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Section 2.10 Q2

Solution:

Proof. We prove by the induction. For the basis step observe that when n = 1,

13 =

(
1 ∗ (1 + 1)

2

)2

= 1.

For the induction step assume that

13 + 23 + · · ·+ n3 =

(
n(n + 1)

2

)2

Then we have

13 + 23 + · · ·+ n3 + (n + 1)3 =

(
n(n + 1)

2

)2

+ (n + 1)3

= [n + 1]2
(

n2

4
+ (n + 1)

)
= [n + 1]2

(
n2 + 4n + 4

4

)
= [n + 1]2

(
n + 2

2

)2

=

(
(n + 1)(n + 2)

2

)2

.

Section 2.10 Q4

Solution:

Proof. We use an induction argument. When n = 0, n4 − 4n2 = 0 is divisible by 3. Now
suppose that n4 − 4n2 is divisible by 3 and consider (n + 1)4 − 4(n + 1)2.



We have

(n + 1)4 − 4(n + 1)2 = n4 + 4n3 + 6n2 + 4n + 1 − 4n2 − 8n − 4

= n4 − 4n2 + 4n3 + 6n2 − 4n − 3

Section 2.10 Q6

Solution:

Proof. Basis step: (n = 2). 1
1·2 = 1

2 .
Induction step.

Suppose that
1

1 · 2
+

1
2 · 3

+ · · ·+ 1
(n − 1)n

= 1 − 1
n

.

Then we have

1
1 · 2

+
1

2 · 3
+ · · ·+ 1

(n − 1)n
+

1
n(n + 1)

= 1 − 1
n
+

1
n(n + 1)

= 1 − 1
n
+

1
n
− 1

n + 1

= 1 − 1
n + 1

They key step is the identity

1
n(n + 1)

=
1
n
− 1

n + 1
.

This can be derived by the method of partial fractions or also just by carrying out the
sum of fractions on the right.

Section 2.10 Q8

Solution: Although it may seem true at first glance there is one major flaw. P(1) =⇒ P(2)
does not hold. What’s the problem? The first k elements in this case is just the first one,
while the last k elements is just the last one. These two subsets are disjoint! There is no
overlap between the sets and therefore no reason why the first horse should have the same
color as the last one.

Moreover, P(2) is false. Just take a set of two horses with different colors.

Section 3.1 Q4
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Solution:

(a) f (x) = 1, g(x) =
x − 5
x − 5

.

The domain of f is R. The domain of g however is R − {5}. Since the domains are
different the functions are different. It is worth noting that f restricted to the domain
of g is equal to g.

(b) f (x) =
√

x, g(x) =
√
|x|.

The domain of f is {x ∈ R : x ≥ 0}. On the other hand g is defined for all R. Once
again the functions are different.

(c) f (x) = |x|, g(x) =
√

x2.

This time the functions agree on domain (R) and values. Therefore, they are the
same.

(d) f (x) = x2 − x − 6, g(x) = (x − 4)(x + 3) + 6.

Both of these functions are polynomials defined on the entire set R. By expanding
out g we can check that it is equal to f .

(e) f (x) = x2, g(x) =

{
x2 if x is rational
0 if x is irrational

.

Both functions are defined on the real line. However, they differ on any irrational
point. For instance, f (

√
2) = 2 while g(

√
2) = 0.

Comments about grading. It is true that f is continuous while g is not, and therefore
they cannot be equal. However, continuity is a high level concept and at this point
we are interested in establishing more elemental properties about functions. This is
why I took some points off for people that used continuity as an argument without
proving that g is not continuous (or that f is continuous for that matter). In fact,
whether these functions are continuous or not depends on the "topology" that you
choose for R. You will hear more about this if you continue on your math journey.

Side question on that note: Can you prove that
√

2 is irrational?

Section 3.1 Q6

Solution:

(a) Reflexive: f (a) = f (a).

Symmetric: f (a) = f (b) ⇐⇒ f (b) = f (a).

Transitive: If f (a) = f (b) and f (b) = f (c) then f (a) = f (b) = f (c).

(b) If x is a car of a given color then [x] is the set of all car with that same color.

(c) A = B = R, f (x) = x2: [x] = {−x, x}.
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(d) A = B = R, f (x) = |x|: [x] = {−x, x}.

(e) A = R×R, B = P(R) (the power set of R ), f (x, y) = {x, y}: [(x, y)] = {(x, y), (y, x)}.

(f) A = R × R, B = R, f (x, y) = x + y: [(x, y)] = {(x′, y′) ∈ R × R : x′ + y′ = x + y}.
This is a line of slope -1 passing through the point (x, y).

(g) A = R × R, B = R, f (x, y) = x2 + y2: [(x, y)] = {(x′, y′) ∈ R × R : (x′)2 + (y′)2 =
x2 + y2}. This is a circle centered at the origin and with radius equal to

√
x2 + y2.

Section 3.1 Q7

Solution:

(a) χ∅(s) = 0 for all s ∈ S.

χS(s) = 1 for all s ∈ S.

(b) χA′(s) = 1 − χA(s). This follows because for every s ∈ S′ it is either in A or A′ and
it cannot be in both at the same time.

(c) Proof. Observe that χA and χB have the same domain which is S, and the same
codomain {0, 1}. Now suppose that A = B, then for every s ∈ S, s ∈ A ⇐⇒ s ∈ B
and equivalently s ̸∈ A ⇐⇒ s ̸∈ B . Then, χA(s) = 1 ⇐⇒ χB(s) = 1 and χA(s) =
0 ⇐⇒ χB(s) = 0. Since these are the only two values in the codomain this shows
that χA = χB.

Now suppose that χA = χB, then χA(s) = 1 ⇐⇒ χB(s) = 1. But we also have the
equivalences s ∈ A ⇐⇒ χA(s) = 1 and s ∈ B ⇐⇒ χB(s) = 1. By transitivy and
symmetry of logical equivalences we conclude that s ∈ A ⇐⇒ s ∈ B and since this
is for arbitrary s ∈ S we conclude that A = B.

(d) Proof.

χA∩B(s) = 1 ⇐⇒ s ∈ A ∩ B

⇐⇒ s ∈ A ∧ s ∈ B

⇐⇒ χA(s) = 1 ∧ χB(s) = 1

⇐⇒ χA(s)χA(s) = 1

For the last equivalence observe that if any of the factors is zero then the whole
product is zero. This forces both factors to be one.

Suppose that s ∈ A∪ B. We must work three cases s ∈ A− B, s ∈ B− A or s ∈ A∩ B.
Observe that by what we just prove we can replace χA(s)χA(s) by χA∩B(s).

So if s ∈ A − B then we have

χA(s) + χB(s)− χA∩B(s) = 1 + 0 − 0 = 1

If s ∈ B − A then we have

χA(s) + χB(s)− χA∩B(s) = 0 + 1 − 0 = 1
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and finally if s ∈ A ∩ B we have

χA(s) + χB(s)− χA∩B(s) = 1 + 1 − 1 = 1

On the other hand if s ̸∈ A ∪ B then it follows that s ̸∈ A, s ̸∈ B and s ̸∈ A ∩ B.
Therefore,

χA(s) + χB(s)− χA∩B(s) = 0 + 0 − 0 = 0

Section 3.2 Q4 Let S and T be sets with three elements and two elements, respectively. In
each case state the answer and justify briefly.

Solution:

(a) How many functions are there from S to T?

For each point in the domain you have to choose one of the points in the codomain.
The answer is 23.

(b) How many injections are there from S to T?

None. The reason is that there are more elements in S than in T. Then necessarily
two elements in S would get mapped to the same element in T. This is sometimes
refer to as the Pigeonhole principle.

(c) How many injections are there from T to S?

For the first element in T we have three options to choose from. Once this choice
is made and we move on to the second element we have two options left since we
cannot choose the same element of S as before. The number of injections is therefore
3 · 2 = 6.

(d) How many surjections are there from S to T?

One way we can come up with this is getting the number of functions that are not
surjections. In this case is simple because there are only two elements. The only non
surjective functions are the constants, i.e. the ones that send all of the elements of S
to the same element in T. There are only two of those. Then the number of surjective
functions is equal to the number of functions minus 2. That is 23 − 2 = 6.

(e) How many surjections are there from T to S?

None. Since the number of elements in the domain is less than those in the codomain,
for any function necessarily there is going to be an element in S that one get assign
as the image of an element of T.

(f) Guess the answers to (a) and (b) if S has m elements and T has n elements.

The first one is nm. The second one is n!/(n − m)! if m ≤ n and 0 otherwise.

Side question: Thus this cover the case where S or T are the empty set?
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Section 3.2 Q6

Solution:

(a) f is surjective and the restriction f |C is surjective.

Let A = {1, 2}, B = {1} and C = {1} and take f equal to the constant function. That
is f (1) = 1 and f (2) = 1.

(b) f is surjective but the restriction f |C is not surjective.

Let A = {1, 2, 3}, B = {1, 2} and C = {1} and take f equal to the identity. That is
f (1) = 1 and f (2) = 2.

(c) f is injective and the restriction f |C is injective.

Take the same example as (c).

(d) f is injective but the restriction f |C is not injective.

This is not possible. We can show this by checking that for any C, if f is injective
then f |C is injective. Take two elements a, b ∈ C and suppose that f |C(a) = f |C(b).
Then f (a) = f (b) and since we are assuming that f is injective we conclude that
a = b.

Section 3.2 Q10

Solution: The map f is not injective. To see this consider the line L = {(0, y) : y ∈ R}.
For any point P = (0, y), the line segment OP is contained in L. Therefore f (P) = L for
all P ∈ L ∩ Π∗.

There are many valid choices for S such that f |S is a bijection. For instance take the
line S = {(x, 1) : x ∈ R} ∪ {(1, 0)}.

To see that this is surjective take any line L that passes through the origin. Any line
can be defined as {(x, y) : ax + by = 0}, (a, b) ̸= (0, 0). Then observe that if a ̸= 0 then the
point P = (−b/a, 1) belongs to L ∩ S. If a = 0 then P = (1, 0) ∈ L ∩ S. In both cases we
get that f |S(P) = L.

To see it is injective suppose that two points in S, (x, y) and (x′, y′) get map into the
same line L = {(x, y) : ax + by = 0}. Then

ax + by = ax′ + by′ = 0

If a = 0 then the previous equation becomes bx = by′ = 0 so that y = y′ = 0. Then the
only point in S whose y coordinate is zero is (1,0) so (x, y) = (x′, y′) = (1, 0).

If a ̸= 0, then (1,0) does not satisfy the equation ax + by = 0. So to belong to S we must
have y = y′ = 1. But then

ax + b = ax′ + b = 0

from which x = x′ = −b/a follows.
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