Mathematics and Al (Fall 2025): Jarod Alper
Lecture 2

Science 1s what we understand

well enough to explain to a computer,
Art 1s all the rest.
—Donald Knuth (1996)




Evolution of Proof

Rigor has ceased to be thought of
as a cumbersome style of formal dress that
one has to wear on state occasions and discards
with a sigh of relief as soon as one comes home. We do
not ask any more whether a theorem has been
rigorously proved but whether it has been proved.

—Andre Weil (1956)




Example: evolution of Hilbert's basis theorem

Ist irgend eine nicht abbrechende Reihe von Formen der n Vern-

derlichen x1,xo,...,x, gegeben, etwa Fi, F5, F3, ..., so giebt es
stets eine Zahl m von der Art, dass eine jede Form jener Reihe
Hilbert (1890) in die Gestalt
F=AFR+A¥F+.---+ A, F,
bringen lsst, wo A, Aa, ..., A,, geeignete Formen der nmlichen n

Vernderlichen sind.



Example: evolution of Hilbert's basis theorem

If any non-terminating sequence of forms of the n wvariables

x1,%2,...,Tny 1S given, for instance Fi, Fs, F3, ..., then there al-
ways exists a number m of such a kind that every form of that
Hilbert (1890) sequence can be written as

F=A1FR+AF+---+ Ay, Fpp,

where A1, Aa, ..., A are suitable forms of the same n variables.
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Evolution of Teaching Math

L Prior to 300 BC: informal / oral tradition
L 300 BC: Euclid’s Elements
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The product of mathematics 1s
clarity and understanding. Not theorems, by
themselves.... In short, mathematics only exists in a
living community of mathematicians that spreads
understanding and breathes life into 1deas both old

and new.
—Bi1ll Thurston (2010)




Meaning of mathematics 1n the age of Al

L Mathematics is ultimately a human endeavor.

L AT will change the way we do research, the way we write, and
even the way we think, but 1t will be up to us to determine
what mathematical statements we value and to develop a

. im_age by DALLE-3
human understanding.

L, It 1s also imperative to recognize and address the
risk (short-term, medium-term, and existential)
and ethical 1ssues of Al



Gower’s 1999: Rough structure and classification

2 Will Mathematics Exist in 20997

For at least a century, mathematicians have thought about the possibility
of automating mathematics. Hilbert famously asked in his tenth problem
whether there was an algorithm for solving Diophantine equations, and
later extended this to the question of whether there was an algorithm which
would find a proof of any mathematical statement that had one. In 1936,
Turing, equally famously, formalized the notion of algorithm and soon after-
wards demonstrated the insolubility of the halting problem, thus showing
that no such algorithm existed. While this result, and later demonstra-
tions that several natural and well known problems in mathematics were
also impossible to solve systematically, may have initially seemed somewhat
negative, they also had a positive side. The idea that all our creativity and
insight might be reduced to something mechanical was, after all, not very
appealing. Turing’s result therefore came as a relief, since it left mathe-
maticians with something to do.



Gower’s 1999: Will mathematics exist in 2099?

techniques may be helpful. Rather than giving several examples of the
use of standard methods to solve problems, let me return to the question
of automating mathematics and present an imagined dialogue between a
mathematician and a computer in two or three decades’ time. The idea
of the dialogue is that the computer is very helpful to the mathematician,
while not doing anything particularly clever. This represents an unthreat-
ening intermediate stage between what we have now, computers that act
as slaves doing unbelievably boring calculations for us, and full automation
of mathematics. I have written the dialogue in English, but this is sup-
posed to be a translation of a more formal language which has not yet been
invented. (I shall discuss this point a little more later.)

Mathematician. Is the following true? Let 4 > 0. Then for N sufficiently
large, every set A C {1,2,..., N} of size at least N contains a subset of
the form {a,a+ d,a + 2d}?

Computer. Yes. If A is non-empty, choose a € A and set d = 0.

M. All right all right, but what if d is not allowed to be zero?

C. Have you tried induction on N, with some § = §(N) tending to zero?
M. That idea is no help at all. Give me some examples please.

C. The obvious greedy algorithm gives the set

{1,2,4,5,10,11,13, 14, 28,29, 31, 32, 37, 38,40,41, ...} .

I notice that large parts of the set are translations of other parts. In

fact, this set is very like the Cantor set, so this gives a bound of § >
N(logZ/log3)—1.



Existence risk

Popular literature addressing Al risks

*Nick Bostrom, Superintellgience: Paths, Dangers, and Strategies, 2014

*Max Tegmark, Life 3.0: Being human in the age of Artificial Intelligence, 2017

*Toby Ord, The Precipice: Existential risk and the future and humanity, 2020
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Infrastructure profuéion can result from final goals that would have been perfectly
innocuous if they had been pursued as limited objectives. Consider the following
two examples:

* Riemann hypothesis catastrophe. An Al, given the final goal of evaluating the
Riemann hypothesis, pursues this goal by transforming the Solar System into
“computronium” (physical resources arranged in a way that is optimized for

computation)—including the atoms in the bodies of whomever once cared about

the answer.&

» Paperclip Al. An Al, designed to manage production in a factory, is given the final
goal of maximizing the manufacture of paperclips, and proceeds by converting
first the Earth and then increasingly large chunks of the observable universe into
paperclips.

In the first example, the prootf or disproof of the Riemann hypothesis that the Al
produces is the intended outcome and is in itself harmless; the harm comes from the
hardware and infrastructure created to achieve this result. In the second example,
some of the paperclips produced would be part of the intended outcome; the harm
would come either from the {factories created to produce the paperclips
(infrastructure profusion) or from the excess of paperclips (perverse instantiation).
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One might think that the risk of a malignant infrastructure profusion failure arises
only if the AI has been given some clearly open-ended final goal, such as to
manufacture as many paperclips as possible. It is easy to see how this gives the
superintelligent Al an insatiable appetite for matter and energy, since additional
resources can always be turned into more paperclips. But suppose that the goal is
instead to make at least one million paperclips (meeting suitable design
specifications) rather than to make as many as possible. One would like to think that
an Al with such a goal would build one factory, use it to make a million paperclips,
and then halt. Yet this may not be what would happen.

Unless the AI’s motivation system is of a special kind, or there are additional
elements in its final goal that penalize strategies that have excessively wide-ranging
impacts on the world, there is no reason for the Al to cease activity upon achieving
its goal. On the contrary: if the Al is a sensible Bayesian agent, it would never assign
exactly zero probability to the hypothesis that it has not yet achieved its goal—this,
after all, being an empirical hypothesis against which the Al can have only uncertain
perceptual evidence. The Al should therefore continue to make paperclips in order to
reduce the (perhaps astronomically small) probability that it has somehow still
failed to make at least a million of them, all appearances notwithstanding. There is
nothing to be lost by continuing paperclip production and there is always at least
some microscopic probability increment of achieving its final goal to be gained.
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NEW YORK TIMES BESTSELLER
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BEING HUMAN IN THE AGE OF
ARTIFICIAL INTELLIGENCE

“Original, accessiblerand provocative. . . . Enjoy the ride.”
—Science

MAX TEGMARK

Author of Our Mathematical Universe

When will Al surpass human leve\?

Definitely
bod
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Gower’s 1999: Will mathematics exist in 2099?




Gower’s 2025: Will mathematics exist in 20357

Scenarios in the next 10 years

—The external disaster (nuclear...): low but non-zero
—The general singularity: hard to say

—The math singularity: hard to say

—The steamroller: low to medium

—The black box: low

—The gradual takeover: (conditionally) high

—The collapse of incentives: medium to high

—The plateau: medium

—The glorified calculator: low



Evolution of Al

L 19th century & before: Many mathematicians and academics philosophized
about the existence of computing machines

L= 1940s: invention of computing devices and mathematical models of neurons

L 1950: Alan Turing’s paper Computing Machinery and Intelligence

L= 1956: Dartmouth conference organized by John McCarthy and birth of the
term ‘artificial intelligence’

L 1958: First neural network—Frank Rosenblatt, The Perceptron: A
Probabilistic Model for Information Storage and Organization in the Brain

L 1960s and 70s: AI winter

L 1980s: backpropogation discovered independently by Werbos, Rummelhart,
and others. Hopfield & Hinton received 2024 Nobel Prize in Physics for
related work. Yann LeCun invents convolution and recurrent neural networks.

L .... many breakthroughs since.



Neural networks

A neural network 1s a specific type of function:

non-linear functions defined coordinate-wise by an

affine linear maps activation function, e.g., ReLu(x) = max(0,x)
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Neural networks

A neural network 1s a specific type of function:

non-linear functions defined coordinate-wise by an
affine linear maps activation function, e.g., ReLu(x) = max(0,x)

N — ~
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#
input hidden layers output

Many 1nteresting mathematical questions:

L What types of functions can neural networks effectively learn?

L What is the tradeoff in number of layers and their dimension?

L How to avoid the curse of dimensionality?



Activation functions

15

RelLU =rectified linear unit

tanh

sigmoid or logistic
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These are applied coordinate-wise. There are other alternatives that are not coordinate-wise:
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Stochastic gradient descent

Goal: Find the minimum of a function f(x,...,x ): R" - R

In machine learning, this means finding the model parameters that minimize a cost function f, which measures
how wrong the model's predictions are.

A Hiker iIn the Fog Analogy: Imagine you're a hiker trying to get to the lowest point in a foggy mountain range.

® Standard Gradient Descent (The "Careful" Hiker): You stop and check your map and compass at every
single step, looking at the slope of the entire landscape around you to decide which direction 1s steepest
downhill. This 1s very accurate but incredibly slow and requires a huge map.

® Stochastic Gradient Descent (The "Quick" Hiker): Instead of looking at the whole landscape, you just look
at the slope of the ground right under your feet for one random direction (a single data point). You take a quick
step in that downhill direction.

°This path will be noisy and wobbly. You might even go slightly uphill sometimes!
° However, you move much faster.

° Over many small steps, the overall trend will guide you to the bottom of the valley.



Backpropogation




