
MATH 300 HW 4 Key

2.8.4.

2.8.9. Prove (∪i∈IAi)× S = ∪i∈I(Ai × S).

We will first prove that (∪i∈IAi) × S ⊂ ∪i∈I(Ai × S). Let (a, b) ∈
(∪i∈IAi)× S. Then a ∈ ∪i∈IAi and b ∈ S. It follows that there exists k ∈ I
such that a ∈ Ak. Therefore (a, b) ∈ Ak × S and thus (a, b) ∈ ∪i∈I(Ai × S).
We conclude that (∪i∈IAi)× S ⊂ ∪i∈I(Ai × S).

We will now prove that (∪i∈IAi) × S ⊃ ∪i∈I(Ai × S). Let (a, b) ∈
∪i∈I(Ai × S). Then there exists k ∈ I such that (a, b ∈ Ak × S. It follows
that a ∈ Ak and b ∈ S. Therefore a ∈ ∪i∈IAi and thus (a, b) ∈ (∪i∈IAi)×S.
We conclude that (∪i∈IAi) × S ⊃ ∪i∈I(Ai × S). We combine our two con-
clusions to obtain the desire equality (∪i∈IAi)× S = ∪i∈I(Ai × S).

2.9.5.
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a. We give the partitions

Π1 = {{1}, {2}, {3}, {4}, {5}, {6}}
Π2 = {{1, 2}, {3, 4}, {5}, {6}}
Π3 = {{1, 2}, {3, 4}, {5, 6}}
Π4 = {{1, 2}, {3, 4, 5, 6}}

b. We give the partitions

Π1 = {{1}, {2}, {3}, {4}, {n : n ∈ N and n > 4}}
Π2 = {{1, 2}, {3}, {4}, {n : n ∈ N and n > 4}}
Π3 = {{1, 2, 3, 4}, {n : n ∈ N and n > 4}}
Π4 = {N}

c. For a set S, let Π be the partition consisting solely of singletons, i.e. Π
consists solely of subsets containing a single element. Let Π′ be any other
partition of S. Let A ∈ Π be any subset of S in the partition. By definition,
A = {s} for some s ∈ S. Since Π′ is a partition of S, we have ∪B∈Π′B = S.
Therefore there exists B ∈ Π′ such that s ∈ B and therefore A = {s} ⊂ B.
We can then conclude that Π is finer than Π′. We conlcude that Π is the
finest partition of S.

2.9.6.
a. R = {(1, 2), (2, 3)} is not transitive, reflexive, or symmetric.

b. R = {(1, 2), (2, 3), (1, 3), (1, 1), (2, 2), (3, 3)} is transitive and reflexive
but not symmetric.

2.9.8. We have s = {1, 2, 3, 4} and R = {(1, 2), (1, 3), (2, 3), (1, 4), (4, 1)}.
The symmetric closure isR′ = {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (1, 4), (4, 1)}.

2.9.10.
a. R does not need to be symmetric, because there are some roads which

are only one-way, indicating a non-symmetric relation. (Any answer with
sufficient justification is fine here, due to ambiguity).

b. All cities for which it’s possible to drive between would need to have
a direct road constructed linking them together, if one does not already exist.

2.9.11.a.
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b. For every directed edge between vertices there is an edge between them
pointing in the opposite direction as well.

c. There is a directed edge from each vertex to itself.
d. For each vertex there is a directed edge connecting it to each vertex it

is possible to reach via following directed edges.

2.9.12.a. For every directed edge connecting two vertices, draw an iden-
tical edge between them with opposite direction if one does not already exist.

b. Draw a directed edge from each vertex to itself, if one does not already
exist.

c. For each vertex, draw a directed edge from it to every vertex it can
reach by only following connected edges in the indicated direction, assuming
one does not already exist.
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d. Erase the arrow on each directed edge and replace it with one pointing
in the opposite direction.

2.9.16.a. Let A = {1, 2, 3}. Then it is neither true that {1} ⊂ {3} nor
that {3} ⊂ {1} and so it is not a total ordering.

b. It is neither true that 5|7 nor that 7|5 and so the relation is not a total
ordering.

c. Let x̄ = (x1, .., xn) and ȳ = (y1, .., ym) be words with ith letters xi and
yi respectively, which xi, yi belong to the set of letters of the alphabet. Let
R be the relation on the alphabet defined by xRy if and only if x comes
before y alphabetically. Then we define the desired relation L by

x̄Lȳ ⇐⇒ (∃k ≤ n,m such that xkRyk and xi = yi ∀i < k) OR (n < m and xi = yi ∀i ≤ n)

2.9.20.a. No. It is clearly not transitive.
b. Yes. It is transitive, reflexive, and symmetric. It partitions the set of

solid colored cars into equal color subsets.
c. No. It is not symmetric e.g. 3|9 but 9 ̸ |3.
d. Yes. It partitions the real numbers by absolute value.
e. No. It is not transitive.
f. Yes. It partitions R× R into horizontal lines.


