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1. Lecture 1 (March 26): Stability conditions on abelian categories

This course is completely independent of the last quarter’s course on the moduli
of semistable vector bundles on a curve. But nevertheless, the moduli of semistable
vector bundles serves as strong motivation for Bridgeland stability. For this reason,
we will start with a quick recap of last quarter.

1.1. Quick recap. Let C be a smooth, projective and connected curve over an
algebraically closed field k.

Definition 1.1. A coherent sheaf F on C is semistable if for all subsheaves
F ′ ⊂ F , we have that

deg(F ′)

rk(F ′)
≤ deg(F )

rk(F )
.

Remark 1.2. We call the ratio

µ(F ) :=
deg(F )

rk(F )

the slope of F . If F is torsion, µ(F ) = +∞ and F is automatically semistable. If
rk(F ) > 0 and F is semistable, then F is necessarily torsion free as otherwise the
torsion subsheaf Ftors ⊂ F would destabilize F . In other words, we see that

F is semistable =⇒ F is torsion or torsion free.
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We recall the following two facts:

(Fact A) (Harder–Narasimhan filtrations) For any coherent sheaf F on C, there is
a unique filtration (called the Harder–Narasimhan filtration)

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm−1 ⊂ Fm = F

with Fi/Fi−1 semistable of slope µi = µ(Fi/Fi−1) such that the slopes
µ1 > µ2 > · · · > µm are strictly decreasing.

(Fact B) For any r, d with r ≥ 0, there exists a non-empty irreducible projective
variety M ss

C (r, d) such that there is a bijection

k-points of M ss
C (r, d)←→ S-equivalence classes of semistable vector

bundles of rank r and degree d

1.2. What about surfaces? Do Facts A and B still hold if we replace the curve
C with a smooth projective surface X? To approach this question, one first needs
to settle on what stability means. The slope of a vector bundle on a curve involved
the two basic invariants–the degree (i.e. 1st Chern class) and the rank (i.e., the
0th Chern class). For a vector bundle E on a surface, there are three fundamental
invariants, namely the three Chern classes. Perhaps the most direct analogue of
the slope then would be to fix an ample line bundle H on X and define

µ(F ) =
H · c1(F )

rk(F )
,

Then define F to be semistable by requiring that for all subsheaves F ′ ⊂ F , there
is an inequality µ(F ′) ≤ µ(F ) (just as in Definition 1.1).

With this definition, one can see that Fact A still holds but B is considerably
more delicate. Donaldson constructed a moduli space using gauge theory of
certain ASD connections on a topological vector bundle, and there is an algebraic
construction of this space due to Jun Li. But in some sense, the construction of
this moduli space is far from satisfactory; in particular, the equivalence relation
in the moduli space is not just S-equivalence. On the other hand, there is another
notion of semistability due to Gieseker also depending on a choice of ample line
bundle H. In this case, both Facts A and B hold. We will discuss slope stability
and Gieseker stability for surfaces in much greater detail later in the course.

In any case, one sees with surfaces that the notion of semistability (and therefore
the corresponding moduil spaces) depend on a choice of ample line bundle H.
Moreover, for a fixed H, there are still several notions for what semistability
could mean. Bridgeland stability will allow us to systematically study all possible
notions of stability.

1.3. Vague goals. In this course, our goals are vaguely to determine which other
abelian categories have “nice” notions of stability satisfying Facts A and B? We
will focus on the following (still vague) three questions:

(1) For a fixed abelian category A, what is the space of all stability conditions?
We will see that with the right definitions and suitable hypotheses, then
this space carries the structure of a complex manifold!

(2) For a fixed stability condition and fixed invariants, is there is a moduli
space of semistable objects?

(3) Can (2) and (3) be used to say anything interesting or geometric about
the original category?
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Throughout the course, our focus will be on addressing these goals with examples
and applications in mind.

1.4. Stability condition on abelian categories. Let A be an abelian category.
Define the Grothendieck group of A as

K(A) := free abelian group generated by Ob(A) / subgroup generated by [E]− [E′]− [E′′]

where 0→ E′ → E → E′′ → 0 is a

short exact sequence

Throughout the course, we will denote by H ⊂ C as the subset consisting of
complex numbers z such that =(z) > 0 or z lies on the strictly negative real axis.
A picture helps here. In other words, H consists of the positive rays spanned by
angles in (0, π].

Definition 1.3. A charge on an abelian category A is an additive homomorphism

Z : K(A)→ C

such that for 0 6= E ∈ A, Z(E) ∈ H. The phase of an object 0 6= E ∈ A is

φ(E) :=
arg(Z(E))

π
∈ (0, 1]

Remark 1.4. In other words, Z(E) lies on the ray R>0e
iπφ(E) whose angle is the

phase of E.

Remark 1.5. One could also define the slope of E as

µ(E) :=
−<(Z(E))

=(Z(E))
.

Trigonometry gives the relation

tan(πφ(E)) =
−1

µ(E)
.

In particular, given a subobject E′ ⊂ E, one has

(1.4.1) µ(E′) ≤ µ(E)⇐⇒ φ(E′) ≤ φ(E).

Definition 1.6. Given a charge Z : K(A) → C, we say that a nonzero object
E ∈ A is semistable if for all subobjects E′ ⊂ E, we have the inequality

φ(E′) ≤ φ(E).

Remark 1.7. By (1.4.1), it is equivalent to consider the slope in defining semista-
bility rather than the phase.

Definition 1.8. A stability condition1 on an abelian category A is a charge
Z : K(A) → C such that for all 0 6= E ∈ A, there is a filtration (called the
Harder–Narasimhan filtration)

0 = E0 ⊂ E1 ⊂ · · · ⊂ Em−1 ⊂ Em = F

such that Ei/Ei−1 is semistable of phase φi = φ(Ei/Ei−1) and the phases φ1 >
· · · > φm are strictly decreasing.

Proposition 1.9. If Z : K(A)→ C is a stability condition on an abelian category
A, then Harder–Narasimhan filtrations are unique.

1This is called a stability function by some authors.
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Proof. The proof is completely formal (and not very enlightening) and identical
to the argument for uniqueness of Harder–Narasimhan filtrations for coherent
sheaves on smooth curves that we saw last quarter. �

Example 1.10. If C is a smooth, projective curve over a field k and A = Coh(C)
is the category of coherent sheaves, then

Z : K(A)→ C
[E] 7→ −deg(E) + i rk(E)

is a stability condition. Note that if the rk(E) = 0, then E is torsion so that if
E 6= 0, then deg(E) < 0 so indeed Z(E) always lies in H.

1.5. Existence of Harder–Narasimhan filtrations.

Proposition 1.11. Let A be an abelian category and Z : K(A)→ C be a charge.
Suppose that

(a) A is Noetherian (i.e., every ascending chain of objects terminates); and
(b) the image of the imaginary part K(A)→ R, [E] 7→ =(Z(E)) is discrete.

Then Z is a stability condition on A.

Proof. We only need to show the existence of Harder–Narasimhan filtrations. The
argument we saw last quarter for sheaves on a curve goes through unchanged. We
sketched the argument again here inspired by [Bay05, Thm. 2.1.6]. �

1.6. Bad news. If X is a smooth projective surface, unfortunately the category
Coh(X) does not have any natural stability conditions. (Here by natural, we mean
that the charge K(A) → C factors through the Chern character ch: K(A) →
H∗(X,C).)

Bridgeland’s idea (inspired by work of Douglas) was to look at other abelian
categories (the so-called ‘hearts of bounded t-structures’)

A ⊂ Db(Coh(X))

inside the bounded derived category of coherent sheaves on X and find stability
conditions on A. We will see (much later) that by varying A inside Db(Coh(X)),
there are many stability conditions, so many in fact that they will form a complex
manifold.

2. Lecture 2 (March 28): Quivers

TO BE ADDED

3. Lecture 3 (March 30): Stability conditions on quivers

TO BE ADDED

4. Lecture 4 (April 2): Derived categories

We have switched to two 80 minute lectures per week rather than three 50
minute lectures!!

For those completely unfamiliar with derived categories, I strongly recommend
Richard Thomas’s beautiful exposition [Tho01]. The motto of derived categories
(as emphasized in [Tho01]) is “Complexes are good; cohomology of complexes
are bad.”
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4.1. Basic notions. Even though most of you are likely familiar with these
concepts, we’ll define them precisely if only to set up our notation and conventions.

Let A be an abelian category. A complex in A is a sequence

A : · · · → Ai−1 di−1

−−−→ Ai
di−→ Ai+1 → · · ·

such that di ◦ di−1 = 0. The ith cohomology of A is

Hi(A) := ker(di)/ im(di−1).

A map of complexes f : A → B is a sequence of maps f i : Ai → Bi such that
the obvious squares (f i+1 ◦ di = di+1 ◦ f i) commute. A map f : A → B is a

quasi-isomorphism if the induced map Hi(A)
∼→ Hi(B) is an isomorphism for all i.

Example 4.1. The map of complexes

0 // Z

��

2 // Z //

��

0

0 // 0 // Z/2 // 0

is a quasi-isomorphism but is not invertible as a map of complexes.

Example 4.2. If two complexes A,B are quasi-isomorphic, then necessarily

Hi(A) ∼= Hi(B). But the converse is not true. For instance, C[x, y]⊕2 x,y−−→ C[x, y]

has the same cohomology as C[x, y]
0−→ C, but the two complexes are not quasi-

isomorphic.

4.2. The definition. LetA be an abelian category. We define the derived category
of A as the category Db(A) where objects are complexes

E : · · · → Ei−1 di−1

−−−→ Ei
di−→ Ei+1 → · · ·

and morphisms are

HomD(A)(E,F ) =

{
“roofs” G

qis

�� ��
E F

∣∣∣∣∣G→ E is a quasi-isomorphism

}
/ ∼,

where two roofs E ← G→ F is identified with E ← G′ → F if and only if they
are both dominated by a third roof E ← G′′ → F as pictured here:

G′′

qis

~~ !!
G

qis

�� **

G′

qis
tt   

E F.

Example 4.3. In D(Ab), the roof (where the superscripts below indicate the
degrees of the terms in the complex)

[0→ Z/20 → 0]
qis←−− [Z−1 2−→ Z0]→ [0→ Z−1 → 0]

gives a non-zero map. In this case, the map on cohomology is the zero map.
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We will not prove the following theorem nor will we worry about the set-theoretic
hypotheses necessary for the construction of the derived category D(A).

Theorem 4.4. If A is an abelian category, the derived category D(A) exists.

Remark 4.5. While D(A) is an additive category, it is not abelian.

4.3. Shifting. If A is a complex and n ∈ Z, we define the shifted complex A[n]
by

A[n]i = An+i diA[n] = (−1)idA.

Note that our conventions implies that the complex A[1] is shifted to the left by
one.

Shifting by n yields an additive equivalence [n] : D(A)→ D(A).

4.4. Playing around with short exact sequences. Consider a short exact
sequence

(4.4.1) 0→ A→ B → C → 0

in A. Observe that the complex 0 → C → 0, with C in degree 0, is quasi-
isomorphic to 0→ A→ B → 0 with B in degree 0. The complex 0→ A→ B → 0
projects onto the complex 0→ A→ 0. Summarizing we have maps (where the
superscripts indicate the degrees)

[0→ C0 → 0]
qis←−− [0→ A−1 → B0 → 0]→ [0→ A−1 → 0→ 0]

In other words, this gives a map C → A[1] in D(A) where C and A are viewed
in D(A) as complexes supported in degree 0. The sequence A→ B → C → A[1]
will be an example of an exact triangle.

Suppose now that (4.4.1) does not split, that is, the corresponding class in
Ext1(C,A) is non-zero. Under the identification Ext1(C,A) = HomDb(A)(C,A[1]),

the extension class in Ext1(C,A) corresponds to the homomorphism C → A[1]
constructed above. By shifting by −1, one can check that the composition
C[−1]→ A→ B is zero. In other words, we have a diagram

C[−1]

6=0

��

0

""
A // B // C

and we see that A → B is not a monomorphism in D(A) and certainly A 6=
ker(B → C) in D(A). While this doesn’t prove that D(A) is not abelian, it shows
that perhaps your naive expectation for what the kernel of B → C is in D(A) is
in fact not a kernel.

4.5. Mapping cones. If f : A→ B is a map of complexes in A, then the mapping
cone of f is the complex C(f) defined by

· · · → C(f)i = Ai+1 ⊕Bi

−di+1 0
f di


−−−−−−−−−−→ Ai+2 ⊕Bi+1 = C(f)i+1 → · · ·

Observe that there is a map of complexes C(f)→ A[1] defined by the projection
C(f)i = Ai+1 ⊕Bi → Ai+1 = A[1]i.
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Example 4.6. Let f : A → B be a map of complexes where A,B are objects

in A viewed as complexes supported in degree 0. Then C(f) = [A−1 f−→ B0]. If
f : A→ B is injective, then C(f) ∼= coker(f) and if f : A→ B is surjective, then
C(f) ∼= ker(f)[1]. So the cone construction embodies both the kernel and cokernel.

Observe that the sequence A
f−→ B → C(f) induces a long exact sequence of

cohomology

· · · → HI(A)→ Hi(B)→ Hi(C(f))→ Hi+1(A)→ · · ·

This follows for instance by considering the short exact sequence 0 → B →
C(f)→ A[1]→ 0 of complexes and examining the usual long exact sequence in
cohomology.

4.6. Exact triangles. We define a triangle as a sequence of maps A → B →
C → A[1] such the composition of any two is zero. A triangle A→ B → C → A[1]
is exact (sometimes referred to as distinguished) if there exists a map of complexes
f : A′ → B′ yielding a commutative diagram in D(A)

A //

��

B //

��

C //

��

A[1]

��
A′

f // B′ // C(f) // A′[1]

where all vertical maps are isomorphisms. Often, we will simply write A→ B → C
as an exact triangle which can be expressed pictorially as

A // B

��
C

[1]

__

and sometimes we abbreviate an exact triangle as simply A→ B → C.

4.7. Bounded derived category. We define Db(A) ⊂ D(A) as the full subcat-
egory consisting of complexes E such that the cohomology Hn(E) = 0 for n� 0
and n� 0. We say that the cohomology of E is bounded. Moreover, we say that
the complex E has cohomology supported in an interval [a, b] if Hi(E) = 0 for
i /∈ [a, b].

Proposition 4.7. Any object E ∈ Db(A) with cohomology supported in [a, b] can
be represented by a complex

0→ Ea → Ea+1 → · · · → Eb → 0.

We will establish this once we’ve introduced the truncation functors, which is
an important concept on its own.

Definition 4.8. Let E be a complex in A and a, b ∈ Z. Then we define the
complex τ≥aE and the map E → τ≥aE of complexes via the diagram

E :

��

· · · // Ea−1

��

da−1
// Ea

��

da //// Ea+1 //

��

· · ·

τ≥aE : 0 // 0 // coker(da−1) // Ea+1 // · · ·
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Similarly, we we define the complex τ≤bE and the map τ≤bE → E of complexes
via the diagram

τ≤bE :

��

· · · // Eb−1 //

��

coker(db) //

��

0 //

��

0

E : · · · // Eb−1 db−1
// Eb

db //// Eb+1 // · · ·

Remark 4.9. One checks easily that Hi(E)
∼→ Hi(τ≥aE) for i ≥ a and that

Hi(τ≤bE)
∼→ Hi(E) for i ≤ b.

Remark 4.10. We will sometimes denote τ>a as τ≥a+1 and similarly τ<b as τ≤b−1.

Proof of Proposition 4.7. If E is a complex with cohomology supported in [a, b],
then we have quasi-isomorphisms

E
qis←−− τ≤bE

qis−−→ τ≥a(τ≤bE).

of complexes. This roof of complexes yields an isomorphism E → τ≥a(τ≤bE) in
D(A). �

Proposition 4.11. For every object E ∈ Db(A), there exists a diagram (which
we call a filtration of E)

0 = E0
// E1

//

||

· · · // Em−1
// Em = E

yy
A1[k1]

[1]

dd

Am[km]

[1]

dd

where the triangles are exact triangles, and where each Ai ∈ A and each ki is an
integer satisfying k1 > · · · > km. Explicitly, if the cohomology of E is supported
in [a, b], then then we may take Ei = τ≤a+i−1 for i = 0, . . . ,m with m = b− a.

Proof. TO BE ADDED �

4.8. Summary of properties. The bounded derived category Db(A) has the
following properties:

(1) Db(A) is an additive category;
(2) There is a shift functor

[1] : Db(A)→ Db(A), E 7→ E[1]

where E[1]i = Ei+1 and diE[1] = (−1)idiE .

(3) There is a notion of an exact triangle A→ B → C → A[1] in Db(A);
(4) The full subcategory A ⊂ Db(A) consisting of complexes supported in

degree 0 has the property that for every object E ∈ Db(A), there exists a
filtration of E

0 = E0
// E1

//

||

· · · // Em−1
// Em = E

yy
A1[k1]

[1]

dd

Am[km]

[1]

dd

where the triangles are exact triangles, and where each Ai ∈ A and each
ki is an integer satisfying k1 > · · · > km.
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Properties (1)–(3) give Db(A) the structure of a triangulated category (see
Definition 5.1) while property (4) says that A ⊂ Db(A) is a heart of a bounded
t-structure (see Definition 5.6).

4.9. Vague correspondence. There is a loose dictionary between properties/constructions
in an abelian category A and analogous properties/constructions in the bounded
derived category Db(A).

Properties of A Properties of Db(A)

short exact sequences exact triangles

kernels and cokernels mapping cones

long exact sequences of Ext groups long exact sequences of Ext groups
induced from short exact sequences induced from an exact triangle (Proposition 5.4)

torsion pairs (Definition 7.10) t-structures (Definition 5.12)

5. Lecture 5 (April 4): Triangulated categories and t-structures

5.1. Triangulated categories.

Definition 5.1. A triangulated category is the data of

• an additive category D;
• an additive equivalence T : D → D. We will use the convention that
A[1] := T (A) for an object A ∈ D; and

• A set of triangles {A→ B → C → A[1]} which we call exact;

such that the following axioms are satisfied:

(TR1) (i) A
id−→ A→ 0→ A[1] is an exact triangle;

(ii) Suppose

A //

α

��

B //

β

��

C //

γ

��

A[1]

α[1]

��
A′ // B′ // C ′ // A′[1]

is a commutative diagram in D where the vertical maps α, β, γ are
isomorphisms. If the top row is an exact triangle, then so is the
bottom row.

(iii) Any morphism f : A→ B in D can be completed to an exact triangle
A→ B → C → A[1];

(TR2) If A→ B → C → A[1] is an exact triangle, so is B → C → A[1]→ B[1].
(TR3) Given a commutative diagram

A //

α

��

B //

β

��

C //

γ

��

A[1]

α[1]

��
A′ // B′ // C ′ // A′[1]
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of solid arrows in D, there exists an arrow γ : C → C ′ making the above
diagram commute. Warning: We do not assume that there is a
unique such arrow!

(TR4) (Octahedral axiom) For morphisms A
f−→ B

g−→ C, consider the diagram

C(f)

��

B

==

g

!!
A

f

??

g◦f // C //

$$

C(g ◦ f)

��
C(g)

of solid arrows where A
f−→ B → C(f) → A[1], A

g◦f−−→ C → C(g ◦ f) →
A[1] and B

g−→ C → C(g) → B[1] are exact triangles (which exist by
TR3). Then there exists dotted arrows in the diagram above such that
C(f)→ C(g ◦ f)→ C(g)→ C(f)[1] is an exact triangle.

Moreover, we require the following commutativity relations: (a) C →
C(g) agrees with C → C(g ◦f)→ C(g) (i.e. the lower triangle commutes),
(b) B → C → C(g ◦ f) agrees with B → C(f) → C(g ◦ f) (i.e. the
square above commutes), (c) C(f) → A[1] agrees with the composition
C(f) → C(g ◦ f) → A[1], and (d) C(g ◦ f) → A[1] → B[1] agrees with
C(g ◦ f)→ C(g)→ B[1]. (One can view the objects in the above diagram
as vertices of a octahedron where four of the faces correspond to exact
triangles and the other four faces are required to commute (see [Wei94, p.
375].

Remark 5.2. One should view the octahedral axiom as a parallel for the following
familiar property for objects in an abelian category: for an inclusion of objects
A ⊂ B ⊂ C in an abelian category A, then the three short exact sequences form
solid arrows in the diagram

B/A

��

B

==

!!
A

??

// C //

""

C/A

��
C/B

and the dotted arrows form a short exact sequence 0→ B/A→ C/A→ C/B → 0
which is simply the “Fourth Isomorphism Theorem.”

We won’t prove the following theorem—see [Wei94, Chapter 10].
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Theorem 5.3. If A is an abelian category, the bounded derived category Db(A),
together with the shift functor [1] : Db(A)→ Db(A) and exact triangles as defined
above, is triangulated.

Proposition 5.4. Let D be a triangulated category and A→ B → C → A[1] is
an exact triangle. For all objects X ∈ D, there are exact sequences

Hom(X,A)→ Hom(X,B)→ Hom(X,C)

Hom(C,X)→ Hom(B,X)→ Hom(A,X)

of abelian groups.

Remark 5.5. For objects X,Y ∈ D, we can define

Exti(X,Y ) = Hom(X,Y [i]).

With this convention, applying the proposition to shifts (using axiom TR2) of the
original triangle, we obtain long exact sequences

· · · → Exti(X,A)→ Exti(X,B)→ Exti(X,C)→ Exti+1(X,A)→ · · ·
and

· · · → Exti(C,X)→ Exti(B,X)→ Exti(A,X)→ Exti+1(C,X)→ · · ·

Proof. We will establish that Hom(X,A) → Hom(X,B) → Hom(X,C) is exact
and leave the second sequence as an exercise. We first show that the composition
A → B → C is zero, which clearly implies that the composition Hom(X,A) →
Hom(X,B)→ Hom(X,C) is zero. Consider the commutative diagram

A
id //

id

��

A //

��

0 //

��

A[1]

id

��
A // B // C // A[1]

of solid arrows. By Axiom TR3, there exists a morphism 0→ C such the diagram
of dotted arrows commute. But this means that A→ B → C is zero.

Let g : X → B be a morphism such that the composition X
g−→ B → C is zero.

Consider the commutative diagram

X
id //

f

��

X //

g

��

0 //

��

X[1]

f [1]

��
A // B // C // A[1]

of solid arrows. Apply TR2 and TR3 to obtain a morphism f : X → A com-
pleting the above diagram. The commutativity implies that f maps to g under
Hom(X,A)→ Hom(X,B). �

5.2. Hearts of bounded t-structures. We will now introduce the notion of
a heart of a bounded t-structure inspired by Property (4) in §4.8 concerning
A ⊂ Db(A).

Definition 5.6. A heart of a bounded t-structure on a triangulated category D is
an additive full subcategory A ⊂ D such that

(1) For all A,B ∈ A, we have Exti(A,B) = 0 for i < 0. (This is equivalent to
requiring that Hom(A[i], B[j]) = 0 for i > j.)
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(2) For all E ∈ D, there exists a diagram (which we call a filtration of E)

0 = E0
// E1

//

||

· · · // Em−1
// Em = E

yy
A1[k1]

[1]

dd

Am[km]

[1]

dd

(5.2.1)

where the triangles are exact triangles, and where each Ai ∈ A and each
ki is an integer satisfying k1 > · · · > km.

Remark 5.7. We will see examples later of hearts A ⊂ D such that Db(A) 6= D.

Given the above definition, we can already define the central notion in the class:
a stability condition on a triangulated category.

Definition 5.8. A stability condition on a triangulated category D is a pair (A, Z)
where

• A ⊂ D of a bounded t-structure; and
• Z : K(A)→ C is a stability condition on A.

Remark 5.9. For this to make sense, we need to establish that the heart A is an
abelian category. We will establish this shortly.

Remark 5.10. There are conflicting conventions in the literature regarding the
terminology of a ‘stability condition.’ Some authors call the above notion a pre-
stability condition and reserve the term ‘stability condition’ for when additional
finiteness hypotheses are satisfied.

Although we already have enough terminology to begin discussing examples of
stability conditions, it will be useful to systematically discuss properties of hearts
and their relation to t-structures. Namely, we will show that a heart determines a
unique ‘t-structure’. Similarly, we will show a stability condition on D uniquely
determines a ‘slicing.’

5.3. t-structures. Let A ⊂ D be a heart of a bounded t-structure. Define the
following additive full subcategories of D

D>0 := {E ∈ D | in the filtration (5.2.1) of E, all ki > 0}
D≤0 := {E ∈ D | in the filtration (5.2.1) of E, all ki ≤ 0}

Proposition 5.11. Let A ⊂ D be a heart of a bounded t-structure. The pair
(D>0,D≤0) of additive full subcategories satisfy:

(1) D>0[1] ⊂ D>0 (in other words, for all E ∈ D>0, we have E[1] ∈ D>0);
(2) For all objects E ∈ D, there exists an exact triangle

E>0 → E → E≤0

where E>0 ∈ D>0 and E≤0 ∈ D≤0; and
(3) HomD(D>0,D≤0) = 0 (in other words, for all E ∈ D>0 and F ∈ D≤0,

then HomD(E,F ) = 0).

Proof. Property (1) is clear. For (2), let E ∈ D and consider a filtration (5.2.1) of
E. Let i = 0, . . . ,m be the integer such that k1 > · · · > ki > 0 ≥ ki+1 > · · · > km.
Clearly, Ei ∈ D>0. Complete the morphism Ei → E to an exact triangle

Ei → E → Q.
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We need to show that Q ∈ D>0. To do this, we will show use the octahedral
axiom TR4 to show that the filtration Ei → Ei+1 → · · · → Em induces a filtration
0 = Qi → Qi+1 → · · · → Qm = Q with the same factors Ai[ki].

Extend Ei → Em−1 to an exact triangle Ei → Em−1 → Qm−1 and consider
the diagram

Qm−1

��

Em−1

::

$$
Ei

<<

// Em //

%%

Qm

��
Am[km].

The octahedral axiom implies that the dotted arrows above from an exact triangle
Qm−1 → Qm → Am[km]. We may inductively apply this argument to obtain
exact triangles Qj−1 → Qj → Aj [kj ] for j = i, . . . ,m. Observe that this process

ends with the exact triangle Ei
id−→ Ei → Qi = 0. We obtain the filtration

0 = Qi // Qi+1
//

yy

· · · // Qm−1
// Qm = Q

yy
Ai+1[ki+1]

[1]

ff

Am[km]

[1]

dd

with 0 ≥ ki+1 > · · · > km. This establishes that Q ∈ D>0.
To establish (3), we first show that for A ∈ A, E≤0 ∈ D≤0 and i > 0, we have

that Hom(A[i], E≤0) = 0. Choose a filtration (5.2.1) of E≤0 with 0 ≥ k1 > · · · >
km. Applying Proposition 5.4 to the last triangle, we obtain an exact sequence

Hom(A[i], Em−1)→ Hom(A[i], Em)→(((((((((
Hom(A[i], Am[km])

where the last group vanishes since i > km. By inductively applying this argument,
we see that Hom(A[i], Em) = 0.

To show the statement in general, we can choose a filtration (5.2.1) of E>0 with
k1 > · · · > km > 0 and again applying Proposition 5.4 to the last exact triangle,
we have an exact sequence

Hom(Em−1, E≤0)→ Hom(Em, E≤0)→(((((((((
Hom(Am[km], E≤0)

where the last group vanishes. Induction implies that Hom(Em, E≤0) �

Definition 5.12. A t-structure on a triangulated category D is a pair of additive
full subcategories (D>0,D≤0) satisfying Properties (1)–(3) in Proposition 5.11.

The heart of a t-structure (D>0,D≤0) is

A := D>0 ∩ D≤0[1].

The t-structure (D>0,D≤0) is bounded if for every E ∈ D, we have that
E ∈ D≤0[n] ∩ D>0[−n] for some integer n.

Remark 5.13. This definition may look familiar to those that have seen the
concept of a semi-orthogonal decomposition D = 〈A,B〉 of a triangulated category
D. The only difference (but this is a big difference!) is that in a semi-orthogonal
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decomposition, the subcategories A,B ⊂ D are required to be triangulated (and
thus closed under arbitrary shifts) and not just additive.

We introduce the following convention for a t-structure (D>0,D≤0). For each
integer k, we define

D≤k := D≤0[−k]

D>k := D>0[−k].

We will also set D<k := D≤k−1 and D≥k = D>k−1. With this convention, the
heart A is D>0 ∩ D<0 and boundedness is the requirement that any object E is
in D≤−n ∩ D>n for some integer n. Note also that if (D>0,D≤0) is a t-structure,
then so is (D>k,D≤k) for any integer k.

Example 5.14. Let A be an abelian category and Db(A) be its bounded derived
category. Then the inclusion A ⊂ Db(A) consisting of complexes supported in
degree 0 is a heart of a bounded t-structure (Property (4) in Section 4.8). In this
case,

D>0 := {E ∈ D | Hi(E) = 0 for i > 0}

D≤0 := {E ∈ D | Hi(E) = 0 for i ≤ 0}.
This is called the standard t-structure. In other words, D>0 consists of complexes
0 → · · · → E−2 → E−1 → E0 → 0 supported in non-positive degrees and D≤0

consists of complexes 0 → E1 → E2 → · · · → 0 supported in positive degrees.
Similarly, D>k consists of complexes with vanishing cohomology in degrees > k.

Proposition 5.11 says that the heart uniquely determines a bounded t-structure.
On the other hand, the next proposition will show that the heart of a bounded
t-structure is indeed a heart of a bounded t-structure as defined in Definition 5.6.
In other words, our notation for ‘hearts’ is consistent.

Proposition 5.15. Let (D>0,D≤0) be a bounded t-structure with heart A =
D>0 ∩ D≤0[1]. Then A satisfies conditions (1)–(2) in Definition 5.6. In other
words, A is a heart of a bounded t-structure as defined in Definition 5.6.

Proof. Exercise. �

6. Lecture 6 (April 9): Properties of t-structures

6.1. More on t-structures.

Proposition 6.1. Let (D>0,D≤0) be a bounded t-structure on a triangulated
category D. There is a well-defined functor

D → D>0, E 7→ E>0

which is right adjoint to the inclusion D>0 ⊂ D and a well-defined functor

D → D≤0, E 7→ E≤0

which is left adjoint to the inclusion D≤0 ⊂ D.

Proof. Let f : E → F be a morphism in D and choose exact triangles

E>0
//

α

��

E //

f

��

E≤0

β

��
F>0

// F // F≤0
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fitting into a diagram of solid arrows. We would like to show that their are unique
dotted arrows α and β above making the diagram commute. In particular, this
would imply that the decomposition E>0 → E → E≤0 of an object E in D is
unique up to unique isomorphism. Moreover, it would establish that assignments
E 7→ E>0 and E 7→ E≤0 are functorial.

Since Hom(E>0,−) is a homological functor (Proposition 5.4), we have an exact
sequence

(((((((((
Hom(E>0, F≤0[−1]) → Hom(E>0, F>0)→ Hom(E>0, F )→((((((((

Hom(E>0, F≤0)

of abelian groups. But Hom(E>0, F≤0) = 0 as there are no nonzero homomor-
phisms from any object inD>0 to any object inD≤0. Moreover, Hom(E>0, F≤0[−1]) =

0 as E>0 ∈ D>0 and F≤0[−1] ∈ D≤0. Thus the composition E>0 → E
f−→ F is in-

duced by a unique morphism α : E>0 → F>0. The isomorphism Hom(E>0, F>0)
∼→

Hom(E>0, F ) establishes that E 7→ E>0 is right adjoint to the inclusion functor.
A similar argument implies the existence and uniqueness of β as well as the left
adjointness of E 7→ E≤0. �

6.2. Right and left orthogonal complements. We show here that one of the
subcategories in a t-structure (D>0,D≤0) uniquely determines the other.

Proposition 6.2. Let (D>0,D≤0) be a bounded t-structure on a triangulated
category D with heart A, Then

D≤0 = {D | Hom(E,D) = 0 for all E ∈ D>0}
= {D | Hom(A[k], D) = 0 for all A ∈ A and k ≥ 0}

and similarly

D>0 = {D | Hom(D,E) = 0 for all E ∈ D≤0}
= {D | Hom(D,A[k]) = 0 for all A ∈ A and k < 0}.

Remark 6.3. For a subcategory E ⊂ D, one often defines the right orthogonal
complement as E⊥ = {D | Hom(E,D) = 0 for all E ∈ E} and the left orthogonal
complement as ⊥E = {D | Hom(D,E) = 0 for all E ∈ E}. With this notation,
the above proposition implies that D≤0 = D⊥>0 and D>0 =⊥ D≤0.

Proof. Exercise. �

6.3. Abelianness of a heart.

Proposition 6.4. The heart of a bounded t-structure on a triangulated category
is abelian.

Proof. Let D be a triangulated category with t-structure (D>0,D≤0) and heart
A. We will show only that kernels exist in A. Let f : A→ B be a morphism in A.
We first complete f to an exact triangle

A
f−→ B → C → A[1]

where C ∈ D. Using the t-structure (D≥0,D<0), we obtain another exact triangle

C≥0 → C → C<0

with C≥0 ∈ D≥0 and C<0 ∈ D<0. We claim that C<0 ∈ A. To show this, it
suffices to show that C<0 ∈ D>0 as A = D<0 ∩D>0. By applying Proposition 6.2,
we are reduced to showing that

Hom(C<0, T [k]) = 0
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for all T ∈ A and k < 0. Note that T [k] ∈ D≤0 The exact triangles C → C<0 →
C≥0[1] and B → C → A[1] yields a diagram

(((((((((
Hom(C≥0[1], T [k])

��
Hom(C<0, T [k])

��

((((((((
Hom(A[1], T [k]) // Hom(C, T [k]) //

(((((((
Hom(B, T [k])

where both the row and column are exact sequences of abelian groups by Proposi-
tion 5.4. As k < 0, the above terms with a red line are all zero. This implies that
Hom(C, T [k]) = 0 and thus Hom(C<0, T [k]) = 0.

Finally, we show that the composition B → C → C<0 is the cokernel of

f : A → B. First, observe that the composition A
f−→ B → C<0 is zero since

A → B → C is zero. Consider a morphism B → Q such that the composition

A
f−→ B → Q is zero. Consider the diagram

C≥0

!!
A

f //

0

!!

B

��

// C

α

��

!!
C<0

β}}
Q

Since Hom(−, Q) is a cohomological functor (Proposition 5.4), there exists a mor-
phism α : C → Q restricting to the given morphism B → Q. As Hom(C≥0, Q) = 0
since Q ∈ D<0, there exists the dotted arrow β : C<0 → Q restricting to α, which
establishes that B → Q factors through the B → C<0.

A similar argument shows that C≥0[−1] ∈ A and that the composition
C≥0[−1]→ C[−1]→ A is the kernel of f : A→ B. �

6.4. Cohomology with respect to a heart. LetA ⊂ D be a heart of a bounded
t-structure (D>0,D≤0). For any E ∈ D, there is a filtration

0 = E0
// E1

//

||

· · · // Em−1
// Em = E

yy
A1[k1]

[1]

dd

Am[km]

[1]

dd

where each Ai ∈ A and k1 > · · · > km are decreasing integers. Proposition 6.1
implies that these filtrations are unique and functorial. In particular, the factors
Ai are unique and functorial so we can define:
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Definition 6.5. The kth cohomology of E with respect to A as

Hk
A(E) =

{
Ai if ki = k
0 otherwise.

In other words, the nonzero cohomology groups of E are Hki(E) = Ai.

Example 6.6. If D = Db(A) is the bounded derived category of an abelian
category A and (D>0,D≤0) is the standard t-structure (see Example 5.14) with

heart A, then Hk
A(E) is simply the ordinary cohomology Hk(E) of a complex

E ∈ D.

Proposition 6.7. The functor

Hk
A(−) : D → A, E 7→ Hk

A(E)

is homological; that is if A→ B → C → A[1] is an exact triangle, then

Hk
A(A)→ Hk

A(B)→ Hk
A(C)

is exact.

Remark 6.8. As in Remark 5.5, by applying the above proposition to shifted exact
triangles, there are long exact sequences

· · · → Hk
A(A)→ Hk

A(B)→ Hk
A(C)→ Hk+1

A (C)→ · · ·

This fact should be viewed as a natural extension of the familiar fact that a short
exact sequence of complexes induces a long exact sequence of cohomology.

Proof. Applying Proposition 6.1 to the t-structures (D>k,D≤k) and (D≥k,D<k)
yields “truncation” functors

τ>k : D → D>k and τ<k : D → D<k
such that Hk

A(E) = τ>k(τ<k(E)) for E ∈ D. Moreover, Proposition 6.1 yields an
exact triangle

Hk
A(A)→ Hk

A(B)→ Hk
A(C)

of objects in A. The statement follows from appealing to the below lemma. �

Lemma 6.9. Let D be a triangulated category with a heart A of a bounded t-
structure. If A→ B → C → A[1] is an exact triangle in D, then A→ B → C is
an exact sequence in A.

Proof. By Yoneda’s lemma, it suffices to show that for each X ∈ A,

Hom(X,A)→ Hom(X,B)→ Hom(X,C)

is an exact sequence of abelian groups, but this follows from Proposition 5.4. �

6.5. The Grothendieck group of a triangulated category. We define the
Grothendieck group of a triangulated category D to be

K(D) = Z[Ob(D)]/ ∼,

the free abelian group generated by the objects inD modulo the subgroup generated
by the relations [B] = [A] + [C] for exact triangles A→ B → C.

Proposition 6.10. If A ⊂ D is the heart of a bounded t-structure, then the
natural homomorphism K(A)→ K(D) is an isomorphism.
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Proof. We define the map

K(D)→ K(A), [E] 7→
∑
k∈Z

(−1)k Hk
A(E).

First, the sum above is a finite sum since the t-structure is bounded. In order to
check that this is well-defined, we need to show that [B]− [A]− [C] maps to zero
whenever A→ B → C is an exact triangle. By Proposition 6.7 and Remark 6.8,
we have bounded long exact sequences

· · · → Hk
A(A)→ Hk

A(B)→ Hk
A(C)→ Hk+1

A (C)→ · · ·
Breaking this into short exact sequences, one can argue that this implies the
equality ∑

k

(−1)k[Hk
A(B)] =

∑
k

(−1)k[Hk
A(A)] +

∑
k

(−1)k[Hk
A(C)]

in K(A). The map K(D) → K(A) is easily checked to be the inverse of the
natural map K(A)→ K(D). �

7. Lecture 7 (April 11): Stability conditions, slicings and tilts

7.1. Stability conditions. We begin by repeating Definition 7.1.

Definition 7.1. A stability condition on a triangulated category D is a pair (A, Z)
where

• A ⊂ D of a bounded t-structure; and
• Z : K(A)→ C is a stability condition on A.

By Proposition 6.4, the heart A is an abelian category. By Proposition 6.10,
there is a natural isomorphism K(A)

∼→ K(D) of Grothendieck groups. Recall
that the definition of a stability condition on an abelian category A requires that
for all 0 6= A ∈ A, the charge Z(A) ∈ H, the subset of the complex numbers with
either positive imaginary part or strictly negative real numbers. The phase of A

is φ(A) = arg(Z(A))
π ∈ (0, 1] and that A is called semistable if for all 0 6= A′ ⊂ A,

the inequality φ(A′) ≤ φ(A) is satisfied. Moreover, we require that every object
0 6= A ∈ A admits a Harder–Narasimhan filtration

0 = A0 ⊂ A1 · · · ⊂ Am−1 ⊂ Am
where each factor Ai/Ai−1 is semistable of phase φi, and φ1 > · · · > φm.

In a similar way to how we explored the properties of a heart of a bounded
t-structure introduced in Definition 5.6 and were led naturally to the definition
of a t-structure (Definition 5.12) giving an alternative perspective on hearts
(Proposition 5.15), we now explore the structure of a stability condition on a
triangulated category with the goal of giving an alternative description in terms
of slicings (see Definition 7.5 and Proposition 7.6).

Definition 7.2. For a stability condition (A, Z) on a triangulated category D,
define for each φ ∈ (0, 1] the following additive full subcategory of D

P(φ) = {E ∈ A | E is semistable of phase φ} ∪ {0},
and extend this definition for all φ ∈ R by setting

P(φ+ 1) := P(φ)[1].

Proposition 7.3. Let (A, Z) be a a stability condition on on a triangulated
category D. Define the categories P(φ) for φ ∈ R using Definition 7.2.
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(1) Hom(P(φ1),P(φ2)) = 0 if φ1 > φ2;
(2) P(φ+ 1) = P(φ)[1]; and
(3) for all E ∈ D, there exists a filtration

0 = E0
// E1

//

~~

· · · // Em−1
// Em = E

zz
A1

[1]

cc

Am

[1]

cc

(7.1.1)

where the triangles are exact triangles, and where each Ai ∈ P(φi) with
φ1 > · · · > φm decreasing real numbers.

Remark 7.4. Property (3) should be viewed as an extension of the filtrations
introduced in (5.2.1) as a requirement of a heart of a bounded t-structure. The
difference here is that now we allow the factors to be indexed by decreasing real
numbers (as opposed to integers).

Proof. Statement (2) is clear. We leave (1) as an exercise. We spell out some of
the details for (3). Given E ∈ D, we first use the heart of the bounded t-structure
to obtain a filtration

0 = E0
// E1

//

||

· · · // Em−1
// Em = E

yy
A1[k1]

[1]

dd

Am[km]

[1]

dd

with Ai ∈ A and k1 > · · · > km decreasing integers. For each Ai, we take the
Harder–Narasimhan filtration

0 = Ai,0 ⊂ Ai,1 · · · ⊂ Ai,m−1 ⊂ Ai,ni
where each factor Ai,j/Ai,j−1 ∈ P(φi,j) is semistable of phase φi,j , and φi,1 >
· · · > φi,ni .

By using the octahedral axiom as in the proof of Proposition 5.11, we may
combine these filtrations to a filtration

0 = E1,0 → E1,1 → · · · → E1,n1
→ E2,1 → · · · → E2,n2

→ · · · → Em,nm = E

with factors A1,1[k1], · · · , A1,n1
[k1], A2,1[k2], · · · , A2,n2

[k2], · · · , Am,nm [km] which
have decreasing phases φ1,1+k1 > · · · > φ1,n1 +k1 > φ2,1+k2 > · · · > φ2,n2 +k2 >
· · · > φm,nm + km. �

7.2. Slicings.

Definition 7.5. A slicing P of a triangulated category D is an additive full sub-
category P(φ) ⊂ D for each φ ∈ R satisfying properties (1)–(3) in Proposition 7.3.

We introduce the following conditions. For each interval (a, b] where a and b
are real numbers possibly ±∞, we define

P((a, b]) := {0 6= E ∈ D | in the filtration (7.1.1) each φi ∈ (a, b]}

This subcategory includes by definition the zero object. Similarly, one can define
P(I) for other intervals I = (a, b), [a, b), or [a, b].

As promised, slicing allows for an alternative definition of a stability condition.
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Proposition 7.6. Giving a stability condition (A, Z) on a triangulated category
D is equivalent to giving a slicing P and a group homomorphism (which we will
also refer to as a charge)

Z : K(D)→ C

such that for all E ∈ P(φ), we have that φ(E) ∈ R>0e
iπφ.

Proof. Proposition 7.3 produces a slicing P from a stability condition (A, Z). The
last condition is clear for E ∈ P(φ) with φ ∈ (0, 1], and is checked for all φ by
using the fact that Z([E[n]]) = (−1)nZ([E]) = eπinZ([E]) for each integer n.

Conversely, given a slicing P with charge Z, one checks that

A = P((0, 1])

is a heart of the bounded t-structure (D>0,D≤0) = (P(0,∞),P(−∞, 0]), and that
Z : K(D) = K(A)→ C is a stability condition on A. We leave the details to the
reader. �

Convention 7.7. We will freely switch between thinking of a stability condition
as a pair (A, Z) as introduced in Definition 7.1 where A is a heart and Z is a
charge and as a pair (P, Z) where P is a slicing and Z is charge. In particular,
we will use both the notation (A, Z) and (P, Z) for a stability condition.

Example 7.8. Let C be a smooth, projective and connected curve over an
algebraically closed field k. Let Db(C) := Db(Coh(C)) be the bounded derived
category of coherent OC-modules. Let Coh(C) ⊂ Db(C) be the standard heart
and

Z : K(Coh(C))→ C, [E] 7→ −deg(E) + i rk(E).

Then (Coh(C), Z) is a stability condition on Db(C). For φ ∈ (0, 1], we have that
P(φ) as the full subcategory of Coh(C) consisting of semistable coherent sheaves
with phase φ. Note that P(1) ⊂ Coh(C) is the subcategory of torsion sheaves
while for φ ∈ (0, 1), P(φ) consists of semistable vector bundles with phase φ (or
equivalent slope µ where tan(πφ) = −1/µ).

More generally, if Z : K(Coh(C)) → C is any stability condition, then the
charge of a torsion sheaf OD must lie on the negative real line. This is because
tensoring with both O(D) and O(−D) must keep the charge in H. On the other
hand, there is more freedom for the choice of the charge of a torsion free sheaves.
In fact, if z ∈ C with =(z) > 0, then the charge

Z : K(Coh(C))→ C, −deg(E) + z rk(E)

defines a stability condition on Db(C).
Keep in mind that K(C) ∼= Z⊕ Z⊕ Pic0(C) where the map onto the first and

second Z is given by the rank and the degree. Later we will try to characterize all
stability conditions (which we will call numerical) where the charge Z : K(C)→ C
factors through (deg, rk) : K(C) → Z2. If C � P1, then Pic0(C) is an infinitely
generated abelian group (corresponding to the k-points of an abelian variety) so
there are conceivably many other charges on K(C) yielding stability conditions,

In a similar spirit to Proposition 6.4, we have the following result

Proposition 7.9. Let (P, Z) be a stability condition on a triangulated category
D. For each φ ∈ R, the category P(φ) is abelian.
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Proof. We may assume that φ ∈ (0, 1] so that P(φ) is contained in the heart
A = P((0, 1]). Let f : E → F be a morphism in P(φ). By Proposition 6.4,
we know that ker(f), coker(f) ∈ A. We need to show that ker(f), coker(f) are
semistable of phase φ. We have short exact sequences

0→ ker(f)→ E → im(f)→ 0 and 0→ im(f)→ F → coker(F )→ 0.

Consider the Harder–Narasimhan filtration of im(f) in A

0 = I0 ⊂ I1 ⊂ · · · ⊂ Im−1 ⊂ Im = im(f)

with semistable quotients Ii/Ii−1 of decreasing phases ϕ1 > · · · > ϕm. Since
I1 ⊂ im(f) ⊂ F and F is semistable, we have φ ≥ ϕ1. On the other hand, we
have the quotient E → im(f) → Im/Im−1 and semistability of E implies that
ϕm ≥ φ. Combining these two statements, we see that φ = ϕ1 = ϕm so that
m = 1; therefore im(f) is semistable of phase φ. But then ker(f) has phase φ and
any subobject of ker(f) with larger phase would destabilize E. Likewise, coker(f)
has phase φ and any quotient of coker(f) with smaller phase would destabilize
F . �

7.3. Torsion pairs and tilting. To construct more interesting stability condi-
tions, we need the ability to construct new hearts of bounded t-structures. To this
end, it will be extremely useful to construct a new heart A# (which we will call
the tilted heart) from the data of a heart A and a torsion pair in A. A torsion pair
in an abelian category is analogous to the notion of a t-structure on a triangulated
category.

Definition 7.10. A torsion pair in an abelian category A is a pair (T ,F) of
additive full subcategories satisfying

(1) Hom(T, F ) = 0 for all T ∈ T and F ∈ F , and
(2) For all E ∈ A, there exists an exact sequence

0→ TE → E → FE → 0

with TE ∈ T and FE ∈ F .

Analogous to Proposition 6.1, we have uniqueness and functoriality of the
factorization in Condition (2) above.

Proposition 7.11. Let (T ,F) be a torsion pair in an abelian category A. There
is a well-defined functor

A → T , E 7→ TE

which is right adjoint to the inclusion T ⊂ A and a well-defined functor

A → F , E 7→ FE

which is left adjoint to the inclusion F ⊂ A.

Proof. Exercise. �

Definition 7.12. Given a torsion pair (T ,F) in A, the tilt of A with respect to
(T ,F) is the full subcategory of Db(A)

A# =
{

(E−1 d−→ E0) ∈ Db(A) | ker(d) ∈ F and coker(d) ∈ T
}
.
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Proposition 7.13. A# is the heart of the bounded t-structure (D#
>0,D

#
≤0) defined

by

D#
>0 =

{
E : · · · → E−2 → E−1 d−1

−−→ E0 → 0
∣∣ coker(d−1) ∈ T

}
D#
≤0 =

{
E : 0→ E0 d0−→ E1 → E2 → · · ·

∣∣ ker(d0) ∈ F
}
.

Proof. Exercise. �

Remark 7.14. Following [Bay05, Figure 4], it is useful to visualize Db(A) as

Db(A) : · · · T [1] F [1] T F T [−1] F [−1] · · ·

A[−1]A[1] AA# A#[−1]

where every object has a finite filtration with terms going from left to right, and
there are no morphisms in Db(A) from the left to the right. The tilted heart A#

is the dotted red box above containing F [1] and T .

Example 7.15. If X is a Noetherian scheme and A = Coh(X), then the pair
(T ,F) consisting of torsion sheaves and torsion-free sheaves is a torsion pair.
Indeed, any coherent sheaf F has a unique factorization

0→ Ftors → F → F/Ftors → 0

where Ftors ⊂ F is the torsion subsheaf.

Example 7.16. Let (Z,A) be a stability condition on a triangulated category
Db(A) with slicing P. Let α ∈ (0, 1]. Then Tα = P((α, 1]) and Fα = P((0, α]) is
a torsion pair in the heart A. The tilt of A with respect to (Tα,Fα) is the heart

A# = P((α, 1 + α]).

A picture is useful here! (See [Huy11, Figure before Remark 1.19].) The tilt
A# is obtained by rotation the x-axis counter-clockwise by πα.

We define the charge on K(A#) as

Z# : K(A#)→ C, [E] 7→ eπαZ(E).

One checks that (A#, Z#) is also a stability condition on Db(A).
Later we will reinterpret this stability condition in terms of the action of the

universal cover G̃L
+

2 (R) of GL+
2 on the space of stability conditions.

8. Lecture 8 (April 16): Quiver GIT—Lecture by Chi-yu Cheng

This lecture established the following result from [Kin94]:

Theorem 8.1. For each quiver Q = (Q0, Q1, s, t) and θ ∈ ZQ0 , let σ = (Repfd(Q), Z)
be the stability condition on Db(Q) with standard heart and with charge

Z : K(Q)→ C, [V = (Vi)i∈Q0 ] 7→
∑
i∈Q0

(dimVi)(θi + i).

For each dimension vector d ∈ ZQ0 , there is a quasi-projective variety Mσ−ss
Q (d)

parameterizing S-equivalence classes of σ-semistable quiver representations V with
dimV = d. Moreover, if Q has no self-loops, then Mσ−ss

Q (d) is projective.
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The moduli space Mσ−ss
Q (d) is constructed using GIT as follows. First, one

lets Wi be a vector space of dimension di for each i ∈ Q0 and one defines the
representation space

RQ(d) :=
∏
α∈Q1

Hom(Ws(α),Wt(α))

which inherits an action of

GLd :=
∏
i∈Q0

GL(Wi)

where g = (gi) acts on f = (fα) via (g · f)α = gt(α)fαg
−1
s(α). One can define the

character

χ : GLd → Gm, (gi) 7→
∏
i∈Q0

det(gi).

Any point of the representation space RQ(d) may be considered as a representation
of the quiver Q, and two points yield isomorphic quiver representations if and
only if they are in the same GLd-orbit. Therefore, to construct the moduli space
Mσ−ss
Q (d), we take the GLd-quotient of RQ(d). In order to make this work,

one needs to show that a point in RQ(d) is GIT-semistable with respect to the
character χ if and only if the corresponding quiver representation is σ-semistable.
(Note that both χ and σ depend on the choice of θ.) This last fact is established
via an elegant calculation using the Hilbert–Mumford criterion.

9. Lecture 9 (April 18): Examples of stability conditions

Recall that we have two ways to think about a stability condition on a tri-
angulated category D: (1) a pair (A, Z) consisting of a heart A of a bounded
t-structure and a charge K(A) ∼= K(D) → C defining a stability condition on
the category A (which is necessarily abelian), and (2) a pair (P, Z) where P is a
slicing of D and Z : K(D)→ C is a charge such that for E 6= 0 ∈ P(φ), the charge
satisfies Z(E) ∈ R>0e

πiφ.
Recall that there are various filtrations floating around in this theory:

• If A is an abelian category and Z : K(A)→ C is a stability condition on A,
then any object A ∈ A has a filtration 0 = A0 ⊂ A1 ⊂ · · · ⊂ Am−1 ⊂ Am
where the factors Ai/Ai−1 are semistable of strictly decreasing phases
between (0, 1].

• If A ⊂ D is a heart of a bounded t-structure, then every object in E ∈ D
has a filtration (5.2.1) where the factors are in shifts Ai[ki] of A with the
ki’s strictly decreasing integers.

• A slicing P of a triangulated category D is a combination of the above two
filtrations: every object E ∈ D has a filtration (7.1.1) where the factors
Ai are semistable of phases φi ∈ R which are strictly decreasing.

Recall also that tilting by a torsion pair (T ,F) on an abelian category A yields a
new heart A# ⊂ Db(A) (Proposition 7.13).

9.1. Space of stability conditions. Let D be a triangulated category. Let
Stab(D) be the set of stability conditions on D. One of the goals of this course
is to show that Stab(D) has the structure of complex manifold. More precisely,
let us fix a group homomorphism K(D)→ Λ to a lattice Λ ∼= Zr. Define the set

Stablf
Λ(D) of “locally finite” (to be defined later) stability conditions σ = (A, Z)

23



where the charge Z : K(D)→ C factors through K(D)→ Λ. We will show that

Stablf
Λ(D) is a complex manifold and moreover that the forgetful morphism

Stablf
Λ(D)→ Homgp(Λ,C) ∼= Cr

is a local homeomorphism.
In this course, we are mainly interested in the following three questions:

Question 9.1.

(1) For certain triangulated categories D (such as the bounded derived category
of coherent sheaves on certain projective varieties or finite dimensional
representations of certain quivers), what is the space Stab(D)? In the

case of a projective variety, we are interested in studying Stablf
Λ(D) where

Λ = H∗(X,C) and K(X)→ Λ is the Chern character.
(2) For a fixed stability condition σ = (A, Z) ∈ Stab(D) and fixed invariants

α, what can we say about the moduli space Mσ−ss of σ-semistable objects
in A with invariants α? In many cases, this will be a projective variety.

(3) Can we use our understanding of (1) and (2) to say anything interesting
about the original category?

9.2. Moduli of quiver representations. Question 9.1(2) has a very satisfactory
answer for certain stability conditions on the bounded derived category Db(Q)
of finite dimensional representations of a quiver Q. Namely, if Q = (Q0, Q1, s, t)
is a quiver, then we’ve seen that if we choose any tuple of complex numbers

θ = (θi) ∈ H
Q0

, then

Zθ : K(Q)→ C, V = (Vi) 7→
∑
i

(dimVi)θi

defines a stability condition σθ = (Repfd(Q), Zθ) on Db(Q) with the standard

heart Repfd(Q). In other words, this gives us a patch

Hn ⊂ Stab(Q).

We’ve seen last time (Theorem 8.1) that for certain choices of θ ∈ HQ0 and
any dimension vector d ∈ ZQ0 , there is quasi-projective variety Mσθ−ss

Q (d) pa-
rameterizing σθ-semistable quiver representations with dimension vector d up to
S-equivalence. Moreover, if Q has no self-loops then Mσθ−ss

Q (d) is projective.
Recall also that by Gabriel’s theorem implies that if Q is a quiver of ADE-type,

then for any fixed dimension vector d ∈ ZQ0 , then there are only finitely many
isomorphism classes of quiver representations of dimension d. Thus, the moduli
space Mσθ−ss

Q (d) with respect to any choice z is just a point.
Here are some more interesting examples:

Example 9.2. Let Q be the quiver with one vertex and one loop. For an integer
d, the representation space is

RQ(d) = Hom(kd, kd) = Matd,d

The action of GLd on RQ(d) is given by conjugation. Let θ ∈ H and σθ ∈ Stab(Q)
be the corresponding stability condition. In this case, every quiver representation
is semistable. The GIT quotient is

Matd,d → Matd,d //GLd ∼= Ad

which takes a matrix A to the coefficients of its characteristic polynomial. In
other words, two different matrices are identified in the GIT quotient if the
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elementary symmetric functions evaluated at the generalized eigenvalues are equal.
In particular, a matrix M in Jordan block form is S-equivalent to the matrix M0

where the 1’s above the diagonal in M are set to be 0. Indeed, one can see that
M0 ∈ GLn ·M explicitly here as a degeneration coming from a one-parameter
subgroup λ : Gm → GLn so that M0 = limt→0 λ(t)M .

In this case, we see that the moduli space Mσθ−ss = Ad is not projective.

Example 9.3. Let Q be the Kronecker quiver with two vertices 1 and 2 and n+ 1
arrows from 1 to 2. Let us first consider the case of dimension vector d = (1, 1).
In this case, the representation space

R(d) = kd+1

which has an action of G2
m. The diagonal Gm acts trivially so we might as well

consider the action of the quotient Gm. This action is given by the standard

scaling action t · (x0, . . . , xd) = (tx0, . . . , txd). Let θ = (θ1, θ2) ∈ H2
and σθ ∈

Stab(Q) the corresponding stability condition. Let S1 and S2 be the simple quiver
representations with dimension vectors (1, 0) and (0, 1), respectively. If V is a
Q-representation corresonding to x = (x0, . . . , xd) ∈ kd+1, then S1 is always a
subrepresentation of V while S2 is a subrepresentation if and only if each xi = 0.
We have three cases:

• arg(θ1) < arg(θ2): there are no semistable representations since S2 ⊂ V
always destabilizes a quiver representation V ; clearly Z(S2) = θ2 has
larger phase then Z(V ) = θ1 + θ2. In this case, the moduli space is empty;

• arg(θ1) = arg(θ2): every representation is strictly semistable and they are
all S-equivalent; In this case, the moduli space is a point;

• arg(θ1) > arg(θ2): the semistable representations correspond to tuples
x = (x0, . . . , xn) such that not all the xi are zero. The moduli space is

M
σθ−ss

Q = (An+1 \ 0)/Gm ∼= Pn.

Example 9.4. Let Q again be the Kronecker quiver with two vertices 1 and
2 and n + 1 arrows. This time consider the dimension vector d = (1, 2). The
representation space is

RQ(d) = Hom(k, k2)⊕(n+1) = Mat2,n+1

and the group GL(d) = Gm ×GL2. Since the diagonal Gm acts trivially, we can
simply consider the action of GL2. We can consider a matrix(

x0 · · · xn
y0 · · · yn

)
as a quiver representation. Choose again z = (θ1, θ2) ∈ H and let’s consider only
the case of arg(θ1) > arg(θ2) as otherwise the moduli space will be empty or a
point. In this case, a quiver representation V will be semistable if and only if
there is no subrepresentation V ′ ⊂ V where the dimension vector of V ′ is (1, 1).
This is equivalent to saying that the vectors x and y are linearly independent. Let
σ ⊂ Mat2,n be the matrices that are not full rank. Thus, the moduli space is

M
σθ−ss

Q = (Mat2,n \Σ)/Gm ∼= Gr(2, kn+1)

More generally, if we consider the dimension vector d = (1, d2) with the same
choices for θ, we will have

M
σθ−ss

Q
∼= Gr(d2, k

n+1).
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9.3. A tilting of Coh(P1). Let (Coh(P1), Z) be the stability condition on Db(P1)
defined by the charge

Z : K(Coh(P1)), [E] 7→ −deg(E) + i rk(E).

Using Example 7.16, we can tilt this stability condition by rotating counter-
clockwise by π/4. That is, if we set α = 1/4, then the new heart A# contains
both O and O(−1)[1].

In fact, by Beilinson, if we set G = O ⊕O(1) and E = End(G,G), then

(9.3.1)
RHom(G,−) : Db(P1)→ Db(Modfg(E))

F 7→ RHom(G,F )

gives an equivalence of triangulated categories between bounded complexes on
P1 and bounded complexes of finitely generated left modules over E. This is an
instance of the more general fact.

Proposition 9.5. [Bon89, Theorem 6.2] If X is a smooth projective variety over
C and Db(X) is generated by a strong exceptional collection (E0, . . . , En)2 then if
set G =

⊕
iEi and E = End(G), then

RHom(G,−) : Db(X)→ Db(Modfg(E))

F 7→ RHom(G,F )

is an equivalence of categories.

Moreover, if Q is the Kronecker quiver with two vertices and two arrows from
the first vertex to the second, we have an equivalence of Db(Modfg(E)) with the

derived category of finite dimensional Q-representations Db(Q) = Db(Repfd(Q)).
Let S1 and S2 be the simple representations of Q with dimension vectors (1, 0)

and (0, 1) respectively. One can check that RHom(G,−) sends O to S1 and
O(−1)[1] to S2.

In other words, the above equivalence (9.3.1) yields an identification of the

heart A# ⊂ Db(P1) with the heart Repfd(Q) ⊂ Db(Q).

10. Lecture 10 (April 23): More examples

10.1. Another application of quiver GIT. Continuing from the last lecture,
one can use Theorem 8.1 to give an intrinsic GIT construction of the moduli space
of semistable vector bundles over a smooth projective curve. This construction is
based on the beautiful paper [ACK09]. This construction is more functorial and
involves much simpler semistability calculations than the GIT construction of the
moduli space we saw last quarter. DETAILS TO BE ADDED LATER

2An exception collection is a tuple of objects (E1, . . . , En) such that

Extn(Ei, Ej) =

{
0 if n 6= 0 or i < j
k otherwise.

It generates the triangulated category D if the small triangulated subcategory of D containing
the objects Ei is all of D.
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10.2. The action of G̃L
+

2 (R). Let GL+
2 (R) be the group of 2× 2 matrices with

positive determinant. The universal cover of G̃L
+

2 (R) of GL+
2 (R) has the following

description:

G̃L
+

2 (R) = {(A, f) |A ∈ GL+
2 (R), f : R→ R increasing such that

Aeiπθ ∈ R>0e
iπf(θ) and f(θ + 1) = f(θ) + 1}

There is a right action of the group G̃L
+

2 (R) on Stab(D) as follows: given

(P, Z) ∈ Stab(D) and (A, f) ∈ G̃L
+

2 (R), then

(P, Z) · (A, f) = (P ′, A−1 ◦ Z) where P ′(φ) = P(f(φ)))

The heart of the new bounded t-structure is A# = P((f(0), f(1)]).
For instance, for each α ∈ R, we have an element Rα = (eiπα, x 7→ x + α) ∈

G̃L
+

2 (R). The heart of new stability condition (A, Z) · Rα is P((α, α + 1]). For
α ∈ (0, 1], this is a tilt of the original heart A = P((0, 1]) by the torsion pair
(Tα,Fα) =

(
P((α, 1]),P((0, α])

)
. If α is an even integer, then the charge doesn’t

change and the new heart is A[α]. If α is an odd integer, then the new charge is
−Z and the new heart is A[α].

10.3. A few homological results. The following two propositions will be essen-
tial in all of future attempts to compute the space of stability conditions.

Proposition 10.1. If A1,A2 are both hearts of bounded t-structures on a trian-
gulated category D and A1 ⊂ A2, then A1 = A2.

Proof. Let E ∈ A2. The heart A1 induces a filtration

0 = E0
// E1

//

||

· · · // Em−1
// Em = E

yy
A1[k1]

[1]

dd

Am[km]

[1]

dd

with each Ai ∈ A1 and k1 > · · · > km. This is also a filtration where the factors
are in shifts of A2. But there is also the trivial filtration

0 // E

}}
E[0]

[1]

``

so by uniqueness of filtrations induced by heart A2, we must have m = 1 and that
E = Am ∈ A1. �

Definition 10.2. An abelian category A has cohomological dimension ≤ n if for
all A,B ∈ A

Exti(A,B) = 0 for i > n.

Remark 10.3. Note that A is semisimple (i.e. every short exact sequence splits) if
and only if A has cohomological dimension 0.

Proposition 10.4. If A is an abelian category with cohomological dimension ≤ 1,
then any object E ∈ Db(A) is isomorphic to the direct sum

⊕
n∈Z Hn(E)[−n] of

its cohomology.
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Remark 10.5. In other words, in Db(A), any object E (with cohomology in the
interval [a, b]) is isomorphic to the complex

0→ Ha(E)[−a]
0−→ Ha+1(E)[−a+ 1]

0−→ · · · 0−→ Hb(E)[b]→ 0

Proof. Suppose that the cohomology of E lives in the interval [a, a+ k]. We will
argue by induction on k where the base case k = 0 is clear. If k > 0, consider the
exact triangle obtained by truncating

(10.3.1) τ≤aE → E → τ>aE.

Note that τ≤aE ∼= Ha(E)[−a]. By the inductive hypothesis, we have that τ>aE ∼=⊕a+k
n=a+1 Hn(E)[−n]. The exact triangle (10.3.1) splits if and only if the morphism

τ>aE → τ≤aE[1] is zero. We compute that

HomDb(A)(τ>aE, τ≤aE[1]) = HomDb(A)

( a+k⊕
n=a+1

Hn(E)[−n],Ha(E)[1− a]

)

=

a+k⊕
n=a+1

Extn−a+1
A

(
Ha(E),Hn(E)

)
= 0

because for each n ≥ a+ 1, the index n− a+ 1 ≥ 2 so that the Ext group vanishes
because A has cohomological dimension ≤ 1. �

10.4. A simple example. Although some might argue that this example is
completely trivial, it is nonetheless exhibits a basic feature of the space of stability
conditions. Let A = Vectfd

k be the category of finite dimensional vector spaces
over a field k. Alternatively, one can view A as the category Coh(Spec k) of

coherent sheaves on a point or as the category Repfd(A1) of finite dimensional
representations of the A1-quiver. Note that A is a semisimple category and has a
unique simple object S = k, which is the one dimensional vector space.

Proposition 10.6. If (A′, Z) is a stability condition on Db(A), then S is semisim-
ple.

Proof. If S is not semistable, there exists an an exact triangle (induced by say
part of the Harder–Narasimhan filtration of S)

(10.4.1) A→ S → B

with A,B ∈ Db(A) nonzero and Exti(A,B) = 0 for i ≤ 0. Since A is semisimple,
we may apply Proposition 10.4 to write

A =
⊕
n∈Z

An[−n] and B =
⊕
n∈Z

Bn[−n]

where An = Hn(A) and Bn = Hn(B). The exact triangle (10.4.1) gives a long
exact sequence of cohomology

(10.4.2) 0→ B−1 → A0 → S → B0 → A1 → 0

and Bi−1
∼→ Ai for i 6= 0, 1. Given any morphism α : Ai → Bi−1, one has the

factorization

A�Ai[−i]
α[−i]−−−→ Bi−1[−i] ↪→ B[−1].
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This shows that there are no non-zero maps α : Ai → Bi−1 as we’ve expressed
Hom(Ai, Bi−1) ⊂ Hom(A,B[−1]) = Ext−1(A,B) = 0, In particular, for i 6= 0, 1,

the isomorphism Ai
∼→ Bi−1 must be zero so Ai = Bi−1 = 0.

Since S is simple, (10.4.2) breaks into either of two sequences:

(1) a short exact sequence 0 → B−1 → A0 → S → 0 and an isomorphism

B0
∼→ A1, which by the above observation implies that B0 = A1 = 0. As

A is semisimple, we have that A0 = B−1 ⊕ S. The surjection A0 �B−1

is nonzero contradicting Hom(A0, B−1) = 0; or
(2) a short exact sequence 0 → S → B0 → A1 → 0 and an isomorphism

B−1
∼→ A0, which again implies that B−1 = A0 = 0. Writing B0 = A1⊕S

gives a non-zero inclusion A1 ↪→ B0 contradicting Hom(A0, B−1) = 0.

We’ve shown there can’t exist a triangle (10.4.1) with A,B 6= 0. �

Corollary 10.7. If (A′, Z) is a stability condition on Db(A), then there exists a
unique integer k such that A′ = A[k].

Proof. Indeed, let k be the unique integer such that S[k] ∈ A′. This gives an
inclusion of hearts A[k] ⊂ A′, which must be an equality by Proposition 10.1. �

We conclude that a stability condition (A′, Z) ∈ Stab(Db(A)) is defined by two
pieces of data:

(1) An integer k ∈ Z such that A′ = A[k]; and
(2) The charge θ := Z(S) ∈ C such that (−1)kZ(S) ∈ H.

Let log : H → C be the inverse of the exponential whose image is the set of
complex numbers whose imaginary part is in (0, π]. Then we can define

Stab(Db(A1))→ C

(A, Z) 7→ log((−1)kθ)− πik.

One checks that this is bijective (easy) and continuous (here is where you need a
‘-’ sign). Moreover, we have a commutative diagram

Stab(Db(A))
∼ //

��

C

exp

��
Homgp(K(A),C)

∼ // C

where the vertical left arrow is the forgetful functor (A, Z) 7→ Z and the bottom
arrow is the map Z 7→ Z(S). We make the following observations:

• The image of the forgetful functor Stab(Db(A))→ Homgp(K(A),C) ∼= C
is C∗;

• There are identifications Aut(Db(A)) ∼= π1(C∗) ∼= Z acting naturally on
the simply connected space of stability conditions Stab(Db(A)) ∼= C ∼=
C̃∗. Here Stab(Db(A)) is the universal cover of C∗ and the action of
Aut(Db(A)) by shifts corresponds to deck transformations.

• The group G̃L
+

2 (R) acts transitively on Stab(Db(A)). The subgroup

Z ⊂ G̃L
+

2 (R) consisting of pairs (id, φ 7→ φ+ 2n) (where n is an integer)
acts on Stab(Db(A)) by preserving the charge and by shifting a heart A′
by A′[2n].
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11. Lecture 11 (April 25): The A2-quiver

For abelian categories A, we would like to understand the covering

Stab(Db(A)) G̃L
+

2 (R)

Hom(K(A),C) GL+
2 (R)

which is equivariant with respect to G̃L
+

2 (R) → GL+
2 (R). Note that GL+

2 (R)
deformation retracts onto SO2(R) ∼= S1 (using Gram-Schmidt to write every
matrix A uniquely as a product A = QR where Q ∈ SO2(R) and R is upper
triangular with 1’s along the diagonal). Therefore, π1(GL+

2 (R)) ∼= Z.
Recall that Stab(Db(A)) also has a left action by the group Aut(Db(A)) of

autoequivalences of Db(A). This action commutes with the GL+
2 (R) action.

Today, our goal to understand this picture when A is the category of finite
dimensional representations of the A2-quiver.

11.1. The A2-quiver. Set A = Repfd(A2). We will denote Db(A2) := Db(A).
An object V ∈ A corresponds to a pair of vector spaces V1, V2 and a linear

transformation f : V1 → V2. We write this as V = [V1
f−→ V2].

There are two simple objects S1 = [k → 0] and S2 = [0 → k], and an

indecomposable object T = [k
id−→ k] which sits in an exact sequence

(11.1.1) 0→ S2 → T → S1 → 0.

Any object [V1
f−→ V2] decomposes as

(11.1.2)

V1

↓
V2

 =

ker(f)
↓
0

⊕
[V1/ ker(f)

↓
im(f)

⊕
 0

↓
coker(f)


or in other words S⊕a1 ⊕ T⊕b ⊕ S⊕c2 where a = dim ker(f), b = rk(f) = dim im(f),
and c = dim coker(f).

For V = [V1
f−→ V2], we have that

Hom(S1, V ) = ker(f) Hom(S2, V ) = V2 Hom(T, V ) = V1

Hom(V, S1) = V ∨1 Hom(V, S2) = coker(f∨) Hom(V, T ) = V ∨2
(11.1.3)

We see that S1 is injective, S2 is projective and T is both injective and projective.
Note that this exact sequence (11.1.1) is both an injective resolution of S2 and a
projective resolution of S1. Using (11.1.1), we can compute that

(11.1.4) Ext1(S1, V ) = coker(f) and Ext1(V, S2) = ker(f∨)

while higher Ext’s vanish. Indeed, applying Hom(−, V ) to S2 → T yields

Hom(T1, V ) = V1
f−→ V2 = Hom(S2, V ) and the 0th cohomoloy is ker(f) while the

1st cohomology is coker(f). The second statement is similar. Moreover, given an
exact sequence 0 → V ′ → V → V ′′ → 0 in A, the long exact sequence induced
by the derived functors Exti(S1,−) is precisely the snake lemma applied to the
morphism from the short exact sequences.

For instance, Ext1(S1, S2) = k is generated by the extension (11.1.1).
The above calculations establish that the abelian category A has cohomological

dimension 1.

30



11.2. Stability functions on the standard heart. For θ1, θ2 ∈ H, group ho-
momorphism

Z : K(A2)→ C, [V ] 7→ (dimV1)θ1 + (dimV2)θ2

defined a stability condition on A. We break the analysis into three cases according
to the phases φ1 = φ(S1) and φ2 = φ(S2).

Case 1: φ1 < φ2. In this case, S2 ⊂ T is destabilizing and the Harder–Narasimhan
filtration of T is 0→ S2 → T → S1 → 0. Then P(φ1) = 〈S1〉 and P(φ2) = 〈S2〉.
Our picture of the slicing on Db(A2) is

· · · 〈S2[1]〉 〈S1[1]〉 〈S2〉 〈S1〉 · · ·

A[1] A

Case 2: φ1 = φ2. Everything in A is semistable of phase φ1; that is, P(φ1) = A.

Case 3: φ1 > φ2. In this case, T is semistable. We have P(φ1) = 〈S1〉,
P(φ′) = 〈T 〉 where φ1 > φ′ > φ2 is the angle of θ1 + θ2, and P(φ2) = 〈S2〉. Our
picture of the slicing is

· · · 〈S1[1]〉 〈T [1]〉 〈S2[1]〉 〈S1〉 〈T 〉 〈S2〉 · · ·

A[1] A

11.3. Orbits of the stability conditions on the standard heart. We now
consider the orbits of the stability conditions on the standard heart introduced in

§11.2 under the action of G̃L
+

2 (R). We will focus on identifying the new hearts in
each of the three cases.

Case 1: φ1 < φ2. Let (A, f) ∈ G̃L
+

2 (R) and (P ′, Z ′) = (P, Z) · (A, f). The new
heart is P ′((0, 1]] = P((f(0), f(1)]). If f(0) ∈ [n− 1 + φ2, n+ φ1) for an integer n,
then then P ′((0, 1]) = A[n] = 〈S1[n], S0[n]〉. Otherwise, if f(0) ∈ [n+ φ1, n+ φ2),
then P ′((0, 1]) = 〈S0[n+ 1], S1[n]〉. In the latter case, our picture looks like

· · · 〈S2[1]〉 〈S1[1]〉 〈S2〉 〈S1〉 · · ·

A#

where the red box is our new heart. This is obtained for instance by rotation
counterclockwise by Rα for an angle α such that φ2 just crosses the negative real
axis. This heart is the tilt of the standard heart A with respect to the torsion pair
T = 〈S1〉 and F = 〈S0〉. The factorization of an element [V1 → V2] ∈ A induced
from this torsion pair is

0→

 0
↓
V2

→
V1

↓
V2

→
V1

↓
0

→ 0.

Explicitly, as A has cohomological dimension 1, we may write the new heart as

A# =

{V↓
0

−1

0−→

 0
↓
W

0}
In other words, every object A# is isomorphic in Db(A2) to S1[1]a ⊕ Sb2 for some

a, b. By computing Hom(S1[1]a⊕Sb2, S1[1]a
′⊕Sb′2 ) ∼= Hom(ka, ka

′
)⊕Hom(kb, kb

′
).
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We see that A# is simply the category of pairs of vector spaces (or equivalently Z/2-
graded vector spaces). This is a semisimple category such that Db(A#) � Db(A).

For instance, the object T is not in Db(A#).

Case 2: φ1 = φ2. In this case, clearly the heart obtained by acting by any

element of G̃L
+

2 (R) is simply a shift of the standard heart.

Case 3: φ1 > φ2. Acting by an element of G̃L
+

2 (R) on the stability condition
from §11.2 on the standard heart yields a stability condition whose heart is one of
the following three possibilities:

(a) A[n] = 〈S1[n], T [n], S2[n]〉,
(b) 〈S2[n+ 1], S1[n], T [n]〉, or
(c) 〈T [n+ 1], S2[n+ 1], S1[n]〉.

Case (b) is the nth shift of tilt of the standard heart with respect to the torsion
pair T = 〈S1, T 〉 and F = 〈S2〉. The factorization with respect to this torsion pair

of an element [V1
f−→ V2] ∈ A is

0→

 V1

↓
im(f)

→
V1

↓
V2

→
 0

↓
coker(f)

→ 0.

Elements in the tilted heart A# can be written as{V1

↓ surjective
V2

−1

0−→

 0
↓
W2

0}
.

Case (c) is the nth shift of tilt of the standard heart with respect to the torsion

pair T = 〈S0〉 and F = 〈T, S2〉. The decomposition of an element [V1
f−→ V2] ∈ A

is

0→

ker(f)
↓
0

→
V1

↓
V2

→
V1/ ker(f)

↓
V2

→ 0.

Elements in the tilt can be written as{V1

↓
0

−1

0−→

W1

↓ injective
W2

0}

11.4. A reflection functor on Db(A2). Consider the equivalence

Σ: Db(A2)→ Db(A2)

S1 7→ S2[1]

T 7→ S1

S2 7→ T

(This is clearly essentially surjective and one checks easily its fully faithful by our
explicit understanding of the Homs between the shifts of the three indecomposable
objects.) Observe that Σ3 is the shift functor [1].
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Remark 11.1. This auto-equivalence Σ−1 can be viewed as a reflection functor
between the quiver A2 and its opposite

A2 : 1→ 2 and Aopp
2 : 1← 2

To see this, first consider the functor on abelian categories

F : Repfd(A2)→ Repfd(Aopp
2 )

[V1
f−→ V2] 7→ [V1 ← ker(f)]

The functor F is left-exact and its right derived functor

RF : Db(A2)→ Db(Aopp
2 ),V1

↓
V2

0

7→
( V1

↑
ker(f)

0

0−→

 0
↑

coker(f)

1)
Let S′1, S

′
2, T

′ be the corresponding objects in Rep(Aopp
2 ). Then one checks that

S1 7→ T ′, S2[1] 7→ S′1 and T 7→ S′2.

It turns out that Σ is an example of a Serre functor. Recall that an exact
functor Σ: D → D of triangulated categories is called a Serre functor if for all
objects A,B ∈ D, there is a natural bifunctorial identifications

(11.4.1) HomD(A,B) = HomD(B,Σ(A))∨.

For example, if X is a smooth projective variety, then Σ = −⊗ ωX [n] is a Serre
functor. This simply expresses Serre duality. For instance, if A = OX and B is a
coherent OX -module, then (11.4.1) reads Γ(X,B) = Extn(B,ω)∨.

Proposition 11.2. Σ: Db(A2)→ Db(A2) is a Serre functor.

Proof. This follows by examining the formulas (11.1.3) and (11.1.4). For instance,

for an A2-representation V = [V1
f−→ V2], we have

Hom(S1, V ) = ker(f) = ker(f∨)∨ = Hom(V, S2[1])∨

Hom(S1, V [1]) = coker(f) = coker(f∨)∨ = Hom(V [1], S2[1])

�

For later use, we will use the following general fact

Lemma 11.3. Let Σ: D → D be a Serre functor on a triangulated category D.
Then Σ commutes with any autoequivlance.

Remark 11.4. See §11.5 for the precise definition of autoequivalences.

Proof. Let F : D → D be an exact equivalence. We need to give a natural
isomorphism Σ(F (E)) = F (Σ(E)) for each object E ∈ D. By Yoneda’s lemma
(and since F is an equivalence), it suffices to check that Hom(F (X),Σ(F (E))) =
Hom(F (X), F (Σ(E)) for all X ∈ D. We compute

Hom(F (X),Σ(F (E))) = Hom(F (E), F (X))

= Hom(E,X)

= Hom(X,Σ(E))

= Hom(F (X), F (Σ(E)))

�
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11.5. The group Aut(Db(A2)). An autoequivalence of a triangulated category
D is an equivalence F : D → D of additive categories such that F sends exact
triangles to exact triangles and F commutes with the shift functor [1]. The group
Aut(D) denotes the set of autoequivalences modulo natural isomorphisms where
the group law is composition.

Proposition 11.5. We have an identification Aut(Db(A2)) ∼= Z generated by Σ.

Proof. Let F : Db(A2)→ Db(A2) be an autoequivalence. The only objects E ∈ D
with End(E) ∼= k are shifts of S1, T and S2. (This follows using Proposition 10.4
and the decomposition (11.1.2) to write every object in D as a direct sum of
shifts of S1’s, T ’s and S2’s.) Since F is fully faithful, Hom(F (S1), F (S1)) = k
and therefore F (S1) is a shift of S1, T or S2. Therefore, after applying a suitable
(possibly negative) power of Σ, we may assume that F (S1) = S1. But Lemma 11.3
implies that F commutes with Σ. This means

F (S2[1]) = F (Σ(S1)) = Σ(F (S1)) = S2[1]

which implies that F (S2) = F (S2). One sees similarly that F (T ) = T .3 �

12. Lecture 12 (April 30): More on the A2-quiver

As before, A = Repfd(A2). Last time we saw several hearts on Db(A2) that

arose from the G̃L
+

2 -action on a stability condition on the standard heart. These
arose as natural tilts of the standard heart. These hearts were

• A, the standard heart;
• Σ(A) = 〈S2[1], S1, T 〉, the tilt of the standard heart with respect to the

torsion pair (〈S1, T 〉, 〈S2〉);
• Σ2(A) = 〈T [1], S2[1], S1〉, the tilt of the standard heart with respect to

the torsion pair (〈S1〉, 〈T, S2〉);
• 〈S1[1], S2〉, the tilt of the standard heart with respect to the torsion pair

(〈S2〉, 〈S1〉).

12.1. Are there any other hearts? Yes, there are! From the heart 〈S1[1], S2〉
arising from the G̃L

+

2 (R)-orbit of the stability condition in Case (1), one is led to
suspect that perhaps

Aa = 〈S1[a], S2〉
is the heart of a bounded t-structure for all a > 0.

Lemma 12.1. For a > 0, the full subcategory 〈S1[a], S2〉 ⊂ Db(A2) is the heart
of the bounded t-structure defined by

D>0 =
{
· · · → V −a → S

⊕d−a+1

2 → · · · → S⊕d02 → 0→ · · ·
}

with S⊕d02 in degree 0 and

D≤0 =
{

0−a → S
⊕e−a+1

1 → · · · → S
⊕e−1

1 → S⊕e01 → V 1 · · ·
}

with S⊕d01 in degree 0.

Proof. Exercise. �

Remark 12.2. For a > 0, the heart Aa is semisimple.

3We thank Alex Voet for pointing out both that Σ is a Serre functor and that this can be

used with Lemma 11.3 to give a clean argument that any autoequivalence F with F (S1) = S1

must be the identity.

34



12.2. Summary of hearts. We have the following list of hearts:

(a = 0) • A = 〈S1, S2〉
• Σ(A) = 〈S2[1], S1, T 〉
• Σ2(A) = 〈T [1], S2[1], S1〉

(a > 0) • Aa := 〈S1[a], S2〉
• Σ(Aa) = 〈S2[a+ 1], T 〉
• Σ2(Aa) = 〈T [a+ 1], S1〉

Are these all the possible hearts?

12.3. Two of three lemma.

Proposition 12.3. For any stability condition (Z,P) on Db(A2), at least two of
the objects {S0, S1, T} are semistable.

Proof. If all three are semistable, then we are done. Otherwise, by possibly
applying Σ or Σ2, we can assume that S1 is not semistable. In this case, there
exists a triangle

(12.3.1) A→ S1 → B

in Db(A2) with A,B 6= 0, B semistable, and Exti(A,B) = 0 for i ≤ 0. As

A = Repfd(A2) has cohomological dimension 1, Proposition 10.4 implies that we
can write A = ⊕iAi[−i] and B = ⊕Bi[−i]. As in the proof of Proposition 10.6,
we have the following key identity:

(12.3.2) Hom(Ai, Bi−1) = 0 for all i.

Indeed,

HomA(Ai, Bi−1) = HomDb(A2)(Ai[−i], Bi−1[−(i− 1)][−1]) ⊂ Ext−1(A,B) = 0.

as Ai[−i] and Bi−1[−(i− 1)] are direct summands of A and B, respectively. (In
fact, the same argument shows that Ext1

A(Ai, Bi−1) = 0.)
The triangle A→ S1 → B induces the long exact sequence

0→ B−1 → A0 → S1 → B0 → A1 → 0

and for i 6= 0, 1 isomorphisms Bi−1
∼→ Ai which imply by the above remark that

Ai = Bi−1 = 0. Since S1 is simple, we have either:

(a) B−1
∼→ A0 (and thus both are zero by (12.3.2)) and 0→ S1 → B0 → A1 → 0,

or
(b) B0

∼→ A1 (and thus both are zero by (12.3.2)) and 0→ B−1 → A0 → S1 → 0.

In case (a), the short exact sequence splits as S1 is injective. Thus, there is an
inclusion A1 ↪→ B0 = S0 ⊕A1, which contradicts A1 6= 0 and (12.3.2).

In case (b), we can write each B−1 and A0 as a direct sum of S1’s, T ’s and
S2’s. We first note that B−1 and A0 have no S1’s; otherwise, there would exist a
non-zero map A0 → B−1. Applying Hom(T,−) to the short exact sequence and
using that T is projective yields

0→ Hom(T,B−1)→ Hom(T,A0)→ k → 0

which implies that the number of T ’s in A0 is greater than in B−1. It follows
that B−1 has no T ’s while A0 has one. Therefore B−1 = Sb2 and A0 = Sa2 ⊕ T .
We must have that a = 0 and b = 1. We conclude that B = B−1[1] = S2[1] and
that the exact triangle (12.3.1) is T → S1 → S2[1]. In any case, we see that S2 is
semistable since B is.
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It remains to show that T is also semistable. If not, there exists an exact
triangle

(12.3.3) A→ T → B

in Db(A2) with B semistable and Exti(A,B) = 0 for i ≤ 0. Again, we have that
for i 6= 0, 1, Ai = Bi−1 = 0 and an exact sequence

0→ B−1 → A0 → T → B0 → A1 → 0

We note that A0 → T and T → B0 must be non-zero as otherwise, we obtain
short exact sequences which since T is both injective and projective would give
non-zero maps A0 → B−1 or A1 → B0. Thus, we have short exact sequences

0→ B−1 → A0 → S2 → 0 and 0→ S1 → B0 → A1 → 0.

We see that B−1 and A0 must have the same number of T ’s and S1’s, both
necessarily being zero. By looking at the number of S2’s, we conclude that B−1 = 0
and A0 = S2. Similarly, we argue that B0 = S1 and A1 = 0. Thus, the exact
triangle (12.3.3) is S2 → T → S1 and S1 = B is semistable, a contradiction. �

Corollary 12.4. The hearts in §12.2 are all possibles hearts of bounded t-structures
arising from stability conditions on Db(A2).

Proof. Let (P, Z) ∈ Stab(Db(A2)) be a stability condition with heart A′ =
P((0, 1]). After applying the autoequivalence Σ a certain number of times, we
may assume that S1 ∈ A′ is semistable of phase φ1. We know that either S2 or T
is semistable.

If S2 is semistable of phase φ2, then since Ext1(S2, S1) = Hom(S2, S1[1]) 6= 0, we
must have that the phase φ(S2) ≤ φ(S1[1]) = φ(S1) + 1. This means that for some
integer a ≥ 0, we have that S1, S2[1− a] ∈ A′. If a = 0, then T = ker(S1 → S2[1])
is also in A′. By Proposition 10.1, this implies that A′ = 〈S2[1], S1, T 〉 = Σ(A).
If a > 0, then A′ = Aa[−a].

If T is semistable of phase φT , then since Hom(T, S1) 6= 0, we have that
φT ≤ φ1. This gives S1, T [a] ∈ A′ for some integer a ≥ 0. If a = 0, then
S2 = ker(T → S1) ∈ A′ so A′ = A is the standard heart. If a > 0, then we have
A′ = 〈T [a], S1〉 = Σ2(Aa−1). �

13. Lecture 13 (May 2)

Let C be a smooth, projective and connected curve of positive genus. Let
Stabnum(C) be the space of stability conditions σ = (P, Z) such that (1) Z factors

as K(C)
(deg,rk)−−−−−→ Z2 → C and (2) for all φ ∈ R, the abelian category P(φ) is of

finite length. We began the proof of

Theorem 13.1. Stabnum(C) ∼= G̃L
+

2 .

We followed the exposition in [Huy11].

14. Lecture 14 (May 7)

Finished the proof of Theorem 13.1 and began discussing the topology of the
space of stability conditions on any triangulated category.
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