Math 504: Modern Algebra, Fall Quarter 2017

Jarod Alper
Homework 4
Due: Monday, October 23

Problem 3.1. Let H, K be groups and $\varphi: K \rightarrow \operatorname{Aut}(H)$ be a group homomorphism.
(1) If $\lambda \in \operatorname{Aut}(K)$, let $\varphi \circ \lambda: K \rightarrow \operatorname{Aut}(H)$ be defined by $k \mapsto \varphi(\lambda(k))$. Show that $H \rtimes_{\varphi} K \cong H \rtimes_{\varphi \circ \lambda} K$.
(2) If $\psi \in \operatorname{Aut}(H)$, let $\psi \varphi \psi^{-1}: K \rightarrow \operatorname{Aut}(H)$ be defined by $k \mapsto \psi \varphi(k) \psi^{-1}$. Show that $H \rtimes_{\varphi} K \cong H \rtimes_{\psi \varphi \psi^{-1}} K$.

Problem 3.2 (Chinese Remainder Theorem).
(1) Let R be a commutative ring. Suppose that I_{1}, \ldots, I_{n} are ideals such that $I_{j}+I_{k}=R$ for each $j \neq k$. Show that there is an isomorphism $R /\left(I_{1} \cdots I_{k}\right) \cong R / I_{1} \times \cdots \times R / I_{k}$ of rings.
(2) Let n be an integer with prime factorization $n=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$. Show that there is an isomorphism $\mathbb{Z} / n \cong \mathbb{Z} / p_{1}^{a_{1}} \times \cdots \times \mathbb{Z} / p_{k}^{a_{k}}$ of rings.
(3) Show that a commutative ring R is isomorphic to a direct product $R_{1} \times R_{2}$ of nonzero rings if and only if there are nonzero elements $e_{1}, e_{2} \in R$ satisfying $e_{1}^{2}=e_{1}, e_{2}^{2}=e_{2}, e_{1} e_{2}=0$ and $e_{1}+e_{2}=1$.

Problem 3.3 (Localization). Let R be a commutative ring. Let $S \subset R$ be a multiplicative subset; that is, S is a subset containing 1 and satisfies: if $x, y \in S$, then $x y \in S$. Define

$$
S^{-1} R=R \times S / \sim
$$

where \sim is the equivalence relation on $R \times S$ defined by $(r, s) \sim\left(r^{\prime}, s^{\prime}\right)$ if there exists $t \in S$ such that $t\left(r s^{\prime}-r^{\prime} s\right)=0$. If one defines $(r, s)+\left(r^{\prime}, s^{\prime}\right):=\left(s^{\prime} r+r^{\prime} s, s s^{\prime}\right)$ and $(r, s) \cdot\left(r^{\prime}, s^{\prime}\right)=\left(r r^{\prime}, s s^{\prime}\right)$, then $S^{-1} R$ is a commutative ring and $\phi: R \rightarrow$ $S^{-1} R, r \mapsto(r, 1)$ is a ring homomorphism such that $\phi(S) \subset\left(S^{-1} R\right)^{\times}$. Show that $S^{-1} R$ satisfies the following universal property: for any commutative ring A and ring homomorphism $\psi: R \rightarrow A$ such that $\psi(S) \subset A^{\times}$, there exists a unique ring homomorphism $\lambda: S^{-1} R \rightarrow A$ such that

commutes.
Problem 3.4. Let R be a commutative ring.
(1) If $I \subset R$ is an ideal, show that there is a bijection between the prime ideals of R / I and the prime ideals of R containing I.
(2) If $S \subset R$ is a multiplicative subset, show that there is a bijection between the prime ideals of $S^{-1} R$ and the prime ideals of R not meeting S.
(3) If one replaces each instance of the word 'prime' with 'maximal' in statements (1) and (2) above, are the analogous statements still true? In each case, either prove the statement or provide a counterexample.

Problem 3.5. The center of a ring R is the subring of R containing elements $r \in R$ such that $r x=x r$ for all $x \in R$.
(1) Show that if R is a division ring, then the center of R is a field.
(2) Let R be a non-zero ring. What is the center of the matrix ring $M_{n}(R)$?

Problem 3.6. If R is a commutative ring, define the formal power series ring $R[[x]]$ to be the set of elements of the form $\sum_{n=0}^{\infty} a_{n} x^{n}$ where $a_{n} \in R$. Addition and multiplication are defined in the natural way; that is,

$$
\begin{aligned}
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right) & :=\sum_{n=0}^{\infty} c_{n} x^{n} \\
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \cdot\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right) & :=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) x^{n}
\end{aligned}
$$

(1) Show that $1+x \in R[[x]]$ is a unit.
(2) Show that if R is an integral domain, so is $R[[x]]$.

