
Math 504: Modern Algebra, Fall Quarter 2017
Jarod Alper

Midterm Solutions

Problem 1.1. Classify all groups of order 385 up to isomorphism.

Solution: Let G be a group of order 385. Factor 385 as 385 = 5 ·7 ·11. Let n5, n7
and n11 be the number of 5, 7 and 11-Sylow subgroups. Sylow’s theorem implies
that n5 ≡ 1(mod 5) and n5|77. This implies that n5 = 1 or 11. Similarly, we have
that n7 ≡ 1(mod 7) and n7|55 which implies that n7 = 1, and n11 ≡ 1(mod 11)
and n11|35 which implies that n11 = 1.

In particular, we have a normal 7-Sylow subgroup N7 ⊂ G and a normal
11-Sylow subgroup N11 ⊂ G. Then N := N7N11 ⊂ G is a subgroup of order 77.
Moreover, N is normal in G since for x ∈ N7, y ∈ N11 and g ∈ G, we have that
g(xy)g−1 = (gxg−1)(gyg−1) ∈ N7N11 = N . Let K be any Sylow 5-subgroup. By
considering orders of subgroups, we see that K ∩N = 1 and KN = G. By the
result from lecture, we know that

G ∼= N oφ K

where φ : K → Aut(N) is a group homomorphism. We know that K ∼= Z/5,
N7
∼= Z/7 and N11

∼= Z/11. Since N7 and N11 are normal in G, they are also
normal in N . As N7 ∩N11 = 1, we know that N ∼= Z/7 × Z/11. We also know
from lecture that Aut(N) ∼= Aut(Z/7× Z/11) ∼= Z/6× Z/10. We need to classify
group homomorphisms

φ : K ∼= Z/5→ Z/6× Z/10 ∼= Aut(N).

Since the element φ(1) ∈ Z/6× Z/10 has order dividing 5, we know that φ(1) =
(0, 2i) for i ∈ {0, 1, 2, 3, 4}. There are two cases:

Case 1: i = 0. In this case, G ∼= N ×K = Z/77 × Z/5 ∼= Z/385 and is clearly
abelian.

Case 2: i 6= 0. In this case, let αi : Z/5→ Z/5 be the automorphism of groups
defined by k 7→ ki. If φi : Z/5→ Z/6× Z/10 denotes the group homomorphism
determined by φi(1) = (0, 2i), then clearly φi = φ1 ◦ αi. By Homework Problem
3.1(1), we know that the two semi-direct products Z/77oφ1

Z/5 and Z/77oφi
Z/5

are isomorphic. Therefore, we have only one non-trivial semi-direct product
Z/77 oφ1

Z/5 up to isomorphism. Since this group is not abelian, it is not
isomorphic to Z/385 and we may conclude that there are only two groups of order
385 up to isomorphism: Z/385 and Z/77 oφ1 Z/5.

Problem 1.2. Let G = GL3(C) be the group of invertible 3× 3 matrices with
entries in C. Let H ⊂ G be the subgroup consisting of diagonal matrices.

(1) Find the centralizer CG(H) of H in G.
(2) Find the normalizer NG(H) of H in G.
(3) Determine the quotient NG(H)/H; that is, identify this group with a

familiar group.
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Solution: For (1), first observe that as H is abelian H ⊂ CG(H). The centralizer
CG(H) consists of 3× 3 matrices

A =

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3


such that AD = DA for every diagonal matrix

D =

d1 0 0
0 d2 0
0 0 d3.


The condition that AD = DA translates into

AD =

d1a1,1 d2a1,2 d3a1,3
d1a2,1 d2a2,2 d3a2,3
d1a3,1 d2a3,2 d3a3,3

 =

d1a1,1 d1a1,2 d1a1,3
d2a2,1 d2a2,2 d2a2,3
d3a3,1 d3a3,2 d3a3,3

 = DA.

Since this must hold for every non-zero choice of d1, d2 and d3, we conclude that
ai,j = 0 if i 6= j, that is, A ∈ H is diagonal.

For (2), the normalizer NG(H) consists of 3×3 matrices A = (ai,j) such that for
every diagonal matrix D = diag(d1, d2, d3) we have that DA = AD′ for another
diagonal matrix D′ = diag(d′1, d

′
2, d
′
3). The condition that AD = D′A translates

into

AD =

d1a1,1 d2a1,2 d3a1,3
d1a2,1 d2a2,2 d3a2,3
d1a3,1 d2a3,2 d3a3,3

 =

d′1a1,1 d′1a1,2 d′1a1,3
d′2a2,1 d′2a2,2 d′2a2,3
d′3a3,1 d′3a3,2 d′3a3,3

 = D′A.

Since this must hold for each d1, d2 and d3, we see that A must have precisely one
non-zero element in each row and each column. Indeed, if ai,j 6= 0, then dj = d′i.
If ai,j′ 6= 0 for j′ 6= j, then dj′ = d′i = dj which certainly doesn’t hold for all
d1, d2, d3. Similarly, if i′ 6= i, then d′i′ = dj = d′i which also can’t hold.

Let P3 ⊂ GL3(C) be the subgroup consisting of permutations matrices. Then

P3H =


∗ 0 0

0 ∗ 0
0 0 ∗

⋃
0 ∗ 0
∗ 0 0
0 0 ∗

⋃
0 0 ∗

0 ∗ 0
∗ 0 0


⋃

∗ 0 0
0 0 ∗
0 ∗ 0

⋃
0 ∗ 0

0 0 ∗
∗ 0 0

⋃
0 0 ∗
∗ 0 0
0 ∗ 0


where ∗ could be any non-zero complex number. We have verified that NG(H) ⊂
P3H. It is a simple calculation to conclude that each of these matrices normalizes
H, that is, P3H ⊂ NG(H). We conclude that NG(H) = P3H.

For (3), observe that P3 ∩H = 1. We also know that the subgroup P3 of 3× 3
permutation matrices is isomorphic to the symmetric group S3. We may use the
2nd isomorphism theorem to conclude that

NG(H)/H ∼= P3H/H ∼= P3/P3 ∩H ∼= P3
∼= S3.

Alternatively, you can simply write down a surjective group homomorphism
P3H → P3 which replaces an element in the normalizer with the matrix where
each non-zero entry is replaced with a 1. The kernel of this homomorphism is
clearly H. Therefore, NG(H)/H ∼= P3H/H ∼= P3.
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Problem 1.3. Find all possible composition series for the dihedral group D12 of
order 12.

Solution: We write D12 = 〈r, s | r6 = s2 = 1, rs = sr−1〉. We first observe that
1 E 〈r3〉 E 〈r〉 E D12 is a composition series with factors Z/3,Z/2 and Z/2. By
the Jordan–Hölder theorem, any composition series will have these factors up to
reordering. Therefore, if 1 E N1 E N2 E D12 is a composition series, then N2 is a
normal subgroup of order 4 or 6. We claim that there are no normal subgroups of
order 4. Since 12 = 22 · 3, a subgroup of order 4 is a 2-Sylow. The subgroup 〈r3, s〉
is a 2-Sylow but it is not normal since rsr−1 = sr4 /∈ 〈r3, s〉. Since all 2-Sylow’s
are conjugate, there are no normal 2-Sylow subgroups.

We now classify all subgroups of D12 of order 6. Let N2 E D12 be a subgroup
of order 6, which is necessarily normal. By Cauchy’s theorem, N2 has a subgroup
H ⊂ N2 of order 3. Then H ⊂ D12 is a 3-Sylow subgroup. Observe that 〈r2〉 ⊂ D12

is a 3-Sylow subgroup and that it is normal: indeed, sr2s = r4 ∈ 〈r2〉. It follows
that 〈r2〉 ⊂ D12 is the unique subgroup of order 3. Thus H = 〈r2〉 ⊂ N2 and N2

is obtained from 〈r2〉 by adjoining an element of order 2. We can enumerate all
elements of D12 of order 2: s, sr, sr2, sr3, sr4, sr5, r3. Adjoining these creates 3
distinct subgroups of order 6: 〈r〉, 〈r2, s〉 and 〈r2, sr〉. Observe that 〈r〉 ∼= Z/6,
which has 2 composition series: 1 E 〈r3〉 E 〈r〉 and 1 E 〈r2〉 E 〈r〉. Also, both
〈r2, s〉 and 〈r2, sr〉 are isomorphic to S3 which has a unique composition series
1 E 〈(123)〉 E S3. Putting these observations together, we have four distinct
composition series:

1 E 〈r3〉 E 〈r〉 E D12

1 E 〈r2〉 E 〈r〉 E D12

1 E 〈r2〉 E 〈r2, s〉 E D12

1 E 〈r2〉 E 〈r2, sr〉 E D12.

Problem 1.4. Prove that a group of order p2q is solvable, where p and q are
distinct primes. (Recall from HW Problem 2.2 that a finite group is solvable if
and only if there exists a composition series with abelian factors.)

Solution: Let G be a group of order p2q. Let np and nq be the number of p and
q-Sylow subgroups, respectively. Sylow’s theorem implies that np ≡ 1(mod p) and
np|q, and that nq ≡ 1(mod q) and nq|p2. Therefore, np ∈ {1, q} and nq ∈ {1, p, p2}.

If np = 1, then there exists a normal subgroup N E G of order p2. From
lecture, we know that N is isomorphic to Z/p2 or Z/p× Z/p and, in particular,
N is abelian. In this case, G is solvable.

If nq = 1, then there exists a normal subgroup N E G of order q, and G/N is
a group of order p2, which (as above) is abelian as it is isomorphic to Z/p2 or
Z/p× Z/p. In this case, G is again solvable.

If np = q and nq ∈ {p, p2}. Then q ≡ 1(mod p) so that q > p. Observe that
nq 6= p as this would imply that q < p. We are left with the case that np = q
and nq = p2. In this case, we have p2 Sylow subgroups of order q, and therefore
p2(q − 1) distinct elements of order q. There are only p2 remaining elements in G
which necessarily must form a p-Sylow subgroup. Since all p-Sylow’s are conjugate,
we see that this p-Sylow is normal and that np = 1, a contradiction.

Problem 1.5.

(1) Find a Sylow 7-subgroup of GL3(F2).
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(2) Show that GL3(F2) is isomorphic to the subgroup of S7 generated by the
permutations (1234567) and (15)(23).

Hint: Consider the action of GL3(F2) on the set F3
2 \ 0 containing 7

elements and the induced homomorphisms GL3(F2)→ S7.

Solution: Let us first observe that |GL3(F2)| = (23 − 1)(23 − 2)(23 − 22) =
168 = 23 · 3 · 7 by a simple counting argument: the first column has to be non-zero,
the second column can’t be a multiple of the first and the third column has to be
linearly independent to the first 2.

For (1), we simply want to find a matrix A ∈ GL3(F2) of order 7 as this will
generate a 7-Sylow. This can be found by trial and error. (In fact, it turns out
that the number of 7-Sylows is 8 so there are 68 elements of order 7 so a random
element has roughly a 28% chance of being an element of order 7.)

Consider

A =

1 0 1
1 1 0
1 1 1


This element has order 7. One way to see this (other than laboriously computing
the powers of A) is to think about how it acts on F3

2 \ 0:1
0
0

 A7−→

1
1
1

 A7−→

0
0
1

 A7−→

1
0
1

 A7−→

0
1
0

 A7−→

0
1
1

 A7−→

1
1
0

 A7−→

1
0
0

 .

This shows that A has an element of order 7. (In fact, the way I found the matrix
A was by playing around with the coefficients so that A would cycle through the
7 elements of F3

2 \ 0.)

Order the elements of F3
2 \ 0 by defining vi = Ai−1

1
0
0

.

For (2), the action of GL3(F2) on the set F3
2 \ 0 = {v1, . . . , v7} induces a group

homomorphism π : GL3(F2) → S7 which is necessarily injective since a matrix
that fixes every element of F3

2 \ 0 must be the identity. Define the matrix

B =

0 1 1
1 0 1
0 0 1


so that B swaps v1 and v5, swaps v2 and v3, and fixes all other vectors. The
matrix B was constructed so that π(B) = (15)(23) ∈ S7.

Since GL3(F3) = im(π), it suffices to show that the matrices A and B generate
GL3(F3), or alternatively that the permutations (1234567) and (15)(23) generate
a subgroup of order 168. This can be proven in a variety of ways. The solution
here is a variant of the clever solutions of Kristine Hampton and Thomas Lou.
Let H = 〈A,B〉 ⊂ GL3(F3), then we only need to show |H| = 168 = 23 · 3 · 7. We
know H has an element of order 7 and 2. This implies that H has order 2i · 3j · 7
for i = 1, 2, 3 and j = 0, 1. Also 〈A〉 ⊂ H is not normal since one can check that
BAB−1 /∈ 〈A〉. This implies that the number n7 of 7-Sylows in H is greater than
1. But in fact n7 = 8 since n7 ∼= 1(mod 7) and n7 must divide 2i3j , which in turn
divides 24. Looking at the condition that 8 divides 2i3j implies that i = 3 and
j = 1, which shows that |H| = 23 · 3 · 7.
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(Alternatively, one could directly construct elements of order 3 (e.g., AB has
order 3) and a subgroup of order 8. This requires playing around with elements a
bit either in GL3(F2) or S7. )

Problem 1.6. Let k be a field.

(1) Show that the ideal (xy − zw) ⊂ k[x, y, z, w] is prime.
(2) Show that the element x ∈ k[x, y, z, w]/(xy − zw) is irreducible but not

prime.

Solution: For (1), let R = k[y, z, w] and consider the degree 1 polynomial
f = xy − zw ∈ R[x]. The ideal p = (w) ⊂ R is prime. The leading coefficient of f
is y which is not in p and the constant coefficient is zw which is in p but not in
p2. By Eisenstein’s criterion xy − zw ∈ R[x] = k[x, y, z, w] is irreducible. Since
k[x, y, z, w] is a UFD, it follows that (xy − zw) is a prime ideal.

For (2), we will use the following lemma:

Lemma: Let f ∈ k[x1, . . . , xn] be an irreducible homogeneous polynomial in n
variables and R = k[x1, . . . , xn]/(f). Then there is a function deg : R \ 0→ Z≥0
which is defined as follows: for g + (f) ∈ R, then deg(g + (f)) is defined as the
smallest degree of a polynomial of the form g + fh for any h ∈ k[x1, . . . , xn]. For
g1, g2 ∈ R \ 0, we have that deg(g1g2) = deg(g1) + deg(g2).

Proof of Lemma: Let S = k[x1, . . . , xn] and Sd ⊂ S be the homogeneous elements
of degree d. Then S ∼= ⊕d≥0Sd as abelian groups with the property that for
x ∈ Sd and y ∈ Se non-zero, the product xy is in Sd+e (in other words, S is a
graded ring). Let π : S → R be the canonical surjection onto the quotient. Define
Rd = π(Sd). Then it is easy to check that R ∼= ⊕d≥0Rd as abelian groups and that
the multiplication of a non-zero element in Rd by a non-zero element in Rs is in
Rd+s. The degree (as we’ve defined it above) of an element g = g0 + · · ·+ gd ∈ R,
with gi ∈ Ri and gd 6= 0, is precisely d. Finally, since f is an irreducible element,
the ideal (f) is prime and therefore R is an integral domain. It follows that for
non-zero elements g1, g2 ∈ R that deg(g1g2) = deg(g1) + deg(g2). �

If it is possible to write x = q1q2 with q1, q2 ∈ R = k[x, y, z, w]/(xy− zw), then
by the Lemma, we know that deg(q1) + deg(q2) = deg(x) = 1. Therefore deg(q1)
or deg(q2) has to be zero in which case it is a non-zero constant and thus a unit.
Therefore, x is irreducible.

To see if x is prime, the quotientR/(x) ∼= k[x, y, z, w]/(xy−zw, x) ∼= k[y, z, w]/(zw)
which is not an integral domain. Therefore x ∈ R is not prime.
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