
Science is what we understand 
well enough to explain to a computer, 

Art is all the rest.              
                    —Donald Knuth (1996)
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5 Evolution of Proof

Rigor has ceased to be thought of 
as a cumbersome style of formal dress that 

one has to wear on state occasions and discards 
with a sigh of relief as soon as one comes home. We do 

not ask any more whether a theorem has been 
rigorously proved but whether it has been proved. 

—André Weil (1956) 
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5 Evolution of Teaching Math

Prior to 300 BC: informal / oral tradition
300 BC: Euclid’s Elements

1696: l’Hôpital’s Analyse des 
Infiniment Petits pour 
l'Intelligence des Lignes Courbes
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The product of mathematics is 
clarity and understanding. Not theorems, by 

themselves.... In short, mathematics only exists in a 
living community of mathematicians that spreads 
understanding and breathes life into ideas both old 

and new.                                                     
—Bill Thurston (2010)



Meaning of mathematics in the age of AI

Mathematics is ultimately a human endeavor. 

AI will change the way we do research, the way we write, and 
even the way we think, but it will be up to us to determine 
what mathematical statements we value and to develop a 
human understanding.
It is also imperative to recognize and address the 
risk (short-term, medium-term, and existential) 
and ethical issues of AI.
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Gower’s 1999: Rough structure and classification



Gower’s 1999: Will mathematics exist in 2099?



Existence risk

•Toby Ord, The Precipice: Existential risk and the future and humanity, 2020

•Nick Bostrom, Superintellgience: Paths, Dangers, and Strategies, 2014

Popular literature addressing AI risks

•Max Tegmark, Life 3.0: Being human in the age of Artificial Intelligence, 2017



A paper clip apocalypse infrastructure in the service of some goal, with the side effect of preventing the
realization of humanity’s axiological potential.

Infrastructure profusion can result from final goals that would have been perfectly
innocuous if they had been pursued as limited objectives. Consider the following
two examples:
 
• Riemann hypothesis catastrophe. An AI, given the final goal of evaluating the

Riemann hypothesis, pursues this goal by transforming the Solar System into
“computronium” (physical resources arranged in a way that is optimized for
computation)—including the atoms in the bodies of whomever once cared about
the answer.8

• Paperclip AI. An AI, designed to manage production in a factory, is given the final
goal of maximizing the manufacture of paperclips, and proceeds by converting
first the Earth and then increasingly large chunks of the observable universe into
paperclips.

In the first example, the proof or disproof of the Riemann hypothesis that the AI
produces is the intended outcome and is in itself harmless; the harm comes from the
hardware and infrastructure created to achieve this result. In the second example,
some of the paperclips produced would be part of the intended outcome; the harm
would come either from the factories created to produce the paperclips
(infrastructure profusion) or from the excess of paperclips (perverse instantiation).

One might think that the risk of a malignant infrastructure profusion failure arises
only if the AI has been given some clearly open-ended final goal, such as to
manufacture as many paperclips as possible. It is easy to see how this gives the
superintelligent AI an insatiable appetite for matter and energy, since additional
resources can always be turned into more paperclips. But suppose that the goal is
instead to make at least one million paperclips (meeting suitable design
specifications) rather than to make as many as possible. One would like to think that
an AI with such a goal would build one factory, use it to make a million paperclips,
and then halt. Yet this may not be what would happen.

Unless the AI’s motivation system is of a special kind, or there are additional
elements in its final goal that penalize strategies that have excessively wide-ranging
impacts on the world, there is no reason for the AI to cease activity upon achieving
its goal. On the contrary: if the AI is a sensible Bayesian agent, it would never assign
exactly zero probability to the hypothesis that it has not yet achieved its goal—this,
after all, being an empirical hypothesis against which the AI can have only uncertain
perceptual evidence. The AI should therefore continue to make paperclips in order to
reduce the (perhaps astronomically small) probability that it has somehow still
failed to make at least a million of them, all appearances notwithstanding. There is
nothing to be lost by continuing paperclip production and there is always at least
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and then halt. Yet this may not be what would happen.
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impacts on the world, there is no reason for the AI to cease activity upon achieving
its goal. On the contrary: if the AI is a sensible Bayesian agent, it would never assign
exactly zero probability to the hypothesis that it has not yet achieved its goal—this,
after all, being an empirical hypothesis against which the AI can have only uncertain
perceptual evidence. The AI should therefore continue to make paperclips in order to
reduce the (perhaps astronomically small) probability that it has somehow still
failed to make at least a million of them, all appearances notwithstanding. There is
nothing to be lost by continuing paperclip production and there is always at least
some microscopic probability increment of achieving its final goal to be gained.

Now it might be suggested that the remedy here is obvious. (But how obvious was
i t before it was pointed out that there was a problem here in need of remedying?)
Namely, if we want the AI to make some paperclips for us, then instead of giving it
the final goal of making as many paperclips as possible, or to make at least some
number of paperclips, we should give it the final goal of making some specific
number of paperclips—for example, exactly one million paperclips—so that going
beyond this number would be counterproductive for the AI. Yet this, too, would
result in a terminal catastrophe. In this case, the AI would not produce additional
paperclips once it had reached one million, since that would prevent the realization
of its final goal. But there are other actions the superintelligent AI could take that
would increase the probability of its goal being achieved. It could, for instance,
count the paperclips it has made, to reduce the risk that it has made too few. After it
has counted them, it could count them again. It could inspect each one, over and
over, to reduce the risk that any of the paperclips fail to meet the design
specifications. It could build an unlimited amount of computronium in an effort to
clarify its thinking, in the hope of reducing the risk that it has overlooked some
obscure way in which it might have somehow failed to achieve its goal. Since the AI
may always assign a nonzero probability to having merely hallucinated making the
million paperclips, or to having false memories, it would quite possibly always
assign a higher expected utility to continued action—and continued infrastructure
production—than to halting.

The claim here is not that there is no possible way to avoid this failure mode. We
will explore some potential solutions in later pages. The claim is that it is much
easier to convince oneself that one has found a solution than it is to actually find a
solution. This should make us extremely wary. We may propose a specification of a
final goal that seems sensible and that avoids the problems that have been pointed
out so far, yet which upon further consideration—by human or superhuman
intelligence—turns out to lead to either perverse instantiation or infrastructure
profusion, and hence to existential catastrophe, when embedded in a superintelligent
agent able to attain a decisive strategic advantage.

Before we end this subsection, let us consider one more variation. We have been
assuming the case of a superintelligence that is seeking to maximize its expected
utility, where the utility function expresses its final goal. We have seen that this
tends to lead to infrastructure profusion. Might we avoid this malignant outcome if
instead of a maximizing agent we build a satisficing agent, one that simply seeks to
achieve an outcome that is “good enough” according to some criterion, rather than
an outcome that is as good as possible?

There are at least two different ways to formalize this idea. The first would be to
make the final goal itself have a satisficing character. For example, instead of giving
the AI the final goal of making as many paperclips as possible, or of making exactly
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Can the risk be quantified?

2020
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2017



Gower’s 1999: Will mathematics exist in 2099?



Gower’s 2025: Will mathematics exist in 2035?

Scenarios in the next 10 years 
—The external disaster (nuclear…): low but non-zero 
—The general singularity: hard to say 
—The math singularity: hard to say 
—The steamroller: low to medium 
—The black box: low 
—The gradual takeover: (conditionally) high 
—The collapse of incentives: medium to high 
—The plateau: medium 
—The glorified calculator: low



Evolution of AI
19th century & before: Many mathematicians and academics philosophized 
about the existence of computing machines 

1940s: invention of computing devices and mathematical models of neurons
1950: Alan Turing’s paper Computing Machinery and Intelligence

1958: First neural network—Frank Rosenblatt, The Perceptron: A 
Probabilistic Model for Information Storage and Organization in the Brain

1956: Dartmouth conference organized by John McCarthy and birth of the 
term ‘artificial intelligence’

1960s and 70s: AI winter
1980s: backpropogation discovered independently by Werbos, Rummelhart, 
and others.  Hopfield & Hinton received 2024 Nobel Prize in Physics for 
related work.  Yann LeCun invents convolution and recurrent neural networks.
…. many breakthroughs since. 



A neural network is a specific type of function:  

affine linear maps
non-linear functions defined coordinate-wise by an 

activation function, e.g.,   ReLu(x) = max(0,x)

Neural networks



A neural network is a specific type of function:  

affine linear maps

Many interesting mathematical questions: 
What types of functions can neural networks effectively learn?

What is the tradeoff in number of layers and their dimension?

non-linear functions defined coordinate-wise by an 
activation function, e.g.,   ReLu(x) = max(0,x)

How to avoid the curse of dimensionality?

Neural networks



Activation functions
ReLU = rectified linear unit

tanh

sigmoid or logistic

These are applied coordinate-wise.  There are other alternatives that are not coordinate-wise: 
example:   softmax(x1, …, xn)i =

exi

∑j exj



Stochastic gradient descent

Goal:  Find the minimum of a function 
In machine learning, this means finding the model parameters that minimize a cost function f, which measures 
how wrong the model's predictions are.
A Hiker in the Fog Analogy:  Imagine you're a hiker trying to get to the lowest point in a foggy mountain range.
• Standard Gradient Descent (The "Careful" Hiker): You stop and check your map and compass at every 

single step, looking at the slope of the entire landscape around you to decide which direction is steepest 
downhill. This is very accurate but incredibly slow and requires a huge map.

• Stochastic Gradient Descent (The "Quick" Hiker): Instead of looking at the whole landscape, you just look 
at the slope of the ground right under your feet for one random direction (a single data point). You take a quick 
step in that downhill direction.
◦This path will be noisy and wobbly. You might even go slightly uphill sometimes!
◦However, you move much faster.
◦Over many small steps, the overall trend will guide you to the bottom of the valley.

f(x1, …, xn) : ℝn → ℝ



Backpropogation


