MATH 300 HW 8 Key

4.2.5.a. Since $A - B \subset A$ we define the injective function $f : A - B \to A$ by $f(a) = a$. Thus $\#(A - B) \leq \#A$.

b. Suppose $\#A \leq \#B$. Then there exists an injection $f : A \rightarrow B$. We define an injective function $f_C : A \times C \to B \times C$ by $f_C(a, c) = f_C(f(a), c)$.

c. Not necessarily true. Let $A = \mathbb{R}$ and $B = \emptyset$. Then $A - B = \mathbb{R}$ and there does not exist any functions $f : \mathbb{R} \to \emptyset$ and thus it is not true that $#(A - B) \leq #B.$

4.3.10. Let F be the family of intervals. We pick a random interval to denote as I'. We define a surjection $f: \mathbb{Q} \to F$ by $f(q) = I'$ if $q \notin \bigcup_{I \in F} I$ and $f(q) = I_q$ otherwise, where I_q is the unique interval in F containing q. Since every interval in F contains at least one rational number, this must be a surjection. It follows that $\#F \leq \#\mathbb{Q} = \#\mathbb{N}$ and thus F is countable.

Common pitfalls to avoid for this proof: We cannot simply count our intervals going left to right. For example, we might have a family

$$
F = \{[\frac{1}{2n+1}, \frac{1}{2n}] \; : \; n \in \mathbb{N}\} \cup \{[1, 2], [-2, -1]\}
$$

in which case the majority of straightforward counting schemes would fail since there are an infinite number of intervals squeezed into a compact space.

Alternatively, we could have defined an injection $f : F \to \mathbb{Q}$. This would work fine, but we have to be careful that this function is well-defined; that is, that there is a clearly defined and unique output for each input. This could be as simple as saying: "For each interval I we pick a rational number it contains and denote it q_I . We then define $f : F \to \mathbb{Q}$ by $f(I) = q_I$."

4.3.11. We have $g : \mathbb{N} \times \mathbb{N}$ by $g(m, n) = 2^{m-1}(2n-1)$. We first prove this is an injection. Suppose $g(a, b) = g(c, d)$. Then

$$
2^{a-1}(2b-1) = 2^{c-1}(2d-1)
$$

Since $2b-1$ and $2d-1$ are both odd, it follows by the Fundamental Theorem of Arithmetic that $a = c$. We then divide both sides by 2^{a-1} and get

$$
(2b - 1) = (2d - 1)
$$

and therefore $b = d$ as well. Thus q is injective.

We now prove surjectivity. Let $n \in NN$ have prime factorization $n =$ $2^{a_0}p_1^{a_1}...p_k^{a_k}$. Then $p_1^{a_1}...p_k^{a_k}$ is odd so we can write it as $p_1^{a_1}...p_k^{a_k} = 2b - 1$ for some unique b. Then $g(a_0 + 1, b) = n$, so g is surjective. Then g is a bijection so the statement follows.

4.3.12.a. We know that $\sum_{i=1}^{\infty} \frac{1}{2^{i}}$ $\frac{1}{2^i} = 1$ and so we can conclude that the "total lengths" is 1 and so Q is geometrically less than or equal to the size of an integral of length 1.

b. Let $\epsilon > 0$. We know that $\sum_{i=1}^{\infty} \frac{\epsilon}{2^{i}}$ $\frac{\epsilon}{2^i} = \epsilon$ and so we can conclude that the "total lengths" is ϵ and so $\mathbb Q$ is geometrically less than or equal to the size of an integral of length ϵ . Since this holds for all $\epsilon > 0$, we can conclude that $\mathbb Q$ is smaller than any interval of nonzero length, or in other words, has length $"0"$.

c. Since these intervals will overlap, the "total" length we calculate is actually an overestimate.

4.3.14. We define a circle by $C = \{(x, y) : x^2 + y^2 = \sqrt{2}\}\)$. Let $x, y \in \mathbb{Q}$. 4.3.14. We define a circle by $C = \{(x, y) : x + y = \sqrt{2}\}$. Let $x, y \in \mathbb{Q}$.
Then $x^2 + y^2 \in \mathbb{Q}$ and so $x^2 + y^2 \neq \sqrt{2}$, since $\sqrt{2} \notin \mathbb{Q}$, and thus $(x, y) \notin C$.

4.3.15. We define a line

$$
L = \{(x, y) : y = -x + \sqrt{2}\} = \{(x, y) : y + x = \sqrt{2}\}\
$$

Suppose $x, y \in \mathbb{Q}$. Then $x + y \in \mathbb{Q}$ and, since $\sqrt{2} \notin \mathbb{Q}$, we must have $x + y \neq \sqrt{2}$ and thus $(x, y) \notin L$.

7. Let n be a positive integer. We begin by observing that

$$
n^2 + 1 = n^2 + 2n + 1 - 2n = (n+1)^2 - 2n
$$

Suppose $n+1|n^2+1$. Then we can write

$$
(n+1)^2 - 2n = (n+1)(n+1 - \frac{2n}{n+1})
$$

and therefore $n+1|2n$. Therefore there exists $k \in \mathbb{N}$ such that $(n+1)k = 2n$. This implies $kn + k = 2n$ and as such we must have $k < 2$. It follows that $k = 1$. This leaves us with $n + 1 = 2n$, so we conclude that $n = 1$. To summarize, $n+1|n^2+1 \rightarrow n=1$.

To conclude the proof, we examine the case $n = 1$. In this case we have $n+1=2$ and $n^2+1=2$ and so the property does indeed hold. We conclude that $n+1|n^2+1$ if and only if $n=1$.

8. We wish to find all positive integers n not equal to 3 such that $n 3|n^3 - 3$. We begin by factoring

$$
n^3 - 3 = (n - 3)(n^2 + 3n + 9) + 24
$$

and therefore $n-3$ divides n^3-3 if and only if $n-3$ divides 24. When we exclude $n = 3$ we find that this is equivalent to saying $n \in \{1, 2, 4, 5, 6, 7, 9, 11, 15, 27\}.$