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Section 4.1 Q16

Solution:

(a) Since there are three digits each with two possible choices the total number of code-
words is 2 × 2 × 2 = 8.

(b) Suppose by contradiction that such a set of five codewords exists. Consider the first
digit of the codewords. There are two possible values and 5 codewords so by the
generalized pigeonhole principle there must be at least three digits with the same
value.

Now, consider the subset formed by these three codewords. Using the pigeonhole
principle we conclude that 2 of them must coincide on their second digit as well.
But then this two codewords have the same first and second digit. Their distance is
at most one and this contradicts our assumption on the minimum distance in these
codewords.

Section 4.1 Q21

Solution:

(a) If #A = m and #B = n then there is a correspondence between functions from B to
A and n−tuples of elements of A.

Therefore, AB ≈ A × . . . × A
n times

.

By Theorem 4.21 the cardinality of this set is mn.

(b) For an injection to exists we must have #B ≤ #A. Therefore, when n > m this number
is zero.

When n ≤ m, the image of an injection is a subset of A that has the same cardinality
as B. Now we will use the Product rule extensively.

We know that there are m!
n!(m−n)! possible choices . Now, let b1, . . . , bn be a enumera-

tion of the elements of B. For a fixed set S of size n on A, we must choose an element
ai1 such that f (b1) = ai1 . There are n possible choices. Next for f (b2) we must choose
an element in S − {ai1} and we denote this choice by ai2 . Recursively for aik we must
choose an element in S − {ai1,...aik−1

} so there are n − k + 1.

By the product rule the total number of injections is



m!
n!(m − n)!

× n × n − 1 × . . . × 2 × 1 =
m!

(m − n)!
.

(c)
(A × B)C ≈ AC × BC.

We show that there is a bijection between these sets. The elements on the left are
functions f : C → A × B. While the elements on the right consists of pairs of
functions (g, h) such that g : C → A and h : C → B.

Given a function f as above we can construct a pair of functions (g, h) as follows.
Suppose that for c ∈ C, f (c) = (a, b). Then define g(c) = a and h(c) = b.

This construction can be reversed. If you have a pair (g, h) then define f (c) =
(g(c), h(c)).

In other words the function is invertible. Therefore, it gives a bijection between this
two sets.

Section 4.1 Q22

Solution:

(a) Let a1, . . . , an be a set of elements of A such that A =
n⊔

i=1

[ai]. Suppose by contra-

diction that all [ai] are finite. Then by Corollary 4.15 #A =
n

∑
i=1

#[ai] < ∞. But this

contradicts the fact that A is not finite. Therefore, at least one of the [ai] must be
infinite.

(b) There were multiple examples on previous homeworks of relations on infinite sets
such that each class . To give one was one.

For instance, let A = R and consider the relation x ∼ y if x2 = y2. Then all
equivalence classes have at most two elements with the exception of [0] which just
has one.

The reason why this does not contradict part (a) is because there are infinite equiva-
lence classes.

Section 4.2 Q2

Solution: This statement is false. Consider the case where A = B = Z and f (a) = g(a) =
2a. This functions are injective but not surjective. Yet clearly, A and B have the same
cardinality.

Section 4.2 Q4
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Solution:

(a) Consider the sequence {1/2, 1/3, 1/4, . . . , }.

We can write (0,1) as (0, 1)− {1/2, 1/3, 1/4, . . . , } ∪ {1/2, 1/3, 1/4, . . . , } and [0,1] as
[0, 1]− {0, 1, 1/2, 1/3, 1/4, . . . , } ∪ {0, 11/2, 1/3, 1/4, . . . , }
Now observe that (0, 1) − {1/2, 1/3, 1/4, . . . , } = [0, 1] − {0, 1, 1/2, 1/3, 1/4, . . . , }.
This is the "otherwise" in the definition of h and we see that when restricting to this
set h is just the identity.

Therefore, we only need to show that h restricted to {0, 11/2, 1/3, 1/4, . . . , } gives a
bijection with {1/2, 1/3, 1/4, . . . , }.

But this is the case because h is shifting the elements in this sequence by two and
then mapping 0 and 1 to 1/2 and 1/3 respectively.

(b) If we consider the sequence 1
n what the function is doing is shifting the elements two

places to the right and filling the two resulting spaces with 0 and 1.

Section 4.2 Q6

Solution: Since #A ≤ #B there exists an injective function f : A ↪→ B. Now define the
function f ′ : P(A) → P(B) in the following way.

For every S ∈ P(A) let f ′(S) = { f (x) : x ∈ S}. Then we can show that f ′ is injective.
Take S, T ∈ P(A) such that f ′(S) = f ′(T). By this set equality we can do the following
argument.

x ∈ S =⇒ f (x) ∈ f ′(S)

=⇒ f (x) ∈ f ′(T)

=⇒ ∃y ∈ T : f (x) = f (y)

(injectivity of f ) =⇒ x = y

=⇒ x ∈ T

By symmetry (i.e. replacing S by T) we get the converse. Therefore, S = T and we
conclude that f ′ is injective.

Section 4.2 Q8

Solution:

(a) Suppose that A is a set such that #A = n. We know that there is a correspondence
between subsets of A and indicator functions. f : A → {0, 1}. By Exercise 2.21.a we
conclude that the cardinality of P(A) = 2n.

Finally, by Cantor’s Theorem we know that for any set n = #A < #P(A) = 2n.
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(b) We prove this by induction. First observe that the statement is true for n = 0 since
0 < 20 = 1. Now, suppose that the statement is true for k that is k < 2k. Since
k ≥ 1 we have k + 1 ≤ k + k = 2k. On the other hand 2k < 2 · 2k = 2k+1. Therefore,
k + 1 ≤ 2k < 2k+1.

Section 4.3 Q2

Solution: To create a countably infinite amount of the space in the hotel, ask the current
resident of room n to move to the 2n position. This effectively frees all odd numbered
rooms and now there is space available for the new hosts.

Section 4.3 Q4

Solution: This is true. A simple argument is that A − B ⊆ A. Therefore there exists an
injection i : A − B → A given by set inclusion. Therefore, #(A − B) ≤ #A. It follows that
if A is countable then (A − B) must be countable as well.

Section 4.3 Q7

Solution:

(a) We can write
N × N =

⋃
i∈N

{i} × N.

Each {i} × N is in bijection with N (see Exercise 4.1.4d ). Thus we have decompose
this as a countably infinite union of countably infinite sets.

(b) Let A =
⋃

i∈N Ai where Ai ≈ N.

Let fi be the bijection betweenN and Ai. Then we can construct a bijection g between
N × N and A. Define g(i, j) = fi(j).

Then we can see that {i} × N ≈ Ai and therefore N × N ≈ A.
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