prime ideal p ⊂ R, and Fitk(M)⊗R R̂ = Fitk(M̂) if R
is a noetherian local ring.

If X is a scheme and F is a finite type quasi-coherent sheaf on X, the kth
fitting ideal sheaf of F is the quasi-coherent sheaf of ideals Fitk(F ) ⊂ OX defined by
Γ(U,Fitk(F )) = Fitk(Γ(F,U)) for affine open subsets U ⊂ X. Fitting ideal sheaves
give a scheme structure to the singular locus.

Definition A.3.14. If X is a noetherian scheme of pure dimension d over a field
k , we define the singular locus of X as the subscheme Sing(X) := V (Fitd(ΩX/k))
defined by the dth fitting ideal of of ΩX/k. More generally, if X → S is an fppf
morphism such that every fiber has pure dimension d, we define the relative singular
locus as the subscheme Sing(X/S) := V (Fitd(ΩX/S)).

For example, if X = Speck[x1, . . . , xn]/I with I = (f1, . . . , fm), the exact
sequence I/I2 → ΩAn/k|X → ΩX/k → 0 induces a resolution

OmX
J−→ OnX → ΩX/k → 0 with J =

(
∂fj
∂xi

)
,

and Sing(X) is defined by all (n− d)× (n− d) minors of J .

A.3.5 Local complete intersections and syntomic morphisms
Definition A.3.15. A scheme X locally of finite type over a field k is a local complete
intersection at p ∈ X (or lci at p) if there exists an affine open neighborhood
p ∈ SpecA ⊂ A such that A is a global complete intersection over k, i.e., A ∼=
k[x1, . . . , xn]/(f1, . . . , fc) with dimA = n − c. The scheme X is a local complete
intersection if it is at every point.

Proposition A.3.16. For a scheme X locally of finite type over a field k and a
point p ∈ X, the following are equivalent:
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(1) X is a local complete intersection at p,
(2) the local ring OX,x ∼= R/(f1, . . . , fc) where R is a regular local ring and

f1, . . . , fc ∈ R is a regular sequence, and
(3) the completion ÔX,x ∼= R/(f1, . . . , fc) where R is a regular complete local ring

and f1, . . . , fc ∈ R is a regular sequence.

Proof. See [SP, Tags 00S8 and 09PY].

For a scheme locally of finite type over a field k, there are implications:

smooth⇒ local complete intersection⇒ Gorenstein⇒ Cohen–Macaulay.

Here is the relative notion:

Definition A.3.17. A morphism of schemes f : X → S is syntomic (or a flat local
complete intersection morphism) if f is fppf and every fiber is a local complete
intersection. We say that f : X → S is syntomic at x ∈ X if there is an open
neighborhood U of x such that f |U is syntomic.

Syntomic morphisms have a local structure analogous to local complete intersec-
tions.

Proposition A.3.18. A morphism f : X → S is syntomic at x ∈ X if and only
if there are affine open neighborhood x ∈ SpecA ⊂ X and SpecB ⊂ Y with
f(SpecA) ⊂ SpecB such that A ∼= B[x1, . . . , xn]/(f1, . . . , fc) and every nonempty
fiber of SpecA→ SpecB has dimension n− c.

Proof. See [EGA, IV4 §19.3], [SGA6, VIII §1] and [SP, Tag 01UB].

A.4 Properness and the Valuative Criterion
Properness, separatedness, and universal closedness can be verified using the Valua-
tive Criteria (3.8.2). While the importance of valuative criteria may not be apparent
after a first course in algebraic geometry, they becomes indispensable in moduli
theory, as it provides a geometric strategy to verify separated, properness, and
universal closedness. In this text, we apply the Valuative Criteria to show that Mg

is proper (Theorem 5.5.16) and Bunssr,d(C) is universally closed.

A.4.1 The Valuative Criteria
As we generalize the criteria to algebraic stacks in Theorem 3.8.2, we quickly recap
how the Valuative Criteria (A.4.5) are established for schemes. The starting point
of the proof of is the following lifting criterion for quasi-compact morphisms to be
closed.

Lemma A.4.1. A quasi-compact morphism f : X → Y of schemes is closed if
and only if for every point x ∈ X, every specialization f(x) ⇝ y0 in Y lifts to a
specialization x⇝ x0 in X:

X

f

��

x ///o/o/o
_

��

x0_

��
Y f(x) // y0.
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Proof. The implication (⇒) is clear as f({x}) ⊂ Y is closed. For the converse, after
replacing X with a closed subscheme, it suffices to show that f(X) is closed. We
can assume that X = SpecA and Y = SpecB are affine (since f is quasi-compact)
and reduced (since the question is topological). The scheme-theoretic image of
SpecA → SpecB is defined by I := ker(B → A). By replacing B with B/I, we
can assume that B → A is injective. For every minimal prime p ∈ SpecB, the
localization Bp is a field and the map Bp → Ap is injective. Thus, Ap ̸= 0 and the
fiber f−1(p) = SpecAp is non-empty. Since f(X) contains all the minimal primes
and is closed under specialization, f(X) = Y is closed.

The noetherian valuative criterion depends on the following algebraic fact:

Proposition A.4.2. Let (A,mA) be a noetherian local domain with fraction field K
such that A is not a field. If K → L is a finitely generated field extension, then there
exists a DVR R with fraction field L dominating A (i.e., A ⊂ R and mA ∩K = mR).

Proof. We reduce to the case that K → L is a finite field extension by choosing
a transcendence basis x1, . . . , xn ∈ L over K and replacing A with A[x1, . . . , xn]n
where n = mAA[x1, . . . , xn] + (x1, . . . , xn). Let B be the blow of SpecA at mA and
let E ⊂ B be the exceptional divisor. If ξ ∈ E is a generic point, then OB,ξ is a
noetherian domain of dimension 1 (by Krull’s Hauptidealsatz) with fraction field K.
We now let R ⊂ L be the integral closure of OB,ξ in L. By Krull–Akizuki (A.4.3),
R is noetherian. Since R is also normal of dimension 1, it is a DVR.

Proposition A.4.3 (Krull–Akizuki). Let R be a noetherian domain of dimension
1 with fraction field K. If K → L is a finite extension of fields, then every ring A
with R ⊂ A ⊂ L is noetherian.

Proof. See [Nag62, p. 115] or [SP, Tag 00PG].

Proposition A.4.2 and Krull–Akizuki have the following geometric implication.

Proposition A.4.4. If f : X → Y is a finite type morphism of noetherian schemes,
x ∈ X, and f(x)⇝ y0 is a specialization, there exists a commutative diagram

SpecK //

��

X

f

��

x_

��

SpecR // Y f(x) // y0.

where R is a DVR with fraction field K, the image of SpecK → X is x and
SpecR→ Y realizes the specialization f(x)⇝ y0. In particular, every specialization
x⇝ x0 in a noetherian scheme is realized by a map SpecR→ X from a DVR.

Proof. After replacing X with {f(x)} and Y with {x}, we may assume that X
and Y are integral with generic points x and f(x). Then OY,y0 is a noetherian
local domain with fraction field κ(f(x)). By applying Proposition A.4.2 to the field
extension κ(f(x))→ κ(x), we obtain a DVR R with fraction field κ(x) dominating
OY,y0 , yielding the desired diagram.

We only state a noetherian version of the Valuative Criteria.
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Theorem A.4.5 (Valuative Criteria for Proper/Separated/Universally Closed Mor-
phisms). Let f : X → Y be a quasi-compact morphism of noetherian schemes.
Consider a commutative diagram

SpecK //

��

X

f

��

SpecR //

;;

Y

(A.4.6)

of solid arrows where R is a DVR with fraction field K. Then
(1) f is proper if and only if f is of finite type and for every diagram (A.4.6),

there exists a unique lift,
(2) f is separated if and only if for every diagram (A.4.6), any two lifts are equal,

and
(3) f is universally closed if and only if for every diagram (A.4.6), there exists a

lift.

Proof. We first claim that it suffices to handle the universally closed case. Indeed, a
morphism X → Y is separated if and only if the diagonal X → X×Y X is universally
closed, and the equality of two lifts in the valuative criterion for X → Y corresponds
to the existence of a lift in the valuative criterion for X → X ×Y X.

Suppose that X → Y satisfies the valuative criterion for universal closedness. To
show that X → Y is universally closed, we claim that it suffices to check that the base
change XT → T is closed for every finite type morphism T → Y . Indeed, suppose
that fT : XT → T is not closed for some map T → Y . By Lemma A.4.1, there exists
x ∈ XT and a specialization fT (x)⇝ t0 which doesn’t lift to a specialization x⇝ x0.
This implies that Z = {x} ⊂ XT has trivial intersection with the fiber (XT )t0 .
Applying Lemma A.4.8 shows that, after replacing T with an open neighborhood of
t0, there is a a commutative diagram

x_

��

XT
//

fT

��

XT ′ //

fT ′

��

X

f

��

fT (x) // t0 T
g
// T ′ // Y

where T ′ → Y is finite type and a closed subscheme Z ′ ⊂ XT ′ such that fT ′(Z ′)
contains g(fT (x)) but not g(t0). This shows that fT ′ : XT ′ → T ′ is not closed.

Since the valuative criterion holds for X → Y , it also holds for the morphism
XT → T of noetherian schemes. It therefore suffices to show that X → Y is closed.
By Lemma A.4.1, it suffices to show that given x ∈ X, every specialization f(x)⇝ y0
lifts to a specialization x⇝ x0. By Proposition A.4.4, there exists a diagram (A.4.6)
such that SpecR → Y realizes f(x) ⇝ y0 with a lift SpecK → X whose image is
x. The valuative criterion implies the existence of a lift SpecR→ X, which in turn
yields a specialization x⇝ x0 lifting f(x)⇝ y0.

Conversely, assume that f : X → Y is universally closed and that we are given a
diagram (A.4.6). By replacing Y with SpecR and X with X ×Y SpecR, we may
assume that Y = SpecR and that we have a diagram

SpecK
x //

��

X

{{

SpecR
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By replacing X with {x}, we may assume that X is integral with generic point
x. Since X → SpecR is closed, there exists a specialization x ⇝ x0 in X over
the specialization of the generic point to the closed point in SpecR. This gives an
inclusion of local rings R ↪→ OX,x0

in K. Since R is a valuation ring with fraction
field K (i.e., is maximal among local rings properly contained in K), we see that
R = OX,x0 and the inclusion SpecOX,x0 → X gives the desired lift.

See also [Har77, Thm. 4.7, Exc. II.4.11], [EGA, §II.7], and [SP, Tags 0BX4 and
0CM1]

Remark A.4.7. The quasi-compactness of f (resp., ∆f , ∆∆f
) are essential in the

valuative criterion of universal closedness (resp., separatedness, separated diagonal).
In fact, universally closed morphisms are necessarily quasi-compact [SP, Tag 04XU].

The lemma below was used in the proof and is also used in the proof of the
Valuative Criteria (3.8.2) for algebraic stacks.

Lemma A.4.8. Let f : X → Y be a quasi-compact morphism of schemes. Let T → Y
be a morphism of schemes, t0 ∈ T be a point, and Z ⊂ XT a closed subscheme
such that Z ∩ (XT )t0 = ∅. Then after replacing T with an open neighborhood of
t0, there exists a finite type morphism T ′ → Y of schemes with a factorization
T

g−→ T ′ → Y and a closed subscheme Z ′ ⊂ XT ′ such that Z ′ ∩ (XT ′)g(t0) = ∅ and
im(Z ↪→ XT → XT ′) ⊂ Z ′.

Proof. After reducing to the affine case T = SpecB → Y = SpecA, we write B
as a colimit of finite type A-algebras Bλ. Using techniques analogous to Limits of
Schemes (§B.3), one shows that for λ≫ 0 there exists a subscheme Zλ ⊂ XBλ

with
the desired properties. The details are not hard, but also not inspiring. See [SP,
Tag 05BD].

A.4.2 Universally submersive morphisms

A morphism f : X → Y of schemes is submersive if f is surjective and Y has the
quotient topology, i.e., a subset U ⊂ Y is open if and only if f−1(U) is open, and
f : X → Y is universally submersive if for every map Y ′ → Y , the base change
X ×Y Y ′ → Y ′ is submersive.

Exercise A.4.9.

(1) Show that a morphism f : X → Y of noetherian schemes is universally sub-
mersive if and only if every map SpecR→ Y from a DVR has a lift

SpecR′ //

��

X

f

��

SpecR // Y,

where R→ R′ is a local homomorphism of DVRs.
(2) Show that universally closed morphism of noetherian schemes is universally

submersive.
(3) Show that every fpqc morphism of schemes is universally submersive.
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A.5 Dévissage and finiteness of cohomology

Dévissage, or ‘unscrewing’ in French, is a specific type of noetherian induction
designed to verify properties of coherent sheaves. We apply it to extend the theorem
of Finiteness of Cohomology (A.5.3) from projective morphisms to proper morphisms.

A.5.1 Dévissage

Proposition A.5.1 (Dévissage). Let X be a noetherian scheme. Let P be a property
of coherent sheaves on X satisfying

(a) if 0→ F ′ → F → F ′′ → 0 is a short exact sequence of coherent sheaves on X
and two out of the three satisfy P, then the third satisfies P, and

(b) for every integral closed subscheme Z ⊂ X with generic point ξ, there exists
a coherent sheaf G satisfying P with mξGξ = 0 and dimκ(ξ)Gξ = 1 (so that
Supp(G) = Z).

Then every coherent sheaf on X satisfies P.

Proof. We say that the property PY holds for a closed subset Y ⊂ X if every
coherent sheaf F on X with Supp(F ) ⊂ Y satisfies P. We prove the proposition
by noetherian induction: we need to show that if PY ′ holds for every closed subset
Y ′ ⊊ Y , then PY also holds. Let F be a coherent sheaf on X with Supp(F ) ⊂ Y .
Giving Y ⊂ X the reduced scheme structure, let I ⊂ OX be its ideal sheaf. To
show that F satisfies P , we first claim that it suffices to assume that IF = 0. Since
InF = 0 for some n > 0, we have a filtration 0 = InF ⊂ In−1F ⊂ · · · ⊂ F and short
exact sequences

0→ Ik−1F/IkF → F/IkF → F/Ik−1F → 0.

By induction and property (a), it suffices to show that P holds for Ik−1F/IkF ,
which is annihilated by I. Second, we claim that we can assume that Y is irreducible,
hence integral. Supposing that Y = Y1 ∪ Y2 with F1 = F |Y1 and F2 = F |Y2 , the
map ϕ : F → F1 ⊕ F2 has kernel and cokernel supported on Y1 ∩ Y2. Applying
property (a) to the exact sequence 0 → imϕ → F1 ⊕ F2 → cokerϕ → 0 and then
to 0 → kerϕ → F → imϕ → 0, shows that P also holds for F . Finally, letting
ξ ∈ Y be the generic point, property (b) gives a coherent sheaf G satisfying P with
Supp(G) ⊂ Y and dimκ(ξ)Gξ = 1. Setting d = dimκ(ξ) Fξ, since Fξ and G⊕d

ξ are
isomorphic, there is an open subscheme U ⊂ Y and an isomorphism F |U → G⊕d|U .
Let H be the image of the graph F |U → F |U ⊕ G⊕d|U , and H̃ ⊂ F ⊕ G⊕d be
a subsheaf on Y extending H [Har77, Exc. II.5.15]. The projections H → G⊕d

and H → F induce isomorphisms over U and hence have kernels and cokernels
supported on a closed subscheme Y ′ ⊊ Y . Since P holds for G, P also holds for
G⊕d by property (a). It follows that P holds for H and thus also F . See also [EGA,
III1.3.1.2] and [SP, Tag 01YI].

Remark A.5.2. The same proof also establishes some useful variants. First, if we
assumed that F⊕n ∈ P implies that F ∈ P, then condition (b) can be weakened
to exhibiting a coherent sheaf G satisfying P with Supp(G) ⊂ Z and Gξ ̸= 0.
Alternatively, (b) can be replaced with the condition that for every integral closed
subscheme Z ⊂ X with ideal sheaf IZ and every coherent sheaf F on X with
IZF = 0, there exists a coherent sheaf G on X with IZG = 0 satisfying P and a
morphism F → G which is an isomorphism on a non-empty open subset of Z.
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A.5.2 Dévissage
Theorem A.5.3 (Finiteness of Cohomology). Let f : X → Y be a proper morphism
of noetherian schemes. For any coherent sheaf F on X and any i ≥ 0, Rif∗F is
coherent.

Proof. By Flat Base Change (A.2.12), we can assume that Y = SpecA is the
spectrum of a noetherian ring. We need to show that for every coherent sheaf
F on X and any i ≥ 0, Hi(X,F ) is a finite A-module. When X → SpecA is
projective, this is [Har77, Thm. III.5.2]—this is a really nice argument exhibiting
the power of cohomology, even if you are only interested in the H0 case. In the
proof, one quickly reduces to the case that X = PnA. Choosing an exact sequence
0 → K → OPn

A
(−m)⊕d → F → 0, the statement holds for the middle term by a

Céch cohomology computation, and the vanishing of cohomology in sufficiently high
degree and a descending induction argument shows that it holds for F .

To apply Dévissage (A.5.1), we let P be the property of a coherent sheaf F on
X that Hi(X,F ) is a finite A-module for all i. This satisfies the two-out-of-three
condition (a) of (A.5.1). To see that (b) holds, let Z ⊂ X be an integral closed
subscheme with generic point ξ. By Chow’s Lemma [Har77, Exc. II.4.10], there
exists a projective birational morphism g : Z ′ → Z such that Z ′ → Z → Y is also
projective. The ample sheaf OZ′(1) is relatively ample over Z and thus for d≫ 0 and
i > 0, Rig∗(OZ′(d)) = 0 and Hi(Z ′,OZ′(d)) = 0. Taking G := g∗OZ′(d) for d≫ 0,
dimκ(ξ)Gξ = 1. Using the vanishing of Rig∗(OZ′(d)), the Leray spectral sequence
Hp(Z,Rqg∗OZ′(d)) ⇒ Hp+q(Z ′,OZ′(d)) implies that Hi(Z,G) = Hi(Z ′,OZ′(d)) is
a finite A-module (and in fact 0 for i > 0). See also [EGA, III1.3.2.1] and [SP,
Tag 02O5].

This argument can also be formulated using derived categories. Chow’s Lemma
gives a projective birational morphism g : X ′ → X with X ′ projective over Y =
SpecA, and consider the exact triangle F → Rg∗g

∗F → C. Since g is projective,
Rg∗g

∗F ∈ Db
Coh(X) and thus C ∈ Db

Coh(X). Since g is birational F → Rg∗g
∗F is

an isomorphism over a dense open. Using the exact triangles Cn → C → τ>nC
arising from truncation and the fact that Cn = 0 for n≪ 0, an induction argument
shows that RΓ(X,C) ∈ Db

Coh(Y ). Since RΓ(X, g∗g
∗F ) ∈ Db

Coh(Y ), we conclude
that RΓ(X,F ) ∈ Db

Coh(Y ). Formalizing this argument leads to version of dévissage
for derived categories (e.g., [LMB00, Lem. 15.7]).

The following version of Formal Functions is often applied over a complete local
ring (A,m), but the non-local case is sometimes useful.

Theorem A.5.4 (Formal Functions). Let X be a scheme proper over a noetherian
ring A which is complete with respect to an ideal I ⊂ A. Let Xn = X ×A A/In+1.
If F is a coherent sheaf on X, there is a natural isomorphism

Hi(X,F )
∼→ lim←−

n

Hi(Xn, F |Xn
)

for every i ≥ 0.

Proof. See [Har77, Thm. III.11.1] (projective over complete local), [Vak17, Thm. 30.8.1],
[Ill05, Cor. 8.2.4], [EGA, III1.4.1.7], and [SP, Tag 02OC].

Exercise A.5.5. Show more generally that for coherent sheaves F and G on X,
there is a natural isomorphism

ExtiOX
(F,G)

∼→ lim←−
n

ExtiOXn
(F |Xn

, G|Xn
)
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for every i ≥ 0.

Exercise A.5.6. Use dévissage to reduce the proper case of Formal Functions
(A.5.4) to the projective case.
Hint: Reduce to showing that there is a universal d such that Rig∗OZ′

n
(d) = 0

for all n, i ≥ 0, where Z ′ is as in the proof of Finiteness of Cohomology (A.5.3)
and Z ′

n = Z ′ ×A A/mn+1. To show this, apply Serre’s Vanishing Theorem [Har77,
Thm. II.5.2] to the projective morphism SpecZ′

⊕
i≥0 m

iOZ′ → Spec
⊕

i≥0 m
i.

A.6 Cohomology and Base Change
If f : X → Y is a proper morphism of noetherian schemes and F is a coherent sheaf
on X, then Finiteness of Cohomology (A.5.3) implies that Rif∗F is coherent. We
often want to know more:

(a) When is Rif∗F a vector bundle on Y ?
(b) When does the construction of Rif∗F commute with base change, i.e., for a

map g : Y ′ → Y of schemes inducing a cartesian diagram

XY ′
g′
//

f ′

��

X

f

��

Y ′ g
// Y,

when is the comparison map

ϕiY ′ : g∗Rif∗F → Rif ′∗g
′∗F (A.6.1)

an isomorphism?
When f : X → Y is flat, Flat Base Change (A.2.12) tells us that (A.6.1) is always
an isomorphism. Cohomology and Base Change (A.6.8) provides an answer when F
is flat over Y .

Cohomology and Base Change is an essential tool in moduli theory. It can
be applied to verify properties of families of objects and construct vector bundles
on moduli spaces. For instance, for a family π : C → S of smooth curves, we can
verify that π∗(Ω⊗k

C/S) is a vector bundle for k > 0 whose construction commutes
with base change on S, and show that C embeds canonically into P(π∗(Ω

⊗k
C/S)) for

k ≥ 3 (Proposition 5.1.16). We apply Cohomology and Base Change in our study
of Mg. It is used to verify that it is an algebraic stack (Theorem 3.1.17) and to
establish various geometric properties. Applied to the universal family π : Ug →Mg,
Cohomology and Base Change shows that π∗(ΩUg/Mg

) is a vector bundle of rank g
onMg, called the Hodge bundle (Example 4.1.4).

A.6.1 Formulations of Cohomology and Base Change
We begin with the key algebraic version of Cohomology and Base Change, which is
used to establish the other versions.

Theorem A.6.2 (Cohomology and Base Change I). Let X → SpecA be a proper
morphism of noetherian schemes and F be a coherent sheaf on X which is flat over
A. There is a complex

K• : 0→ K0 → K1 → · · · → Kn → 0
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of finite and locally free A-modules such that Hi(X,F ) = Hi(K•) for all i. Moreover,
for every A-module M , Hi(X,F ⊗A M) = Hi(K• ⊗A M). In particular, for a
morphism SpecB → SpecA of schemes, Hi(XB , FB) = Hi(K• ⊗A B) where XB :=
X ×SpecA SpecB and FB is the pullback of F to XB.

Proof. This is established by choosing a finite affine cover {Ui} of X and considering
the corresponding alternating Čech complex C• on {Ui} with coefficients in F .
Then C• is a finite complex of flat (but not finitely generated) A-modules and
Hi(X,F ) = Hi(C•). The result is then obtained by inductively refining C• to build
a finite complex K• of finite and flat A-modules which is quasi-isomorphic to C•.
See [Mum70a, Thm. p.46], [SP, Tag 07VK], and [Vak17, 28.2.1].

Remark A.6.3 (Perfect complexes). A bounded complex K• of coherent sheaves on
a noetherian scheme X is perfect if there is an affine cover X =

⋃
i Ui such that each

K•|Ui
is quasi-isomorphic to a bounded complex of vector bundles on Ui. If X is

affine (or more generally has the resolution property, i.e., every coherent sheaf is the
quotient of a vector bundle), then K• is perfect if and only if it is quasi-isomorphic to
a bounded complex of vector bundles on X [SP, Tag 0F8F]. Moreover, the compact
objects in DQCoh(X) are precisely the perfect complexes [SP, Tag 09M8].

With this terminology in place, Theorem A.6.2 has the following translation:
Rf∗F ∈ Db

Coh(SpecA) is perfect. More generally, if F • is a perfect complex on X,
then Rf∗F

• is also perfect [SP, Tag 0A1H].

Theorem A.6.2 tells us that the cohomology Hi(X,F ) can be computed as the
cohomology of a bounded complex K• of vector bundles on SpecA, and thus reduces
cohomological questions to linear algebra.

Theorem A.6.4 (Semicontinuity Theorem). Let X → Y be a proper morphism of
noetherian schemes and F be a coherent sheaf on X which is flat over Y .

(1) For each i ≥ 0, the function

Y → Z, y 7→ hi(Xy, Fy)

is upper semicontinuous.
(2) The function

Y → Z, y 7→ χ(Xy, Fy) =

∞∑
i=0

(−1)ihi(Xy, Fy)

is locally constant.

Proof. We may assume that Y = SpecA so that Theorem A.6.2 applies: there is

bounded complex K• : · · · → Ki−1 di−1

−−−→ Ki di−→ Ki+1 → · · · of finite and locally
free A-modules such that Hi(Xy, Fy) = Hi(K• ⊗A κ(y)) for all y ∈ Y . Using that
im(di ⊗ κ(y)) = (Ki ⊗A κ(y))/ ker(di ⊗ κ(y)), we have

hi(Xy, Fy) = dimκ(y) ker(d
i ⊗ κ(y))− dimκ(y) im(di−1 ⊗ κ(y))

= dimκ(y)K
i ⊗ κ(y)− dimκ(y) im(di ⊗ κ(y))− dimκ(y) im(di−1 ⊗ κ(y)).

(A.6.5)
The statement follows as both dimκ(y) im(di ⊗ κ(y)) and dimκ(y) im(di ⊗ κ(y)) are
lower semicontinuous. See also [Mum70a, p. 47], [Har77, Thm. 12.8], or [Vak17,
Thm. 25.1.1].
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To show more powerful results, we will need more sophisticated linear algebra.
We follow an argument of Eric Larson, as also described in [Vak17, §25.2].

Proposition A.6.6. Let X be a scheme and ϕ : E → F be a map of vector bundles
on X of rank e and f . For every point x ∈ X and an integer r ≤ min(e, f), the
following are equivalent:
(1) coker(ϕ) is a vector bundle of rank f − r in an open neighborhood of x,
(2) there is an open neighborhood U of x and identifications E|U ∼= O⊕e

U and
F |U ∼= O⊕f

U such that ϕ|U corresponds to the composition of the projection
O⊕e
U ↠ O

⊕r
U and inclusion O⊕r

U ↪→ O⊕f
U of the first r summands, and

(3) ker(ϕ)⊗ κ(x)→ ker(ϕ⊗ κ(x)) is surjective.
If in addition X is reduced, the above are equivalent to

(4) there is an open neighborhood U of x such that ϕ ⊗ κ(u) has rank r for all
u ∈ U .

If these hold, then coker(ϕ), ker(ϕ), and im(ϕ) are vector bundles, and their con-
struction commutes with base change.

Proof. This is an exercise in linear algebra.

If the equivalent conditions above hold, we say that ϕ : E → F is a map of vector
bundles (of rank r). We can now provide a quick proof of Grauert’s Theorem.

Theorem A.6.7 (Grauert’s Theorem). Let f : X → Y be a proper morphism of
noetherian schemes such that Y is reduced and connected. Let F be a coherent sheaf
on X flat over Y . For each integer i, the following are equivalent:

(1) the function y 7→ hi(Xy, Fy) is constant; and
(2) Rif∗F is a vector bundle and the comparison map

ϕiy : R
if∗F ⊗ κ(y)→ Hi(Xy, Fy)

is an isomorphism for all y ∈ Y .
If these hold, then the construction of Rif∗F commutes with base change by an
arbitrary map T → Y .

Proof. The direction (1) ⇒ (2) is clear. For the converse, we can reduce to the case
that Y = SpecA as the question is Zariski local. Let

K• : · · · → Ki−1 di−1

−−−→ Ki di−→ Ki+1 → · · ·

be the complex of vector bundles on Y produced by Theorem A.6.2. As y 7→
hi(Xy, Fy) is constant, the identity (A.6.5) implies that y 7→ dimκ(y) im(di−1⊗κ(y))
and y 7→ dimκ(y) im(di⊗κ(y)) are also constant. As Y is reduced, Proposition A.6.6
implies that di−1 and di are maps of vector bundles, that im(di) and coker(di−1)
are vector bundles, and that ker(di) commutes with base change. The cohomology
Hi(K•) = im(di−1)/ ker(di) sits in a short exact sequence

0→ Hi(K•)→ Ki/ ker(di)︸ ︷︷ ︸
im(di)

→ coker(di−1)→ 0,

and thus Hi(K•) is also a vector bundle. As cokernels always compute with base
change, so does Hi(K•) = coker(Ki−1 → ker(di)). See also [Mum70a, Cor. 2, p.48],
[Har77, Cor. 12.9], or [Vak17, 28.1.5].
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The reducedness hypothesis in Grauert’s Theorem is quite restrictive in applica-
tions to moduli theory, where we often need to establish properties of families of
objects over an arbitrary base. Fortunately, with a little more linear algebra, we can
establish the following criterion which holds over any base.

Theorem A.6.8 (Cohomology and Base Change II). Let f : X → Y be a proper
and finitely presented morphism of schemes, and let F be a finitely presented quasi-
coherent sheaf on X flat over Y . Suppose that for a point y ∈ Y and integer i, the
comparison map ϕiy : Rif∗F ⊗ κ(y)→ Hi(Xy, Fy) is surjective. Then the following
hold:

(a) There is an open neighborhood V ⊂ Y of y such that for every morphism
Y ′ → V of schemes, the comparison map ϕiY ′ : g∗Rpf∗F → Rif ′∗g

′∗F is an
isomorphism. In particular, ϕiy is an isomorphism.

(b) ϕi−1
y is surjective if and only if Rif∗F is a vector bundle in an open neighbor-

hood of y.

Proof. Assuming that Y is noetherian, we reduce to the case that Y = SpecA is
affine. Theorem A.6.2 constructs a complex K• such that for each y ∈ Y , there is a
morphism of complexes

Ki−1 di−1
//

��

Ki di //

��

Ki+1

��

computing Hi(X,F )

Ki−1 ⊗A κ(y)
di−1⊗κ(y)

// Ki ⊗A κ(y)
di⊗κ(y)

// Ki+1 ⊗A κ(y) computing Hi(Xy, Fy)

The following claim will be used twice in the proof: the surjectivity of Hi(X,F )→
Hi(Xy, Fy) is equivalent to the surjectivity of ker(di) → ker(di ⊗ κ(y)). Since
Ki−1 → Ki−1 ⊗A κ(y) is surjective, so is im(di−1) → im(di−1 ⊗ κ(y)). The snake
lemma applied to

0 // im(di−1) //

����

ker(di) //

��

Hi(X,F ) //

��

0

0 // im(di−1 ⊗ κ(y)) // ker(di ⊗ κ(y)) // Hi(Xy, Fy) // 0

establishes the claim.
For (a), our hypothesis is that Hi(X,F )→ Hi(Xy, Fy) is surjective, which by the

claim implies that ker(di)→ ker(di ⊗ κ(y)) is surjective. Proposition A.6.6 implies
that di : Ki → Ki+1 is a map of vector bundles, and that after replacing Y with an
open neighborhood of y, ker(di) is a vector bundle whose construction commutes
with base change. Thus Hi(X,F ) = coker(Ki−1 → ker(di)) also commutes with
base change. For (b), we use the equivalences:

Hi(X,F ) is a vector bundle A.6.6⇐⇒ Ki−1 → ker(di) is a map of vector bundles

⇐⇒ Ki−1 → Ki is a map of vector bundles
A.6.6⇐⇒ ker(di−1)⊗ κ(y)→ ker(di−1 ⊗ κ(y)) is surjective
claim⇐⇒ Hi−1(X,F )→ Hi−1(Xy, Fy) is surjective.

The first equivalence follows from Proposition A.6.6 as Hi(X,F ) is the cokernel of
Ki−1 → ker(di), the second follows from the observation that since di is a map of
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vector bundles, ker(di) and im(di) are vector bundles, and the map ker(di)→ Ki

(whose cokernel is im(di)) is also a map of vector bundles, the third also follows
from Proposition A.6.6, and the fourth is the claim at the beginning of the proof.

Using the methods of Limits of Schemes (§B.3), it is not hard to see how the
general statement follows from the noetherian version. Assuming Y is affine, write
Y = limλ∈Λ Yλ as a limit of affine schemes of finite type over Z. Since X → Y is
finitely presented, there exists an index 0 ∈ Λ and a finitely presented morphism
X0 → Y0 such that X ∼= X0 ×Y0 Y (Proposition B.3.3). For each λ > 0, we can
define Xλ = X0×Y0

Yλ and we have X ∼= Xλ×Yλ
Y . By Proposition B.3.7, Xλ → Yλ

is proper for λ ≫ 0. By Proposition B.3.4(1), there exists an index µ ∈ Λ and a
coherent sheaf Fµ on Xµ that pulls back to F under X → Xµ. For λ > µ, set Fλ
to be the pullback of Fµ under Xλ → Xµ. By Proposition B.3.4(3), Fλ is flat over
Yλ for λ≫ 0. We may now apply noetherian Cohomology and Base Change to the
data of Xλ → Yλ and Fλ for λ ≫ 0, and we may deduce the same properties for
X → Y and F under the base change Y → Yλ. See also [EGA, III2.7.7.5, III2.7.7.10,
III2.7.8.4], [Har77, Thm. 12.11], and [Vak17, Thm. 25.1.6].

The following exercise will give you some practice applying Cohomology and
Base Change.

Exercise A.6.9. Let f : X → Y be a proper morphism of noetherian schemes. For
a coherent sheaf F flat over Y , the following are equivalent:

(1) Hi(Xy, Fy) = 0 for all y ∈ Y and i > 0; and
(2) Rif∗F = 0 for all i > 0, and f∗F is a vector bundle whose construction

commutes with base change on Y .

A.6.2 Applications to moduli theory

Here is a typical moduli-theoretic application of Cohomology and Base Change
establishing properties of smooth families of curves (Proposition 5.1.16), which is
applied for instance in the Algebraicity ofMg (3.1.17). The argument below applies
equally to families of stable curves (Proposition 5.3.21).

Proposition A.6.10. Let π : C → S be a family of smooth curves of genus g ≥ 2
(i.e., C → S is a smooth, proper morphism of schemes such that every geometric
fiber is a connected curve of genus g). Then
(1) π∗OC = OS,
(2) π∗(ΩC/S) is a vector bundle of rank g whose construction commutes with base

change on S and R1π∗(ΩC/S) ∼= OS while Riπ∗(ΩC/S) = 0 for i ≥ 2, and

(3) for k > 1, the pushforward π∗(Ω⊗k
C/S) is a vector bundle of rank (2k − 1)(g − 1)

whose construction commutes with base change on S and Riπ∗(Ω
⊗k
C/S) = 0 for

i > 0.

Proof. To see (1), observe that H0(Cs,OCs
) = κ(s) for all s ∈ S since Cs is proper

and geometrically connected. It follows that ϕ0s : π∗OC ⊗ κ(s) → H0(Cs,OCs
) is

surjective. Cohomology and Base Change (A.6.8(a)–(b)) with i = 0 implies that ϕ0s
is an isomorphism and that π∗OC is a line bundle. On a fiber over s ∈ S, the natural
map OS → π∗OC induces a surjective map κ(s)→ π∗OC ⊗ κ(s) (as post-composing
with ϕ0s : π∗OC ⊗ κ(s)→ H0(Cs,OCs

) = κ(s) is the identity). Thus OS → π∗OC is a
surjective morphism of line bundles, hence an isomorphism.
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For (2), since ΩC/S is a relative dualizing sheaf (see [Liu02, §6.4]), Grothendieck–
Serre Duality implies that R1π∗ΩC/S ∼= π∗OC and this is identified with OS by
(1). For i ≥ 2, Hi(Cs,ΩC/S ⊗ κ(s)) = 0 (as dim Cs = 1), and A.6.8(a) implies that
Riπ∗ΩC/S = 0. Applying A.6.8(b) with i = 2 yields that ϕ1s : R1π∗ΩC/S ⊗ κ(s) →
H1(Cs,ΩCs/κ(s)) is surjective for every s ∈ S and applying A.6.8(a) with i = 1 shows
that ϕ1s is an isomorphism. Since R1π∗ΩC/S is a line bundle, applying A.6.8(b) with
i = 1 shows that ϕ0s is surjective, and applying A.6.8(a)–(b) with i = 0 implies that
π∗ΩC/S is a vector bundle of rank h0(Cs,ΩCs/κ(s)) = g whose construction commutes
with base change.

For (3), since k > 1, we have that deg(Ω
⊗(1−k)
Cs/κ(s)

) < 0 for each s ∈ S, and Serre

Duality (5.1.3) implies that H1(Cs,Ω⊗k
Cs/κ(s)

) = H0(Cs,Ω⊗(1−k)
Cs/κ(s)

) = 0. Observe that
Hi(Cs,Ω⊗k

Cs/κ(s)
) = 0 for i ≥ 2 since dim Cs = 1. Cohomology and Base Change

(A.6.8(a)) gives Riπ∗(Ω
⊗k
C/S) = 0 for i > 0. On the other hand, h0(Cs,Ω⊗k

Cs/κ(s)
) =

deg(Ω⊗k
Cs/κ(s)

) + 1 − g = (2k − 1)(g − 1) by Riemann–Roch (5.1.2). Applying
Cohomology and Base (A.6.8(b)) with i = 0 yields that π∗(Ω⊗k

C/S) is a vector bundle
of rank (2k − 1)(g − 1).

Similarly, we can apply Cohomology and Base Change to establish properties of
families of coherent sheaves, which we will need for instance for the Algebraicity of
Bun(C) (3.1.21).

Proposition A.6.11. Let p : X → S be a proper morphism of schemes and F be a
finitely presented quasi-coherent sheaf on X flat over S. Suppose that dimXs ≤ d
for all s ∈ S. The subset S′ of points s ∈ S such that Hj(Xs, Fs) = 0 for all j > 0
is open. Denoting X ′ = p−1(S′), p′ := p|X′ : X ′ → S, and F ′ = F |X′ , we have
that Rjp′∗F ′ = 0 for all j > 0 and that p′∗F ′ is a vector bundle whose construction
commutes with base change.

Proof. For each j = 1, . . . , d, A.6.8(a) implies that the locus of points s ∈ S such that
Hj(Xs, Fs) = 0 is open and the comparison map ϕjs : R

jp∗F ⊗ κ(s) → Hj(Xs, Fs)
is an isomorphism. It follows that Rjp′∗F = 0 which allows us to apply A.6.8(b)
with i = 1 to conclude that ϕ0s : p′∗F ′ ⊗ κ(s)→ H0(Xs, Fs) is surjective. Applying
A.6.8(a)–(b) with i = 0 gives the final statement.

A.6.3 Applications to line bundles

Given a proper flat morphism f : X → Y , when is a line bundle L on X the pullback
of a line bundle on Y ? More generally, is there a largest subscheme Z ⊂ Y where
LZ on XZ = X ×Y Z is the pullback of a line bundle on Z? In this section, we
provide three answers in increasing complexity. As the results depend on properties
of the fibers Xy, we first discuss relationships between various conditions.

Lemma A.6.12. Let f : X → Y be a proper flat morphism of noetherian schemes.
Consider the following conditions:

(1) the geometric fibers of f : X → Y are non-empty, connected, and reduced;
(2) h0(Xy,OXy

) = 1 for all y ∈ Y ; and
(3) OY = f∗OX and this holds after arbitrary base change (i.e., OT = fT,∗OXT

for a morphism T → Y of schemes).
Then (1) ⇒ (2) ⇐⇒ (3).
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Proof. If (1) holds, then H0(Xy,OXy )⊗κ(y)κ(y) = H0(X×Y κ(y),OX×Y κ(y)
) by Flat

Base Change (A.2.12, and since a connected, reduced, and proper scheme over an
algebraically closed field has only constant functions, we conclude that h0(Xy,OXy

) =
1. If (2) holds, then the comparison map ϕ0y : f∗OX ⊗ κ(y)→ H0(Xy,OXy

) = κ(y)
is necessarily surjective as there is a global section 1 ∈ H0(Y, f∗OX). Applying
Theorem A.6.8 with i = 0 shows that f∗OX is a line bundle. As OY → f∗OX is a
surjection of line bundles, it is an isomorphism. Since the same argument applies to
the base change XT → T , this gives (3). The converse (3) ⇒ (2) by considering the
map T = Specκ(y)→ Y .

When the base is reduced, Grauert’s Theorem provides a complete answer to
when a line bundle is a pullback.

Proposition A.6.13 (Version 1). Let f : X → Y be a proper flat morphism of
noetherian schemes such that h0(Xy,OXy

) = 1 for all y ∈ Y . Let L be a line bundle
on X. If Y is reduced, then L = f∗M for a line bundle M on Y if and only if Ly
is trivial for all y ∈ Y . Moreover, if these conditions hold, then M = f∗L and the
adjunction morphism f∗f∗L→ L is an isomorphism.

Proof. The condition on geometric fibers implies that h0(Xy, Ly) = 1 and
Grauert’s Theorem (A.6.7) implies that f∗L is a line bundle and that f∗L⊗ κ(y)

∼→
H0(Xy, Ly) is an isomorphism. We claim that f∗f∗L→ L is surjective. It suffices to
show that (f∗f∗L)|Xy → L|Xy is surjective. Denoting fy : Xy → Specκ(y), we have
identifications (f∗f∗L)|Xy = f∗y (f∗L⊗ κ(y)) = f∗y (OSpecκ(y)) = OXy and the claim
follows. Since f∗f∗L→ L is a surjection of line bundles, it is an isomorphism.

Exercise A.6.14. Show that if Y is a connected and reduced noetherian scheme
and E is a vector bundle on Y , then Pic(P(E)) = Pic(Y ) × Z. See also [Har77,
Exc. III.12.5].

Proposition A.6.15 (Version 2). Let f : X → Y be a proper flat morphism of
noetherian schemes with integral geometric fibers. For a line bundle L on X, the
locus {y ∈ Y | Ly is trivial on Xy} is a closed subset of Y .

Proof. The important observation here is that for a geometrically integral and proper
scheme Z over field k, a line bundle M is trivial if and only if h0(Z,M) > 0 and
h0(Z,M∨) > 0. To see that the latter condition is sufficient, observe that we have
nonzero homomorphisms OZ →M and OZ →M∨, the latter of which dualizes to
a nonzero map M → OZ . Since Z is integral, the composition OZ → M → OZ
is also nonzero and thus an isomorphism as it corresponds to a nonzero constant
in H0(Z,OZ) = k. It follows that M → OZ is a surjective map of line bundles,
hence an isomorphism. By the Semicontinuity Theorem (A.6.4) the condition that
h0(Xy, Ly) > 0 and h0(Xy, L

∨
y ) > 0 is closed, and the statement follows. See also

[Mum70a, Cor. 6, p. 54].

Remark A.6.16. If the geometric fibers are only connected and reduced, the locus
may fail to be closed. For example, giving a smooth family f : X → Y of curves
over a smooth curve, and consider the blowup BlxX → X at a closed point x ∈ X
with exceptional divisor E. Then BlxX → Y is a proper flat morphism, and the
fiber over f(x) ∈ Y is connected and reduced but reducible. Setting L = OBlxX(E),
the fiber Ly is trivial if and only if y ̸= f(x).

For moduli-theoretic applications, it is essential that we allow for the base Y
to be non-reduced, and provide the locus Z ⊂ Y with a functorial description. For
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many applications (e.g., to families of stable curves), it is also necessary to allow
for reducible fibers Xy. Our final and strongest version incorporates both versions
above and is proved using the algebraic formulation of Cohomology and Base Change
(A.6.2). This result will be applied in the proof of Algebraicity of Mg (3.1.17) to
exhibit a locally closed subscheme of the Hilbert scheme parameterizing smooth
curves that are tri-canonically embedded.

Proposition A.6.17 (Version 3). Let f : X → Y be a proper flat morphism of
noetherian schemes such that h0(Xy,OXy

) = 1 for all y ∈ Y (resp., the geometric
fibers are integral). For a line bundle L on X, there is a unique locally closed (resp.,
closed) subscheme Z ⊂ Y such that

(1) LZ on XZ = X ×Y Z is the pullback of a line bundle on Z, and
(2) if T → Y is a morphism of schemes such that LT on XT is the pullback of a

line bundle on T , then T → Y factors through Z.

In other words, the functor

Sch/Y → Sets,

(T → Y ) 7→
{
{∗} if LT is the pullback of a line bundle on T
∅ otherwise

is representable by a locally closed (resp., closed) subscheme of Y .

Proof. We begin with the observation that L is the pullback of a line bundle if and
only if f∗L is a line bundle and the adjunction map f∗f∗L→ L is an isomorphism.
Indeed, if L = f∗M for a line bundle M on Y , then the projection formula and the
equality OY = f∗OX (Lemma A.6.12) shows that

f∗L ∼= f∗f
∗M ∼= f∗OX ⊗M ∼=M

is a line bundle and that f∗f∗L→ L is an isomorphism. As the same holds for the
base change XT → T , iwe see that the question is Zariski-local on Y and T . We will
show that every point y ∈ Y has an open neighborhood where the proposition holds.

By the Semicontinuity Theorem (A.6.4), the locus V = {y ∈ Y | h0(Xy, Ly) ≤ 1}
is open. Since Ly is not trivialfor points y /∈ V , we may replace Y with V and
assume that h0(Xy, Ly) ≤ 1 for all y ∈ Y . By Cohomology and Base Change (A.6.2)
and after replacing Y with an open affine neighborhood of y, we may assume that
there is a homomorphism d : Ar0

d−→ Ar1 of finitely generated and free A-modules
such that for every ring map A→ B, H0(XB , LB) = ker(d⊗B). Using the dual d∨
of d, we define M as the cokernel in the sequence

Ar1
d∨−−→ Ar0 →M → 0.

Tensoring over A→ B yields a right exact sequence

Br1
d∨⊗B−−−−→ Br0 →M ⊗A B → 0,

which after applying the contravariant left-exact functor HomB(−, B) becomes

0→ HomB(M ⊗A B,B)→ Br0
d⊗AB−−−−→ Br1 .

We conclude that

H0(XB , LB) = HomB(M ⊗A B,B) = HomA(M,B). (A.6.18)
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Applying this to A → κ(y) for y ∈ Y , we obtain that H0(Xy, Ly) =
HomA(M,κ(y)) = (M ⊗A κ(y))∨.

If h0(Xy, Ly) = 0, then Ly is not trivial and since M ⊗A κ(y) = 0, there is
an open neighborhood U of y such that M̃ |U = 0. The proposition holds over
U . If h0(Xy, Ly) = 1, then M ⊗A κ(y) = κ(y) and by Nakayama’s lemma, after
replacing Y with an open affine neighborhood of y, there is a surjection A → M .
Write M = A/I for an ideal I and define the closed subscheme Z = V (I) ⊂ Y .
Observe that H0(Z,LZ) = HomA(A/I,A/I) = A/I so that fZ,∗LZ is the trivial line
bundle. To see that the construction of fZ,∗LZ commutes with base change, let B
be an A/I-algebra and observe that H0(XB , LB) = HomA(A/I,B) = B and that
H0(XZ , LZ)⊗A/I B → H0(XB , LB) is an isomorphism.

We claim that T → Y factors through Z if and only if fT,∗LT is a line bundle. The
(⇒) implication is clear: fZ,∗LZ is a line bundle and its construction commutes with
base change. The converse is Zariski-local on T and we may assume that T = SpecB
is affine and fT,∗LT = OT . Then (A.6.18) implies that B = HomA(A/I,B). Thus,
I ⊂ ker(A → B) or, in other words, A → B factors as A → A/I → B. Finally,
considering the adjunction morphism λ : f∗ZfZ,∗LZ → LZ on XZ , we claim that
for y ∈ Z, Ly is trivial if and only if λ|Xy

is surjective. If λ|Xy
is surjective, then

using that fZ,∗LZ = OZ , we have a surjection OXy
→ Ly of line bundles, hence an

isomorphism. For converse, since fZ,∗LZ commutes with base change, the comparison
map fZ,∗LZ ⊗ κ(y) = H0(Xy, Ly) is an isomorphism. Denoting fy : Xy → Specκ(y),
we have identifications (f∗ZfZ,∗LZ)|Xy = f∗y (fZ,∗LZ ⊗ κ(y)) = f∗y fy,∗Ly and λ|Xy

corresponds to the adjunction map f∗y fy,∗Ly → Ly, which is an isomorphism (as Ly
is trivial). Replacing Z with Z \ Supp(coker(λ)) establishes the proposition. If, in
addition, the fibers Xy are geometrically integral, then Proposition A.6.15 implies
that Z is closed. See also [Mum70a, p. 90], [Vie95, Lem. 1.19], and [SP, Tags 0BEZ
and 0BF0].

Remark A.6.19. For a proper flat morphism X → S, the Picard functor is defined
as

PicX/S : Sch/S → Sets, T 7→ Pic(XT )/f
∗
T Pic(T );

see §6.2.9 for an exposition of Picard functors. If f : X → S has geometrically
reduced (resp., integral) fibers, then the existence of a locally closed (resp., closed)
subscheme Z ⊂ Y characterized by Proposition A.6.17 is equivalent to the diagonal
morphism PicX/S → PicX/S ×S PicX/S of presheaves over Sch/S being representable
by locally closed immersions (resp., closed immersions). In the case of geometrically
integral fibers, this translates to the separatedness of PicX/S → S. In this language,
the above result was established in [FGAV, Thm. 3.1].

A.7 Quasi-finite morphisms and Zariski’s Main The-
orem

A locally of finite type morphism f : X → Y of schemes is locally quasi-finite at
x ∈ X if x is isolated in the fiber Xf(x) = X ×Y Specκ(f(x)). When f : X → Y is
also quasi-compact, then this is equivalent to the finiteness of the set f−1(f(x)),
and we say that f : X → Y is quasi-finite.
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A.7.1 Étale Localization of Quasi-Finite Morphisms

Theorem A.7.1 (Étale Localization of Quasi-Finite Morphisms). Let f : X → S be
a separated and finite type morphism of schemes. Suppose that f is quasi-finite at
every preimage of s ∈ S. There exists an étale neighborhood (S′, s′)→ (S, s) with
κ(s′) = κ(s) and a decomposition X×S S′ = Z⨿W into open and closed subschemes
such that Z → S′ is finite and the fiber Ws′ is empty. Moreover, it can be arranged
that Z factors as Z1 ⨿ · · · ⨿ Zn where each Zi contains precisely one point zi over s
with κ(zi)/κ(s) purely inseparable.

Proof. See [EGA, IV.8.12.3] or [SP, Tag 04HF].

The statement implies that any quasi-finite algebra A over a henselian local ring
R is a product A ∼= B × C with B finite over R and C ⊗R R/mR = 0, a property
that, in fact, characterizes henselian local rings (Proposition B.5.9). It also provides
the key technical input in factoring quasi-finite morphisms.

A.7.2 Factorizations of quasi-finite morphisms

Proposition A.7.2. A separated and quasi-finite morphism f : X → Y of schemes
factors as

f : X → SpecY f∗OX → Y

where X ↪→ SpecY f∗OX is an open immersion and SpecY f∗OX → Y is affine.

Proof. As f∗OX commutes with étale (even flat) base changes on Y , so does the
factorization. Therefore, it suffices to show that every point y ∈ Y has an étale
neighborhood where the proposition holds. By Theorem A.7.1 we may assume
that X = X1 ⨿X2 with X1 finite over Y and (X2)y = ∅. After replacing Y with
SpecY f∗OX , we may also assume that f∗OX = OY . AsOX = A1×A2 is the product
of quasi-coherent OX -algebras, OY = f∗OX = f∗A1× f∗A2 and thus Y decomposes
as Y1 ⨿ Y2 such that y ∈ Y1 and f(Xi) ⊂ Yi for i = 1, 2. After replacing Y with Y1,
we see that X → Y is finite. Thus X is affine and X = Y = SpecY f∗OX .

In the above factorization, f∗OY may not be a finite type OY -algebra; even if
Y is a noetherian affine scheme, then Γ(X,OX) may not be a noetherian ring (see
[Ols16, Ex. 7.2.15]). However, we may modify the factorization to arrange that
X → Y factors as an open immersion followed by a finite morphism.

Theorem A.7.3 (Zariski’s Main Theorem). A separated and quasi-finite morphism
f : X → Y of schemes factors as the composition of a dense open immersion X ↪→ Ỹ
and a finite morphism X̃ → X. In particular, f is quasi-affine.

Proof. If A ⊂ f∗OX denotes the integral closure of OY → f∗OX , f factors as the
composition of

f : X
j−→ SpecY A → Y.

We claim that j is an open immersion. It suffices to show that for every point x ∈ X,
there is an open neighborhood V ⊂ SpecY A of j(x) such that j−1(V )→ V is an iso-
morphism. Since normalization commutes with étale base change (Proposition A.7.4)
and since being an open immersion is an fpqc local property (Proposition 2.1.19),
we are free to replace Y by an étale neighborhood of f(x). By Theorem A.7.1, we
can assume that X = F ⨿W with F finite over Y and x ∈ F . In this case, the
normalization SpecY A of Y in X is F ⨿ W̃ where W̃ is the normalization of Y in
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W . As j−1(F )
∼→ F , the claim follows. By construction, SpecY A → Y is integral.

We can write A = colimAλ , where each Aλ is a finite type OY -algebra. Since open
immersions descent under limits (Proposition B.3.7), X → SpecY Aλ is an open
immersion for λ≫ 0. Since SpecY Aλ → Y is integral and of finite type, it is finite.
See also [EGA, IV.8.12.6] or [SP, Tag 05K0].

The following algebra result was used above and will also be used in the general-
izations of Zariski’s Main Theorem to algebraic spaces (Theorem 4.4.9) and stacks
(Theorem 6.1.10).

Proposition A.7.4. Let Y be a scheme, B be a quasi-coherent OY -algebra and B̃
be the integral closure of OY in B. If f : X → Y is a smooth morphism, then f∗B̃ is
identified with the integral closure of OX in f∗B.

Proof. See [SP, Tag 03GG] or [LMB00, Prop. 16.2].

Zariski’s Main Theorem has some useful corollaries.

Corollary A.7.5. A quasi-finite and proper morphism (resp., proper monomor-
phism) of schemes is finite (resp., a closed immersion).

Proof. If f : X → Y is a quasi-finite and proper, Zariski’s Main Theorem (A.7.3)
gives a factorization f : X ↪→ X̃ → Y and the dense open immersion X ↪→ X̃ is
also closed, thus an isomorphism. On the other hand, if f : X → Y is a proper
monomorphism, then it is also quasi-finite, thus finite. The statement reduces to the
algebraic fact that a finite epimorphism of rings is surjective (c.f.,[SP, Tag 04VT]).

Remark A.7.6. As universally closed morphisms are necessarily quasi-compact
[SP, Tag 04XU], every universally closed and locally of finite type monomorphism is
a closed immersion; see also [SP, Tag 04XV].
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Appendix B

Further topics in scheme theory

B.1 Algebraic groups

We provide a crash course in group schemes, algebraic groups, and their actions. For
a more detailed exposition for algebraic groups, we recommend [Bor91], [Hum75],
[Spr98], [Wat79], and [Mil17], while for group schemes over a general base, we
recommend [SGA3I],[SGA3II], [SGA3III], [DG70], and [Con14].

B.1.1 Group schemes and their actions

Definition B.1.1. A group scheme over a scheme S is a morphism π : G → S
of schemes together with a multiplication morphism m : G×S G → G, an inverse
morphism ι : G→ G and an identity morphism e : S → G (with each morphism over
S) such that the following diagrams commute:

G×S G×S G
id×m

//

m×id

��

G×S G

m

��

G×S G
m // G

Associativity

G

(ι,id)

��

(id,ι)
//

e◦π

%%

G×S G

m

��

G×S G
m // G

Law of inverse

G

(id,e◦π)
��

(e◦π,id)
//

id

%%

G×S G

m

��

G×S G
m // G

Law of identity

For group schemes H and G over S, a morphism of group schemes is a morphism
ϕ : H → G of schemes over S such that mG ◦ (ϕ× ϕ) = ϕ ◦mH . A (closed) subgroup
of G is a nonempty (closed) subscheme H ⊂ G such that H ×H ↪→ G×G mG−−→ G

and H ↪→ G
ι−→ G factor through H. We say that a subgroup H ⊂ G is normal if

for every S-scheme T , the subgroup H(T ) ⊂ G(T ) is normal.

Remark B.1.2. If G and S are affine, then by reversing the arrows above gives
Γ(G,OG) the structure of a Hopf algebra over Γ(S,OS).

Exercise B.1.3. Show that a group scheme over S is equivalently defined as a
scheme G over S together with a factorization

Sch/S //

MorS(−,G)
##

Gps

��

Sets
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where Gps→ Sets is the forgetful functor.
(We are not requiring that there exists a factorization; the factorization is part of
the data! Indeed, the same scheme can have multiple structures as a group scheme,
e.g., Z/4 and Z/2× Z/2 over C.)

Example B.1.4 (Important examples). Let S = SpecR.
(1) The multiplicative group scheme over R is Gm,R = SpecR[t]t with comulti-

plication m∗ : R[t]t → R[t]t ⊗R R[t′]t′ given by t 7→ tt′. The product Gnm,R is
called the split torus of rank n.

(2) The group scheme of nth roots of unity is µµµn,R = SpecR[t]/(tn − 1) with
comultiplication given by t 7→ tt′.

(3) The additive group scheme over R is Ga,R = SpecR[t] with comultiplication
m∗ : R[t]→ R[t]⊗R R[t′] given by t 7→ t+ t′.

Let V be a free R-module of finite rank.
(3) The general linear group on V is

GL(V ) = Spec(Sym∗(End(V ))det),

where det denotes the determinant polynomial and where the comultiplication
m∗ : Sym∗(End(V ))→ Sym∗(End(V ))⊗R Sym∗(End(V )) is defined as follow-
ing: for a basis v1, . . . , vn of V , then for i, j = 1, . . . , n, the endomorphisms
xij : V → V defined by vi 7→ vj and vk 7→ 0 if k ̸= i define a basis of End(V ),
and we define m∗(xij) = xi1 ⊗ x1j + · · ·+ xin ⊗ xnj .

(4) The special linear group on V is the closed subgroup SL(V ) ⊂ GL(V ) defined
by det = 1.

(5) The projective linear group PGL(V ) is the affine group scheme

Proj(Sym∗(End(V )))det

with the comultiplication analogously to GL(V ).
We write GLn,R = GL(Rn), SLn,R = GL(Rn), and PGLn,R = PGL(Rn). We often
simply write Gm, GLn, SLn, and PGLn when the base ring is understood.

Exercise B.1.5.
(a) Provide functorial descriptions of each of example above.
(b) Show that every abstract group G can be given the structure of a group scheme
⨿g∈GS over a base scheme S. Provide both explicit and functorial descriptions.
By abuse of notation, this group scheme is sometimes denoted as G→ S.

(c) Show that if n is invertible in Γ(S,OS), then µn,S is isomorphic to the group
scheme induced by the finite group Z/nZ.

Example B.1.6 (Diagonalizable group schemes). Let R be a ring and A be a
finitely generated abelian group. If we define R[A] as the free R-module generated
by elements of A, then R[A] inherits an R-algebra structure with multiplication
on generators induced from multiplication in A. The comultiplication R[A] →
R[A]⊗RR[A] defined by a 7→ a⊗ a defines a group scheme DR(A) = SpecR[A] over
SpecR. A group scheme G over SpecR is diagonalizable if G ∼= DR(A) for some A.

The group scheme DR(Zr) = Grm,R is the r-dimensional split torus while
DR(Z/n) = µµµn,R = SpecR[t]/(tn − 1) is the group of nth roots of unity; this
holds for any ring R and integer n even if n is not invertible in R. The classification
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of finitely generated abelian groups implies that every diagonalizable group scheme
is a product of Grm ×µµµn1

× · · · ×µµµnk
.

A group scheme G→ S is of multiplicative type if it becomes diagonalizable after
étale cover of S.

Exercise B.1.7.
(1) Describe DR(A) as a functor Sch/R→ Gps.
(2) Show that a homomorphism DR(A) → DR(B) of group schemes over R is

equivalent to a group homomorphism B → A.

We recall the following general properties of group schemes.

Proposition B.1.8. Let G→ S be a locally of finite type group scheme.
(1) If S = Speck, then dimG = dimeG, where e ∈ G(k) denotes the identity.
(2) The function

S → Z, s 7→ dimGs

is upper semi-continuous.
(3) G→ S is trivial if and only if the fiber Gs is trivial for each s ∈ S.
(4) G → S is unramified (resp., separated, quasi-separated) if and only if the

identity section e : S → G is an open immersion (resp., a closed immersion,
quasi-compact).

Proof. For (1), we may assume that k is algebraically closed. In this case, an element
g ∈ G(k) defines an isomorphism g : G → G, so that dimeG = dimg G. For (2),
for any locally of finite type morphism π : G → S, the function G → Z, defined
by g 7→ dimGπ(g), is upper semi-continuous [EGA, IV.13.1.3]. As G → S is a
group scheme, there is an identity section S → G and therefore the composition
S → G → Z, defined by s 7→ dime(s)Gs = dimGs, is upper semi-continuous. For
(3), G→ S is unramified since every fiber is. Therefore ΩG/S = 0 and the diagonal
G→ G×S G is an open immersion. It follows that the identity section S → G is
a surjective open immersion, thus an isomorphism. For (4), G→ S is unramified
(resp., separated, quasi-separated) if and only if ∆G/S : G → G ×S G is an open
immersion (resp., a closed immersion, quasi-compact), and the cartesian diagram

S

e

��

e // G

∆G/S

��

π // S

e

��

G
∆G/S

// G×S G
(g,h)7→g−1h

//

□

G

□

implies that this is equivalent to e : S → G being an open immersion (resp., a closed
immersion, quasi-compact).

Actions, quotients, and representations.

Definition B.1.9 (Actions). Let G→ S be a group scheme with multiplication m
and identity e. An action of G on a scheme p : X → S is a morphism a : G×SX → X
over S such that the following diagrams commute:

G×S G×S X
id×a

//

m×id

��

G×S X

a

��

G×S X
a // G

X
(e◦p,id)

//

id
&&

G×S X

a

��

X
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If X and Y are S-schemes with actions of G, a morphism f : X → Y of S-schemes
is G-equivariant if aY ◦ (id×f) = f ◦ aX , and is G-invariant if G-equivariant and Y
has the trivial G-action.

For example, a group schemeG→ S acts on itself via left multiplication g·g′ = gg′

or via right multiplication g · g′ = g′g−1.

Exercise B.1.10. Show that giving a group action of G → S on X → S is the
same as giving an action of the functor MorS(−, G) : Sch/S → Gps on the functor
MorS(−, X) : Sch/S → Sets.
(This requires first spelling out what it means for a functor to groups to act on a
functor to sets.)

Definition B.1.11 (Stabilizers and Orbits). Given an action σ of a group scheme
G → S on X → S, the stabilizer of f of an S-morphism f : T → X is the group
scheme Gf (sometimes written as Stab(f)) over T defined as the fiber product

Gf //

��

□

T

f

��

G×S T // G×S X
σ // X,

while the orbit of f is defined set-theoretically as the image ofG×ST → G×SX
σ−→ X.

The stabilizer group scheme SX → X is defined as the stabilizer of the identity
id : X → X and is identified with the fiber product

SX //

��

X

∆

��

G×S X
(σ,p2)

// X ×S X.

When S = Speck for a field k and x ∈ X(k), then the stabilizer Gx is preimage
of x under the map σx : G→ X, given by g 7→ x, and is identified with the fiber of
the stabilizer group scheme SX → X. On the other hand, the orbit Gx (sometimes
written as O(x)) is the image of σx. When G and X are of finite type, the image
Gx ⊂ X is locally closed (Proposition B.1.16(5)), and thus Gx has a natural scheme
structure inherited from the scheme-theoretic image of σx; note that when G is
smooth (e.g., char(k) = 0), the orbit Gx has the reduced scheme structure.

Quotients. Constructing quotients of subgroups or group actions is a subtle business
in algebraic geometry. If G→ S is an fppf group scheme acting freely on a scheme
X → S, the quotient functor is defined as the fppf sheafification of the functor

(X/G)pre : Sch/S → Sets, T 7→ X(T )/G(T ).

While the quotient sheaf X/G is not always representable by a scheme, it is a
theorem that X/G is an algebraic space (Theorem 6.2.1). It is also a theorem that
if G→ S is smooth, then X/G is identified with the étale sheafification of (X/G)pre

(Proposition 6.2.2).
In special situation however, the quotient is known to exist as a scheme. Here

are three examples, each of which plays a prominent role in this text:

– If G is an algebraic group over k and H ⊂ G is a subgroup, then G/H is a
quasi-projective scheme (Proposition B.1.16(7)).
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– If G is a finite group acting freely on an affine scheme X, then X/G is affine
(Proposition 4.2.14). In fact, if G is a finite group acting (not necessarily
freely) on an affine (resp. projective, quasi-projective) scheme X, there exists
a geometric quotient (see Definition 4.2.1, Theorem 4.2.6, and Exercise 4.2.9).
The quotient is also denoted as X/G but it does not necessarily represent the
sheafification of (X/G)pre.

– If G is a linearly reductive algebraic group over k acting on an affine scheme
X = SpecA, there exists a good quotient X//G = SpecAG which has desirable
geometric properties (Definition 6.7.1 and Proposition 6.7.3). Given an action
of G on a projective scheme X, Geometric Invariant Theory addresses how to
identify open subschemes U ⊂ X which admit good quotient U//G; see §6.7.

Definition B.1.12 (Representations). Let S = SpecR be an affine scheme, and let
G→ S be a group scheme with multiplication m and identity e. A representation
(or comodule) of G is an R-module V together with a homomorphism σ : V →
Γ(G,OG) ⊗R V of R-modules (referred to as a coaction) such that the following
diagrams commute:

V
σ //

σ

��

Γ(G,OG)⊗R V

id⊗σ
��

Γ(G,OG)⊗R V
m∗⊗id

// Γ(G,OG)⊗R Γ(G,OG)⊗R V

V
σ //

id
&&

Γ(G,OG)⊗R V

e∗⊗id

��

V

Morphisms of representations and subrepresentations are defined in the obvious
way. If V is a G-representation, the invariant subspace is defined as V G = {v ∈ V |
σ(v) = 1⊗ v}.

Example B.1.13.
(1) Given an R-module V , the trivial representation on V is defined using the

coaction σ(v) = 1⊗ v.
(2) The regular representation on Γ(G,OG) is defined using the comultiplication

m∗ : Γ(G,OG)→ Γ(G,OG)⊗R Γ(G,OG).
(3) The standard representation of GLn,R = SpecR[xij ]det (or a subgroup scheme

of GLn,R) on V = Rn is given by the coaction σ : V → Γ(GLn,R)⊗R V defined
by σ(ei) =

∑n
j=1 xij ⊗ ej where (e1, . . . , en) is the standard basis of V .

A representation V of G induces an action of G on A(V ) = Spec(Sym∗ V ), which
we refer to as a linear action.

Exercise B.1.14. If G is a group scheme over a field k, show that a G-representation
of a finite dimensional vector space V is equivalent to a homomorphism G→ GL(V )
of group schemes.

Proposition B.1.15. Let G = Dk(A) be a diagonalizable group scheme over a ring
k. Every representation of G is a direct sum of one-dimensional representations.

Proof. Let V be a representation of G with coaction σ : V → k[A] ⊗k V . Each
a ∈ A defines a one-dimensional representation Wa = k of G defined by the coaction
Wa → k[A]⊗k Wa defined by 1 7→ a⊗ 1. For a ∈ A, the subspace

Va := {v ∈ V |σ(v) = a⊗ v}

is isomorphic to Wa ⊗ Va as G-representations, where Va is viewed as the trivial
representation; if Va is finite dimensional, then Va ∼=W dimVa

a . Note that when a = 0,
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Wa is the trivial one-dimensional representation and V G = V0. We leave the reader
to check that V ∼=

⊕
a∈A Va as G-representations. See also [Mil17, Thm 12.30] and

[SGA3I, Thm. 5.3.3].

B.1.2 Algebraic groups

An algebraic group over a field k is a group scheme G of finite type over k.

Proposition B.1.16. Let G be a group scheme locally of finite type over field k
(e.g., an algebraic group).

(1) G is separated.
(2) (Cartier’s Theorem) If char(k) = 0, then G is smooth.
(3) If k is perfect, then G is smooth if and only if G is reduced if and only if G is

geometrically reduced, and moreover Gred ⊂ G is a subgroup scheme.
(4) The connected component G0 ⊂ G containing the identity element is an open

and closed irreducible subgroup scheme of finite type over k. Moreover, the
construction of G0 commutes with field extensions of k, and G/G0 is an etale
algebraic group over k.

(5) If G acts on a finite type k-scheme X and x ∈ X is a closed point, the orbit
Gu, defined set-theoretically as the image of G→ X, g 7→ g · x, is open in its
closure Gx. In particular, orbits of minimal dimension are clsoed. Moreover,

dimG = dimGx+ dimGx,

and the function x 7→ dimGx is upper semicontinuous while x 7→ dimGx is
lower semicontinuous.

(6) Every subgroup H ⊂ G is closed.
(7) If G is of finite type and H ⊂ G is a subgroup, then G/H is quasi-projective.

In particular, every algebraic group is quasi-projective.
(8) (Barsotti–Chevalley’s Structure Theorem) If G is smooth and connected, then

there is a unique connected, affine, and normal subgroup H◁G, which is smooth
if k is perfect, such that G/H is an abelian variety.

In (8), an abelian variety by definition is a smooth proper algebraic group over
a field. It is necessarily projective and has a commutative group law [Mum70a,
pp. 39, 59]. An elliptic curve is an abelian variety of dimension 1.

Proof. Proposition B.1.8(4) implies (1) since any k-point of a locally of finite type
k-scheme is closed. For (2), see [Car62, §15], [Oor66], [Mum66, p.167], [Wat79,
§11.4], [Mil17, Thm. 3.23 and Cor. 8.39], and [SP, Tag 047N]. For (3), see [Mil17,
Prop. 1.26 and Cor. 1.39] and [SP, Tags 047P and 047R]. For (4), see [Wat79, §6.7],
[Hum75, §7.3], [Spr98, Prop. 2.2.1], [Mil17, Prop. 1.34], and [SP, Tag 0B7R]. What
may seem surprising here is that G0 is automatically quasi-compact.1 This follows
from a simple argument: reduce to the case that k is algebraically closed and choose
a nonempty open affine subscheme U ⊂ G. After shrinking, we may assume that
U is closed under taking inverses. The quasi-compactness of G follows from the
surjectivity of the multiplication map U × U → G is surjective. If g ∈ G(k), then
since U is dense, the intersection U ∩ gU contains an element h. If we write h = gu,
then g = hu−1.

1We use this in the text to show the boundedness of Pic0X ; see Theorem 6.2.58.
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For the first part of (5), see [Bor91, §I.1.8], [Hum75, §8.3], [Spr98, Lem. 2.3.3],
and [Mil17, Prop. 1.68]. The identity dimG = dimGx + dimGx follows from
the identification Gx ∼= G/Gx, while the semicontinuity statements follow from
Proposition B.1.8(2) applied to the stabilizer group scheme SX → X. Part (6)
follows from (5) by considering the action of H on G. For (7), see [Cho57, p.128],
[Bor91, Thm. 6.8], [Ray70, Cor VI.2.6], [Bri17, Thm. 5.2.2], [Hum75, §12], [Spr98,
Thm. 5.5.5], and [Mil17, Thm. 8.4.4]. Chevalley announced a proof of (8) in 1953,
but a proof did not appear until [Che60]. In the meantime, Barsotti provided
an independent proof [Bar55a], [Bar55b]. Rosenlicht provided a more elementary
argument in [Ros56]. See also [Con02], [Bri17, Thms. 1 and 2], and [Mil17, Thm. 8.27].

B.1.3 Affine algebraic groups.
We are particularly interested in affine algebraic groups, which are sometimes also
called linear algebraic groups, as justified by (2) below.

Proposition B.1.17. Let G be an affine algebraic group over a field k.
(1) Every representation V of G is a union of its finite dimensional subrepresen-

tations.
(2) There exists a finite dimensional representation V and a closed immersion

G ↪→ GL(V ) of group schemes.

Proof. For (1), let σ : V → Γ(G,OG)⊗k V be the coaction. It suffices to show that
every finite dimensional subspace W ⊂ V is contained in a finite dimensional sub-G-
representation W ′ ⊂ V . If w1, . . . , wn is a basis of W and σ(wi) =

∑
j fij⊗vij , then

one checks that the subspace generated by vij is G-invariant and contains W . For (2),
we consider the regular representation Γ(G,OG) of G and apply (1) to construct a
finite dimensional subrepresentation V containing k-algebra generators. One checks
that this gives a closed immersion G ↪→ GL(V ). See [Bor91, §I.1.9-10], [Hum75,
§8.6], [Spr98, Prop. 2.3.6 and Thm. 2.3.7], and [Mil17, Prop. 4.7, Cor. 4.10].

We will repeatedly use the following simple consequence of Proposition B.1.17(1).

Proposition B.1.18. Let G be an affine algebraic group over a field k. Let X be
an affine scheme of finite type over k with an action of G.

(1) There exists a G-equivariant closed immersion X ↪→ A(V ) where V is a finite
dimensional G-representation.

(2) For every G-invariant closed subscheme Z ⊂ X, there exists a G-equivariant
morphism f : X → A(W ), where W is a finite dimensional G-representation,
such that f−1(0) = Z.

Proof. Write X = SpecA and let f1, . . . , fn be k-algebra generators. By B.1.17(1)
there is a finite dimensional G-invariant subspace V ⊂ A containing each fi. The
surjection Sym∗ V → A induces a G-equivariant embedding X ↪→ A(V ). For (2),
let Z = SpecA/I and let g1, . . . , gm ∈ I be generators. Letting W ⊂ I be a finite
dimensional G-invariant subspace containing each gi, the G-invariant morphism
f : X → A(W ) has the desired property that f−1(0) = Z.

Tori. A subgroup T ⊂ G of an affine algebraic group over a field k is called a torus
(resp., split torus) of rank n if Tk ∼= Gn

m,k (resp., T ∼= Gnm,k over k ), and a maximal
torus if it T is not contained in a larger subtorus of G. For example, the set of
diagonal matrices in GLn is a split maximal torus of rank n.
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Proposition B.1.19. Let G be an affine algebraic group over a field k.
(1) G contains a maximal torus T such that Tk′ ⊂ Gk′ is a maximal torus for

every field extension k→ k′.
(2) If k is algebraically closed, all maximal tori are conjugate.

Proof. See [Bor91, §III.8], [Hum75, §34.3-5], [Spr98, Thm. 13.3.6], and [Mil17,
Thms. 17.82 and 17.105].

There is of course much more to the theory of affine algebraic groups. We quickly
mention a few facts that we use.

Jordan decompositions. Recall that an element g ∈ GLn(k) is semisimple if it
becomes diagonalizable after an extension of k and unipotent if g − 1 is nilpotent,
i.e., (1− g)n = 0 for some n. If G is an affine algebraic group over a perfect field
k, then for every element g ∈ G(k), there are unique elements gs, gu ∈ G(k), called
the semisimple and unipotent parts of g, such that g = gsgu = gugs and such that
the images of gs and gu under any representation G → GLn are semisimple and
unipotent, respectively. See [Bor91, §4], [Hum75, §15.3], [Spr98, §2.4], and [Mil17,
Thm. 9.17].

Unipotent groups. An affine algebraic group G over a field k is unipotent if there
is a faithful representation V and a basis V ∼= kn such that the image of the induced
map G ↪→ GL(V ) ∼= GLn is contained in the subgroup Un of upper triangle matrices
with 1’s along the diagonal. For example, Ga is unipotent. We have the following
equivalences:

G is unipotent ⇐⇒ G has a filtration 1 = G0 ◁ G1 ◁ · · · ◁ Gn = G
of normal subgroups with Gi/Gi−1

∼= Ga

⇐⇒ V G ̸= 0 for every nonzero representation V
⇐⇒ every element g ∈ G is unipotent, i.e., g = gu.

See [Bor91, §4.8], [Hum75, §17.5], [Spr98, §2.4], and [Mil17, §14].

One-parameter subgroups, centralizers, and parabolics

Definition B.1.20 (One-parameter subgroups and characters). If G is an algebraic
group over a field k, a one-parameter subgroup (also called a cocharacter) is a
homomorphism λ : Gm → G of algebraic groups (which is not required to be a
subgroup). A character is a homomorphism χ : G→ Gm.

We let X∗(G) be the set of one-parameter subgroups and X∗(G) be the group of
characters. Since any character Gm → Gm is given by t 7→ td for some d ∈ Z, there
is a pairing

⟨−,−⟩ : X∗(G)× X∗(G)→ X∗(Gm) ∼= Z, (λ, χ) 7→ χ ◦ λ.

Example B.1.21 (Tori). If T ∼= Gnm is an n-dimensional torus, then any one-
parameter subgroup λ : Gm → T is given by t 7→ (tλ1 , · · · , tλn) for integers λi while
a character of T is given by (t1, . . . , tn) 7→ tχ1

1 · · · tχn
n for integers χi. We thus have

bijections X∗(T ) ∼= Zn and X∗(T ) ∼= Zn such that ⟨−,−⟩ : X∗(T )×X∗(T )→ Z is the
standard inner product.

Example B.1.22 (GLn). Every one-parameter subgroup λ is contained in a maximal
torus, and since maximal tori are conjugate (Proposition B.1.19), there exists
g ∈ G(k) such that gλg−1 is contained in the maximal torus consisting of diagonal
matrices.
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Definition B.1.23 (Centralizers, parabolics, and unipotents). Given a one-parameter
subgroup λ : Gm → G of an algebraic group, we define the subgroups:

Cλ = {g ∈ G |λ(t)g = gλ(t) for all t} (centralizer)
Pλ = {g ∈ G | limt→0 λ(t)gλ(t)

−1 exists} (parabolic)
Uλ = {g ∈ G | limt→0 λ(t)gλ(t)

−1 = 1} (unipotent).

More precisely, there is a subgroup Cλ (resp., Pλ, Uλ) of G which represent the
functor assigning a k-algebra R to the subgroup of elements g ∈ G(R) such that
λR = g−1λRg (resp., limt→0 λR(t)gλ(t)

−1 exists, limt→0 λ(t)gλR(t)
−1 = 1). Note

that, by definition, the limit of λR(t)gλR(t)−1 exists as t → 0 if the natural map
Gm,R → G, t 7→ λR(t)gλR(t)

−1 extends to A1
R → G, and the limit is the composition

SpecR
0
↪→ A1

R → G.
Under the conjugation action of λ on G, Cλ is precisely the fixed locus, while Pλ

is the attractor locus G+
λ as defined in §6.6.1. There is a homomorphism Pλ → Cλ

defined by g 7→ limt→0 λ(t)gλ(t)
−1 which is the identity on Cλ. This yields a split

short exact sequence
1→ Uλ → Pλ → Cλ → 1.

Example B.1.24 (GLn). Let λ : Gm → GLn be a one-parameter subgroup. After
a change of basis, we can assume that λ(t) = diag(tλ1 , · · · , tλn) with λ1 ≤ · · · ≤ λn.
Given (gij) ∈ GLn, λ(t)(gij)λ(t)−1 = (tλi−λjgij). If n1, . . . , ns are integers with∑
i ni = n such that

λ1 = · · · = λn1 < λn1+1 = · · · = λn1+n2 < · · · < λn−ns+1 = · · · = λn,

then Cλ = GLn1
× · · · × GLns

is the subgroup of block diagonal matrices while
Pλ is the subgroup of block upper triangular matrices. For example, if λ(t) =
(t−1, t2, t2, t7), then

Uλ =


1 ∗ ∗ ∗
0 1 0 ∗
0 0 1 ∗
0 0 0 1

 , Pλ =


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 ∗

 , and Cλ =


∗ 0 0 0
0 ∗ ∗ 0
0 ∗ ∗ 0
0 0 0 ∗

 .

We record the following properties of parabolic subgroups. Reductive groups are
defined and discussed in §B.1.4.

Proposition B.1.25. Let G be a connected reductive algebraic group over an
algebraically closed field k, and let λ : Gm → G be a one-parameter subgroup.

(a) The centralizer Cλ is connected and reductive.
(b) The subgroup Pλ is connected and parabolic, i.e., G/Pλ is projective, and

NG(Pλ) = Pλ.
(c) The subgroup Uλ is the unipotent radical of Pλ, and it acts freely and transitively

on the set of one-parameter subgroups of Pλ which are conjugate (under Pλ)
to λ.

(d) If λ, λ′ : Gm → G are one-parameter subgroups, the intersection Pλ ∩ Pλ′

contains a maximal torus of G.

Proof. For (a)–(c), see [Spr98, §13.4], [Con14, Thm. 4.1.7 and Cor. 5.2.8]. For (d),
see [Bor91, Prop. 20.7].
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Remark B.1.26 (Spherical buildings). The set of one-parameter subgroups of a
reductive group can be given the structure of an “ungainly but remarkable metric
space” (as described by Mumford in [GIT, p.55]): first introduced by J. Tits, the
spherical building is the quotient of X∗(G) by the equivalence relation where λ ∼ ρ
if there exists g ∈ Pλ(k) such that ρ(tm) = g−1λ(tm)g for integers n,m.

Line bundles with G-actions

Definition B.1.27. If G is an algebraic group over a field k acting on a k-scheme
U via σ : G× U → U , a line bundle with a G-action (also called a G-linearization)
is a line bundle L on U together with an isomorphism α : σ∗L

∼→ p∗2L satisfying the
cocycle condition p∗23α ◦ (id×σ)∗α = (m× id)∗α, i.e., the diagram

(σ ◦ (id×σ))∗L
(id×σ)∗α

// (p2 ◦ (id×σ))∗L

(σ ◦ (m× id))∗L

(m×id)∗α

((

(σ ◦ p23)∗L

p∗23αww

(p2 ◦ (m× id))∗L (p2 ◦ p23)∗L

commutes.

When U is projective, a G-action on a very ample line bundle L corresponds
to a finite dimensional G-representation V = H0(U,L) and a G-equivariant closed
immersion U ↪→ P(V ). The cocycle condition in the diagram above is analogous to
the cocycle condition in Fpqc Descent for Quasi-Coherent Sheaves (2.1.4). As line
bundles on algebraic stacks are defined in terms of fpqc descent, a line bundle on
[U/G] is precisely a line bundle on U with a G-action.

Example B.1.28. Under the PGLn+1 and SLn+1 action on Pn, the line bundle
O(1) admits an action by SLn+1 but not by PGLn+1. However, O(n+1) does admit
an action by PGLn+1.

Theorem B.1.29 (Sumihiro’s Theorem on Linearizations). Let G be a smooth,
connected, and affine algebraic group over an algebraically closed field k. Let U be a
normal scheme of finite type over k with an action of G.

(1) If L is a line bundle on U , there exists an integer n > 0 such that L⊗n admits
a G-action.

(2) If U is quasi-projective, there exists a locally closed embedding U ↪→ P(V )
where V is a finite dimensional G-representation.

(3) Every point u ∈ U has a G-invariant quasi-projective open neighborhood.

Proof. For (1), see [Sum74, Thm. 1], [Sum75, Lem. 1.2], and [KKLV89, Prop. 2.4].
Part (2) is a direct consequence of (1). For (3), see [Sum74, Lem. 8] and [Sum75,
Thm. 3.8].

When G is a torus, there is a G-invariant affine cover.

Theorem B.1.30 (Sumihiro’s Theorem on Torus Actions). Let U be a normal
scheme of finite type over an algebraically closed field k with an action of a torus T .
Then any point u ∈ U has a T -invariant affine open neighborhood.
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Proof. See [Sum74, Cor. 2] and [Sum75, Cor. 3.11].

Remark B.1.31. Theorems B.1.29 and B.1.30 can fail if U is not normal, e.g., the
plane nodal cubic curve has a Gm-action and no Gm-invariant neighborhood of the
origin can be embedded Gm-equivariantly into projective space. There is nevertheless
a Gm-equivariant étale affine neighborhood Speck[x, y]/(xy)→ U (where x and y
have weights 1 and −1). In fact, every non-normal scheme (and even algebraic space)
with a Gm-action admits such an étale neighborhood (see Theorem 6.5.23).

B.1.4 Reductivity
Linearly reductive groups are used in the development of Geometric Invariant Theory
(GIT) in §6.7. In characteristic p, there are three distinct properties—linear reductive,
reductive, and geometrically reductive—of algebraic groups:

linearly reductive +3 geometrically reductive

G smooth
&.

char=0
ow

reductive.ks (B.1.32)

Linear reductive groups are very restrictive in characteristic p: it is a theorem
of Nagata [Nag62] that a smooth algebraic group G in characteristic p is linearly
reductive if and only if the connected component G0 is a torus and the order of G/G0

is prime to p. While it is not much more difficult to develop GIT for geometrically
reductive groups (see Remark 6.3.11), it is easier for students to first learn the theory
in the context of linear reductive groups.

Linear reductive groups. We denote by Rep(G) the category of representations of
an algebraic group G. If V is a G-representation with coaction σ : V → Γ(G,OG)⊗V ,
then the invariants are V G := {v ∈ V |σ(v) = 1⊗ v}. A representation V of G is
irreducible if every subrepresentation W ⊂ V is either 0 or V .

Definition B.1.33. An affine algebraic group G over a field k is linearly reductive
if the functor Rep(G)→ Vectk, taking a G-representation V to its G-invariants V G,
is exact.

Proposition B.1.34. Let G be an affine algebraic group over a field k. The following
are equivalent:

(1) G is linearly reductive;

(1′) The functor Repfd(G)→ Vectk, V 7→ V G, on the category of finite dimensional
representations is exact;

(2) Every G-representation (resp., finite dimensional G-representation) is a direct
sum of irreducible representations.

(3) Given a G-representation (resp., finite dimensional G-representation) V and
a G-invariant subspace W ⊂ V , there exists a G-invariant subspace W ′ ⊂ V
such that V =W ⊕W ′.

(4) For every finite dimensional representation V and fixed k-point x ∈ P(V )G,
there exists a G-invariant linear function f ∈ Γ(P(V ),O(1))G such that f(x) ̸=
0.

Proof. Condition (4) translates to: for every surjection V → k onto the trivial
representation, there exists f ∈ V G mapping to a nonzero element. To see that
this implies (1), let π : V → W be a surjection of G-representations and w ∈ WG.
By apply Proposition B.1.17 to π−1(⟨w⟩), there is a nonzero finite dimensional
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G-representation V ′ ⊂ V surjecting onto ⟨w⟩ and (4) implies that there is an element
v ∈ V ′G ⊂ V G mapping to w. We conclude that (1) ⇔ (1′) ⇔ (4).

Denote the finite dimensional conditions in (2) and (3) as (2′) and (3′). The
implications (2) ⇒ (2′) ⇒ (4) and (3) ⇒ (3′) ⇒ (1′) are easy. As (3) ⇒ (2) is also
clear, it suffices to show that (1) ⇒ (3). To this end, applying the exact functor

MorRep(G)(V/W,−) = MorRep(G)(k, (V/W )∨ ⊗−) = ((V/W )∨ ⊗−)G

to the exact sequence 0 → W → V → V/W → 0 implies that V → V/W has a
G-invariant section.

Remark B.1.35. With the terminology introduced in §6.3, G is linearly reductive
if and only if BG→ Speck is cohomologically affine or, equivalently, a good moduli
space.

For a field extension k → k′, G is linearly reductive if and only if Gk′ is;
this is easy to see directly but also follows from the more general statement of
Lemma 6.3.16. Linear reductive groups are closed under quotients and extensions
(Proposition 6.3.18).

Example B.1.36 (Diagonalizable groups). Since every representation of a diago-
nalizable group scheme is a direct sum of one-dimensional representations (Proposi-
tion B.1.15), every diagonalizable group scheme is linearly reductive.

Proposition B.1.37 (Maschke’s Theorem). Let G be a finite abstract group viewed
as a finite group scheme over a field k. If the order of G is prime to char(k), then
G is linearly reductive.

Proof. If V is a G-representation, averaging over translates gives a G-equivariant
k-linear map

RV : V → V G, v 7→ 1

|G|
∑
g∈G

g · v, (B.1.38)

which is the identity on V G. These maps are functorial with respect to maps
f : V →W of G-representations, i.e., RW ◦ f = f ◦RV . It follows that a surjection
V →W of G-representations induces a surjection V G →WG on invariants.

Example B.1.39 (Z/pZ). In characteristic p, G = Z/pZ is not linearly reductive.
To see this, let V be the two-dimensional representation of G where a generator

acts via the matrix
(
1 1
0 1

)
. The surjection V → k onto the first component is a

surjection of G-representations, but the induced map V G → k on invariants is the
zero map. Geometrically, this corresponds to an action of G on A2 = A(V ) such that
the G-fixed point (1, 0) is contained in every invariant hyperplane. Note however
that taking invariants of the pth power map Symp V → Symp k = k is surjective, or,
in other words, there is a G-invariant hypersurface not containing (1, 0).

Example B.1.40 (Ga). Over any field k, the additive group Ga is not linearly
reductive Ga. This time, let V = k2 be the two-dimensional representation given by

t 7→
(
1 t
0 1

)
. The projection V → k, defined by (x, y) 7→ x, is a surjection of Ga-

representations with no complement. In this case, not only is there no Ga-invariant
hyperplane avoiding (1, 0) ∈ A(V ), there is no such Ga-invariant hypersurface.
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Remark B.1.41 (Reynolds operator). The map (B.1.38) is called a Reynolds
operator for the action of G on V . If G is linearly reductive, the canonical projections
RV : V → V G are Reynold operators, i.e., k-linear maps which are the identity on V G
and compatible with maps of G-representations. For an action of G on a k-scheme
SpecA with dual action A→ Γ(G,OG)⊗A, there is a projection RA : A→ AG. This
is not a ring map, but since multiplication AG⊗A→ A is a map of G-representations
commuting with the Reynold operators, we have that

RA(xy) = xRA(y) for x ∈ AG, y ∈ A.

This is called the Reynolds identity and implies that RA : A→ AG is an AG-module
homomorphism.

In Remark 6.3.9, the Reynolds operator was applied to show that AG is finitely
generated whenever A is. While we use the exactness of the invariant functor to
prove the properties of affine GIT quotients in Corollary 6.3.7, the Reynolds operator
can also be used; see [GIT, §1.2]. Moreover, an effective method to establish linearly
reductivity is to construct a Reynolds operator. This was the proof technique in
Maschke’s Theorem (B.1.37) and it will be used again in Theorem B.1.42.

Reductive groups. A smooth affine algebraic group G over an algebraically closed
field k is called reductive if every smooth, connected, unipotent, and normal subgroup
of G is trivial.2 Over C, an G is reductive if and only if it is the complexification of any
maximal compact subgroup [Hoc65, XVII.5]. Over an arbitrary field k, G is called
reductive if Gk is. Reductive groups are a particularly nice class of algebraic groups
appearing in many branches of mathematics. They admit an explicit classification
in terms of their root datum. See [Bor91, Hum75, Spr98, Mil17].

For a smooth affine algebraic group G, there are subgroups R(G) and Ru(G) of
G, called the radical and unipotent radical, which are maximal among connected,
normal, and solvable (resp., connected, normal, and unipotent) subgroups, which
commute with separable field extensions. Over a perfect field k, G is reductive if
and only if Ru(G) is trivial, and the quotient G/Ru(G) is reductive. On the other
hand, G is defined to be semisimple if R(G) is trivial. For a reductive group G, the
center Z(G) is diagonalizable and contains R(G) as its largest subtorus, and the
quotient G/R(G) is semisimple.

The classical algebraic groups GLn, PGLn, SLn, and SP2n are reductive in every
characteristic. As we develop GIT for actions by linearly reductive groups, it is
imperative to know that these groups are linearly reductive in characteristic 0.

Theorem B.1.42. In characteristic 0, a reductive algebraic group is linearly reduc-
tive. The converse is true in every characteristic for smooth algebraic groups.

Proof. In [Hil90], Hilbert established the linearly reductivity for SLn and GLn
over C using a explicit differential operator well-known to 19th century invariant
theorists: the Ω-process. We will sketch the argument for G = GLn over C. Write
Γ(GLn,OGLn) = C[Xij ]det. Let V be a finite dimensional GLn-representation such
that the scalar matrices act with weight k, and let σ : Sym∗ V → C[Xij ]det⊗Sym∗ V
be the dual action on A(V ) = Spec Sym∗ V . The differential operator

Ω := det

(
∂

∂Xij

)
2Sometimes G is also assumed to be connected. For a reductive group scheme G → S, there is

no such ambiguity in the literature: G is smooth and affine over S with connected and reductive
geometric fibers [SGA3III, Exp. XIX, Defn. 2.7].
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acts linearly on C[Xij ]det and C[Xij ]det ⊗ Sym∗ V . One checks that the map

V → V GLn , f 7→ 1

Ωk
(
det(Xij)k

)Ωk(det(Xij)
kσ(f)

)
defines a Reynolds operator, which implies that GLn is linearly reductive. The
argument is algebraic and works over every field of characteristic 0. See [Stu08, §4.3],
[Dol03, §2.1] and [DK15, §4.5.3].

Extending an integral procedure developed by Hurwitz, Schur, and Cartan, Weyl
proved that every reductive algebraic group over C is linearly reductive [Wey26,
Wey25]. The technique is now referred to as ‘Weyl’s unitarian trick’. A compact Lie
group K has a left K-invariant finite measure µ, called the left Haar measure. For a
finite dimensional K-representation V , averaging gives a k-linear map

V → V K , v 7→ 1∫
K
dµ(g)

∫
K

(g · v)dµ(g)

constant on V K and compatible with maps of K-representations. This is a Reynolds
operator (Remark B.1.41) just as in Maschke’s Theorem (B.1.37), and implies that
V 7→ V K is exact. For a reductive algebraic group G over C, there is a real compact
Lie subgroup K ⊂ G(C) which is dense in the Zariski topology. For example, for
GLn, K = Un is the subgroup of unitary matrices (hence the name ‘unitarian trick’).
For a finite dimensional G-representation V , there is an identification V K = V G, and
since the functor taking K-invariant is exact, so is the functor taking G-invariants.
See also [Dol03, §3.2] and [Bum13, Thm. 14.3].3

There is also an algebraic argument using the Casimir operator. First, one reduces
to the case that G is semisimple because every reductive group is an extension of a
torus by a semisimple group. Given a Lie algebra representation ρ : g→ gl(V ) of G,
there is a symmetric bilinear form on g defined by ⟨x, y⟩ = Tr(ρ(x) ◦ ρ(y)). Letting
{ei} be a basis of g and {e′i} be a dual basis with respect to ⟨−,−⟩, the Casimir
operator is the g-endomorphism cV :=

∑n
i=1 ρ(ei) ◦ ρ(e′i) on V . To show that G is

linearly reductive, it suffices to find a complement of any codimension one irreducible
subspace W ⊂ V . As G is semisimple, G acts trivial on V/W and therefore so does
g. It follows that g takes V into W and therefore so does cV , i.e., cV (V ) ⊂W . On
the other hand, since W is irreducible, cV acts on W by multiplication by a scalar
(Schur’s lemma). It follows that ker(cV ) ⊂ V is a complement of W . See also [Mil17,
Thm. 22.42], [Muk03, §4.3], [Hum78, §6.2], and [DK15, §4.5.2].

For the converse, we need to show that the unipotent radical Ru(G) of a linearly
reductive group G is trivial. Since G/Ru(G) is affine, Matsushima’s Theorem (6.3.20)
for linearly reductive groups implies that Ru(G) is linearly reductive. However, a non-
trivial unipotent group is not linearly reductive. Indeed, by the structure of unipotent
groups, it suffices to show that Ga is not linearly reductive (Example B.1.40). See
also [NM64].

Example B.1.43. The algebraic groups such as GLn, PGLn, SLn, or SP2n are not
linearly reductive in characteristic p. For example, in characteristic 2, consider the
action of SL2 acts on the space V = Sym2(k2) = {Ax2 + Bxy + Cy2} of degree
2 binary forms. The subspace W consisting of squares L2 of linear forms is a

3By the limit methods of §B.3, this analytic argument suffices to show the linear reductivity of
a reductive group G over every characteristic 0 field: by limit methods (§B.3), there is a subfield
k′ ⊂ k of finite transcendence degree over Q and a group scheme G′ → Spec k′ such that G′

k = G.
Choosing an embedding k′ ↪→ C and using that reductivity and linear reductivity are insensitive to
separable field extensions, we see that if G′

C is linearly reductive, so is G.
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GL2-invariant subspace with no complement; the quotient V → V/W = C is given
by (A,B,C) 7→ B. While there is no invariant linear function not vanishing at
(0, 1, 0), the discriminant ∆ = B2 ∈ Sym2 V ∨ is an invariant function nonzero at
(0, 1, 0) (verifying the geometric reductivity condition given below).

Theorem B.1.44 (Matsushima’s Theorem). Let G be a reductive group over a field
k. Then a subgroup H ⊂ G is reductive if and only if G/H is affine.

Proof. See Proposition 6.3.20 for a proof when G is linearly reductive. The general
case can be proven in a similar way relying on a generalization of Serre’s Criterion
for Affineness (4.4.16): an algebraic space U is affine if for every surjection A → B
of OU -algebras, every global section of B has a positive power that lifts to a global
section of A. See also [Mat60], [BB63], [Ric77], [FS82], and [Alp14, Thm 9.4.1].

Geometrically reductive groups. An affine algebraic group G over a field
k of characteristic p ≥ 0 is called geometrically reductive if for every surjection
V → W of G-representations and w ∈ WG, there exists n > 0 such that wp

n

is
in the image of Sympn V → Sympn W . This condition translates to the geometric
property analogous to Proposition B.1.34(4): for a fixed k-point x ∈ P(V )G, there
is an invariant homogenous polynomial f ∈ Γ(P(V ),O(pn))G for n > 0 such that
f(x) ̸= 0. In characteristic 0, linear reductivity is equivalent to geometric reductivity.

In an effort to extend GIT to actions by reductive groups such as SLn and GLn
in positive characteristic, Mumford conjectured in [GIT, preface] a reductive group
is geometrically reductive. This conjecture was resolved by Haboush.

Theorem B.1.45 (Haboush’s Theorem). A reductive group G over a field k is
geometrically reductive.

Proof. See [Hab75]. See also [SS11].

The converse is true when G is smooth. In fact, an affine algebraic group G is
geometrically reductive if and only if Gred is reductive. A smooth algebraic group
G in characteristic p is linearly reductive if and only if the connected component
G0 is a torus and the order of G/G0 is prime to p [Nag62]. Every finite (possibly
non-reduced) group scheme G is geometrically reductive, and is linearly reductive if
and only if G0 is diagonalizable and G/G0 has order prime to p [HR15, Thm. 1.2].
A commutative algebraic group G is reductive if and only if it is diagonalizable. We
also point out that reductivity of a smooth algebraic group G is characterized by
the condition that the ring of invariants is finitely generated for every coaction on a
finitely generated k-algebra.

B.1.5 Principal G-bundles

A principal G-bundle is an algebraic version of a topological fiber bundle P → T
where G acts freely and transitively on P with quotient T = P/G, e.g., A2 \ 0→ P1

is a principal Gm-bundle. Principal G-bundles and their properties are essential
in the development of the theory of algebraic stacks. For instance, we define an
object of a quotient stack [U/G] over a scheme T as a principal G-bundle P → T
together with a G-equivariant map P → U . The reader may consult [Poo17, §5.12]
and [Bal09] for additional background on principal G-bundles.

Definition B.1.46. Let G → S be an fppf affine group scheme. A principal
G-bundle over an S-scheme X is a scheme P over X with an action of G via
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σ : G ×S P → P such that P → X is a G-invariant fppf morphism (where X has
the trivial action) and

(σ, p2) : G×S P → P ×X P, (g, p) 7→ (gp, p)

is an isomorphism.

Observe that a principal G-bundle over X is the same data as a principal G×SX-
bundle over X. Morphisms of principal G-bundles are G-equivariant morphisms
of schemes. A principal G-bundle P → X is trivial if there is an G-equivariant
isomorphism P ∼= G×S X, where G acts on G×S X via multiplication on the first
factor.

A principal G-bundle P → X can also be viewed as a G-torsor,(Definition 6.2.13),
which is a general concept for a sheaf P of sets on a site with a free and transitive
action of a sheaf G of groups. When G→ S is an fppf affine group scheme, there
is an equivalence of categories between principal G-bundles and G-torsors; see
Example 6.2.17. In these notes, we will always distinguish between these two notions,
but in conversation or the literature, they are often conflated.

Exercise B.1.47. Show that a morphism of principal G-bundles is necessarily an
isomorphism.

Principal G-bundles can be trivialized fppf locally, and even étale locally if G is
smooth.

Proposition B.1.48. Let G → S be an fppf affine group scheme and P → X
be a G-equivariant morphism of S-schemes where X has the trivial action. Then
P → X is a principal G-bundle if and only if there exists an fppf morphism X ′ → X
such that P ×X X ′ is isomorphic to the trivial principal G-bundle G×S X ′ over X ′.
Moreover, if G→ S is smooth, we can arrange that X ′ → X is surjective and étale.

Proof. The (⇒) direction follows from the definition by taking X ′ = P → X. For
(⇐), after base changing G→ S by X → S, we may assume that G is defined over
X. Let GX′ and PX′ be the base changes of G and P along X ′ → X. The base
change of the action map (σ, p2) : G×X P → P ×X P along X ′ → X is the action
map GX′ ×X′ PX′ → PX′ ×X′ PX′ of GX′ acting on PX′ over X ′, which is trivial
as PX′ is trivial. Since the property of being an isomorphism is an Fpqc Local
Property on the Target (2.1.19), we conclude that (σ, p2) : G×X P → P ×X P is an
isomorphism. If G is smooth, then X ′ = P → S is a surjective smooth morphism
such that PX′ is trivial. Since there is a section of X ′ → S after a surjective étale
morphism S′ → S (Corollary A.3.5), PS′ is also trivial.

Proposition B.1.49 (Fpqc Descent for Principal G-bundles). Let G → T be an
fppf affine group scheme, and let f : S′ → S be an fpqc morphism of schemes over
T . If P ′ → S′ is a principal G-bundle and α : p∗1P ′ ∼→ p∗2P

′ is an isomorphism of
principal G-bundles over S′ ×S S′ satisfying p∗12α ◦ p∗23α = p∗13α, then there exists a
principal G-bundle P → S and an isomorphism ϕ : P ′ → f∗P of principal G-bundles
such that p∗1ϕ = p∗2ϕ ◦ α.

Proof. Since G → T is affine, the principal G-bundle P ′ → S′ is affine. By Fpqc
Descent for Affine Schemes (Proposition 2.1.13), there is an affine morphism P → S
and an isomorphism ϕ : P → f∗Q of schemes with p∗1ϕ = p∗2ϕ ◦ α. By Fpqc
Descent for Morphisms (2.1.7), we can descend the action G ×S P ′ → P ′ to an
action G ×S P → P giving P the structure of a principal G-bundle and making
ϕ : P ′ → f∗P a G-equivariant isomorphism.
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Examples of principal G-bundles.

Exercise B.1.50. Let L/K be a finite Galois extension and G = Gal(L/K) be its
Galois group viewed as a finite group scheme over SpecK. Show that SpecL →
SpecK is a principal G-bundle.

Exercise B.1.51 (Line bundles vs Gm-bundles). If X is a scheme, show that there
is a covariant equivalence of categories

{line bundles on X} ∼→ {principal Gm-bundles on X}
L 7→ A(L∨) \X = Spec(Sym∗ L∨) \ zero section

between the groupoids of line bundles on X (where the only morphisms allowed are
isomorphisms) and Gm-torsors on X.

Exercise B.1.52 (Sd-bundles). If X is a scheme and d ≥ 1, show that there there
is an equivalence of groupoids

{finite, étale, and degree d covers of X } ∼→ {principal Sd-bundles over X}
(Y → X) 7→ (Y ×X · · · ×X Y︸ ︷︷ ︸

d times

\∆→ X)

(P/Sd−1 → X)←[ (P → X).

For the rightward map, the symmetric group Sd acts on the d-fold fiber product
Y ×X · · · ×X Y by permutation, and ∆ denotes the big diagonal, i.e., the Sd-
equivariant closed locus of d-tuples where at least two points coincide. Alternatively,
Y ×X · · · ×X Y \ ∆ can be identified with the scheme IsomX(X × {1, . . . , d}, Y )
parameterizing isomorphisms between the trivial degree d cover and Y . For the
leftward map, P/Sd−1 denotes the quotient of the free action by the subgroup
Sd−1 ⊂ Sd fixing the dth index.

Exercise B.1.53.
(a) Show that the standard projection An+1 \ 0→ Pn is a principal Gm-bundle.
(b) For each line bundle O(d) on Pn, explicitly determine the corresponding

principal Gm-bundle. In particular, which O(d) correspond to the principal
Gm-bundle of (a)?

Exercise B.1.54. Let G→ S be an fppf affine group scheme.
(a) For principal G-bundles P and Q over an S-scheme X, show that the functor

IsomX(P,Q) : Sch/X → Sets,

assigning a X-scheme T to the set of isomorphisms of the principal G-bundles
P ×X T and Q×X T , is representable by a principal G-bundle over X.

(b) For a principal G-bundle P → X, show that AutX(P ) := IsomX(P, P ) is
isomorphic to G×G P := (G× P )/G, where h · (g, p) = (h−1gh, h · p).

Exercise B.1.55 (Frame bundles). Let T be a scheme and E be a vector bundle
over X of rank n.

(a) The frame bundle FrE is the functor IsomOX
(O⊕n

X , E) on Sch/X, i.e

FrE : Sch/X → Sets

(T → X) 7→ {trivializations O⊕n
T

∼→ ET }.
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Recalling from Exercise 0.3.15that the functor HomOX
(O⊕n

X , E) is repre-
sentable by the scheme H := A(H omOX

(O⊕n
X , E)∨) = A((E∨)⊕n), show

that FrE is representable by the open subscheme of H defined by det(u) ̸= 0,
where u : O⊕n

H → EH is the universal homomorphism. Moreover, show that
FrE → X is a principal GLn-bundle.

(b) The projectivized frame bundle PFrE is the functor

PFrE : Sch/X → Sets

(T → X) 7→
{
(L,α)

∣∣∣∣ L is a line bundle on T and
α : O⊕n

T
∼→ ET ⊗ L is an isomorphism

}/
∼,

where (L,α) ∼ (L′, α′) if there is an isomorphism β : L → L′ with α′ =
(id⊗β) ◦ α. Show that PFrE is representable by the open subscheme of
P := P(H omOX

(O⊕n
X , E)∨) = P((E∨)⊕n) defined by det(u) ̸= 0, where

u : O⊕n
P → EP ⊗OP(1)

is the homomorphism corresponding to the universal quotient H omOP(O⊕n
P , EP)

∨ ↠
OP(1). Moreover, show that PFrE → X is a principal PGLn-bundle.

Exercise B.1.56 (Vector bundles vs GL-bundles). For a scheme X, show that the
assignment of a vector bundle E to the frame bundle FrE defines an equivalence of
groupoids

{vector bundles over X} ∼→ {principal GLn-bundles over X}
E 7→ FrW

with the inverse defined by assigning P → X to the vector bundle whose total space
is the quotient P ×GLn An := (P × An)/GLn of the diagonal GLn-action on P × An.

Exercise B.1.57 (SL-bundles). Show that the groupoid of principal SLn-bundles
over a scheme X is equivalent to the groupoid of pairs (V, α) where V is a vector
bundle on X of rank n and α : OX

∼→ detV is a trivialization. A morphism
(V ′, α′)→ (V, α) of pairs is an isomorphism ϕ : V ′ → V such that α′ = α ◦ detϕ.

Exercise B.1.58 (Orthogonal group). Let k be a field with char(k) ̸= 2, and let
V be an n dimensional vector space with a non-degenerate quadratic form q. Let
O(q) ⊂ GL(V ) be the subgroup of invertible matrices preserving the quadratic form.
If q = x21 + · · · + x2n is the diagonalized quadratic form, O(q) = On is the set of
orthogonal matrices A (i.e., AA⊤ = I). Show that there is a bijection between
principal O(q)-bundles over a k-scheme X and vector bundles of rank n on X with
a non-degenerate quadratic form.

Special groups. An affine algebraic group G over a field k is special if every
principal G-bundle P → T is Zariski locally trivial. For example, GLn (e.g.,
Gm = GLn) is a special group as principal GLn-bundles correspond to vector
bundles (Exercise B.1.56). It is also true that Ga is special. One way to see this is to
use that quasi-coherent cohomology can be computed either in the Zariski or small
étale site (Proposition 4.1.34). Viewing the structure sheaf OT as Ga, this implies
that H1(T,Ga) = H1(Tét,Ga) and it follows that there is a bijective correspondence
between Ga-torsors in the Zariski and small étale topology.

If 1 → K → G → Q → 1 is an exact sequence of affine algebraic groups and
both K and Q are special, it is not hard to see that G is also special. It follows from
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the characterization of unipotent groups as extensions of Ga that every unipotent
group is special.

Inducing G-bundles and reduction of structure group.

Definition B.1.59 (Induced G-bundles). Let H → G be a homomorphism of fppf
affine groups schemes over a scheme S. If P → X is a principal H-bundle, the
principal G-bundle induced by P via H → G is

G×H P → X,

where G×H P is the quotient (G× P )/H of the action h · (g, p) = (gh−1, hp), and
where G acts on G×H P via g′ · (g, p) = (g′g, p).

Exercise B.1.60. Verify that G×H P → X is a principal G-bundle.

Definition B.1.61 (Reduction of structure group). Let H → G be a homomorphism
of fppf affine groups schemes over a scheme S. If Q→ X is a principal G-bundle, a
reduction of structure group of Q by H → G is a principal H-bundle P → X and an
isomorphism Q

∼→ G×H P of principal G-bundles.

Lemma B.1.62. Let H → G be a monomorphism of fppf affine groups schemes
over a scheme S, and let Q→ X be a principal G-bundle. A reduction of structure
group of Q by H → G is equivalent to giving a section of Q/H over X.

Proof. A section s : X → Q/H induces a principal H-bundle P → X via pullback

P

��

� � // Q

��

X �
� s // Q/H,

□

and the induced map G×H P → Q, defined by (g, p) 7→ g · p, is an isomorphism of
principal G-bundles. Conversely, by precomposing an isomorphism G×H P

∼→ Q
with the H-equivariant inclusion P → G ×H P , given by p 7→ (id, p), defines
an H-equivariant map P → Q which descends under the H-action to a section
X = P/H → Q/H.

Isomorphism classes of principal G-bundles over a scheme X is classified by the
étale cohomology group H1(Xét, G); see Exercise 6.2.39.

Exercise B.1.63. Let 1 → K → G → Q → 1 be an exact sequence of abstract
abelian groups, which induces a short exact sequence

H1(Xét,K)→ H1(Xét, G)→ H1(Xét, Q)

of étale cohomology groups over a scheme X. Show that a principal G-bundle
P → X admits a reduction of structure group to K if and only if the class of
[P ] ∈ P ∈ H1(Xét, G) maps to 0 ∈ H1(Xét, Q).

Exercise B.1.64. Let G→ S be an fppf affine group scheme, and let P1 and P2

be principal G-bundles over an S-scheme X. Show that a reduction of structure
of P1 × P2 → X ×X by the diagonal G→ G×G corresponds to an isomorphism
P1 → P2 of principal G-bundles.

Brauer–Severi schemes and Azumaya algebras.
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Exercise B.1.65 (Brauer–Severi schemes). A morphism P → X of schemes is a
Brauer–Severi scheme of relative dimension r if there exists an étale cover X ′ → X
and an isomorphism P ×X X ′ ∼= PrX′ . An example of a non-trivial Brauer-Severi
scheme is ProjR[x, y, z]/(x2 + y2 + z2)→ SpecR. Show that

{Brauer–Severi schemes of rel. dim. r over X}→ {principal PGLr-bundles over X}
X 7→ IsomX(PrX , X)

(P × Pr)/PGLr ← [ P

defines an equivalence of groupoids.

Exercise B.1.66. Let P → X be a proper, flat, and finitely presented morphism of
schemes. Assume that for every geometric point Speck→ X, the geometric fiber
P ×X k is isomorphic to P1

k. Show that P → X is a Brauer–Severi scheme of relative
dimension 1.

Approach 1 (local-to-global): Show that for every point x ∈ X, there is a finite and
separable field extension κ(s)→ K such that P ×X K ∼= P1

K . Then show that there
an étale neighborhood (X ′, x′)→ (X,x) such that K ∼= κ(x′) over κ(x). Assuming
now that P ×s κ(s) ∼= P1

κ(s), use deformation theory (Proposition C.2.4) to show
that there are compatible isomorphisms P ×X OX,x/mnx ∼= P1

OX,x/mn
x

for n > 0. Use

Grothendieck’s Existence Theorem (C.5.3) to show that P ×X ÔX,x ∼= P1
ÔX,x

. Finally,
apply Artin Approximation (B.5.18) to show that there is an étale neighborhood
(X ′, x′)→ (X,x) such that P ×X X ′ ∼= P1

X′ .

Approach 2 (direct): Assuming that there is a section σ : X → P of π : P → X, show
that every point x ∈ X has an open neighborhood U ⊂ X such that P ×X U ∼= P1

U .
Letting L be the line bundle on P corresponding to the Cartier divisor σ, use
Cohomology and Base Change (A.6.8) to show that E := π∗L is a rank 2 vector
bundle on X, that π∗E ↠ L is surjective, and that P ∼= P(E) over X. Conclude by
choosing an open neighborhood of x ∈ X where E is trivial. Returning to the general
case, show that there is an effective divisor D associated to Ω∨

P/X such that D → X
is étale. Reduce to the case where P → X has a section by base changing by D → X.
See also [Har77, Prop. 25.3 and Exc. 25.2].

Exercise B.1.67 (Azumaya algebras). An Azumaya algebra of rank r2 over a scheme
X is a (possibly non-commutative) associative OX -algebra A, which is coherent
as an OX -module, such that there is an étale covering X ′ → X with A ⊗OX

OX′

isomorphic to the matrix algebra Mr(OX); see [Mil80, §IV.2]. An Azumaya algebra
over a field k is a central simple algebra (i.e., a finite dimensional associative k-
algebra which is simple and whose center is k); the quaternions defines a central
simple algebra over R. Show that the assignment

A 7→ IsomX(Mr(OX), A)

defines a bijection between Azumaya algebras of rank r2 over X and PGLn-torsors
over X.

Remark B.1.68. Exercises B.1.65 and B.1.67 provide bijections

{Azumaya algebras of rank r2} ≃ {principal PGLn-torsors}
≃ {Brauer–Severi schemes of relative dimension r}
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on sets of isomorphism classes of objects over a scheme X. The composition of these
bijections can be interpreted as the map taking an Azumaya algebra A over X to the
Brauer–Severi scheme defined as the closed subscheme X ⊂ GrX(r,A) classifying
rank r right ideals. The Brauer group Br(X) is defined in terms of Azumaya algebras
and closely related to Gm-gerbes; see Remark 6.2.45 and Exercise 6.2.46.

In this appendix, we cover several important topics needed in the development
of moduli theory that are not always covered in a first course in algebraic geometry.

B.2 Birational geometry and positivity
We summarize basic facts of birational geometry needed in our development of moduli
theory. In Stable Reduction (5.5.1) for Mg, the birational geometry of surfaces in
§B.2.1 is used crucially . To prove Kollár’s Criterion for Ampleness (5.8.7), which we
apply to prove that Mg is projective, we appeal to the Nakai–Moishezon Criterion
for Ampleness (B.2.28) for ampleness, properties of nef vector bundles in §B.2.4,
and the vanishing theorems in §B.2.5.

B.2.1 Birational geometry of surfaces
For an integral noetherian scheme X, a resolution of singularities is a proper
birational morphism X ′ → X from an integral regular scheme X ′.

Theorem B.2.1 (Existence of Resolutions). Every two dimensional integral noethe-
rian scheme X has a resolution of singularities.

Proof. This was shown by Zariski in characteristic 0 [Zar39], by Abhyankar in
characteristic p [Abh56], and by Lipman in mixed characteristic [Lip78]. See also
[Kol07, §2] and [SP, Tag 0BGP].

Theorem B.2.2 (Existence of Minimal Resolutions). Let X be a two dimensional
integral noetherian scheme. There exists a resolution of singularities π : X̃ → X
such that every other resolution of singularities Y → X factors as Y → X̃ → X.
Moreover, KX̃ · E ≥ 0 for every π-exceptional curve E.

Proof. See [Kol07, Thm. 2.16].

Theorem B.2.3 (Existence of Embedded Resolutions). Let X be a regular scheme
of dimension 2 and Y ⊂ X be a subscheme of pure dimension one. Assume that for
every irreducible component Z ⊂ Y , the normalization Z̃ → Z is finite. Then there
is a finite sequence of blowups

Xn → · · · → X1 → X

at reduced closed points such that the preimage Yn ⊂ Xn of Y is an effective Cartier
divisor supported on a normal crossings divisor, i.e., (Yn)red is nodal.

Proof. See [Har77, Thm V.3.9], [Kol07, Thm. 1.47], and [SP, Tag 0BIC].

Theorem B.2.4 (Factorization of Birational Maps). Let X and Y be regular,
integral, and noetherian schemes of dimension two. Every proper birational morphism
f : X → Y is the composition of blowups at reduced closed points.

Proof. See [Har77, Thm V.5.5], [Kol07, Thm 2.13], and [SP, Tag 0C5R].
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Theorem B.2.5 (Hodge Index Theorem for Exceptional Curves). Let f : X → Y be
a projective and generically finite morphism of noetherian schemes of dimension 2,
where X is regular and Y is quasi-projective over a field or DVR. Let E1, . . . , En be
the exceptional curves. Then the intersection form matrix (Ei ·Ej) is negative-definite.
In particular, E2

i < 0 for each i.

Proof. See [Kol07, Thm 2.12].

Theorem B.2.6 (Castelnuovo’s Contraction Theorem). Let X be a regular scheme
of dimension 2 which is projective over either a field k or a DVR R with residue
field k, and let E = P1

k ⊂ X be a smooth rational curve with E2 < 0. Then there
is a projective morphism X → Y to a projective surface and a point y ∈ Y such
that f−1(y) = E and X \ E → Y \ {y} is an isomorphism. If E2 = −1, then Y is
smooth.

Proof. See [Har77, Thm. V.5.7, Exc. V.5.2] and [Kol07, Thm. 2.14, Rmk. 2.15].

One can show that the process of repeatedly contracting smooth rational −1
curves in a smooth projective surface terminates (see [Har77, Thm 5.8]). Thus
by applying Castelnuovo’s Contractibility Criterion a finite number of times, one
obtains:

Corollary B.2.7 (Existence of Minimal Models). A smooth surface X admits
a projective birational morphism X → Xmin to a smooth surface such that every
projective birational morphism Xmin → Y to a smooth surface is an isomorphism.
In particular, Xmin has no smooth rational −1 curves.

B.2.2 Positivity

We discuss positivity properties of line bundles, some of which are extended to
algebraic spaces in §5.8.1. An excellent reference for this material is [Laz04a, Laz04b].

Ample line bundles. A line bundle L on a scheme X is ample if X is quasi-compact
and for every x ∈ X, there exists a section s ∈ Γ(X,L) such that Xs = {s ̸= 0} is
affine and contains x.

Proposition B.2.8 (Characterizations of Ampleness). For a line bundle L on a
noetherian scheme X, the following are equivalent:

(1) L is ample,
(2) the natural map X → Proj

⊕
d≥0 Γ(X,L

⊗d) is well-defined and an open im-
mersion, and

(3) for every coherent sheaf F , the tensor product F ⊗ L⊗m is base point free for
m≫ 0.

If in addition X is proper over a noetherian ring R, then the above are also equivalent
to:

(4) for some m > 0, L⊗m is very ample, i.e., defines a closed embedding |L⊗m| : X ↪→
PNR into projective space, and

(5) for every coherent sheaf F on X, Hi(X,F ⊗ L⊗m) = 0 for m≫ 0 and i > 0.

Proof. See [Har77, §II.7 and III.5.3], [EGA, II.4.5 and III.2.6], or [SP, Tags 01PR
and 0B5U].
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Proposition B.2.9 (Properities of Ampleness). Let X be a proper scheme over a
field k and L be a line bundle on X.
(1) If f : X ′ → X is a finite surjective morphism, L is ample if and only if f∗L is.
(2) For a field extension k→ k′, L is ample on X if and only if Lk′ is ample on

Xk′ .

Proof. Both follow from the cohomological characterization of ampleness. For (1),
see [Har77, Exer III.5.7], [EGA, III.2.6.2], and [SP, Tag 0B5V]. Part (2) also follows
directly from Fpqc Descent for Ampleness (B.2.12).

Part (1) implies that a line bundle L on X is ample if and only if its restriction
L|(Xi)red to the reduced subscheme of each irreducible component Xi is ample.

Proposition B.2.10 (Openness of Ampleness). Let f : X → S be a proper, flat,
and finitely presented morphism of schemes, and L be a line bundle on X. If for
some s ∈ S, the restriction Ls of L to the fiber Xs is ample (resp., very ample and
Hi(Xs, Ls) = 0 for i > 0), then there exists an open neighborhood U ⊂ S of s such
that the restriction LU on XU is relatively ample (resp., relatively very ample) over
U . In particular, for all u ∈ U , Lu is ample (resp., very ample) on Xu.

Proof. If Ls is ample on Xs, then for n≫ 0, L⊗n
s is very ample and Hi(Xs, L

⊗n
s ) = 0

for i > 0. It therefore suffices to handle the very ample case. By Cohomology and
Base Change (A.6.8), after replacing S with an open neighborhood of s, f∗L is a
vector bundle and the comparison map f∗L⊗ κ(t)→ Hi(Xt, Lt) is an isomorphism
for t ∈ S. By further replacing S with an affine open neighborhood, we can arrange
that H0(X,L) is freely generated by sections t0, . . . , tn that restrict to a basis in
H0(Xs, Ls). The vanishing locus V := V (t0, . . . , tn) ⊂ X is closed and disjoint from
Xs. By replacing S with an affine open neighborhood of s contained in S \ f(V ),
we may assume that the sections ti generate L and that they define a morphism
g : X → PnS over S that restricts to a closed immersion gs : Xs ↪→ Pnκ(s). By upper
semi-continuity of fiber dimension, there is a closed locus Z ⊂ PnS consisting of points
z such that dim g−1(z) > 0. Since Z is disjoint from Pnκ(s), we may shrink S further
so that g : X → PnS is quasi-finite, and hence finite (as g is proper). The cokernel
of OPn

S
→ g∗OX is coherent and its support is a closed subscheme of Pn disjoint

from Pnκ(s). By shrinking S further, we may arrange that g : X → PnS is a closed
immersion, and hence L = g∗OPn

S
(1) is very ample. See also [Laz04a, Thm. 1.2.17,

Thm. 1.7.8], [EGA, III1.4.7.1, IV3.9.6.4], [KM98, Prop. 1.41] and [SP, Tag 0D3D];
the openness of ampleness holds without the flatness of X → S.

Example B.2.11 (suggested by Brian Nugent). It is not true that very ampleness
is an open condition. If C is a non-hyperelliptic curve of genus 3, then KC is very
ample and we can write KC = OC(p1 + · · ·+ p4). Considering the constant family
C × C → C with the constant sections p1, p2, and p3 and the diagonal section ∆,
then the fiber of OC×C(p1 + p2 + p3 +∆) is very ample over p4 ∈ C but the fiber
over a point s ∈ C near to p4 is not very ample.

We will need the fact that ampleness is an fpqc local property on the target.

Proposition B.2.12 (Fpqc Descent of Ampleness). Let f : X → S be a morphism
of schemes and L be a line bundle on X. If S′ → S is an fpqc morphism of schemes,
then L is relatively ample over S if and only if the pullback of L to X ×S S′ is
relatively ample over S′.
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Proof. We know that relative ampleness is stable under base change. If the pullback
L′ to X ′ := X ×S S′ is relatively ample, then X ′ → S′ is quasi-compact and
quasi-separated. Since these are Fpqc Local Properties on the Target (2.1.19),
f : X → S is also quasi-compact and quasi-separated. We may therefore form
the quasi-coherent graded OS-algebra A =

⊕
d≥0 f∗L

⊗d and the corresponding
morphism X → ProjS A. We appeal to the fact that L is relatively ample if and
only if X → ProjS A is well-defined and an open immersion. Since X → ProjS A
base changes to X ′ → ProjS′ A′ with A′ =

⊕
d≥0 f

′
∗L

′⊗d, the statement follows
from an open immersion being an Fpqc Local Properties on the Target (2.1.19). See
also [EGA, IV2.2.7.2] and [SP, Tag 0D2P].

Nef line bundles. A line bundle L on a proper scheme X over a field k is nef (or
numerically effective) if ∫

C

c1(L) ≥ 0

for every integral closed curve C ⊂ X. Here
∫
C
c1(L) denote the same quantity as

c1(L) · C, L · C, or degL|C . We say that L is strictly nef if c1(L) · C > 0 for every
integral closed curve.

Theorem B.2.13 (Kleiman’s Theorem). If L is a line bundle on a proper scheme
X over a field k, then L is nef if and only if for every integral subscheme Z ⊂ X of
dimension k, ∫

Z

c1(L)
k ≥ 0.

Proof. See [Laz04a, Thm. 1.4.9], [Kol96, Thm. 2.17], or the original source [Kle66].

It is often convenient to write line bundles in additive notation, so that mL+H
corresponds to L⊗m ⊗H.

Corollary B.2.14 (Characterization of Nefness). Let X be a projective scheme
over a field k and H be an ample line bundle. A line bundle L on X is nef if and
only if mL+H is ample for m≫ 0.

Proof. See [Laz04a, Cor. 1.4.10].

Proposition B.2.15 (Properties of Nefness). Let X be a proper scheme over a
field k and L be a line bundle on X.
(1) If f : X ′ → X is a surjective proper morphism, then L is nef if and only if

f∗L is.
(2) For a field extension k→ k′, L is nef on X if and only if Lk′ is nef on Xk′ .

Proof. For (1), if C ′ ⊂ X ′ is an integral curve and d is the degree of the induced
map C ′ → f(C ′), then

f∗L · C ′ = d(L · f(C ′)) (B.2.16)

by the projection formula. This gives the (⇒) implication. Conversely, if C ⊂ X is
an integral curve, we may choose an integral curve C ′ ⊂ X ′ with C = f(C ′), and thus
(B.2.16) also implies the (⇐) implication. For (2), by Chow’s Lemma and (1), we may
assume that X is projective. In this case, the Characterization of Nefness (B.2.14)
reduces us to the corresponding statement for ampleness (Proposition B.2.9(2)).
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Proposition B.2.17 (Nefness is Stable under Generization). Let X be a proper
flat scheme over a DVR R and L be a line bundle on X. If the restriction L0 of L
to the central fiber X0 is nef, then so is the restriction Lη to the generic fiber Xη.

Proof. By Chow’s Lemma and Proposition B.2.15(1), we may assume that X is
projective with an ample line bundle H. By the Characterization of Nefness (B.2.14),
mL0 +H0 is ample for m ≫ 0. By Openness of Ampleness (B.2.10), mL +H is
ample, and thus so is mLη +Hη. By applying again the Characterization of Nefness,
we conclude that Lη is nef.

Remark B.2.18. For a surjective proper morphism X → S of varieties and a line
bundle L on X whose fiber Ls over s ∈ S is nef, there exists a countable union
B ⊂ S of proper subschemes not containing s such that Lt is nef for every t ∈ S \B
[Laz04a, Prop 1.4.14]. It is not true that nefness is open in general; see [Lan13,
Ex. 5.3] and [Les14, Thm. 1.2].

Remark B.2.19 (Ample and nef cones). The ample and nef line bundles generate
cones Amp(X),Nef(X) ⊂ N1(X)R, called the ample cone and nef cone. For a
projective variety, Kleiman’s Theorem (B.2.13) implies that the nef cone is the
closure of the ample cone and the ample cone is the interior of the nef cone; see
[Laz04a, Thm. 1.4.23].

Effective, base point free, and semiample line bundles. We have the following
notions for a line bundle L on a proper scheme X over a field k:

• L is effective if Γ(X,L) ̸= 0,

• L is base point free (or globally generated) if for every x ∈ X, there exists
s ∈ Γ(X,L) with s(x) ̸= 0, or equivalent the complete linear series |L| defines
a morphism X → P(H0(X,L)), and

• L is semiample if for some m > 0, L⊗m is base point free.

A semiample line bundle L is necessarily nef; indeed if for some m > 0, L⊗m

defines a morphism f : X → PN with f∗O(1) ∼= c1(L
⊗m), then the projection

formula implies that C · L⊗m = f(C) · c1(O(1)) ≥ 0. We thus have the implications

base point free⇒ semiample⇒ nef.

Big line bundles. A line bundle L on a proper scheme X over a field k is big if
there exists a constant C > 0 such that h0(X,L⊗m) > C ·mdim(X) for m≫ 0.

Proposition B.2.20 (Kodaira’s Lemma). Let X be a projective scheme over a field
k and L be a big line bundle on X. If E is an effective line bundle, then mL−E is
effective for m sufficiently divisible.

Proof. See [Laz04a, Prop. 2.2.6].

Proposition B.2.21 (Characterizations of Bigness). For a projective scheme X
over a field k and a line bundle L on X, the following are equivalent:

(1) L is big,
(2) for every ample divisor A on X, there exists a positive integer m > 0 and an

effective divisor N on X such that mL = A+N (linear equivalence), and
(3) there exists an ample divisor A on X, a positive integer m > 0, and an effective

divisor N on X such that mL ≡ A+N (numerical equivalence).
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If in addition X is normal, then the above are also equivalent to:
(4) for some m > 0, |L⊗m| defines a rational map X → P(H0(X,L⊗m)) which is

birational onto its image.

Proof. See [Laz04a, Cor. 2.2.7].

As a consequence, we see that up to scaling (i.e., taking positive tensor powers),
a big line bundle is the same as the sum of an ample and effective line bundle. This
implies that the sum of a big and effective line bundle is also big. To summarize,

big up to scaling⇐=======⇒ ample + effective

big + effective⇒ big.

Proposition B.2.22 (Properties of Bigness). Let X be a proper scheme over a field
k and L be a line bundle on X.
(1) Let f : X ′ → X be a birational proper morphism of schemes. If f∗L is big,

then so is L. The converse is true if X is normal.
(2) For a field extension k→ k′, L is big on X if and only if Lk′ is big on Xk′ .

Proof. For (1), the projection formula implies that

H0(X ′, f∗L⊗m) = H0(X, f∗f
∗L⊗m) = H0(X,L⊗m ⊗ f∗OX′).

As OX ↪→ f∗OX′ is injective, we have an inclusion H0(X,L⊗m) ↪→ H0(X,L⊗m ⊗
f∗OX′). Since dimX ′ = dimX, the bigness of f∗L implies the bigness of L. When
X is normal, OX = f∗OX′ and H0(X ′, f∗L⊗m) = H0(X,L⊗m). Part (2) follows
from the identification H0(X ′, f∗L⊗m) = H0(X,L⊗m)⊗k k′.

Theorem B.2.23 (Asymptotic Riemann–Roch). Let X be a proper scheme over
a field k of dimension n, and let L be a nef line bundle on X. Then the Euler
characteristic

χ(X,L⊗m) =
(c1(L)

n)

n!
mn +O(mn−1)

is a polynomial of degree ≤ n in m. If in addition L is nef, then hi(X,L⊗m) =
O(mn−1) and

h0(X,L⊗m) =
(c1(L)

n)

n!
mn +O(mn−1).

Proof. See [Laz04a, Cor. 1.4.41] (projective case), [Kol96, Thm. VI.2.14-15], and
[SP, Tag 0BJ8].

Accepting that χ(X,L⊗m) is a polynomial, one can define the intersection
number c1(L)n as the normalized leading coefficient. It can also be defined in several
other ways, c.f., [Kol96, Thm. VI.2]. Asymptotic Riemann–Roch provides a useful
characterization of bigness for nef line bundles, implying for instance that ample
line bundles are big.

Corollary B.2.24 (Characterization of Bigness II). On a proper scheme of dimen-
sion n, a nef line bundle L is big if and only if c1(L)n > 0.

Remark B.2.25 (Big and pseudo-effective cones). Big and effective divisors generate
the big cone Big(X) and effective cone Eff(X) in N1(X)R, and the closure Eff(X)
is called the pseudo-effective cone. The big cone Big(X) is contained in the interior
of Eff(X), and Eff(X) = Big(X) [Laz04a, Thm. 2.2.6].
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B.2.3 Ampleness criteria
We review techniques to verify ampleness of a line bundle on a proper scheme. The
first strategy to keep in mind is: semiample and strictly nef ⇒ ample.

Lemma B.2.26. On a proper scheme over an algebraically closed field k, a line
bundle L is ample if and only if it is strictly nef and semiample.

Proof. For the nontrivial direction, for some m > 0, L⊗m defines a morphism
f : X → PN which does not contract any curves. It follows that f : X → PN is a
proper and quasi-finite, thus finite. Therefore, L⊗m = f∗O(1) is ample.

Remark B.2.27. The semiampleness condition can be very challenging to verify
in practice. There are powerful base point free theorems in birational geometry
that can sometimes be applied to reduce semiampleness to bigness and nefness. For
instance, Kawamata’s base point freeness theorem states that if (X,∆) is a proper
klt pair with ∆ effective and D is a nef Cartier divisor such that aD−KX −∆ is nef
and big for some a > 0, then D is semiample [KM98, Thm. 3.3]. One can contrast
this result with the Abundance Conjecture that states that if (X,∆) is a proper log
canonical pair with ∆ effective, then the nefness of KX +∆ implies semiampleness
[KM98, Conj. 3.12]. Alternatively, it is a classical result of Zariski and Wilson that if
X is a normal projective variety and D is a nef and big divisor, then D is semiample
if and only if its graded section ring

⊕
n Γ(X,OX(nD)) is finitely generated; see

[Laz04a, Thm. 2.3.15]. While [BCHM10] can sometimes be applied to verify the
finite generation, this result already presumes the projectivity of X. Nevertheless,
it is sometimes useful. In positive characteristic, Keel’s theorem [Kee99] provides
another technique: on a projective variety X over a field k of charaacteristic p, a nef
line bundle L is semiample if and only if the restriction of L to the exceptional locus
E is semiample, where the exceptional locus E is defined as the union of irreducible
subvarieties Z ⊂ X satisfying LdimZ · Z = 0.

Numerical criteria for ampleness. The Nakai–Moishezon Criterion for Ample-
ness4 for ampleness provides a convenient method to establish projectivity. We will
extend this criterion to algebraic spaces in Theorem 5.8.4, as it enters into the proof
of Kollár’s Criterion (5.8.7), which in turn is used for the projectivity of Mg.

Theorem B.2.28 (Nakai–Moishezon Criterion for Ampleness). Let X be a proper
scheme over an algebraically closed field k, and let L be a line bundle on X. The
following are equivalent:
(1) L is ample;
(2) for every integral closed subscheme Z ⊂ X, c1(L)dimZ · Z > 0;
(3) L is nef and for every integral closed subscheme Z ⊂ X, L|Z is big; and
(4) L is strictly nef and for every integral closed subscheme Z ⊂ X, L|⊗mZ is

effective for some m > 0.

Proof. A nef line bundle L is big if and only if the top intersection is positive
(Corollary B.2.24). This gives the equivalence between (2) and (3). We therefore
have: (1) ⇒ (2) ⇐⇒ (3) ⇒ (4). For (4) ⇒ (1), since L is strictly nef, it suffices by
Lemma B.2.26 to verify that L is semiample. Write L = OX(D) for a divisor D.
Since D is big on X, some positive multiple mD is effective. After replacing D by

4This is also known as the Nakai Criterion or the Nakai–Moishezon–Kleiman Criterion. See
[Laz04a, §1.2.B] for a historical account and further references.
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mD, let s ∈ H0(X,OX(D)) be a nonzero section. Then OX(D) has no base points
on X \D. We will show that for m ≫ 0, OX(mD) also has no base points on D.
By induction on dimX, we can assume that OX(D)|D is ample. Consider the exact
sequence

0→ OX((m− 1)D)→ OX(mD)→ OX(mD)|D → 0.

Form≫ 0, OX(mD)|D is base point free and H1(X,OX(mD)|D) = 0. It follows that
H1(X,OX((m− 1)D))↠ H1(X,OX(mD)) is surjective, but since each vector space
is finite dimensional, we see that these surjections eventually become isomorphisms
for m≫ 0. Thus, for m≫ 0, H0(X,OX(mD))→ H0(D,OX(mD)|D) is surjective,
and OX(mD) has no base points on D. See also [Har77, Thm. V.1.10] (surface case),
[Laz04a, Thm. 1.2.23] (projective case), [Kol96, Thm VI.2.18], [KM98, Thm. 1.37],
and [Kle66, §III.1].

While we will not apply the following criteria in this text, they are often useful
in other contexts.

Theorem B.2.29 (Kleiman’s Criterion). If X is a projective scheme or a Q-factorial
(e.g., smooth) proper scheme over an algebraically closed field k, a line bundle L on
X is ample if and only if for all C ∈ Eff(X), c1(L) · C > 0.

Proof. See [Kle66, §III.1], [Kol96, Thm. VI.2.19], [KM98, Thm. 1.18], and [Laz04a,
Thm. 1.4.23].

Note that it is not enough to check that c1(L) · C > 0 for only integral curves
C ⊂ X; one must check it on curve classes in the closure Eff(X) of the effective
cone of curves. See [Har70, p.50-56] for a counterexample due to Mumford.

Theorem B.2.30 (Sesahdri’s criterion). If X is a proper scheme over an alge-
braically closed field k, a line bundle L on X is ample if and only if there ex-
ists an ϵ > 0 such that for every point x ∈ X and every integral curve C ⊂ X,
c1(L) · C > ϵmultx(C), where multx(C) denotes the multiplicity of C at x.

Proof. See [Laz04a, Thm. 1.4.13] and [Kol96, Thm. 2.18].

B.2.4 Nef vector bundles
In Kollár’s Criterion for Ampleness (5.8.7), nefness of vector bundles plays an
essential role.

Definition B.2.31. A vector bundle E on a scheme X is called nef (or semipositive)
if OP(E)(1) is nef on P(E).

There is a related notion of an ample vector bundle, which we will not need,
defined by requiring OP(E)(1) to be ample on P(E); see [Har66a] and [Laz04b, §6].

Proposition B.2.32 (Characterization of Nefness for Bundles). Let E be a vector
bundle on a proper scheme X over an algebraically closed field k. Then the following
are equivalent:

(1) E is nef,
(2) for every map f : C → X from a smooth proper curve, every quotient line

bundle of f∗E ↠ L has nonnegative degree, and
(3) for every map f : C → X from a smooth proper curve, every quotient vector

bundle f∗E ↠W has nonnegative degree.
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Proof. See [Bar71, p.437], [Laz04b, Prop. 6.1.18], and [Kol90, Def.-Prop. 3.3]

Proposition B.2.33 (Properties of Nefness for Bundles). Let X be a proper scheme
over a field k and E be a vector bundle on X.

(1) If f : X ′ → X is a surjective proper morphism, then E is nef if and only if
f∗E is.

(2) For a field extension k→ k′, E is nef on X if and only if Ek′ is nef on Xk′ .
(3) Quotients, extensions, and tensor products of nef vector bundles are nef. If E

is nef, so is
∧k

E, Symk E, and Symk(E∨)∨ for k ≥ 0.

Proof. Parts (1) and (2) follow from the analogous properties of nef line bundles
(Proposition B.2.15). Part (3) requires some work. By (2), we can assume that k is
algebraically closed. From the Characterization of Nefness for Bundles (B.2.32), it
suffices to assume that X is a smooth curve of genus g. This characterization makes
it clear that quotients of nef bundles are nef, and it is not hard to show that an
extension of nef bundles is nef.

Before we prove the remaining parts, we claim that if E is a nef vector bundle onX
and L is a line bundle with degL ≥ 2g−1 (resp., degL ≥ 2g), then H1(X,E⊗L) = 0
(resp., E ⊗ L is globally generated). By Serre–Duality (5.1.3), H1(X,E ⊗ L) =
HomOX

(E ⊗ L, ωX). If E ⊗ L → ωX is a nonzero map, the image I ⊂ ωX is a
line bundle with deg I ≤ degωX = 2g − 2. If degL ≥ 2g − 1, the induced quotient
E ↠ I ⊗ L∨ would have negative degree, contradicting the nefness of E, hence
H1(X,E⊗L) = 0. If degL ≥ 2g, then for every p ∈ X(base), H1(X,E⊗L(−p)) = 0
and H0(X,E ⊗ L)→ H0(X,E ⊗ L⊗ κ(p)) is surjective.

Assume that E and F be nef bundles on X of rank e and f . Let L be a line
bundle of degree d ≥ 2g. Since E ⊗ L is globally generated, we may choose e global
sections of E ⊗ L that restrict to a basis of E ⊗ L ⊗ κ(ξ) over the generic point
ξ ∈ X. This gives a generically surjective map (L∨)⊕e → E. Similarly, there is a
generically surjective map (L∨)⊕f → F . Taking the tensor product of these maps
gives a generically surjective map

(L∨)⊕ef → E ⊗ F.

If Q is a quotient line bundle of E⊗F , then the image of Q′ ⊂ Q of (L∨)⊕ef satisfies
degQ ≥ degQ′ ≥ −d. This shows that every quotient line bundle Q of the tensor
product E⊗F of any two nef bundles E and F of rank e and f satisfies degQ ≥ −d.

Assume that char(k) = p. Suppose that there is a line bundle quotient E⊗F ↠ Q
with degQ < 0. Denote FrN : X → X be the Nth power of the absolute Frobenius,
the quotient (FrN )∗E ⊗ (FrN )∗F ↠ (FrN )∗Q is a quotient line bundle of degree
Np degQ. By Proposition B.2.33(1), (FrN )∗E and (FrN )∗F are nef. Taking N
such that Np degQ < −d gives a quotient line bundle whose degree is less than −d,
contradicting the fact above.

Assume that char(k) = 0. Since X is of finite type over k, its defining equations
involve finitely many coefficients of k. Thus there exists a finitely generated Z-
subalgebra A ⊂ k, a scheme X̃ of finite type over A, and a cartesian diagram

X

��

// X̃

��

Speck // SpecA.

□
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By Descent of Properties of Morphisms under Limits (B.3.7), we may further arrange
that X̃ → SpecA is a family of smooth curves. Finally, by restricting along a map
SpecR→ SpecA, we may assume that A is a DVR whose closed and generic points
have characteristic p and 0, respectively. We may therefore reduce to the positive
characteristic case by using that Nefness for Bundles is Stable under Generization
(B.2.34). The nefness of

∧k
E, Symk E, and Symk(E∨)∨ follow from the same

argument, and in fact shows more generally that for nef vector bundle E1, . . . , Em
of ranks r1, . . . , rm and for a representation ρ : GLr1 × · · · ×GLrm → GLN which is
semipositive, i.e., extends to a map Matr1,r1 × · · · ×Matrm,rm → MatN,N , then the
induced vector bundle ρ(E1, . . . , Em) is also nef. See also [Kol90, Prop. 3.5], [Bar71,
Thm. 3.3], and [Har66a, Thm. 5.2].

Proposition B.2.34 (Nefness for Bundles is Stable under Generization). Let X
be a proper and flat scheme over a DVR R and E be a vector bundle on X. If the
restriction E0 of E to the central fiber X0 is nef, then so is the restriction Eη to the
generic fiber Xη.

Proof. This follows from Proposition B.2.17.

B.2.5 Vanishing theorems

Kollár’s argument for the projectivity of Mg makes use of the following cohomological
bounds.

Theorem B.2.35. Let X be a smooth projective surface over an algebraically closed
field k which is minimal and of general type. If n ≥ 1, then h1(X,K⊗−n

X ) ≤ 1. If
n > 1 or char(k) ̸= 2, then h1(X,K⊗−n

X ) = 0.

Proof. The characteristic zero version is [Mum67, Thm. 2] while the positive charac-
teristic case is the main theorem of [Eke88].

Corollary B.2.36. Let X be a smooth projective surface over an algebraically closed
field k which is minimal and of general type. Let D be a reduced effective Cartier
divisor such that each connected component of D has genus at least 2. If n ≥ 2, then
h1(X,K⊗n

X (D)) ≤ 1. If n > 2 or char(k) ̸= 2, then h1(X,K⊗n
X (D)) = 0.

Proof. By the short exact sequence 0 → K⊗n
X → K⊗n

X (D) → K⊗n
X (D)|D → 0 and

the inequalities of Theorem B.2.35, it suffices to show that h1(X,K⊗n
X (D)|D) = 0

for n ≥ 2. By adjunction, K⊗n
X (D)|D ∼= ω⊗n

D . Since each connected component of D
has genus at least 2, h1(X,K⊗n

X (D)|D) = h1(D,ω⊗n
D ) = 0.

B.3 Limits of schemes

In moduli theory, we often need to deal with non-noetherian schemes for the simple
reason that moduli functors and stacks are defined over the category of all schemes.
Trying to work instead with the category of locally noetherian schemes has the
limitation that it is not closed under fiber products, while the category of schemes
finite type over a field or Z doesn’t contain local rings of schemes or their completions.
In any case, using the limit methods of this section, it is usually straightforward to
reduce properties of schemes and their morphisms to the noetherian case.
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B.3.1 Existence of limits and noetherian approximation

The limit of an inverse system of schemes with affine transition maps exists.

Proposition B.3.1 (Existence of Limits). If (Sλ, fλµ)λ∈Λ is an inverse system
of schemes with affine transition maps, then the limit S = limλ∈Λ Sλ exists in the
category of schemes such that each morphism fλ : S → Sλ is affine.

Proof. If each Sλ = SpecAλ is affine, one takes S = Spec(colimλAλ). In general,
choose an element 0 ∈ Λ and set S = SpecS0

(colimλ≥0 fλ0,∗OSλ
). Details can be

found in [EGA, IV.8.2] and [SP, Tag 01YX].

Every affine scheme SpecA is the limit of affine schemes SpecAλ of finite type
over Z. This follows from the fact that the ring A is the union of its finitely generated
Z-subalgebras. More generally, we have:

Proposition B.3.2 (Relative Noetherian Approximation). Let X → S be a mor-
phism of schemes with X quasi-compact and quasi-separated and with S quasi-
separated. Then X = limλ∈ΛXλ is a limit of an inverse system (Xλ, fλµ) of schemes
of finite presentation over S with affine transition maps over S.

Proof. See [SP, Tag 09MV]. When S = SpecZ, this is often referred to as Absolute
Noetherian Approximation and was first established in [TT90, Thm. C.9].

Proposition B.3.3 (Descent of Morphisms under Limits). Let S = limλ∈Λ Sλ be a
limit of an inverse system of quasi-compact and quasi-separated schemes with affine
transition maps.

(1) For a finitely presented morphism X → S of schemes, there exists an index
0 ∈ Λ and a finitely presented morphism X0 → S0 of schemes such that
X ∼= X0 ×S0 S. Moreover, if we define Xλ := X0 ×S0 Sλ for λ > 0, then
X = limλ≥0Xλ is the limit of the inverse system (Xλ, fλµ) where the (affine)
transition map fλµ : Xλ → Xµ is the base change of Sλ → Sµ for λ ≥ µ.

(2) Let X0 and Y0 be finitely presented schemes over S0 for some index 0 ∈ Λ.
For λ > 0, set Xλ = X0 ×S0

Sλ and Yλ = Y0 ×S0
Sλ, and let X = limλXλ

and Y = limλ Yλ be the limits (Proposition B.3.1). Then the natural map

colimλ≥0 MorSλ
(Xλ, Yλ)→ MorS(X,Y )

is bijective.

In other words, the category of schemes finitely presented over S is the colimit
of the categories of schemes finitely presented over Sλ.

Proof. See [EGA, IV.8.8] and [SP, Tag 01ZM].

Quasi-coherent sheaves also descend under limits.

Proposition B.3.4 (Descent of Quasi-Coherent Sheaves under Limits). Let (Sλ, fλµ)
be an inverse system of quasi-compact and quasi-separated schemes with affine
transition maps and limit S = limλ∈Λ Sλ. Denote the projection maps by fλ : S → Sλ.

(1) If F is a quasi-coherent OS-module of finite presentation (resp., vector bundle,
line bundle), then there exists an index λ ∈ Λ and an OSλ

module Fλ of finite
presentation (resp., vector bundle, line bundle) such that F ∼= f∗λFλ.
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(2) For an index 0 ∈ Λ, let F0 and G0 be OS0-modules of finite presentation, and
let F and G be the pullbacks to S via f0 and Fλ and Gλ be the pullbacks to Sλ
via f0λ. The natural map

colimλ≥0 HomOSλ
(Fλ, Gλ)→ HomOS

(F,G)

is bijective.
(3) For an index 0 ∈ Λ, let f0 : X0 → Y0 be a finitely presented morphism of

schemes over S0 and let F0 be a quasi-coherent sheaf on X0 of finite presenta-
tion. If the pullback of F0 under X0 ×S0

S → X0 is flat over Y0 ×S0
S, then

the pullback of F0 under X0 ×S0
Sλ → X0 is flat over Y0 ×S0

Sλ for λ≫ 0.

In other words, the category of finitely presented modules over S is the colimit
of the categories of finitely presented modules over Sλ. Note that applying (2) with
F0 = OS0 implies Γ(S, F ) = colimλ≥0 Γ(Sλ, Fλ).

Proof. See [EGA, IV.8.5.2] and [SP, Tags 01ZR, 0B8W, and 05LY].

B.3.2 Descent of properties under limits
Proposition B.3.5 (Descent of Properties of Schemes under Limits). Let S =
limλ Sλ be a limit of an inverse system of quasi-compact and quasi-separated schemes
with affine transition maps. If S is affine (resp., quasi-affine, separated), then so is
Sλ for λ≫ 0.

Proof. See [SP, Tags 01Z6, 086Q, and 01Z5] and [TT90, Props C.6-7].

Definition B.3.6. We say that a property P of morphisms of schemes descends
under limits if for every limit S = limλ∈Λ Sλ of an inverse system of quasi-compact
and quasi-separated schemes with affine transition maps, the following holds: for
every index 0 ∈ Λ, and for every morphism g0 : X0 → Y0 of quasi-compact and
quasi-separated schemes with base changes gλ : Xλ → Yλ over Sλ and g : X → Y
over S, if g has P, then gλ has P for λ≫ 0.

Proposition B.3.7 (Descent of Properties of Morphisms under Limits). The
following properties of morphisms of schemes descend under limits: isomorphism,
closed immersion, open immersion, affine, quasi-affine, finite, quasi-finite, proper,
projective, quasi-projective, separated, monomorphism, surjective, flat, locally of
finite presentation, unramified, étale, smooth, syntomic, and the property that every
fiber is connected and has pure dimension d for a fixed integer d.

Proof. See [EGA, IV 8.10.5] and [SP, Tags 081C and 05M5].

B.3.3 Spreading out and other applications
Limits methods of schemes allows us to ‘spread out’ objects defined over colimits
of rings (e.g., a local ring Rp) to an object defined over a finite type ring (e.g., a
localization Rf ).

Proposition B.3.8 (Spreading out). Let R be a ring and p ⊂ R be a prime ideal.
If X → SpecRp is a finitely presented morphism, there exists an element f /∈ p and
a finitely presented morphism X ′ → SpecRf such that X ∼= X ′ ×Rf

Rp.

Proof. This is a direct consequence of Descent of Morphisms under Limits (B.3.3)
applied to Rp = colimf /∈pRf .
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For example, if Y is an integral scheme with function field K(Y ), every finite
presented scheme defined over K(Y ) can be extended to a scheme defined over
an nonempty open subscheme. Similarly, a finitely presented scheme over the
henselization Rh

p (resp., strict henselization Rsh
p ) as defined in §B.5.3 can be spread

out to a finitely presented scheme X ′ over an étale neighborhood (resp., residually
trivial étale neighborhood) SpecR′ → SpecR of p.

For another typical application of noetherian approximation, we illustrate how
properties of an arbitrary family of curves can be reduced to a family over a
noetherian base.

Proposition B.3.9. Let S be a quasi-compact and quasi-separated scheme (e.g., an
affine scheme), and let C → S be a proper, flat, and finitely presented morphism of
schemes such that every geometric fiber has dimension at most 1. Then there exists
a cartesian diagram

C //

��

C′

��

S // S′

□

where S′ is a scheme of finite type over Z and C′ → S′ is a proper flat morphism
of schemes such that every geometric fiber has dimension at most 1. Moreover, if
C → S is smooth, then C′ → S′ can also be arranged to be smooth.

Proof. Write S = limλ∈Λ Sλ as a limit of an inverse system of schemes of finite
type over Z (Proposition B.3.1). Since C → S is finitely presented, there exists an
index 0 ∈ Λ and a finitely presented morphism C0 → S0 such that C ∼= C0 ×S0

S
(Proposition B.3.3). For each λ > 0, we can define Cλ = C0 ×S0

Sλ and we have a
cartesian diagram

C //

��

Cλ

��

// C0

��

S // Sλ //

□

S0.

□

Since C → S is flat and proper with fiber of dimension at most 1 (resp., smooth),
then there exists λ0 ∈ Λ such that the same is true for Cλ → Sλ for all λ ≥ λ0
(Proposition B.3.7). We now take S′ = Sλ and C′ = Cλ for some λ ≥ λ0.

The upshot is that if we can establish properties of the morphism C′ → S′ of
noetherian schemes and the properties are stable under base change, then they hold
for C → S. In Lemma 5.2.22, we show the same property for nodal families of
curves.

B.4 Pushouts of schemes

Pushouts are the dual notion of fiber products. Unlike fiber products, pushouts may
not always exist. However, Ferrand identified a general situation where they do exist:
one map is a closed immersion and the other is affine. Ferrand pushouts of Artin
rings are especially important in deformation theory such as in the homogeneity
conditions appearing in Rim–Schlessinger’s Criteria (C.4.6) and Artin’s Axioms
for Algebraicity (C.7.4). We also use pushouts to construct the Gluing Morphisms
(5.6.11) between moduli spaces of stable curves.
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B.4.1 Existence of pushouts

Theorem B.4.1 (Ferrand Pushout). Consider a diagram

X0
� � i //

f0

��

X

f

��

Y0
� � j

// Y

(B.4.2)

of schemes where i : X0 ↪→ X is a closed immersion and f0 : X0 → Y0 is affine. If

(⋆) for every point y0 ∈ Y0, there exists an affine open subscheme U ⊂ X with
f−1
0 (y) ⊂ U ∩X0,

then there exists a scheme Y , a closed immersion j : Y0 ↪→ Y , and an affine morphism
f : X → Y of schemes such that (B.4.2) is a pushout. Moreover,

(a) the square (B.4.2) is cartesian, X → Y restricts to an isomorphism X \X0 →
Y \ Y0, and |Y | is identified with the pushout |X|

∐
|X0| |Y0| as a topological

space,
(b) the induced map

OY → j∗OY0
×(j◦f0)∗OX0

f∗OX

is an isomorphism of sheaves, and
(c) if f0 is finite, then so is f . In this case, if X0, X, and Y0 are locally of finite

type over a noetherian scheme, then so is Y .

Proof. See [Fer03, Thm. 5.4 and 7.1], [Art70, Thm. 6.1], and [SP, Tag 0ECH].

We call Y = X
∐
X0
Y0 the Ferrand pushout. Note that if there is a cartesian

diagram of schemes as in (B.4.2) with f : X → Y affine, then condition ((⋆)) is
satisfied.

Remark B.4.3 (Existence of pushouts in general). Condition (⋆) does not always
hold: for example, consider f0 : X0 → Speck and i : X0 ↪→ X, where X is a smooth
proper (but not projective) 3-fold X over an algebraically closed field k such that
there is a set X0 two k-points not contained in an affine. However, the pushout
always exists as an algebraic space and is a pushout in the category of algebraic
spaces.

Example B.4.4 (Affine case). In the affine case where X = SpecA, X0 = SpecA0,
Y0 = SpecB0, then Spec(A×A0

B0) is the pushout X ⨿X0
Y0.

Example B.4.5 (Gluing and pinching). If X0 ↪→ X and X0 ↪→ Y0 are closed
immersions, the pushout X ⨿X0

Y0 can be viewed as the gluing of X and Y0 along
X0. For example, the nodal curve Speck[x, y]/xy is the union of A1 and A1 along
their origins. If X0 = Z ⨿ Z is the union of two isomorphic disjoint subschemes of
X and X0 → Z is the projection, then the pushout X ⨿Z⨿Z Z can be viewed as the
pinching of the two copies of Z in X. For example, the nodal cubic curve is the
pinching of 0 and ∞ in P1.

Exercise B.4.6. If X is the scheme-theoretic union of two closed subschemes Z1

and Z2, show that X = Z1 ⨿Z1∩Z2
Z2.
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Example B.4.7 (Non-noetherianness). When f0 : X0 → Y0 is affine but not finite,
the pushout X⨿X0

Y0 is often not noetherian. For example, if X0 = V (x) ⊂ X = A2
k

and f0 : X0 → Speck, the pushout is the non-noetherian affine scheme defined by

k[x, y]×k[x] k = k[x, xy, xy2, xy3, . . .] ⊂ k[x, y].

On the other hand, we shouldn’t expect a finite type pushout: the y-axis in A2
k

cannot be contracted.

B.4.2 Properties of pushouts
Proposition B.4.8 (Properties of Pushouts). Let X0 ↪→ X be a closed immersion
and X0 → Y0 be an affine morphism of schemes.

(1) If Y ∼= X
∐
X0
Y0 is a Ferrand pushout of schemes, then the natural functor

QCoh(Y )→ QCoh(Y0)×QCoh(X0) QCoh(X),

restricts to an equivalence on the full subcategories of flat O-modules (resp.,
finite type and flat O-modules, finitely presented and flat O-modules).

Consider a commutative cube of schemes

X ′
0

��

xx

� � // X ′

xx

��

X0

��

� � // X

��

Y ′
0
� � //

xx

Y ′

xx
Y0
� � // Y

of schemes where X0 ↪→ X is a closed immersion and X0 → Y0 is affine.
(2) Assume that Y ′ → Y is flat such that X ′

0, Y ′
0 , and X ′ are the base changes.

If Y ∼= X
∐
X0
Y0, then Y ′ ∼= X ′∐

X′
0
Y ′
0 . If Y ′ → Y is fppf, the converse is

true.
(3) If the top and left faces are cartesian, and the front and back faces are Ferrand

pushouts, then all faces are cartesian. Moreover, if Y ′
0 → Y0 and X ′ → X are

étale (resp., smooth), so is Y ′ → Y .
(4) Suppose that Y is defined over a scheme S. Let S′ → S be morphisms of

schemes, and let Y ′, X ′
0, Y ′

0 , and X ′ be the base changes. If X0 → S is flat
and Y ∼= X

∐
X0
Y0, then Y ′ ∼= X ′∐

X′
0
Y ′
0 .

Proof. Parts (1)–(3) follow from [Fer03, Thm. 2.2]; see also [SP, Tag 0D2K] and
[AHLHR22, §4]. Part (4) is elementary: one reduces to the affine case Y =
SpecB0 ×A0

A and S = SpecR, and since A0 is flat over R, the exact sequence
0 → B → A × B0 → A0 → 0 of R-modules remains exact after tensoring with an
R-algebra.

B.5 Completions, henselizations, and Artin Approx-
imation

After reviewing properties of complete, henselian, and strictly henselian local rings,
we discuss Artin Approximation (Theorem B.5.18) which can vaguely formulated

469

http://stacks.math.columbia.edu/tag/0D2K


as: every algebraic object defined over the completion ÔS,s of the local ring of a
finite type scheme S at a point s can be approximated to an object defined over a
residually-trivially étale neighborhood (S′, s′)→ (S, s). While difficult to prove (and
we don’t prove it here!), the statement of Artin Approximation is at least very easy
to digest and teaches us how to think about étale maps. It is a fundamental tool in
local-to-global arguments in moduli theory, but its use can usually be avoided (by
more direct but less conceptual methods).

B.5.1 Complete rings

Definition B.5.1. A ring R is complete with respect to an ideal I if the natural
map

R→ lim←−
n

R/In (B.5.2)

is an isomorphism. The completion with respect to an ideal I of R is defined as

R̂ = lim←−
n

R/In.

More generally, we say that an R-module M is complete if M → lim←−nM/InM is an
isomorphism, and we define the completion of M as M̂ = lim←−nM/InM .

The most important case is when I = m ⊂ R is a maximal ideal.

Caution B.5.3. When R is non-noetherian, the completion of a local ring may
not even be complete; see [SP, Tag 05JC]. In the literature, ‘complete’ sometimes
refers to only the surjectivity of (B.5.2), while ‘separated’ refers to the injectivity,
i.e.,

⋂
n I

n = 0.

The Artin–Rees Lemma plays an important role in establishing basic properties
of complete noetherian local rings.

Lemma B.5.4 (Artin–Rees Lemma). Let R be a noetherian ring, I ⊂ R be an
ideal, M be a finitely generated A-module, and M = M0 ⊃ M1 ⊃ M2 ⊃ · · · be a
stable I-filtration (i.e., IMn =Mn+1 for n≫ 0). If M ′ ⊂M is a submodule, then
M ′ =M ′ ∩M0 ⊃M ′ ∩M1 ⊃ · · · is a stable I-filtration. In particular, there exists
an integer k such that

M ′ ∩ (InM) = In−k(M ′ ∩ (IkM))

for all n ≥ k.

Proof. See [AM69, Prop. 10.9 and Cor. 10.10] and [Eis95, Lem. 5.1].

Proposition B.5.5 (Properties of Noetherian Complete Local Rings). Let (R,m)
be a noetherian local ring.

(1) R̂ is a complete noetherian local ring with maximal ideal m̂ = mR̂ = m⊗R R̂;
(2) m̂n = m̂n and mn/mn+1 = m̂n/m̂n+1;

(3) R→ R̂ is faithfully flat; and

(4) For a finitely generated R-module M , M̂ =M ⊗R R̂.

Proof. See [AM69, Prop. 10.13–16].
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The following provides variants of Nakayama’s lemma that hold for complete
local rings without finite generated hypotheses.

Lemma B.5.6 (Complete Nakayma’s Lemma).
(1) If (A,m) is a complete noetherian local rings and M is a (possibly not finitely

generated) A-module such that
⋂
k m

kM = 0 and m1, . . . ,mn ∈ M generate
M/mM , then m1, . . . ,mn also generate M .

(2) If (A,mA) is a local ring and M → N is a homomorphism of A-modules such
that M/mAM → N/mAN is surjective, then M̂ → N̂ is surjective.

(3) Let (A,mA)→ (B,mB) be a local homomorphism of complete noetherian local
rings such that A/mA ∼= B/mB. If mA/m

2
A → mB/m

2
B is surjective, so is

A→ B. If in addition A = B, then A→ B is an isomorphism.

Proof. For (1) and (2), see [Eis95, Exc. 7.2] and [SP, Tag 0315]. To see (3), (2)
implies that the inclusion mAB ↪→ mA is surjective. Thus, mAB = mA and B is
complete as an A-module with respect to mA. As A/mA → B/mB is surjective,
applying (2) again shows that A→ B is surjective. The final statement follows from
the fact that a surjective endomorphism of a noetherian ring is an isomorphism.

Theorem B.5.7 (Cohen Structure Theorem). If (R,m) is a complete noetherian
local ring containing a field, then R ∼= (R/m)[[y1, . . . , yr]]/J . If in addition R is
regular, then R ∼= (R/m)[[y1, . . . , yr]].

Proof. See [Eis95, Thm. 7.7] and [SP, Tags 032A and 0C0S].

B.5.2 Henselian and strictly henselian local rings
Let (R,m) be a local ring with residue field κ. We will denote the image of a ∈ R
(resp., f ∈ R[x]) as a ∈ κ (resp., f ∈ κ[x]). If f ∈ R[t], we denote its derivative by
f ′ ∈ R[t]. Note that f ′ = f

′
.

Definition B.5.8. Let (R,m) be a local ring with residue field κ.
(1) We say that R is henselian if for every monic polynomial f ∈ R[t], every root

α0 ∈ κ of f with f ′(α0) ̸= 0 lifts to a root α ∈ R of f .
(2) We say that R is strictly henselian if R is henselian and κ is separably closed.

Hensel’s lemma states that every complete DVR R, e.g., Zp, is henselian.

Proposition B.5.9 (Henselian Equivalences). The following are equivalent for a
local ring (R,m) with residue field κ:

(1) R is henselian;
(2) for every polynomial f ∈ R[t], every factorization f = g0h0 with gcd(g0, h0) = 1

lifts to a factorization f = gh with g = g0 and h = h0;
(3) every finite R-algebra is a finite product of local rings finite over R;
(4) every quasi-finite R-algebra A is isomorphic to a product A ∼= B × C where B

is a finite over R and C ⊗R κ = 0;
(5) every étale ring homomorphism ϕ : R→ A and a prime p ⊂ A with ϕ−1(p) = m

and κ = κ(p) has a unique section s : A→ R with s−1(m) = p.
Moreover, R is strictly henselian if and only if for every étale ring homomorphism
ϕ : R→ A and prime p ⊂ A with ϕ−1(p) = m, there is a unique section s : A→ R
with s−1(m) = p.
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Proof. See [EGA, IV.18.5.11], [Mil80, Thm. I.4.2], and [SP, Tag 04GG].

Proposition B.5.10. Let (R,m) be a henselian (resp., strictly henselian) local ring
with residue field κ.

(1) Every finite R-algebra is a product of finite henselian local (resp., strictly
henselian) R-algebras.

(2) Every complete local ring is henselian.
(3) The functor A 7→ A⊗R κ gives an equivalence of categories between finite étale

A-algebras and finite étale κ-algebras.

Proof. See [EGA, IV.18.5.10-15], [Mil80, 4.3-4.5], and [SP, Tag 04GE].

Remark B.5.11. Although it is not used in this text, there is a general notion of
henselian pairs that is sometimes useful. A pair (X,X0) consisting of a scheme X and
a closed subscheme X0 ⊂ X is henselian if every finite morphism f : U → X induces
a bijection ClOpen(U)→ ClOpen(f−1(X0)) between open and closed subschemes of
U and those of f−1(X0). If (R,m) is a henselian local ring, then (SpecR,Spec(R/m))
is a henselian pair by Proposition B.5.9(3). See [EGA, IV.18.5.5] or [SP, Tag 09XD]
for a further discussion and equivalences.

B.5.3 Henselizations and strict henselizations
Definition B.5.12. Let (R,m) be a local ring with residue field κ. The henselization
of R is a local homomorphism R → Rh into a henselian local ring Rh such that
every other local homomorphism R→ A into a henselian local ring factors uniquely
through R→ Rh.

Given a separable closure κ→ κs, the strict henselization of R with respect to κ→
κs is a local homomorphism R→ Rsh into a strictly henselian local ring (Rsh,msh)
inducing κ → κs on residue fields such that every other local homomorphism
R→ A into a strictly henselian local ring (A,mA) factors through R→ Rsh and the
factorization is uniquely determined by the inclusion Rsh/msh → A/mA of residue
fields.

Proposition B.5.13. Let (R,mR) be a local ring with residue field. The henseliza-
tion R→ Rh (resp., strict henselization R→ Rsh) exist and can be constructed as
colimA, where the colimit is taken over all étale local R-algebras A with R/mR ∼=
A/mA (resp., over diagrams R→ A→ (R/mR)

s where (R/mR)
s is a fixed separable

closure of R/mR and A is an étale local R-algebra). Moreover,
(1) the residue fields of Rh and Rsh are R/mR and (R/mR)

s, respectively,
(2) the maps R→ Rh and R→ Rsh are faithfully flat local ring homomorphisms,

and
(3) if R is noetherian, then so is Rh and Rsh.

Proof. See [EGA, IV.18.5-8], [Mil80, I.4], and [SP, Tags 0BSK and 07QL].

For a scheme X and a point x ∈ X with a choice of separable closure κ(x)→ κs,
the henselization Oh

X,x and strict henselization Osh
X,x are the colimits of Γ(U,OU )

taken over diagrams

Specκ(x) //

x

$$

U

ét

��

X

and

Specκ(x)s //

��

U

ét

��

Specκ(x)
x // X,
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where U → X is étale. We can view Oh
X,x and Osh

X,x as local rings in the étale
topology.

B.5.4 Néron–Popescu Desingularization
Artin Approximation (B.5.18) is closely related to Néron–Popescu Desingularization
(B.5.15), another equally deep and powerful theorem. We do not attempt to
prove Néron–Popescu Desingularization, but we do show how it implies Artin
Approximation.

Definition B.5.14. A ring homomorphism A → B of noetherian rings is called
geometrically regular if A → B is flat and for every prime ideal p ⊂ A and every
finite field extension κ(p)→ κ′ (where κ(p) = Ap/p), the fiber B ⊗A κ′ is regular.

If A → B is of finite type, then A → B is geometrically regular if and only
if SpecB → SpecA is smooth (Theorem A.3.1). A k-algebra B is geometrically
regular if and only if A⊗k k′ is regular for every field extension (equivalently, for
every finite purely inseparable extension) k → k′; see [EGA, IV2.6.7.8], [Mat89,
Thm. 23.7], or [SP, Tag 0381]. Note that a field extension is separable if and only if
it is geometrically regular.

Theorem B.5.15 (Néron–Popescu Desingularization). A homomorphism A→ B
of noetherian rings is geometrically regular if and only if there is a directed system
Bλ of smooth A-algebras over a directed set Λ such that B = colimBλ∈Λ.

Proof. This result was proved by Néron in [Nér64] in the case of DVRs and in
general by Popescu in [Pop85], [Pop86], and [Pop90]. We recommend [Swa98] and
[SP, Tag 07GC] for expositions.

Definition B.5.16. A noetherian local ring A is a G-ring if the homomorphism
A→ Â is geometrically regular.

One of the defining properties of an excellent scheme is that the local rings are
G-rings. Fortunately, most local rings that we care about in algebraic geometry are
G-rings.

Theorem B.5.17. The localization of a finitely generated algebra over a field or Z
is a G-ring.

Proof. While substantially easier than Néron–Popescu Desingularization, this result
also requires some effort. See [EGA, IV.7.4.4] or [SP, Tag 07PX].

B.5.5 Artin Approximation
Recall from Definition A.1.4 that a contravariant functor F : Sch/S → Sets is limit
preserving (or locally of finite presentation) if colimF (Aλ)

∼→ F (colimAλ) for all
inverse systems {SpecAλ} over S. When F is representable by X, this is equivalent
to X → S being of locally of finite presentation.

Theorem B.5.18 (Artin Approximation). Let S be a scheme and s ∈ S be a point
such that OS,s is a G-ring (Definition B.5.16), e.g., a scheme of finite type over a
field or Z. Let

F : Sch/S → Sets

be a limit preserving contravariant functor and ξ̂ ∈ F (Spec ÔS,s). For every integer
N ≥ 0, there exists an étale morphism (S′, s′) → (S, s) with κ(s) = κ(s′) and an

473

http://stacks.math.columbia.edu/tag/0381
http://stacks.math.columbia.edu/tag/07GC
http://stacks.math.columbia.edu/tag/07PX


object ξ′ ∈ F (S′) such that the restrictions of ξ̂ and ξ′ to Spec(OS,s/mN+1
s ) are

equal.

The restriction ξ′ to Spec(OS,s/mN+1
s ) is well-defined because of the identification

OS,s/mN+1
s

∼= OS′,s′/m
N+1
s′ . It is not possible in general to find ξ′ ∈ F (S′) that

precisely restricts to ξ̂, or even such that the restrictions of ξ′ and ξ̂ to SpecOS,s/mn+1
s

agree for all n ≥ 0. For instance, consider F = Mor(−,A1) and a non-algebraic
power series ξ̂ ∈ ÔA1,0.

Proof. The theorem was originally proven in [Art69a, Cor. 2.2] in the case that S is of
finite type over a field or an excellent dedekind domain. We also recommend [BLR90,
§3.6] for an accessible account of the case of excellent and henselian DVRs. We
prove only how Artin Approximation follows from Néron–Popescu Desingularization
(B.5.15). By Néron–Popescu, we may write ÔS,s = colimλ∈ΛBλ as a directed
colimit of smooth OS,s-algebras. Since F is limit preserving, there exists λ ∈ Λ, a
factorization OS,s → Bλ → ÔS,s, and an element ξλ ∈ F (SpecBλ) whose restriction
to F (Spec ÔS,s) is ξ̂. Letting B = Bλ and ξ = ξλ, we have a commutative diagram

Spec ÔS,s
g
//

ξ̂

''

&&

SpecB

��

ξ
// F

SpecOS,s

where SpecB → SpecOS,s is smooth. We claim that we can find a commutative
diagram

S′

$$

� � // SpecB

��

SpecOS,s

(B.5.19)

where S′ ↪→ SpecB is a closed immersion, (S′, s′) → (SpecOS,s, s) is étale with
κ(s) = κ(s′) such that SpecOS,s/mN+1

s → S′ → SpecB agrees with the restric-
tion of g : Spec ÔS,s → SpecB.5 To see this, since ΩB/OS,s

is a locally free B-
module, after replacing SpecB with an affine open neighborhood of g(s), we may
assume that ΩB/OS,s

is free with basis db1, . . . , dbr. This induces a homomorphism
OS,s[x1, . . . , xr]→ B defined by xi 7→ bi and provides a factorization

SpecB → ArOS,s
→ SpecOS,s

such that SpecB → ArOS,s
is étale. Choosing a lift of the composition

OS,s

��

OS,s[x1, . . . , xr] //

33

B // ÔS,s // OS,s/mN+1
s

5This is where the approximation occurs. It is not possible to find a an étale map S′ →
SpecB → SpecOS,s such that Spec ÔS,s → S′ → SpecB is equal to g.
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defines a section s : SpecOS,s → ArOS,s
and we define S′ as the fibered product

S′
� _

��

// SpecOS,s� _

s

��

SpecB //

□

ArOS,s
.

This gives the desired diagram (B.5.19), and the composition ξ′ : S′ → SpecB
ξ−→ F

is an element which agrees with ξ̂ up to order N . Finally, we use limit methods
to ‘spread out’ the étale map (S′, s′) → (SpecOS,s, s) and element ξ′ ∈ F (S′) to
an étale map (S′′, s′′)→ (S, s) and an element ξ′′ ∈ F (S′′). Assuming S = SpecA
is affine and writing OS,s = colimg/∈ms

Ag, we may use Propositions B.3.3, B.3.5
and B.3.7 (or a direct argument) to construct g /∈ ms and an étale affine morphism
S′′ → SpecAg such that S′′×Ag

Ams
∼= S′. As F is limit preserving and Γ(S′,OS′) =

colimh/∈ms
Γ(S′′

h ,OS′′
h
), after replacing g with hg for some h /∈ ms, we can find an

element ξ′′ ∈ F (S′′) restricting to ξ′ and, in particular, agreeing with ξ̂ up to order
N .

Exercise B.5.20 (Alternative formulations). Let (A,m) be a henselian local G-ring.

(1) Let f1, . . . , fm ∈ A[x1, . . . , xn] and â = (â1, . . . , ân) ∈ Â⊕n be a solution. Show
that for every N ≥ 0, there is a solution a = (a1, . . . , an) ∈ A⊕n such that
a ∼= â mod mN+1.

Hint: Apply Artin Approximation to the functor representing SpecA[x1, . . . , xn]/(f1, . . . , fm).
(2) Show that (1) implies Artin Approximation.

Hint: Use that F is limit preserving to find a finitely generated A-subalgebra
B ⊂ ÔS,s and an element ξ ∈ F (B) restricting to ξ̂.

B.5.6 A first application of Artin Approximation
Two pointed schemes with isomorphic completions have isomorphic étale neighbor-
hoods.

Corollary B.5.21. Let X and Y be schemes of finite type over a scheme S and let
s ∈ S be a point such that OS,s is a G-ring. If x ∈ X and y ∈ Y are points over
s such that ÔX,x and ÔY,y are isomorphic as OS-algebras, then there exists étale
morphisms

(U, u)

##{{

(X,x) (Y, y)

with κ(x) = κ(u) = κ(y).

Proof. The functor

F : Sch/X → Sets, (T → X) 7→ MorS(T, Y )

is limit preserving as it can be identified with the representable functor MorX(−, Y ×S
X). The isomorphism ÔX,x ∼= ÔY,y gives an element of F (Spec ÔX,x). Applying
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Artin Approximation with N = 1 yields an étale map (U, u)→ (X,x) with κ(x) =
κ(u) and a map (U, u)→ (Y, y) such that OY,y/m2

y → OU,u/m2
u is an isomorphism.

Since ÔU,u is abstractly isomorphic to ÔY,y, Complete Nakayama’s Lemma (B.5.6(3))
implies that ÔY,y → ÔU,u is an isomorphism. This further implies that U → Y is
étale at u and the statement follows after replacing U with an open neighborhood
of u. See also [SP, Tag 0CAV].

If ϕ : ÔY,y
∼→ ÔX,x is a specified isomorphism, it is not always possible to find

étale neighborhoods (U, u)→ (X,x) and (U, u)→ (Y, y) such that the composition
ÔY,y ∼= ÔU,u ∼= ÔX,x agrees with ϕ.
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Appendix C

Deformation theory

Deformation theory is the study of the local geometry of a moduli spaceM near an
object E0 ∈M(k). We focus primarily on the following three deformation problems:
(A) Embedded deformations of a closed subscheme Z0 in a fixed projective scheme

X over k. Here the moduli problem is the Hilbert functor HilbP (X) and the
object is E0 = [Z0 ⊂ X] ∈ HilbP (X)(k).

(B) Deformations of a scheme E0 over k. The motivating example for us is
when E0 is a smooth curve, in which case the moduli problem is Mg and
[E0] ∈Mg(k), or more generally when E0 is a proper curve, in which case the
moduli problem is the stack Mall

g of all curves.
(C) Deformations of a coherent sheaf E0 on a fixed projective scheme X over k.

The moduli problem is Coh(X) and [E0] ∈ Coh(X)(k).
Deformation theory provides a local-to-global perspective of moduli. By zooming

in around E0 ∈M(k), we studying successively first-order neighborhoods ofM at
E0, higher-order deformations of E0, formal neighborhoods of E0, and finally étale
or smooth neighborhoods of E0. Before getting started, we give a quick overview of
the seven sections of this appendix.

(1) A first-order deformation of E0 is an object E ∈M(k[ϵ]) over the dual numbers
k[ϵ] := k[ϵ]/(ϵ2) together with an isomorphism α : E0 → E|Spec k, or in other
words a commutative diagram

Speck

[E0]
%%

� � // Speck[ϵ]

[E]

��

M,

allowing us to view E as a tangent vector of M at E0. We classify first-order
deformations of Problems (A)–(C) in §C.1.

(2) Given a surjection A′ ↠ A of artinian local k-algebras with residue field k and
an object E ∈ M(A) with an isomorphism E0 → E|Spec k, a deformation of
E over A′ is an object E′ ∈ M(A′) with an isomorphism α : E → E′|SpecA.
Pictorially, this corresponds to a commutative diagram

Speck

[E0]
**

� � // SpecA �
�

//

[E]

%%

SpecA′

[E′]

��

M.
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In §C.2, for Problems (A)–(C), we determine the obstruction for the existence
of a deformation E′ of E over A′, and we classify all such deformations in the
case that there is no obstruction.

These first two sections are essential for our study of Mg and Bun(C), e.g., for
establishing smoothness and computing their dimensions; see Theorem 5.4.14. Since
the study of deformation theory is inextricably connected to stacks and moduli, we
have included §C.3 - C.7 for completeness.

(3) In §C.3, we offer a survey of the cotangent complex, and in particular how
it governs infinitesimal deformation theory, recovering some of the results of
§C.1-C.2.

(4) Given a complete noetherian local k-algebra (R,m), a formal deformation of
E0 over R is a compatible collection of deformations En ∈M(R/mn+1) of E0,
and a formal deformation {En} is versal if every deformation over a thickening
of artin rings factors through one of the En (see Definition C.4.2 for a precise
definition). Rim–Schlessinger’s Criteria (Theorem C.4.6) provides criteria for
the existence of a versal deformation {En} of E0, and in §C.4 we verify the
criteria for the Problems (A)–(C).

(5) A formal deformation {En} over (R,m) is effective if there exists an object
Ê ∈M(R) extending the {En}, or in other words there exists a commutative
diagram

SpecR/m

[E0]
..

� � // SpecR/m2

[E1]

..

� � // SpecR/m3

[E2]

))

� � // · · · �
�

// SpecR

[Ê]

��

M.

In §C.5, we prove Grothendieck’s Existence Theorem (C.5.3) and show how it
implies that formal deformations are effective for Problems (A)–(C).

(6) Given an effective versal formal deformation Ê over R, Artin Algebraization
(C.6.8) ensures the existence of a finite type k-scheme U with a point u ∈
U(k) and an object E ∈ M(U) such that R ∼= ÔU,u and Ê|SpecR/mn+1

∼=
E|SpecR/mn+1 for all n.

(7) Artin’s Axioms for Algebraicity (C.7.1 and C.7.4) provide criteria to verify the
algebraicity of a moduli problem M. Namely, it provides conditions to ensure
that the morphism [E] : U →M constructed above is a smooth morphism in
an open neighborhood of E0.

For additional algebraic treatments of deformation theory, we recommend [Art76],
[Kol96, §I.2], [Vis97], [FGI+05, §6], [Ser06], [Nit09], [Har10], and [SP, Tag 0ELW].
We also recommend [Kod86] for deformations of manifolds, and [Ill71, Ill72] for an
exhaustive treatment of the cotangent complex.

C.1 First order deformations
For a field k, denote the dual numbers by k[ϵ] := k[ϵ]/(ϵ2).

C.1.1 First order embedded deformations
Definition C.1.1. Let X be a projective scheme over a k and Z0 ⊂ X be a
closed subscheme. A first-order deformation of Z0 ⊂ X is a closed subscheme
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Z ⊂ Xk[ϵ] := X ×k k[ϵ] flat over k[ϵ] such that Z0 = Z ×k[ϵ] k. Pictorially, a
first-order deformation is a filling of the diagram

X

��

� � // Xk[ϵ]

��

Z0

, �

cl
::

$$

� � // Z
+ �

cl
99

flat

%%

Speck �
�

// Speck[ϵ].

with a scheme Z flat over k[ϵ] and dotted arrows making the diagram cartesian.

Note that since both Z0 and the central fiber Z ×k[ϵ] k of Z are embedded in X,
it makes sense in the definition to require that they are equal. We say that Z ⊂ Xk[ϵ]
is trivial if Z = Z0 ×k k[ϵ].

Remark C.1.2. The closed subscheme Z0 ⊂ X defines a k-point [Z0 ⊂ X] ∈
HilbP (X) of the Hilbert scheme, where P is the Hilbert polynomial of Z0 with
respect to a fixed ample line bundle on X. A first-order deformation corresponds to
a commutative diagram

Speck
[Z0⊂X]

//
� _

��

HilbP (X)

Speck[ϵ],
[Z⊂Xk[ϵ]]

88

or in other words a tangent vector [Z ⊂ Xk[ϵ]] ∈ THilbP (X),[Z0⊂X].

Proposition C.1.3. Let X be a scheme over a k and Z0 ⊂ X be a closed subscheme
defined by a sheaf of ideals I0 ⊂ OX . There is a bijection

{first-order deformations Z ⊂ Xk[ϵ]} ∼= H0(Z0, NZ0/X)

where NZ0/X = H omOZ0
(I0/I

2
0 ,OZ0

) is the normal sheaf. Under this correspon-
dence, the trivial deformation corresponds to 0 ∈ H0(Z0, NZ0/X).

Remark C.1.4. In light of Remark C.1.2, this proposition gives a bijection
THilbP (X),[Z0⊂X]

∼= H0(Z0, NZ0/X).

Proof. We first handle the case when X = SpecB and Z0 = SpecB/I0, and show
that the set of first-order deformations is bijective to

H0(Z0, NZ0/X) ∼= HomB/I0(I0/I
2
0 , B/I0)

∼= HomB(I0, B/I0).

Given a first-order deformation Z = SpecB[ϵ]/I, the flatness of Z over k[ϵ] implies
that tensoring the exact sequence 0 → I → B[ϵ] → B[ϵ]/I → 0 of k[ϵ]-modules
with k = k[ϵ]/(ϵ) yields an exact sequence 0 → I0 → B → B/I0 → 0. We define
α : I0 → B/I0 as follows: for x0 ∈ I0, choose a preimage x = a + bϵ ∈ I and set
α(x0) := b ∈ B/I0. Conversely, given a B-module homomorphism α : I0 → B/I0,
we define

I = {a+ bϵ | a ∈ I0, b ∈ B such that b = α(a) ∈ B/I0} ⊂ B[ϵ].
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Then (B[ϵ]/I)⊗k[ϵ] k = B/I0. To see that B[ϵ]/I is flat over k[ϵ], it suffices by the
flatness criterion for the dual numbers (see Remark A.2.7) to check that the map
B/I0

ϵ−→ B[ϵ]/I is injective: given b ∈ B with bϵ ∈ I, then b ∈ I0 by the definition
of I. Thus Z = SpecB[ϵ]/I defines a first-order deformation of Z0. For a general
k-scheme X, after choosing an affine cover {Ui}, one checks that the bijections
between deformations of Ui and H0(Ui ∩Z0, NUi∩Z0/Ui

) glue to the desired bijection.
See also [Art76, Thm. 6.1], [Kol96, Thm. 2.8], [Ser06, Prop. 3.2.1], [Har10, Prop. 2.3]
for details.

C.1.2 Locally trivial first-order deformations of schemes

Definition C.1.5. Let X0 be a scheme over a field k. A first-order deformation of
X0 is a scheme X flat over k[ϵ] together with an isomorphism α : X0 → X ×k[ϵ] k,
or in other words a cartesian diagram

X0

��

� � // X

flat

��

Speck �
�

// Speck[ϵ].

□ (C.1.6)

A morphism of first-order deformations (X,α) and (X ′, α′) is a morphism
β : X → X ′ of schemes over k[ϵ] such that (β ×k[ϵ] k) ◦ α = α′, or in other words
considering X and X ′ in cartesian diagrams (C.1.6), we require the restriction of β
to central fiber X0 to be the identity.

We say that X is trivial if X is isomorphic to X0×kk[ϵ] as first-order deformations
and locally trivial if there exists a Zariski-cover X =

⋃
i Ui such that Ui is a trivial

first-order deformation of Ui ×k[ϵ] k ⊂ X0.

Every morphism of deformations is necessarily an isomorphism. This is a
consequence of the following algebraic fact.

Lemma C.1.7. Let A be a ring, m ⊂ A be a nilpotent ideal (e.g., (A,m) is an
artinian local ring), and M → N be a homomorphism of A-modules. Assume that
N is flat over A. If M/mM → N/mN is an isomorphism, so is M → N .

Proof. If C := coker(M → N), then C/mC = coker(M/mM → N/mN) = 0. As
mn = 0 for some n, we obtain that C = mC = m2C = · · · = mnC = 0. If
K := ker(M → N), then the flatness of N implies that K/mK = ker(M/mM →
N/mN) = 0. Thus K = mK = · · · = mnK = 0, and we see that M → N is an
isomorphism.

Proposition C.1.8. Every first-order deformation of a smooth affine scheme X0

over k is trivial. In other words, X0 is rigid.

Proof. Let X be a first-order deformation of X0. Since X0 → Speck is smooth, we
may apply the Infinitesimal Lifting Criterion for Smoothness (A.3.1) to construct a
lift X → X0 making the diagram

X0� _

��

id // X0

smooth

��

X //

;;

Speck

480



commute. This induces a morphism X → X0 ×k k[ϵ] over k[ϵ] which restricts to
the identity on X0, and thus is an isomorphism by Lemma C.1.7. See also [Har77,
Exc. II.8.7].

If X0 is not smooth or affine, then first-order deformations are not necessarily
trivial. For example, if X0 = Speck[x, y]/(xy) is the nodal affine plane curve, then
X = Speck[x, y, ϵ]/(xy − ϵ)→ Speck[ϵ] is a non-trivial first-order deformation. On
the other hand, considering an elliptic curve E0 = V (y2z − x(x− z)(x− λz)) ⊂ P2

for λ ̸= 0, 1,
Eα = V (y2z − x(x− z)(x− (λ+ αϵ)z)) ⊂ P2

k[ϵ] (C.1.9)

defines a first-order deformation of E0 for every α ∈ k, and the assignment α 7→ Eα
defines a bijection between k and the set of isomorphism classes of first-order defor-
mations; this follows from Proposition C.1.11 since H1(E0, TE0

) = H1(E0,OE0
) = k.

In fact, the same formula (C.1.9) defines a global deformation of E0 over A1 with
two singular fibers.

To get a handle on locally trivial deformations, we need to understand automor-
phisms of the trivial deformation.

Lemma C.1.10. Let X0 = SpecA be an affine scheme over k and X = SpecA[ϵ]
be the trivial first-order deformation. There are identifications

{automorphisms X → X of first-order defs} ∼= Derk(A,A) ∼= HomA(ΩA/k, A).

Proof. The second equivalence is given by the universal property of the module
of differentials. An automorphism of X (as a first-order deformation) corresponds
to a k[ϵ]-algebra isomorphism ϕ : A ⊕ Aϵ → A ⊕ Aϵ which is the identity modulo
ϵ. Therefore, ϕ is determined by the images ϕ(a) = a + d(a)ϵ of elements a ∈ A
where d : A→ A is k-linear map. The map ϕ is a ring homomorphism if and only if
aa′+d(aa′)ϵ = (a+d(a)ϵ)(a′+d(a′)ϵ) = aa′+(ad(a′)+a′d(a))ϵ for elements a, a′ ∈ A,
which this translates into the condition that d : A→ A is a k-derivation.

For a schemeX0 over k, let Def(X0) and Def lt(X0) denote the sets of isomorphism
classes of first-order and locally trivial first-order deformations.

Proposition C.1.11. For a scheme X0 of finite type over k with affine diagonal,
there is a bijection

Def lt(X0) ∼= H1(X0, TX0
),

where TX0 = H omOX0
(ΩX0/k,OX0). The trivial deformation corresponds to 0 ∈

H1(X0, TX0
). If in addition X0 is smooth over k, there is a bijection

Def(X0) ∼= H1(X0, TX0).

Proof. Let X → Speck[ϵ] be a locally trivial first-order deformation of X0. Choose
an affine cover {Ui} of X0 and isomorphisms ϕi : Ui×k k[ϵ]

∼→ X ∩Ui. Letting Uij =
Ui ∩Uj , we have automorphisms ϕ−1

j |Uij×kk[ϵ] ◦ ϕi|Uij×kk[ϵ] of the trivial deformation
Uij ×k k[ϵ], which corresponds by Lemma C.1.10 to elements ϕij ∈ TX0(Uij). Since
ϕij ◦ ϕjk = ϕik on Uijk := Ui ∩ Uj ∩ Uk, we have that ϕij + ϕjk = ϕik ∈ TX0(Uijk).
Recall that H1(X0, TX0

) can be computed using the Čech complex

0 //
⊕

i TX0(Ui)
d0 //
⊕

i,j TX0(Uij)
d1 //

⊕
i,j,k TX0(Uijk)

(sij)
� // (sij |Uijk

− sik|Uijk
+ sjk|Uijk

)ijk
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As {ϕij} ∈
⊕

i,j TX0(Uij) is in the kernel of d1, it defines an element of H1(X0, TX0) =

ker(d1)/ im(d0). Conversely, given an element of H1(X0, TX0
) and a choice of

representative {ϕij} ∈ ker(d1), then viewing each ϕij as an automorphism of the
trivial deformation of Uij , we may glue together the trivial deformations Ui ×k k[ϵ]
along Uij ×k k[ϵ] via ϕij to construct a global first-order deformation X of X0. The
final statement follows as all first-order deformations are locally trivial when X0 is
smooth (Proposition C.1.8). See also [Har77, Exc. III.4.10 and Ex. III.9.13.2].

Remark C.1.12. More generally, if X0 is generally smooth and a local complete
intersection over k, then

Def(X0) = Ext1OX0
(ΩX0

,OX0
).

Exercise C.1.13 (good practice).

(1) Show that there is a bijection Def(k[x, y]/(xy)) ∼= k, where an element t ∈ k
corresponds to the first-order deformation Speck[x, y, ϵ]/(xy − tϵ).

(2) Classify first-order deformations of the Ak-singularity k[x, y]/(y2 − xk+1).

Example C.1.14. If C is a smooth projective curve of genus g ≥ 2, then

TMg,[C] = H1(C, TC)
SD
= H0(C,Ω⊗2

C/k),

which by Riemann–Roch is a 3g − 3 dimensional vector space.

Exercise C.1.15 (easy). Use the Euler exact sequence to show that H1(Pn, TPn) = 0
and conclude that every first-order deformation of Pn is trivial, i.e., Pn is rigid.

Exercise C.1.16 (moderate). Let C0 be a smooth and proper curve over k with
marked points p1, . . . , pn ∈ C0(k). Let Def(C0, pi) denote the set of first-order
deformations of (C0, pi), i.e., flat morphisms C → Speck[ϵ] with n sections σi
extending (C0, pi). Show that

Def(C0, pi) ∼= H1
(
C0, TC0

(−
∑
i

pi)
)
.

C.1.3 First order deformations of vector bundles and coherent
sheaves

Definition C.1.17. Let X be a scheme over k and E0 be a coherent sheaf. A
first-order deformation of E0 is a pair (E,α) where E is a coherent sheaf on X×kk[ϵ]
flat over k[ϵ] and α : E0

∼→ E|X is an isomorphism. Pictorially, we have

E0 E
flat/k[ϵ]

X
� � // Xk[ϵ].

A morphism (E,α)→ (E′, α′) of first-order deformations is a morphism β : E →
E′ (equivalently an isomorphism by Lemma C.1.7) of coherent sheaves on X ′ such
that α′ = β|X ◦ α. We say that (E,α) is trivial if it isomorphic as first-order
deformations to (p∗E0, id) where p : Xk[ϵ] → X.

482



Proposition C.1.18. Let X be a scheme over k and E0 be a coherent sheaf. There
is a bijection

{first-order deformations (E,α) of E0}/∼ ∼= Ext1OX
(E0, E0).

Under this correspondence, the trivial deformation corresponds to 0 ∈ Ext1OX
(E0, E0).

If in addition E0 is a vector bundle (resp., line bundle), then each first-order
deformation is a vector bundle (resp., line bundle), and the set of isomorphism
classes of first-order deformations of E0 is bijective to H1(X,E ndOX

(E0)) (resp.,
H1(X,OX)).

Proof. If (E,α) is a first-order deformation, then since E is flat over k[ϵ], we may
tensor the exact sequence 0→ k ϵ−→ k[ϵ]→ k→ 0 of k[ϵ]-modules with E to obtain
an exact sequence 0→ E0

ϵ−→ E → E0 → 0 (after identifying E ⊗k[ϵ] k with E0 via
α). Since Ext1OX

(E0, E0) parameterizes isomorphism classes of extensions [Har77,
Exc. III.6.1], we have constructed an element of Ext1OX

(E0, E0). Conversely, given
an exact sequence 0→ E0

α−→ E → E0 → 0, then E is a coherent sheaf on Xk[ϵ] and
is flat over k[ϵ] by the flatness criterion over the dual numbers (see Remark A.2.7).
The restriction E|X is isomorphic to E0 via α. See also [Har10, Thm. 2.7].

Remark C.1.19. The classifications of Proposition C.1.3, C.1.11, and C.1.18
give a vector space structure to the set of isomorphism classes of first-order defor-
mations. This vector space structure can also be witnessed as a consequence of
Rim–Schlessinger’s homogeneity condition; see Lemma C.4.9. For each case, the
operations of scalar multiplication and addition afford geometric descriptions.

C.2 Higher-order deformations and obstructions
LetM be a moduli problem, E ∈M(A) be an object defined over a ring A, and let
A′ ↠ A be a surjection of rings with square-zero kernel. This section addresses the
following two questions:

(1) Does E deform to an object E′ ∈M(A′)?
(2) If so, can we classify all such deformations?

Pictorially, we have:
E E′

SpecA �
�

// SpecA′.

Note that since J = ker(A′ → A) is square-zero, J = J/J2 is naturally a module
over A = A′/J . Question (1) asks whether there is an ‘obstruction’ to the existence
of a deformation E′ while (2) seeks to classify all higher-order deformations given
that there is no obstruction.

An interesting case is when A and A′ are local artinian algebras with residue
field k and the kernel J = ker(A′ → A) satisfies mA′J = 0 (which implies that
J2 = 0). In this case, J = J/mA′J is naturally a vector space over k = A′/mA′ .
Setting E0 := E|k ∈ M(k), we can view E as a deformation over E0 over A, and
we are attempting to classify the higher-order deformations over A′. If there are no
obstructions to deforming, then the Infinitesimal Lifting Criterion for Smoothness
(3.7.1) implies thatM is smooth at [E0].

The previous section studied the specific case when A = k and A′ = k[ϵ] in
which case deformations of an object E0 ∈M(k) over A′ correspond to first-order
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deformations. In this case, the obstruction vanishes as there is always the trivial
deformation (i.e., the pullback of E0 along Speck[ϵ]→ Speck). Other examples of
A′ → A to keep in mind are k[x]/xn+1 ↠ k[x]/xn and Z/pn+1 ↠ Z/pn where we
inductively attempt to deform E0 over the nilpotent thickenings Speck[x]/xn+1 ↪→ A1

and SpecZ/pn+1 ↪→ SpecZ.

C.2.1 Higher-order embedded deformations

Definition C.2.1. Let A′ ↠ A be a surjection of rings. Let X ′ be a scheme over
A′ and set X := X ′ ×A′ A. Let Z ⊂ X be a closed subscheme flat over A. A
deformation of Z ⊂ X over A′ is a closed subscheme Z ′ ⊂ X ′ flat over A′ such that
Z ′ ×A′ A = Z as closed subschemes of X. Pictorially, a deformation is a filling of
the cartesian diagram

X

��

� � // X ′

��

Z
, �

cl
99

flat

$$

� � // Z ′ +
�

cl
99

flat

%%

SpecA �
�

// SpecA′.

The formulation of the next proposition uses the following notion: a torsor of an
abstract group G is set with a free and transitive of G.

Proposition C.2.2. Let X be a scheme over k with affine diagonal (e.g., separated).
Let A′ ↠ A be a surjection of artinian k-algebras with residue field k such that
mA′J = 0 where J = ker(A′ → A). Let Z ⊂ XA be a closed subscheme flat over A,
and let Z0 = Z ×A k. Then

(1) If there exists a deformation Z ′ ⊂ XA′ of Z ⊂ XA over A′, then the set of
such deformations is a torsor under Ext0OX

(IZ0 ,OZ0 ⊗k J).

(2) There exists an element obZ ∈ Ext1OX
(IZ0 ,OZ0 ⊗k J) (depending on Z and

A′ ↠ A) such that there exists a deformation of Z ⊂ X over A′ if and only if
obZ = 0.

More generally, if A′ ↠ A is a surjection of k-algebras with square-zero kernel J ,
then deformations and obstructions of Z ⊂ XA are classified by ExtiOXA

(IZ ,OZ⊗AJ)
for i = 0, 1.

Note that if Z0 ⊂ X is a local complete intersection, then IZ0/IZ0 is a vector
bundle and ExtiOX

(IZ0
,OZ0

⊗k J) = Hi(Z0,NZ0/X ⊗k J).

Proof. We first handle the affine case. Write X = SpecB0, X = SpecB, X ′ =
SpecB′, Z = SpecB/I, and Z0 = SpecB0/I0. If there exists a deformation Z ′ =
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SpecB′/I ′, then there is an exact diagram

0

��

0

��

0

��

0 // I ⊗A J //

��

I ′ //

��

I //

��

0

0 // B ⊗A J //

��

B′ //

��

B //

��

0

0 // (B/I)⊗A J //

��

B′/I ′ //

��

B/I //

��

0

0 0 0

The exactness of the bottom row (resp., middle row) is equivalent to the flatness
of B′/I ′ (resp., B′) over A′ by the Local Criterion of Flatness (A.2.6), while the
exactness of the left column follows from the flatness of B/I over A. Conversely, an
exact diagram defines a deformation Z ′ = SpecB′/I ′.

We will define an action HomB(I, (B/I)⊗A J) on the set of deformations. Given
ϕ ∈ HomB(I, (B/I) ⊗A J) and a deformation Z ′ = SpecB′/I ′, define I ′′ ⊂ B′ as
the set of elements x′′ ∈ B′ with the following property: the image x′′ ∈ B of
x′′ lies in I and if x′ ∈ I ′ is a lifting of x′′ ∈ I, the image of x′′ − x′ ∈ B ⊗A J
in (B/I) ⊗A J is equal to ϕ(x′′) (noting that this condition is independent of
the choice of lifting x′). One checks that SpecB′/I ′′ is another deformation. On
the other hand, given two deformations defined by ideals I ′ and I ′′, we define
ϕ : I → (B/I) ⊗A J by ϕ(x) = x′′ − x′, where x′ ∈ I ′ and x′′ ∈ I ′′ are lifts of x
(which forces x′′−x′ ∈ B⊗A J). One checks that this is a B-module homomorphism
providing an inverse to the above construction. Since J is a k-vector space, there is an
identification HomB(I, (B/I)⊗A J) = HomB0

(I0, B0/I0⊗k J), and this construction
globalizes to X to establish (1).

We will prove (2) under the hypothesis that there is an open cover {Ui} of X
and deformations Z ′

i ⊂ XA′ ∩ Ui of Z ∩ Ui ↪→ XA ∩ Ui over A′. This is satisfies if
Z0 ↪→ X is a local complete intersection; see [Kol96, Lem. 2.12]. The restrictions
Z ′
i ∩ Uij and Z ′

j ∩ Uij are related by an element ϕij ∈ H0(Uij , NZ0/X ⊗A J) which
in turn defines a Čech 1-cocycle (ϕij) ∈ H1(X,NZ0/X ⊗A J). We leave the reader
to check that the vanishing of (ϕij) characterizes whether there is a deformation of
Z ⊂ XA over A′. See also [FGAIII, §5], [Art69b, Lem. 6.7], [Kol96, Prop. 2.5], and
[Har10, Thm. 6.2].

C.2.2 Higher-order deformations of schemes

Definition C.2.3. Let A′ ↠ A be a surjection of rings and X → SpecA be a flat
morphism of schemes. A deformation of X → SpecA over A′ is a flat morphism
X ′ → SpecA′ together with an isomorphism α : X

∼→ X ′ ×A′ A over A, or in other
words a cartesian diagram

X

flat

��

� � // X ′

flat

��

SpecA �
�

// SpecA′.

□
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A morphism of deformations over A′ is a morphism of schemes over A′ restricting
to the identity on X. By Lemma C.1.7, every morphism of deformations is an
isomorphism.

Proposition C.2.4 (Higher-order Deformations of Complete Intersections). Let
X0 be a scheme of finite type over a field k such that X0 is generically smooth and
a local complete intersection. Let A′ ↠ A be a surjection of noetherian local rings
with residue field k such that mA′J = 0 where J := ker(A′ → A). If X → SpecA is
a deformation of X0,

(1) The group of automorphisms of a deformation X → SpecA over A′ is bijective
to Ext0OX0

(ΩX0 , J).

(2) If there exists a deformation of X → SpecA over A′, then the set of isomor-
phism classes of all such deformations is a torsor under Ext1OX0

(ΩX0
, J).

(3) There is an element obX ∈ Ext2OX0
(ΩX0

, J) with the property that there exists
a deformation of X → SpecA over A′ if and only if obX = 0.

In particular, if X0 is smooth, then automorphisms, deformations and obstruc-
tions are classified by Hi(X0, TX0 ⊗k J) for i = 0, 1, 2.

Proof. We will prove the smooth case. For the general case, an explicit argument
is given in [Vis97, Thm. 4.4]; alternatively, since X0 is generically smooth and a
local complete intersection, the cotangent complex LX0

is quasi-isomorphic to ΩX0

(Theorem C.3.1(3)) and thus the result follows from the fact that the cotangent
complex controls automorphisms, deformations, and obstructions (Theorem C.3.5).

When X0 = SpecB0 is an affine scheme, the same argument of Lemma C.1.10
shows that group of automorphisms of X ′ is identified with HomB(ΩB/k, J). Since
U 7→ HomOU

(ΩX0/k|U , J) and U 7→ Aut(X ′∩U/X∩U) are sheaves, Part (1) follows.
Part (2) follows from a similar argument to Proposition C.1.11. Indeed, fix a de-

formation X ′ → SpecA′. If {Ui} is an affine cover of X0, by the Infinitesimal Lifting
Criterion for Smoothness (A.3.1), there are trivializations ϕi : Ui ×k A

′ ∼→ X ′ ∩ Ui.
Then ϕij = ϕ−1

j ◦ ϕi defines an automorphism of the trivial deformation correspond-
ing by (1) to an element ϕij ∈ H0(Uij , TX0 ⊗ J). An element of H1(X0, TX0 ⊗k J)
defines a Čech 1-cocycle (ψij) with respect to the covering {Ui}, and ϕij + Ψij

defines isomorphisms of the restrictions of the trivial deformations over Ui, which
glue to a global deformation X ′′ → SpecA′. Conversely, if X ′′ → SpecA′ is an-
other deformation, there are isomorphisms ϕi : X ′ ∩ Ui → X ′′ ∩ Ui for each i,
and ϕij = ϕ−1

j |X′|Uij
◦ ϕi|X′|Uij

∈ H0(Uij , TX0 ⊗ J) defines a Čech 1-cycle (ϕij) in
H1(X0, TX0

⊗ J).
For (3), we again let {Ui} be an affine cover. Each deformation X ∩ Ui of

X0 ∩Ui is trivial, and induces automorphisms ϕij : Uij ×k A
∼→ Uij ×k A. By by the

Infinitesimal Lifting Criterion for Smoothness (A.3.1), we may choose extensions
ϕ′ij : Uij ×k A

′ ∼→ Uij ×k A
′ of ϕij . This defines gluing data for a deformation X ′

of X if the cocycle condition ϕ′jk ◦ ϕ′ij = ϕ′ik on the triple intersections Uijk ×k A
′

is satisfied. The automorphism Ψ′
ijk = (ϕ′ik)

−1 ◦ ϕ′jk ◦ ϕ′ij restricts to the identity
on Uijk ×k A and thus defines an element of H0(Uijk, TX0

⊗ J). Consider the Čech
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complex for F = TX0 ⊗ J with respect to {Ui}:⊕
i,j F (Uij)

d1 //
⊕

i,j,k F (Uijk)
d2 //

⊕
i,j,k,l F (Uijkl)

(sij)
� // (sij − sik + sjk)ijk

(sijk)
� // (sijk − sijl + sikl − sjkl)ijkl.

One checks that d2(Ψ′
ijk) = 0 and thus (Ψ′

ijk) is a Čech 2-cocycle defining an element
of H2(X,TX/A⊗ J). If this element is zero, i.e., there exists (sij) mapping to (Ψ′

ijk),
then modifying the automorphisms ϕ′ij by sij defines isomorphisms ϕ′′ij satisfying
the cocycle condition. See also [Ser06, Prop. 1.2.12] and [Har10, Cor. 10.3].

Exercise C.2.5 (Interpretation of deformations and obstruction using gerbes).
With the hypotheses of Proposition C.2.4, consider the category G over Sch /X
whose objects over S → X are cartesian diagrams

S

��

� � // S′

��

SpecA �
�

// SpecA′

□

where S → SpecA is the composition S → X → SpecA. A morphism (S →
X,S ↪→ S′ → SpecA′) → (T → X,T ↪→ T ′ → SpecA′) is the data of a morphism
ϕ : S′ → T ′ over A′ such that ϕ restricts to a morphism S → T over X.

(a) Show that G is a gerbe banded by the sheaf of groups TX/A⊗A J on X. (Hint:
See Definition 6.2.22 for the definition of a banded gerbe.)

(b) Give an alternate proof of Proposition C.2.4. (Hint: For part (3), use Exer-
cise 6.2.40.)

Exercise C.2.6 (Deformations of principal G-bundles). Let G be a smooth affine
algebraic group over a field k with Lie algebra g. Let X ↪→ X ′ be a closed immersion
of finite type k-schemes defined by a square-zero sheaf of ideals J and assume that
X has affine diagonal. Show that

(1) The group of automorphisms of a deformation P ′ → X ′ of P → X is bijective
to H0(X, g⊗k J).

(2) If there exists a deformation over X ′, then the set of isomorphism classes of
all such deformations is a torsor under H1(X, g⊗k J).

(3) There is an element obX ∈ H2(X, g⊗k J) with the property that there exists
a deformation over X ′ if and only if obX = 0.

Example C.2.7 (Abelian varieties). If X0 is an abelian variety over C of dimension
n, then it turns out that deforming X0 as an abstract scheme is equivalent to
deforming it as an abelian variety, and thus obstructions to deforming X0 as an
abelian variety also live in H2(X0, TX0

). Using that ΩX0
= OnX0

is trivial and the
Hodge symmetries,

H2(X0, TX0
) = H2(X0,OX0

)⊕n = H0(X0,

2∧
OnX0

)⊕n

is nonzero. Nevertheless, Grothendieck and Mumford showed that the obstruction
obX ∈ H2(X,TX/A ⊗A J) vanishes for every deformation problem! This shows that
abelian varieties are unobstructed, and their moduli space is smooth. See [Oor71].
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Exercise C.2.8 (hard). If in addition dimX0 = 1 and σ1, . . . , σn : SpecA→ X are
sections such that pi = σi(0) ∈ X0 are smooth points, show that automorphisms,
isomorphism classes, and obstructions of a deformation (X ′ → SpecA′, σ′

i) of (X →
SpecA, σi) are classified by Ext2OX0

(ΩX0
(
∑
i pi), J).

Exercise C.2.9 (Higher-order deformations of morphisms). Let A′ → A be a
surjection of noetherian rings with square-zero kernel. Let f : X → Y be a morphism
of schemes over A with both X and Y flat over A. A deformation of f : X → Y
over A′ is a morphism f ′ : X ′ → Y ′ over A′ with isomorphisms α′ : X

∼→ X ′ ×A′ A
and β′ : Y

∼→ Y ′ ×A′ A such that both X ′ and Y ′ are flat over A′ and such that the
base change of f ′ to A is equal to f under the isomorphisms α′ and β′. In other
words, a deformation is a cartesian diagram

X

f

��

� � // X ′

f ′

��

Y

��

� � // Y ′

��

□

SpecA �
�

// SpecA′.

□

A morphism of deformations (X ′ → Y ′, α′, β′) → (X ′′ → Y ′′, α′′, β′′) consists of
morphisms X ′ → X ′′ and Y ′ → Y ′′ over A′ compatible with the given isomorphisms.

Assume that X and Y are proper A, and that f∗OX = OY and R1f∗OX = 0.
Show that the functor taking a deformation f ′ : X ′ → Y ′ of f : X → Y over A′ to
the deformation X ′ over X over A′ induces an isomorphism of categories.

Hint: Given a deformation X ′ over X, define Y ′ as the ringed space (Y, f∗OX′).
Use the conditions of f and the flatness of X ′ over A′ to show that Y ′ is a scheme
flat over A′. See also [Ran89, Thm. 3.3], [Vak06, §5.3], and [SP, Tag 0E3X]. (For
additional properties of deformations of morphisms, see [Ser06, §3.4].)

C.2.3 Higher-order deformations of vector bundles

Definition C.2.10. Let A′ ↠ A be a surjection of rings. Let X ′ be a scheme over
A′ and set X := X ′×A′A. Given a coherent sheaf E on X flat over A, a deformation
of E over A′ → A is a pair (E′, α) where E′ is a coherent sheaf on X ′ flat over A′

and α : E → E′|X is an isomorphism. Pictorially, we have

E
flat/A

E′

flat/A′

X
� � // X ′.

A morphism (E,α) → (E′, α′) of deformations is a morphism β : E → E′ of
coherent sheaves on XA′ such that α′ = β|X ◦ α. By Lemma C.1.7, every morphism
of deformations is an isomorphism.

Proposition C.2.11. Let X be a scheme over a field k. Let A′ ↠ A be a surjection
of artianian local rings with residue field k such that mA′J = 0 where J := ker(A′ →
A). Let E be a coherent sheaf on XA and set E0 = E|X .
(1) The group of automorphisms of a deformation E′ of E over A′ is bijective to

Ext0OX
(E0, E0 ⊗k J).
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(2) If there exists a deformation of E over A′, then the set of isomorphism classes
of all such deformations is a torsor under Ext1OX

(E0, E0 ⊗k J)..

(3) There is an element obE ∈ Ext0OX
(E0, E0 ⊗k J) with the property that there

exists a deformation of E over A′ if and only if obE = 0.
More generally, if A′ ↠ A is a surjection of k-algebras with square-zero kernel J ,
automorphisms, deformations, and obstructions are classified by ExtiOXA

(E,E ⊗k J)

for i = 0, 1, 2.

Remark C.2.12. If E is a vector bundle (resp., line bundle), automorphisms,
deformations, and obstructions are classified by Hi(X,E ndOX

(E0) ⊗k J) (resp.,
Hi(X, J)) for i = 0, 1, 2. In the case of line bundles, the obstruction can be
realized by the exact sequence Pic(X ′)→ Pic(X)→ H2(X, J) induced from taking
cohomology of the short exact sequence 0→ J → Gm,X′ → Gm,X → 1.

Proof. For (1), since E′ is flat over A′, tensoring the exact sequence 0→ OX′⊗kJ →
OX′ → OX → 0 with E yields a short exact sequence

0→ E ⊗k J → E′ → E → 0.

If α : E′ ∼→ E′ is an automorphism with α|E = id, then α − id defines a map
E′ → E ⊗k J , which factors to give a map ϕ : E0 → E0 ⊗k J . Conversely, if ϕ is a
homomorphism, then the sum of the identity and E → E0

ϕ−→ E0 ⊗k J defines an
automorphism.

For the rest of the proof, we will assume that E is a vector bundle. For (2), let E′

be a deformation. Let {Ui} be an affine covering ofX with trivializations ϕi : E′|Ui

∼→
O⊕ri
Ui×kA′ . Then ϕij = ϕ−1

j ◦ϕi is an automorphism of E′|Uij
, which by (1) corresponds

to an element of H0(Uij ,E ndOX
(E)). A element of H1(X,E ndOX

(E)) defines a Čech
1-cocycle (ψij) with ψij ∈ H0(Uij ,E ndOX

(E)), and ϕij + ψij defines isomorphisms
of the trivial vector bundle over Uij ×k A

′ which glue to a deformation E′ over XA′ .
Conversely, if E′ and E′′ are two deformations, there exists a covering {Ui} and
isomorphisms αi : E′|Ui → E′′|Ui . The automorphisms ϕij = ϕ−1

j ◦ϕi defines elements
in H0(Uij ,E ndOX

(E)), and (ϕij) defines a Čech 1-cycle in H1(X,E ndOX
(E)).

For (3), let {Ui} be an affine covering with trivializations ϕi : O⊕ri
Ui×SpecA

∼→ E|Ui

yielding automorphisms ϕij = ϕ−1
j ◦ ϕi of the trivial vector bundles on Uij ×k A.

Choose automorphisms ϕ′ij of the trivial vector bundles on Uij ×k A extending
ϕij . The automorphisms Ψ′

ijk = (ϕ′ik)
−1 ◦ ϕ′jk ◦ ϕ′ij correspond to elements of

H0(Uijk, TX0 ⊗ J) and define a Čech 2-cocycle obE := (Ψ′
ijk) ∈ H2(X,E ndOX

(E)).
See also [Har10, Thm. 7.1], [HL10, §2.A.6], and [SP, Tag 08VW].

Exercise C.2.13. Give an alternative proof of Proposition C.2.11 using the tech-
nique outlined in Exercise C.2.5.

C.3 Cotangent complex

In this chapter, we summarize properties of the cotangent complex of a morphism
of schemes as introduced in [Ill71], globalizing work of André [And67] and Quillen
[Qui68, Qui70] on the cotangent complex of a ring homomorphism. A major advan-
tage of the cotangent complex is that it allows us to describe the deformations and
obstruction of singular schemes (Theorem C.3.5).
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C.3.1 Properties of the cotangent complex
Theorem C.3.1. For every morphism f : X → Y of schemes (resp., finite type
morphism of noetherian schemes), there exists a complex

LX/Y : · · · → L−1
X/Y → L0

X/Y → 0

of flat OX-modules with quasi-coherent (resp., coherent) cohomology, whose image
in D−

QCoh(OX) (resp., D−
Coh(OX)) is also denoted by LX/Y . It satisfies the following

properties.
(1) H0(X,LX/Y ) ∼= ΩX/Y .
(2) The morphism f is smooth if and only if f is locally of finite presentation

and LX/Y is a perfect complex supported in degree 0. In this case, there is a
quasi-isomorphism LX/Y

∼→ ΩX/Y with ΩX/Y in degree 0.
(3) If f is flat and finitely presented, then f is syntomic (Definition A.3.17) if

and only if LX/Y is a perfect complex supported in degrees [−1, 0]. Explicitly,
if f factors as a local complete intersection X ↪→ X̃ defined by a sheaf of
ideals I and a smooth morphism X̃ → Y , then LX/Y is quasi-isomorphic to
0→ I/I2 → ΩX̃/Y → 0 with ΩX/Y in degree 0. If in addition f is generically
smooth, then LX/Y ≃ ΩX/Y .

(4) If

X ′ g′
//

��

X

f

��

Y ′ g
// Y

□

is a cartesian diagram with either f or g flat (or more generally f and g are
tor-independent), then there is a quasi-isomorphism g′∗LX/Y → LX′/Y ′ . (Note
that without any flatness condition g′∗ΩX/Y ≃ ΩX′/Y ′ .)

(5) If X f−→ Y → Z is a composition of morphisms of schemes, then there is an
exact triangle in D−

QCoh(OX)

f∗LY/Z → LX/Z → LX/Y → f∗LY/Z [1].

This induces a long exact sequence on cohomology

· · · H−2(LX/Y )

H−1(f∗LX/Z) H−1(LX/Z) H−1(LX/Y )

f∗ΩY/Z ΩX/Z ΩX/Y 0,

extending the usual right exact sequence on differentials [Har77, II.8.12]. (Note
that if f is smooth, then H−1(LX/Y ) = 0 and f∗ΩY/Z → ΩX/Z is injective.)

Proof. See [Ill71, II.1.2.3] and [SP, Tag 08T2] for the definition and construction of
the cotangent complex of a morphism of schemes (and more generally for morphisms
of ringed topoi). For (1)–(5), see [Ill71, II.1.2.4.2, II.3.1.2, II.3.2.6, II.2.2.3 and
II.2.1.2] and [SP, Tags 08UV, 0D0N, 0FK3, 08QQ, and 08T4] (noting that [SP,
Tag 08RB] relates the naive cotangent complex NLX/Y to LX/Y ). In (3), if f is
generically smooth, then the right exact sequence ... We always have a right exact
sequence
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C.3.2 Truncations of the cotangent complex
The definition of the cotangent complex relies on simplicial techniques and we will
not attempt an exposition here. We will however give an explicit description of its
truncation, which often suffices for applications. First, if X → Y factors as a closed
immersion X ↪→ P defined by a sheaf of ideals I and a smooth morphism P → Y ,
then the truncation τ≥−1(LX/Y ) of LX/Y in degrees [−1, 0] is quasi-isomorphic
to 0 → I/I2 → ΩX/Y → 0 (with ΩX/Y in degree 0). If X → Y is syntomic
(e.g., smooth), then X ↪→ Ỹ is a regular immersion, I/I2 is a vector bundle, and
LX/Y ∼= τ≥−1(LX/Y ) (Theorem C.3.1(3)).

For a morphism X = SpecA → SpecB = Y of affine schemes, Lichtenbaum–
Schlessinger [LS67] offer an explicit description of the truncation τ≥−2(LA/B) of
LX/Y = LB/A. Choose a polynomial ring P = B[xi] (with possibly infinitely many
generators) and a surjection P ↠ A as B-algebras with kernel I. Choose a free
P -module F and a surjection p : F ↠ I of P -modules with kernel K = ker(p).
Let K ′ ⊂ K be the submodule generated by p(x)y − p(y)x for x, y ∈ F . Then
τ≥−2(LB/A) is quasi-isomorphic to the complex of A-modules

K/K ′ → F ⊗P A→ ΩP/B ⊗P A, (C.3.2)

with the last term in degree 0. See also [SP, Tag 09CG].
For i = 0, 1, 2, one defines the T i functors on the category of A-modules by

T i(A/B,−) := Hi(HomA(LA/B ,−)) = Hi(HomA(τ≥2LA/B ,−)),

which describe deformations of schemes. See also [LS67, §2.3] and [Har10, §1.3].

C.3.3 Extensions of algebras and schemes
Definition C.3.3. An extension of a morphism X → S of schemes by a quasi-
coherent OX -module J is a short exact sequence

0→ J → OX′ → OX → 0

where X ↪→ X ′ is a closed immersion of schemes defined by the sheaf of ideals
J ⊂ OX′ with J2 = 0. (Note that the condition J2 = 0 implies that the J ⊂ OX′ is
naturally a OX -module.) The trivial extension is X[J ] := (X,OX ⊕ J) where the
ring structure is defined by J2 = 0.

A morphism of extensions is a morphism of short exact sequences which is
the identity on J and OX . We let ExalS(X, J) be the category of extensions of
X → S by J , and ExalS(X, J) be the set of isomorphism classes. If X = SpecA
and S = SpecR is affine, we write ExalR(A, J).

Geometrically, an extension is a commutative diagram of schemes

X
� � //

��

X ′

{{

SpecR

such that J ∼= ker(OX′ → OX) and J2 = 0. The set of extensions ExalS(X, J)
is functorial with respect to OX -module maps J → J ′ and morphisms X ′ → X
of S-schemes, and inherits the structure of a module over Γ(X,OX). In fact, the
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groupoid ExalS(X,J) is a Picard category, and the prestack over Sch/S whose fiber
category over f : T → S is ExalT (XT , f

∗J) is a Picard stack ; see [Ill71, III.1.1.5] and
[SGA4, XVIII.1.4]. Given an exact sequence 0→ J ′ → J → J ′′ → 0 of OX -modules,
there is an exact sequence

0 DerOS
(OX , J ′) DerOS

(OX , J) DerOS
(OX , J ′′)

ExalOS
(OX , J) ExalOS

(OX , J) ExalOS
(OX , J ′′).

Given a morphism f : X → Y of S-schemes, there is an exact sequence

0 DerOY
(OX , J) DerOS

(OX , J) DerOS
(OY , f∗J)

ExalOY
(OX , J) ExalOS

(OX , J) ExalOS
(OY , f∗J).

See [EGA, 0.20.2.3] and [Ill71, III.1.2.4.3, III.1.2.5.4]. The top row of the above
diagram is realized by applying HomOS

(−, J) to the right exact sequence f∗ΩY/S →
ΩX/S → ΩX/Y → 0 and using the identifications HomOS

(ΩX/Y , J) = DerOY
(OX , J),

HomOX
(ΩX/S , J) = DerOS

(OX , J), and HomOX
(f∗ΩY/S , J) = HomOY

(ΩY/S , f∗J) =
DerOS

(OY , f∗J).

C.3.4 The cotangent complex and deformation theory
Theorem C.3.4. If X → Y is a morphism of schemes and J is a quasi-coherent
OY -module, there is a natural isomorphism

ExalY (X, J) ∼= Ext1OX
(LX/Y , J).

Proof. See [Ill71, III.1.2.3].

By applying HomOX
(LX/Y ,−) to the exact sequence 0 → J ′ → J → J ′′ and

HomOX
(−, J) to the exact triangle f∗LY/Z → LX/Z → LX/Y allows us to extend

the two above six-term exact sequences to long exact sequences. When X =
SpecA → SpecB = Y is a morphism of affine schemes, using the T i functors of
§C.3.2, the above equivalence translates to ExalB(A, J) = T 1(A/B, J), which can
also be explicitly using the truncated cotangent complex (C.3.2); see [LS67, 4.2.2]
and [Har10, Thm. 5.1]. See [LS67, 2.3.5-6] and [Har10, Thms. 3.4-5] for how the T i
functors extend the above six-term sequences nine-term sequences.

Theorem C.3.5. Consider the following deformation problem

X

f

��

� � // X ′

f ′

��

Y
� � i // Y ′

where f : X → Y is a morphism of schemes and i : Y ↪→ Y ′ is a closed immersion
of schemes defined by an ideal sheaf J ⊂ OY ′ with J2 = 0. A deformation is a
morphism f ′ : X ′ → Y ′ making the above diagram cartesian, and a morphism of
deformations is a morphism over Y ′ restricting to the identity on X.

(1) The group of automorphisms of a deformation f ′ : X ′ → Y ′ is isomorphic to
Ext0OX

(LX/Y , f
∗J).
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(2) If there exists a deformation, then the set of deformations is a torsor under
Ext1OX

(LX/Y , f
∗J).

(3) There exists an element obX ∈ Ext2OX
(LX/Y , f

∗J) with the property that there
exists a deformation if and only if obX = 0.

Proof. See [Ill71, III.2.1.7] and [SP, Tag 08UZ]. See also [LS67, 4.2.5] and [Har10,
Thm. 10.1] for descriptions in the affine case using the truncated cotangent complex.

As a reality check, if f : X → SpecA is symtomic (e.g., smooth) and A′ ↠ A is
a surjection of rings with square-zero kernel J , then the identification

ExtiOX
(LX/A, f

∗J) = ExtiOX
(ΩX/A, J)

recovers Proposition C.2.4.

Remark C.3.6. There are analogous results for other deformation problems. For
instance, for the deformation problem

X
� � //

f

""

��

X ′

##

��

Y �
�

//

��

Y ′

��

Z �
�

// Z ′,

where the horizontal morphisms are closed immersions defined by square-zero ideal
sheaves JX , JY and JZ , then automorphisms, deformations, and obstructions are
classified by ExtiOX

(f∗LY/Z , JX) for i = −1, 0, 1 [Ill71, III.2.2.4].

C.4 Versal formal deformations and Rim–Schlessinger’s
Criteria

C.4.1 Functors and prestacks over artin rings
We work over a fixed field k for simplicity, but the definitions below and Rim–
Schlessinger’s Criteria can be formulated more generally (see Remark C.4.5). Let
Artk denote the category of artinian local k-algebras with residue field k.

Definition C.4.1 (Prorepresentability). We say that a covariant functor F : Artk →
Sets is prorepresentable if there exists a complete noetherian local k-algebra R and
an isomorphism F

∼→ hR where hR := Homk−alg(R,−).

If F : Sch/k → Sets is a contravariant functor and x0 ∈ F (k), then we can
consider the induced functor of artin rings

Fx0
: Artk → Sets, A 7→ {x ∈ F (A) | x|k = x0 ∈ F (k)}

where x|k denotes the image of x under F (A)→ F (A/mA). If F is representable by a
scheme X and x ∈ X is the k-point corresponding to x0, then Fx0

is prorepresentable
by ÔX,x. It is possible that Fx0 be prorepresentable, but F not be representable.

Many functors of artin rings are not prorepresentable. For example, if C0 is a
smooth, connected, and projective curve with a non-trivial automorphism group,
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then the covariant functor FC0 : Artk → Sets where FC0(A) consists of isomorphism
classes of smooth proper families of curves C → SpecA such that C ×A A/mA is
isomorphic to C0, is not prorepresentable. Nevertheless, many moduli functors admit
versal deformations. As it is important to keep track of automorphisms, we will
formulate the definition for prestacks over Artopk .

Definition C.4.2 (Versality). Let X be a prestack over Artopk such that the groupoid
X (k) is equivalent to a set {x0}.

(1) A formal deformation (R, {xn}) of x0 is the data of a complete noetherian
local k-algebra (R,mR) together with objects xn ∈ X (R/mn+1

R ) and morphisms
xn−1 → xn over SpecR/mnR → SpecR/mn+1

R .
(2) A formal deformation (R, {xn}) is versal if for every surjection A ↠ A0

in Artk with mn+1
A = 0, object η ∈ X (A), and k-algebra homomorphism

ϕ0 : R/m
n+1
R → A0 with an isomorphism α0 : xn|A0

∼→ η|A0
in X (A0), there

exists a k-algebra homomorphism ϕ : R/mn+1
R → A extending ϕ0 and an

isomorphism α : xn|A
∼→ η in X (A) extending α0.

(3) A versal formal deformation (R, {xn}) is miniversal (or a prorepresentable hull)
if the induced map hR(k[ϵ])→ X (k[ϵ])/∼ on isomorphism classes is bijective.

In other words, a formal deformation is an element of lim←−X (R/m
n). When X = F

is a covariant functor Artk → Sets, a formal deformation is a compatible sequence
of elements xn ∈ F (R/mn+1

R ). If F is prorepresentable by R and xn ∈ F (R/mn+1
R )

is the corresponding element, then {xn} is a miniversal formal deformation, in
which case there is a unique lift in (C.4.3). Just as a deformation xn ∈ X (R/mn+1

R )
can be viewed via Yoneda’s 2-Lemma as a morphism SpecR/mn+1

R → X , a formal
deformation can be viewed as a morphism {xn} : hR → X of prestacks. From this
perspective, {xn} is versal if there exists a lift for every commutative diagram

SpecA0� _

��

// hR

{xn}
��

SpecA
η

//

;;

X ,

(C.4.3)

where A↠ A0 is a surjection in Artk. This should be compared with the Infinitesimal
Lifting Criterion for Smoothness (A.3.1 and 3.7.1). Note that since every surjection
A → A0 factors as a composition of surjections with one-dimensional kernels,
versality can be checked on surjections with ker(A→ A0) ∼= k. A versal deformation
is miniversal if it induces an isomorphism on tangent spaces hR(k[ϵ])→ X (k[ϵ])/∼.

Remark C.4.4 (Global prestacks to local deformation prestacks). If X is a prestack
over Sch/k and x0 ∈ X (k), we define the local deformation prestack Xx0

at x0 as
the prestack, where an object is a morphism α : x0 → x in X to an object x over
a ring A ∈ Artopk ; in other words, an object is a pair (x, α) where x ∈ X (A) and
α : x0 → x|k is an isomorphism. A morphism (α : x0 → x) → (α′ : x0 → x′) is a
morphism β : x→ x′ such that α′ = α ◦ β. Note that the fiber category Xx0

(k) is
equivalent to the set {id : x0 → x0}.

If X is an algebraic stack with a smooth presentation U → X from a k-scheme
U and u ∈ U(k) is a lift of x0, setting xn ∈ X (OU,u/mn+1

u ) to be the composi-
tion SpecOU,u/mn+1

u ↪→ U → X defines a versal formal deformation {xn}. Rim–
Schlessinger’s Criteria (Theorem C.4.6) provides criteria for the existence of a
versal formal deformation and Artin’s Axioms for Algebraicity (Theorem C.7.1)
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provides further criteria for a versal formal deformation to be induced by a smooth
presentation U → X as above.

Remark C.4.5. To work over a more general base, consider a complete noetherian
local ring Λ with residual field k, and define ArtΛ to be the category of artinian
local Λ-algebras (A,m) with an identification k ∼→ A/m. In practice, Λ is often
taken to be a ring of Witt vectors, e.g., Λ = Zp. This generality is important for
many applications, e.g., for lifting objects from characteristic p to characteristic 0;
see §C.5.3. Even more generally, one can consider the setup where A→ k is a finite
(but not necessarily surjective); see [SP, Tag 06GB].

C.4.2 Rim–Schlessinger’s Criteria
Rim–Schlessinger’s Criteria provides necessary and sufficient conditions for a prestack
X over Artopk (or a covariant functor F : Artk → Sets as in Schlessinger’s original
formulation) to admit a versal formal deformation.

Theorem C.4.6 (Rim–Schlessinger’s Criteria). Let X be a prestack over Artopk such
that the groupoid X (k) is equivalent to the set {x0}. For morphisms B0 → A0 and
A→ A0 in Artk, consider the natural functor

X (B0 ×A0 A)→ X (B0)×X (A0) X (A) (C.4.7)

Then X admits a miniversal formal deformation if and only if
(RS1) the functor (C.4.7) is essentially surjective whenever A ↠ A0 is surjection

with kernel k;
(RS2) the map (C.4.7) is essentially surjective when A0 = k and A = k[ϵ], and given

two commutative diagrams

x0 //

��

y0

α

��

α′

��

x
γ
//

γ′
;;y

β
// y′

over

Speck �
�

//

��

SpecB0

��

Speck[ϵ] �
�

// Spec(k[ϵ]×k B0)

there exists an isomorphism β : y → y′ in X (k[ϵ]×k B0) such that α′ = β ◦ α
(but we do not require that γ′ = γ ◦ β).

(RS3) dimk TX <∞ where TX := X (k[ϵ])/∼ (which is a vector space by Lemma C.4.9).

Moreover, X is prorepresentable if and only if X is equivalent to a functor and
(RS4) the map (C.4.7) is an equivalence whenever A↠ A0 is a surjection with kernel

k.

Conditions (RS2)–(RS3) (sometimes referred to as semi-homogeneity) may be
difficult to parse, but in practice, it is in fact often just as easy to verify the stronger
condition (RS4) (called homogeneity), and in fact the even stronger condition (RS∗

4)
(called strong homogeneity); see §C.4.3. When A→ A0 is surjective, SpecB0×A0

A is
the pushout of SpecA0 ↪→ SpecA and SpecB0 → SpecB in the category of schemes
(see §B.4). Therefore, homogeneity conditions translate into gluing conditions of
objects over the pushout.

Remark C.4.8 (Schlessinger’s Criteria). When X is a covariant functor
F : Artk → Sets with F (k) = {x0}, then (RS1)–(RS4) translate into Schlessinger’s
conditions as introduced in [Sch68]:
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(H1) the map (C.4.7) is surjective whenever A↠ A0 is a surjection with kernel k;
(H2) the map (C.4.7) is bijective when A0 = k and A = k[ϵ];
(H3) dimk F (k[ϵ]) <∞; and
(H4) the map (C.4.7) is bijective whenever A↠ A0 is a surjection with kernel k.
The functor F admits a miniversal formal deformation if (H1)–(H3) hold and is
prorepresentable if (H3)–(H4) hold.

If a prestack X over Artk satisfies (RS1)–(RS3), then the functor FX : Artk →
Sets parameterizing isomorphism classes of objects satisfies (H1)–(H3) but the con-
verse does not always hold. Moreover, the essential surjectivity of X (B0 ×A0

A)→
X (B0) ×X (A0) X (A) implies the surjectivity of FX (B0 ×A0 A) → FX (B0) ×FX (A0)

FX (A) and the fully faithfulness for X implies the injectivity of FX as long as
AutX (B0)(y0)→ AutX (A0)(y0|A0

) is surjective for an object y0 ∈ X (B0). This latter
condition holds in the case when FX (A0) is a set, e.g., when A0 = k. If X is the local
deformation prestack arising from an object x0 ∈ X̃ (k) of an algebraic stack X̃ over
Sch/k as in Remark C.4.4, then the surjectivity condition on automorphisms trans-
lates by the Infinitesimal Lifting Criterion for Smoothness (3.7.1) to the smoothness
of the inertia stack IX → X at e(x0), where e : X → IX is the identity section.

While the existence of a miniversal formal deformation of FX suffices for many
applications, for moduli problems with automorphisms it is more natural to ask for
the existence of a miniversal formal deformation of X and this generality is needed
for some applications, e.g., Artin’s Algebraization (Theorem C.6.8) and Artin’s
Axioms for Algebraicity (Theorem C.7.4).

Before proceeding to the proof, we first indicate some properties of the conditions
(RS1)–(RS4).

Lemma C.4.9. Let X be a prestack over Artopk such that the groupoid X (k) is
equivalent to the set {x0}, and let FX : Artk → Sets be the covariant functor assigning
A ∈ Artk to the set of isomorphism classes X (A)/∼. Assume that Condition (RS2)
holds for X .

(1) The tangent space TX = FX (k[ϵ]) has a natural structure of a k-vector space.
More generally, for every finite dimensional k-vector space V , denoting k[V ] as
the k-algebra k⊕V defined by V 2 = 0, the set FX (k[V ]) has a natural structure
of a k-vector space and there is a functorial bijection FX (k[V ]) = TX ⊗k V .

(2) Consider a surjection A ↠ A0 in Artk with square-zero kernel I and an
element x0 ∈ X (A0), and let Liftx(A) be the set of morphisms α : x0 → y

over SpecA0 → SpecA where (α : x0 → x) ∼ (α′ : x0
α′

−→ x′) if there is an
isomorphism β : x → x′ such that α′ = β ◦ α. There is an action of TX ⊗ I
on Liftx0

(A) which is functorial in X . Assume that Liftx0
(A) is non-empty.

Then the action is transitive if Condition (RS1) holds for X , and is free and
transitive (i.e., Liftx0(A) is a torsor under TX ⊗ I) if Condition (RS4) holds
for X .

Proof. We first note if V is a finite dimensional vector space, then k[V ] = k[ϵ]×k
· · · ×k k[ϵ] and by applying (RS2) inductively, we see that the conclusion of (RS2)
also holds for A0 = k and A = k[V ]. For B0 ∈ Artk, the first part of (RS2)
implies that FX (B0 ×k k[V ])

∼→ FX (B0) × FX (k[V ]) is a bijection. In particular,
FX (k[V ] ×k k[W ])

∼→ FX (k[V ]) × FX (k[W ]) is bijective for every pair of finite
dimensional vector spaces, or in other words the functor V 7→ FX (k[V ]) commutes
with finite products. The vector space structure of TX = FX (k[ϵ]) follows from the
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bijectivity of
FX (k[ϵ]×k k[ϵ′])

∼→ FX (k[ϵ])× FX (k[ϵ′]). (C.4.10)

Indeed, if τ1, τ2 ∈ FX (k[ϵ]), then we may use (C.4.10) to view (τ1, τ2) ∈ FX (k[ϵ]×k
k[ϵ′]), and we define τ1 + τ2 as the image of (τ1, τ2) under F (k[ϵ]×k k[ϵ′])→ F (k[ϵ])
induced by the ring map k[ϵ] ×k k[ϵ′] → k[ϵ] taking (ϵ, 0) and (0, ϵ′) to ϵ. Scalar
multiplication of c ∈ k on τ ∈ FX (k[ϵ]) is defined by taking the image of τ under
FX (k[ϵ])→ FX (k[ϵ]) induced by the map k[ϵ]→ k[ϵ] taking ϵ to cϵ.

The same argument shows that V 7→ FX (k[V ]) defines a k-linear functor Vectfdk →
Vectk. The natural map

FX (k[ϵ])×Homk(k[ϵ],k[V ])→ FX (k[V ]), (τ, ϕ) 7→ ϕ∗τ := FX (ϕ)(τ)

is k-bilinear and under the equivalences TX = FX (k[ϵ]) and V = Homk(k[ϵ],k[V ])
induces an isomorphism TX ⊗ V → FX (k[V ]), which establishes (1).

For (2), observe that the natural map

A×A0 A→ k[I]×k A, (a1, a2) 7→ (a1 + a2 − a1, a1)

is an isomorphism. We therefore have a diagram

X (k[I])×X (A)↞ X (k[I]×k A) ∼= X (A×A0
A)

p∗1−→ X (A)

where the left functor is essentially surjective by the first part of (RS2). To define
the action, let τ ∈ TX ⊗ I = FX (k[I]) and (α : x0 → x) ∈ Liftx0

(A). Choose a
representative τ̃ ∈ X (k[I]) of τ . We define τ · (α : x0 → x) ∈ Liftx0

(A) as p∗1y, where
y ∈ X (k[I]×k A) is a preimage of (τ̃ , x). To see that this is well-defined, suppose
that y′ ∈ X (k[I]×k A) is another preimage. This yields a diagram

x0 //

��

x

�� ��

τ //
77y

β
// y′

over

Speck �
�

//

��

SpecA

��

Speck[I] �
�

// Spec(k[I]×k A).

By the second part of (RS2), there exists β : y → y′ filling in the diagram, and
thus p∗1y and p∗1y

′ in X (A) define the same element in Liftx0
(A). Finally, if (RS1)

holds (resp., (RS4) holds), then X (A ×A0
A) → X (A) ×X (A0) X (A) is essentially

surjective (resp., an equivalence), and we see that the action is transitive (resp., free
and transitive).

Proof Theorem C.4.6. We establish the sufficiency of the criteria, leaving the neces-
sity to the reader. The tangent space TX := X (k[ϵ])/∼ has the structure of a vector
space by Lemma C.4.9(1) and is finite dimensional by (RS2). Let N = dimk TX and
x1, . . . , xN ∈ TX be a basis. Define S = k[[x1, . . . , xN ]] with mS = (x1, . . . , xn). We
will construct inductively a decreasing sequence of ideals J0 ⊃ J1 ⊃ · · · and objects
ηn ∈ X (S/Jn) together with maps ηn → ηn+1 over SpecS/Jn ↪→ SpecS/Jn+1. We
set J0 = mS and η0 = x0 ∈ X (k). We also set J1 = m2

S so that S/J1 ∼= k[TX ]. Using
the bijection FX (k[TX ]) ∼= TX ⊗k TX of Lemma C.4.9(1), the element

∑
i xi ⊗ xi

defines an isomorphism class of an object η1 ∈ X (S/J1) such that the induced map
SpecS/J1 → X induces a bijection on tangent spaces. By construction,there is a
map η0 → η1 over Speck ↪→ SpecS/J1.

Suppose we have constructed Jn and ηn−1 → ηn. We claim that the set of ideals

Σ =

{
J ⊂ S

∣∣∣∣ mSJn ⊂ J ⊂ Jn and there exists ηn → η
over SpecS/Jn ↪→ SpecS/J

}
(C.4.11)
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has a minimal element. Indeed, it is non-empty since Jn ∈ Σ so it suffices to check
that J ∩ K ∈ Σ for J,K ∈ Σ. To achieve this, note that Jn/mSJn is a k-vector
space with subspaces J/mSJn and K/mSJn. We may therefore choose an ideal
J ⊂ J ′ ⊂ Jn with J ∩K = J ′ ∩K and J ′ +K = Jn. We have a diagram

ηJ∩K ηJ |S/J ′oo

ηK

OO

ηnoo

OO

over

S/(J ∩K)

��

// S/J ′

��

S/K // S/Jn,

□

where ηJ ∈ X (S/J) and ηK ∈ X (S/K) are the objects corresponding to J and
K. Condition (RS1) implies that the diagram can be filled in, which shows that
J ∩K ∈ Σ.

Define J =
⋂
n Jn, R = S/J , and In = Jn/J . We claim that for every n, there

exists Nn with JNn
⊂ mn+1

S +J , or in other words the topology on R defined by (In)
is the mR-adic topology on R. For each n, since S/mnS is artinian, there exists Nn
with JNn

+mnS = JNn+1
+mnS = · · · . We set E = lim←−(JNn

+mnS)/m
n
S ⊂ lim←−S/m

n
S = S.

We claim that E ⊂ J : for f ∈ E and any m, f ∈ Jm +mnS for n≫ 0, and the claim
follows from Krull’s intersection theorem. Since E surjects onto (JNn +mn+1

S )/mn+1
S ,

the natural map J → (JNn
+mn+1

S )/mn+1
S is also surjective, and the claim follows.

Since INn
⊂ mn+1

R , we can define ξn := ηNn
|R/mn+1

R
.

It remains to show that the formal deformation ξ := {ξn} over R is versal.
Suppose B ↠ A is a surjection in Artk with kernel k and that we have a diagram

x //

��

ξ

y

@@

over

SpecA� _

��

g
// hR

SpecB.

g̃

;;

We must construct a morphism y → ξ extending x→ ξ. We claim that it suffices to
construct a morphism g̃ : SpecB → hR (i.e., a ring map R→ B) extending g. Since
hR(k[ϵ])→ TX is bijective, Lemma C.4.9(2) implies that there are actions of TX on
the sets Liftx(B) and Liftg(B) of isomorphism classes of lifts of x and g to objects
in X (B) and hR(B). Moreover, since (RS1) holds for X , the action on Liftx(B) is
transitive. Thus, we can find τ ∈ TX such that y = τ · (g̃∗ξ) = (τ · g̃)∗ξ. This gives
an arrow y → ξ over τ · g̃ : SpecB → hR.

To construct g̃, choose n such that R→ A factors as R→ R/In = S/Jn → A. It
suffices to show that SpecA→ SpecS/Jn extends to a map SpecB → SpecS/Jn+1

and for this, it suffices to show the existence of a dotted arrow making the diagram

SpecA� _

��

// SpecS/Jn� _

�� ((

SpecB // SpecB ×A (S/Jn) // SpecS/Jn+1

commutative. Note that since ker(B → A) = k, ker(B ×A (S/Jn)→ S/Jn) = k. As
S is a power series ring, we may choose an extension S → B of S → S/Jn → A. This
induces a map S → B ×A (S/Jn). If this map is not surjective, then every element
of Jn must map to 0 in B×A (S/Jn), which implies that B×A (S/Jn)→ S/Jn has a
section giving the desired lift. Otherwise, B ×A (S/Jn) = S/K where K = ker(S →
B×A (S/Jn)). The ideal K lies in the set of ideals defined in (C.4.11): the inclusion
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K ⊂ Jn is clear, the inclusion mSJn ⊂ K is implied by the equality ker(B → A) = k,
and the existence of ηn → η over SpecS/Jn ↪→ SpecS/K follows from applying
(RS1) to the above square. By minimality of Jn+1, we have a containment Jn+1 ⊂ K
and thus a ring map S/Jn+1 → S/K = B ×A (S/Jn) inducing the desired dotted
arrow.

Finally, suppose that X is equivalent to a functor F and (RS4) holds. Given a
surjection B → A with kernel k and x ∈ F (A), we need to show the existence of a
unique lift in every diagram

SpecA� _

��

g
// hR

��

SpecB

;;

// F.

By Lemma C.4.9(2), the map Liftg(B)→ Liftx(B) is bijective as both are torsors
under TX . This implies the existence of a unique lift. See also [Sch68, Thm. 2.11],
[SGA7-I, Thm. VI.1.11], [Har10, Thm. 16.2], [Ser06, Thm. 2.3.2], and [SP, Tag 06IX].

C.4.3 Verifying Rim–Schlessinger’s Criteria
We apply Rim–Schlessinger’s Criteria (C.4.6) to construct miniversal formal defor-
mations for our three main moduli problems by verifying (RS1)-(RS3). In fact, we
will verify the following strong homogeneity condition:

(RS∗
4) X (B0×A0

A)→ X (B0)×X (A0)X (A) is an equivalence for every map B0 → A0

and surjection A ↠ A0 of (not necessarily artinian) rings with square-zero
kernel.

It is often just as easier to verify (RS∗
4) as the weaker conditions (RS1)-(RS2). Strong

homogeneity will also appear as one of the axioms in our second version of Artin’s
Axioms for Algebraicity (C.7.4), as it will be useful to verify openness of versality.
It turns out that every algebraic stack satisfies (RS∗

4) (see [SP, Tag 07WN]), or, in
other words, the Ferrand pushout Spec(B0 ×A0 A) is a pushout in the category of
algebraic stacks.

Verifying (RS∗
4) relies on properties of modules over fiber products of rings.

Lemma C.4.12. Let A → A0 be a surjection of rings with square-zero kernel,
and B0 → A0 be a maps of rings. Let M,M0, N0 be flat modules over A,A0, B0,
M →M0 be an A-module map, and N0 →M0 be a B0-module map. Assume that
M ⊗A A0 →M0 and N0 ⊗B0 A0 →M0 are isomorphisms. Set B := B0 ×A0 A and
N = N0 ×M0

M . Then
(1) the maps N ⊗B B0 → N0 and N ⊗B A→M are isomorphisms,
(2) N is flat over B, and
(3) The modules N0 and M are finitely presented if and only if N is.
(4) Let B′

0 be a B0-algebra, A′ be an A-algebra, and B′
0 ⊗B0

A0 → A′ ⊗A A0 be
an isomorphism. Set B′ = B′

0 ×A′
0
A. Then B → B′ is flat and of finite

presentation if and only if B0 → B′
0 and A→ A′ are.

Proof. We verify (2), leaving the remaining claims to the reader. Let J = ker(A→
A0). Since M is flat over A, the Local Criterion of Flatness (A.2.6) implies that
0→ J ⊗A0

M0 →M →M0 → 0 is exact, and thus

0→ J ⊗A0
M0 → N → N0 → 0 (C.4.13)
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is also exact. To show the flatness of N , by the Local Criterion of Flatness (A.2.6), it
suffices to verify that (a) N ⊗B B0 is flat over B0 and (b) J ⊗B0

N0 → N is injective.
The module in (a) is identified with N0 by (2), which is flat over B0 by hypothesis.
Since J ⊗A0

M0 = J ⊗A0
(N0 ⊗B0

A0) = J ⊗B0
N0, (b) follows from (C.4.13). See

[Sch68, Lem. 3.4], [Har10, Prop. 16.4], and [SP, Tags 08KG, 0D2G, and 0D2K].

We say that a prestack X over Sch/k admits miniversal formal deformations
(resp., is locally prorepresentable, satisfies (RS3)) if for every x0 ∈ X (k), the local
deformation prestack Xx0

(as defined in Remark C.4.4) admits a miniversal formal
deformation (resp., is prorepresentable, satisfies (RS3)).

Proposition C.4.14. Let X be a proper scheme over a field k.
(1) The Hilbert functor Hilb(X) : Sch/k→ Sets, whose objects over S are closed

subschemes Z ⊂ XS flat and finitely presented over S, satisfies (RS3) and
(RS∗

4), and is therefore locally prorepresentable.
(2) The stack Fam over Sch/k, whose objects over S are proper, flat, and finitely

presented morphisms Y → S of algebraic spaces,1 admits miniversal formal
deformations. In particular, the stack Mall

g of all curves and the stack Mg of
smooth curves admit miniversal formal deformations.

(3) The stack Coh(X) over Sch/k, whose objects over S are finitely presented
quasi-coherent OXS

-modules flat over S, satisfies (RS3) and (RS∗
4), and there-

fore admits miniversal formal deformations. In particular, if C is a smooth,
connected, and projective curve, Bun(C) admits miniversal formal deforma-
tions.

Proof. For (1), Proposition C.1.3 identifies the tangent space of Hilb(X) at Z0 ⊂ X
with H1(Z,NZ0/X). Since X is proper, H1(Z,NZ0/X) is finite-dimensional and (RS3)
holds. To check (RS∗

4), A → A0 be a surjection of rings with square-zero kernel,
and B0 → A0 be a maps of rings, and suppose that W0 ⊂ XB0

and Z ⊂ XA are
closed subschemes flat over the base such that Z0 :=W0 ×B0

A0 = Z ×A A0 ⊂ XA0
.

Then OW0 ×OZ0
OZ is a quotient of OXB

, and defines a closed subscheme W ⊂ XB .
For each affine open SpecB′ ⊂ XB with restrictions SpecB′

0 ⊂ XB0 , SpecA′ ⊂ XA,
and SpecA′

0 ⊂ XA0
, we have that B′ = B′

0 ×A′
0
A′. By Lemma C.4.12(4), B → B′

is flat and finitely presented, and thus W is flat and finitely presented over B.
For (2), the tangent space of Fam at Y0 is identified with Ext1OY0

(LY0 ,OY0) by
Theorem C.3.5, and is therefore finite dimensional. (When Y0 is smooth, the tangent
space is H1(Y0, TY0

).) If [Z0 → SpecB0] ∈ Fam(B0) and [Y → SpecA] ∈ Fam(A)
with an isomorphism (Z0)A0

∼→ YA0 , then the Ferrand pushout Z := Z0 ⨿YA0
Y

exists by Theorem B.4.1. Applying Lemma C.4.12(4) to an affine cover of Z shows
that Z → SpecB is flat and finitely presented. Moreover, since Z is a pushout,
compatible isomorphisms of Z0 and Y extend uniquely to an isomoprhism of Z.

For (3), the tangent space of Coh(X) at a coherent sheaf is identified with
Ext1OX

(E,E) by Proposition C.1.18, which is finite dimensional. The base change
XB is the pushout of XA0

→ XB0
and XA0

↪→ XA, and for each affine open
SpecB′ ⊂ XB with restrictions SpecB′

0 ⊂ XB0
, SpecA′ ⊂ XA, and SpecA′

0 ⊂
XA0

, B′ = B′
0 ×A′

0
A′. For G0 ∈ Coh(X)(B0) and F ∈ Coh(X)(A) restricting to

F0 ∈ Coh(X)(A), we define G := G0 ×F0 F on XB. This is finitely presented by
Lemma C.4.12(3) (applied to G|SpecB′ over B′ = B′

0 ×A′
0
A′) and flat over B by

1We need to allow Y to be an algebraic space if we want Fam to be a stack; see Example 2.5.12
and Exercise 4.4.15. On the other hand, Rim–Schlessinger’s Criteria (C.4) equally applies to the
prestack parameterizing proper, flat, and finitely presented morphisms Y → S of schemes.
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Lemma C.4.12(2) (applied to G|SpecB′ over B = B0 ×A0 A). This gives essential
surjectivity for (RS∗

4), and the fully faithfullness is clear.

Exercise C.4.15. If X0 is a smooth proper scheme over k with no infinitesimal
automorphisms, i.e., H0(X0, TX0

) = 0, show that the functor of deformations of X0

is prorepresentable.

Exercise C.4.16. Let X = SpecA be an affine scheme with isolated singularities
over a field k, and let FX : Artk → Sets be the functor, where FX(R) is the set of
isomorphism classes of pairs (B, β) where B is a flat R-algebra and β : A→ B ⊗R
R/mR is an isomorphism. Show that FX admits a miniversal formal deformations.

C.5 Effective formal deformations and Grothendieck’s
Existence Theorem

Grothendieck’s Existence Theorem is a powerful technique for showing that formal
deformations are effective. It is sometimes referred to as Formal GAGA, as it is
analogous to Serre’s GAGA Theorem [Ser56] that for a proper scheme X over C with
analyticifcation Xan, the natural functor Coh(X)→ Coh(Xan), taking a coherent
sheaf F to its analytification F an, is an equivalence. The proofs follow very similar
strategies.

C.5.1 Effective formal deformations

Definition C.5.1. Let X be a prestack (or functor) over Sch/k. Let x0 ∈ X (k)
and consider a formal deformation {xn} over a complete noetherian local k-algebra
with residue field k of x0 (or more precisely a formal deformation of the deformation
stack Xx0

at x0 as defined in Remark C.4.4). We say that {xn} is effective if there
exists an object x̂ ∈ X (R) and compatible isomorphisms xn

∼→ x̂|SpecR/mn+1 .

A formal deformation (R, {xn}) is effective if it is in the essential image of the
natural functor X (R) → lim←−X (R/m

n), or in other words if there exists a dotted
arrow making the diagram

SpecR/m

x0
..

� � // SpecR/m2

x1

..

� � // SpecR/m3

x2

))

� � // · · · �
�

// SpecR

x̂

��

X

commutative.

Example C.5.2. If F : Sch/k→ Sets is a contravariant functor representable by a
scheme X over k, then every formal deformation (R, {xn}) is effective. Indeed, xn
corresponds to a morphism SpecR/mn+1 → X with image x ∈ X(k) and thus to
a k-algebra homomorphism ϕn : ÔX,x → R/mn+1. By taking the inverse image of
ϕn, we have a local homomorphism ÔX,x → R which in turn defines a morphism
x̂ : SpecR→ X extending {xn}.

More generally, if X is an algebraic stack over k, every formal deformation is
effective. Indeed, there exists a smooth presentation U → X and a lift u ∈ U(k) of
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x0 ∈ X (k). By applying the Infinitesimal Lifting Criterion for Smoothness (3.7.1),
we may inductively construct lifts

SpecR/mn� _

��

// U

��

SpecR/mn+1 xn //

99

X .

Since U is a scheme, the maps SpecR/mn → U extend to a map SpecR→ U , and
the composition SpecR → U → X effectivizes the formal deformation x̂ = {xn}.
Since the diagonal of X is representable, it follows that a compatible automorphisms
αn of xn extend to a unique automorphism of X̂, i.e., the functor

X (R)→ lim←−X (R/m
n+1)

is an equivalence of categories.

C.5.2 Grothendieck’s Existence Theorem
The following is frequently applied when (R,m) is a complete local ring.

Theorem C.5.3 (Grothendieck’s Existence Theorem). Let X be a scheme proper
over a noetherian ring A which is complete with respect to an ideal m ⊂ A. Let
Xn := X ×R R/mn+1. The functor

Coh(X)→ lim←−Coh(Xn), E 7→ {E/mn+1E} (C.5.4)

is an equivalence of categories.

The essential surjectivity of (C.5.4) translates to an extension of the diagram

E0 E1 E2 E

X0
� � //

��

X1
� � //

��

X2
� � //

��

· · · �
�

// X

��

SpecR/m �
�

// SpecR/m2 �
�

// SpecR/m3 �
�

// · · · �
�

// SpecR.

Using the language of formal schemes and setting X̂ = X ×SpecR Spf R to be the
m-adic completion of X, then Grothendieck’s Existence Theorem asserts that the
functor Coh(X)→ Coh(X̂), defined by E 7→ Ê, is an equivalence.

Remark C.5.5 (Limits of categories). An object of lim←−Coh(Xn) is a sequence {En}
of coherent OXn

-modules En together with isomorphisms En+1/m
n+1En+1

∼→ En.
A morphism ϕ = {ϕn} : {En} → {Fn} is the data of compatible OXn-module
homomorphisms ϕn : En → Fn. If X ∼= SpecR, then lim←−Coh(Xn) is equivalent to
the category of finite A-modules.

The category lim←−Coh(Xn) is abelian and (C.5.4) is an exact functor. While the
cokernel of a map {ϕn} : {En} → {Fn} in lim←−Coh(Xn) is simply {cokerϕn}, kernels
are more subtle. The Artin–Rees Lemma (B.5.4) implies that for each m, the image
of ker(αl) → Em stabilizes for l ≫ m to a subsheaf E′

m ⊂ Em, and that for each
n, the quotients E′

m/m
n+1E′

m stabilizes for m≫ n to a coherent sheaf Kn on Xn.
The kernel of {ϕn} is {Kn} (which is usually different from {kerϕn}). See [SP,
Tag 0EHN].
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Proof. Fully faithfulness of (C.5.4) translates into the bijection Ext0OX
(E,F )

∼→
lim←−n Ext

0
OXn

(E|Xn , F |Xn), which is a consequence of Formal Functions (see Exer-
cise A.5.5). It remains to show essential surjectivity.

Projective case: The key claim is that for every {En} ∈ Coh(Xn), there exists
integers m and r together with compatible surjections OXn(−m)⊕r ↠ En. Consider
the finite type OX0

-algebra A :=
⊕

i≥0 m
iOX0

/mi+1OX0
and the finitely generated

OA-module G :=
⊕

i≥0 m
iEi (noting that when {En} = {E/mn+1} for a coherent

sheaf E on X, then G is the associated graded
⊕

i≥0 m
iE/mi+1E). Viewing G

as a coherent sheaf on SpecX0
A and applying Serre’s Vanishing Theorem [Har77,

Thm. II.5.2] to the projective morphism SpecX0
A → Spec

⊕
i≥0 m

i/mi+1 gives
an integer m0 such that for all m ≥ m0 H1(X0,G(m)) = 0. This yields that
H1(X0,m

n+1En(m)) = 0 for all n, which in turn implies that

H0(X0, En+1(m))↠ H0(X0, En(m)) (C.5.6)

is surjective. After possibly increasing m0, we can assure that E0(m) is globally
generated by sections s0,1, . . . , s0,r. By the surjectivity of (C.5.6), we can find
compatible lifts sn,i ∈ H0(X0, En(m)) of the sections s0,i. This gives compatible
maps O⊕r

Xn
→ En(m), each which is surjective by Nakayama’s Lemma.

With the claim established, let {Kn} ∈ lim←−Coh(Xn) be the kernel {ϕn : OXn
(−m)⊕r ↠

En} as in Remark C.5.5. Applying the claim again to {Kn} induces compatible
right exact sequences

OXn
(−m′)⊕r

′ αn−−→ OXn
(−m)⊕r → En → 0.

By fully faithfulness, the morphism {αn} is induced by a morphism α̃ : OX(−m′)⊕r
′ →

OX(−m)⊕r, and it follows that E := coker(α̃) is a coherent sheaf on X such that
{E/mn+1E} ∼= {En} in lim←−Coh(Xn).

Proper case: By Chow’s Lemma [Har77, Exc. II.4.10], there exists a projective
morphism g : X ′ → X which is an isomorphism over a dense open subset U ⊂ X
such that X ′ is projective over the SpecR. Given {En} ∈ Coh(Xn), consider the
pullback {g∗En} ∈ Coh(X ′

n), where X ′
n := X ′ ×R R/mn+1. Since X ′ is projective

over R, there exists a coherent sheaf E′ on X ′ an an isomorphism

{βn} : {g∗En}
∼→ {E′/mn+1E′}

in lim←−Coh(X ′
n). By Finiteness of Cohomology (A.5.3), g∗E′ is coherent. Conceptu-

ally, the argument is now very straightforward: adjunction En → g∗g
∗En induces

an exact sequence

0→ {Kn} → {En}
{αn}−−−→

{
(g∗E

′)/mn+1(g∗E
′)
} {qn}−−−→ {Qn} → 0 (C.5.7)

in lim←−Coh(Xn) such that the ker(α) = {Kn} and coker(α) = {Qn} are supported
on X \ U , i.e., each Kn and Qn are supported on X \ U . By noetherian induction,
we can assume that there are coherent sheaves K and Q on X and isomorphisms
{Kn} ∼= {K/mn+1K} and {Qn} ∼= {Q/mn+1Q}. By full faithfulness and exactness
of (C.5.4), the map {qn} is induced by a surjection g∗E

′ → Q, and we define
F := ker(g∗E

′ → Q). Since ExtiOX
(K,F )

∼→ lim←−n Ext
i
OXn

(Kn, F/m
n+1F ), there is

an extension 0 → K → E → F → 0 giving a coherent sheaf E on X such that
{En} ∼= (E/mn+1E).

The existence of {αn} in (C.5.7), however, takes some work. The formalism of
formal schemes can be useful here as one can consider the map of formal schemes
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ĝ : X̂ ′ → X̂ over Spf R, the coherent sheaf Ê = lim←−En on X̂, and the adjunc-
tion morphism Ê → ĝ∗ĝ

∗Ê in Coh(X̂), and apply a version of formal functions
[EGA, III1.4.1.5]—sometimes called the ‘comparison theorem’—giving identifications
Riĝ∗(ĝ

∗Ê) ∼= lim←−Rng∗(g
∗En) ∼= (Rng∗E

′)̂ .
We argue more directly. We first show that there are unique maps αn filling in

the diagram

En
cn //

αn

��

g∗g
∗En

g∗βn ∼

��

(g∗E
′)/mn+1(g∗E

′)
dn // g∗(E

′/mn+1E′),

where cn and dn are the natural maps. By the uniqueness, the existence of {αn}
is local on X, so we may assume that X = SpecB. Since B → B̂ := lim←−B/m

n+1B
is flat and all the coherent sheaves in the diagram are annihilated by a power of
m, Flat Base Change (A.2.12) further reduces us to the case that B is complete
with respect to mB. In this case E := lim←−En corresponds to a coherent sheaf
on X mapping to {En} in lim←−Coh(Xn). Applying Formal Functions (A.5.4) to
X ′ → SpecB and E′ yields that g∗E′ ∼= lim←− g∗(E

′/mn+1E′), which shows that
lim←− dn is an isomorphism. Therefore, the composition α := (lim←− dn)

−1 ◦ lim←−(g∗βn ◦cn)
defines a map E → g∗E

′, which induces the desired maps αn. We now show that the
kernel and cokernel of (C.5.7) are supported on X \ U . Since g∗E ∼= lim←− g

∗En, the
isomorphism {βn} : (g∗En)→ (E′/mn+1E′) comes from an isomorphism g∗E

∼→ E′

such that {αn} : {En} →
(
(g∗E

′)/mn+1(g∗E
′)
)

comes from E → g∗g
∗E

∼→ g∗E
′.

Since g is an isomorphism over U , the adjunction map E → g∗g
∗E is an isomorphism

over U , and it follows that ker{αn} and coker{αn} are supported on X \ U . See
also [EGA, III1.5.1.4], [Ill05, Thm. 8.4.2], and [SP, Tag 088E].

Corollary C.5.8. Let (R,m) be a complete noetherian local ring and Xn →
SpecR/mn+1 be a sequence of proper morphisms such that Xn ×R/mn+1 R/mn ∼=
Xn−1. If Ln is a compatible sequence of line bundles on Xn such that L0 is ample,
then there exists a projective morphism X → SpecR and an ample line bundle L on
X and compatible isomorphisms Xn

∼= X ×R R/mn+1 and Ln
∼→ L|Xn

.

In other words, there is an extension in the cartesian diagram

X0
� � //

��

X1
� � //

��

X2
� � //

��

· · · �
�

// X

��

SpecR/m
� � // SpecR/m2 �

�
// SpecR/m3 �

�
// · · · �
�

// SpecR

withX projective over R. We say that the formal deformation {Xn → SpecR/mn+1}
of X0 is effective.2

Proof. Let k = R/m. Consider the finitely generated graded k-algebra B =⊕
mn/mn+1 and the quasi-coherent graded OX0

-algebra A = B ⊗k OX0
. By apply-

ing Serre’s Vanishing Theorem to SpecX0
A and the ample line bundle L0⊗OX0

OX′
0
,

there exists d0 such that H1(X0,A ⊗ L⊗d
0 ) = 0 for d ≥ d0. By possibly enlarging

2This is also sometimes referred to as algebraizable, but we reserve this term a deformation over
a finite type k-scheme, e.g., the output of Artin’s Algebraization (Theorem C.6.8).
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d0, we can assume that Ld00 is very ample. Let s0,0, . . . , s0,N of H0(X0, L
⊗d0
0 ) be

sections defining a closed immersion X0 ↪→ PN . There is an exact sequence

0→ mnOXn+1
/mn+1OXn+1

→ OXn+1
→ OXn

→ 0.

Tensoring by L⊗d
n+1 yields a short exact sequence

0→ (mnOXn+1/m
n+1OXn+1)⊗ L⊗d

0 → L⊗d
n+1 → L⊗d

n → 0,

where we have used that that (mnOXn+1/m
n+1OXn+1) is supported on X0 along with

the identifications Ln+1⊗OXm
∼= Lm for m ≤ n. The vanishing of H1(X0,A⊗L⊗d

0 )
implies that we may lift the sections s0,0, . . . , s0,N inductively to compatible sections
sn,0, . . . , sn,N of H0(Xn, L

⊗d
n ). By Nakayama’s Lemma, the induced morphisms

Xn ↪→ PNR/mn+1 are closed immersions giving a commutative diagram

PN

��

� � // Pn
R/m2

R

��

� � // · · · �
�

// PNR

��

X0

- 
cl

;;

$$

� � // X1

+ �

cl 99

&&

� � // · · · �
�

// X
- 

cl
;;

##

Speck �
�

// SpecR/m2 �
�

// · · · �
�

// SpecR

Grothendieck’s Existence Theorem (C.5.3) gives an equivalence Coh(PNR )→ lim←−Coh(PNR/mn+1).
Essential surjectivity gives a coherent sheaf E on PNR extending {OXn

} and full
faithfulness gives a surjection OPN

R
→ E extending OPN

R/mn+1
→ OXn

. We take

X ⊂ PNR to be the closed subscheme defined by ker(OPN
R
→ E). See also [EGA,

III.5.4.5], [Ill05, Thm. 8.4.10], and [SP, Tag 089A].

Remark C.5.9. Assume in addition that each Xn is flat over R/mn+1. If we are
only given an ample line bundle L0 on X0 (but not the line bundles Ln), then the
obstruction to deforming Ln−1 to Ln is an element obLn−1 ∈ H2(X,OX ⊗k mn)
(Proposition C.2.11). If these cohomology groups vanish (e.g., if X is of dimension
1), then there exists compatible extensions Ln, and thus the formal deformation
{Xn → SpecR/mn+1} are effective.

Without the existence of deformations Ln of L0, it is not necessarily true that
formal deformations are effective. For instance, there is a projective K3 surface
(X0, L0) and a first-order deformation X1 → Speck[ϵ] which is not projective (so L0

does not deform to X1), and a formal deformation which is not effective; see [Har10,
Ex. 21.2.1], [Sta06, Claim 3.5], and [SP, Tag 0D1Q]. Similarly, formal deformations
of abelian varieties may not be effective. Note that for the moduli of abstract K3
surfaces or abelian varieties, Rim–Schlessinger’s Criteria (C.4.6) applies to construct
versal formal deformations, but the lack of effectivity implies that the corresponding
stacks are not algebraic (Example C.5.2).

We apply Grothendieck’s Existence Theorem to the Hilbert functor Hilb(X), the
stack Mall

g of all curves, and the stack Coh(X) of coherent sheaves, each defined
over Sch/k as Proposition C.4.14.

Proposition C.5.10. Every formal deformation is effective for the Hilb(X), Mall
g

and Coh(X). In particular, there exist effective miniversal formal deformations.
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Proof. For Hilb(X), let {Zn ⊂ XR/mn+1} be a formal deformation. Grothendieck’s
Existence Theorem (C.5.3) implies the existence of a coherent sheaf E on XR extend-
ing the structure sheaves {OZn

}, and moreover that there is a surjection OXR
→ E

extending {OXn
→ OZn

}. The subscheme Z ⊂ XR defined by ker(OXR
→ E)

effectivizes the formal deformation.
For Mall

g , let {Cn → SpecR/mn+1} be a formal deformation. As C0 is a proper
curve over a field, it is projective. Let L0 be an ample line bundle on C0. The
obstruction to deforming a line bundle Ln on Cn to a line bundle Ln+1 on Cn+1

is an element obLn−1
∈ H2(X,OX ⊗k m

n) (Proposition C.2.11). Since dimC = 1,
this cohomology group is zero and thus there are a compatible family of line bundle
{Ln}. We may therefore apply Corollary C.5.8.

For Coh(X), the effectivity of a formal deformation follows directly from Grothendieck’s
Existence Theorem (C.5.3). The last statement follows from the existence of miniver-
sal formal deformations (Proposition C.4.14).

Exercise C.5.11. Let X and Y be proper schemes over the spectrum S = SpecR
of a complete noetherian local ring R. Denote by Xn and Yn the restrictions of
X and Y to Sn = SpecR/mn+1

R . Show that a compatible sequence of morphisms
fn : Xn → Yn over Sn extends to a unique morphism f : X → Y .

C.5.3 Lifting to characteristic 0

One striking application of deformation theory is to “lift” schemes X0 over a field
k of char(k) = p to characteristic 0. We say that X0 is liftable to characteristic 0
if there exists a complete noetherian local ring (R,m) of characteristic 0 such that
R/m = k and a smooth scheme X → SpecR such that X0

∼= X ×R k.3 One can
hope to then use characteristic 0 techniques (e.g., Hodge theory) on X and deduce
properties of X0. The strategy to lift X0 is to inductively deform X0 to schemes
Xn over R/mn+1 and then apply Grothendieck’s Existence Theorem to effective the
formal deformation.

Smooth curves are liftable as obstructions to deforming both the curve and
the ample line bundle both vanish. Serre produced an example of a non-liftable
projective threefold (see [Har10, Thm. 22.4]), which Mumford extended to a non-
liftable projective surface (see [Ill05, Cor. 8.6.7]). On the other hand, Mumford
showed that principally polarized abelian varieties are liftable [Mum69] while Deligne
showed that K3 surfaces are liftable [Del81]. These examples are quite interesting as,
in both cases, formal deformations are not necessarily effective (see Remark C.5.9).

C.6 Artin Algebraization
Artin Algebraization states that every effective versal formal deformation “alge-
braizes”, i.e., extends to an an object over a finite type k-scheme. In this section,
we show how Artin Algebraization follows from Artin Approximation following the
ideas of Conrad and de Jong [CdJ02].

C.6.1 Limit preserving prestacks
Extending the definition of a limit preserving functor §B.5.5, we say that a prestack
X over Sch/k is limit preserving (or locally of finite presentation) if for every system

3There are some variants to this definition, e.g., when R is already given as a complete DVR
with residue field k.
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Bλ of k-algebras, the natural functor

colimX (Bλ)→ X (colimBλ)

is an equivalence of categories. When X is an algebraic stack over k, then this
equivalent to the morphism X → Speck being locally of finite presentation; see
Exercise 3.3.31.

Exercise C.6.1. Use the Limit Methods of §B.3 to show that Hilb(X),Mall
g and

Coh(X) are each limit preserving over Sch/k.

C.6.2 Conrad–de Jong Approximation
In Artin Approximation (B.5.18), the initial data is an object over a complete
noetherian local k-algebra which is assumed to be the completion of a finitely
generated k-algebra at a maximal ideal. We will now see that a similar approximation
result still holds if this latter hypothesis is dropped. The idea is to approximate both
the complete local ring and the object.

Recall also that if (A,m) is a local ring and M is an A-module, then the associated
graded module of M is defined as Grm(M) =

⊕
n≥0 m

nM/mn+1M ; it is a graded
module over the graded ring Grm(A).

Theorem C.6.2 (Conrad–de Jong Approximation). Let X be a limit preserving
prestack over Sch/k, (R,mR) be a complete noetherian local k-algebra with residue
field k, and ξ ∈ X (R). Then for every integer N ≥ 0, there exist
(1) an affine scheme SpecA of finite type over k and a k-point u ∈ SpecA;
(2) an object η ∈ X (A);
(3) an isomorphism ϕN : R/mN+1

R
∼= A/mN+1

u ;
(4) an isomorphism of ξ|R/mN+1

R
and η|A/mN+1

u
via ϕN ; and

(5) an isomorphism GrmR
(R) ∼= Grmu

(A) of graded k-algebras.

The proof of this theorem will proceed by simultaneously approximating equations
and relations defining R and the object ξ. The statements (1)–(4) will be easily
obtained as a consequence of Artin Approximation. It is a nice insight of Conrad
and de Jong that condition (5) can also be ensured by Artin Approximation, and
moreover that this condition suffices to imply the isomorphism of complete local
k-algebras in Artin Algebraization. Unsurprisingly, (5) takes the most work to
establish.

We will need some preparatory results controlling the constant appearing in the
Artin–Rees Lemma (B.5.4).

Definition C.6.3 (Artin–Rees Condition). Let (A,m) be a noetherian local ring,
φ : M → N be a morphism of finite A-modules, and c ≥ 0 be an integer. We say
that (AR)c holds for φ if

φ(M) ∩mnN ⊂ φ(mn−cM), ∀n ≥ c.

The Artin–Rees Lemma (B.5.4) implies that (AR)c holds for φ if c≫ 0.

Lemma C.6.4. Let (A,m) be a noetherian local ring. Let

L
α−→M

β−→ N and L′ α′

−→M
β′

−→ N

be two complexes of finite A-modules. Let c be a positive integer. Assume that
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(a) the first sequence is exact,
(b) the complexes are isomorphic modulo mc+1, and
(c) (AR)c holds for α and β.

Then there exists an isomorphism Grm(cokerβ) → Grm(cokerβ
′) of graded

Grm(A)-modules.

Proof. The proof, while technical, is rather straightforward. First, by taking free
presentations of L and L′, we can assume that L = L′. One shows that (AR)c holds
for β′ and that the second sequence is exact. Then one establishes the equality

mn+1N + β(M) ∩mnN = mn+1N + β′(M) ∩mnN

by using that (AR)c holds for β to show the containment “⊂”, and then using that
(AR)c holds for β′ to get the other containment. The statement then follows from
the description Grm(cokerβ)n = mnN/(mn+1N + β(M) ∩ mnN) and the similar
description of Grm(cokerβ

′)n. For details, see [CdJ02, §3] and [SP, Tag 07VF].

Proof of Conrad–de Jong Approximation (Theorem C.6.2). Since X is limit preserv-
ing and R is the colimit of its finitely generated k-subalgebras, there is an affine
scheme V = SpecB of finite type over k and an object γ of X over V together with
a 2-commutative diagram

SpecR //

ξ

&&
V

γ
// X .

Let v ∈ V be the image of the maximal ideal m ⊂ R. After adding generators to
the ring B if necessary, we can assume that the composition ÔV,v → R → R/m2

is surjective. This implies that ÔV,v → R is surjective by Complete Nakayama’s
Lemma (B.5.6(3)). The goal now is to simultaneously approximate over V the
equations and relations defining the closed immersion SpecR ↪→ Spec ÔV,v and the
object ξ. To accomplish this goal, we choose a resolution

Ô⊕r
V,v

α̂−→ Ô⊕s
V,v

β̂−→ ÔV,v → R→ 0 (C.6.5)

as ÔV,v-modules and consider the functor

F : (Sch /V )→ Sets

(T → V ) 7→
{
complexes O⊕r

T
α−→ O⊕s

T

β−→ OT
}
.

It is not hard to check that this functor is limit preserving. The resolution in (C.6.5)
yields an element of F (ÔV,v). Applying Artin Approximation (B.5.18) gives an étale
morphism (V ′ = SpecB′, v′)→ (V, v) and an element

(B′⊕r α′

−→ B′⊕s β′

−→ B′) ∈ F (V ′) (C.6.6)

such that α′, β′ are equal to α̂, β̂ modulo mN+1.
Let U = SpecA ↪→ SpecB′ = V ′ be the closed subscheme defined by imβ′ and

let u = v′ ∈ U . Consider the composition

η : U ↪→ V ′ → V
γ−→ X
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As R = coker β̂ and A = cokerβ′, we have an isomorphism R/mN+1 ∼= A/mN+1
u

together with an isomorphism of ξ|R/mN+1 and η|A/mN+1
u

. This gives statements
(1)–(4).

To establish (5), we need to show that there are isomorphisms mn/mn+1 ∼=
mnu/m

n+1
u . For n ≤ N , this is guaranteed by the isomorphism R/mN+1 ∼= A/mN+1

u .
On the other hand, for n≫ 0, this can be seen to be a consequence of the Artin–Rees
Lemma (B.5.4). To handle the middle range of n, we need to control the constant
appearing in the Artin–Rees Lemma. First, note that before we applied Artin
Approximation, we could have increased N to ensure that (AR)N holds for α̂ and
β̂. We are thus free to assume this. Now statement (5) follows directly if we apply

Lemma C.6.4 to the exact complex Ô⊕r
V,v

α̂−→ Ô⊕s
V,v

β̂−→ ÔV,v of (C.6.5) and the complex

Ô⊕r
V,v

α̂′

−→ Ô⊕s
V,v

β̂′

−→ ÔV,v obtained by restricting (C.6.6) to F (ÔV,v). See also [CdJ02]
and [SP, Tag 07XB].

Exercise C.6.7. Show that Conrad–de Jong Approximation implies Artin Approxi-
mation.

C.6.3 Artin Algebraization

Artin Algebraization has a stronger conclusion than Artin Approximation or Conrad–
de Jong Approximation in that no approximation is necessary. It guarantees the
existence of an object η over a pointed affine scheme (SpecA, u) of finite type over k,
which agrees with the given effective formal deformation ξ to all orders. To ensure
this, we need to impose that ξ is versal at u, i.e., that the restrictions ξn = ξ|A/mn+1

u

define a versal formal deformation {ξn} over A (Definition C.4.2).

Theorem C.6.8 (Artin Algebraization). Let X be a limit preserving prestack over
Sch/k. Let (R,m) be a complete noetherian local k-algebra and ξ ∈ X (R) be an
effective versal formal deformation. There exist

(1) an affine scheme SpecA of finite type over k and a k-point u ∈ SpecA;
(2) an object η ∈ X (A);
(3) an isomorphism α : R

∼→ Âmu
of k-algebras; and

(4) a compatible family of isomorphisms ξ|R/mn+1
∼= η|A/mn+1

u
(under the identifi-

cation R/mn+1 ∼= A/mn+1
u ) for n ≥ 0.

Note that we are not asserting that ξ ∼= η|Âmu
, although this does hold in some

settings, e.g., if X is an algebraic stack. See Example C.7.16 for an example where
the effective versal formal deformation is not unique, in which case there is two
algebraizations which are not étale-locally isomorphic.

Remark C.6.9. If R is known to be the completion of a finitely generated k-
algebra, this theorem can be viewed as an easy consequence of Artin Approximation.
Indeed, one applies Artin Approximation with N = 1 and then uses versality
to obtain compatible maps R → A/mn+1

u and therefore a map R → Âmu which
is an isomorphism modulo m2. As R and Âmu

are abstractly isomorphic, the
homomorphism R → Âmu is an isomorphism by Complete Nakayama’s Lemma
(B.5.6(3)) and the statement follows. The argument in the general case is analogous,
except we use Conrad–de Jong Approximation instead of Artin Approximation.
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Proof. Applying Conrad–de Jong Approximation (C.6.2) with N = 1, we obtain an
affine scheme SpecA of finite type over k with a k-point u ∈ SpecA, an object η ∈
X (A), an isomorphism ϕ2 : SpecA/m2

u → SpecR/m2, an isomorphism α2 : ξ|R/m2 →
η|A/m2

u
, and an isomorphism Grm(R) ∼= Grmu

(A) of graded k-algebras. We claim
that ϕ2 and α2 can be extended inductively to a compatible family of morphisms
ϕn : SpecA/mn+1

u → SpecR and isomorphisms αn : ξ|A/mn+1
u
→ η|A/mn+1

u
. Indeed,

given ϕn and αn, versality of ξ implies that there is a lift ϕn+1 filling in the
commutative diagram

SpecA/mnu
ϕn //

��

SpecR

ξ

��

SpecA/mn+1
u η|

A/m
n+1
u

//

ϕn+1

88

X .

By taking the limit, we have a homomorphism ϕ̂ : R → Âmu
which is surjective

by Complete Nakayama’s Lemma (B.5.6(3)). On the other hand, for each n the
k-vector spaces mN/mN+1 and mNu /m

N+1
u have the same dimension. This implies

that ϕ̂ is an isomorphism. See also [Art69b, Thm. 1.6] and [CdJ02, §4].

C.7 Artin’s Axioms for Algebraicity
Artin’s Axioms for Algebraicity provide criteria, often verifiable in practice, ensuring
that a given stack is algebraic. This foundational result was proved by Artin in
the very same paper [Art74] where he introduced algebraic stacks. We provide
two versions below: Theorems C.7.1 and C.7.4. The first version is a fairly easy
consequence of Artin Algebraization.

Theorem C.7.1. (Artin’s Axioms for Algebraicity—first version) Let X be a stack
over (Sch/k)ét. Then X is an algebraic stack locally of finite type over k if and only
if the following conditions hold:

(1) (Limit preserving) The stack X is limit preserving over Sch/k, i.e., for every
system Bλ of k-algebras, the functor

colimX (Bλ)→ X (colimBλ)

is an equivalence of categories.
(2) (Representability of the diagonal) The diagonal X → X ×X is representable.
(3) (Existence of versal formal deformations) Every x0 ∈ X (k) has a versal formal

deformation {xn} over a complete noetherian local k-algebra (R,m) with residue
field k.

(4) (Effectivity) For every complete noetherian local k-algebra (R,m) with residue
field k, the natural functor

X (SpecR)→ lim←−X (SpecR/m
n)

is an equivalence of categories.
(5) (Openness of versality) For every morphism U → X from a finite type k-scheme

which is versal at u ∈ U(k) (i.e., the formal deformation {Spec ÔU,u/mn+1
u →

X} is versal), there exists an open neighborhood V of u such that U → X is
versal at every k-point of V .
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Proof. We first note that for a representable and locally of finite type morphism
U → X from a finite type k-scheme U , the Infinitesimal Lifting Criterion for
Smoothness (3.7.1) implies that U → X is smooth if and only if it is versal at all
k-points u ∈ U . For (⇒), (1) holds by Exercise 3.3.31, (2) holds by Theorem 3.2.1,
and (4) holds by Example C.5.2. If U → X is a morphism from a finite type
k-scheme, then it is necessarily representable and locally of finite type. Part (3)
holds by choosing a smooth presentation U → X and a preimage u ∈ U(k) of x0 and
taking the formal deformation {SpecOU,u/mn+1

u → X}. Part (5) holds by openness
of smoothness.

For the converse, we first note that representability of the diagonal, i.e., condition
(2), implies that every morphism U → X from a scheme U is representable, and
the limit preserving property (1) implies that U → X is locally of finite type.
For every object x0 ∈ X (k), we will construct a smooth morphism U → X from
a scheme and a preimage u ∈ U(k) of x0. Conditions (3)–(4) guarantee that
there exists an effective versal formal deformation x̂ : SpecR → X of x0 where
(R,m) is a complete noetherian local k-algebra with residue field k. By Artin
Algebraization (Theorem C.6.8), there exists a finite type k-scheme U , a point
u ∈ U(k), a morphism p : U → X , an isomorphism R ∼= ÔU,u, and compatible
isomorphisms p|R/mn+1

∼→ x̂|R/mn+1 . By (5), we can replace U with an open
neighborhood of u so that U → X is versal (or in other words smooth) at every
k-point of U . See also [Art74, §5], [LMB00, Cor. 10.11], and [SP, Tag 07Y4].

Remark C.7.2. In practice, condition (1)–(4) are often easy to verify directly with
(3) a consequence of Rim–Schlessinger’s Criteria (C.4.6) and (4) a consequence of
Grothendieck’s Existence Theorem (C.5.3). Also note that (2) can sometimes be
established by applying the theorem to the diagonal X → X ×X , i.e., to the Isom
sheaves IsomT (x, y) of objects x, y ∈ X (T ) over a scheme T . In some specialized
cases, (5) can be checked directly, but it is frequently verified as a consequence of a
well-behaved deformation and obstruction theory, as we explain in the next section.

C.7.1 Artin’s Axioms via an obstruction theory

We state a refinement of Artin’s Axioms for Algebraicity that is often easier to verify
in practice. Namely, we show that openness of versality (C.7.1(5)) holds if the stack
has a well-behaved deformation theory and if there exists a well-behaved obstruction
theory.

To formulate the statements, we will need a bit of notation. Let ξ ∈ X (A) be an
object over a finitely generated k-algebra A. Let M be a finite A-module and denote
by A[M ] the ring A⊕M defined by M2 = 0. Let Defξ(M) the set of isomorphism
classes of diagrams

SpecA
ξ

//
_�

��

X

SpecA[M ],

η

::

where an isomorphism of two extensions η, η′ : SpecA[M ]→ X is by definition an
isomorphism η

∼→ η′ in X (A[M ]) restricting to the identity on ξ. Let Autξ(M) be the
group of automorphisms of the trivial deformation ξ′ : SpecA[M ]→ SpecA→ X .
Note that when ξ ∈ X (k), then Defξ(k) is precisely the tangent space of X at ξ,
while Autξ(k) is the group of infinitesimal automorphism of ξ, i.e. the kernel of
AutX (k[ϵ])(ξ

′)→ AutX (k)(ξ).
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Lemma C.7.3. Suppose that X is a prestack over Sch/k satisfying the strong
homogeneity condition (RS∗

4). Let ξ ∈ X (A) be an object over a finitely generated
k-algebra A.

(1) For every A-module M , Defξ(M) and Autξ(M) are naturally A-modules, and
the functors

Autξ(−) : Mod(A)→ Mod(A)

Defξ(−) : Mod(A)→ Mod(A)

are A-linear.
(2) Consider a surjection B ↠ A of k-algebras with square-zero kernel I, and

let Liftξ(B) be the set of morphisms ξ → η over SpecA → SpecB where
(α : ξ → η) ∼ (α′ : ξ → η′) if there is an isomorphism β : η → η′ such that
α′ = β ◦ α. There is an action of Defξ(I) on Liftξ(B) which is functorial in
B and I. Assuming Liftξ(B) is non-empty, this action is free and transitive.

Proof. This can be established by arguing as in Lemma C.4.9. For instance, scalar
multiplication by x ∈ A is defined by pulling back along the morphism SpecA[M ]→
SpecA[M ] induced by the A-algebra homomorphism A[M ]→ A[M ], a+m 7→ a+xm.
Condition (RS∗

4) implies that the functor X (A[M⊕M ])→ X (A[M ])×X (A)X (A[M ])
is an equivalence. Addition M ⊕M → M induces an A-algebra homomorphism
A[M ⊕M ]→ A[M ] and thus a functor

X (A[M ])×X (A) X (A[M ]) ∼= X (A[M ⊕M ])→ X (A[M ])

which defines addition on Defξ(M) and Autξ(M).

Theorem C.7.4 (Artin’s Axioms for Algebraicity—second version). A stack X over
(Sch/k)ét is an algebraic stack locally of finite type over k if the following conditions
hold.

(AA1) (Limit preserving) The stack X is limit preserving.
(AA2) (Representability of the diagonal) The diagonal X → X ×X is representable.
(AA3) (Finiteness of tangent spaces) For every object ξ : Speck→ X , Defξ(k) is a

finite dimensional k-vector space.
(AA4) (Strong homogeneity) For every k-algebra homomorphism B0 → A0 and

surjection A↠ A0 of k-algebras with square-zero kernel, the functor

X (B0 ×A0 A)→ X (B0)×X (A0) X (A)

is an equivalence, i.e., (RS∗
4) holds.

(AA5) (Effectivity) For every complete noetherian local k-algebra (R,m) with residue
field k, the natural functor

X (SpecR)→ lim←−X (SpecR/m
n)

is an equivalence of categories.
(AA6) (Coherent deformation theory) For every object ξ ∈ X (A) over a k-algebra A,

the functor Defξ(−) commutes with products.
(AA7) (Existence of a coherent obstruction theory) For every object ξ ∈ X (A) over a

k-algebra A, there exists the following data
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(a) there is an A-linear functor

Obξ(−) : Mod(A)→ Mod(A),

and for every surjection B → A with square-zero kernel I, there is an
element obξ(B) ∈ Obξ(I) such that there is an extension

SpecA
ξ
//

_�

��

X

SpecB

<<

if and only if obξ(B) = 0, and
(b) for every composition B → B′ → A of k-algebras such that B ↠ A and

B′ ↠ A are surjective with square-zero kernels I and I ′, the image of
obξ(B) under Obξ(I)→ Obξ(I

′) is obξ(B
′).

(c) For every object ξ ∈ X (A) over a k-algebra A, the functor Obξ(−)
commutes with products.

Moreover, (AA2) can be replaced with
(AA2′) For every object ξ : Spec k → X , Autξ(k) is a finite dimensional k-vector

space, and for every object ξ ∈ X (A) over a k-algebra A, the functor Autξ(−)
commutes with products.

Proof. We verify the conditions of Theorem C.7.1. By (AA3)–(AA4), we may
apply Rim–Schlessinger’s Criteria (C.4.6) to deduce the existence of versal formal
deformations, i.e., C.7.1(3) holds. It remains to check openness of versality, i.e.,
C.7.1(5). Let ξ0 : U0 → X be a morphism from an affine scheme U0 = SpecB0

of finite type over k such that ξ0 is versal at a point u0 ∈ U0(k). By (AA1)–
(AA2), the morphism ξ0 : U0 → X is representable and locally of finite type. Let
Σ = {u ∈ U0(k) | ξ0 : U0 → X is not versal at u}. If openness of versality does not
hold, then u0 ∈ Σ and there exists a countably infinite subset Σ′ = {u1, u2, . . .} ⊂ Σ
of distinct points with u0 ∈ Σ′.

Step 1. We claim that there exists a commutative diagram

U0

ξ0
��

� � // U1

ξ1

~~

� � // U2

ξ2
vv

� � // · · ·

X

where each closed immersion Un−1 ↪→ Un is defined by a short exact sequence

0→ κ(un)→ OUn → OUn−1 → 0,

and there exists open neighborhoods Wn ⊂ Un \ {u0, . . . , un−1} of un such that each
restriction ξn|Wn

is not the trivial deformation of ξ0|Wn∩U0
. By construction, each

Un = SpecBn is an affine scheme and each closed immersion Un ↪→ Um for m ≥ n is
defined by a square-zero ideal. Suppose that we’ve already constructed ξ0, . . . , ξn−1.
Since ξ0 : U0 → X and ξn−1 : Un−1 → X are isomorphic in an open neighborhood of
un, the morphism ξn−1 : Un−1 → X is also not versal at un. Therefore, there exists
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a surjection A→ A0 in Artk with ker(A→ A0) = k and a commutative diagram

Speck �
�

//

un

((

SpecA0� _

��

// Un−1

ξn−1

��

SpecA //

̸∃
::

X ,

(C.7.5)

such that un is the image of SpecA0 → Un−1, which does not admit a lift SpecA→
Un−1. Using strong homogeneity (AA4), there exists an extension of the commutative
diagram

SpecA0� _

��

// Un−1 = SpecBn−1� _

��
ξn−1

��

SpecA //

//

Un = Spec(A×A0
Bn−1)

ξn

(( X

yielding an object ξn over Un = SpecBn with Bn := A ×A0 Bn−1. If ξn were the
trivial deformation of ξ0 in an open neighborhood of un, then SpecA→ X would be
the trivial deformation of SpecA0 contradicting the obstruction to a lift of (C.7.5).
Finally note that ker(Bn → Bn−1) = k since ker(A→ A0) = k. This establishes the
claim.

Step 2. Letting B̂ = lim←−Bn and Û = Spec B̂, we claim that there exists an object
ξ̂ ∈ X (Û) extending each ξn ∈ X (Un). Let Mn = ker(Bn → B0) (noting that
M0 = 0). Since M2

n = 0, we can view Mn as a B0-module. The k-algebra

B̃ :=

(b0, b1, . . .) ∈
∏
n≥0

Bn

∣∣∣∣ the image of each bn under Bn → B0 is b0


has the following properties.

– The surjective k-algebra homomorphism B̃ → B0 defined by (bi) 7→ b0 has
kernel M :=

∏
n≥0Mn.

– The map B̃ → B0[M ] defined by (b0, b1, b2, . . .) 7→ (b0, b1−b0, b2−b1, b3−b2, . . .)
is a surjective k-algebra homomorphism with square-zero kernel.

– The composition B̂ → B̃ → B0[M ] induces a short exact sequence

0 // ker(B̂ → B0) // ker(B̃ → B0) // ker(B0[M ]→ B0) // 0

0 // lim←−n≥0
Mn

//
∏
n≥0Mn

//
∏
n≥0Mn

// 0

(b0, b1, . . .)
� // (b1 − b0, b2 − b1, . . .).

– There is an identification B̂ = B̃ ×B0[M ] B0.
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Since the lift ξn ∈ X (Bn) of ξ0 exists for each n, obξ0(Bn) = 0 ∈ Obξ0(Mn). By
(AA7)(b), the element obξ0(B̃) maps to obξ0(Bn) under Obξ0(M)→ Obξ0(Mn). By
, the map Obξ0(M) ↪→

∏
nObξ0(Mn) is injective4 and thus obξ0(B̃) = 0 ∈ Obξ0(M)

which shows that there exists a lift ξ̃ ∈ X (B̃) of ξ0.
The restrictions ξ̃|Bn are not necessarily isomorphic to ξn. However, we may

use the free and transitive action Defξ0(Mn) = Liftξ0(B0[Mn]) on the non-empty
set of liftings Liftξ0(B̃n) to find elements tn ∈ Defξ0(Mn) such that ξn = tn · ξ̃|Bn

(Lemma C.7.3). Since Defξ0(M)
∼→
∏
nDefξ0(Mn) by (AA6), there exists t̃ ∈

Defξ0(M) mapping to (tn). After replacing ξ̃ with t̃ · ξ̃, we can arrange that ξ̃|Bn

and ξn are isomorphic for each n.
We now show that each restriction ξ̃|B0[Mn] ∈ Defξ0(Mn) under the composition

B̃ → B0[M ]→ B0[Mn] is the trivial deformation. Indeed, the map M = ker(B̃ →
B0) → ker(B0[Mn] → B0) = Mn induces a map Defξ0(M) → Defξ0(Mn) on
deformation modules, which under the identification Defξ0(M)

∼→
∏
nDefξ0(Mn) of

(AA6), sends an element (η0, η1, . . .) to (ηn+1|Bn − ηn). The ring map B̃ → B0[Mn]

also induces a map Liftξ0(B̃) → Liftξ0(B0[Mn]) which is equivariant with respect
to Defξ0(M) → Defξ0(Mn). It follows that the image of ξ̃ in Liftξ0(B0[Mn]) =
Defξ0(Mn) is ξn+1|Bn

− ξn = 0.
The existence of ξ̂ ∈ X (B̂) extending (ξn) ∈ lim←−X (Bn) now follows from applying

the identity B̂ = B̃ ×B0[M ] B0 and strong homogeneity (AA4) to the diagram

SpecB0[M ]� _

��

// SpecB0� _

�� ξ0

��

Spec B̃ //

ξ̃

//

Spec B̂

ξ̂

##

X .

Step 3. We now use the versality of ξ0 : U0 → X at u0 to arrive at a contradiction.
Since X is limit preserving (AA1), there exists a finitely generated k-subalgebra
B′ ⊂ B̂ and an object ξ′ ∈ X (B′) together with an isomorphism ξ̂

∼→ ξ′|B̂. After
possibly enlarging B′, we may assume that the composition B′ ↪→ B̂ → B0 is
surjective. Since ker(B̂ → B0) is square-zero, so is ker(B′ → B0). This defines
a closed immersion U0 ↪→ U ′ := SpecB′, and we can consider the commutative
diagram

U0

i

$$

� �

%%

id

%%

U0 ×X U ′ //

��

U ′ = SpecB′

ξ′

��

U0
ξ0 // X .

where the fiber product U0 ×X U ′ is an algebraic space locally of finite type over
k. Since ξ0 : U0 → X is versal at u0, it follows from (the artinian version of)

4The hypotheses of (AA7)(c) can be weakened to only require the injectivity of Obξ0(M) ↪→∏
n Obξ0 (Mn), although in practice one usually verifies bijectivity.
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the Infinitesimal Lifting Criterion for Smoothness (3.7.1) that U0 ×X U ′ → U ′

is smooth at i(u0). After replacing U0 and U ′ with affine open neighborhoods
and {u1, u2, . . .} with an infinite subsequence contained in these open subsets, we
can arrange that U0 ×X U ′ → U ′ is smooth. The (non-artinian version) of the
Infinitesimal Lifting Criterion for Smoothness (A.3.1) for schemes implies that the
section of U0 ×X U ′ → U ′ over U0 extends to a global section U ′ → U0 ×X U ′. This
implies that ξ′ is the trivial deformation of ξ0, which in turn implies that each ξn is
a trivial deformation of ξ0, a contradiction.

For the addendum, we show that (AA2′) implies (AA2), i.e., the representability
of the diagonal. By using the Limit Methods of §B.3, it suffices to consider maps
(a, b) : T → X ×k X from a finite type k-scheme. The deformation functor Defξ(−)
for the base change IsomT (a, b) → T corresponds to the automorphism functor
Autξ(−) for X , and we take obstruction functor Obξ(−) for IsomT (a, b) to be the
deformation functor Defξ(−) for X . Our exposition follows [SP, Tag 0CYF] and
[Hal17, Thm. A]. See also [Art69b, ], [Art74, Thm. 5.3] and [HR19a, Main Thm.] for
alternative versions of Artin’s Criteria, and [Mur95, Thm. 1] and [Mur64, Thm. 1]
for criteria for functors to abelian groups to be representable.

Remark C.7.6. The converse of the theorem also holds. For the necessity of the
conditions, we only need to check (AA3), (AA4), (AA6), and (AA7). Condition
(AA3) (finiteness of the tangent spaces) holds as X is of finite type over k, and (AA4)
(strong homogeneity) holds by [SP, Tag 07WN]. Condition (AA7) (existence of an
obstruction theory) follows from the existence of a cotangent complex LX/k for X
satisfying properties analogous to Theorem C.3.1; see [Ols06]. If ξ : SpecA→ X is
a morphism from a finitely generated k-algebra A and I is an A-module, then we set
Obξ(I) := Ext1A(ξ

∗LX/k, I). Finally, it follows from cohomology and base change
(see [Hal14b]) that Defξ(−) and Obξ(−) commute with products.

C.7.2 Verifying Artin’s Axioms

Theorem C.7.7. Let X be a proper scheme over a field k.
(1) The Hilbert functor Hilb(X) : Sch/k→ Sets, whose objects over S are closed

subschemes Z ⊂ XS flat and finitely presented over S, is an algebraic space
locally of finite type over k.

(2) The prestack Mall
g over Sch/k, whose objects over S are proper, flat, and

finitely presented morphisms Y → S of algebraic spaces with one-dimensional
fibers, is an algebraic stack locally of finite type over k.

(3) The prestack Coh(X) over Sch/k, whose objects over S are finitely presented
quasi-coherent OXS

-modules flat over S, is an algebraic stack locally of finite
type over k.

When X is projective, (1) and (3) are established by more explicit methods in
Theorem 1.1.2 and Exercise 3.1.23, while (2) was established in Theorem 5.4.6.

Proof. Fpqc Descent for Quasi-Coherent Sheaves (2.1.4) implies that Hilb(X) is
a sheaf and that Coh(X) is a stack, and Mall

g is a stack by Exercise 4.4.15. We
check the conditions of Theorem C.7.4. Condition (AA1) (limit preserving) was
verified in Exercise C.6.1. Condition (AA3) and the first part of (AA2′), i.e., the
finite dimensionality of Autξ(k) and Defξ(k), follow from the identifications with
0 and Ext0OX

(IZ0 ,OZ0) for ξ = [Z0 ⊂ X] ∈ Hilb(X)(k) (Proposition C.2.2), with
ExtiOC

(LC ,OC) for i = 0, 1 for ξ = [C] ∈ Mall
g (k) (Theorem C.3.5), and with
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ExtiOX
(E,E) for ξ = [E] ∈ Coh(X)(k) for i = 0, 1 (Proposition C.2.11). Condition

(AA4) (the strong homogeneity condition of (RS∗
4)) was verified in Proposition C.4.14.

Condition (AA5) (effectivity) was checked in Proposition C.5.10 as a consequence of
Grothendieck’s Existence Theorem. For (AA7), we define obstruction theories as
follows: for a k-algebra A and an A-module M , we set

– Obξ(M) := Ext1OXA
(IZ ,OZ ⊗AM) for ξ = [Z ⊂ XA] ∈ HilbP (X)(A),

– Obξ(M) := Ext2OC
(LC/A,M) = 0 for ξ = [C → SpecA] ∈Mall

g (A), and

– Obξ(M) := Ext2OXA
(E,E ⊗AM) for ξ = [E] ∈ Coh(X)(A).

Condition (AA7)(a)–(b) follow from Proposition C.2.2, Theorem C.3.5, and Proposi-
tion C.2.11, which also provides cohomological identifications with Autξ(M) and
Defξ(M). Condition (AA6), (AA7)(c), and the second part of (AA2′) (Autξ(−),
Defξ(−), and Obξ(−) commutes with products) follows from Lemma C.7.8. See also
[Art69b, Cor. 6.2], [Lie06, Thm. 2.11], and [SP, Tags 09TU, 0D5A, and 08KA].

Lemma C.7.8. Let X → SpecA be a flat proper morphism of schemes. Let E and
F be coherent sheaves on X with F flat over A. The functors

Hi(X,F ⊗A −) : Mod(A)→ Mod(A)

ExtiOX
(LX/A,−) : Mod(A)→ Mod(A)

ExtiOX
(E,F ⊗A −) : Mod(A)→ Mod(A)

commute with products.

Proof. Since F is flat over A, there is a perfect complex K• of A-modules such that
Hi(X,F ⊗A −) ∼= Hi(K• ⊗A −) (Theorem A.6.2). Write Kd = A⊕rd . For every set
of A-modules {Mα} we have an identification of complexes

0 //
∏
αM

⊕r0
α

//
∏
αM

⊕r1
α

// · · · //
∏
αM

⊕rn
α

// 0

0 // (
∏
αMα)

⊕r0 // (
∏
αMα)

⊕r1 // · · · // (
∏
αMα)

⊕rn // 0.

The top row is the product of the complexes K• ⊗A Mα and its cohomology is
identified with

∏
αH

i(X,F ⊗AMα), while the bottom row is K• ⊗A (
∏
αMα) with

cohomology groups Hi(X,F ⊗A (
∏
αMα)). For the remaining statements, one needs

to apply more sophisticated versions of cohomology and base change; see [EGA,
III.7.7.5], [SP, Tag 08JR], and [Hal14a, Thm. E].

Exercise C.7.9 (Hom stacks, hard). Let X and Y be proper Deligne–Mumford
stacks over a field k. Show that the stack Mor(X ,Y) over (Sch/k)ét, whose fiber
category over a k-scheme S is Mor(XS ,YS), is an algebraic stack locally of finite
type.

Exercise C.7.10 (Weil restriction, hard). Let S ′ → S is be a proper flat morphism
of Deligne–Mumford stacks locally of finite type over k. Let X ′ → S ′ be a locally of
finite type morphism. Show that the stack ReS′/S(X

′) over (Sch/S)ét whose fiber
category over an S-scheme T is X ′(T ×S S ′) is representable by an algebraic stack
locally of finite type over S. This is a generalization of Exercise 0.3.16.
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C.7.3 Counterexamples
We prove examples of non-algebraic sheaves and stacks failing Artin’s Axioms.

Example C.7.11 (Automorphism of modules). For a module M over a ring A,
consider

AutA(M) : Sch /A→ Sets, S 7→ AutS(M ⊗A S).

If M is flat and finitely presented, then AutA(M) is representable by a group scheme
(and in fact a finite type affine group scheme). This fails if M is not flat or not
finitely presented. For example, if A = k and V =

⊕
n∈N k · ⟨ei⟩, then Autk(V ) is

not limit preserving: letting B = k[x1, x2, . . .] =
⋃
nBn with Bn = k[x1, . . . , xn], the

B-automorphism of V ⊗k B, defined by ei 7→ ei + xi+1ei+1, is not induced by a Bn-
automorphism of V ⊗k Bn for any n, i.e., colimnAutBn(V ⊗k Bn)→ AutB(V ⊗k B)
is not surjective.

On the other hand, let A = k[x] and M = A/(x) = k. Suppose that G =
Autk[x](k) is representable by an algebraic space. Sections of G→ Speck[x] corre-
spond to Autk[x](k) = k×. Two distinct sections must restrict to distinct sections
over Speck[x]x, but this contradicts that G restricts to the trivial group scheme over
Speck[x]x. The sheaf G fails the strong homogeneity condition (RS∗

4) of axiom (AA4).
In fact, it fails Rim–Schlessinger’s Condition (RS2) (or equivalently Schlessinger’s
Condition (H2)): G(k[ϵ]×k k[ϵ))→ G(k[ϵ])×G(k) G(k[ϵ]) is not bijective, where k[ϵ]
has the k[x]-algebra structure via x 7→ ϵ. Indeed, G(k[ϵ]) = Autk[ϵ](k) = k× = G(k),
but G(k[ϵ]×k k[ϵ]) =

(
k[ϵ]×k k[ϵ]/(ϵ, ϵ)

)× ∼= k[ϵ]× ∼= k× × k.

Example C.7.12 (Stacks of quasi-coherent sheaves / non-flat coherent sheaves). If
X is a proper scheme over a field k, the prestack QCoh(X), whose objects over S are
quasi-coherent sheaves F flat over S, is not algebraic. The previous example shows
that QCoh(X) is not limit preserving (because the requisite functor is not even fully
faithful) and that the diagonal is not representable, i.e., both (AA1) and (AA2) fail.
Similarly, the stack of finitely presented (but not necessarily flat) quasi-coherent
sheaves is not algebraic nor limit preserving. By the previous example, (AA2) and
the fully faithfulness of (AA4) both fail.

Example C.7.13 (Automorphisms of schemes). If X is a scheme over k, consider

Aut(X) : Sch/k→ Sets, S 7→ AutS(XS).

If X is proper, this is representable by an algebraic space. Without properness, this
may fail. For example, Aut(A1) is not representable and fails (AA3): if ξ = {id} ∈
Aut(A1)(k), then by Proposition C.2.4, there is an identification of the tangent space
Defξ(k) with H0(A1, TA1) = k[x].

Example C.7.14 (Stack of all algebraic spaces). Let X be the prestack over Sch/k,
whose objects over a k-scheme S is a morphism X → S of algebraic spaces, and
where a morphism (X → S) → (X ′ → S′) is a cartesian diagram. This is a stack
over (Sch/k)ét, but it is not limit preserving and the diagonal X → X × X is not
representable, i.e., both (AA1) and (AA2) fail. It also fails (AA2′) as Autξ(k) may
be infinite dimensional, as we saw in the previous example.

Example C.7.15 (Stack of K3 surfaces). The moduli stack K3 over (Sch/k)ét,
whose objects over a k-scheme S are smooth and proper morphisms X → S of
algebraic spaces such that every fiber is a K3 surface, is not algebraic. It fails the
effectivity axiom (AA5); see Remark C.5.9.
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We now describe Artin’s counterexamples from [Art69c]. In each case, the setup
is an inductive system of affine schemes

X1 → X2 → X3 → · · · with Xq = SpecAq

and we consider the functor

colimXq : AffSch/k→ Sets, SpecR 7→ colimMork(SpecR,Xi),

where an element of F (R) is an equivalence class of a pair (q, ϕ : Aq → R) of an
positive integer and an k-algebra homomorphism, where (q, ϕ) ∼ (q′, ϕ′) if there

exists Q ≥ q, q′ such that AQ → Aq
ϕ−→ R and AQ → Aq′

ϕ′

−→ R agree.
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Figure C.1: Counterexamples to Artin’s Axioms

Example C.7.16 (Infinitely tangential curves). For Figure C.1(A), let Xq =
SpecAq, where Aq = k[x, y]/(y(y−xq)) and Aq+1 → Aq is defined by (x, y) 7→ (x, xy).
In F (k[t]/tn+1), consider the elements αn : Aq → k[t]/tn+1 (for any q), defined by
(x, y) 7→ (t, 0), and βn : Aq → k[t]/tn+1 (for any q), defined by (x, y) 7→ (t, tq). For
each n, αn ∼ βn as we can take q ≥ n+1. Then {αn} is a versal formal deformation
that effectivizes to two distinct elements α̂, β̂ ∈ F (k[[t]]) defined on Aq (for any
q) by α̂(x, y) 7→ (t, 0) and β̂(x, y) 7→ (t, tq). In this way, we see that the functor
F (k[[t]])→ lim←−F (k[t]/t

q) is not injective, so that the effectivity axiom (AA5) fails.
In this case, C.7.1(5) (openness of versality) also fails. Likewise, the diagonal on F
is not representable: the formal deformation of Isomk[[t]](α̂, β̂) given by {αn

∼→ βn}
is not effective.

Example C.7.17 (Infinitely many nodes). For Figure C.1(B), let Xq be the affine
scheme over C with q nodes obtained from A1 by nodally-identifying q pairs of points.
Then A1 → colimXq is formally versal at any point that doesn’t map to a node,
but this is not formally versal in any open neighborhood of A1 as one must remove
infinitely many points. Thus C.7.1(5) (openness of versality) fails.

Similarly, for Figure C.1(C), if Xq = Speck[x, y]/(y
∏1
i=1(x − q)), then the

inclusion A1 → colimXq is formally versal at any non-nodal point, but is not
formally versal in an open neighborhood.
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Example C.7.18 (Infinitely many lines). For Figure C.1(D), letXq = Speck[x, y]/
∏q
i=1(iy−

x) be the union of q lines in the plane, and Xq ↪→ Xq+1 be the induced closed
immersions. Then colimXq satisfyies Schlessinger’s Axioms (H1)–(H4) (or equivalent
the Rim–Schlessinger Axioms (RS1)–(RS4)). Thus Schlessinger’s Theorem applies to
produce a formal versal deformation {xn}, where xn ∈ (colimXq)(k[x, y]/(x, y)n+1)
is defined by the closed immersion Speck[x, y]/(x, y)n+1 ↪→ Xn+1. The effectivity
axiom (AA5) fails as there is no element of (colimXq)(k[[x, y]]) extending {xn}.

Example C.7.19 (Hom stacks). The Hom stack Mor(X ,Y) over (Sch/k)ét is
algebraic if X and Y are proper over k (Exercise C.7.9). This holds more generally
over an arbitrary base if X → S is proper and flat, and if Y → S is only assumed to
be locally of finite presentation, quasi-separated, and with affine stabilizer groups;
see [HR19b, Thm. 1.2] and [BHL17, Cor. 1.6]. In these settings, a version of Tannaka
Duality (6.4.1) holds, i.e., Mor(X ,Y) ∼→ Mor⊗(Coh(Y),Coh(X )), and this reduces
the effectivity axiom (AA5) to a version of Grothendieck’s Existence Theorem.

It is essential however that Y have affine stabilizers. If Y is the classifying
stack of an abelian variety, then Tannaka Duality may not hold and the Hom stack
Mor(X ,Y) may fail to be algebraic; see [SP, Tag 0AF8] and [HR19b, §10].

Exercise C.7.20 (Sheafification of the functor of smooth curves). Let F be the
sheafification in (Sch/k)ét of the functor assigning S to the set Mg(S)/∼ of isomor-
phism classes of families of smooth curves over S. Which of Artin Axioms fails for
F?
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