
MATH 300 HW 8 Key

4.2.5.a. Since A−B ⊂ A we define the injective function f : A−B → A
by f(a) = a. Thus #(A−B) ≤ #A.

b. Suppose #A ≤ #B. Then there exists an injection f : A → B. We
define an injective function fC : A× C → B × C by fC(a, c) = fC(f(a), c).

c. Not necessarily true. Let A = R and B = ∅. Then A − B = R and
there does not exist any functions f : R → ∅ and thus it is not true that
#(A−B) ≤ #B.

4.3.10. Let F be the family of intervals. We pick a random interval to
denote as I ′. We define a surjection f : Q → F by f(q) = I ′ if q ̸∈ ∪I∈F I
and f(q) = Iq otherwise, where Iq is the unique interval in F containing q.
Since every interval in F contains at least one rational number, this must
be a surjection. It follows that #F ≤ #Q = #N and thus F is countable.

Common pitfalls to avoid for this proof: We cannot simply count our
intervals going left to right. For example, we might have a family

F = {[ 1

2n+ 1
,
1

2n
] : n ∈ N} ∪ {[1, 2], [−2,−1]}

in which case the majority of straightforward counting schemes would fail
since there are an infinite number of intervals squeezed into a compact space.

Alternatively, we could have defined an injection f : F → Q. This would
work fine, but we have to be careful that this function is well-defined; that
is, that there is a clearly defined and unique output for each input. This
could be as simple as saying: ”For each interval I we pick a rational number
it contains and denote it qI . We then define f : F → Q by f(I) = qI .”

4.3.11. We have g : N×N by g(m,n) = 2m−1(2n− 1). We first prove this
is an injection. Suppose g(a, b) = g(c, d). Then

2a−1(2b− 1) = 2c−1(2d− 1)

Since 2b−1 and 2d−1 are both odd, it follows by the Fundamental Theorem
of Arithmetic that a = c. We then divide both sides by 2a−1 and get

(2b− 1) = (2d− 1)

and therefore b = d as well. Thus g is injective.
We now prove surjectivity. Let n ∈ NN have prime factorization n =

2a0pa11 ...pakk . Then pa11 ...pakk is odd so we can write it as pa11 ...pakk = 2b − 1
for some unique b. Then g(a0 + 1, b) = n, so g is surjective. Then g is a
bijection so the statement follows.
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4.3.12.a. We know that
∑∞

i=1
1
2i

= 1 and so we can conclude that the
”total lengths” is 1 and so Q is geometrically less than or equal to the size
of an integral of length 1.

b. Let ϵ > 0. We know that
∑∞

i=1
ϵ
2i

= ϵ and so we can conclude that
the ”total lengths” is ϵ and so Q is geometrically less than or equal to the
size of an integral of length ϵ. Since this holds for all ϵ > 0, we can conclude
that Q is smaller than any interval of nonzero length, or in other words, has
length ”0”.

c. Since these intervals will overlap, the ”total” length we calculate is
actually an overestimate.

4.3.14. We define a circle by C = {(x, y) : x2 + y2 =
√
2}. Let x, y ∈ Q.

Then x2 + y2 ∈ Q and so x2 + y2 ̸=
√
2, since

√
2 ̸∈ Q, and thus (x, y) ̸∈ C.

4.3.15. We define a line

L = {(x, y) : y = −x+
√
2} = {(x, y) : y + x =

√
2}

Suppose x, y ∈ Q. Then x + y ∈ Q and, since
√
2 ̸∈ Q, we must have

x+ y ̸=
√
2 and thus (x, y) ̸∈ L.

7. Let n be a positive integer. We begin by observing that

n2 + 1 = n2 + 2n+ 1− 2n = (n+ 1)2 − 2n

Suppose n+ 1|n2 + 1. Then we can write

(n+ 1)2 − 2n = (n+ 1)(n+ 1− 2n

n+ 1
)

and therefore n+1|2n. Therefore there exists k ∈ N such that (n+1)k = 2n.
This implies kn + k = 2n and as such we must have k < 2. It follows that
k = 1. This leaves us with n + 1 = 2n, so we conclude that n = 1. To
summarize, n+ 1|n2 + 1 → n = 1.

To conclude the proof, we examine the case n = 1. In this case we have
n+1 = 2 and n2+1 = 2 and so the property does indeed hold. We conclude
that n+ 1|n2 + 1 if and only if n = 1.

8. We wish to find all positive integers n not equal to 3 such that n −
3|n3 − 3. We begin by factoring

n3 − 3 = (n− 3)(n2 + 3n+ 9) + 24

and therefore n−3 divides n3−3 if and only if n−3 divides 24. When we ex-
clude n = 3 we find that this is equivalent to saying n ∈ {1, 2, 4, 5, 6, 7, 9, 11, 15, 27}.


