Math 504: Modern Algebra, Fall Quarter 2017
Jarod Alper
Midterm Solutions

Problem 1.1. Classify all groups of order 385 up to isomorphism.

Solution: Let G be a group of order 385. Factor 385 as 385 = 5-7-11. Let ns,ny
and n1; be the number of 5,7 and 11-Sylow subgroups. Sylow’s theorem implies
that n5 = 1(mod 5) and n5|77. This implies that ns = 1 or 11. Similarly, we have
that ny = 1(mod 7) and n7|55 which implies that ny = 1, and ny; = 1(mod 11)
and n11|35 which implies that ny; = 1.

In particular, we have a normal 7-Sylow subgroup N; C G and a normal
11-Sylow subgroup N1; C G. Then N := N;N;; C G is a subgroup of order 77.
Moreover, N is normal in G since for x € Ny, y € N1; and g € G, we have that
g(zy)g~t = (9297 ) (gyg~!) € NyN1; = N. Let K be any Sylow 5-subgroup. By
considering orders of subgroups, we see that K NN =1 and KN = G. By the
result from lecture, we know that

GgNqugK

where ¢: K — Aut(NV) is a group homomorphism. We know that K = Z/5,
N; 2 Z/7 and Ny; & Z/11. Since N; and Nj; are normal in G, they are also
normal in N. As Ny N Ny; = 1, we know that N 2 Z/7 x Z/11. We also know
from lecture that Aut(N) = Aut(Z/7 x Z/11) =2 Z/6 x Z/10. We need to classify
group homomorphisms

¢: K =7/5— 7,/6 x Z/10 = Aut(N).

Since the element ¢(1) € Z/6 x Z/10 has order dividing 5, we know that ¢(1) =
(0,2:) for i € {0,1,2,3,4}. There are two cases:

Case 1: ¢ =10. In this case, G @ N x K = Z/77 x Z/5 = Z/385 and is clearly
abelian.

Case 2: i # 0. In this case, let a;: Z/5 — Z/5 be the automorphism of groups
defined by k +— ki. If ¢;: Z/5 — 7Z/6 x 7Z/10 denotes the group homomorphism
determined by ¢;(1) = (0, 2¢), then clearly ¢; = ¢1 o a;. By Homework Problem
3.1(1), we know that the two semi-direct products Z/77 x4, Z/5 and Z/77 X4, Z]5
are isomorphic. Therefore, we have only one non-trivial semi-direct product
ZJT7 X4, Z/5 up to isomorphism. Since this group is not abelian, it is not
isomorphic to Z/385 and we may conclude that there are only two groups of order
385 up to isomorphism: Z/385 and Z/77 x4, Z/5.

Problem 1.2. Let G = GL3(C) be the group of invertible 3 x 3 matrices with
entries in C. Let H C G be the subgroup consisting of diagonal matrices.
(1) Find the centralizer Cg(H) of H in G.
(2) Find the normalizer Ng(H) of H in G.
(3) Determine the quotient Ng(H)/H; that is, identify this group with a
familiar group.



Solution: For (1), first observe that as H is abelian H C Cg(H). The centralizer
C¢(H) consists of 3 x 3 matrices

ai1 ai2 a3
A= a1 a2 a3
as; Gs2 33

such that AD = DA for every diagonal matrix

di 0 0
D=0 dy O
0 0 ds.
The condition that AD = DA translates into
diar1 doarp dsars diary diarz diaigs
AD = | diaz dpazp dzasz | = | doaz1 dpass doazs | = DA.
draz;1 dpazp  dsass dsas;1 dsaz2 dsasgs

Since this must hold for every non-zero choice of dj,ds and ds, we conclude that
a;; = 0if 7 # j, that is, A € H is diagonal.

For (2), the normalizer Ng(H) consists of 3 x 3 matrices A = (a; ;) such that for
every diagonal matrix D = diag(dy,ds, ds) we have that DA = AD’ for another
diagonal matrix D" = diag(d}, dj, d). The condition that AD = D’A translates
into

! ! I
diar1,1 dearo dsaigs diain diai2 dijais
/ ! U !
AD = dlag,l dgag)g d3a273 = d2a2,1 d2a272 d2a273 =D'A.
/ ! U
dias;1 dpaze dsasgs dyas; dsazo djass

Since this must hold for each dy, dy and d3, we see that A must have precisely one
non-zero element in each row and each column. Indeed, if a; ; # 0, then d; = d.
If a;j # 0 for j' # j, then dj; = d; = d; which certainly doesn’t hold for all
di,da,ds. Similarly, if i’ # ¢, then d, = d; = d} which also can’t hold.

Let P3; C GL3(C) be the subgroup consisting of permutations matrices. Then

0

* 0 0 « 0 0 0 =
PgHzO*OU*OOUO*O
0 0 =« 0 0 =x * 0 0

* 0 0 0 = 0 0 0 =«

US (o o =] sUJsfo o «|sUJs[x 0 o
0 x 0 * 0 0 0 = 0

where * could be any non-zero complex number. We have verified that Ng(H) C
Ps;H. It is a simple calculation to conclude that each of these matrices normalizes
H, that is, PsH C Ng(H). We conclude that Ng(H) = PsH.

For (3), observe that P3N H = 1. We also know that the subgroup Ps of 3 x 3
permutation matrices is isomorphic to the symmetric group S3. We may use the
2nd isomorphism theorem to conclude that

Ne(H)/H = PsH/H = P3/P3sNH = P3 = S3.

Alternatively, you can simply write down a surjective group homomorphism
P3H — P;3 which replaces an element in the normalizer with the matrix where
each non-zero entry is replaced with a 1. The kernel of this homomorphism is
clearly H. Therefore, No(H)/H = PsH/H = Ps.



Problem 1.3. Find all possible composition series for the dihedral group D15 of
order 12.

Solution: We write Dis = (r, 5|75 = s = 1,rs = sr~!). We first observe that
1 < (r3) < (r) < D15 is a composition series with factors Z/3,Z/2 and Z/2. By
the Jordan—Holder theorem, any composition series will have these factors up to
reordering. Therefore, if 1 < N7 < Ny < Dy is a composition series, then N is a
normal subgroup of order 4 or 6. We claim that there are no normal subgroups of
order 4. Since 12 = 22 -3, a subgroup of order 4 is a 2-Sylow. The subgroup (13, s)
is a 2-Sylow but it is not normal since rsr=! = sr* ¢ (r3,s). Since all 2-Sylow’s
are conjugate, there are no normal 2-Sylow subgroups.

We now classify all subgroups of D15 of order 6. Let No < D15 be a subgroup
of order 6, which is necessarily normal. By Cauchy’s theorem, N5 has a subgroup
H C Ny of order 3. Then H C Dj5 is a 3-Sylow subgroup. Observe that (r?) C D
is a 3-Sylow subgroup and that it is normal: indeed, sr?s = r € (r?). It follows
that (r?) C Dis is the unique subgroup of order 3. Thus H = (r?) C Ny and N,
is obtained from (r2?) by adjoining an element of order 2. We can enumerate all
elements of Dyo of order 2: s, sr,sr?, sr3, sr?, sr5 3. Adjoining these creates 3
distinct subgroups of order 6: (r), (r?, s) and (r?, sr). Observe that (r) = Z/6,
which has 2 composition series: 1 < (r®) < (r) and 1 < (r?) < (r). Also, both
(r?,s) and (r?,sr) are isomorphic to S3 which has a unique composition series
1 < ((123)) < S3. Putting these observations together, we have four distinct
composition series:

1 Q) <(r) < Dy
1 Q%) <(r) < Dqs
1 <(r?) <(r%s) <D
1 <(r?) (2 sr) < Dio.

Problem 1.4. Prove that a group of order p?q is solvable, where p and ¢ are
distinct primes. (Recall from HW Problem 2.2 that a finite group is solvable if
and only if there exists a composition series with abelian factors.)

Solution: Let G be a group of order p?q. Let np and ng be the number of p and
g-Sylow subgroups, respectively. Sylow’s theorem implies that n, = 1(mod p) and
np|g, and that n, = 1(mod q) and n,y|p?. Therefore, n, € {1,q} and n, € {1,p, p*}.

If n, = 1, then there exists a normal subgroup N < G of order p?. From
lecture, we know that NN is isomorphic to Z/p? or Z/p x Z/p and, in particular,
N is abelian. In this case, G is solvable.

If ng = 1, then there exists a normal subgroup N < G of order ¢, and G/N is
a group of order p?, which (as above) is abelian as it is isomorphic to Z/p? or
Z/p x Z/p. In this case, G is again solvable.

If n, = q and n, € {p,p?}. Then ¢ = 1(modp) so that ¢ > p. Observe that
ng # p as this would imply that ¢ < p. We are left with the case that n, = ¢
and ng = p?. In this case, we have p? Sylow subgroups of order ¢, and therefore
p?(q — 1) distinct elements of order ¢. There are only p? remaining elements in G
which necessarily must form a p-Sylow subgroup. Since all p-Sylow’s are conjugate,
we see that this p-Sylow is normal and that n, = 1, a contradiction.

Problem 1.5.
(1) Find a Sylow 7-subgroup of GL3(FF3).



(2) Show that GL3(F2) is isomorphic to the subgroup of S7 generated by the
permutations (1234567) and (15)(23).

Hint: Consider the action of GL3(FF2) on the set F3 \ 0 containing 7
elements and the induced homomorphisms GL3(F3) — Sy.

Solution: Let us first observe that | GL3(F2)| = (2% — 1)(23 — 2)(23 — 22) =
168 = 23 .37 by a simple counting argument: the first column has to be non-zero,
the second column can’t be a multiple of the first and the third column has to be
linearly independent to the first 2.

For (1), we simply want to find a matrix A € GL3(F3) of order 7 as this will
generate a 7-Sylow. This can be found by trial and error. (In fact, it turns out
that the number of 7-Sylows is 8 so there are 68 elements of order 7 so a random
element has roughly a 28% chance of being an element of order 7.)

Consider
1
1
11

This element has order 7. One way to see this (other than laboriously computing
the powers of A) is to think about how it acts on I3 \ 0:

0 1
A= 10
1

1 1 0 1 0 0 1 1
ol A (1] (o]l & (ol A (1] A 1] A& 1] o
0 1 1 1 0 1 0 0

This shows that A has an element of order 7. (In fact, the way I found the matrix
A was by playing around with the coefficients so that A would cycle through the
7 elements of F3 \ 0.)
1
Order the elements of F3 \ 0 by defining v; = A1 [ 0
0
For (2), the action of GL3(F2) on the set F3 \ 0 = {v1,...,v7} induces a group
homomorphism 7: GL3(F3) — S7 which is necessarily injective since a matrix
that fixes every element of F3 \ 0 must be the identity. Define the matrix

01 1
B=|[1 0 1
0 01

so that B swaps v; and vs, swaps vo and vz, and fixes all other vectors. The
matrix B was constructed so that 7(B) = (15)(23) € S7.

Since GL3(F3) = im(n), it suffices to show that the matrices A and B generate
GLj3(F3), or alternatively that the permutations (1234567) and (15)(23) generate
a subgroup of order 168. This can be proven in a variety of ways. The solution
here is a variant of the clever solutions of Kristine Hampton and Thomas Lou.
Let H = (A, B) C GL3(F3), then we only need to show |H| =168 =23-3-7. We
know H has an element of order 7 and 2. This implies that H has order 2¢ -3/ - 7
fori=1,2,3 and j =0, 1. Also (A) C H is not normal since one can check that
BAB™! ¢ (A). This implies that the number n; of 7-Sylows in H is greater than
1. But in fact ny = 8 since ny = 1(mod 7) and n; must divide 2!37, which in turn
divides 24. Looking at the condition that 8 divides 2¢3/ implies that i = 3 and
j = 1, which shows that |H|=2%.3-7.



(Alternatively, one could directly construct elements of order 3 (e.g., AB has
order 3) and a subgroup of order 8. This requires playing around with elements a
bit either in GL3(F3) or S7. )

Problem 1.6. Let k be a field.
(1) Show that the ideal (zy — zw) C k[z,y, z,w] is prime.
(2) Show that the element x € k[z,y, z,w]/(xy — zw) is irreducible but not
prime.

Solution: For (1), let R = k[y, z,w|] and consider the degree 1 polynomial
f=axy— zw € R[z]. The ideal p = (w) C R is prime. The leading coefficient of f
is y which is not in p and the constant coefficient is zw which is in p but not in
p2. By Eisenstein’s criterion zy — zw € R[x] = k[z,y, z,w] is irreducible. Since
klz,y, z,w] is a UFD, it follows that (zy — zw) is a prime ideal.

For (2), we will use the following lemma:

Lemma: Let f € k[xy,...,2,] be an irreducible homogeneous polynomial in n
variables and R = k[z1,...,x,]/(f). Then there is a function deg: R\ 0 — Z>¢
which is defined as follows: for g + (f) € R, then deg(g + (f)) is defined as the
smallest degree of a polynomial of the form g + fh for any h € k[x1,...,z,]. For
91,92 € R\ 0, we have that deg(g192) = deg(g1) + deg(g2).

Proof of Lemma: Let S = k[x1,...,x,] and Sy C S be the homogeneous elements
of degree d. Then S = ®4>054 as abelian groups with the property that for
z € Sq and y € S, non-zero, the product zy is in Syt (in other words, S is a
graded ring). Let 7: S — R be the canonical surjection onto the quotient. Define
Ry = 7(S4). Then it is easy to check that R = @4>9Rq as abelian groups and that
the multiplication of a non-zero element in Ry by a non-zero element in R, is in
R4ts. The degree (as we've defined it above) of an element g = go + -+ + g4 € R,
with g; € R; and ggq # 0, is precisely d. Finally, since f is an irreducible element,
the ideal (f) is prime and therefore R is an integral domain. It follows that for
non-zero elements g1, gs € R that deg(g192) = deg(g1) + deg(gs). O

If it is possible to write x = g1g2 with q1,¢2 € R = k[z,y, z, w]/(zy — zw), then
by the Lemma, we know that deg(q1) + deg(g2) = deg(z) = 1. Therefore deg(q1)
or deg(gz) has to be zero in which case it is a non-zero constant and thus a unit.
Therefore, z is irreducible.

To see if x is prime, the quotient R/(x) = k[x,y, z, w]/(xy—zw, ) = k[y, z, w]/(zw)
which is not an integral domain. Therefore z € R is not prime.



