Math 504: Modern Algebra, Fall Quarter 2017

Jarod Alper
Midterm Solutions

Problem 1.1. Classify all groups of order 385 up to isomorphism.
Solution: Let G be a group of order 385 . Factor 385 as $385=5 \cdot 7 \cdot 11$. Let n_{5}, n_{7} and n_{11} be the number of 5,7 and 11-Sylow subgroups. Sylow's theorem implies that $n_{5} \equiv 1(\bmod 5)$ and $n_{5} \mid 77$. This implies that $n_{5}=1$ or 11 . Similarly, we have that $n_{7} \equiv 1(\bmod 7)$ and $n_{7} \mid 55$ which implies that $n_{7}=1$, and $n_{11} \equiv 1(\bmod 11)$ and $n_{11} \mid 35$ which implies that $n_{11}=1$.

In particular, we have a normal 7-Sylow subgroup $N_{7} \subset G$ and a normal 11-Sylow subgroup $N_{11} \subset G$. Then $N:=N_{7} N_{11} \subset G$ is a subgroup of order 77 . Moreover, N is normal in G since for $x \in N_{7}, y \in N_{11}$ and $g \in G$, we have that $g(x y) g^{-1}=\left(g x g^{-1}\right)\left(g y g^{-1}\right) \in N_{7} N_{11}=N$. Let K be any Sylow 5 -subgroup. By considering orders of subgroups, we see that $K \cap N=1$ and $K N=G$. By the result from lecture, we know that

$$
G \cong N \rtimes_{\phi} K
$$

where $\phi: K \rightarrow \operatorname{Aut}(N)$ is a group homomorphism. We know that $K \cong \mathbb{Z} / 5$, $N_{7} \cong \mathbb{Z} / 7$ and $N_{11} \cong \mathbb{Z} / 11$. Since N_{7} and N_{11} are normal in G, they are also normal in N. As $N_{7} \cap N_{11}=1$, we know that $N \cong \mathbb{Z} / 7 \times \mathbb{Z} / 11$. We also know from lecture that $\operatorname{Aut}(N) \cong \operatorname{Aut}(\mathbb{Z} / 7 \times \mathbb{Z} / 11) \cong \mathbb{Z} / 6 \times \mathbb{Z} / 10$. We need to classify group homomorphisms

$$
\phi: K \cong \mathbb{Z} / 5 \rightarrow \mathbb{Z} / 6 \times \mathbb{Z} / 10 \cong \operatorname{Aut}(N)
$$

Since the element $\phi(1) \in \mathbb{Z} / 6 \times \mathbb{Z} / 10$ has order dividing 5 , we know that $\phi(1)=$ $(0,2 i)$ for $i \in\{0,1,2,3,4\}$. There are two cases:

Case 1: $i=0$. In this case, $G \cong N \times K=\mathbb{Z} / 77 \times \mathbb{Z} / 5 \cong \mathbb{Z} / 385$ and is clearly abelian.
Case 2: $\quad i \neq 0$. In this case, let $\alpha_{i}: \mathbb{Z} / 5 \rightarrow \mathbb{Z} / 5$ be the automorphism of groups defined by $k \mapsto k i$. If $\phi_{i}: \mathbb{Z} / 5 \rightarrow \mathbb{Z} / 6 \times \mathbb{Z} / 10$ denotes the group homomorphism determined by $\phi_{i}(1)=(0,2 i)$, then clearly $\phi_{i}=\phi_{1} \circ \alpha_{i}$. By Homework Problem $3.1(1)$, we know that the two semi-direct products $\mathbb{Z} / 77 \rtimes_{\phi_{1}} \mathbb{Z} / 5$ and $\mathbb{Z} / 77 \rtimes_{\phi_{i}} \mathbb{Z} / 5$ are isomorphic. Therefore, we have only one non-trivial semi-direct product $\mathbb{Z} / 77 \rtimes_{\phi_{1}} \mathbb{Z} / 5$ up to isomorphism. Since this group is not abelian, it is not isomorphic to $\mathbb{Z} / 385$ and we may conclude that there are only two groups of order 385 up to isomorphism: $\mathbb{Z} / 385$ and $\mathbb{Z} / 77 \rtimes_{\phi_{1}} \mathbb{Z} / 5$.

Problem 1.2. Let $G=\mathrm{GL}_{3}(\mathbb{C})$ be the group of invertible 3×3 matrices with entries in \mathbb{C}. Let $H \subset G$ be the subgroup consisting of diagonal matrices.
(1) Find the centralizer $C_{G}(H)$ of H in G.
(2) Find the normalizer $N_{G}(H)$ of H in G.
(3) Determine the quotient $N_{G}(H) / H$; that is, identify this group with a familiar group.

Solution: For (1), first observe that as H is abelian $H \subset C_{G}(H)$. The centralizer $C_{G}(H)$ consists of 3×3 matrices

$$
A=\left(\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{array}\right)
$$

such that $A D=D A$ for every diagonal matrix

$$
D=\left(\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & d_{2} & 0 \\
0 & 0 & d_{3} .
\end{array}\right)
$$

The condition that $A D=D A$ translates into

$$
A D=\left(\begin{array}{ccc}
d_{1} a_{1,1} & d_{2} a_{1,2} & d_{3} a_{1,3} \\
d_{1} a_{2,1} & d_{2} a_{2,2} & d_{3} a_{2,3} \\
d_{1} a_{3,1} & d_{2} a_{3,2} & d_{3} a_{3,3}
\end{array}\right)=\left(\begin{array}{ccc}
d_{1} a_{1,1} & d_{1} a_{1,2} & d_{1} a_{1,3} \\
d_{2} a_{2,1} & d_{2} a_{2,2} & d_{2} a_{2,3} \\
d_{3} a_{3,1} & d_{3} a_{3,2} & d_{3} a_{3,3}
\end{array}\right)=D A
$$

Since this must hold for every non-zero choice of d_{1}, d_{2} and d_{3}, we conclude that $a_{i, j}=0$ if $i \neq j$, that is, $A \in H$ is diagonal.

For (2), the normalizer $N_{G}(H)$ consists of 3×3 matrices $A=\left(a_{i, j}\right)$ such that for every diagonal matrix $D=\operatorname{diag}\left(d_{1}, d_{2}, d_{3}\right)$ we have that $D A=A D^{\prime}$ for another diagonal matrix $D^{\prime}=\operatorname{diag}\left(d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}\right)$. The condition that $A D=D^{\prime} A$ translates into

$$
A D=\left(\begin{array}{ccc}
d_{1} a_{1,1} & d_{2} a_{1,2} & d_{3} a_{1,3} \\
d_{1} a_{2,1} & d_{2} a_{2,2} & d_{3} a_{2,3} \\
d_{1} a_{3,1} & d_{2} a_{3,2} & d_{3} a_{3,3}
\end{array}\right)=\left(\begin{array}{ccc}
d_{1}^{\prime} a_{1,1} & d_{1}^{\prime} a_{1,2} & d_{1}^{\prime} a_{1,3} \\
d_{2}^{\prime} a_{2,1} & d_{2}^{\prime} a_{2,2} & d_{2}^{\prime} a_{2,3} \\
d_{3}^{\prime} a_{3,1} & d_{3}^{\prime} a_{3,2} & d_{3}^{\prime} a_{3,3}
\end{array}\right)=D^{\prime} A
$$

Since this must hold for each d_{1}, d_{2} and d_{3}, we see that A must have precisely one non-zero element in each row and each column. Indeed, if $a_{i, j} \neq 0$, then $d_{j}=d_{i}^{\prime}$. If $a_{i, j^{\prime}} \neq 0$ for $j^{\prime} \neq j$, then $d_{j^{\prime}}=d_{i}^{\prime}=d_{j}$ which certainly doesn't hold for all d_{1}, d_{2}, d_{3}. Similarly, if $i^{\prime} \neq i$, then $d_{i^{\prime}}^{\prime}=d_{j}=d_{i}^{\prime}$ which also can't hold.

Let $P_{3} \subset \mathrm{GL}_{3}(\mathbb{C})$ be the subgroup consisting of permutations matrices. Then

$$
\begin{array}{r}
P_{3} H=\left\{\left(\begin{array}{lll}
* & 0 & 0 \\
0 & * & 0 \\
0 & 0 & *
\end{array}\right)\right\} \bigcup\left\{\left(\begin{array}{lll}
0 & * & 0 \\
* & 0 & 0 \\
0 & 0 & *
\end{array}\right)\right\} \bigcup\left\{\left(\begin{array}{lll}
0 & 0 & * \\
0 & * & 0 \\
* & 0 & 0
\end{array}\right)\right\} \\
\bigcup\left\{\left(\begin{array}{lll}
* & 0 & 0 \\
0 & 0 & * \\
0 & * & 0
\end{array}\right)\right\} \bigcup\left\{\left(\begin{array}{lll}
0 & * & 0 \\
0 & 0 & * \\
* & 0 & 0
\end{array}\right)\right\} \bigcup\left\{\left(\begin{array}{lll}
0 & 0 & * \\
* & 0 & 0 \\
0 & * & 0
\end{array}\right)\right\}
\end{array}
$$

where $*$ could be any non-zero complex number. We have verified that $N_{G}(H) \subset$ $P_{3} H$. It is a simple calculation to conclude that each of these matrices normalizes H, that is, $P_{3} H \subset N_{G}(H)$. We conclude that $N_{G}(H)=P_{3} H$.

For (3), observe that $P_{3} \cap H=1$. We also know that the subgroup P_{3} of 3×3 permutation matrices is isomorphic to the symmetric group S_{3}. We may use the 2nd isomorphism theorem to conclude that

$$
N_{G}(H) / H \cong P_{3} H / H \cong P_{3} / P_{3} \cap H \cong P_{3} \cong S_{3} .
$$

Alternatively, you can simply write down a surjective group homomorphism $P_{3} H \rightarrow P_{3}$ which replaces an element in the normalizer with the matrix where each non-zero entry is replaced with a 1 . The kernel of this homomorphism is clearly H. Therefore, $N_{G}(H) / H \cong P_{3} H / H \cong P_{3}$.

Problem 1.3. Find all possible composition series for the dihedral group D_{12} of order 12.

Solution: We write $D_{12}=\left\langle r, s \mid r^{6}=s^{2}=1, r s=s r^{-1}\right\rangle$. We first observe that $1 \unlhd\left\langle r^{3}\right\rangle \unlhd\langle r\rangle \unlhd D_{12}$ is a composition series with factors $\mathbb{Z} / 3, \mathbb{Z} / 2$ and $\mathbb{Z} / 2$. By the Jordan-Hölder theorem, any composition series will have these factors up to reordering. Therefore, if $1 \unlhd N_{1} \unlhd N_{2} \unlhd D_{12}$ is a composition series, then N_{2} is a normal subgroup of order 4 or 6 . We claim that there are no normal subgroups of order 4. Since $12=2^{2} \cdot 3$, a subgroup of order 4 is a 2-Sylow. The subgroup $\left\langle r^{3}, s\right\rangle$ is a 2-Sylow but it is not normal since $r s r^{-1}=s r^{4} \notin\left\langle r^{3}, s\right\rangle$. Since all 2-Sylow's are conjugate, there are no normal 2-Sylow subgroups.

We now classify all subgroups of D_{12} of order 6 . Let $N_{2} \unlhd D_{12}$ be a subgroup of order 6 , which is necessarily normal. By Cauchy's theorem, N_{2} has a subgroup $H \subset N_{2}$ of order 3. Then $H \subset D_{12}$ is a 3-Sylow subgroup. Observe that $\left\langle r^{2}\right\rangle \subset D_{12}$ is a 3 -Sylow subgroup and that it is normal: indeed, $s r^{2} s=r^{4} \in\left\langle r^{2}\right\rangle$. It follows that $\left\langle r^{2}\right\rangle \subset D_{12}$ is the unique subgroup of order 3. Thus $H=\left\langle r^{2}\right\rangle \subset N_{2}$ and N_{2} is obtained from $\left\langle r^{2}\right\rangle$ by adjoining an element of order 2 . We can enumerate all elements of D_{12} of order 2: $s, s r, s r^{2}, s r^{3}, s r^{4}, s r^{5}, r^{3}$. Adjoining these creates 3 distinct subgroups of order 6: $\langle r\rangle,\left\langle r^{2}, s\right\rangle$ and $\left\langle r^{2}, s r\right\rangle$. Observe that $\langle r\rangle \cong \mathbb{Z} / 6$, which has 2 composition series: $1 \unlhd\left\langle r^{3}\right\rangle \unlhd\langle r\rangle$ and $1 \unlhd\left\langle r^{2}\right\rangle \unlhd\langle r\rangle$. Also, both $\left\langle r^{2}, s\right\rangle$ and $\left\langle r^{2}, s r\right\rangle$ are isomorphic to S_{3} which has a unique composition series $1 \unlhd\langle(123)\rangle \unlhd S_{3}$. Putting these observations together, we have four distinct composition series:

1	$\unlhd\left\langle r^{3}\right\rangle$	$\unlhd\langle r\rangle$	$\unlhd D_{12}$
1	$\unlhd\left\langle r^{2}\right\rangle$	$\unlhd\langle r\rangle$	$\unlhd D_{12}$
1	$\unlhd\left\langle r^{2}\right\rangle$	$\unlhd\left\langle r^{2}, s\right\rangle$	$\unlhd D_{12}$
1	$\unlhd\left\langle r^{2}\right\rangle$	$\unlhd\left\langle r^{2}, s r\right\rangle$	$\unlhd D_{12}$.

Problem 1.4. Prove that a group of order $p^{2} q$ is solvable, where p and q are distinct primes. (Recall from HW Problem 2.2 that a finite group is solvable if and only if there exists a composition series with abelian factors.)
Solution: Let G be a group of order $p^{2} q$. Let n_{p} and n_{q} be the number of p and q-Sylow subgroups, respectively. Sylow's theorem implies that $n_{p} \equiv 1(\bmod p)$ and $n_{p} \mid q$, and that $n_{q} \equiv 1(\bmod q)$ and $n_{q} \mid p^{2}$. Therefore, $n_{p} \in\{1, q\}$ and $n_{q} \in\left\{1, p, p^{2}\right\}$.

If $n_{p}=1$, then there exists a normal subgroup $N \unlhd G$ of order p^{2}. From lecture, we know that N is isomorphic to \mathbb{Z} / p^{2} or $\mathbb{Z} / p \times \mathbb{Z} / p$ and, in particular, N is abelian. In this case, G is solvable.

If $n_{q}=1$, then there exists a normal subgroup $N \unlhd G$ of order q, and G / N is a group of order p^{2}, which (as above) is abelian as it is isomorphic to \mathbb{Z} / p^{2} or $\mathbb{Z} / p \times \mathbb{Z} / p$. In this case, G is again solvable.

If $n_{p}=q$ and $n_{q} \in\left\{p, p^{2}\right\}$. Then $q \equiv 1(\bmod p)$ so that $q>p$. Observe that $n_{q} \neq p$ as this would imply that $q<p$. We are left with the case that $n_{p}=q$ and $n_{q}=p^{2}$. In this case, we have p^{2} Sylow subgroups of order q, and therefore $p^{2}(q-1)$ distinct elements of order q. There are only p^{2} remaining elements in G which necessarily must form a p-Sylow subgroup. Since all p-Sylow's are conjugate, we see that this p-Sylow is normal and that $n_{p}=1$, a contradiction.

Problem 1.5.

(1) Find a Sylow 7 -subgroup of $\mathrm{GL}_{3}\left(\mathbb{F}_{2}\right)$.
(2) Show that $\mathrm{GL}_{3}\left(\mathbb{F}_{2}\right)$ is isomorphic to the subgroup of S_{7} generated by the permutations (1234567) and (15)(23).

Hint: Consider the action of $\mathrm{GL}_{3}\left(\mathbb{F}_{2}\right)$ on the set $\mathbb{F}_{2}^{3} \backslash 0$ containing 7 elements and the induced homomorphisms $\mathrm{GL}_{3}\left(\mathbb{F}_{2}\right) \rightarrow S_{7}$.

Solution: Let us first observe that $\left|\mathrm{GL}_{3}\left(\mathbb{F}_{2}\right)\right|=\left(2^{3}-1\right)\left(2^{3}-2\right)\left(2^{3}-2^{2}\right)=$ $168=2^{3} \cdot 3 \cdot 7$ by a simple counting argument: the first column has to be non-zero, the second column can't be a multiple of the first and the third column has to be linearly independent to the first 2 .

For (1), we simply want to find a matrix $A \in \mathrm{GL}_{3}\left(\mathbb{F}_{2}\right)$ of order 7 as this will generate a 7 -Sylow. This can be found by trial and error. (In fact, it turns out that the number of 7 -Sylows is 8 so there are 68 elements of order 7 so a random element has roughly a 28% chance of being an element of order 7.)

Consider

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

This element has order 7 . One way to see this (other than laboriously computing the powers of A) is to think about how it acts on $\mathbb{F}_{2}^{3} \backslash 0$:

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \stackrel{A}{\longmapsto}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \stackrel{A}{\longmapsto}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \stackrel{A}{\longmapsto}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \stackrel{A}{\longmapsto}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \stackrel{A}{\longmapsto}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \stackrel{A}{\longmapsto}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \stackrel{A}{\longmapsto}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) .
$$

This shows that A has an element of order 7. (In fact, the way I found the matrix A was by playing around with the coefficients so that A would cycle through the 7 elements of $\mathbb{F}_{2}^{3} \backslash 0$.)

Order the elements of $\mathbb{F}_{2}^{3} \backslash 0$ by defining $v_{i}=A^{i-1}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.
For (2), the action of $\mathrm{GL}_{3}\left(\mathbb{F}_{2}\right)$ on the set $\mathbb{F}_{2}^{3} \backslash 0=\left\{v_{1}, \ldots, v_{7}\right\}$ induces a group homomorphism π : $\mathrm{GL}_{3}\left(\mathbb{F}_{2}\right) \rightarrow S_{7}$ which is necessarily injective since a matrix that fixes every element of $\mathbb{F}_{2}^{3} \backslash 0$ must be the identity. Define the matrix

$$
B=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

so that B swaps v_{1} and v_{5}, swaps v_{2} and v_{3}, and fixes all other vectors. The matrix B was constructed so that $\pi(B)=(15)(23) \in S_{7}$.

Since $\mathrm{GL}_{3}\left(\mathbb{F}_{3}\right)=\operatorname{im}(\pi)$, it suffices to show that the matrices A and B generate $\mathrm{GL}_{3}\left(\mathbb{F}_{3}\right)$, or alternatively that the permutations (1234567) and (15)(23) generate a subgroup of order 168. This can be proven in a variety of ways. The solution here is a variant of the clever solutions of Kristine Hampton and Thomas Lou. Let $H=\langle A, B\rangle \subset \mathrm{GL}_{3}\left(\mathbb{F}_{3}\right)$, then we only need to show $|H|=168=2^{3} \cdot 3 \cdot 7$. We know H has an element of order 7 and 2 . This implies that H has order $2^{i} \cdot 3^{j} \cdot 7$ for $i=1,2,3$ and $j=0,1$. Also $\langle A\rangle \subset H$ is not normal since one can check that $B A B^{-1} \notin\langle A\rangle$. This implies that the number n_{7} of 7 -Sylows in H is greater than 1. But in fact $n_{7}=8$ since $n_{7} \cong 1(\bmod 7)$ and n_{7} must divide $2^{i} 3^{j}$, which in turn divides 24. Looking at the condition that 8 divides $2^{i} 3^{j}$ implies that $i=3$ and $j=1$, which shows that $|H|=2^{3} \cdot 3 \cdot 7$.
(Alternatively, one could directly construct elements of order 3 (e.g., $A B$ has order 3) and a subgroup of order 8. This requires playing around with elements a bit either in $\mathrm{GL}_{3}\left(\mathbb{F}_{2}\right)$ or S_{7}.)

Problem 1.6. Let k be a field.
(1) Show that the ideal $(x y-z w) \subset k[x, y, z, w]$ is prime.
(2) Show that the element $x \in k[x, y, z, w] /(x y-z w)$ is irreducible but not prime.

Solution: For (1), let $R=k[y, z, w]$ and consider the degree 1 polynomial $f=x y-z w \in R[x]$. The ideal $\mathfrak{p}=(w) \subset R$ is prime. The leading coefficient of f is y which is not in \mathfrak{p} and the constant coefficient is $z w$ which is in \mathfrak{p} but not in \mathfrak{p}^{2}. By Eisenstein's criterion $x y-z w \in R[x]=k[x, y, z, w]$ is irreducible. Since $k[x, y, z, w]$ is a UFD, it follows that $(x y-z w)$ is a prime ideal.

For (2), we will use the following lemma:
Lemma: Let $f \in k\left[x_{1}, \ldots, x_{n}\right]$ be an irreducible homogeneous polynomial in n variables and $R=k\left[x_{1}, \ldots, x_{n}\right] /(f)$. Then there is a function deg: $R \backslash 0 \rightarrow \mathbb{Z}_{\geq 0}$ which is defined as follows: for $g+(f) \in R$, then $\operatorname{deg}(g+(f))$ is defined as the smallest degree of a polynomial of the form $g+f h$ for any $h \in k\left[x_{1}, \ldots, x_{n}\right]$. For $g_{1}, g_{2} \in R \backslash 0$, we have that $\operatorname{deg}\left(g_{1} g_{2}\right)=\operatorname{deg}\left(g_{1}\right)+\operatorname{deg}\left(g_{2}\right)$.
Proof of Lemma: Let $S=k\left[x_{1}, \ldots, x_{n}\right]$ and $S_{d} \subset S$ be the homogeneous elements of degree d. Then $S \cong \oplus_{d \geq 0} S_{d}$ as abelian groups with the property that for $x \in S_{d}$ and $y \in S_{e}$ non-zero, the product $x y$ is in S_{d+e} (in other words, S is a graded ring). Let $\pi: S \rightarrow R$ be the canonical surjection onto the quotient. Define $R_{d}=\pi\left(S_{d}\right)$. Then it is easy to check that $R \cong \oplus_{d \geq 0} R_{d}$ as abelian groups and that the multiplication of a non-zero element in R_{d} by a non-zero element in R_{s} is in R_{d+s}. The degree (as we've defined it above) of an element $g=g_{0}+\cdots+g_{d} \in R$, with $g_{i} \in R_{i}$ and $g_{d} \neq 0$, is precisely d. Finally, since f is an irreducible element, the ideal (f) is prime and therefore R is an integral domain. It follows that for non-zero elements $g_{1}, g_{2} \in R$ that $\operatorname{deg}\left(g_{1} g_{2}\right)=\operatorname{deg}\left(g_{1}\right)+\operatorname{deg}\left(g_{2}\right)$.

If it is possible to write $x=q_{1} q_{2}$ with $q_{1}, q_{2} \in R=k[x, y, z, w] /(x y-z w)$, then by the Lemma, we know that $\operatorname{deg}\left(q_{1}\right)+\operatorname{deg}\left(q_{2}\right)=\operatorname{deg}(x)=1$. Therefore $\operatorname{deg}\left(q_{1}\right)$ or $\operatorname{deg}\left(q_{2}\right)$ has to be zero in which case it is a non-zero constant and thus a unit. Therefore, x is irreducible.

To see if x is prime, the quotient $R /(x) \cong k[x, y, z, w] /(x y-z w, x) \cong k[y, z, w] /(z w)$ which is not an integral domain. Therefore $x \in R$ is not prime.

