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Abstract

These notes provide the foundations of moduli theory in algebraic geometry using
the language of algebraic stacks with the goal of providing a self-contained proof
of the following theorem:

Theorem A. The moduli space Mg of stable curves of genus g ≥ 2 is a smooth,
proper and irreducible Deligne–Mumford stack of dimension 3g − 3 which admits
a projective coarse moduli space.1

Along the way we develop the foundations of algebraic spaces and stacks, and
we hope to convey that this provides a convenient language to establish geometric
properties of moduli spaces. Introducing these foundations requires developing
several themes at the same time including:

• using the functorial and groupoid perspective in algebraic geometry: we
will introduce the new algebro-geometric structures of algebraic spaces and
stacks;

• replacing the Zariski topology on a scheme with the étale topology: we will
generalize the concept of a topological space to Grothendieck topologies and
systematically use descent theory for étale morphisms; and

• relying on several advanced topics not seen in a first algebraic geometry
course: properties of flat, étale and smooth morphisms of schemes, algebraic
groups and their actions, deformation theory, Artin approximation, existence
of Hilbert schemes, and the birational geometry of surfaces.

Choosing a linear order in presenting the foundations is no easy task. We attempt
to mitigate this challenge by relegating much of the background to appendices.
We keep the main body of the notes always focused entirely on developing moduli
theory with the above goal in mind.

1In a future course, I hope to establish an analogous result for the moduli of vector bundles:
The moduli space Bunss

r,d(C) of semistable vector bundles of rank r and degree d over a smooth,
connected and projective curve C of genus g is a smooth, universally closed and irreducible
algebraic stack of dimension r2(g − 1) which admits a projective good moduli space.
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Chapter 0

Introduction and motivation

A moduli space is a space M (e.g. topological space, complex manifold or algebraic
variety) where there is a natural one-to-one correspondence between points of M
and isomorphism classes of certain types of algebro-geometric objects (e.g. smooth
curves or vector bundles on a fixed curve). While any space M is the moduli
space parameterizing points of M , it is much more interesting when alternative
descriptions can be provided. For instance, projective space P1 can be described
as the set of points in P1 (not so interesting) or as the set of lines in the plane
passing through the origin (more interesting).

Moduli spaces arise as an attempt to answer one of the most fundamental
problems in mathematics, namely the classification problem. In algebraic geometry,
we may wish to classify all projective varieties, all vector bundles on a fixed variety
or any number of other structures. The moduli space itself is the solution to the
classification problem.

Depending on what objects are being parameterized, the moduli space could
be discrete or continuous, or a combination of the two. For instance, the moduli
space parameterizing line bundles on P1 is the discrete set Z: every line bundle
on P1 is isomorphic to O(n) for a unique integer n ∈ Z. On the other hand, the
moduli space parameterizing quadric plane curve C ⊂ P2 is the connected space
P5: a plane curve defined by a0x

2 + a1xy+ a2xz + a3y
2 + a4yz + a5z

2 is uniquely
determined by the point [a0, . . . , a5] ∈ P5, and as a plane curve varies continuously
(i.e. by varying the coefficients ai), the corresponding point in P5 does too.

The moduli space parameterizing smooth projective abstract curves has both
a discrete and continuous component. While the genus of a smooth curve is a
discrete invariant, smooth curves of a fixed genus vary continuously. For instance,
varying the coefficients of a homogeneous degree d polynomial in x, y, z describes
a continuous family of mostly non-isomorphic curves of genus (d − 1)(d − 2)/2.
After fixing the genus g, the moduli space Mg parameterizing genus g curves is a
connected (even irreducible) variety of dimension 3g − 3, a deep fact providing
the underlying motivation of these notes. Similarly, the moduli space of vector
bundles on a fixed curve has a discrete component corresponding to the rank r and
degree d of the vector bundle, and it turns out that after fixing these invariants,
the moduli space is also irreducible.

An inspiring feature of moduli spaces and one reason they garner so much
attention is that their properties inform us about the properties of the objects
themselves that are being classified. For instance, knowing that Mg is unirational
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(i.e. there is a dominant rational map PN 99KMg) for a given genus g tells us that
a general genus g curve can be written down explicitly in a similar way to how
a general genus 3 curve can be expressed as the solution set to a plane quartic
whose coefficients are general complex numbers.

Before we can get started discussing the geometry of moduli spaces such as
Mg, we need to ask: why do they even exist? We develop the foundations of
moduli theory with this single question in mind. Our goal is to establish the truly
spectacular result that there is a projective variety whose points are in natural
one-to-one correspondence with isomorphism classes of curves (or vector bundles
on a fixed curve). In this chapter, we motivate our approach for constructing
projective moduli spaces through the language of algebraic stacks.

0.1 Moduli sets

A moduli set is a set where elements correspond to isomorphism classes of certain
types of algebraic, geometric or topological objects. To be more explicit, defining
a moduli set entails specifying two things:

1. a class of certain types of objects, and

2. an equivalence relation on objects.

The word ‘moduli’ indicates that we are viewing an element of the set of as an
equivalence class of certain objects. In the same vein, we will discuss moduli
groupoids, moduli varieties/schemes and moduli stacks in the forthcoming sections.
Meanwhile, the word ‘object’ here is intentionally vague as the possibilities are quite
broad: one may wish to discuss the moduli of really any type of mathematical
structure, e.g. complex structures on a fixed space, flat connections, quiver
representations, solutions to PDEs, or instantons. In these notes, we will entirely
focus our study on moduli problems appearing in algebraic geometry although
many of the ideas we present extend similarly to other branches of mathematics.

The two central examples in these notes are the moduli of curves and the
moduli of vector bundles on a fixed curve—two of the most famous and studied
moduli spaces in algebraic geometry. While there are simpler examples such as
projective space and the Grassmanian that we will study first, the moduli spaces
of curves and vector bundles are both complicated enough to reveal many general
phenomena of moduli and simple enough that we can provide a self-contained
exposition. Certainly, before you hope to study moduli of higher dimensional
varieties or moduli of complexes on a surface, you better have mastered these
examples.

0.1.1 Moduli of curves

Here’s our first attempt at defining Mg:

Example 0.1.1 (Moduli set of smooth curves). The moduli set of smooth curves,
denoted as Mg, is defined as followed: the objects are smooth, connected and
projective curves of genus g over C and the equivalence relation is given by
isomorphism.

There are alternative descriptions. We could take the objects to be complex
structures on a fixed oriented compact surface Σ of genus g and the equivalence
relation to be biholomorphism. Or we could take the objects to be pairs (X,φ)
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where X is a hyberbolic surface and φ : Σ→ X is a diffeomorphism (the set of such
pairs is the Teichmüller space) and the equivalence relation is isotopy (induced
from the action of the mapping class group of Σ).

Each description hints at different additional structures that Mg should inherit.

There are many related examples parameterizing curves with additional struc-
tures as well as different choices for the equivalences relations.

Example 0.1.2 (Moduli set of plane curves). The objects here are degree d plane
curves C ⊂ P2 but there are several choices for how we could define two plane
curves C and C ′ to be equivalent:

(1) C and C ′ are equal as subschemes;

(2) C and C ′ are projectively equivalent (i.e. there is an automorphism of P2

taking C to C ′); or

(3) C and C ′ are abstractly isomorphic.

The three equivalence relations define three different moduli sets. The moduli set
(1) is naturally bijective to the projectivization P(Symd C3) of the space of degree
d homogeneous polynomials in x, y, z while the moduli set (2) is naturally bijective
to the quotient set P(Symd C3)/Aut(P2). The moduli set (3) is the subset of the
moduli set of (possibly singular) abstract curves which admit planar embeddings.

Example 0.1.3 (Moduli set of curves with level n structure). The objects are
smooth, connected and projective curves C of genus g over C together with a
basis (α1, . . . , αg, β1, . . . , βg) of H1(C,Z/nZ) such that the intersection pairing
is symplectic. We say that (C,αi, βi) ∼ (C ′, α′i, β

′
i) if there is an isomorphism

C → C ′ taking αi and βi to α′i and β′i.

A rational function f/g on a curve C defines a map C → P1 given by x 7→
[f(x), g(x)]. Visualizing a curve as a cover of P1 is extremely instructive providing
a handle to its geometry. Likewise it is instructive to consider the moduli of such
covers.

Example 0.1.4 (Moduli of branched covers). We define the Hurwitz moduli set
Hurd,g where an object is a smooth, connected and projective curve of genus
g together with a finite morphisms f : C → P1 of degree d, and we declare

(C
f−→ P1) ∼ (C ′

f ′−→ P1) if there is an isomorphism α : C → C ′ over P1 (i.e.
f ′ = f ◦ α). By Riemann–Hurwitz, any such map C → P1 has 2d + 2g − 2
branch points. Conversely, given a general collection of 2d+ 2g − 2 points of P1,
there exists a genus g curve C and a map C → P1 branched over precisely these
points. In fact there are only finitely many such covers C → P1 as any cover is
uniquely determined by the ramification type over the branched points and the
finite number of permutations specifying how the unramified covering over the
complement of the branched locus is obtained by gluing trivial coverings. In other
words, the map Hurd,g → Sym2d+2g−2 P1, assigning a cover to its branched points,
has dense image and finite fibers.

Likewise, for a fixed curve C, we could consider the moduli set Hurd,C pa-
rameterizing degree d covers C → P1 where the equivalence relation is equality.
There is a map Hurd,g → Mg defined by (C → P1) 7→ C, and the fiber over a
curve C is precisely Hurd,C . Equivalently, Hurd,C can be described as parame-
terizing line bundles L on C together with linearly independent sections s1, s2

where (L, s1, s2) ∼ (L′, s′1, s
′
2) if there exists an isomorphism α : L→ L′ such that

s′i = α(si).
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Application: number of moduli of Mg

Even before we attempt to give Mg the structure of a variety so that in particular
its dimension makes sense, for g ≥ 2 we can use a parameter count to determine
the number of moduli of Mg or in modern terminology the dimension of the local
deformation spaces. Historically Riemann computed the number of moduli in
the mid 19th century (in fact using several different methods) well before it was
known that Mg is a variety. Following [Rie57], the main idea is to compute the
number of moduli of Hurd,g in two different ways using the diagram

Hurd,C
� � //

{{

Hurd,g

zz

finite fibers

&&

{C} �
�

//� � // Mg Sym2d+2g−2 P1

(0.1.1)

We first compute the number of moduli of Hurd,C and we might as well assume
that d is sufficiently large (or explicitly d > 2g). For a fixed curve C, a degree d map
f : C → P1 is determined by an effective divisor D := f−1(0) =

∑
i pi ∈ Symd C

and a section t ∈ H0(C,O(D)) (so that f(p) = [s(p), t(p)] where s ∈ Γ(C,O(D))
defines D). Using that H1(C,O(D)) = H0(C,O(KC −D)) = 0, Riemann–Roch
implies that h0(O(D)) = d− g + 1. Thus the number of moduli of Hurd,C is the
sum of the number of parameters determining D and the section t

# of moduli of Hurd,C = d+ (d− g + 1) = 2d− g + 1.

Using (0.1.1), we compute that

# of moduli of Mg = # of moduli of Hurd,g −# of moduli of Hurd,C

= # of moduli of Sym2d+2g−2 P1 −# of moduli of Hurd,C

= (2d+ 2g − 2)− (2d− g + 1)

= 3g − 3.

One goal of these notes is to put this calculation on a more solid footing. The
interested reader may wish to consult [GH78, pg. 255-257] or [Mir95, pg. 211-215]
for further discussion on the number of moduli of Mg, or [AJP16] for a historical
background of Riemann’s computations.

0.1.2 Moduli of vector bundles

The moduli of vector bundles on a fixed curve provides our second primary example
of a moduli set:

Example 0.1.5 (Moduli set of vector bundles on a curve). Let C be a fixed
smooth, connected and projective curve over C, and fix integers r ≥ 0 and d. The
objects of interest are vector bundles E (i.e. locally free OC-modules of finite
rank) of rank r and degree d, and the equivalence relation is isomorphism.

There are alternative descriptions. If V is a fixed C∞-vector bundle V on
C, we can take the objects to be connections on V and the equivalence relation
to be gauge equivalence. Or we can take the objects to be representations
π1(C)→ GLn(C) of the fundamental group π1(C) and declare two representations
to be equivalent if they have the same dimension n and are conjugate under an
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element of GLn(C). This last description uses the observation that a vector bundle
induces a monodromy representation of π1(C) and conversely that a representation

V of π1(C) induces a vector bundle (C̃ × V )/π1(C) on C, where C̃ denotes the
universal cover of C.

Specializing to the rank one case is a model for the general case: the moduli
set Picd(C) of line bundles on C of degree d is identified (non-canonically) with
the abelian variety H1(C,OC)/H1(C,Z) by means of the cohomology of the
exponential exact sequence

H1(C,Z) // H1(C,OC) // Pic(C)

L 7→ deg(L)

// H2(C,Z) // 0

There is a group structure on Pic0(C) corresponding to the tensor product of line
bundles.

Example 0.1.6 (Moduli of vector bundles on P1). Since all vector bundles on
A1 are trivial, a vector bundle of rank n on P1 is described by an element of
GLn(k[x]x) specifying how trivial vector bundles on {x 6= 0} and {y 6= 0} are
glued. We can thus describe this moduli set by taking the objects to be elements
of GLn(k[x]x) where two elements g and g′ are declared equivalent if there exists
α ∈ GLn(k[x]) and β ∈ GLn(k[1/x]) (i.e. automorphisms of the trivial vector
bundles on {x 6= 0} and {y 6= 0}) such that g′ = αgβ.

The Birkhoff–Grothendieck theorem asserts that any vector bundle E on P1 is
isomorphic to O(a1)⊕ · · · ⊕O(ar) for unique integers a1 ≤ · · · ≤ ar.1 This implies
that the moduli set of degree d vector bundles of rank r on P1 is bijective to the
set of increasing tuples (a1, . . . , ar) ∈ Zr of integers with

∑
i ai = d. One would

be mistaken though to think that the moduli space of vector bundles on P1 with
fixed rank and degree is discrete. For instance, if d = 0 and r = 2, the group of
extensions

Ext1(OP1(1),OP1(−1)) = H1(P1,OP1(−2)) = H0(P1,OP1) = C

is one-dimensional and the universal extension (see Example 0.4.21) is a vector
bundle E on P1 × A1 such that E|P1×{t} is the non-trivial extension OP1 ⊕ OP1

for t 6= 0 and the trivial extension OP1(−1)⊕ OP1(1) for t = 0. This shows that
OP1 ⊕ OP1 and OP1(−1)⊕ OP1(1) should be in the same connected component of
the moduli space.

0.1.3 Wait—why are we just defining sets?

It is indeed a bit silly to define these moduli spaces as sets. After all, any
two complex projective varieties are bijective so we should be demanding a lot
more structure than a variety whose points are in bijective correspondence with
isomorphism classes. However, spelling out what properties we desire of the moduli
space is by no means easy. What we would really like is a quasi-projective variety

1Birkhoff proved this in 1909 using linear algebra by explicitly showing that an element
GLn(k[x]x) can be multiplied on the left and right by elements of GLn(k[x]) and GLn(k[1/x])
to be a diagonal matrix diag(xa1 , . . . , xar ) [Bir09] while Grothendieck proved this in 1957 via
induction and cohomology by exhibiting a line subbundle O(a) ⊂ E such that the corresponding
short exact sequence splits [Gro57].
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Mg with a universal family Ug →Mg such that the fiber of a point [C] ∈Mg is
precisely that curve. This is where the difficulty lies—automorphisms of curves
obstruct the existence of such a family—and this is the main reason we want to
expand our notion of a geometric space from schemes to algebraic stacks. Algebraic
stacks provide a nice approach ensuring the existence of a universal family but it
is by no means the only approach.

Historically, it was not clear what structure Mg should have. Riemann in-
troduced the word ‘Mannigfaltigkeiten’ (or ‘manifoldness’) but did not specify
what this means–complex manifolds were only introduced in the 1940s following
Teichmüller, Chern and Weil. The first claim that Mg exists as an algebraic variety
was perhaps due to Weil in [Wei58]: “As for Mg there is virtually no doubt that it
can be provided with the structure of an algebraic variety.” Grothendieck, aware
that the functor of smooth families of curves was not representable, studied the
functor of smooth families of curves with level structure r ≥ 3 [Gro61]. While he
could show representability, he struggled to show quasi-projectivity. It was only
later that Mumford proved that Mg is a quasi-projective variety, an accomplish-
ment for which he was awarded the Field Medal in 1974, by introducing and then
applying Geometric Invariant Theory (GIT) to construct Mg as a quotient [GIT].
For further historical background, we recommend [JP13], [AJP16] and [Kol18].

In these notes, we take a similar approach to Mumford’s original construction
and integrate later influential results due to Deligne, Kollár, Mumford and others
such as the seminal paper [DM69] which simultaneously introduced stable curves
and stacks with the application of irreducibility of Mg in any characteristic. In this
chapter, we motivate our approach by gradually building in additional structure:
first as a groupoid (Section 0.3), then as a presheaf (i.e. contravariant functor)
(Section 0.4), then as a stack (Section 0.7) and then ultimately as a projective
variety (Section 0.9).

One of the challenges of learning moduli stacks is that it requires simultaneously
extending the theory of schemes in several orthogonal directions including:

(1) the functorial approach: thinking of a scheme X not as topological space
with a sheaf of rings but rather in terms of the functor Sch→ Sets defined
by T 7→ Mor(T,X). For moduli problems, this means specifying not just
objects but families of objects; and

(2) the groupoid approach: rather than specifying just the points we also specify
their symmetries. For moduli problems, this means specifying not just the
objects but their automorphism groups.
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Sets

Topological
spaces

Functors or

presheaves on Sch

Ringed spaces

Schemes Algebraic spaces

Sheaves on SchÉt

Groupoids

Prestacks over Sch

Stacks over SchÉt

Deligne–Mumford
stacks

Algebraic
stacks

Figure 1: Schematic diagram featuring algebro-geometric enrichments of sets and
groupoids where arrows indicate additional geometric conditions.

0.2 Toy example: moduli of triangles

Before we dive deeper into the moduli of curves or vector bundles, we will study
the simple yet surprisingly fruitful example of the moduli of triangles which is easy
both to visualize and construct. In fact, we present several variants of the moduli
of triangles that highlight various concepts in moduli theory. The moduli spaces
of labelled triangles and labelled triangles up to similarity have natural functorial
descriptions and universal families while the moduli space of unlabelled triangles
does not admit a universal family due to the presence of symmetries—in exploring
this example, we are led to the concept of a moduli groupoid and ultimately to
moduli stacks. Michael Artin is attributed to remarking that you can understand
most concepts in moduli through the moduli space of triangles.

0.2.1 Labelled triangles

A labelled triangle is a triangle in R2 where the vertices are labelled with ‘1’, ‘2’
and ‘3’, and the distances of the edges are denoted as a, b, and c. We require that
triangles have non-zero area or equivalently that their vertices are not colinear.

1

2

3a

b

c

Figure 2: To keep track of the labelling, we color the edges as above.

We define the moduli set of labelled triangles M as the set of labelled triangles
where two triangles are said to be equivalent if they are the same triangle in R2

with the same vertices and same labeling. By writing (x1, y1), (x2, y2) and (x3, y3)
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as the coordinates of the labelled vertices, we obtain a bijection

M ∼=
{

(x1, y1, x2, y2, x3, y3) | det

(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)
6= 0
}
⊂ R6 (0.2.1)

with the open subset of R6 whose complement is the codimension 1 closed subset
defined by the condition that the vectors (x2, y2)− (x1, y1) and (x3, y3)− (x1, y1)
are linearly dependent.

y3

x3

Figure 3: Picture of the slice of the moduli space M where (x1, y1) = (0, 0) and
(x2, y2) = (1, 0). Triangles are described by their third vertex (x3, y3) with y3 6= 0.
We’ve drawn representative triangles for a handful of points in the x3y3− plane.

0.2.2 Labelled triangles up to similarity

We define the moduli set of labelled triangles up to similarity, denoted by M lab, by
taking the same class of objects as in the previous example—labelled triangles—but
changing the equivalence relation to label-preserving similarity.

similar not similar

Figure 4: The two triangles on the left are similar, but the third is not.

Every labelled triangle is similar to a unique labelled triangle with perimeter
a+ b+ c = 2. We have the description

M lab =

(a, b, c)

∣∣∣∣
a+ b+ c = 2
0 < a < b+ c
0 < b < a+ c
0 < c < a+ b

 . (0.2.2)

By setting c = 2− a− b, we may visualize M lab as the analytic open subset of R2

defined by pairs (a, b) satisfying 0 < a, b < 1 and a+ b > 1.
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a

b

degenerate
triangles

right triangles

isosceles

triangles

equilateral

1

1

Figure 5: M lab is the shaded area above. The pink lines represent the right
triangles defined by a2 + b2 = c2, a2 + c2 = b2 and b2 + c2 = a2, the blue lines
represent isosceles triangles defined by a = b, b = c and a = c, and the green point
is the unique equilateral triangle defined by a = b = c.

0.2.3 Unlabelled triangles up to similarity

We now turn to the moduli of unlabelled triangles up to similarity, which reveals
a new feature not seen in to the two above examples: symmetry!

We define the moduli set of unlabelled triangles up to similarity, denoted by
Munl, where the objects are unlabelled triangles in R2 and the equivalence relation
is symmetry. We can describe a unlabelled triangle uniquely by the ordered tuple
(a, b, c) of increasing side lengths as follows:

Munl =

{
(a, b, c)

∣∣∣∣ 0 < a ≤ b ≤ c < a+ b
a+ b+ c = 2

}
. (0.2.3)

a

b

1

degenerate
a
+
b =
c

iso
sc

el
es
a

=
b

isosceles b = c equilateral

right triangles

a2 + b2 = c2
1/2

1/2 2/3

2/3

Figure 6: Picture of Munl where c = 2− a− b.
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The isosceles triangles with a = b or b = c and the equilateral triangle with
a = b = c have symmetry groups of Z/2 and S3, respectively. This is unfortunately
not encoded into our description Munl above. However, we can identify Munl

as the quotient M lab/S3 of the moduli set of labelled triangles up to similarity
modulo the natural action of S3 on the labellings. Under this action, the stabilizers
of isosceles and equilateral triangles are precisely their symmetry groups Z/2 and
S3. The action of S3 on the complement of the set of isosceles and equilateral
triangles is free.

0.3 Moduli groupoids

We now change our perspective: rather than specifying when two objects are
identified, we specify how ! One of the most desirable properties of a moduli space is
the existence of a universal family (see §0.4.5) and the presence of automorphisms
obstructs its existence (see §0.4.6). Encoding automorphisms into our descriptions
will allow us to get around this problem. A convenient mathematical structure to
encode this information is a groupoid.

Definition 0.3.1. A groupoid is a category C where every morphism is an iso-
morphism.

0.3.1 Specifying a moduli groupoid

A moduli groupoid is described by

1. a class of certain algebraic, geometric or topological objects; and

2. a set of equivalences between two objects.

where (1) describes the objects and (2) the morphisms of a groupoid. In particular,
the moduli groupoid encodes Aut(E) for every object E.

We say that two groupoids C1 and C2 are equivalent if there is an equivalence
of categories (i.e. a fully faithful and essentially surjective functor) C1 → C2.
Moreover, we say that a groupoid C is equivalent to a set Σ if there is an equivalence
of categories C→ CΣ (where CΣ is defined in Example 0.3.2).

0.3.2 Examples

We will return to our two main examples—curves and vector bundles—in a moment
but it will be useful first to consider a number of simpler examples.

Example 0.3.2. If Σ is a set, the category CΣ, whose objects are elements of Σ
and whose morphisms consist of only the identity morphism, is a groupoid.

Example 0.3.3. If G is a group, the classifying groupoid BG of G, defined as
the category with one object ? such that Mor(?, ?) = G, is a groupoid.

Example 0.3.4. The category FB of finite sets where morphisms are bijections
is a groupoid. Observe that the isomorphism classes of FB are in bijection with N
but the groupoid FB retains the information of the permutation groups Sn.

Example 0.3.5 (Projective space). Projective space can be defined as a moduli
groupoid where the objects are lines L ⊂ An+1 through the origin and whose
morphisms consist of only the identity, or alternatively where the objects are
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non-zero linear maps x = (x0, . . . , xn) : C → Cn+1 such that there is a unique
morphism x→ x′ if im(x) = im(x′) ⊂ Cn+1 (i.e. there exists a λ ∈ C∗ such that
x′ = λx) and no morphisms otherwise.

0.3.3 Moduli groupoid of orbits

Example 0.3.6 (Moduli groupoid of orbits). Given an action of a group G on a
set X, we define the moduli groupoid of orbits [X/G]2 by taking the objects to be
all elements x ∈ X and by declaring Mor(x, x′) = {g ∈ G |x′ = gx}.

[A1/(Z/2)]

A1

Z/2

A1

[A1/Gm]

Gm {1}

0

Figure 7: Pictures of the scaling actions of Z/2 = {±1} and Gm on A1 over C with
the automorphism groups listed in blue. Note that [A1/Gm] has two isomorphism
classes of objects—0 and 1—corresponding to the two orbits—0 and A1 \ 0—such
that 0 ∈ {1} if the set A1/Gm is endowed with the quotient topology.

Exercise 0.3.7.

(1) Show that the moduli groupoid of orbits [X/G] in Example 0.3.6 is equivalent
to a set if and only if the action of G on X is free.

(2) Show that a groupoid C is equivalent to a set if and only if C → C × C is
fully faithful.

Example 0.3.8. Consider the category C with two objects x1 and x2 such that
Mor(xi, xj) = {±1} for i, j = 1, 2 where composition of morphisms is given by
multiplication. Then C is equivalent BZ/2.

1

-1

x1

1

-1

x2

1

-1

1

-1

1

-1

x
xi x

Figure 8: An equivalence of groupoids

Exercise 0.3.9. In Example 0.3.8, show that there is an equivalence of categories
inducing a bijection on objects between C and either [(Z/2)/(Z/4)] or [(Z/2)/(Z/2×
Z/2)] where the action is given by the surjections Z/4→ Z/2 or Z/2×Z/2→ Z/2.

2We use brackets to distinguish the groupoid quotient [X/G] from the set quotient X/G.
Later when G and X are enriched with more structure (e.g. an algebraic group acting on a
variety), then [X/G] will be correspondingly enriched (e.g. as an algebraic stack).
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Example 0.3.10 (Projective space as a quotient). The moduli groupoid of
projective space (Example 0.3.5) can also be described as the moduli groupoid of
orbits [(An+1 \ 0)/Gm].

We can also consider the quotient groupoid [An+1/Gm], which is equivalent to
the groupoid whose objects are (possibly zero) linear maps x = (x0, . . . , xn) : C→
Cn+1 such that Mor(x, x′) = {t ∈ C∗ |x′i = txi for all i}. We can thus view Pn as
a subgroupoid of [An+1/Gm].

Exercise 0.3.11. If a group G acts on a set X and x ∈ X is any point, there
exists a fully faithful functor BGx → [X/G]. If the action is transitive, show that
it is an equivalence.

A morphisms of groupoids C1 → C2 is simply a functor, and we define the
category MOR(C1,C2) whose objects are functors and whose morphisms are
natural transformations.

Exercise 0.3.12. If C1 and C2 are groupoids, show that MOR(C1,C2) is a
groupoid.

Exercise 0.3.13. If H and G are groups, show that there is an equivalence

MOR(BH,BG) =
⊔

φ∈Conj(H,G)

BNG(imφ)

where Conj(H,G) denotes a set of representatives of homomorphisms H → G up
to conjugation by G, and NG(imφ) denotes the normalizer of imφ in G.

Exercise 0.3.14. Provide an example of group actions of H and G on sets X
and Y and a map [X/H]→ [Y/G] of groupoids that does not arise from a group
homomorphism φ : H → G and a φ-equivariant map X → Y .

0.3.4 Moduli groupoids of curves and vector bundles

We return to the two main examples in these notes.

Example 0.3.15 (Moduli groupoid of smooth curves). In this case, the objects
are smooth, connected and projective curves of genus g over C and for two curves
C,C ′, the set of morphisms is defined as the set of isomorphisms

Mor(C,C ′) = {isomorphisms α : C
∼→ C ′}.

Example 0.3.16 (Moduli groupoid of vector bundles on a curve). Let C be a
fixed smooth, connected and projective curve over C, and fix integers r ≥ 0 and d.
The objects are vector bundles E of rank r and degree d, and the morphisms are
isomorphisms of vector bundles.

0.3.5 Moduli groupoid of unlabelled triangles up to simi-
larity

We now revisit Section 0.2.3 of the moduli set Munl of unlabelled triangles
up to similarity. We will show later that this moduli set does not admit a
natural functorial descriptions nor universal family due to presence of symmetries
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(Example 0.4.37). Since these are such desirable properties, we will pursue a work
around where we encode the symmetries into the definition.

We define the moduli groupoid of unlabelled triangles up to similarity, denoted
by Munl (note the calligraphic font), where the objects are unlabelled triangles
in R2 and where for triangles T1, T2 ⊂ R2, the set Mor(T1, T2) consists of the
symmetries σ (corresponding to the permutations of the vertices) such that T1 is
similar to σ(T2). For example, an isosceles triangle (resp. equilateral triangle) has
automorphism group Z/2 (resp. S3).

We can draw essentially the same picture as Figure 6 except we mark the
automorphisms of triangles.

a

b

1

a
+
b =
c

a
=
b

b = c

equilateral

a2 + b2 = c2

S3

Z
2

Z 2

1/2

1/2 2/3

2/3

Figure 9: Picture of the moduli groupoid Munl with non-trivial automorphism
groups labelled.

There is a functor

Munl →Munl

which is the identity on objects and collapses all morphisms to the identity. This
could be called a coarse moduli set where by forgetting some information (i.e. the
symmetry groups of isosceles and equilateral triangles), we can study the moduli
problem as a more familiar object (i.e. a set rather than groupoid).

Exercise 0.3.17. Recall that the moduli set M lab of labelled triangles up to
similarity has the description as the set of tuples (a, b, c) such that a+ b+ c = 2,
0 < a < b + c, 0 < b < a + c, and 0 < c < a + b (see from (0.2.1) ) Show that
there is a natural action of S3 on the moduli set M lab of unlabelled triangles up
to similarity and that the functor obtained by forgetting the labelling

[M lab/S3]→Munl

is an equivalence of categories.

Exercise 0.3.18. Define a moduli groupoid of oriented triangles and investigate
its relation to the moduli sets and groupoids of triangles we’ve defined above.
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0.4 Moduli functors

We now undertake the challenging task of motivating moduli functors, which
will be our approach for endowing moduli sets with the enriched structure of a
topological space or scheme. This will require a leap in abstraction that is not at
all the most intuitive, especially if you are seeing for the first time. The idea due
to Grothendieck is to study a scheme X by studying all maps to it!

It may seem that this leap made life more difficult for us: rather than just
specifying the points of a moduli space, we need to define all maps to the moduli
space. In fact, it is easier than you may expect. Let’s take Mg as an example.
If S is a scheme and f : S → Mg is a map of sets, then for every point s ∈ S,
the image f(s) ∈Mg corresponds to an isomorphism class of a curve Cs. But we
don’t want to consider arbitrary maps of sets. If Mg is enriched as a topological
space (resp. scheme), then a continuous (resp. algebraic) map f : S →Mg should
mean that the curves Cs are varying continuously (resp. algebraically). A nice
way of packaging this is via families of curves, i.e. smooth and proper morphisms
C→ S such that every fiber Cs is a curve.

s

t

S

CCs

Ct

Figure 10: A family of curves over a curve S.

This suggests we define Mg as a functor Sch→ Sets assigning a scheme S to
the set of families of curves over S.

0.4.1 Yoneda’s lemma

The fact that schemes are determined by maps into it follows from a completely
formal argument that holds in any category. If X is an object of a category C,
the contravariant functor

hX : C→ Sets, S 7→ Mor(S,X)

recovers the object X itself: this is the content of Yoneda’s lemma:
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Lemma 0.4.1 (Yoneda’s lemma). Let C be a category and X be an object. For
any contravariant functor G : C→ Sets, the map

Mor(hX , G)→ G(X), α 7→ αX(idX)

is bijective and functorial with respect to both X and G.

Remark 0.4.2. The set Mor(hX , G) consists of morphisms or natural transfor-
mations hX → G, and αX denotes the map hX(X) = Mor(X,X)→ G(X).

!
a

Warning 0.4.3. We will consistently abuse notation by conflating an element
g ∈ G(X) and the corresponding morphism hX → G, which we will often write
simply as X → G.

Exercise 0.4.4.

1. Spell out precisely what ‘functorial with respect to both X and G’ means.

2. Prove Yoneda’s lemma.

Remark 0.4.5. It is instructive to imagine constructive proofs of Yoneda’s
lemma. Here we try to explicitly recover a variety X over C from its functor
hX : Sch /C → Sets. Clearly, we can recover the closed points of X by simply
evaluating hX(SpecC). To get all points, we need to allow points whose residue
fields are extensions of C. The underlying set of X is

ΣX :=
⊔
C⊂k

hX(Spec k)/ ∼

where we say x ∈ hX(k) and x′ ∈ hX(k′) are equivalent if there is a further field
extension C ⊂ k′′ containing both k and k′ such that the images of x and x′ in
hX(k′′) are equal under the natural maps hX(k)→ hX(k′′) and hX(k′)→ hX(k′′).
Later, we will follow the same approach when defining points of algebraic spaces
and stacks (see Definition 2.2.6).

How can we recover the topological space? Here’s a tautological way: we
say a subset A ⊂ ΣX is open if there is an open immersion U ↪→ X with image
A. Here’s a better approach: we say a subset A ⊂ ΣX is open if for every map
f : S → X of schemes, the subset f−1(A) ⊂ S is open.

What about recovering the sheaf of rings OX? For an open subset U ⊂ ΣX , we
define the functions on U as continuous maps U → A1 such that for every morphism
f : S → X of schemes, the composition (as a continuous map) f−1(U)→ U → A1

is an algebraic function (i.e. corresponds to an element Γ(S, f−1(U)).

Exercise 0.4.6.

(a) Can the above argument be extended if X is non-reduced?

(b) Is it possible to explicitly recover a scheme X from its covariant functor
Sch→ Sets, S 7→ Mor(X,S)?

0.4.2 Specifying a moduli functor

Defining a moduli functor requires specifying:

(1) families of objects;

(2) when two families of objects are isomorphic; and
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(3) and how families pull back under morphisms.

In defining a moduli functor F : Sch→ Sets, then (1) and (2) specify F (S) for
a scheme S and (3) specifies the pull back F (S)→ F (S′) for maps S′ → S.

Example 0.4.7 (Moduli functor of smooth curves). A family of smooth curves
(of genus g) is a smooth, proper morphism C→ S of schemes such that for every
s ∈ S, the fiber Cs is a connected curve (of genus g). The moduli functor of smooth
curves of genus g is

FMg
: Sch→ Sets, S 7→ {families of smooth curves C→ S of genus g} / ∼,

where two families C→ S and C′ → S are equivalent if there is a S-isomorphism
C→ C′. If S′ → S is a map of schemes and C→ S is a family of curves, the pull
back is defined as the family C×S S′ → S′.

Example 0.4.8 (Moduli functor of vector bundles on a curve). Let C be a fixed
smooth, connected and projective curve over C, and fix integers r ≥ 0 and d. A
family of vector bundles (of rank r and degree d) over a scheme S is a vector
bundle E on C × S (such that for all s ∈ S, the restriction Es := E|C×Specκ(s) has
rank r and degree d on Cκ(s)). The moduli functor of vector bundles on C of rank
r and degree d is

Sch→ Sets S 7→
{

families of vector bundles E on C × S
of rank r and degree d

}
/ ∼,

where equivalence ∼ is given by isomorphism. If S′ → S is a map of schemes
and E is a vector bundle on C × S, the pull back is defined as the vector bundle
(id×f)∗E on C × S′

Example 0.4.9 (Moduli functor of orbits). Revisiting Example 0.3.6, consider an
algebraic group G acting on a scheme X. For every scheme S, the abstract group
G(S) acts on the set X(S) (in fact, giving such actions functorial in S uniquely
specifies the group action). We can consider the functor

Sch→ Sets S 7→ X(S)/G(S).

Elements of the quotient set X(S)/G(S) is our first candidate for a notion of a
family of orbits, which we will modify later.

To gain intuition of any moduli functor F : Sch → Sets, it is always useful
to plug in special test schemes. For instance, plugging in a field K should give
the K-points of the moduli problem, plugging in C[ε]/(ε2) should give pairs of
C-points together with tangent vectors, and plugging in a curve (e.g. a DVR)
gives families of objects over the curve.

In some cases, even though you may know exactly what objects you want to
parameterize, it is not always clear how to define families of objects. In fact, there
may be several candidates for families corresponding to different scheme structures
on the same topological space. This is the case for instance for the moduli of
higher dimensional varieties.

0.4.3 Representable functors

Definition 0.4.10. We say that a functor F : Sch→ Sets is representable by a
scheme if there exists a scheme X and an isomorphism of functors F

∼→ hX .

22



We would like to know when a given a moduli functor F is representable by a
scheme. Unfortunately, each of the functors considered in Examples 0.4.7 to 0.4.9
is not representable; see Section 0.4.6. We begin though by considering a few
simpler moduli functors which are in fact representable.

Theorem 0.4.11 (Projective space as a functor). [Har77, Thm. II.7.1] There is
a functorial bijection

Mor(S,PnZ) ∼=
{(
L, (s0, . . . , sn)

) ∣∣∣∣ L is a line bundle on S globally generated
by sections s0, . . . , sn ∈ Γ(S,L)

}
/ ∼,

where (L, (si)) ∼ (L′, (s′i)) if there exists t ∈ Γ(S,OS)∗ such that s′i = tsi for all i.

In other words, the theorem states the functor defined on the right is repre-
sentable by the scheme PnZ. The condition that the sections si are globally generated
translates to the condition that for every x ∈ S, at least one section si(x) ∈ L⊗κ(t)
is non-zero, or equivalently to the surjectivity of (s0, . . . , sn) : On+1

S → L. This
perspective of viewing projective space as parameterizing rank 1 quotients of the
trivial bundle will be generalized when we study the Grassmanian in Section 0.5
and even further generalized when we study the Hilbert and Quot schemes. For
now, we mention the following mild generalization:

Definition 0.4.12. If S is a scheme and E is a vector bundle on S, we define the
contravariant functor

P(E) : Sch /S → Sets

(T
f−→ S) 7→ {quotients f∗E

q
� L where L is a line bundle on T}/ ∼

where [f∗E
q
� L] ∼ [f∗E

q′

� L′] if there is an isomorphism α : L → L′ with
q′ = α′ ◦ q′.

Observe that there is an isomorphism PnZ ∼= P(On+1
SpecZ) of functors.

Exercise 0.4.13. Show that P(E) is representable by the usual projectivization
of a vector bundle.

Exercise 0.4.14. Provide functorial descriptions of:

(a) An \ 0; and

(b) the blowup Blp Pn of Pn at a point.

Exercise 0.4.15. Let X be a scheme, and let E and G be OX -modules. The
group Ext1(G,E) classifies extensions 0 → E → F → G → 0 of OX -modules
where two extensions are identified if there is an isomorphism of short exact
sequences inducing the identity map on E and G [Har77, Exer. III.6.1].

Show that the affine scheme Ext1
OX

(G,E) := Spec Sym Ext1(G,E)∨ represents
the functor

Sch→ Sets, T 7→ Ext1
OX×T

(p∗1G, p
∗
1E)

where p1 : X × T → X.
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0.4.4 Working with functors

We can form a category Fun(Sch,Sets) whose objects are contravariant functors
F : Sch→ Sets and whose morphisms are natural transformations. This category

has fiber products: given a morphism F
α−→ G and G′

β−→ G, we define

F ×G G′ : Sch→ Sets

S 7→ {(a, b) ∈ F (S)×G′(S) |αS(a) = βS(b)}

Exercise 0.4.16. Show that that F ×G G′ satisfies the universal property for
fiber products in Fun(Sch,Sets).

Definition 0.4.17.

(1) We say that a morphism F → G of contravariant functors is representable by
schemes if for any map S → G from a scheme S, the fiber product F ×G S
is representable by a scheme.

(2) We say that a morphism F → G is an open immersion or that a subfunctor
F ⊂ G is open if for any morphism S → G from a scheme S, F ×G S is
representable by an open subscheme of S.

(3) We say that a set of open subfunctors {Fi} is a Zariski-open cover of F if for
any morphism S → F from a scheme S, {Fi ×F S} is a Zariski-open cover
of S.

Each of these conditions can be checked on affine schemes

By appealing to Yoneda’s lemma (Lemma 0.4.1), one can define a scheme as
a functor F : Sch→ Sets such that there exists a Zariski-open cover {Fi} where
each Fi is representable by an affine scheme. Furthermore, this perspective also
gives us a recipe for checking that a given functor F is representable by a scheme:
simply find a Zariski-open cover {Fi} where each Fi is representable.

Exercise 0.4.18. Show that a scheme can be equivalently defined as a contravari-
ant functor F : AffSch → Sets on the category of affine schemes (or covariant
functor on the category of rings) such that there is Zariski-open cover {Fi} where
each Fi is representable by an affine scheme.

Replacing Zariski-opens with étale-opens (see Section 0.6) leads to the definition
of an algebraic space (Definition 2.1.2).

0.4.5 Universal families

Definition 0.4.19. Let F : Sch → Sets be a moduli functor representable by
a scheme X via an isomorphism α : F

∼→ hX of functors. The universal family
of F is the object U ∈ F (X) corresponding under α to the identity morphism
idX ∈ hX(X) = Mor(X,X).

Suspend your skepticism for a moment and suppose that there actually ex-
ists a scheme Mg representing the moduli functor of smooth curves of genus g
(Example 0.4.7). Then corresponding to the identity map Mg →Mg is a family
of genus g curves Ug → Mg satisfying the following universal property: for any
smooth family of curves C→ S over a scheme S, there is a unique map S →Mg
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Mg

Ug
C

D

[C]

[D]

Figure 11: Visualization of a (non-existent) universal family over Mg.

and cartesian diagram
C //

��

Ug

��

S // Mg.

�

The map S →Mg sends a point s ∈ S to the curve [Cs] ∈Mg.

Example 0.4.20. The universal family of the moduli functor of projective
space (Theorem 0.4.11) is the line bundle O(1) on Pn together with the sec-
tions x0, . . . , xn ∈ Γ(Pn,O(1)).

Example 0.4.21 (Universal extensions). If X is a scheme with vector bundles E
and G, the universal family for the moduli functor Ext1

OX
(G,E) of extensions of

Exercise 0.4.15 is the extension 0 → p∗1G → F → p∗1E → 0 of vector bundle on
X × Ext1

OX
(G,E). The restriction of this extension to X × {t} is the extension

corresponding to t ∈ Ext1(G,E).

Example 0.4.22 (Classifying spaces in algebraic topology). LetG be a topological
group and Toppara be the category of paracompact topological spaces where
morphisms are defined up to homotopy. It is a theorem in algebraic topology that
the functor

Toppara → Sets, S 7→ {principal G-bundles P → S}/ ∼,

where ∼ denotes isomorphism, is represented by a topological space, which we
denote by BG and call the classifying space. The universal family is usually
denoted by EG→ BG.

25



For example, the classifying space BC∗ is the infinite-dimensional manifold
CP∞; in algebraic geometry however the classifying stack BGm,C is an algebraic
stack of dimension −1.

0.4.6 Non-representability of some moduli functors

Suppose F : Sch /C → Sets is a moduli functor parameterizing isomorphism
classes of objects, and let’s suppose that there is an object E over SpecC with a
non-trivial automorphism α. This can obstruct the representability of F as the
automorphism α can sometimes be used to construct non-trivial families: namely,
if S = S1 ∪ S2 is an open cover of a scheme S, we can glue the trivial families
E×S1 and E×S2 using α to obtain a family E over S which might be non-trivial.

Proposition 0.4.23. Let F : Sch /C→ Sets be a moduli functor parameterizing
isomorphism classes of objects. Suppose there is a family of objects E ∈ F (S)
over a variety S. For a point s ∈ S(C), denote by Es the pull back of E along
s : SpecC→ S. If

(a) the fibers Es are isomorphic for s ∈ S(C); and

(b) the family E is non-trivial, i.e. is not equal to the pull back of an object
E ∈ F (C) along the structure map S → SpecC,

then F is not representable.

Proof. Suppose by way of contradiction that F is represented by a scheme X.
By condition (a), the restriction E := Es is independent of s ∈ S(C) and defines
a unique point x ∈ X(C). As S is reduced, the map S → X factors as S →
SpecC x−→ X. Thus both the family E and the trivial family correspond to the
same constant map S → SpecC x−→ X, contradicting condition (b).

Example 0.4.24 (Moduli of vector bundles over a point). Consider the moduli
functor F : Sch /C→ Sets assigning a scheme S to the set of isomorphism classes
of vector bundles over S. Note that F (SpecC) =

⊔
r≥0{OrSpecC}. Since we know

there exist non-trivial vector bundles (of any positive rank), we see that F cannot
be representable by a scheme.

Exercise 0.4.25. Show that the moduli functor of vector bundles over a curve
C is not representable.

Example 0.4.26 (Moduli of elliptic curves). An elliptic curve over a field K is a
pair (E,P ) where E is a smooth, geometrically connected (i.e. EK is connected),
and projective curve E of genus 1 and p ∈ E(K). A family of elliptic curves over
a scheme S is a pair (E→ S, σ) where E→ S is smooth proper morphism with a
section σ : S → E such that for every s ∈ S, the fiber (Es, σ(s)) is an elliptic curve
over the residue field κ(s). The moduli functor of elliptic curves is

FM1,1 : Sch→ Sets

S 7→ {families (E→ S, σ) of elliptic curves } / ∼,

where (E→ S, σ) ∼ (E′ → S, σ′) if there is a S-isomorphism α : E→ E′ compatible
with the sections (i.e. σ′ = α ◦ σ).
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Exercise 0.4.27. Consider the family of elliptic curves defined over A1 \ 0 (with
coordinate t) by

E := V (y2z − x3 + tz3) �
�

//

��

(A1 \ 0)× P2

A1 \ 0

with section σ : A1 \ 0 → E given by t 7→ [0, 1, 0]. Show that (E → A1 \ 0, σ)
satisfies (a) and (b) in Proposition 0.4.23.

Example 0.4.28 (Moduli functor of smooth curves). Let C be a curve with a
non-trivial automorphism α ∈ Aut(C) and let N be a the nodal cubic curve which
we can think of as P1 after glueing 0 and∞. We can construct a family C→ N by
taking the trivial family π : C×P1 → P1 and gluing the fiber π−1(0) with π−1(∞)
via the automorphism α.

0 ∞

α

Figure 12: Family of curves over the nodal cubic obtaining by gluing the fibers
over 0 and ∞ of the trivial family over P1 via α. (It would be more illustrative to
draw a Mobius band as the family of curves over the nodal cubic.)

To show that the moduli functor of curves is not representable, it suffices to
show that C→ N is non-trivial.

Exercise 0.4.29. Show that C→ N is a non-trivial family.

0.4.7 Schemes are sheaves

If F : Sch → Sets is representable by a scheme X (i.e. F = Mor(−, X)), then
F is necessarily a sheaf in the big Zariski topology, that is, for any scheme S,
the presheaf on the Zariski topology of S defined by assigning to an open subset
U ⊂ S the set F (U) is a sheaf on the Zariski topology of S. This is simply stating
that morphisms into the fixed scheme X glue uniquely.

This therefore gives a potential obstruction to the representability of a given
moduli functor F : if F is not a sheaf in the big Zariski topology, then F can not
be representable.
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Example 0.4.30. Consider the functor

F : Sch→ Sets, S 7→ {quotients q : OnS � OkS}/ ∼

where quotients q and q′ are identified if there exists an automorphism Ψ of OkS
such that q′ = Ψ ◦ q or equivalently if ker(q) = ker(q′).

If F were representable by a scheme, then since morphisms glue in the Zariski
topology, sections of F should also glue. But it easy to see that this fails:
specializing to k = 1 and S = P1 (with coordinates x and y), consider the cover
S1 = {y 6= 0} = SpecC[xy ] and S2 = {x 6= 0} = SpecC[ yx ]. The quotients

[(1,
x

y
, 0, · · · , 0) : O⊕nS1

→ OS1
] ∈ F (S1) and [(

y

x
, 1, 0, · · · , 0) : O⊕nS2

→ OS2
] ∈ F (S2)

become equivalent in F (S1 ∩ S2) under the automorphism Ψ = y
x of OS1∩S2 and

do not glue to a section of F (P1). Of course, the issue is that the structure sheaves
on S1 and S2 glue to OP1(1)—not OP1—under Ψ.

The above functor can be modified to define the Grassmanian functor (Def-
inition 0.5.1) where instead of parameterizing free rank k quotients of OnS , we
parameterize locally free quotients.

Example 0.4.31. In Example 0.4.9, we introduced the functor S 7→ X(S)/G(S)
associated to an action of an algebraic group G on a scheme X. Even in simple
examples of free actions, this functor is not a sheaf; see Exercise 0.4.32

Exercise 0.4.32. Consider Gm acting on An+1 \ 0 with the usual scaling action.
Show that the functor S 7→ (An+1 \ 0)(S)/Gm(S) is not a sheaf.

Remark 0.4.33. The obstruction of representability due to non-sheafiness is
intimately related to the existence of automorphisms. Indeed, the presence of a
non-trivial automorphism often implies that a given moduli functor is not a sheaf.

Consider the moduli functor FMg
of smooth curves from Example 0.4.7. Let

{Si} be a Zariski-open covering of a scheme S. Suppose we have families of
smooth curves Ci → Si and isomorphisms αij : Ci|Sij

∼→ Cj |Sij on the intersection
Sij := Si ∩ Sj . The requirement that FMg

be a sheaf (when restricted to the
Zariski topology on S) implies that the families Ci → Si glue uniquely to a family
of curves C → S. However, we have not required the isomorphisms αi to be
compatible on the triple intersection (i.e. αij |Sijk ◦ αjk|Sijk = αik|Sijk) as is usual
with gluing of schemes ([Har77, Exercise II.2.12]). For this reason, FMg

fails to be
a sheaf.

Exercise 0.4.34. Show that the moduli functors of smooth curves and elliptic
curves are not sheaves by explicitly exhibiting a scheme S, an open cover {Si}
and families of curves over Si that do not glue to a family over S.

0.4.8 Moduli functors of triangles

We will now attempt to define moduli functors of labelled and unlabelled triangles.
Since we are primarily interested in constructing these moduli spaces as topological
spaces, we will consider the category Top of topological spaces and consider
representability as a topological space.
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Example 0.4.35 (Labelled triangles). If S is a topological space, then we define
a family of labelled triangles over S as a tuple (T, σ1, σ2, σ3) where T ⊂ S × R2

is a closed subset and σi : S → T are continuous sections for i = 1, 2, 3 of the
projection T → S such that for every s ∈ S, the subset Ts ⊂ R2 is a labelled
triangle with vertices σ1(s), σ2(s), and σ3(s).

S

T ⊂ S × R2

Figure 13: A family of labelled triangles over a curve.

Likewise, we define the moduli functor of labelled triangles as

FM : Top→ Sets, S 7→ {families (T, σ1, σ2, σ3) of labelled triangles}

We claim this functor is represented by the topological space of full rank 2 × 3
matrices

M :=
{

(x1, y1, x2, y2, x3, y3) | det

(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)
6= 0
}
⊂ R6.

There is a bijection of the set FM (pt) of labelled triangles and M given by taking
the coordinates of the vertices. It is easy to see that this bijection can be promoted
to an equivalence of functors FM

∼→ hM , i.e. to a functorial bijection

FM (S)
∼→ Mor(S,M)

for each S ∈ Top, which assigns a family (T, σi) of labelled triangles to the map
S →M where s 7→ (σ1(s), σ2(s), σ3(s)) ∈ T.

Since FM is representable by the topological space M , we have a universal
family Tuniv ⊂M × R2 with σ1, σ2, σ3 : M → Tuniv. This universal family can be
visualized over the locus (x1, y1) = (0, 0) and (x2, y2) = (1, 0) by taking Figure 3
and drawing the triangles above each point rather than at each point.

Example 0.4.36 (Labelled triangles up to similarity). We say two families
(T, (σi)) and (T′, (σ′i)) of labelled triangles over S ∈ Top are similar if for each
s ∈ S, the labelled triangles Ts and T′s are similar. We define the functor

FM lab : Top→ Sets, S 7→ {families T ⊂ S × R2 of labelled triangles}/ ∼
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b = 1
a = 1

a+ b = 1

-

(0, 1, 1) (1, 0, 1)

(1, 1, 0)

M lab

a
c

b

Figure 14: The universal family U lab →M lab of labelled triangles up to similarity.

where ∼ denotes similarity. Recall from (0.2.2) that the assignment of a triangle
to its side lengths yields a bijection between FM lab and

M lab =

(a, b, c)

∣∣∣∣
a+ b+ c = 2
0 < a < b+ c
0 < b < a+ c
0 < c < a+ b

 ;

As in the previous example, this extends to an isomorphism of functors FM lab →
Mor(−,M lab), showing that the topological space M lab represents the functor
FM lab .

Example 0.4.37 (Unlabelled triangles up to similarity). In Examples 0.4.35
and 0.4.36, we considered the moduli functor of labelled triangles up to isomorphism
and similarity, respectively. We now consider the unlabelled version.

If S is a topological space, a family of triangles is a closed subset T ⊂ S × R2

such that for all s ∈ S, the fiber Ts ⊂ R2 is a triangle. We say two families T,T′

over S are similar if the fibers Ts and T′s are similar for all s ∈ S.
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We define the functor

F : Top→ Sets, S 7→ {families T ⊂ S × R2 of triangles}/ ∼

where ∼ denotes similarity.

This functor is not representable as there are non-trivial families of triangles
T such that all fibers are similar triangles (Proposition 0.4.23). For instance, we
construct a non-trivial family of triangles over S1 by gluing two trivial families
via a symmetry of an equilateral triangle.

Figure 15: A trivial (left) and non-trivial (right) family of equilateral tri-
angles. Image taken from a video produced by Jonathan Wise: see http:

//math.colorado.edu/~jonathan.wise/visual/moduli/index.html.

0.5 Illustrating example: Grassmanian

As an illustration of the utility of the functorial approach, we introduce the Grass-
manian functor Gr(k, n) over Z (Definition 0.5.1) and show that it is representable
by a projective scheme (Proposition 0.5.7). Since the Grassmanian parameterizes
subspaces V of a fixed vector space, this moduli problem does not have non-
trivial symmetries, i.e. automorphisms, and thus we do not need the language
of groupoids or stacks. This also provides a warmup to the representability and
projectivity of Hilbert and Quot schemes (Chapter D).

0.5.1 Functorial definition

The points of the Grassmanian Gr(k, n) are k-dimensional quotients of n-dimensional
space.3 But what are families of k-dimensional quotients over a scheme S? As
motivated by Example 0.4.30, they should be locally free quotients of OnS :

Definition 0.5.1. The Grassmanian functor is

Gr(k, n) : Sch→ Sets

S 7→
{[

OnS � Q
] ∣∣∣∣ Q is a vector bundle of rank k

}
/ ∼

where [OnS
q
� Q

]
∼ [OnS

q′

� Q′
]

if there exists an isomorphism Ψ: Q
∼→ Q′ such

3Alternatively, the points could be considered as k-dimensional subspaces but in these notes,
we will follow Grothendieck’s convention of quotients.
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that
OnS

q
//

q′
  

Q

Ψ

��

Q′

commutes (i.e. q′ = Ψ ◦ q) or equivalently ker(q) = ker(q′).

Pullbacks are defined in the obvious manner. Observe that if k = 1, then
Gr(1, n) ∼= Pn−1.

0.5.2 Representability by a scheme

In this subsection, we show that Gr(k, n) is representable by a scheme (Propo-
sition 0.5.4). Our strategy will be to find a Zariski-open cover of Gr(k, n) by
representable functors; see Definition 0.4.17. Given a subset I ⊂ {1, . . . , n} of size
k, let Gr(k, n)I ⊂ Gr(k, n) be the subfunctor where for a scheme S, Gr(k, n)I(S)

is the subset of Gr(k, n)(S) consisting of surjections OnS
q
� Q such that the

composition

OIS
eI−→ OnS

q
� Q

is an isomorphism, where eI is the canonical inclusion. When there is no possible
ambiguity, we set GrI := Gr(k, n)I .

Lemma 0.5.2. For each I ⊂ {1, . . . , n} of size k, the functor GrI is representable

by affine space Ak×(n−k)
Z

Proof. We may assume that I = {1, . . . , k}. We define a map of functors
φ : Ak×(n−k) → GrI where over a scheme S, a k× (n− k) matrix f = {fi,j} 1≤i≤n

1≤j≤k
of global functions on S is mapped to the quotient

1 f1,1 · · · f1,n−k
1 f2,1 · · · f2,n−k

. . .
...

1 fk,1 · · · fk,n−k

 : OnS → OkS . (0.5.1)

The injectivity of φ(S) : Ak×(n−k)(S) → GrI(S) is clear. To see surjectivity,

let [OnS
q−→ Q] ∈ GrI(S) where by definition OIS

eI−→ OnS
q
� Q is an isomorphism.

The tautological commutative diagram

OnS
q
//

(q◦eI)−1◦q   

Q

(q◦eI)−1

��

OIS

shows that [OnS
q
� Q] = [OnS

(q◦eI)−1◦q
� OIS ] ∈ Gr(k, n)(S). Since the composition

OIS
eI−→ OnS

(q◦eI)−1

� OIS is the identity, the k × n matrix corresponding to (q ◦
eI)
−1 ◦ q has the same form as (0.5.1) for functions fi,j ∈ Γ(S,OS) and therefore

φ(S)({fi,j}) = [OnS
q
� Q] ∈ Gr(k, n)(S).
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Lemma 0.5.3. {GrI} is an open cover of Gr(k, n) where I ranges over all subsets
of size k.

Proof. For a fixed subset I, we first show that GrI ⊂ Gr(k, n) is an open subfunctor.
To this end, we consider a scheme S and a morphism S → Gr(k, n) corresponding to
a quotient q : OnS → Q. Let C denote the cokernel of the composition q ◦ eI : OIS →
Q. Notice that if C = 0, then q is an isomorphism. The fiber product

FI //

��

S

[OnS
q
�Q]

��

GrI // Gr(k, n)

�

of functors is representable by the open subscheme U = S \ Supp(C) (the reader
is encouraged to verify this claim).

To check the surjectivity of
⊔
I FI → S, let s ∈ S be a point. Since κ(s)n

q⊗κ(s)
�

Q⊗κ(s) is a surjection of vector spaces, there is a non-zero k×k minor, given by a

subset I, of the k× n matrix q⊗ κ(s). This implies that [κ(s)n
q⊗κ(s)
� Q⊗ κ(s)] ∈

FI(κ(s)).

Lemmas 0.5.2 and 0.5.3 together imply:

Proposition 0.5.4. The functor Gr(k, n) is representable by a scheme.

!
a

Warning 0.5.5. We will abuse notation by denoting both the functor and
the scheme as Gr(k, n).

Exercise 0.5.6. Use the valuative criterion of properness to show that Gr(k, n)→
SpecZ is proper.

0.5.3 Projectivity of the Grassmanian

We show that the Grassmanian scheme Gr(k, n) is projective (Proposition 0.5.7)
by explicitly providing a projective embedding using the functorial approach. The
Plücker embedding is the map of functors

P : Gr(k, n)→ P(

k∧
OnSpecZ)

defined over a scheme S by mapping a rank k quotient OnS
q
� Q to the correspond-

ing rank 1 quotient
∧k

OnS →
∧k

Q. As both sides are representable by schemes,
the morphism P corresponds to a morphism of schemes via Yoneda’s lemma.

Proposition 0.5.7. The morphism P : Gr(k, n)→ P(
∧k

OnSpecZ) of schemes is
a closed immersion. In particular, Gr(k, n) is a projective scheme.

Proof. Let I ⊂ {1, . . . , n} be a subset which corresponds to a coordinate xI on

P(
∧k

OnSpecZ). Let P(
∧k

OnSpecZ)I be the open locus where xI 6= 0. Viewing
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P(
∧k

OnSpecZ) ∼= Gr(1,
(
n
k

)
), then P(

∧k
OnSpecZ)I ∼= Gr(1,

(
n
k

)
){I} (viewing {I} as

the corresponding subset of {1, . . . ,
(
n
k

)
} of size 1). Since

Gr(k, n)I
PI //

��

P(
∧k

OnSpecZ)I

��

Gr(k, n)
P // P(

∧k
OnSpecZ)

�

is a cartesian diagram of functors, it suffices to show that PI is a closed immersion.
Under the isomorphisms of Lemma 0.5.2, PI corresponds to the map

Ak×(n−k)
Z → A(nk)−1

Z

assigning a k × (n − k) matrix A = {ai,j} to the element of A(nk)−1

Z whose Jth
coordinate, where J ⊂ {1, . . . , n} is a subset of length k distinct from I, is the
{1, . . . , k} × J minor of the k × n block matrix

1 a1,1 · · · a1,n−k
1 a2,1 · · · a2,n−k

. . .
...

1 ak,1 · · · ak,n−k


(of the same form as (0.5.1)). The coordinate xi,j on Ak×(n−k)

Z is the pull back of

the coordinate corresponding to the subset {1, · · · , î, · · · , k, k+ j} (see Figure 16).
This shows that the corresponding ring map is surjective thereby establishing that
PI is a closed immersion.

Figure 16: The minor obtained by removing the ith column and all columns
k + 1, . . . , n other than k + j is precisely ai,j .

Exercise 0.5.8. For a field K, let Gr(k, n)K be the K-scheme Gr(k, n) ×Z K,

and p = [Kn
q
� Q] be a quotient with kernel K = ker(q). Show that there is a

natural bijection of the tangent space

Tp Gr(k, n)K
∼→ Hom(K,Q).

with the vector space of K-linear maps K → Q.

Exercise 0.5.9.
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(1) Show that the functor P : Gr(k, n) → P(
∧k

OnSpecZ) is injective on points
and tangent spaces.

Hint: You may want to use the identification of the tangent space of Gr(k, n)
from Exercise 0.5.8. Alternatively you can also show it is a monomorphism.

(2) Use Exercise 0.5.6, part (1) above and a criterion for a closed immersion
(c.f.[Har77, Prop. II.7.3]) to provide an alternative proof that Gr(k, n)K is
projective.

0.6 Motivation: why the étale topology?

Why is the Zariski topology not sufficient for our purposes? The short answer is
that there are not enough Zariski-open subsets and that étale morphisms are an
algebro-geometric replacement of analytic open subsets.

0.6.1 What is an étale morphism anyway?

I’m always baffled when a student is intimidated by étale morphisms, especially
when the student has already mastered the conceptually more difficult notions of
say properness and flatness. One reason may be due to the fact that the definition
is buried in [Har77, Exercises III.10.3-6] and its importance is not highlighted
there.

The geometric picture of étaleness that you should have in your head is a
covering space. The precise definition of an étale morphism is of course more
algebraic, and there are in fact many equivalent formulations. This is possibly
another point of intimidation for students as it is not at all obvious why the
different notions are equivalent, and indeed some of the proofs are quite involved.
Nevertheless, if you can take the equivalences on faith, it requires very little effort
to not only internalize the concept, but to master its use.

A1

A1

x2

x

Figure 17: Picture of an étale double cover of A1 \ 0

For a morphism f : X → Y of schemes of finite type over C, the following are
equivalent characterizations of étaleness:

• f is smooth of relative dimension 0 (i.e. f is flat and all fibers are smooth
of dimension 0);

• f is flat and unramified (i.e. for all y ∈ Y (C), the scheme-theoretic fiber Xy

is isomorphic to a disjoint union
⊔
i SpecC of points);

• f is flat and ΩX/Y = 0;
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• for all x ∈ X(C), the induced map ÔY,f(x) → ÔX,x on completions is an
isomorphism; and

• (assuming in addition that X and Y are smooth) for all x ∈ X(C), the
induced map TX,x → TY,f(x) on tangent spaces is an isomorphism.

We say that f is étale at x ∈ X if there is an open neighborhood U of x such that
f |U is étale.

Exercise 0.6.1. Show that f : A1 → A1, x 7→ x2 is étale over A1 \ 0 but is not
étale at the origin.

Try to show this for as many of the above definitions as you can.

Étale and smooth morphisms are discussed in much greater detail and generality
in Section A.3.

0.6.2 What can you see in the étale topology?

Working with the étale topology is like putting on a better pair of glasses allowing
you to see what you couldn’t before. Or perhaps more accurately, it is like getting
magnifying lenses for your algebraic geometry glasses allowing you to visualize
what you already could using your differential geometry glasses.

Example 0.6.2 (Irreducibility of the node). Consider the plane nodal cubic
C defined by y2 = x2(x − 1) in the plane. While there is an analytic open
neighborhood of the node p = (0, 0) which is reducible, there is no such Zariski-
open neighborhood. However, taking a ‘square root’ of x−1 yields a reducible étale
neighborhood. More specifically, define C ′ = Spec k[x, y, t]t/(y

2−x3+x2, t2−x+1)
and consider

C ′ → C, (x, y, t) 7→ (x, y)

Since y2 − x3 + x2 = (y − xt)(y + xt), we see that C ′ is reducible.

Figure 18: After an étale cover, the nodal cubic becomes reducible.
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Example 0.6.3 (Étale cohomology). Sheaf cohomology for the Zarisk-topology
can be extended to the étale topology leading to the extremely robust theory
of étale cohomology. As an example, consider a smooth projective curve C over
C (or equivalently a Riemann surface of genus g), then the étale cohomology
H1(Cét,Z/n) of the finite constant sheaf is isomorphic to (Z/n)2g just like the
ordinary cohomology groups, while the sheaf cohomology H1(C,Z/n) in the
Zariski-topology is 0.

Finally, we would be remiss without mentioning the spectacular application of
étale cohomology to prove the Weil conjectures.

Example 0.6.4 (Étale fundamental group). Have you ever thought that there
is a similarity between the bijection in Galois theory between intermediate field
extensions and subgroups of the Galois group, and the bijection in algebraic
topology between covering spaces and subgroups of the fundamental group? Well,
you’re in good company—Grothendieck also considered this and developed a
beautiful theory of the étale fundamental group which packages Galois groups and
fundamental groups in the same framework.

We only point out here that this connection between étale morphisms and
Galois theory is perhaps not so surprising given that a finite field extension L/K
is étale (i.e. SpecL→ SpecK is étale) if and only if L/K is separable. While we
only defined étaleness above for C-varieties, the general notion is not much more
complicated; see Étale Equivalences A.3.2.

For the reader interested in reading more about étale cohomology or the étale
fundamental group, we recommend [Mil80].

Example 0.6.5 (Quotients by free actions of finite groups). If G is a finite
group acting freely on a projective variety X, then there exists a quotient X/G
as a projective variety. The essential reason for this is that any G-orbit (or in
fact any finite set of points) is contained in an affine variety U , which is the
complement of some hypersurface. Then the intersection V =

⋂
g gU of the

G-translates is a G-invariant affine open containing Gx. One can then show that
V/G = Spec Γ(V,OV )G and that these local quotients glue to form X/G.

However, if X is not projective, the quotient does not necessarily exist as
a scheme. As with most phenomenon for smooth proper varieties that are not-
projective, a counterexample is provided by Hironaka’s examples of smooth, proper
3-folds; [Har77, App. B, Ex. 3.4.1]. One can construct an example which has
a free action by G = Z/2 such that there is an orbit Gx not contained in any
G-invariant affine open. This shows that X/G cannot exist as a scheme; indeed,
if it did, then the image of x under the finite morphism X → X/G would be
contained in some affine and its inverse would be an affine open containing Gx.
See [Knu71, Ex. 1.3] or [Ols16, Ex. 5.3.2] for details.

Nevertheless, for any free action of a finite group G on a scheme X, there
does exist a G-invariant étale morphism U → X from an affine scheme, and the
quotients U/G can be glued in the étale topology to construct X/G as an algebraic
space. The upshot is that we can always take quotients of free actions by finite
groups, a very desirable feature given the ubiquity of group actions in algebraic
geometry; this however comes at the cost of enlarging our category from schemes
to algebraic spaces.

Example 0.6.6 (Artin approximation). Artin approximation is a powerful and
extremely deep result, due to Michael Artin, which implies that most properties

37



which hold for the completion ÔX,x of the local ring is also true in an étale
neighborhood of x. More precisely, let F : Sch /X → Sets be a functor locally of
finite presentation (i.e. satisfying the functorial property of Proposition A.1.2),

â ∈ F (ÔX,x) and N a positive integer. Under the weak hypothesis of excellency on
X (which holds if X is locally of finite type over Z or a field), Artin approximation
states that there exists an étale neighborhood (X ′, x′)→ (X,x) with κ(x′) = κ(x)
and an element a′ ∈ F (X ′) agreeing with a on the Nth order neighborhood of x.

For example, in Example 0.6.2, it’s not hard to use properties of power series
rings to establish that ÔC,p ∼= C[[x, y]]/(y2−x2) (e.g. take a power series expansion
of
√
x− 1), which is reducible. If we consider the functor

F : Sch /C → Sets, (C ′
π−→ C) 7→ {decompositions C ′ = C ′1 ∪ C ′2}

then applying Artin approximation yields an étale cover C ′ → C with C ′ reducible.
Of course, we already knew this from an explicit construction in Example 0.6.2,
but hopefully this example shows the potential power of Artin approximation.

0.6.3 Working with the étale topology: descent theory

Another reason why the étale topology is so useful is that many properties of
schemes and their morphisms can be checked on étale covers. For instance, you
already know that to check if a scheme X is noetherian, finite type over C, reduced
or smooth, it suffices to find a Zariski-open cover {Ui} such that the property
holds for each Ui. Descent theory implies the same with respect to a collection
{Ui → U} of étale morphisms such that

⊔
i Ui → U is surjective: X has the

property if and only if each Ui does. Descent theory is developed in Chapter B
and is used to prove just about everything concerning algebraic spaces and stacks.

0.7 Moduli stacks: moduli with automorphisms

The failure of the representability of the moduli functors of curves and vector
bundles is a motivating factor for introducing moduli stacks, which encode the
automorphisms groups as part of the data. We will synthesize the approaches
from Section 0.3 on moduli groupoids and Section 0.4 on moduli functors.

0.7.1 Specifying a moduli stack

To define a moduli stack, we need to specify

1. families of objects;

2. how two families of objects are isomorphic; and

3. how families pull back under morphisms.

Notice the difference from specifying a moduli functor (Section 0.4.2) is that rather
than specifying when two families are isomorphic, we specify how.

To specify a moduli stack in the algebro-geometric setting, we need to specify
for each scheme T a groupoid FamT of families of objects over T . As a natural
generalization of functors to sets, we could consider assignments

F : Sch→ Groupoids, T 7→ FamT .
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This presents the technical difficulty of considering functors between the category
of schemes and the ‘category’ of groupoids. Morphisms of groupoids are functors
but there are also morphisms of functors (i.e. natural transformations) which we
call 2-morphisms. This leads to a ‘2-category’ of groupoids.

What is actually involved in defining such an assignment F? In addition
to defining the groupoids FamT over each scheme T , we need pullback functors
f∗ : FamT → FamS for each morphism f : S → T . But what should be the

compatibility for a composition S
f−→ T

g−→ U of schemes? Well, there should
be an isomorphism of functors (i.e. a 2-morphism) µf,g : (f∗ ◦ g∗) ∼→ (g ◦ f)∗.
Should the isomorphisms µf,g satisfy a compatibility condition under triples

S
f−→ T

g−→ U
h−→ V ? Yes, but we won’t spell it out here (although we encourage

the reader to work it out). Altogether this leads to the concept of a pseudo-
functor (see [SP, Tag 003N]). We will take another approach however in specifying
prestacks that avoids specifying such compatibility data.

0.7.2 Motivating the definition of a prestack

Instead of trying to define an assignment T 7→ FamT , we will build one massive
category X encoding all of the groupoids FamT which will live over the category
Sch of schemes. Loosely speaking, the objects of X will be a family a of objects
over a scheme S, i.e. a ∈ FamS . If a ∈ FamS and b ∈ FamT , a morphism a→ b
in X will be a morphism f : S → T together with an isomorphism a

∼→ f∗b.
A prestack over Sch is a category X together with functor p : X→ Sch, which

we visualize as

X

p

��

a
α //

_

��

b_

��

Sch S
f
// T

where the lower case letters a, b are objects in X and the upper case letters S, T are
objects in Sch. We say that a is over S and α : a→ b is over f : S → T . Moreover,

we need to require certain natural axioms to hold for X
p−→ Sch. This will be

given in full later but vaguely we need to require the existence and uniqueness
of pullbacks: given a map S → T and object b ∈ X over T , there should exist an
arrow a

α−→ b over f satisfying a suitable universal property. See Definition 1.3.1
for a precise definition.

Given a scheme S, the fiber category X(S) is the category of objects over S
whose morphisms are over idS . If X is built from the groupoids FamS as above,
then the fiber category X(S) = FamS .

Example 0.7.1 (Viewing a moduli functor as a moduli prestack). A moduli
functor F : Sch→ Sets can be encoded as a moduli prestack as follows: we define
the category XF of pairs (S, a) where S is a scheme and a ∈ F (S). A map
(S′, a) → (S, a) is a map f : S′ → S such that a′ = f∗a, where f∗ is convenient
shorthand for F (f) : F (S)→ F (S′). Observe that the fiber categories XF (S) are
equivalent (even equal) to the set F (S).

Example 0.7.2 (Moduli prestack of smooth curves). We define the moduli
prestack of smooth curves as the category Mg of families of smooth curves C→ S
together with the functor p : Mg → Sch where (C→ S) 7→ S. A map (C′ → S′)→
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(C→ S) is the data of maps α : C′ → C and f : S′ → S such that the diagram

C′

��

α // C

��

S′
f
// S

�

is cartesian.

Example 0.7.3 (Moduli prestack of vector bundles). Let C be a fixed smooth,
connected and projective curve over C, and fix integers r ≥ 0 and d. We define
the moduli prestack of vector bundles on C as the category Bunr,d(C) of pairs
(E,S) where S is a scheme and E is a vector bundle on CS = C ×C S together
with the functor p : Bunr,d(C) → Sch /C, (E,S) 7→ S. A map (E′, S′) → (E,S)
consists of a map of schemes f : S′ → S together with a map E → (id×f)∗E

′ of
OCS -modules whose adjoint is an isomorphism (i.e. for any choice of pull back
(id×f)∗E, the adjoint map (id×f)∗E → E′ is an isomorphism). Note that a map
(E′, S) → (E,S) over the identity map idS consists simply of an isomorphism
E′ → E.

Remark 0.7.4. We have formulated morphisms using the adjoint because the
pull back is only defined up to isomorphism while the pushforward is canonical.
If we were to instead parameterize the total spaces of vector bundles (i.e. A(E)
rather than E), then a morphism (V ′, S′)→ (V, S) would consist of morphisms
α : V ′ → V and f : S′ → S such that V ′ → V ×CS CS′ is an isomorphism of vector
bundles.

0.7.3 Motivating the definition of a stack

A stack is to a prestack as a sheaf is to a presheaf. The concept could not be more
intuitive: we require that objects and morphisms glue uniquely.

Example 0.7.5 (Moduli stack of sheaves over a point). Define the category X

over Sch of pairs (E,S) where E is a sheaf of abelian groups on a scheme S, and
the functor p : X→ Sch given by (E,S) 7→ S. A map (E′, S′)→ (E,S) in X is a
map of schemes f : S′ → S together with a map E → f∗E

′ of OS′ -modules whose
adjoint is an isomorphism.

You already know that morphisms of sheaves glue [Har77, Exercise II.1.15]:
let E and F be sheaves on schemes S and T , and let f : S → T be a map. If {Si}
is a Zariski-open cover of S, then giving a morphism α : (E,S) → (F, T ) is the
same data as giving morphisms αi : (E|Si , Si)→ (F, T ) such that αi|Sij = αj |Sij .

You also know how sheaves themselves glue [Har77, Exercise II.1.22]—it is
more complicated than gluing morphisms since sheaves have automorphisms and
given two sheaves, we prefer to say that they are isomorphic rather than equal.
If {Si} is a Zariski-open cover of a scheme S, then giving a sheaf E on S is
equivalent to giving a sheaf Ei on Si and isomorphisms φij : Ei|Sij → Ej |Sij such
that φik = φjk ◦ φij on the triple intersection Sijk.

In an identical way, we could have considered the moduli stack of O-modules,
quasi-coherent sheaves or vector bundles.

The definition of a stack simply axiomitizes these two natural gluing concepts;
it is postponed until Definition 1.4.1.
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Exercise 0.7.6. Convince yourself that Examples 0.7.2 and 0.7.3 satisfy the same
gluing axioms. (See also Propositions 1.4.6 and 1.4.8.)

0.7.4 Motivating the definition of an algebraic stack

There are functors F : Sch→ Sets that are sheaves when restricted to the Zariski
topology on any scheme T but that are not necessarily representable by schemes;
see for instance Examples 2.9.1 and 2.9.2. In a similar way, there are prestacks
X that are stacks but that are not sufficiently algebro-geometric. If we wish to
bring our algebraic geometry toolkit (e.g. coherent sheaves, commutative algebra,
cohomology, ...) to study stacks in a similar way that we study schemes, we must
impose an algebraicity condition.

The condition we impose on a stack to be algebraic is very natural. Recall
that a functor F : Sch→ Sets is representable by a scheme if and only if there is
a Zariski-open cover {Ui ⊂ F} such that Ui is an affine scheme. Similarly, we will
say that a stack X→ Sch is algebraic if

• there is a smooth cover {Ui → X} where each Ui is an affine scheme.

To make this precise, we need to define what it means for {Ui → X} to be a smooth
cover. Just like in the definition of Zariski-open cover (Definition 0.4.17(3)), we
require that for every morphism T → X from a scheme T , the fiber product
(fiber products of prestacks will be formally introduced in §1.3.5) Ui ×X T is
representable (by an algebraic space) such that

⊔
i Ui ×X T → T is a smooth and

surjective morphism. See Definition 2.1.5 for the precise definition of an algebraic
stack.

Constructing a smooth cover of a given moduli stack is a geometric problem
inherent to the moduli problem. It can often be solved by ridigifying the moduli
problem by parameterizing additional information. This concept is best absorbed
in examples.

Example 0.7.7 (Moduli stack of elliptic curves). An elliptic curve (E, p) over C
is embedded into P2 via OE(3p) such that E is defined by a Weierstrass equation
y2z = x(x− z)(x− λz) for some λ 6= 0, 1 [Har77, Prop. 4.6]. Let U = A1 \ {0, 1}
with coordinate λ. The family E ⊂ U × P2 of elliptic curves defined by the
Weierstrass equation gives a smooth (even étale) cover U →M1,1.

Example 0.7.8 (Moduli stack of smooth curves). For any smooth, connected
and projective curve C of genus g ≥ 2, the third tensor power ω⊗3

C is very ample
and gives an embedding C ↪→ P(H0(C,ω⊗3

c )) ∼= P5g−6. There is a Hilbert scheme
H parameterizing closed subschemes of P5g−6 with the same Hilbert polynomial
as C ⊂ P5g−6, and there is a locally closed subscheme H ′ ⊂ H parameterizing
smooth subschemes such that ω⊗3

C
∼= OC(1). The universal subscheme over H ′

yields a smooth cover H ′ →Mg.

Example 0.7.9 (Moduli stack of vector bundles). For any vector bundle E of
rank r and degree d on a smooth, connected and projective curve C, the twist
E(m) is globally generated for sufficiently large m. Taking N = h0(C,E(m)),
we can view E as a quotient OC(−m)N � E. There is a Quot scheme Qm

parameterizing quotients OC(−m)N
π
� F with the same Hilbert polynomial as E

and a locally closed subscheme Q′m ⊂ Q parameterizing quotients where E is a
vector bundle and such that the induced map H0(π⊗OC(m)) : CN → H0(C,E(m))
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is an isomorphism. The universal quotient over Q′m defines a smooth map Q′m →
Bunr,d(C) and the collection {Q′m → Bunr,d(C)} over m � 0 defines a smooth
cover.

0.7.5 Deligne–Mumford stacks and algebraic spaces

A Deligne–Mumford stack can be defined in two equivalent ways:

• a stack X such that there exists an étale (rather than smooth) cover {Ui → X}
by schemes; or

• an algebraic stack such that all automorphisms groups of field-valued points
are étale, i.e. discrete (e.g. finite) and reduced.

The moduli stacks Mg and Mg are Deligne–Mumford for g ≥ 2, but Bunr,d(C)
is not. Similarly, an algebraic space can be defined in two equivalent ways:

• a sheaf (i.e. a contravariant functor F : Sch→ Sets that is a sheaf in the big
étale topology) such that there exists an étale cover {Ui → F} by schemes;
or

• an algebraic stack such that all automorphisms groups of field-valued points
are trivial.

In other words, an algebraic space is an algebraic stack without any stackiness.

Table 1: Schemes, algebraic spaces, Deligne–Mumford stacks, and algebraic stacks
are obtained by gluing affine schemes in certain topologies

Algebro-geometric space Type of object Obtained by gluing

Schemes sheaf affine schemes in the
Zariski topology

Algebraic spaces sheaf affine schemes in the
étale topology

Deligne–Mumford stacks stack affine schemes in the
étale topology

Algebraic stacks stack affine schemes in the
smooth topology

Example 0.7.10 (Quotients by finite groups). Quotients by free actions of finite
groups exist as algebraic spaces! See Corollary 2.1.9.

0.8 Moduli stacks and quotients

One of the most important examples of a stack is a quotient stack [X/G] arising
from an action of a smooth algebraic group G on a scheme X. The geometry of
[X/G] couldn’t be simpler: it’s the G-equivariant geometry of X.
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Similar to how toric varieties provide concrete examples of schemes, quotient
stacks provide both concrete examples useful to gain geometric intuition of general
algebraic stacks and a fertile testing ground for conjectural results. On the other
hand, it turns out that many algebraic stacks are quotient stacks (or at least
locally quotient stacks) and therefore any (local) property that holds for quotient
stacks also holds for many algebraic stacks.

0.8.1 Motivating the definition of the quotient stack

The quotient functor Sch→ Sets defined by S 7→ X(S)/G(S) is not a sheaf even
when the action is free (see Example 0.4.31). We therefore first need to consider a
better notion for a family of orbits.

For simplicity, let’s assume that G and X are defined over C. For x ∈ X(C),
there is a G-equivariant map σx : G→ X defined by g 7→ g ·x. Note that two points
x, x′ are in the same G-orbit (say x = hx′), if and only if there is a G-equivariant
morphism ϕ : G→ G (say by g 7→ gh) such that σx = σx′ ◦ ϕ.

We can try the same thing for a T -point T
f−→ X by considering

G× T
f
//

p2

��

X, (g, t) � // g · f(t)

T

and noting that f : G× T → X is a G-equivariant map. If we define a prestack
consisting of such families, it fails to be a stack as objects don’t glue: given a

Zariski-cover {Ti} of T , maps Ti
fi−→ X and isomorphisms of the restrictions to

Tij , the trivial bundles G× Ti → Ti will glue to a G-torsor P → T but it will not
necessarily be trivial (i.e. P ∼= G× T ). It is clear then how to correct this using
the language of G-torsors (see Section C.3):

Definition 0.8.1 (Quotient stack). We define [X/G] as the category over Sch
whose objects over a scheme S are diagrams

P

��

f
// X

S

where P → S is a G-torsor and f : P → X is a G-equivariant morphism. A

morphism (P ′ → S′, P ′
f ′−→ X) → (P → S, P

f−→ X) consists a maps g : S′ → S
and ϕ : P ′ → P of schemes such that the diagram

P ′

��

ϕ
//

f ′

##

P

��

f
// X

S′
g
// S

�

commutes with the left square cartesian.
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There is an object of [X/G] over X given by the diagram

G×X

p2

��

σ // X

X,

where σ denotes the action map. This corresponds to a map X → [X/G] via a
2-categorical version of Yoneda’s lemma.

The map X → [X/G] is a G-torsor even if the action of G on X is not free.
We state that again: the map X → [X/G] is a G-torsor even if the action
of G on X is not free. Pause for a moment to appreciate how remarkable that
is!

In particular, the map X → [X/G] is smooth and it follows that [X/G] is
algebraic. At the expense of enlarging our category from schemes to algebraic
stacks, we are able to (tautologically) construct the quotient [X/G] as a ‘geometric
space’ with desirable geometric properties.

Example 0.8.2. Specializing to the case that X = SpecC is a point, we define
the classifying stack of G as the category BG := [SpecC/G] of G-torsors P → S.
The projection SpecC→ BG is not only a G-torsor; it is the universal G-torsor.
Given any other G-torsor P → S, there is a unique map S → BG and a cartesian
diagram

P

��

// SpecC

��

S // BG.

�

Exercise 0.8.3. What is the universal family over the quotient stack [X/G]?

0.8.2 Moduli as quotient stacks

Moduli stacks can often be described as quotient stacks, and these descriptions
can be leveraged to establish properties of the moduli stack.

Example 0.8.4 (Moduli stack of smooth curves). In Example 0.7.8, the em-

bedding of a smooth curve C via C
|ω⊗3
C |
↪→ P5g−6 depends on a choice of basis

H0(C,ω⊗3
C ) ∼= C5g−5 and therefore is only unique up to a projective automor-

phism, i.e. an element of PGL5g−5 = Aut(P5g−6). The action of the algebraic
group PGL5g−5 on the scheme H ′, parameterizing smooth subschemes such that
ωC ∼= OC(3), yields an identification Mg

∼= [H ′/PGL5g−6]. See Theorem 2.1.11.

Example 0.8.5 (Moduli stack of vector bundles). In Example 0.7.9, the presenta-
tion of a vector bundle E as a quotient OC(−m)N � E depends on a choice of basis
H0(C,E(m)) ∼= CN . The algebraic group PGLN−1 acts on the scheme Q′m, pa-
rameterizing vector bundle quotients of OC(−m)N such that CN ∼→ H0(C,E(m)),
yields an identification Bunr,d(C) ∼=

⋃
m�0[Q′m/PGLN−1]. See Theorem 2.1.15.

0.8.3 Geometry of [X/G]

While the definition of the quotient stack [X/G] may appear abstract, its geometry
is very familiar. The table below provides a dictionary between the geometry of a
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quotient stack [X/G] and the G-equivariant geometry of X. The stack-theoretic
concepts on the left-hand side will be introduced later. For simplicity we work
over C.

Table 2: Dictionary

Geometry of [X/G] G-equivariant geometry of X

C-point x ∈ [X/G] orbit Gx

automorphism group Aut(x) stabilizer Gx

function f ∈ Γ([X/G],O[X/G]) G-equivariant function f ∈ Γ(X,OX)G

map [X/G]→ Y to a scheme Y G-equivariant map X → Y

line bundle G-equivariant line bundle (or lineariza-
tion)

quasi-coherent sheaf G-equivariant quasi-coherent sheaf

tangent space T[X/G],x normal space TX,x/TGx,x to the orbit

coarse moduli space [X/G]→ Y geometric quotient X → Y

good moduli space [X/G]→ Y good GIT quotient X → Y

0.9 Constructing moduli spaces as projective va-
rieties

One of the primary reasons for introducing algebraic stacks to begin with is to
ensure that a given moduli problem M is in fact represented by a bona fide algebro-
geometric space equipped with a universal family. Many geometric questions can
be answered (and arguably should be answered) by studying the moduli stack M

itself. However, even in the presence of automorphisms, there still may exist a
scheme—even a projective variety— that closely approximates the moduli problem.
If we are willing to sacrifice some desirable properties (e.g. a universal family),
we can sometimes construct a more familiar algebro-geometric space—namely a
projective variety—where we have the much larger toolkit of projective geometry
(e.g., Hodge theory, birational geometry, intersection theory, ...) at our disposal.

In this section, we present a general strategy for a constructing a moduli space
specifically as a projective variety.

0.9.1 Boundedness

The first potential problem is that our moduli problem may simply have too many
objects so that there is no hope of representing it by a finite type or quasi-compact
scheme. We say that a moduli functor or stack M over C is bounded if there exists
a scheme X of finite type over C and a family of objects E over X such that every
object E of M is isomorphic to a fiber E ∼= Ex for some (not necessarily unique)
x ∈ X(C).
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Example 0.9.1. Let Vect be the algebraic stack over C where objects over a
scheme S consist of vector bundles. Since we have not specified the rank, VectC
is not bounded. In fact, if we let Vectr ⊂ Vect be the substack parameterizing
vector bundles of rank r, then Vect =

⊔
r≥0 Vectr While Vect is locally of finite

type over C, it is not of finite type (or equivalently quasi-compact).

Exercise 0.9.2. Show that Vectr is isomorphic to the classifying stack BGLr
(Example 0.8.2).

Example 0.9.3. Let V be the stack of all vector bundles over a smooth, connected
and projective curve C. The stack V is clearly not bounded since we haven’t
specified the rank and degree. But even the substack Bunr,d(C) of vector bundles
with prescribed rank and degree is not bounded! For example, on P1, there are
vector bundles O(−d)⊕ O(d) of rank 2 and degree 0 for every d ∈ Z, and not all
of them can arise as the fibers of a single vector bundle on a finite type C-scheme.

Exercise 0.9.4. Prove that Bunr,d(C) is not bounded for any curve C.

Although Bunr,d(C) is not bounded, we will study the substack Bunr,d(C)ss

of semistable vector bundles which is bounded. Semistable vector bundles admit
a number of remarkable properties with boundedness being one of the most
important.

0.9.2 Compactness

Projective varieties are compact so if we are going to have any hope to construct
a projective moduli space, the moduli stack better be compact as well. However,
many moduli stacks such as Mg are not compact as they don’t have enough objects.
This is in contrast to the issue of non-boundedness where there may be too many
objects.

0 1 λ

Figure 19: The family of elliptic curves y2z = x(x− z)(x− λz) degenerates to the
nodal cubic over λ = 0, 1.

The scheme-theoretic notion for compactness is properness—universally closed,
separated and of finite type. There is a conceptual criterion to test properness
called the valuative criterion which loosely speaking requires one-dimensional
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limits to exist. The usefulness of the valuative criterion is arguably best witnessed
through studying moduli problems.

More precisely, a moduli stack M of finite type over C is proper (resp. uni-
versally closed, separated) if for every DVR R with fraction field K and for any
diagram

SpecK //

��

M

SpecR,

;;

(0.9.1)

after possibly allowing for an extension of R, there exists a unique extension (resp.
there exists an extension, resp. there exists at most one extension) of the above
diagram.4 Since M is a moduli stack, a map SpecK → M corresponds to an
object E× over SpecK and a dotted arrow corresponds to a family of objects E
over SpecR and an isomorphism E|SpecK

∼= E×. In other words, properness of
M means that every object E∗ over the punctured disk SpecK extends uniquely
(after possibly allowing for an extension of R) to a family E of objects over the
entire disk SpecR.

Example 0.9.5. The moduli stack Mg of smooth curves is not proper as exhibited
in Figure 19. The pioneering insight of Deligne and Mumford is that there is
a moduli-theoretic compactification! Namely, there is an algebraic stack Mg

parameterizing Deligne–Mumford stable curves, i.e. proper curves C with at worst
nodal singularities such that any smooth rational subcurve P1 ⊂ C intersects the
rest of the curve along at least three points. The stack Mg is a proper algebraic
stack (due to the stable reduction theorem for curves) and contains Mg as an
open substack.

Example 0.9.6. Let Bunr,d(C)ss be the moduli stack parameterizing semistable
vector bundles over a curve of prescribed rank and degree. We will later show
that Bunr,d(C)ss is an algebraic stack of finite type over C. Langton’s semistable
reduction theorem states that Bunr,d(C)ss is universally closed, i.e. satisfies the
existence part of the above valuative criterion.

However Bunr,d(C)ss is not separated as there may exist several non-isomorphic
extensions of a vector bundle on CK to CR. Indeed, let E be vector bundle and
consider the trivial family EK on CK . This extends to trivial family ER over CR
but the data of an extension

SpecK
[EK ]
//

��

Bunr,d(C)ss

SpecR,

[ER]

88

also consists of an isomorphism ER|CK = EK
∼→ EK or equivalently a K-point of

Aut(E). There are many such isomorphisms and some don’t extend to R-points.
The automorphism group of a vector bundle is a positive dimensional (affine)
algebraic group containing a copy of Gm corresponding to scaling. For instance,

4The valuative criterion can be equivalently formulated by replacing the local curve SpecR
with a smooth curve C and SpecK with a puncture curve C \ p.
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if π ∈ K is a uniformizing parameter, the automorphism 1/π ∈ Gm(K) does not
extend to Gm(R) so (ER, id) and (ER, 1/π) give non-isomorphic extensions of EK .
In a similar way, any moduli stack which has an object with a positive dimensional
affine automorphism group is not separated.

0.9.3 Enlarging a moduli stack

It is often useful to consider enlargements X ⊂ M of a given moduli stack X

by parameterizing a larger collection of objects. For instance, rather than just
considering smooth or Deligne–Mumford stable curve, you could consider all
curves, or rather than considering semistable vector bundles, you could consider
all vector bundles or even all coherent sheaves.

Let’s call an object of M semistable if is isomorphic to an object of X; in this
way, we can view X = Mss ⊂M as the substack of semistable objects. Often it is
easier to show properties (e.g. algebraicity) for M and then infer the corresponding
property for Mss.

0.9.4 The six steps toward projective moduli

In the setting of a moduli stack Mss of semistable objects and an enlargement
Mss ⊂ M, we outline the steps to construct a projective moduli scheme M ss

approximating Mss.5

Step 1 (Algebraicity): M is an algebraic stack locally of finite type over C.

This requires first defining M by specifying both (1) families of objects over
an arbitrary C-scheme S, (2) how two families are isomorphic, and (3) how
families pull back; see Section 0.7.1. One must then check that M is a stack.

To check that M is an algebraic stack locally of finite type over C entails
finding a smooth cover of {Ui → M} by affine schemes (see Section 0.7.4)
where each Ui is of finite type over C.

An alternative approach is to verify ‘Artin’s criteria’ for algebraicity which
essentially amounts to verifying local properties of the moduli problem and
in particular requires an understanding of the deformation and obstruction
theory.

Step 2 (Openness of semistability): semistability is an open condition, i.e. Mss ⊂
M is an open substack.

If E is an object of M over T , one must show that the locus of points t ∈ T
such that the restriction Et is semistable is an open subset of T . Indeed,
just like in the definition of an open subfunctor, a substack Mss ⊂M is open
if and only if for all maps T →M, the fiber product Mss ×M T is an open
subscheme of T . This ensures in particular that Mss is also an algebraic
stack locally of finite type over C.

Step 3 (Boundedness of semistability): semistability is bounded, i.e. Mss is of
finite type over C.

5The calligraphic font Mss denotes an algebraic stack while the Roman font Mss denotes an
algebraic space. This notation will be continued throughout the notes.
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One must verify the existence of a scheme T of finite type over C and a
family E of objects over T such that every semistable object E ∈ Mss(C)
appears as a fiber of E; see Section 0.9.1. In other words, one must exhibit a
morphism U →M from a scheme U of finite type whose image contains Mss.
It is worth noting that since we already know M is locally of finite type,
the finite typeness of M is equivalent to quasi-compactness; boundedness is
casual term often used to refer to this property.

Step 4 (Existence of coarse/good moduli space): there exists either a coarse or
good moduli space Mss →M ss where M ss is a separated algebraic space.

The algebraic space M ss can be viewed as the best possible approximation
of Mss which is an algebraic space. If automorphisms are finite and Mss is a
proper Deligne–Mumford stack, the Keel–Mori theorem ensures that there
exists a coarse moduli space π : Mss →M ss with M ss proper; this means that
(1) π is universal for maps to algebraic spaces and (2) π induces a bijection
between the isomorphism classes of C-points of Mss and the C-points of
M ss.

In the case of infinite automorphisms, we often cannot expect the exis-
tence of a coarse moduli space (as defined above) and we therefore relax
the notion to a good moduli space π : Mss → M ss which may identify non-
isomorphic objects. In fact, it identifies precisely the C-points whose closures
in Mss intersect in an analogous way to the orbit closure equivalence relation
in GIT. A good moduli space is also universal for maps to algebraic spaces
even if this property is not obvious from the definitions. We will use an
analogue of the Keel–Mori theorem which ensures the existence of a proper
good moduli space as long as Mss can be verified to be both ‘S-complete’
and ‘Θ-reductive’.

Step 5 (Semistable reduction): Mss is universally closed, i.e. satisfies the existence
part of the valuative criterion for properness.

This requires checking that any family of objects E× over a punctured DVR
or smooth curve C× = C \ p has at least one extension to a family of objects
over C after possibly taking an extension of C; see Section 0.9.2. For moduli
problems with finite automorphisms, the uniqueness of the extension can
usually be verified, which implies the properness of M. For moduli problems
with infinite affine automorphism groups, the extension is never unique.
While M is therefore not separated, you can often still verify a condition
called ‘S-completeness’, which enjoys properties analogous to separatedness.
This property is often referred to as stable or semistable reduction.

As a consequence, we conclude that M ss is a proper algebraic space.

Step 6 (Projectivity): a tautological line bundle on Mss descends to an ample line
bundle on M ss.

This is often the most challenging step in this process. It requires a solid
understanding of the geometry of the moduli problem and often relies on
techniques in higher dimensional geometry.
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0.9.5 An alternative approach using Geometric Invariant
Theory

The approach outlined above is by no means the only way to construct moduli
spaces. One alternative approach is Mumford’s Geometric Invariant Theory,
which has been wildly successful in both constructing and studying moduli spaces.
The main idea is to rigidify the moduli stack Mss (e.g. Mg) by parameterizing

additional data (e.g. a stable curve C and an embedding C
|ω⊗3
C |
↪→ PN ) in such way

that it represented by a projective scheme X and such that the different choices
of additional data correspond to different orbits for the action of an algebraic
group G acting on X. This provides an identification of the moduli stack Mss

as an open substack of the quotient stack [X/G]. Given a choice of equivariant
embedding X ↪→ Pn, GIT constructs the quotient as the projective variety

X//G := Proj
⊕
d≥0

Γ(X,O(d))G

The rational map X 99K X//G is defined on an open subscheme Xss, which we
call the GIT semistable locus. To make this procedure work (and this is the hard
part!), one must show that an element x ∈ X is GIT semistable if and only if the
corresponding object of [X/G] is semistable (i.e. is in Mss).

One of the striking features of GIT is that it handles all six steps at once and
in particular constructs the moduli space as a projective variety. Moreover, if we
do not know a priori how to compactify a moduli problem, GIT can sometimes
tell you how.

Example 0.9.7 (Deligne–Mumford stable curves). Using the quotient presenta-

tion Mg = [H ′/PGL5g−6] of Example 0.8.4, the closure H
′

of H ′ in the Hilbert
scheme inherits an action of PGL5g−6 and one must show than an element in H ′ is
GIT semistable if and only if the corresponding curve is Deligne–Mumford stable.

Example 0.9.8 (Semistable vector bundles). Using the quotient presentation

Bunr,d(C)ss = [Q′m/PGLN−1] of Example 0.8.5, the closure Q
′
m has a PGLN−1-

action and one must show that an element in Q
′
m is GIT semistable if and only if

the corresponding quotient is semistable.
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0.9.6 Trichotomy of moduli spaces

Table 3: The trichotomy of moduli

No Auts Finite Auts Infinite Auts

Type of space Algebraic variety /
space

Deligne–Mumford
stack

algebraic
stack

Defining
property

Zariski/étale-locally
an affine scheme

étale-locally an affine
scheme

smooth-locally an
affine scheme

Examples Pn, Gr(k, n), Hilb,
Quot

Mg Bunr,d(C)

Quotient
stacks [X/G]

action is free finite stabilizers any action

Existence of
moduli varieties
/ spaces

already an algebraic
variety/space

coarse moduli
space

good moduli space

Notes

For a more detailed exposition of the moduli stack of triangles, we recommend
Behrend’s notes [Beh14].
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Chapter 1

Sites, sheaves and stacks

1.1 Grothendieck topologies and sites

We would like to consider a topology on a scheme where étale morphisms are the
open sets. This doesn’t make sense using the conventional notion of a topological
space so we simply adapt our definitions.

Definition 1.1.1. A Grothendieck topology on a category S consists of the follow-
ing data: for each object X ∈ S, there is a set Cov(X) consisting of coverings of
X, i.e. collections of morphisms {Xi → X}i∈I in S. We require that:

(1) (identity) If X ′ → X is an isomorphism, then (X ′ → X) ∈ Cov(X).

(2) (restriction) If {Xi → X}i∈I ∈ Cov(X) and Y → X is any morphism, then
the fiber products Xi ×X Y exist in S and the collection {Xi ×X Y →
Y }i∈I ∈ Cov(Y ).

(3) (composition) If {Xi → X}i∈I ∈ Cov(X) and {Xij → Xi}j∈Ji ∈ Cov(Xi)
for each i ∈ I, then {Xij → Xi → X}i∈I,j∈Ji ∈ Cov(X).

A site is a category S with a Grothendieck topology.

Example 1.1.2 (Topological spaces). If X is a topological space, let Op(X)
denote the category of open sets U ⊂ X where there is a unique morphism U → V
if U ⊂ V and no other morphisms. We say that a covering of U (i.e. an element of
Cov(U)) is a collection of open immersions {Ui → U}i∈I such that U =

⋃
i∈I Ui.

This defines a Grothendieck topology on Op(X).
In particular, if X is a scheme, the Zariski-topology on X yields a site, which

we refer to as the small Zariski site on X.

Example 1.1.3 (Small étale site). If X is a scheme, the small étale site on X is
the category Xét of étale morphisms U → X such that a morphism (U → X)→
(V → X) is simply an X-morphism U → V (which is necessarily étale). In other
words, Xét is the full subcategory of Sch /X consisting of schemes étale over X. A
covering of an object (U → X) ∈ Xét is a collection of étale morphisms {Ui → U}
such that

⊔
i Ui → U is surjective.

Example 1.1.4 (Big Zariski and étale sites). The big Zariski site (resp. big étale
site) is the category Sch where a covering of a scheme U is a collection of open
immersions (resp. étale morphisms) {Ui → U} in Sch such that

⊔
i Ui → U is

surjective. We denote these sites as SchZar and SchÉt.
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Example 1.1.5 (Localized categories and sites). If S is a category and S ∈ S,
define the category S/S whose objects are maps T → S in S. A morphism
(T ′ → S) → (T → S) is a map T ′ → T over S. If S is a site, S/S is also a site
where a covering of T → S in S/S is a covering {Ti → T} in S.

Applying this construction for a scheme S yields the big Zariski and étale sites
(Sch /S)Zar and (Sch /S)Ét over a scheme S.

Replacing étale morphisms with other properties of morphisms yields other
sites.

1.2 Presheaves and sheaves

Recall that if X is a topological space, a presheaf of sets on X is simply a
contravariant functor F : Op(X) → Sets on the category Op(X) of open sets.
The sheaf axiom translates succinctly into the condition that for each covering
U =

⋃
i Ui, the sequence

F (U)→
∏
i

F (Ui)⇒
∏
i,j

F (Ui ∩ Uj)

is exact (i.e. is an equalizer diagram), where the two maps F (Ui)⇒ F (Ui ∩ Uj)
are induced by the two inclusions Ui ∩ Uj ⊂ Ui and Ui ∩ Uj ⊂ Uj . Also note that
the intersections Ui ∩ Uj can also be viewed as fiber products Ui ×X Uj .

1.2.1 Definitions

Definition 1.2.1. A presheaf on a category S is a contravariant functor S→ Sets.

Remark 1.2.2. If F : S→ Sets is a presheaf and S
f−→ T is a map in S, then the

pullback F (f)(b) of an element b ∈ F (T ) is sometimes denoted as f∗b or b|S .

Definition 1.2.3. A sheaf on a site S is a presheaf F : S → Sets such that for
every object S and covering {Si → S} ∈ Cov(S), the sequence

F (S)→
∏
i

F (Si)⇒
∏
i,j

F (Si ×S Sj) (1.2.1)

is exact, where the two maps F (Si)⇒ F (Si ×S Sj) are induced by the two maps
Si ×S Sj → Si and Si ×S Sj → Si.

Remark 1.2.4. The exactness of (1.2.1) means that it is an equalizer diagram:
F (S) is precisely the subset of

∏
i F (Si) consisting of elements whose images under

the two maps F (Si)⇒ F (Si ×S Sj) are equal.

Example 1.2.5 (Schemes are sheaves). If X is a scheme, then Mor(−, X) : Sch→
Sets is a sheaf on SchÉt since morphisms glue uniquely in the étale topology. Indeed,
Proposition B.2.1 implies that the sheaf axiom holds for a cover given by a single
morphism S′ → S which is étale and surjective. The sheaf axiom for an an étale
covering {Si → S} can be easily reduced to this case (see Exercise 1.2.6).

Similarly, if X → S is a morphism of schemes, then MorS(−, X) : Sch /S →
Sets is a sheaf on (Sch /S)Ét. We will abuse notation by using X and X → S to
denote the sheaves Mor(−, X) and MorS(−, X).

54



Exercise 1.2.6. Let F be a presheaf on Sch.

(1) Show that F is a sheaf on SchÉt if and only if for every étale surjective
morphism S′ → S of schemes, the sequence F (S) → F (S′) ⇒ S′ ×S S′ is
exact.

(2) Show that F is a sheaf on SchÉt if and only if

• F is a sheaf in the big Zariski topology SchZar; and

• or every étale surjective morphism S′ → S of affine schemes, the
sequence F (S)→ F (S′)⇒ F (S′ ×S S′) is exact.

Exercise 1.2.7. If X → Y is a surjective smooth morphism of schemes, show
that X → Y is an epimorphism of sheaves on SchÉt.

1.2.2 Morphisms and fiber products

A morphism of presheaves or sheaves is by definition a natural transformation.
By Yoneda’s lemma (Lemma 0.4.1), if X is a scheme and F is a presheaf on
Sch, a morphism α : X → F (which we interpret as a morphism of presheaves
Mor(−, X)→ F ) corresponds to an element in F (X), which by abuse of notation
we also denote by α.

Given morphisms F
α−→ G and G′

β−→ G of presheaves on a category S, consider
the presheaf

S→ Sets

S 7→ F (S)×G(S) G
′(S) = {(a, b) ∈ F (S)×G′(S) |αS(a) = βS(b)} .

(1.2.2)

Exercise 1.2.8.

(1) Show that that (1.2.2) is a fiber product F ×G G′ in Pre(S). (This is a
generalization of Exercise 0.4.16 but the same proof should work.)

(2) Show that if F , G and G′ are sheaves on a site S, then so is F ×G G′. In
particular, (1.2.2) is also a fiber product F ×G G′ in Sh(S).

1.2.3 Sheafification

Theorem 1.2.9 (Sheafification). Let S be a site. The forgetful functor Sh(S)→
Pre(S) admits a left adjoint F 7→ F sh, called the sheafification.

Proof. A presheaf F on S is called separated if for every covering {Si → S} of an
object S, the map F (S)→

∏
i F (Si) is injective (i.e. if sections glue, they glue

uniquely). Let Presep(S) be the full subcategory of Pre(S) consisting of separated
presheaves. We will construct left adjoints

Sh(S) �
�

// Presep(S) �
�

//

sh2

vv

Pre(S).

sh1

vv

For F ∈ Pre(S), we define sh1(F ) by S 7→ F (S)/ ∼ where a ∼ b if there exists a
covering {Si → S} such that a|Si = b|Si for all i.

For F ∈ Presep(S), we define sh2(F ) by

S 7→
{(
{Si → S}, {ai}

) ∣∣∣∣where {Si → S} ∈ Cov(S) and ai ∈ F (Si)
such that ai|Sij = aj |Sij for all i, j

}
/ ∼
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where ({Si → S}, {ai}) ∼ ({S′j → S}, {a′j}) if ai|Si×SS′j = a′j |Si×SS′j for all i, j.
The details are left to the reader.

Remark 1.2.10 (Topos). A topos is a category equivalent to the category of
sheaves on a site. Two different sites may have equivalent categories of sheaves,
and the topos can be viewed as a more fundamental invariant. While topoi are
undoubtedly useful in moduli theory, they will not play a role in these notes.

1.3 Prestacks

In Section 0.7.1, we motivated the concept of a prestack on a category S as a
generalization of a presheaf S→ Sets. By trying to keep track of automorphisms,
we were naively led to consider a ‘functor’ F : S→ Groupoids but decided instead
to package this data into one large category X over S parameterizing pairs (a, S)
where S ∈ S and a ∈ F (S).

1.3.1 Definition of a prestack

Let S be a category and p : X → S be a functor of categories. We visualize this
data as

X

p

��

a
α //

_

��

b_

��

S S
f
// T

where the lower case letters a, b are objects of X and the upper case letters S, T
are objects of S. We say that a is over S and α : a→ b is over f : S → T .

Definition 1.3.1. A functor p : X→ S is a prestack over a category S if

(1) (pullbacks exist) for any diagram

a //
_

��

b_

��

S // T

of solid arrows, there exist a morphism a→ b over S → T ; and

(2) (universal property for pullbacks) for any diagram

a //
$$

_

��

b //
_

��

c_

��

R // S // T

of solid arrows, there exists a unique arrow a→ b over R→ S filling in the
diagram.

!
a

Warning 1.3.2. When defining and discussing prestacks, we often simply
write X instead of X→ S. In most examples it is clear what the functor X→ S is.
When necessary, we denote the projection by pX : X→ S.

Moreover, when defining a prestack X, we often only define the objects and
morphisms in X, and we leave the definition of the composition law to the reader.
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Remark 1.3.3. Axiom (2) above implies that the pullback in Axiom (1) is unique
up to unique isomorphism. We often write f∗b or simply b|S to indicate a choice
of a pullback.

Definition 1.3.4. If X is a prestack over S, the fiber category X(S) over S ∈ S is
the category of objects in X over S with morphisms over idS .

Exercise 1.3.5. Show that the fiber category X(S) is a groupoid.

!
a

Warning 1.3.6. Our terminology is not standard. Prestacks are usually
referred to as categories fibered in groupoids. In the literature (c.f. [Vis05], [Ols16])
a prestack is sometimes defined as a category fibered in groupoids together with
Axiom (1) of a stack (Definition 1.4.1).

It is also standard to call a morphism b→ c in X cartesian if it satisfies the
universal property in (2) and p : X→ S a fibered category if for any diagram as in
(1), there exists a cartesian morphism a→ b over S → T . With this terminology,
a prestack (as we’ve defined it) is a fibered category where every arrow is cartesian
or equivalently where every fiber category X(S) is a groupoid.

1.3.2 Examples

Example 1.3.7 (Presheaves are prestacks). If F : S→ Sets is a presheaf, we can
construct a prestack XF as the category of pairs (a, S) where S ∈ S and a ∈ F (S).
A map (a′, S′) → (a, S) is a map f : S′ → S such that a′ = f∗a, where f∗ is
convenient shorthand for F (f) : F (S)→ F (S′). Observe that the fiber categories
XF (S) are equivalent (even equal) to the set F (S). We will often abuse notation
by conflating F and XF .

Example 1.3.8 (Schemes are prestacks). For a scheme X, applying the previous
example to the functor Mor(−, X) : Sch→ Sets yields a prestack XX . This allows
us to view a scheme X as a prestack and we will often abuse notation by referring
to XX as X.

Example 1.3.9 (Prestack of smooth curves). We define the prestack Mg over
Sch as the category of families of smooth curves C→ S of genus g, i.e. smooth
and proper morphisms C→ S (of finite presentation) of schemes such that every
geometric fiber is a connected curve of genus g. A map (C′ → S′)→ (C→ S) is
the data of maps α : C′ → C and f : S′ → S such that the diagram

C′

��

α // C

��

S′
f
// S

�

is cartesian. Note that the fiber category Mg(C) over SpecC is the groupoid of
smooth connected projective complex curves C of genus g such that MorMg(C)(C,C

′) =
IsomSch /C(C,C ′).

Example 1.3.10 (Prestack of vector bundles). Let C be a fixed smooth connected
projective curve over C, and fix integers r ≥ 0 and d. We define the prestack
Bunr,d(C) over Sch /C where objects are pairs (E,S) where S is a scheme over C
and E is a vector bundle on CS = C ×C S. A map (E′, S′)→ (E,S) consists of a

57



map of schemes f : S′ → S together with a map E → (id×f)∗E
′ of OCS -modules

whose adjoint is an isomorphism (i.e. for any choice of pullback (id×f)∗E, the
adjoint map (id×f)∗E → E′ is an isomorphism).

Exercise 1.3.11. Verify that Mg and Bunr,d(C) are prestacks.

Definition 1.3.12 (Quotient and classifying prestacks). Let G→ S be a group
scheme acting on a scheme X → S via σ : G×S X → X. We define the quotient
prestack [X/G]pre as the category over Sch /S where the fiber category over an
S-scheme T is quotient groupoid [X(T )/G(T )] of the (abstract) group G(T ) acting
on the set X(T ); see Example 0.3.6. A morphism (T ′ → X) → (T → X) over
T ′ → T is an element γ ∈ G(T ′) such that (T ′ → X) = γ · (T ′ → T → X) ∈ X(T ′)

We now define the prestack [X/G] (which we will call the quotient stack) as
the category over Sch /S whose objects over an S-scheme T are diagrams

P

��

f
// X

T

where P → T is aG-torsor (see Definition C.3.12) and f : P → X is aG-equivariant

morphism. A morphism (P ′ → T ′, P ′
f ′−→ X) → (P → T, P

f−→ X) consists a
maps g : T ′ → T and ϕ : P ′ → P of schemes such that the diagram

P ′

��

ϕ
//

f ′

##

P

��

f
// X

T ′
g
// T

�

commutes with the left square cartesian. See Section 0.8.1 for motivation of the
above definition.

We define the classifying prestack as BSG = [S/G] arising as the special case
when X = S. When S is understood, we simply write BG.

Exercise 1.3.13. Verify that [X/G]pre and [X/G] are prestacks over Sch /S.

1.3.3 Morphisms of prestacks

Definition 1.3.14.

(1) A morphism of prestacks f : X → Y is a functor f : X → Y such that the
diagram

X

pX
��

f
// Y

pY
��

S

strictly commutes, i.e. for every object a ∈ Ob(X), there is an equality
pX(a) = pY(f(a)) of objects in S.
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(2) If f, g : X→ Y are morphisms of prestacks, a 2-morphism (or 2-isomorphism)
α : f → g is a natural transformation α : f → g such that for every object
a ∈ X, the morphism αa : f(a) → g(a) in Y (which is an isomorphism) is
over the identity in S. We often describe the 2-morphism α schematically as

X

f
&&

g

88�� α Y.

(3) We define the category MOR(X,Y) whose objects are morphisms of prestacks
and whose morphisms are 2-morphisms.

(4) We say that a diagram

X×Y Y′

g′

��

f ′
//

�� α

Y′

g

��

X
f

// Y

together with a 2-isomorphism α : g ◦ f ′ ∼→ f ◦ g′ is 2-commutative.

(5) A morphism f : X → Y of prestacks is an isomorphism if there exists a
morphism g : Y→ X and 2-isomorphisms g ◦ f ∼→ idX and f ◦ g ∼→ idY.

Exercise 1.3.15. Show that any 2-morphism is an isomorphism of functors, or
in other words that MOR(X,Y) is a groupoid.

Exercise 1.3.16. Let f : X→ Y be a morphism of prestacks over a category S.

(a) Show that f is fully faithful if and only if fS : X(S)→ Y(S) is fully faithful
for every S ∈ S.

(b) Show that f is an isomorphism if and only if fS : X(S) → Y(S) is an
equivalence of categories for every S ∈ S.

A prestack X is equivalent to a presheaf if there is a presheaf F and an
isomorphism between X and the stack XF corresponding to F (see Example 1.3.7).

Exercise 1.3.17. Let G→ S be a group scheme acting on a scheme X → S via
σ : G×S X → X. Show that the prestacks [X/G]pre and [X/G] are equivalent to
presheaves if and only if the action is free (i.e. (σ, p2) : G×S X → X ×S X is a
monomorphism).

1.3.4 The 2-Yoneda lemma

Recall that Yoneda’s lemma (Lemma 0.4.1) implies that for a presheaf F : S→ Sets
on a category S and an object X ∈ S, there is a bijection Mor(S, F )

∼→ F (S), where
we view S as a presheaf via Mor(−, S). We will need an analogue of Yoneda’s
lemma for prestacks. First we recall that an object S ∈ S defines a prestack over
S, which we also denote by S, whose objects over T ∈ S are morphisms T → S
and a morphism (T → S)→ (T ′ → S) is an S-morphism T → T ′.

Lemma 1.3.18 (The 2-Yoneda Lemma). Let X be a prestack over a category S

and S ∈ S. The functor

MOR(S,X)→ X(S), f 7→ fS(idS)

is an equivalence of categories.
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Proof. We will construct a quasi-inverse Ψ: X(S)→ MOR(S,X) as follows.

On objects: For a ∈ X(S), we define Ψ(a) : S → X as the morphism of

prestacks sending an object (T
f−→ S) (of the prestack corresponding to S) over T

to a choice of pullback f∗a ∈ X(T ) and a morphism (T ′
f ′−→ S)→ (T

f−→ S) given
by an S-morphism g : T ′ → T to the morphism f ′∗a→ f∗a uniquely filling in the
diagram

f ′∗a //
%%

��

f∗a //
_

��

a_

��

T ′
g
// T

f
// S,

using Axiom (2) of a prestack.

On morphisms: If α : a′ → a is a morphism in X(S), then Ψ(α) : Ψ(a′)→ Ψ(a)

is defined as the morphism of functors which maps a morphism T
f−→ S (i.e. an

object in S over T ) to the unique morphism f∗a′ → f∗a filling in the diagram

f∗a′ //

��

f∗a

��
a′

α // a

over

T

f

��

S

using again Axiom (2) of a prestack.

We leave the verification that Ψ is a quasi-inverse to the reader.

We will use the 2-Yoneda lemma, often without mention, throughout these
notes in passing between morphisms S → X and objects of X over S.

Example 1.3.19 (Quotient stack presentations). Consider the prestack [X/G]
in Definition 1.3.12 arising from a group action σ : G×S X → X. The object of
[X/G] over X given by the diagram

G×S X

p2

��

σ // X

X

corresponds via the 2-Yoneda lemma (Lemma 1.3.18) to a morphism X → [X/G].

Exercise 1.3.20.

(1) Show that there is a morphism p : X → [X/G]pre and a 2-commutative
diagram

G×S X
σ //

p2

��
�
 α

X

p

��

X
p
// [X/G]pre

(2) Show that X → [X/G]pre is a categorical quotient among prestacks, i.e. for

60



any 2-commutative diagram

G×S X
σ //

p2

��
�
 α

X

ϕ

��

p

��

X
p
//

ϕ

//

[X/G]pre

�� τ

Z

of prestacks, there exists a morphism χ : [X/G]pre → Z and a 2-isomorphism
β : ϕ

∼→ χ ◦ p which is compatible with α and τ (i.e. the two natural

transformations ϕ ◦ σ β◦σ−−→ χ ◦ p ◦ σ χ◦α−−→ χ ◦ p ◦ p2 and ϕ ◦ σ τ−→ ϕ ◦ p2
β◦p2−−−→

χ ◦ p ◦ p2 agree.

1.3.5 Fiber products

We discuss fiber products for prestacks and in particular prove their existence.
Recall that for morphisms X → Y and Y ′ → Y of presheaves on a category S,
the fiber product can be constructed as the presheaf mapping an object S ∈ S

to the fiber product X(S)×Y (S) Y
′(S) of sets. Essentially the same construction

works for morphisms X → Y and Y′ → Y of prestacks but since we are dealing
with groupoids rather than sets, the fiber category over an object S ∈ S should be
the fiber product X(S)×Y(S) Y

′(S) of groupoids.
The reader may first want to work on Exercises 1.3.24 and 1.3.25 on fiber

products of groupoids as they not only provide a warmup to fiber products of
prestacks but motivate its construction.

Construction 1.3.21. Let f : X→ Y and g : Y′ → Y be morphisms of prestacks
over a category S. Define the prestack X×Y Y′ over S as the category of triples
(x, y′, γ) where x ∈ X and y′ ∈ Y′ are objects over the same object S := pX(x) =
pY′(y

′) ∈ S, and γ : f(x)
∼→ g(y′) is an isomorphism in Y(S). A morphism

(x1, y
′
1, γ1)→ (x2, y

′
2, γ2) consists of a triple (f, χ, γ′) where f : pX(x1) = pY′(y

′
1)→

pY′(y
′
2) = pX(x2) is a morphism in S, and χ : x1

∼→ x2 and γ′ : y′1
∼→ y′2 are

morphisms in X and Y′ over f such that

f(x1)
f(χ)
//

γ1

��

f(x2)

γ2

��

g(y′1)
g(γ′)

//// g(y′2)

commutes.
Let p1 : X×YY

′ → X and p2 : X×YY
′ → X denote the projections (x, y′, γ) 7→ x

and (x, y′, γ) 7→ y′. There is a 2-isomorphism α : f ◦ p1
∼→ g ◦ p2 defined on an

object (x, y′, γ) ∈ X×Y Y
′ by α(x,y′,γ) : f(x)

γ−→ g(y′). This yields a 2-commutative
diagram

X×Y Y′

p1

��

p2 // Y′

g

��

X
f

// Y

?Gα (1.3.1)
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Theorem 1.3.22. The prestack X×Y Y′ together with the morphisms p1 and p2

and the 2-isomorphism α as in (1.3.1) satisfy the following universal property: for
any 2-commutative diagram

T

q2 ..

q1 00

X×Y Y′

p2

??

p1 ��

KS
τ

Y′

g

��

X
f

?? Y
KS

α

with 2-isomorphism τ : f ◦ q1
∼→ g ◦ q2, there exist a morphism h : T → X ×Y Y′

and 2-isomorphisms β : q1 → p1 ◦ h and γ : q2 → p2 ◦ h yielding a 2-commutative
diagram

T

q2 ..

q1 00

h // X×Y Y′

p2

??

p1 ��
⇑β

⇓γ

Y′

g

��

X
f

?? Y
KS

α

such that

f ◦ q1

f(β)
//

τ

��

f ◦ p1 ◦ h

α◦h
��

g ◦ q2

g(γ)
// g ◦ p2 ◦ h

commutes. The data (h, β, γ) is unique up to unique isomorphism.

Proof. We define h : T → X ×Y Y′ on objects by t 7→
(
q1(t), q2(t), f(q1(t))

τt−→
g(q2(t))

)
and on morphisms as (t

Ψ−→ t′) 7→ (pT(Ψ), q1(Ψ), q2(Ψ)). There are
equalities of functors q1 = p1 ◦ h and q2 = p2 ◦ h so we define β and γ as the
identity natural transformation. The remaining details are left to the reader.

Definition 1.3.23. We say that a 2-commutative diagram

X′

��

//

|� α

Y′

��

X // Y

is cartesian if it satisfies the universal property of Theorem 1.3.22.

1.3.6 Examples of fiber products

Exercise 1.3.24.
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(1) If C
f−→ D and D′

g−→ D are morphisms of groupoids, define the groupoid
C×DD′ whose objects are triples (c, d′, δ) where c ∈ C and d′ ∈ D′ are objects,
and δ : f(c)

∼→ g(d′) is an isomorphism in D. A morphism (c1, d
′
1, δ1) →

(c2, d
′
2, δ2) is the data of morphisms γ : c1

∼→ c2 and δ′ : d′1
∼→ d′2 such that

f(c1)
f(γ)
//

δ1

��

f(c2)

δ2

��

g(d′1)
g(δ′)

// // g(d′2)

commutes. Formulate a university property for fiber products of groupoids
and show that C×D D′ satisfies it.

(2) If f : X → Y and g : Y′ → Y are morphisms of prestacks over a category S,
show that for every S ∈ S, the fiber category (X×Y Y′)(S) is a fiber product
X(S)×Y(S) Y

′(S) of groupoids.

Exercise 1.3.25. Let G be a group acting on a set X via σ : G×X → X. Let
[X/G] denote the quotient groupoid (Exercise 0.3.7) with projection p : X →
[X/G].

(1) Show that there are cartesian diagrams

G×X σ //

p2

��
�	

X

p

��

X
p
// [X/G]

and

G×X
(σ,p2)

//

��
��

X ×X

p×p
��

[X/G]
∆ // [X/G]× [X/G].

(2) Show that if P → T is any G-torsor and P → X is a G-equivariant map,
there is a morphism T → [X/G], unique up to unique isomorphism, and a
cartesian diagram

P //

��
��

X

��

T // [X/G].

(If G→ S is a smooth affine group scheme, we will later see that [X/G] is an
algebraic stack and that X → [X/G] is G-torsor (Theorem 2.1.8). Therefore
the G-torsor X → [X/G] and the identity map X → X is the universal
family over [X/G] (corresponding to the identiy map [X/G]→ [X/G]).

Exercise 1.3.26.

(1) If x ∈ X, show that there is a morphism BGx → [X/G] of groupoids and a
cartesian diagram

Gx //

��
��

X

p

��

BGx // [X/G].

(2) Let φ : H → G be a homomorphism of groups. Show that there is an
induced morphism BH → BG of groupoids and that BH ×BG pt ∼= [G/H].
If G′ → G is a homomorphism of groups, can you describe BH ×BG BG′?
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Exercise 1.3.27 (Magic Square). Let X be a prestack. Show that for any
morphism a : S → X and b : T → X, there is a cartesian diagram

S ×X T

�	

//

��

S × T

a×b
��

X
∆ // X× X.

Exercise 1.3.28 (Isom presheaf).

(1) Let X be a prestack over a category S and let a and b be objects over S ∈ S.
Recall that S/S denotes the localized category whose objects are morphisms
T → S in S and whose morphisms are S-morphisms. Show that

IsomX(S)(a, b) : S/S → Sets

(T
f−→ S) 7→ MorX(T )(f

∗a, f∗b),

where f∗a and f∗b are choices of a pullback, defines a presheaf on S/S.

(2) Show that there is a cartesian diagram

IsomX(S)(a, b)

��

//

��

S

(a,b)

��

X
∆ // X× X.

(3) Show that the presheaf AutX(T )(a) = IsomX(T )(a, a) is naturally a presheaf
in groups.

Exercise 1.3.29. If n ≥ 2, show that [An/Gnm] ∼= [A1/Gm]× · · · × [A1/Gm]︸ ︷︷ ︸
n times

.

Exercise 1.3.30.

(1) Show that if H → G is a morphism of group schemes over a scheme S, there
is an induced morphism of prestacks BH → BG over Sch /S.

(2) Show that BH ×BG S ∼= [G/H].

1.4 Stacks

In this subsection, we will define a stack over a site S as a prestack X such
that objects and morphisms glue uniquely in the Grothendieck topology of S

(Definition 1.4.1). Verifying a given prestack is a stack reduces to a descent
condition on objects and morphisms with respect to the covers of S. The theory of
descent is discussed in Section B.1 and is essential for verifying the stack axioms.

For a motivating example, consider the prestack of sheaves (Example 0.7.5) over
the big Zariski site (Sch)Zar whose objects over a scheme S are sheaves of abelian
groups. Since sheaves and morphisms of sheaves glue in the Zariski-topology, this
is a stack. It is also a stack in the big étale site (Sch)Ét and this requires the
analogous gluing results in the étale topology (Propositions B.1.3 and B.1.5).
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1.4.1 Definition of a stack

Definition 1.4.1. A prestack X over a site S is a stack if the following conditions
hold for all coverings {Si → S} of an object S ∈ S:

(1) (morphisms glue) For objects a and b in X over S and morphisms φi : a|Si → b
such that φi|Sij = φj |Sij as displayed in the diagram

a|Sij

??

��

a|Si

��

φi

  

a|Sj

??

φj

==
a // b over Sij

??

��

Si

��

Sj

??
S,

there exists a unique morphism φ : a→ b with φ|Si = φi.

(2) (objects glue) For objects ai over Si and isomorphisms αij : ai|Sij → aj |Sij ,
as displayed in the diagram

ai|Sij
αij−−→ aj |Sij

??

��

ai

��

aj

?? a
over Sij

??

��

Si

��

Sj

?? S

satisfying the cocycle condition αij |Sijk ◦ αjk|Sijk = αik|Sijk on Sijk, then
there exists an object a over S and isomorphisms φi : a|Si → ai such that
αij ◦ φi|Sij = φj |Sij on Sij .

Remark 1.4.2. There is an alternative description of the stack axioms analogous
to the sheaf axiom of a presheaf F : S → Sets, i.e. that F (S) →

∏
i F (Si) ⇒∏

i,j F (Si ×S Sj) is exact for coverings {Si → S}. Namely, we add an additional
layer to the diagram corresponding to triple intersections and the stack axiom
translates to the ‘exactness’ of

X(S) //
∏
i X(Si)

//
//
∏
i,j X(Si ×S Sj)

//

//
//
∏
i,j,k X(Si ×S Sj ×S Sk).

Exercise 1.4.3. Show that Axiom (1) is equivalent to the condition that for all ob-
jects a and b of X over S ∈ S, the Isom presheaf IsomX(S)(a, b) (see Exercise 1.3.28)
is a sheaf on S/S.

A morphism of stacks is a morphism of prestacks.

Exercise 1.4.4 (Fiber product of stacks). Show that if X→ Y and Y′ → Y are
morphisms of stacks over a site S, then X×Y Y′ is also a stack over S.

1.4.2 Examples of stacks

Example 1.4.5 (Sheaves and schemes are stacks). Recall that if F is a presheaf
on a site S, we can construct a prestack XF over S as the category of pairs (a, S)
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where S ∈ S and a ∈ F (S) (see Example 1.3.7). If F is a sheaf, then XF is a stack.
We often abuse notation by writing F also as the stack XF .

Since schemes are sheaves on SchÉt (Example 1.2.5), a scheme X defines a
stack over SchÉt (where objects over a scheme S are morphisms S → X), which
we also denote as X.

Let Mg denote the prestack of families of smooth curves C→ S of genus g; see
Example 1.3.9.

Proposition 1.4.6 (Moduli stack of smooth curves). If g ≥ 2, then Mg is a stack
over SchÉt.

Proof. Axiom (1) translates to: for families of smooth curves C→ S and D→ S
of genus g and commutative diagrams

CSij

��

// CSi

��

//

fi

''
C

��

f
// D

��

Sij // Si //

�

S

�

of solid arrows for all i, j (i.e. morphisms fi : CSi → D such that fi|CSij =

fj |CSij ), there exists a unique morphism filling in the diagram (i.e. fi = f |CSi ).
The existence and uniqueness of f follows from étale descent for morphisms
(Proposition B.2.1). The fact that f is an isomorphism also follows from étale
descent (Proposition B.4.1).

Axiom (2) is more difficult: we must show that given diagrams

Ci|Sij

##

αij
//

&&
Cj |Sij

��

// Cj

πj

��

// C

��

Sij // Sj //

�

S

�

for all i, j where πi : Ci → Si are families of smooth curves of genus g and
αij : Ci|Sij → Cj |Sij are isomorphisms satisfying the cocycle condition αij ◦ αjk =
αik, there is family of smooth curves C→ S and isomorphisms φi : C|Si → Ci such
that αij ◦ φi|CSij = φj |CSij .

We will use the following property of families of smooth curves (see Proposi-
tion 4.1.8): for a family of smooth curves π : C→ S, ω⊗3

C/S is relatively very ample

on S (as g > 2) and F := π∗ω
⊗3
C/S is a vector bundle of rank 5(g−1). In particular,

ω⊗3
C/S yields a closed immersion C ↪→ P(F ) over S.

Therefore, if we set Ei = (πi)∗(ωCi/Si), there is a closed immersion Ci ↪→ P(Ei)
over Si. The isomorphisms αij induce isomorphisms βij : Ei|Sij → Ej |Sij satisfying
the cocycle condition βij ◦ βjk = βik on Sijk. Descent for quasi-coherent sheaves
(Proposition B.1.5) implies there is a quasi-coherent sheaf E on S and isomorphisms
Ψi : E|Sij → Ei such that βij ◦Ψi|Sij = Ψj |Sij . It follows again from descent that
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E is in fact a vector bundle (Proposition B.4.4). Pictorially, we have

P(Eij) // P(Ei) // P(E)

Ci|Sij
, �

;;

��

// Ci

��

//
, �

;;

C

��

- 


;;

Sij // Si // S.

Since the preimages of Ci ⊂ P(Ei) and Cj ⊂ P(Ej) in P(Eij) are equal, it follows
from descent for closed subschemes (Proposition B.3.1) that there exists C→ S
and isomorphisms φi such that αij ◦ φi|CSij → φj |CSij . Since smoothness and

properness are étale-local property on the target (Proposition B.4.1), C→ S is
smooth and proper. The geometric fibers of C→ S are connected genus g curves
since the geometric fibers of Ci → Si are.

Exercise 1.4.7.

(1) Show that the prestack M0 is a stack on SchÉt isomorphic to B PGL2.

(2) Show that the moduli stack M1,1, whose objects are families of elliptic curves
(see Example 0.4.26) is a stack on SchÉt.

(3) Can you show that M1 is a stack on SchÉt?

Let C be a smooth connected projective curve over C, and fix integers r ≥ 0
and d. Recall from Example 1.3.10 that Bunr,d(C) denotes the prestack over
Sch /C consisting of pairs (E,S) where S is a scheme over C and E is a vector
bundle on CS .

Proposition 1.4.8 (Moduli stack of vector bundles over a curve). For all integers
r, d with r ≥ 0, Bunr,d(C) is a stack over (Sch /C)Ét.

Proof. The prestack Bunr,d(C) is a stack: Axioms (1) and (2) are precisely descent
for morphisms of quasi-coherent sheaves (Propositions B.1.3 and B.1.5) coupled
with the fact that the property of a quasi-coherent sheaf being a vector bundle is
étale-local (Proposition B.4.4).

Let G→ S be a smooth affine group scheme acting on a scheme X → S. Let
[X/G] be the prestack defined in Definition 1.3.12 whose objects over a scheme S
are G-torsors P → S together with G-equivariant maps P → X. The following
proposition justifies calling [X/G] the quotient stack.

Proposition 1.4.9 (Quotient stack). The prestack [X/G] is a stack.

Proof. Axiom (1) follows from descent for morphisms of schemes (Proposition B.2.1).
For Axiom (2), if {Ti → T} is an étale covering and (Pi → Ti,Pi → X) are objects
over Ti with isomorphisms on the restrictions satisfying the cocycle condition,
then the existence of a G-torsor P→ T follows from descent for G-torsors (Propo-
sition C.3.11) and the existence of P→ X follows from descent for morphisms of
schemes (Proposition B.2.1).
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1.4.3 Stackification

To any presheaf F on a site S, there is a sheafification F → F sh which is a left
adjoint to the inclusion, i.e. Mor(F sh, G)→ Mor(F,G) is bijective for any sheaf G
on S (Theorem 1.2.9). Similarly, there is a stackification X→ Xst of any prestack
X over S.

Theorem 1.4.10 (Stackification). If X is a prestack over a site S, there exists a
stack Xst, which we call the stackification, and a morphism X→ Xst of prestacks
such that for any stack Y over S, the induced functor

MOR(Xst,Y)→ MOR(X,Y) (1.4.1)

is an equivalence of categories.

Proof. As in the construction of the sheafification (see the proof of Theorem 1.2.9),
we construct the stackification in stages. Most details are left to the reader.

First, given a prestack X, we can construct a prestack Xst1 satisfying Axiom
(1) and a morphism X→ Xst1 of prestacks such that

MOR(Xst1 ,Y)→ MOR(X,Y)

is an equivalence for all prestacks Y satisfying Axiom (1). Specifically, the objects
of Xst1 are the same as X, and for objects a, b ∈ X over S, T ∈ S, the set of
morphisms a→ b in Xst1 over a given morphism f : S → T is the global sections
Γ(S, IsomX(S)(a, f

∗b)sh) of the sheafification of the Isom presheaf (Exercise 1.3.28).
Second, given a prestack X satisfying Axiom (1), we construct a stack X and a

morphism X→ Xst of prestacks such that (1.4.1) is an equivalence for all stacks Y.
An object of Xst over S ∈ S is given by a triple consisting of a covering {Si → S},
objects ai of X over Si, and isomorphisms αij : ai|Sij → aj |Sij satisfying the
cocycle condition αij |Sijk ◦ αjk|Sijk = αik|Sijk on Sijk. Morphisms(

{Si → S}, {ai}, {αij}
)
→
(
{Tµ → T}, {bµ}, {βµν}

)
in Xst over S → T are defined as follows: first consider the induced cover {Si ×S
Tµ → S}i,µ and choose pullbacks ai|Si×STµ and bµ|Si×STµ . A morphism is then
the data of maps Ψiµ : ai|Si×STµ → bµ|Si×STµ for all i, µ which are compatible
with αij and βµν (i.e. Ψjν ◦ αij = βµν ◦Ψiµ on Sij ×T Tµν).

Exercise 1.4.11. Show that stackification commutes with fiber products: if
X→ Y and Z→ Y are morphisms of prestacks, then (X×Y Z)st ∼= Xst ×Yst Zst.

Exercise 1.4.12. Recall the prestacks [X/G]pre and [X/G] from Definition 1.3.12.

(1) Show that [X/G]pre satisfies Axiom (1) of a stack.

(2) Show that the [X/G] is isomorphic to the stackification of [X/G]pre and that
[X/G]pre → [X/G] is fully faithful.

Exercise 1.4.13. Extending Exercise 1.3.20, show that X → [X/G] is is a
categorical quotient among stacks.

Notes

Grothendieck topologies and stacks were introduced in [SGA4] and our exposition
closely follows [Art62], [Vis05], and [Ols16, Ch. 2].
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Chapter 2

Algebraic spaces and stacks

2.1 Definitions of algebraic spaces and stacks

We present a streamlined approach to defining algebraic spaces (Definition 2.1.2),
Deligne–Mumford stacks (Definition 2.1.4) and algebraic stacks (Definition 2.1.5),
and we verify the algebraicity of quotient stacks (Theorem 2.1.8), the moduli
stack of curves (Theorem 2.1.11) and the moduli stack of vector bundles (Theo-
rem 2.1.15).

2.1.1 Algebraic spaces

Definition 2.1.1 (Morphisms representable by schemes). A morphism X → Y

of prestacks (or presheaves) over Sch is representable by schemes if for every
morphism V → Y from a scheme, the fiber product X×Y V is a scheme.

If P is a property of morphisms of schemes (e.g. surjective or étale), a morphism
X→ Y of prestacks representable by schemes has property P if for every morphism
V → Y from a scheme, the morphism X×Y V → V of schemes has property P.

Definition 2.1.2. An algebraic space is a sheaf X on SchÉt such that there exist
a scheme U and a surjective étale morphism U → X representable by schemes.

The morphism U → X is called an étale presentation. Morphisms of algebraic
spaces are by definition morphisms of sheaves. Any scheme is an algebraic space.

2.1.2 Deligne–Mumford stacks

Definition 2.1.3 (Representable morphisms). A morphism X→ Y of prestacks
(or presheaves) over Sch is representable if for every morphism V → Y from a
scheme V , the fiber product X×Y V is an algebraic space.

If P is a property of morphisms of schemes which is étale-local on the source
(e.g., surjective, étale, or smooth), we say that a representable morphism X→ Y

of prestacks has property P if for every morphism V → Y from a scheme and étale
presentation U → X×Y V by a scheme, the composition U → X×Y V → V has
property P.

Definition 2.1.4. A Deligne–Mumford stack is a stack X over SchÉt such that
there exist a scheme U and a surjective, étale and representable morphism U → X.
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The morphism U → X is called an étale presentation. Morphisms of Deligne–
Mumford stacks are by definition morphisms of stacks. Any algebraic space is a
Deligne–Mumford stack via Example 1.3.7.

2.1.3 Algebraic stacks

Definition 2.1.5. An algebraic stack is a stack X over SchÉt such that there
exist a scheme U and a surjective, smooth and representable morphism U → X.

The morphism U → X is called a smooth presentation. For any smooth-local
property P of schemes, we can say that X has P if U does. Morphisms of algebraic
stacks are by definition morphisms of prestacks. Any scheme, algebraic space or
Deligne–Mumford stack is also an algebraic stack.

!
a

Warning 2.1.6. The definitions above are not standard as most authors also
add a representability condition on the diagonal. They are nevertheless equivalent
to the standard definitions: we show in Theorem 2.4.1 that the diagonal of an
algebraic space is representable by schemes and that the diagonal of an algebraic
stack is representable.

Exercise 2.1.7 (Fiber products). Show that fiber products exist for algebraic
spaces, Deligne–Mumford stacks and algebraic stacks

2.1.4 Algebraicity of quotient stacks

We will now show that if G is a smooth affine group scheme acting on an algebraic
space U over a base T , the quotient stack [U/G] is algebraic and U → [U/G] is a
G-torsor (Theorem 2.1.8).

Since we want to allow for the case that U is not a scheme, we need to
generalize a few definitions. An action of a smooth affine group scheme G→ T on
an algebraic space U over T is a morphism σ : G×T U → U satisfying the same
axioms as in Definition C.1.6, and we define as in Definition 1.3.12 the quotient
stack [U/G] as the stackification of the prestack [U/G]pre, whose fiber category
over an T -scheme S is the quotient groupoid [U(S)/G(S)]. Objects of [U/G]
over an T -scheme S are G-torsors P → S and G-equivariant morphisms S → U .
Since morphisms to algebraic spaces glue uniquely in the étale topology (by
definition), the argument of Proposition 1.4.9 shows that [U/G] is a stack. Using
Definition 2.1.3, the morphism U → [U/G] is a G-torsor if for every morphism
S → X from a scheme S, the algebraic space U ×X S with the induced G-action
is a G-torsor over S.

Theorem 2.1.8 (Algebraicity of Quotient Stacks). If G→ T is a smooth, affine
group scheme acting on an algebraic space U → T , the quotient stack [U/G] is
an algebraic stack over T such that U → [U/G] is a G-torsor and in particular
surjective, smooth and affine.

Proof. If S → [U/G] is a morphism from a scheme corresponding to a G-torsor

P→ S and a G-equivariant map P
f−→ U , there is a cartesian diagram

P
f
//

��

U

��

S // [U/G]
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(see Exercise 1.3.25). This shows that U → [U/G] is a G-torsor. If U ′ → U is
an étale presentation by a scheme, then U ′ → U → [U/G] provides a smooth
presentation.

Corollary 2.1.9. If G is a finite group acting freely on an algebraic space U ,
then the quotient sheaf U/G is an algebraic space.

Proof. Theorem 2.1.8 implies that U/G is an algebraic stack and that U → U/G
is a G-torsor so in particular finite, étale, surjective and representable by schemes.
Taking U ′ → U to be any étale presentation by a scheme, the composition
U ′ → U → U/G yields an étale presentation of U/G.

Remark 2.1.10. This resolves the troubling issue from Example 0.6.5 where we
saw that the quotient of a finite group acting freely on a scheme need not exist as
a scheme. In addition, it shows that the category of algebraic spaces is reasonably
well-behaved as it is closed under taking quotients by free actions of finite groups.

2.1.5 Algebraicity of Mg

We now show that Mg is an algebraic stack. The main idea is quite simple: every

smooth connected projective curve C is tri-canonically embedded C
|ω⊗3
C |
↪→ P5g−6 and

the locally closed subscheme H ′ ⊂ HilbP (P5g−6) parameterizing smooth families
of tri-canonically embedded curves provides a smooth presentation H ′ →Mg.

Theorem 2.1.11 (Algebraicity of the stack of smooth curves). If g ≥ 2, then Mg

is an algebraic stack over SpecZ.

Proof. As in the proof that Mg is a stack (Proposition 1.4.6), we will use Properties
of Families of Smooth Curves (see Proposition 4.1.8) which implies that for a
family of smooth curves π : C→ S, ω⊗3

C/S is relatively very ample on S (as g > 2)

and π∗ω
⊗3
C/S is a vector bundle of rank 5(g− 1). In particular, ω⊗3

C/S yields a closed

immersion C ↪→ P(π∗ω
⊗3
C/S) over S. By Riemann–Roch, the Hilbert polynomial of

any fiber Cs ↪→ P5g−6
κ(s) is given by

P (n) := χ(OCs(n)) = deg(ω⊗3n
Cs

) + 1− g = (6n− 1)(g − 1).

Let
H := HilbP (P5g−6

Z )

by the Hilbert scheme parameterizing closed subschemes of P5g−6 with Hilbert
polynomial P (Theorem D.0.1). Let C ↪→ P5g−6 × H be the universal closed
subscheme and let π : C → H. We claim that there is a unique locally closed
subscheme H ′ ⊂ H consisting of points h ∈ H satisfying

(a) Ch → Specκ(h) is smooth and geometrically connected; and

(b) Ch ↪→ P5g−6
κ(h) is embedded by the complete linear series ω⊗3

Ch/κ(h).

(c) denoting C′ = C|H′ → H ′, the coherent sheaves ω⊗3
C′/H′ and OC′(1) differ by

a pullback of a line bundle from H ′.

Since the condition that a fiber of a proper morphism (of finite presentation)
is smooth is an open condition on the target (Corollary A.3.8), the condition
that Ch is smooth is open. Consider the Stein factorization [Har77, Cor. 11.5]
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C→ H̃ = SpecH π∗OC → H where C→ H̃ has geometrically connected fibers and

H̃ → H is finite. Since the kernel and cokernel of OH → π∗OC have closed support
(as they are coherent), H̃ → H is an isomorphism over an open subscheme of
H, which is precisely where the fibers of C→ H are geometrically connected. In
summary, the set of h ∈ H satisfying (a) is an open subscheme of H, which we
will denote by H1.

The relative canonical sheaf ωC1/H1
of the family C1 := C|H1

is a line bundle.
As a consequence Theorem 2.1.12, there exists a locally closed subscheme H2 ↪→ H1

such that a morphism T → H1 factor through H2 if and only if ωC1/H1
|CT and

OC(1)|CT differ by the pullback of a line bundle on T . In particular, (c) holds
and for every h ∈ H2, there is an isomorphism ω⊗3

Ch/κ(h)
∼= OCh(1). To arrange

(b), consider the restriction of the universal curve π2 : C2 → H2. There is a
canonical map α : H0(P5g−6,O(1))⊗OH2 → (π2)∗ωC2/H2

of vector bundles of rank

5g − 5 on H2 whose fiber over a point h ∈ H2 is the map αh : H0(P5g−6
κ(h) ,O(1))→

H0(Ch, ω
⊗3
Ch/κ(h)). The closed locus defined by the support of coker(α) is precisely

the locus where αh is not an isomorphism (as the vector bundles have the same
rank). The closed subscheme H ′ = H2 \ Supp(coker(α)) satisfies (a)-(c).

The group scheme PGL5g−5 = Aut(P5g−6
Z ) over Z acts naturally on H: if

g ∈ Aut(P5g−6
S ) and [D ⊂ P5g−6

S ] ∈ H(S), then g · [D ⊂ P5g−6
S ] = [g(D) ⊂ P5g−6

S ].
The closed subscheme H ′ ⊂ H is PGL5g−5-invariant and we claim that Mg

∼=
[H ′/PGL5g−5]. This establishes the theorem since [H ′/PGL5g−5] is algebraic
(Theorem 2.1.8).

Consider the morphism H ′ → Mg which forgets the embedding, i.e. assigns

a closed subscheme C ⊂ P5g−6
S to the family C→ S. This morphism descends to

a morphism Ψpre : [H ′/PGL5g−5]pre → Mg of prestacks. The map Ψpre is fully

faithful since for a family C ⊂ P5g−6
S of closed subschemes in H ′, any automorphism

of C → S induces an automorphism of ω⊗3
C/S and therefore an automorphism of

P5g−6
S preserving C.

Since Mg is a stack (Theorem 2.1.8), the universal property of stackifica-
tion yields a morphism Ψ: [H ′/PGL5g−5] → Mg. Since [H ′/PGL5g−5]pre →
[H ′/PGL5g−5] is fully faithful (Exercise 1.4.12), so is Ψ. It remains to check that
Ψ is essentially surjective. For this, it suffices to check that if π : C→ S is a family
of smooth curves, then there exists an étale cover {Si → S} such that each C|Si is
in the image of H ′ →Mg. Since π∗ωC/S is locally free of rank 5g − 5 and there is

a closed immersion C ↪→ P(π∗ω
⊗3
C/S) over S, we may simply take {Si} to be any

Zariski-open cover (and thus étale cover) where π∗ω
⊗3
C/S is free.

The above proof used the following statement which provides conditions on a
morphism X → S and a line bundle L on X ensuring that the locus in S consisting
of points s ∈ S such that L|Xs is trivial is closed. See [SP, Tag 0BEZ,Tag 0BF0]
(and [Mum70, Cor. II.5.6, Thm. III.10] for the case when X is a product over S) .

Theorem 2.1.12. Let f : X → S be a flat, proper morphism of finite presentation
with geometrically integral fibers. Let L be a line bundle on X. Assume that for
any morphism T → S, the base change fT : XT → T satisfies OT

∼→ (fT )∗OXT .
Let L be a line bundle on X. Then there exists a closed subscheme Z ↪→ S of
finite presentation such that a morphism T → S factors through Z if and only if
L|XT is the pullback of a line bundle on T .
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Exercise 2.1.13. Let f : X → S be a morphism as in Theorem 2.1.12. Define
the Picard functor of f : X → S as

PicX/S : Sch /S → Sets, T 7→ Pic(XT )/f∗T Pic(T ).

Show that the above theorem is equivalent to the diagonal morphism PicX/S →
PicX/S ×S PicX/S of presheaves over Sch /S being representable by closed immer-
sions, i.e. PicX/S is separated over S.

Exercise 2.1.14. Show that M1,1 is an algebraic stack.

2.1.6 Algebraicity of Bunr,d(C)

We now show that the stack of vector bundles over a fixed curve is algebraic.

Theorem 2.1.15 (Algebraicity of the stack of vector bundles). Let C be a smooth,
projective and connected curve over a field k, and let r and d be integers with
r ≥ 0. The stack Bunr,d(C) is an algebraic stack over Speck.

Proof. For any vector bundle E on C of rank r and degree d, by Serre vanishing
E(m) is globally generated and H1(C,E(m)) = 0 for m� 0. In particular,

Γ(C,E(m))⊗ OC � E(m)

is surjective which by construction induces an isomorphism on global sections. By
Riemann–Roch, the Hilbert polynomial of E is

P (n) = χ(E(n)) = deg(E(n)) + rk(E(n))(1− g) = d+ rn+ r(1− g).

For any scheme S, we have the diagram

C × S
p1

||

p2

##
C S.

For each integer m, consider the substack Bunr,d(C)m parameterizing families
E of vector bundles on C × S over S such that p∗1p2,∗E(m)→ E(m) is surjective
and R1p2,∗E(m) = 0. It follows from Cohomology and Base Change [Har77, Thm
III.12.11] that Bunr,d(C)m ⊂ Bunr,d(C) is an open substack.

For each m, let Nm = P (m) and consider the Quot scheme

Qm := QuotP (C,OC(−m)Nm)

parameterizing quotients OC(−m)Nm � F with Hilbert polynomial P (Theo-
rem D.0.2). Let OC×Qm(−m)Nm → Em be the universal quotient on C ×Qm and
consider the induced map

Ψ: ONmQm
∼→ p2,∗O

Nm
C×Qm → p2,∗(Em(m))

The cokernel of Ψ has closed support in Qm and its complement Q′m ⊂ Qm is
precisely the locus over which Ψ is an isomorphism.

The Quot scheme Qm inherits a natural action from GL such that Q′m is invari-
ant. The morphism Q′m → Bunr,d(C)m, defined by [OC(−m)Nm � F ] 7→ F , fac-
tors to a yield a morphism Ψpre : [Q′m/GLNm ]pre → Bunr,d(C)m of prestacks. The
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map Ψpre is fully faithful since any automorphism of a family F ∈ Bunr,d(C)m(S)

of vector bundles on C × S induces an automorphism of p2,∗F(m) = ONmS which
is an element of GLNm(S), and this element acts on OC(−m)Nm preserving the
quotient F .

Since Bunr,d(C) is a stack (Proposition 1.4.8), there is an induced mor-
phism Ψ: [Q′m/GLNm ]→ Bunr,d(C)m of stacks which is also fully faithful (Exer-
cise 1.4.12) and by construction essentially surjective. We conclude that

Bunr,d(C) =
⋃
m

[
Q′m/GLNm

]
and the result follows from the algebraicity of quotient stacks (Theorem 2.1.8.

Remark 2.1.16. Note that while Bunr,d(C) itself is not quasi-compact (Def-
inition 2.2.7), the proof establishes that any quasi-compact open substack of
Bunr,d(C) is a quotient stack.

2.1.7 Survey of important results

We will develop the foundations of algebraic spaces and stacks in the forthcoming
chapters but it is worth first highlighting some of the most important results.

The importance of the diagonal

When overhearing others discussing algebraic stacks, you may have wondered
what’s all the fuss about the diagonal? Well, I’ll tell you—the diagonal encodes
the stackiness!

First and foremost, the diagonal X→ X×X of an algebraic stack is representable
and the diagonal X → X ×X of an algebraic space is representable by schemes.
Many authors in fact include this condition in the definition of algebraicity.

Recall that if X is a prestack over Sch and x, y are objects over a scheme T ,
then there is a cartesian diagram

IsomX(T )(x, y) //

��

T

(x,y)

��

X
∆ // X× X;

see Exercise 1.3.28. Axiom (1) of a stack is the condition that IsomX(T )(x, y) is a
sheaf on (Sch /T )Ét and Representability of the Diagonal (Theorem 2.4.1) shows
that IsomX(T )(x, y) is an algebraic space. Moreover, AutX(T )(x) = IsomX(T )(x, x)
is naturally a sheaf in groups and thus a group algebraic space over T . Taking T
to be the spectrum of a field K, we define the stabilizer of x : SpecK → X as

Gx := AutX(K)(x).

For schemes (resp. separated schemes), the diagonal is an immersion (resp.
closed immersion). For algebraic stacks, the diagonal is not necessarily a monomor-
phism as the fiber over (x, x) : SpecK → X× X, or in other words the stabilizer
Gx, may be non-trivial. Properties of the diagonal in fact characterize algebraic
spaces and Deligne–Mumford stacks: an algebraic stack is an algebraic space
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(resp. Deligne–Mumford stack) if and only if X → X → X is a monomorphism
(resp. unramified)—see Theorems 2.6.3 and 2.6.5. Properties of the stabilizer also
provide characterizations as in the table below:

Table 2.1: Characterization of algebraic spaces and Deligne–Mumford stacks

Type of space Property of the diagonal Property of stabilizers

algebraic space monomorphism trivial

Deligne–Mumford stack unramified discrete and reduced
groups

algebraic stack arbitrary arbitrary

As a consequence of these characterizations, we will generalize Corollary 2.1.9:
the quotient of a free action of a smooth algebraic group on an algebraic space
exists as an algebraic space. We will also be able to establish that Mg is Deligne–
Mumford rather than just algebraic (Theorem 2.1.11).

We now summarize additional important properties of algebraic spaces, Deligne–
Mumford stacks and algebraic stacks. The reader may also wish to consult Table 3
for a brief recap of the trichotomy of moduli spaces.

Properties of algebraic spaces

• If R⇒ U is an étale equivalence relation of schemes, the quotient sheaf U/R
is an algebraic space.

• If X is a quasi-separated algebraic space, there exists a dense open subspace
U ⊂ X which is a scheme.

• If X → Y is a separated and quasi-finite morphism of noetherian algebraic
spaces, then there exists a factorization X ↪→ X̃ → Y where X ↪→ X̃ is
an open immersion and X̃ → Y is finite (Zariski’s Main Theorem). In
particular, X → Y is quasi-affine.

Properties of Deligne–Mumford stacks

• If R ⇒ U is an étale groupoid of schemes, the quotient stack [U/R] is a
Deligne–Mumford stack.

• If X is a Deligne–Mumford stack (e.g. algebraic space), there exists a scheme
U and a finite morphism U → X.

• If X is a Deligne–Mumford stack and x ∈ X(k) is any field-valued point,
there exists an étale neighborhood [Spec(A)/G]→ X of x where G is a finite
group, which can be arranged to be the stabilizer of x (Local Structure of
Deligne–Mumford Stacks).

• If X is a separated Deligne–Mumford stack, there exists a coarse moduli
space X→ X where X is a separated algebraic space (Keel-Mori theorem).
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Properties of algebraic stacks

• If R⇒ U is a smooth groupoid of schemes, the quotient stack [U/R] is an
algebraic stack.

• If X is an algebraic stack of finite type over an algebraically closed field k
with affine diagonal, any point x ∈ X(k) with linearly reductive stabilizer
has an affine étale neighborhood [Spec(A)/Gx]→ X of x where G is a finite
group (Local Structure of Algebraic Stacks).

• Let X be an algebraic stack of finite type over an algebraically closed field k
of characteristic 0 with affine diagonal. If X is S-complete and Θ-reductive,
there exists a good moduli space X→ X where X is a separated algebraic
space of finite type over k.

Notes

Deligne–Mumford and algebraic stacks were first introduced in [DM69] and
[Art74]—and in both cases referred to as algebraic stacks—with conventions
slightlly different than ours. Namely, [DM69, Def. 4.6] assumed in addition to the
existence of an étale presentation that the diagonal is representable by schemes
(which is automatic if the diagonal is separated and quasi-compact). On the
other hand, [Art74, Def. 5.1] assumed in addition to the existence of a smooth
presentation that the stack is locally of finite type over an excellent Dedekind
domain. We will not use the term Artin stack which is often used to refer to
algebraic stacks that satisfy Artin’s axioms (e.g. algebraic stacks locally of finite
type over an excellent scheme with quasi-compact and separated diagonal) as
Artin stacks.

We follow the conventions of [Ols16] and [SP] (with the exception that we
work over the site SchÉt while [SP] works over Schfppf). We begin this section
by discussing properties of algebraic spaces and stacks and their morphisms. We
discuss equivalence relations and groupoids (Definition 2.3.1) and establish that
their quotient sheaves or stacks are algebraic (Theorem 2.3.8, Corollary 2.4.5).
We verify that the diagonal of an algebraic space (resp. algebraic stack) is
representable by schemes (resp. representable) (Theorem 2.4.1), and provide
equivalent characterizations of algebraic spaces and Deligne–Mumford stacks in
terms of the diagonal (Theorem 2.6.3). We discuss the Formal Lifting Criteria
(Proposition 2.7.1) for smooth, étale and unramified morphisms, and the Valuative
Criteria (Proposition 2.8.5) for separated, universally closed and proper morphisms.
Finally, §2.9 provides examples.

2.2 First properties

2.2.1 Properties of morphisms

Recall that a morphism of stacks X→ Y over (Sch)Ét is representable by schemes
(resp. representable) if for every morphism T → Y from a scheme, the base change
X×Y T is a scheme (resp. algebraic space).

Definition 2.2.1. Let P be a property of morphisms of schemes.
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(1) If P is stable under composition and base change and is étale-local (resp.
smooth-local) on the source and target, a morphism X → Y of Deligne–
Mumford stacks (resp. algebraic stacks) has property P if there for all
étale (resp. smooth) presentations (equivalently there exists a presentations)
V → Y and U → X×Y V , in the diagram

U // X×Y V //

��

V

��

X // Y

�

the composition U → V has P.

(2) A morphism X→ Y of algebraic stacks representable by schemes has property
P if for every morphism T → Y from a scheme, the base change X×Y T → T
has P.

(3) A morphism X→ Y of algebraic stacks is an open immersion, closed immer-
sion, locally closed immersion, affine, or quasi-affine if it is representable by
schemes and has the corresponding property in the sense of (2).

The properties of flatness, smoothness, surjectivity, locally of finite presentation,
and locally of finite type are smooth-local and étaleness is étale-local

and thus using (1), we have the corresponding notions for morphisms of
algebraic stacks and Deligne–Mumford stacks, respectively. Such properties are
clearly stable under composition and base change.

Example 2.2.2. If G→ S is a group scheme acting on an algebraic space U → S,
then [U/G] → S is locally of finite type if and only if U → S is. In particular,
using Theorems 2.1.11 and 2.1.15, we conclude that Mg is locally of finite type
over Z and Bunr,d(C) is locally of finite type over k.

The properties of being an open immersion, closed immersion, locally closed
immersion, affine, or quasi-affine are smooth-local on the target (but not the
source) and therefore it suffices to show that for a smooth presentation V → Y,
the base change X ×Y V → V has P. Again these properties are clearly stable
under composition and base change. In fact, we will show now that they also
descend.

Proposition 2.2.3. Let P be one of the following properties of morphisms of
algebraic spaces: open immersion, closed immersion, locally closed immersion,
affine, or quasi-affine. Consider a cartesian diagram

X ′ //

��

Y ′

��

X // Y

of algebraic spaces such that Y ′ → Y is surjective, flat and locally of finite
presentation. Then X → Y has P if and only if X ′ → Y ′ has P.

Proof. We may assume that X ′ → Y ′ is a morphism of schemes. The challenge
here is to show that X → Y is representable by schemes but fortunately this is a
consequence of Effective Descent (Corollary B.3.6).
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Remark 2.2.4. Once we know that an algebraic stack X is isomorphic to an
algebraic space if and only if X→ X×X is a monomorphism (Theorem 2.6.3), we
can show that representable morphisms satisfy descent and therefore can extend
this result to algebraic stacks.

We can now define unramified and étale morphisms.

Definition 2.2.5.

(1) A morphism of stacks X → Y over (Sch)Ét is representable by Deligne–
Mumford stacks if for every morphism T → Y from a scheme, the fiber
product X×Y T is a Deligne–Mumford stack.

(2) If P is a property of morphisms of schemes that is étale-local on the source
and smooth-local on the target, we say that a morphism X→ Y of stacks
representable by Deligne–Mumford stacks has property P if for a smooth
presentation V → Y and an étale presentation U → X ×Y V (equivalently
for all such presentations), in the diagram

U // X×Y V //

��

V

��

X // Y

�

the composition U → V has P.

(3) A morphism X → Y of algebraic stacks is unramified or étale if X → Y

is representable by Deligne–Mumford stacks and has the corresponding
property in the sense of (2).

2.2.2 The topological space of a stack

We can associate a topological space |X| (in the usual sense) to any algebraic stack
X.

Definition 2.2.6 (Topological space of an algebraic stack). If X is an algebraic
stack, we define the topological space of X as the set |X| consisting of field-
valued morphisms x : SpecK → X . Two morphisms x1 : SpecK1 → X and
x2 : SpecK2 → X are identified in |X| if there exists field extensions K1 → K3

and K2 → K3 such that x1|SpecK3 and x2|SpecK3 are isomorphic in X(K3). A
subset U ⊂ |X| is open if there exists an open immersion U ↪→ X such that U is
the image of |U| → |X|.

A morphism of stacks X → Y induces a continuous map |X| → |Y|. We can
now define topological properties of algebraic stacks and their morphisms.

Definition 2.2.7. We say that an algebraic stack X is quasi-compact, connected,
or irreducible if |X| is.

Exercise 2.2.8. Show that an algebraic stack X is quasi-compact if and only if
there exists a smooth presentation SpecA→ X.

Definition 2.2.9. A morphism X→ Y of algebraic stacks is quasi-compact if for
every morphism SpecB → Y, the fiber product X×Y SpecB is quasi-compact. We
say that X→ Y is of finite type if X→ Y is locally of finite type and quasi-compact.
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After discussing properties of the diagonal, we will define X to be noetherian
if X is locally noetherian (Definition 2.2.16), quasi-compact and quasi-separated
(Definition 2.4.15).

Exercise 2.2.10. Show that an algebraic stack X is quasi-compact if and only if
there exists a smooth presentation SpecA→ X.

Example 2.2.11. Using the quotient presentation in Theorem 2.1.11, we see that
Mg is quasi-compact and in particular of finite type over Z.

Exercise 2.2.12. If X is an algebraic stack such that the diagonal X→ X×X is
quasi-compact, show that |X| is a sober topological space, i.e. every irreducible
closed subset has a generic point. (This is a difficult exercise and should perhaps
be postponed until we have developed more theory.)

Exercise 2.2.13. Let x ∈ |X| be a point of an algebraic stack with two represen-
tatives x1 : SpecK1 → X and x2 : SpecK2 → X. Show that the stabilizer group
Gx1 is smooth (resp. affine) if and only if Gx2 is. (It thus makes sense to say that
x ∈ |X| has smooth or affine stabilizer.)

Definition 2.2.14. A point x ∈ |X| in an algebraic stack is of finite type if there
exists a representative SpecK → X of finite type.

Remark 2.2.15. If X is a scheme, then a morphism SpecK → X with image
x ∈ X is of finite type if and only if the image x ∈ X is locally closed (i.e. closed in
an open neighborhood U) and κ(x)/K is a finite extension. In particular, x ∈ X
is of finite type if and only if x ∈ X is locally closed, and we will later show that
the same holds for points of noetherian algebraic stacks (Proposition 2.5.14).

An example of a finite type point that is not closed is the generic point of a
DVR. However, if X is a scheme of finite type over k, then any finite type point is
in fact a closed point. The analogous fact is not true for algebraic stacks of finite

type over k, e.g. Speck 1−→ [A1/Gm] is an open finite type point.

We can also define étale and smooth-local properties of algebraic spaces and
stacks:

Definition 2.2.16 (Properties of algebraic spaces and stacks). Let P be a property
of schemes which is étale (resp. smooth) local. We say that a Deligne–Mumford
stack (resp. algebraic stack) X has property P if for an étale (resp. smooth)
presentation (equivalently for all presentations) U → X, the scheme U has P.

The properties of being locally noetherian, reduced or regular are smooth-local.

Example 2.2.17. Let G → S be a smooth, affine group scheme acting on a
scheme U over S. If P is smooth-local on the source, then [U/G] has P if and only
if U has P.

2.3 Equivalence relations and groupoids

2.3.1 Definitions

Definition 2.3.1. An étale (resp. smooth) groupoid of schemes is a pair of
schemes U and R together with étale (resp. smooth) morphisms s : R → U
called the source and t : R → U called the target, and a composition morphism
c : R×t,U,s R→ R satisfying:

79



(1) (associativity) the following diagram commutes

R×t,U,s R×t,U,s R
c×id

//

id×c
��

R×t,U,s R

c

��

R×t,U,s R
c // R,

(2) (identity) there exists a morphism e : U → R (called the identity) such that
the following diagrams commute

U

e

��

id

��

id

��

U R
soo t // U

R
e◦s,id

//

id
$$

R×t,U,s R

c

��

R
e◦t,id
oo

id
zz

R,

(3) (inverse) there exists a morphism i : R→ R (called the inverse) such that
the following diagrams commute

R
i //

s
��

R
i //

t

��

R

s
��

U

R
s //

(id,i)

��

U

e

��

R×t,U,s R
c // R

R
t //

(i,id)

��

U

e

��

R×t,U,s R
c // R.

We will often denote this data as s, t : R⇒ U .
If (s, t) : R→ U × U is a monomorphism, then we say that s, t : R⇒ U is an

étale (resp. smooth) equivalence relation.

A morphism of groupoids from R′ ⇒ U ′ to R ⇒ U is defined as morphisms
R′ → R and U ′ → U compatible with the source, target and composition mor-
phisms.

We can view R as a scheme of relations on U : a point r ∈ R specifies a relation
on the points s(r), t(r) ∈ U , which we sometimes write as s(r)

r−→ t(r). For any
scheme T , the morphisms R(T ) ⇒ U(T ) define a groupoid of sets, i.e. there is
composition morphism R(T )×t,U(T ),s R(T )→ R(T ) satisfying axioms analogous

to (1)-(3). We can think of an element r ∈ R(T ) as specifying a relation u
r−→ v

between elements u, v ∈ U(T ). The composition morphism composes relations

u
r−→ v and v

r′−→ w to the relation u
r′◦r−−→ w while the identity morphism takes

u ∈ U(T ) to u
id−→ u and the inverse morphism takes u

r−→ v to v
r−1

−−→ u. When
R⇒ U is an equivalence relation, the morphism R(T )→ U(T )×U(T ) is injective
and there is thus at most one relation between any two elements of U(T ).

Exercise 2.3.2. Show that the identity and inverse morphism are uniquely
determined.

Example 2.3.3. If G→ S is an étale (resp. smooth) group scheme acting on a
scheme U over S via multiplication σ : G× U → U , then

σ, p2 : G×S U ⇒ U

80



is an étale (resp. smooth) groupoid of schemes. The composition is

(G×S U)×p2,U,σ (G×S U),
(
(g, u), (g′, u′)

)
7→ (gg′, u′).

Here (g, u) is a T -valued point of G ×S U and can be viewed as the relation
gu→ u.

Example 2.3.4. Let X be a Deligne–Mumford stack (resp. algebraic stack) and
U → X be an étale (resp. smooth) presentation which we assume is not only
representable but representable by schemes. Define the scheme R := U ×X U , the
source morphism s = p1 : R → U , the target morphism t = p2 : R → U and the
composition morphism (s ◦ p1, t ◦ p2) : R×t,U,s R→ R := U ×X U . This gives the
structure of an étale (resp. smooth) groupoid R⇒ U . If X is an algebraic space,
then R⇒ U is an étale equivalence relation.

Choosing different presentation yields different groupoids which are equivalent
under a notion called Morita equivalence; we will not use this notion in these
notes.

2.3.2 Quotient of a groupoid

Definition 2.3.5 (Quotient stack of a groupoid). Let R ⇒ U be a smooth
groupoid. Define [U/R]pre to be the prestack whose objects are morphisms T → U

from a scheme T . A morphism (S
a−→ U)→ (T

b−→ U) is the data of a morphism of
schemes f : S → T and an element r ∈ R(S) such that s(r) = a and t(r) = f ◦ b.

Define [U/R] to be the stackification of [U/R]pre.
If in addition R⇒ U is an equivalence relation, then [U/R] is isomorphic to a

sheaf (Exercise 2.3.6) and we denote it as U/R.

The fiber category [U/R]pre(T ) is the groupoid whose objects are U(T ) and
morphisms are R(T ). The identity morphism id: U → U defines a map U →
[U/R]pre and therefore a map p : U → [U/R].

Exercise 2.3.6. Let R⇒ U be a smooth groupoid of schemes. Show that [U/R]
is equivalent to a sheaf if and only if R⇒ U is an equivalence relation.

Exercise 2.3.7. Extend Exercise 1.3.25 to show that if s, t : R⇒ U is a smooth
groupoid, the following diagrams are cartesian:

R
s //

t

��

U

p

��

U
p
// [U/R]

� and

R
(s,t)

//

��

U × U

p×p
��

[U/R]
∆ // [U/R]× [U/R].

�

2.3.3 Algebraicity of groupoid quotients

Theorem 2.3.8 (Algebraicity of Groupoid Quotients). Let R ⇒ U be an étale
(resp. smooth) groupoid of schemes. Then [U/R] is a Deligne–Mumford stack
(resp. algebraic stack) and U → [U/R] is an étale (resp. smooth) presentation.

Proof. We follow a similar argument to Theorem 2.1.8. We need to check that
U → X := [U/R] is representable. Let T → X be a morphism from a scheme T .
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It follows from the definition of [U/R] as the stackification of [U/R]pre that there
exists an étale cover T ′ → T and a commutative diagram

T ′

��

// U

��

T // X.

In the commutative cube

UT ′ //

��

}}

T ′

��

��

R //

��

U

��

UT //

}}

T

~~

U // X

(2.3.1)

the front, back, top and bottom squares are cartesian, and UT is a sheaf. Since
T ′ → T is a surjective étale morphism representable by schemes, so is UT ′ → UT .
This establishes that UT is an algebraic space.

Remark 2.3.9. In Corollary 2.4.5, we show that the quotient U/R of an étale
equivalence relation is an algebraic space. This requires a little additional work as
we need to show that U → U/R is representable by schemes, rather than algebraic
spaces.

However, if we were place additional assumptions on an étale equivalence
relation s, t : R⇒ U , namely that s and t are separated, then the above argument
can be used show that U/R is an algebraic space. Indeed, in (2.3.1), as R→ U
is separated and locally quasi-finite, so is UT ′ → T ′. By Effective Descent for
Separated and Locally Quasi-finite Morphisms (Corollary B.3.6), UT is a scheme
and UT → T is étale and surjective.

2.3.4 Slicing a groupoid

We end this subsection by introducing a useful technique to pullback a smooth
groupoid s, t : R⇒ U along a morphism g : U ′ → U . Namely, define R|U ′ as the
fiber product

R|U ′
(t′,s′)
//

��

U ′ × U ′

��

R
(t,s)
// U × U

Exercise 2.3.10.
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(1) Show that R|U ′ fits into a cartesian diagram

R|U ′ //

��

R×s,U U ′ //

��

U ′

g

��

U ′ ×U,t R

��

// R
s //

t

��

U

��

U ′
g

// U // [U/R]

Assume in addition that U ′ ×U,t R→ R
s−→ U is étale (resp. smooth).

(2) Show that R|U ′ ⇒ U ′ is an étale (resp. smooth) groupoid.

(3) Show that that there is an open immersion [U ′/R|U ′ ]→ [U/R].

(4) Show that [U ′/R|U ′ ] → [U/R] is an isomorphism if and only if for every
every point u ∈ U , there exists a pont u′ ∈ U and a relation u→ g(u′) in R.

2.4 Representability of the diagonal

2.4.1 Representability

We now show that the diagonal of an algebraic space or stack is representable.

Theorem 2.4.1 (Representability of the Diagonal).

(1) The diagonal of an algebraic space is representable by schemes.

(2) The diagonal of an algebraic stack is representable.

Proof. Let X be an algebraic space and T → X ×X be any morphism from a
scheme. We need to show that the sheaf QT = X ×X×X T is in fact a scheme.
Let U → X be an étale presentation. If U → X is an étale presentation, then so
is U × U → X ×X. The base change of T → X ×X by U × U → X ×X is a
scheme T ′ which is surjective étale over T . Consider the cartesian cube

QT ′ //

��

}}

T ′

��

{{

R //

��

U × U

��

QT //

}}

T

{{

X // X ×X.

(2.4.1)

Since R→ U × U is a separated and locally quasi-finite morphism of schemes, so
is QT ′ → T ′. (If X had quasi-compact diagonal, then by Zariski’s main theorem
R→ U×U is quasi-affine and thus so is QT ′ → T ′.) Since the sheaf QT pulls back
to the scheme QT ′ , we may apply Effective Descent for Separated and Locally
Quasi-finite Morphisms (Corollary B.3.6) to conclude that QT is a scheme.
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If X is an algebraic stack and U → X is a smooth presentation, we may
imitate the above argument. The base change of a morphism T → X × X

along U × U → X × X, yields an algebraic space T1 which is surjective smooth
over T . Choose an étale presentation T2 → T1. Then T2 → T is a surjective
smooth morphism of schemes which has a section after an étale cover T ′ → T
(Proposition A.3.5). The composition T ′ → T2 → T1 → U × U provides a lift of
T → X× X. We obtain a diagram similar to (2.4.1) but where the left and right
squares are not necessarily cartesian. Since QT ′ is a scheme and QT ′ → QT is
étale, surjective and representable by schemes (as T ′ → T is), QT is an algebraic
space.

Exercise 2.4.2. Extend the above argument to establish:

(1) If X→ Y is a representable morphism of algebraic stacks (e.g. a morphism
of algebraic spaces), then X→ X×Y X is representable by schemes.

(2) If X→ Y is a morphism of algebraic stacks, then X→ X×YX is representable.

Proof. TO BE ADDED

Exercise 2.4.3. Show that the diagonal of any morphism X → Y of algebraic
stacks is locally of finite type.

Corollary 2.4.4.

(1) Any morphism from a scheme to an algebraic space is representable by
schemes.

(2) Any morphism from a scheme to an algebraic stack is representable.

Proof. This follows directly from Representability of the Diagonal (Theorem 2.4.1)
and the cartesian diagram

T1 ×X T2
//

��

T1 × T2

��

X // X× X.

associated to any two maps T1 → X and T2 → X from schemes to an algebraic
stack.

Corollary 2.4.5. If R ⇒ U be an étale equivalence relation of schemes, then
U/R is an algebraic space and U → U/R is an étale presentation.

Proof. It suffices to show that the diagonal of the quotient sheaf X := U/R is
representable by schemes. Indeed, this implies that U → X is representable by
schemes via the argument of Corollary 2.4.4 and étale descent implies that U → X
is étale and surjective.

Let T → X ×X be a morphism from a scheme and consider the commutative
cube as in (2.4.1). Since R → U × U is separated and locally quasi-finite, so is
QT ′ → T ′. Effective Descent for Separated and Locally Quasi-finite Morphisms
(Proposition B.3.5) implies that sheaf QT is a scheme.
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2.4.2 Stabilizer groups and the inertia stack

Now that we know that the diagonal is representable, we can discuss its properties.
One of the most important features of the diagonal is that it encodes the stabilizer
groups.

Definition 2.4.6 (Stabilizers). If X is an algebraic stack and x : SpecK → X

is a field-valued point, the stabilizer of x is defined as the group scheme Gx :=
AutX(K)(x).

By Exercise 1.3.28, we can identify Gx with the fiber product

Gx := AutX(K)(x) //

��

SpecK

(x,x)

��

X
∆ // X× X

By Representability of the Diagonal (Theorem 2.4.1), Gx is a group algebraic
space. (In fact, Gx is actually a group scheme.)

Exercise 2.4.7. Let G be a group scheme over a field k acting on a k-scheme X,
and let x ∈ X(k). Show that the stabilizer of the image of x in [X/G] is the usual
stabilizer group scheme.

Exercise 2.4.8.

(1) Show that the stabilizer of a field-valued point of a fiber product of algebraic
stacks is the fiber product of stabilizers, i.e. for x′ ∈ (X ×Y Y′)(k), then
Gx′ = Gx ×Gy Gy′ where x, y and y′ are the images of x′.

(2) Does you argument for part (1) suggest any generalizations?

Exercise 2.4.9. Let X be a Deligne–Mumford stack.

(1) For any field-valued point x ∈ X(k), show that Gx is an étale group scheme
over k.

(2) For a geometric point x ∈ X(k) (i.e. k is algebraically closed), show that Gx
is a discrete and reduced group scheme corresponding to an abstract group.
In particular, if X→ X×X is quasi-compact, Gx is a finite (abstract) group.

(3) Show that the diagonal of X is unramified.

(4) For x ∈ |X|, show that the discrete group Gx defined as the stabilizer of a
geometric point x : Spec k→ X with image x is independent of the choice
of representative x.

We will see later that these properties characterize Deligne–Mumford stacks.

Part (4) shows that the following definition is well-defined.

Definition 2.4.10. If X is a Deligne–Mumford stack and x ∈ |X|, we define the
geometric stabilizer of x as the discrete group G = Gx where x : Spec k → X is
any representative of x with k algebraically closed.

Varying the point x of X, the stabilizer group varies and naturally forms a family.
In fact, we’ve already seen this: if a : T → X is an object, then IsomX(T )(a)→ S
is a group algebraic space such that the fiber over a point s ∈ S is the stabilizer
of the restriction a|Specκ(s) of a to Specκ(s). Applying this to the identity map
idX : X→ X yields the construction of the inertia stack.
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Definition 2.4.11 (Inertia stack). The inertia stack of an algebraic stack X is
the fiber product

IX //

��

X

��

X // X× X.

The fiber of IX → X over a field-valued point x : SpecK → X is precisely
the stabilizer Gx. We therefore think of IX as a group scheme (or really group
algebraic space) over X incorporating all of the stabilizers of X.

Exercise 2.4.12. Let G→ S be a group scheme acting on a scheme X → S, and
let X = [X/G] be the quotient stack. Show that there is a cartesian diagram

SX //

��

X

��

IX // X

where SX → X is the stabilizer group scheme, i.e. the fiber product of the action
map G×X → X ×X and the diagonal X → X ×X.

2.4.3 Properties of the diagonal

Conditions on the diagonal yield conditions on the Isom presheaves and in par-
ticular on the stabilizer groups. For instance, if the diagonal is affine, then
IsomX(T )(a) → T is an affine group scheme and in particular Gx is an (affine)
algebraic group. The condition that the diagonal is affine is satisfied by most
moduli problems (except for example M1).

In Theorem 2.1.8, we showed that if G→ S is a smooth, affine group scheme
acting on an algebraic space U → S, the quotient stack [U/G] is an algebraic
stack over S.

Corollary 2.4.13. The diagonal of [U/G] is representable. If U has quasi-affine
diagonal (resp. has affine diagonal), then [U/G] has quasi-affine diagonal (resp.
affine diagonal).

Proof. The first statement is a direct consequence of Representability of the
Diagonal (Theorem 2.4.1(2)). For the other statements, we use the cartesian
diagram

G×S U //

��

U ×S U

��

[U/G] // [U/G]× [U/G].

Since G is affine, so is the composition G×S U → U ×S U
p1−→ U . The statement

follows from the Cancellation Law and descent.

Example 2.4.14. In Theorem 2.1.11, we showed that the stack Mg for g ≥ 2 is
algebraic by expressing it as a quotient stack [H ′/PGLN ] where H ′ is a locally
closed subschemes of the (projective) Hilbert scheme. We therefore can conclude
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that Mg has affine diagonal. We will show later that Mg is separated or in other
words that the diagonal of Mg is a finite morphism.

Similarly in Theorem 2.1.15, we expressed any quasi-compact open substack of
Bunr,d(C) as a quotient stack [Q′/PGLN ] where Q′ is a locally closed subschemes
of the (projective) Quot scheme. To show that Bunr,d(C) has affine diagonal, it
suffices to consider morphisms T → Bunr,d(C)×Bunr,d(C) from an affine scheme.
But such a morphism factors through U×U for some quasi-compact open substack
U ⊂ Bunr,d(C) and we know that U has affine diagonal.

2.4.4 Some separation properties

Definition 2.4.15.

(1) A morphism of algebraic stack X→ Y is quasi-separated if X→ X×Y X is
quasi-compact.

(2) A representable morphism X → Y of algebraic stacks is separated if the
morphism X→ X×Y X, which is representable by schemes (Exercise 2.4.2),
is proper.

(3) An algebraic stack X is quasi-separated if it is quasi-separated over SpecZ.

(4) An algebraic stack X is noetherian if it is locally noetherian, quasi-compact
and quasi-separated.

Remark 2.4.16. A quasi-separated Deligne–Mumford stacks has finite and
reduced stabilizer groups (see Exercise 2.4.9)

For morphisms of schemes, the definition of properness above agrees with the
usual notation since proper monomorphisms of schemes are closed immersions.
We postpone the definition of separatedness for non-representable morphisms until
Definition 2.8.1.

2.5 Dimension, tangent spaces and residual gerbes

2.5.1 Dimension

Recall that the dimension of a scheme X is the Krull dimension of the underlying
topological space while the dimension at a point x ∈ X is the minimum dimension
of open subsets containing x (which is in general distinct from dimOX,x). We
now extend these definitions to algebraic spaces and stacks.

Definition 2.5.1.

(1) Let X be a noetherian algebraic space and x ∈ |X|. We define the dimension
of X at x to be

dimxX = dimu U ∈ Z≥0 ∪∞
where U → X is any étale presentation and u ∈ U is any preimage.

(2) Let X be an algebraic stack with smooth presentation U → X and corre-
sponding smooth groupoid s, t : R ⇒ U , and let u ∈ U be a preimage of
x ∈ |X|. We define the dimension of X at x to be

dimx X = dimu U − dime(u)Ru ∈ Z ∪∞

where Ru is the fiber of s : R→ U over u and e : U → R denotes the identity
morphism in the groupoid.
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(3) If X is a noetherian algebraic space or stack, we define the dimension of X
to be

dimX = sup
x∈|X|

dimx X ∈ Z ∪∞.

Proposition 2.5.2. The definition of the dimension dimx X of a noetherian
algebraic stack X at a point x ∈ |X| is independent of the presentation U → X and
of the choice of preimage u of x.

Proof. The definition of the dimension of an algebraic space at a point is clearly
well defined as étale morphisms have relative dimension 0.

If U → X is a smooth presentation, then by definition U is a scheme and a
preimage u ∈ U has a residue field κ(u). The fiber Ru is is identified with the
fiber product

Ru //

��

R
t //

s

��

U

��

Specκ(u) // U // X,

and is a smooth algebraic space over κ(u).

If U ′ → X is a second presentation and u′ ∈ U ′ a preimage of x, then define
the algebraic space U ′′ := U ×X U

′. Observe that there is a cartesian diagram

U ′′u

��

// U ′′ //

��

U ′

��

Specκ(u) // U // X

(2.5.1)

where the fiber U ′′u is identified with R′u′ . By Exercise 2.5.3 applied to U ′′ → U ,
we have the identity

dimu′′ U
′′ = dimu U + dimu′′ U

′′
u = dimu U + dime′(u′)R

′
u′ . (2.5.2)

Choose a representative SpecL → U ′′ in |U ′′| mapping to u and u′. Note
that the compositions Specκ(u)→ U → X, Specκ(u′)→ U ′ → X and SpecL→
U ′′ → X all define the same point x ∈ |X|. Let R ⇒ U and R′ ⇒ U ′ be the
corresponding smooth groupoids, and set R′′u′′ = U ′′ ×X SpecL.

We need to show that

dimu U − dime(u)Ru = dimu′ U
′ − dime′(u′)R

′
u′

and by symmetry between U and U ′, it suffices to show that

dimu U − dime(u)Ru = dimu′′ U
′′ − dime′′(u′′)R

′′
u′′

where e′′(u′′) ∈ |R′′u′′ | is the image of the map SpecL → R′′u′′ = U ′′ ×X SpecL
defined by the identity automorphism of u′′. By (2.5.2), this is in turn equivalent
to

dime′′(u′′)R
′′
u′′ = dime(u)Ru + dime′(u′)R

′
u′
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This last fact follows from the cartesian cube

R′′u′′
//

��

yy

R′u′ ×κ(u′) L

��

yy
U ′′ //

��

U ′

��

Ru ×κ(u) L //

yy

SpecL

yy
U // X.

and properties of dimension (see Exercise 2.5.3).

Exercise 2.5.3.

1. Show that the analogue of Proposition A.3.9 holds for algebraic spaces; that
is, if X → Y is a smooth morphism of noetherian algebraic spaces, and if
x ∈ |X| is a point with image y ∈ |Y |, then

dimx(X) = dimy(Y ) + dimx(Xy).

2. If X and X ′ are noetherian algebraic spaces over a field k with k-points x
and x′, show that

dim(x,x′)X ×k X
′ = dimxX + dimx′ X

′.

3. Let X be a noetherian algebraic space over a field k and k→ L be a field
extension. Set XL = X ×k L. If x′ ∈ |XL| is a point with image x ∈ |X|,
show that dimx′ X×k L = dimx X.

Example 2.5.4. If X is a scheme of pure dimension with an action of an algebraic
group G (which is necessarily of pure dimension) over a field k, then

dim[X/G] = dimX − dimG.

In particular, the classifying stack has dimension dim BG = −dimG and we see
that the dimension may be negative!

2.5.2 Tangent spaces

For a field k, we will will abuse notation by writing k[ε] as k[ε]/ε2. We call k[ε]
the ring of dual numbers.

Definition 2.5.5. If X is an algebraic stack and x : Spec k → X, we define the
Zariski tangent space or simply the tangent space of X at x as the set

TX,x :=

2-commutative diagrams

Speck
x

##

� _

����

Speck[ε]
τ //
s{α

X


/
∼
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or in other words the set of pairs (τ, α) where τ : Speck[ε]→ X and α : x
∼→ τ |k.

Two pairs are equivalent (τ, α) ∼ (τ ′, α′) if there is an isomorphism β : τ
∼→ τ ′ in

X(k[ε]) compatible with α and α′, i.e. α′ = β|Spec k ◦ α

Proposition 2.5.6. If X is an algebraic stack with affine diagonal and x ∈ X(k),
then TX,x is naturally a k-vector space.

Proof. Scalar multiplication of c ∈ k on (τ, α) ∈ TX,x is defined as the composition

Spec k[ε]→ Spec k[ε]
τ−→ X where the first map is defined by ε 7→ cε and with the

same 2-isomorphism α.
To define addition, we will show that there is an equivalence of categories

X(k[ε1]×k k[ε2])→ X(k[ε1])×X(k) X(k[ε2]) (2.5.3)

or in other words that

Spec k �
�

//

��

Spec k[ε1]� _

��

Spec k[ε2] // Spec(k[ε1]×k k[ε2])

is a pushout in algebraic stacks with affine diagonal. Once this is established, we de-
fine addition of (τ1, α1) and (τ2, α2) by the composition Spec k[ε]→ Spec(k[ε1]×k
k[ε2])→ X where the first map is defined sending both (ε1, 0) and (0, ε2) to ε.

Choose a smooth morphism (U, u)→ (X, x) from an affine scheme U . Since
X has affine diagonal U → X is an affine morphism. Let SpecA0 = Spec k ×X U ,
SpecA1 = Spec k[ε1]×XU and SpecA2 = Spec k[ε2]×XU . Since Spec(A1×AA2) is
clearly the pushout of SpecA0 ↪→ SpecA1 and SpecA0 ↪→ SpecA2 in the category
of affine schemes, there are unique morphisms Spec(A1 ×A A2)→ Spec(k[ε1]×k
k[ε2]) and Spec(A1 ×A A2)→ U completing the diagram

SpecA0
//

��

xx

SpecA2

��

uu

Spec k //

��

Spec k[ε1]

��

τ1

��

SpecA1
//

xx

Spec(A1 ×A A2)

uu
&&

Spec k[ε2] //

τ2 //

Spec(k[ε1]×k k[ε2])

))

U

xx
X

By the flatness criterion over artinian algebras (i.e. a module is flat if and only if its
free), we see that the map Spec(A1×AA2)→ Spec(k[ε1]×k k[ε2]) is faithfully flat.
By repeating this argument on U ×X U , one argues that the Spec(A1×AA2)→ U
descends uniquely providing the desired dotted arrow.

Exercise 2.5.7. Show that Proposition 2.5.6 remains true without the affine
diagonal condition.
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Remark 2.5.8. Suppose that A0 → A1 and A0 → A2 of local artinian rings such
that A0 � A1 is surjective. If X is an algebraic stack, the same argument shows
that

X(A1 ×A0
A2)→ X(A1)×X(A0) X(A2)

is an equivalence of categories.
This condition is usually referred as homogeneity and this exercise states that

homogeneity is a necessary condition for algebraicity. Conversely, in Schlessinger’s
criteria (resp. Artin’s criteria), a variant of the above homogeneity condition is in
fact one of the conditions ensuring the existence of a formal miniversal deformation
space (resp. algebraicity of X).

Exercise 2.5.9. Show that TX,x is naturally a representation of Gx which is
given set-theoretically by: g · (τ, α) = (τ, g ◦ α) for g ∈ Gx and (τ, α) ∈ TX,x.

2.5.3 Residual gerbes

If X is a scheme, any point x ∈ X has a residue field κ(x) and there is a unique
monomorphism Specκ(x)→ X with image x. We would like an analogous fact
for algebraic stacks but the existence of non-trivial stabilizers prevents field-
valued points from being monomorphism, e.g. BkG for a finite group G admits
no monomorphisms from fields. Residual gerbes however provide an analogous
notion.

Definition 2.5.10. Let X be an algebraic stack and x ∈ |X| be a point. Choose
a smooth presentation (U, u) → (X, x). The residual gerbe of x is the substack
Gx ⊂ X defined as the stackification of the full subcategory Gpre

x consisting of
objects a ∈ X over S which factor as a : S → Specκ(u)→ X.

The residual gerbe Gx is in fact a gerbe over the spectrum of a field κ(x) which
we call the residual field of x (see Exercise 2.9.17). If in addition X is of finite
type over k and x ∈ X(k), then Gx = BGx is the trivial gerbe (Exercise 2.5.13).

Exercise 2.5.11. Show that the definition of the residual gerbe is independent
of the presentation.

Exercise 2.5.12. Let X be an algebraic stack and x ∈ |X| be a point. Choose a
smooth presentation (U, u)→ (X, x).

(1) Show that there is a factorization Specκ(u)→ Gx → X where Specκ(u)→
Gx is an epimorphism and Gx → X is a monomorphism.

(2) Show that Gx satisfies the following universal property: given any other
factorization Specκ(u)→ Z→ X where Specκ(u)→ Z is an epimorphism
and Z→ X is a monomorphism, there is a morphism Z→ Gx unique up to
unique isomorphism and a 2-commutative diagram

Specκ(u) //

$$

Z //

��

X

Gx.

??

Exercise 2.5.13. Let X be a noetherian algebraic stack and x : Speck → X.
Suppose that the stabilizer Gx is smooth and affine. The classifying stack BGx is
the trivial gerbe banded by Gx (Exercise 2.9.16).
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(1) Show that there is a canonical morphism BGx → X.

(2) If X is of finite type over k, show that the map BGx ↪→ X is a monomorphism
and identified with the residual gerbe Gx ↪→ X of x ∈ |X|.

Recall that we say that a point x ∈ |X| of an algebraic stack has smooth or
affine stabilizer if any representative (or equivalently all) does (Exercise 2.2.13).

Proposition 2.5.14 (Residual Gerbes are Algebraic). Let X be a noetherian
algebraic stack. Let x ∈ |X| be a finite type point with smooth stabilizer. Then
Gx is an algebraic stack and Gx ↪→ X is a locally closed immersion. Moreover, if
(U, u)→ (X, x) is a smooth morphism from a scheme U , then there is a cartesian
diagram

O(u) �
�

//

��

U

��

Gx
� � // X

(2.5.4)

where O(u) is the orbit s(t−1(u)) of the induced groupoid s, t : R := U ×X U ⇒ U .
If in addition X is of finite type over k and x ∈ X(k), then Gx = BGx.

Remark 2.5.15. Residual gerbes are algebraic for arbitrary quasi-separated
algebraic stacks and arbitrary points x ∈ |X|. The known proofs of this however
rely on knowing the quotient stack of an fppf equivalence relation is algebraic.

The locally closedness of the orbit O(u) ↪→ U should be compared to the
familiar fact that orbits of algebraic group actions are locally closed; indeed, this
is the implication when X is a quotient stack [U/G].

Proof. Let G = Gx be the residual gerbe. After replacing X with the smallest closed
substack containing x, we may assume that x ∈ |X| is dense. Let (U, u)→ (X, x)
be a smooth presentation. Then the morphism Specκ(u) → U → X is of finite
type and is a representative of x. Consider the cartesian diagram

Uk //

��

UG
//

��

U

��

Spec k // G // X.

By Generic Flatness (Proposition A.2.6) and descent, Spec k → X is flat over an
open substack of X. But since x ∈ |X| is dense, Spec k → X is flat. As Spec k → X

is also of finite type, we may apply descent and Openness of Fppf Morphisms
(Proposition A.2.2) to conclude that the image of Spec k → X is open. Thus, after
replacing X with an open substack, we may assume that Spec k → X is fppf.

The stabilizer of Spec k → X is smooth by assumption and identified with
Spec k ×X Spec k. By applying descent again, we see that Spec k → X is smooth
and surjective.

Since the diagonal of X is representable by schemes, Uk is a scheme. Moreover,
UG is identified as the sheaf-theoretic image of the morphism Uk → U of sheaves
on Schét, and thus can be identified with the quotient sheaf Uk/(Uk ×U Uk) of
the smooth equivalence relations Uk ×U Uk ⇒ Uk. By Theorem 2.3.8 (generalized
to allow smooth equivalence relations of algebraic spaces), UG is an algebraic
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stack and Uk → UG is a smooth presentation. (While UG is also a sheaf, we
don’t know yet that UG is an algebraic space.) Since U → X is surjective, smooth
and representable, so is UG → G, and it follows that Uk → UG → G is a smooth
presentation. This shows that G is an algebraic stack. Since Uk → UG is smooth
and surjective, it follows from descent that Spec k → G is a smooth presentation
of G. Since smoothness is smooth-local, we have that G→ X is also smooth.

To summarize, we know now that G→ X is a surjective and smooth monomor-
phism. We wish to show that G→ X is an isomorphism. It suffices to show that
UG → U is an isomorphism of sheaves in Schét and for this, it suffices to show
that any morphism T → U from a scheme lifts to a morphism T ′ → UG after an
étale cover T ′ → T . Considering the cartesian diagram

T ′ //

��

V //

��

T

��

Uk // UG
// U,

we have a smooth cover T ′ → T and a lift T ′ → UG of T → U . Since smooth
morphisms étale locally have sections (Proposition A.3.5), we have established
the desire claim.

Exercise 2.5.16. Let X be a noetherian algebraic stack with affine diagonal and
x ∈ |X| be a finite type point with smooth stabilizer. Let x : Speck → X be a
representative of x. Show that dimGx = −dimGx.

2.6 Characterization of Deligne–Mumford stacks

2.6.1 Slicing presentations

Theorem 2.6.1 (Existence of Miniversal Presentations). Let X be a noetherian
algebraic stack and x ∈ |X| a finite type point with smooth stabilizer Gx. Then
there exists a smooth morphism (U, u)→ (X, x) of relative dimension dimGx from
a scheme U such that the diagram

Specκ(u) �
�

//

��

U

��

Gx
� � // X

is cartesian.
In particular, if Gx is finite and reduced, there is an étale morphism (U, u)→

(X, x) from a scheme.

Remark 2.6.2. While the stabilizer group Gx depends on the choice of represen-
tative x : Speck→ X of x ∈ |X|, its dimension—which we denote by dimGx—is
independent of this choice. Similarly, the properties of being smooth, affine, finite
and reduced are also independent of this choice.

A smooth presentation p : U → X is called a miniversal at u ∈ U(k) if
TU,u → TX,p(u) is an isomorphism of k-vector spaces. We will see that the above
presentations are miniversal in Proposition 2.7.3 as a consequence of the Formal
Lifting Criteria for smoothness; see also Section 2.7.4.
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Proof. Let (U, u)→ (X, x) be any smooth morphism of relative dimension n from
a scheme and consider

O(u)
� � //

��

U

��

Gx
� � // X

The residual gerbe Gx is smooth of dimension −dimGx and thus O(u) is smooth
at u of dimension c := n− dimGx. Let f1, . . . , fc ∈ OO(u),u be a regular sequence
generating the maximal ideal at u. After replacing U with an open affine neigh-
borhood of u, we may assume that each fi is a global function on U . We can
consider the closed subscheme W := V (f1, . . . , fc) which by design intersects O(u)
transversely at U , i.e. W ∩O(u) = Specκ(u) scheme-theoretically.

We will inductively apply a version of the local criterion of flatness: if
(A,mA)→ (B,mB) is a flat local ring homomorphism of local noetherian rings and
f ∈ mB is a non-zero divisor in B⊗AA/mA, then A→ B → B/f is flat. By work-
ing on the groupoid R⇒ U and using descent, this local criterion implies that the
composition W ↪→ U → X is flat at u. Since Gx is smooth, so is Specκ(u)→ Gx.
For flat morphisms, smoothness is a property that can be checked on fibers and
thus (again arguing on R ⇒ U and using descent) W → X is smooth at u. We
win after replacing W with an open neighborhood of u.

2.6.2 Equivalent characterizations

Theorem 2.6.3 (Characterization of Deligne–Mumford Stacks). Let X be a
noetherian algebraic stack. The following are equivalent:

(1) the stack X is a Deligne–Mumford;

(2) the diagonal X→ X× X is unramified; and

(3) every point of X has a finite and reduced stabilizer group.

Remark 2.6.4. The equivalence (2) ⇐⇒ (3) is essentially the definition of
unramified. Indeed, since the diagonal X→ X× X is always locally of finite type
(Exercise 2.4.3), it is unramified if and only if every geometric fiber (which is
either empty or isomorphic to a stabilizer) is discrete and reduced.

The result remains true without the noetherian hypothesis as long as one
replaces “finite” with “discrete” (as the diagonal may not be quasi-compact).

Proof. A Deligne–Mumford stack has unramified diagonal or equivalently discrete
and reduced stabilizer groups (Exercise 2.4.9). For the converse, Existence of
Miniversal Presentations (Theorem 2.6.1) provides an étale cover of X which is
necessarily representable (Corollary 2.4.4).

Theorem 2.6.5 (Characterization of Algebraic Spaces). Let X be a noetherian
algebraic stack whose diagonal is representable by schemes. The following are
equivalent:

(1) the stack X is an algebraic space;

(2) the diagonal X→ X× X is a monomorphism; and

(3) every point of X has a trivial stabilizer.
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Remark 2.6.6. The result is true without the ugly hypothesis that ∆X is rep-
resentable by schemes. However, establishing this generalization requires some
work.

Proof. Condition (2) is equivalent to the condition that X is a sheaf. The implica-
tion (1) =⇒ (2) follows from the definition of an algebraic space. For the converse,
if X is a sheaf, then Theorem 2.6.1 implies that there exists a representable, étale
and surjective morphism U → X from a scheme. Since ∆X is representable by
schemes, so is U → X.

The equivalence (2) ⇐⇒ (3) follows from the fact that a separated group
scheme of finite type is trivial if and only if every fiber is trivial (Exercise C.2.2).

Corollary 2.6.7. Let X→ Y be a morphism of noetherian algebraic stacks whose
diagonal is representable by schemes. Then X → Y is representable if and only
if for every geometric point x ∈ X(K), the map Gx → Gf(x) on automorphism
groups is injective.

2.6.3 Applications

Corollary 2.6.8. If g ≥ 2, Mg is a Deligne–Mumford of finite type over Z with
affine diagonal.

Proof. It only remains to show that Mg is Deligne–Mumford and by Theorem 2.6.3
it suffices to show that for any smooth, connected and proper curve C over k
that G = Aut(C) is discrete and reduced, or in other words that the dimension
of the Lie algebra dimTG,e = 0. The vector space TG,e is identified with the
automorphism group of the trivial first order deformation of C. Infinitesimal
Deformation theory (Theorem E.1.1) implies that dimTG,e = H0(C, TC), but this
vanishes since the degree of TC = Ω∨C is 2− 2g < 0.

2.7 Smoothness and the Formal Lifting Criterion

We state and prove the Formal Lifting Criteria (Proposition 2.7.1) which provides
an extremely useful functorial criteria to check that moduli stacks are smooth.
We apply this criteria to establish that the moduli stacks Mg of smooth curves
and Bunr,d(C) of vector bundles are smooth (Propositions 2.7.4 and 2.7.5)

2.7.1 Formal Lifting Criteria

Since flatness and smoothness are smooth-local properties on the source and
target, we have the notions of smoothness and flatness for arbitrary morphisms
of algebraic stacks (Definition 2.2.1). Since étaleness and unramifiedness are
étale-local on the source and smooth-local on the target, we can make sense of
étale or unramified morphisms of algebraic stacks as a relatively Deligne–Mumford
morphism (Definition 2.2.5) with the corresponding property.

Proposition 2.7.1 (Formal Lifting Criteria for Unramifed/Étale/Smooth Mor-
phisms). Let f : X → Y be a morphism of algebraic stacks and consider a 2-
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commutative diagram

SpecA0
//

� _

��

X

f

��

SpecA //

;;

Y,

(2.7.1)

of solid arrows where A→ A0 is a surjection of rings with nilpotent kernel. Then

(1) f is unramified if and only if f is locally of finite type and for every 2-
commutative diagram (2.7.1), any two liftings are isomorphic.

(2) f is étale if and only if f is locally of finite presentation and for every
2-commutative diagram (2.7.1), there exists a lifting which is unique up to
unique isomorphism.

(3) f is smooth if and only if f is locally of finite presentation and for every
2-commutative diagram (2.7.1), there exists a lifting.

Moreover, to verify that f is unramified, étale, or smooth, it suffices to restrict
to diagrams (2.7.1) where A and A0 are local artinian rings with residue field K
and ker(A→ A0) ∼= K.

Remark 2.7.2. To be explicit, a lifting of a 2-commutative diagram

S
x //

g

��
{� α

X

f

��

T
y
// Y,

(2.7.2)

is the data of a morphism x̃ : T → X as pictured

S
x //

g

��

KS
β

�� γ

X

f

��

T
y
//

x̃

??

Y,

together with 2-morphisms β : x̃ ◦ g ∼→ x and γ : f ◦ x̃ ∼→ y such that

f ◦ x̃ ◦ g
g∗γ

oo

f(β)
__

f ◦ x
α

��
y ◦ g

commutes. A morphism (x̃, β, γ)
∼→ (x̃′, β′, γ′) of liftings is a 2-morphism Θ: x̃→

x̃′ such that β = β′ ◦ (Θ ◦ g) and γ = γ′ ◦ f(Θ).
We can also interpret liftings using the map Ψ: X(T )→ X(S)×Y(S) Y(T ) of

groupoids. The 2-commutativity of (2.7.2) defines an object (x, y, α) ∈ X(S)×Y(S)

Y(T ) and the category of liftings is the fiber category over this object, e.g. a
lifting is an object x̃ ∈ X(T ) together with an isomorphism Ψ(x̃) → (x, y, α).
For instance, the existence of a lifting translates to the essential surjectivity of
X(T )→ X(S)×Y(S) Y(T ).

Proof. TO ADD
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2.7.2 Applications

As a first application, we see that the presentations produced by Existence of
Miniversal Presentations (Theorem 2.6.1) are in fact miniversal, and that the
dimension of a smooth algebraic stack can be computed in terms of its tangent
space and stabilizer.

Proposition 2.7.3. Let X be a noetherian algebraic stack and x ∈ |X| be a finite
type point with smooth stabilizer. Let f : (U, u)→ (X, x) be a smooth morphism
from a scheme such that Gx ×X U ∼= Specκ(u). Then U → X is miniversal at u,
i.e. TU,u → TX,f(u) is an isomorphism of κ(u)-vector spaces.

In particular, if X is a smooth over a field k and x ∈ X(k) is a point with
smooth stabilizer. Then

dimx X = dimTX,x − dimGx.

Proof. Surjectivity of TU,u → TX,f(u) follows from the Formal Lifting Criterion
(Proposition 2.7.1). Let k = κ(u). Injectivity follows from the fact that

Speck �
�

//

��

U

��

Gx
� � // X

is cartesian. Indeed, if τ : Speck[ε] → U is an element of TU,u mapping to 0 ∈
TX,f(u), then by the definition of the residual gerbe, the composition Speck[ε]→
U → X factors through Gx and therefore also factors through the fiber product
Speck. We conclude that τ = 0.

For the last statement, Existence of Miniversal Presentations (Theorem 2.6.1)
produces a smooth morphism (U, u)→ (X, x) miniversal at u and whose relative
dimension is equal to dimGx. Therefore dimx X = dimu U − dimGx but since U
is smooth at u, we have dimu U = dimTU,u = dimTX,x.

2.7.3 Smoothness of moduli problems

The Formal Lifting Criterion for Smoothness and infinitesimal deformation theory
provide a useful technique to verify smoothness of a moduli problem and to
compute its dimension.

Proposition 2.7.4. For g ≥ 2, the Deligne–Mumford stack Mg is smooth over
SpecZ of relative dimension 3g − 3.

Proof. Let Speck→Mg be a morphism from a field k corresponding to smooth
projective and connected curve C → Speck. Consider a diagram

Speck

[C]

**
// SpecA0

//
� _

��
�	 α

Mg

f

��

SpecA // SpecZ,

(2.7.3)
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where A→ A0 is surjection of local artinian rings with residue field k such that
k = ker(A → A0). The map SpecA0 → Mg corresponds to a family of curves
C0 → SpecA0 and a cartesian diagram

C

��

� � // C0

��

� � // C

��

Speck �
�

// SpecA0
� � // SpecA

of solid arrows: a lifting of the diagram (2.7.3) corresponds to a family C →
SpecA extending C0 → SpecA0. By Theorem E.1.1, there is cohomology class
ob ∈ H2(C, TC) such that ob = 0 if and only if there exists a lifting. Since C is a
curve, H2(C, TC) = 0.

Finally, Theorem E.1.1 also provides an identification of the tangent space of
Mg,k := Mg ×Z k at C (i.e. the set of extensions of C to families of curves over
Speck[ε]) with H1(C, TC). Since deg TC < 0, H0(C, TC) = 0 and Riemann–Roch
implies

dimH1(C, TC) = −χ(TC) = −(deg TC + (1− g)) = 3g − 3.

Proposition 2.7.5. The algebraic stack Bunr,d(C) is smooth over Speck of
dimension r2(g − 1).

Proof. Let [F ] ∈ Bunr,d(C)(k) be a vector bundle on C of rank r and degree
d. Let A → A0 be a surjection of local artinian rings with residue field k
such that k = ker(A → A0). We need to check that any vector bundle F0 on
CA0

that restricts to F extends to a vector bundle F on CA. By Infinitesimal
Deformation Theory (missing reference) there is an element ob ∈ Ext2(F, F ) such
that ob = 0 if and only if there exists an extension. Since C is a smooth curve,
Ext2(F, F ) = H2(Ck, F ⊗ F∨) = 0.

Infinitesimal Deformation Theory also provides an identification of the tangent
space of Bunr,d(C)(k) (i.e. the set of extensions of F to vector bundles on Ck[ε])

with Ext1(F, F ). Since dim Aut(F ) = dimExt0(F, F ) = dimH0(C,F ⊗ F∨), we
compute by Riemann–Roch that

dim Ext1(F, F ) = dimH1(C,F ⊗ F∨)

= dimH1(C,F ⊗ F∨)−
(

deg(F ⊗ F∨) + rk(F ⊗ F∨)(1− g)
)

= dim Aut(F ) + r2(1− g).

and therefore dim[F ] Bunr,d(C) = dim Ext1(F, F )− dim Aut(F ) = r2(g − 1).

2.7.4 Aside: Criteria of Schlessinger–Rim and Artin

The criteria of Schlessinger–Rim and Artin provide an alternative approach to
constructing miniversal presentations for a stack X and at the same for verifying
the algebraicity of X. Restricting to a stack X (not assumed algebraic) defined
over an algebraically closed field k, the Schlessinger–Rim’s conditions require that
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• for maps of local artinian k-algebras A1 → A0 and A2 → A0, the functor

X(A1 ×A0 A2)→ X(A1)×X(A0) X(A2)

is essentially surjective when A2 � A0 is a small extension (i.e. ker(A2 →
A0) ∼= k) and an equivalence when A0 = k and A2 = k[ε] (this is a variant
of the homogeneity condition—see Remark 2.5.8), and

• TX,x is finite dimensional as a k-vector space.

These conditions imply that if x0 ∈ X(k), there exists a complete local noetherian
ring (A,m) and a compatible sequence of objects xn ∈ X(A/mn+1) which are
formally smooth, i.e. satisfies a Formal Lifting Criteria for local artinian k-algebras
(we encourage the reader to spell out precisely what this means), and miniversal,
i.e. (m/m2)∨ → TX,x is an isomorphism. One sometimes writes (xn) : Spf A→ X

which we call the ‘formal miniversal deformation.’
Grothendieck’s Existence Theorem often implies an equivalence of categories

X(A)→ lim←−X(A/mn+1) and allows us to ‘effective’ the formal deformation (xn) to
an object x̂ : SpecA→ X, which we can all an ‘effective formal versal deformation.’
Finally, by verifying additional properties of the local deformation and obstruction
theory of X, Artin’s criteria can be used to ‘smooth out’ (xn) to obtain a finite
type scheme U and a smooth morphism (U, u) → (X, x) miniversal at u such

that A ∼= ÔU,u and such that for each n ≥ 0, xn is isomorphic to the restriction

Spec ÔU,u/m
n+1
u → U → X under ÔU,u/m

n+1
u
∼= A/mn+1

A .

2.8 Properness and the Valuative Criterion

2.8.1 Definitions

With some care, we define separatedness and properness for morphisms of algebraic
stacks. Recall from Definition 2.4.15 that we say a representable morphism X→ Y

of algebraic stacks is separated if the diagonal X→ X×YX (which is representable
by schemes) is proper.

Definition 2.8.1.

(1) A morphism X → Y of algebraic stacks is universally closed if for every
morphism Y′ → Y of algebraic stacks, the morphism X×Y Y′ → Y′ induces a
closed map |X×Y Y′| → |Y|.

(2) A representable morphism X → Y of algebraic stacks is proper if it is
universally closed, separated and of finite type.

(3) A morphism X → Y of algebraic stacks is separated if the representable
morphism X→ X×Y X is proper.

(4) A morphism X→ Y of algebraic stacks is proper if it is universally closed,
separated and of finite type.

Remark 2.8.2. Notice that we have not defined properness by requiring the
diagonal is a closed immersion as with schemes. Indeed, the diagonal of a morphism
of algebraic stacks is not a monomorphism. For schemes or algebraic spaces, the
diagonal is proper if and only if it is a closed immersion; this follows from the fact
that proper monomorphisms of schemes are closed immersions.
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Remark 2.8.3. The property of being universally closed is smooth-local on the
target so to verify that a morphism X→ Y is universally closed it suffices to check
the condition on a smooth presentation V → Y.

Remark 2.8.4. Recall that the stabilizerGx of a field-valued point x : Speck→ X

is given by the cartesian diagram

Gx //

��

Speck

(x,x)

��

X // X× X.

If X is a separated algebraic stack over SpecZ (or in fact over any scheme S), then
Gx is a proper group algebraic space over k. If an addition X has affine diagonal,
then the stabilizer group Gx is proper and affine, thus finite. Since Bunr,d(C) has
affine diagonal (Example 2.4.14) and infinite automorphism groups, we see that
Bunr,d(C) is not separated.

2.8.2 Valuative criteria

Proposition 2.8.5 (Valuative Criteria for Universally Closed/Separated/Proper
Morphisms). Let f : X→ Y be a finite type morphism of algebraic stacks. Consider
a 2-commutative diagram

SpecK //

��
�� α

X

f

��

SpecR // Y

(2.8.1)

where R is a valuation ring with fraction field K. Then

(1) f is universally closed if and only if for every diagram (2.8.1), there exists
an extension R→ R′ of valuation rings and fraction fields K → K ′ and a
lifting

SpecK ′ //

��

SpecK //

��

X

f

��

SpecR′ //

55

SpecR // Y.

(2) f is separated if and only if any two liftings of a diagram (2.8.1) are iso-
morphic.

(3) f is proper if and only if every diagram (2.8.1) has a lifting after an extension
R→ R′ and any two liftings of a diagram (2.8.1) are isomorphic.

Moreover, if f : X→ Y is a finite type morphism of noetherian algebraic stacks,
than it suffices to consider DVRs R and extensions such that K → K ′ is of finite
transcendence degree.

Proof. TO ADD
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2.9 Examples

In addition to providing examples of algebraic spaces (Section 2.9.1), Deligne–
Mumford stacks (Section 2.9.2) and algebraic stacks (Section 2.9.3), we provide
several “counterexamples” of algebraic spaces and stacks (Section 2.9.4).

2.9.1 Examples of algebraic spaces

Example 2.9.1. As discussed in Example 0.6.5, there exists a smooth proper
complex 3-fold U with a free of Z/2-action such that there is an orbit not contained
in any affine. The quotient sheaf U/(Z/2) is an algebraic space (Corollary 2.1.9)
which is not a scheme.

Example 2.9.2 (The bug-eyed cover). Let k be field with char(k) 6= 2. Let
Z/2 = {±1} act on the non-separated affine line U = A1

k
⋃

A1
k\0

A1
k by swapping

the origins and by (−1) · x = −x for x 6= 0. Since the orbit of an origin is not
contained in any affine, the quotient sheaf U/(Z/2) is not representable by a
scheme; it is however an algebraic space (Corollary 2.1.9).

We now provide another description of the same algebraic space. If we let
Z/2 = {±1} act on A1

k via −1 ·x = −x, and if we remove the non-identity element
of the stabilizer of the origin, we obtain a scheme R = (Z/2 × A1) \ {(−1, 0)}
and an equivalence relation σ, p2 : R⇒ A1

k. The algebraic space quotient A1
k/R is

isomorphic to U/(Z/2) (Exercise 2.9.3(1))
Another way to see that X = A1

k/R is not a scheme is the observation that the
diagonal X → X ×X is not a locally closed immersion. This can be seen from
the cartesian diagram

(A1
k \ 0) t {0} //

��

A1
k

��

x_

��

R
(σ,p2)

//

��

A1
k × A1

k

��

(x,−x)

X // X ×X.

Exercise 2.9.3.

(1) Show that X = A1
k/R is isomorphic to U/(Z/2).

(2) Show that there is a universal homeomorphism X → A1
k which is ramifed

over the origin.

(3) Show that any map to a scheme X → Z factors through X → A1
k. (In other

words, while A1
k may be the categorical quotient of U by Z/2 (or equivalently

A1
k by R) in the category of schemes, it is distinct from the algebraic space

quotient.

(4) Consider the SL2 action on Vd = Symd k2, the space of homogeneous polyno-
mials in x and y of degree d. Let W ⊂ V1 × V4 be the reduced locally closed
subscheme defined as the set (L,F ) such that L 6= 0 and F is the square
of a homogeneous quadratic with discriminant 1. Show that the induced
SL2-action on W is free (i.e. SL2×W →W ×W is a monomorphism) and
that quotient sheaf W/SL2 is an algebraic space isomorphic to A1

k/R and
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U/(Z/2).

While the descriptions of X as A1
k/R and U/(Z/2) may seem pathological,

this exercise shows that in fact this algebraic space arises also as a quotient
of a quasi-affine variety by SL2.

Example 2.9.4. Let Z/2 = {±1} act on A1
C via conjugation over SpecR. Note

that the action defined over R of Z/2 on SpecC is free, and therefore the product
action of Z/2 on A1

C = A1
R ×R C (which is trivial on the first factor) is also free.

Letting R = (Z/2 × A1
C) \ {(−1, 0)} and an equivalence relation σ, p2 : R ⇒ U .

The algebraic space quotient X = A1
C/R is not a scheme by the same argument as

in Example 2.9.2. The quotient X looks like A1
R except that the origin has residue

field C.

2.9.2 Examples of stacks with finite stabilizers

In characteristic 0, each of the following examples are Deligne–Mumford stacks.

Example 2.9.5 (Classifying stacks). If G is a finite group scheme over a field
k, then BkG is the stack defined as the category of pairs (T, P ) where T is a
scheme and P → T is a G-torsor (Definition 1.3.12). This is called the classifying
stack of G). The diagonal BkG→ BkG×BkG is finite since its base change by
Speck→ BkG×BkG is isomorphic to G. In particular, BkG is separated.

If G is étale (which is guaranteed if char(k) = 0), then BkG is a smooth and
separated Deligne–Mumford of dimension 0.

Exercise 2.9.6.

(1) Show that Bkµµµn is the stack parameterizing the data of a triple (T, L, α)
where T is a scheme, L is a line bundle on T and α : OT → L⊗n is a
trivialization.

(2) Show that Bkµµµn is a smooth algebraic stack in any characteristic by identi-
fying it with the quotient of Gm acting on Gm via t · x = tnx.

(3) Show that Bkµµµn is a Deligne–Mumford stack if and only if n is prime to the
characteristic.

(4) In char(k) = p, compute the dimension of both the stack Bµµµn and its tangent
space at the unique point.

Example 2.9.7 (Weighted projective stacks). For a tuple of positive integers
(d0, . . . , dn), let Gm act on An+1 via t · (x0, . . . , xn) = (td0x0, . . . , t

dnxn). We
define the weighted projective stack as

P(d0, . . . , dn) = [(An+1 \ 0)/Gm].

If the di are all 1, then we recover projective space Pn; otherwise, P(d0, . . . , dn) is
not an algebraic space.

More generally, if R is any finitely generated positively graded k-algebra, we
can define stacky proj as ProjR = [(Spec(R) \ 0)/Gm], where Gm acts such that
the weight of xi is the same as its degree.

Exercise 2.9.8.

1. If k is a field of characteristic p, show that P(d0, . . . , dn) is a Deligne–
Mumford stack if and only if p doesn’t divide each di.
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2. Classify all the points of P(3, 3, 4, 6) that have non-trivial stabilizers.

3. We say that an algebraic stack X has generically trivial stabilizer if there
exists a dense open substack U ⊂ X which is an algebraic space. Provide
conditions for when P(d0, . . . , dn) has generically trivial stabilizer.

4. Show that there is a bijective morphism P(d0, . . . , dn) to weighted projective
space Proj k[x0, . . . , xn], where xi has degree di. (We will later call this a
coarse moduli space.)

5. Show that M1,1
∼= P(4, 6) over SpecZ[1/6].

Example 2.9.9. Suppose char(k) 6= 2. Let Z/2 act on A2
k via −1 · (x, y) =

(−x,−y). Show that [A2
k/(Z/2)] is a smooth algebraic stack over a field k and

that there is a proper and bijective morphism [A2
k/(Z/2)] → Y where Y is the

singular variety Speck[x2, xy, y2] defined by the Z/2-invariants of Γ(A2
k,OA2

k
).

Exercise 2.9.10. Let G be a finite abelian group acting on a scheme X, and let
X = [X/G]. Show that the inertia stack IX is isomorphic to

IX =
∐
g∈G

[Xg/G]

where Xg = {x ∈ X | gx = x} or more precisely the fiber product of the diagonal
X → X ×X and the map X → X ×X defined by x 7→ (x, gx).

Example 2.9.11 (Stacky curves). A stacky curve is a smooth proper irreducible 1-
dimensional Deligne-Mumford stack over a field k with generically trivial stabilizer.

Exercise 2.9.12. If d1 and d2 are relatively prime positive integers, then P(d1, d2)
is a stacky curve.

2.9.3 Examples of algebraic stacks

Example 2.9.13. The classifying stack B GLn parameterizes vector bundles of
rank n. When n = 1, BGm = B GL1 parameterizes line bundles. The stack
B GLn is an algebraic stack (but not Deligne–Mumford) smooth over SpecZ of
relative dimension −n2 with affine diagonal.

Example 2.9.14. If Gm acts on A1 via scaling, the quotient stack [A1/Gm] is an
algebraic stack (but not Deligne–Mumford) which is smooth of relative dimension
0 over SpecZ (but not étale!) with affine diagonal. An object of [A1/Gm] is a
triple (T, L, s) where T is a scheme, L is a line bundle on T and s ∈ Γ(T, L).

If k is a field, [A1
k/Gm,k] has two points—one open and one closed—corresponding

to the two Gm-orbits (see Figure 7). There is an open immersion and closed
immersion

Speck ↪→ [A1
k/Gm,k]←↩ BkGm.

The morphism [A1
k/Gm,k]→ Speck identifies the two orbits and is an example of

a good moduli space.
Let Gm,k act on A2

k via t·(x, y) = (tx, t−1y). The quotient stack X = [A2
k/Gm,k]

is a smooth algebraic stack. An object of X is a tuple (T, L, s, t) where T is a
scheme, L is a line bundle on T , s ∈ Γ(T, L) and t ∈ Γ(T, L−1). The complement
X \ 0 of the origin is isomorphic to the non-separated affine line. There is a
morphism X→ A1

k defined by (x, y) 7→ xy, which is an isomorphism over A1
k \ 0

and identifies the three orbits defined by xy = 0.
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Example 2.9.15 (Gerbes). A stack X over a site S is called a gerbe if

(1) for every object S ∈ S, there exists a covering (Si → S) in S such that each
X(Si) is non-empty; and

(2) for objects x, y ∈ X over S ∈ S, there exists a covering (Si → S) in S such
that x|Si

∼→ y|Si for each i.

If G is a sheaf of groups on S, we say that a gerbe X is a G-gerbe if for each
object x ∈ X over S ∈ S, the sheaves AutS(x) and G|S on the localized site S/S
(Example 1.1.5) are isomorphic.

We define a band of a gerbe X as the data of an isomorphism ιx : G|S → Aut(x)
of sheaves for each object x ∈ X over S ∈ S. We require that:

(3) for every object S ∈ S and isomorphism α : x
∼→ y over S, the diagram

G|S
ιy

$$
ιx

zz

AutS(x)
α // AutS(y).

We say that the gerbe X is G-banded.
If X is a stack over SchÉt, we say that a morphism X→ X to a scheme is a

gerbe, G-gerbe or banded G-gerbe if X has the corresponding property as a stack
over the site (Sch /X)Ét. Finally, if X is defined over a scheme S and G is a sheaf
of groups on (Sch /S)Ét, we say that X→ X is a G-gerbe or banded G-gerbe if it
is a GX -gerbe or banded GX -gerbe with respect to the pullback GX = G×S X.

Exercise 2.9.16. Let G→ S be a group scheme.

(1) Show that BSG→ S is a banded G-gerbe.

(2) A G-gerbe X over a scheme X is said to be trivial if X ∼= BSG ×S X. If
X→ X is a gerbe and x ∈ X(X), then X is a trivial AutX(x)-gerbe.

(3) Show that a stack X over X is a G-gerbe if and only if there exists an étale
covering (Xi → X) such that the pullback

BSG×S Xi
//

��

X

��

Xi
// X

is trivial.

Exercise 2.9.17 (Residual gerbes and residue fields). Let X be a noetherian
algebraic stack and x ∈ |X| be a locally closed point. Recall the residual gerbe
Gx of Definition 2.5.10 and that is an algebraic stack locally closed in X (Proposi-
tion 2.5.14).

(1) Show that the residual gerbe Gx is a gerbe.

(2) Show that the sheafification of the functor Sch→ Sets, taking a scheme S
to the set of isomorphism classes of Gx(S), is representable by the spectrum
of a field. (We denote this field as κ(x) and call it the residue field.)

Exercise 2.9.18. Assume that char(k) 6= 2. Show that the j-line π : M1,1 → A1
k

is a banded Z/2-gerbe over A1
k \ {0, 1728}. Is it trivial?
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Remark 2.9.19. We have not developed a cohomology theory of sheaves on sites
but it is worth pointing out that if G is an sheaf of abelian groups on a site S,
then the cohomology group H2(S, G) classifies isomorphism classes of G-gerbes.
This is analogous to the fact that H1(S, G) classifies isomorphism classes of G-
torsors. When G is not abelian, then one take this approach to define non-abelian
cohomology groups; see [Gir71].

Example 2.9.20 (Root stacks I). Let X be a scheme and L be a line bundle.
For a positive integer r, define the rth root stack of X and L as the fiber product

r
√
L/X //

��

BGm

r

��

X
[L]
// BGm

where [L] : X → BGm denotes the morphism corresponding to L and BGm
r−→

BGm is induced from Gm
r−→ Gm (or defined functorially by the assignment

L 7→ L⊗r).

Example 2.9.21 (Root stacks II). Let X be a scheme, L be a line bundle, and
s ∈ Γ(X,L) be a section. For a positive integer r, define the rth root stack of X
and L along s as the fiber product

r
√

(L, s)/X //

��

[A1/Gm]

r

��

X
[L,s]

// [A1/Gm]

where [A1/Gm]
r−→ [A1/Gm] is induced from the map A1 → A1 sending x 7→ xr

which is equivariant under Gm
r−→ Gm (or defined functorially by the assignment

(L, s) 7→ (L⊗r, sr)).

Exercise 2.9.22.

(1) If X = SpecA is affine and L = OX is trivial, show that

r
√
L/X ∼= [X/µµµr]

r
√

(L, s)/X ∼= [Spec(A[x]/(xr − s))/µµµr]

where µµµr acts trivially on X and acts on Spec
(
A[x]/(xr − s)

)
via t · x = tx.

(2) Show that if r is invertible in Γ(X,OX), then r
√
L/X and r

√
(L, s)/X are

Deligne–Mumford stacks.

(3) Show that r
√
L/X has the equivalent description as the category of triples

(T
t−→ X,L, α) where T

t−→ X is a morphism from a scheme, L is a line bundle
on X and α : OT → t∗L⊗r is a trivialization.

(4) Provide an equivalent description of r
√

(L, s)/X analogous to (3).

(5) Show that the fiber of r
√
L/X → X at a point x ∈ X is isomorphic to

Bκ(x)µµµr. More generally, show that r
√
L/X → X is a banded µµµr-gerbe.

(6) Show that r
√

(L, s)/X → X is an isomorphism over the complement Xs of
the section s and a banded µµµr-gerbe over the vanishing V (s) ⊂ X of s.
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Example 2.9.23 (Toric stacks). A fan Σ on a lattice L = Zn defines a toric
variety X(Σ), a normal separated variety with an action of Gnm such that there is
a dense orbit with trivial stabilizer; see [Ful93].

Meanwhile a stacky fan is a pair (Σ, β) where Σ is a fan on a lattice L and
β : L→ N is a homomorphism of lattices. As L and N are lattices (i.e. finitely
generated free abelian groups), the Z-linear duals define tori TL := D(L∨) and
TN := D(N∨) (Example C.1.9) where TL is a torus for the toric variety X(Σ).
The map β induces a homomorphism Tβ : TL → TN , naturally identifying β
with the induced map on lattices of 1-parameter subgroups. We can then define
Gβ = ker(Tβ) and the toric stack

X(Σ, β) := [X(Σ)/Gβ ].

Example 2.9.24 (Picard schemes and stacks). If X is a scheme over a field k,
the Picard functor of X and Picard stack of X are defined as the sheaf Pic(X)
and stack Pic (X) on SchÉt by

Pic(X) = sheafification of T 7→ Pic(XT )

Pic (X)(T ) = {groupoid of line bundles L on XT }

A morphism (T, L) → (T ′, L′) in Pic (X) is the data of a morphism f : T → T ′

of schemes and an isomorphism α : L → f∗L′ (or more precisely a morphism
f∗L→ L′ whose adjoint is an isomorphism).

If X is proper over a field k, then Pic(X) is a proper scheme and the tensor
product of line bundles provides it with the structure of a group scheme, hence an
abelian variety. Moreover, Pic (X) is a smooth algebraic stack over k and there
morphism Pic (X)→ Pic(X) such that the fiber over a line bundle L is isomorphic
to BkGm. The tensor product of line bundles provides Pic (X) with the structure
of a group stack, a notion which we will not spell out precisely.

Exercise 2.9.25. Show that Pic (X) is a banded Gm-gerbe over Pic(X).

2.9.4 Counterexamples

Example 2.9.26 (Example of a non-quasi-separated algebraic space that is not
a scheme). Let k be a characteristic 0 field. Let Z act on A1

k via n · x = x+ n for
x ∈ A1

k and n ∈ Z. Then X = A1
k/Z is an algebraic space (Corollary 2.1.9) which

is not quasi-separated (as the action map Z×A1
k → A1

k×A1
k is not quasi-compact).

If X were a scheme, then there would exist a non-empty open affine subscheme
U = SpecA ⊂ X. Since p : A1

k → X is an étale presentation, we can compute A as
the subring of Z-invariants Γ(p−1(U),OA1

k
)Z, which the reader can check consists

of only the constant functions, i.e. A = k. As X is obtained by gluing such affine
schemes, it follows that X = Speck, a contradiction.

The algebraic space X = A1
k/Z provides a counterexample to many facts that

hold for all schemes and quasi-separated algebraic spaces but fail for all algebraic
spaces (see Exercise 2.9.27).

Similarly, one can consider the algebraic space quotient A1
C/Z2 where (a, b)·x =

x + a + ib. While the analytic quotient C/Z2 of this action is an elliptic curve
over C, the algebraic space quotient is a non-quasi-separated algebraic space that
is not a scheme.

Exercise 2.9.27. Let X = A1
k/Z be the algebraic space defined above.
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1. Show that X is locally noetherian and quasi-compact but not noetherian.

2. Show that the generic point Speck(x)→ A1
k → X is fixed under the Z-action.

3. Show that Speck(x) → X does not factor through a monomorphism
SpecL→ X for a field L. (In other words, the generic point of X does not
have a residue field.)

Example 2.9.28 (Deligne–Mumford stacks with non-separated diagonal). Let
G→ S be a finite group scheme. If H ⊂ G is a subgroup scheme over S, then G/H
is separated if and only if H ⊂ G is closed. For instance, taking G = Z/2×A1 → A1

and the subgroup H = G \ {−1, 0}, the quotient Q = G/H is the non-separated
affine line and is a group scheme over A1 which is trivial away from the origin and
where the fiber over 0 is Z/2. In this case, BA1Q is a Deligne–Mumford stack with
non-separated diagonal; however, the diagonal is quasi-compact and representable
by schemes.
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Chapter 3

Geometry of
Deligne–Mumford stacks

3.1 Quasi-coherent sheaves

3.1.1 Sheaves

The small étale site of a Deligne–Mumford stack can be defined analogously to
the small étale site of a scheme (Example 1.1.3).

Definition 3.1.1. If X is a Deligne–Mumford stack, the small étale site of X is
the category Xét of schemes étale over X. A covering of U → X is a collection of
étale morphisms {Ui → U} over X such that

⊔
i Ui → U is surjective.

We can therefore discuss sheaves on Xét, and we denote Sh(Xét) as the category
of sheaves on Xét. While a sheaf F on Xét by definition only has sections defined
on étale morphisms U → X from schemes, one can define sections on an étale
morphism U→ X from a Deligne–Mumford stack by choosing étale presentations
U → U and R→ U ×U U by schemes and setting

F(U→ X) := Eq(F(U → X)⇒ F(R→ X)).

One checks that this is independent of the choice of presentation. In particular, it

makes sense to discuss global sections Γ(X,F) := F(X
id−→ X).

Given a morphism f : X→ Y of Deligne–Mumford stacks, there are functors

Sh(Xét)

f∗
,,

Sh(Yét)

f−1

ll

defined by f∗F(V → Y) := F(V ×Y X → X) and f−1G as the sheafification of
presheaf whose sections on U → X is limV→Y G(V → Y) where the limit is taken
over the category of pairs of étale morphisms V → Y and U → V ×Y X (i.e. étale
morphisms V → Y and a choice of factorization of U → X→ Y through V → Y).

Exercise 3.1.2. Show that f−1 is left adjoint to f∗.

Note that if X is a scheme, a sheaf F on Xét restricts to a sheaf on the ordinary
Zariski topology of X.
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3.1.2 OX-modules

The structure sheaf of a Deligne–Mumford stack X is the sheaf OX where

OX(U → X) := Γ(U,OU )

for any étale morphism U → X from a scheme. As OX is a ring object in the
category of sheaves on Xét, we can define:

Definition 3.1.3. If X is a Deligne–Mumford stack, an OX-module is a sheaf F
on Xét which is a module object for OX in the category of sheaves, i.e. for any
étale morphism U → X from a scheme, F(U → X) is an OX(U → X)-module
and the module structure is compatible with respect to restriction along étale
morphisms V → U over X.

We denote ModOX
for the category of OX-modules. Given two OX-modules

F and G, there is a tensor product F ⊗ G := F ⊗OX
G which is the OX-module

defined as the sheafification of (U → X) 7→ F(U → X)⊗OX(U→X) G(U → X).
Given a morphism f : X→ Y of Deligne–Mumford stacks, there are functors

Mod(OX)

f∗
,,

Mod(OY)

f∗
ll

where for an OX-module F, f∗F is the pushforward as sheaves and is naturally
an OY-module. For an OY-module G, since there is a morphism f−1OY → OX of
sheaves of rings in Xét and f−1G is a f−1OY-module, it makes sense to define the
pullback OX-module

f∗G := f−1G⊗f−1OY
OX,

i.e. the sheafification of (U → X) 7→ f−1G(U → X)⊗f−1OY(U→X) OX(U → X).

Exercise 3.1.4. Show that f∗ is left adjoint to f∗.

If f : U → X is an étale morphism from a scheme to a Deligne–Mumford stack
and F is a sheaf on Xét, then f−1F is the sheaf on Uét satisfying f−1F(V → U) =
F(V → U → X). We can also restrict f−1F to the Zariski topology of U and
we denote this sheaf as F|U . Note also that if F is an OX-module, there is an
identification f∗F = f−1F.

3.1.3 Quasi-coherent sheaves

Definition 3.1.5. Let X be a Deligne–Mumford stack. An OX-module F is
quasi-coherent if for any étale morphism U → X from a scheme, the restriction
F|U of F to the Zariski topology of U is a quasi-coherent OU -module.

Exercise 3.1.6. Show that for a scheme X, this definition agrees with the usual
definition of quasi-coherence.

We denote the category of quasi-coherent OX-modules as QCoh(X).

Exercise 3.1.7. Let f : X→ Y be a morphism of Deligne–Mumford stacks.

(1) Show that if G is a quasi-coherent OY-module, then f∗G is quasi-coherent.

Assume in addition that f is quasi-compact and quasi-separated.
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(2) Show that if F is a quasi-coherent OX-module, then f∗F is quasi-coherent.

(3) Show that the functors

QCoh(X)

f∗
,,

QCoh(Y)

f∗
ll

are adjoints (with f∗ the right adjoint).

Exercise 3.1.8. Let G be a finite group.

(1) Show that a quasi-coherent sheaf on BkG corresponds to a representation
V of G.

(2) Show that the pullback of V along Speck → BkG is V as a vector space
(forgetting the G-action) and that the pushforward of V along BkG→ Speck
is the G-invariants V G.

Exercise 3.1.9. Let G be a finite group acting on a k-scheme SpecA.

(1) Show that a quasi-coherent sheaf on [SpecA/G] corresponds to an A-module
M which as k-module has the additional structure of a G-representation.

Consider the diagram

SpecA // [SpecA/G] //

��

BkG

SpecAG

(2) Show that the pullback of M along SpecA → [SpecA/G] is M as an A-
module (forgetting the G-action).

(3) Show that the pushforward of M along [SpecA/G] → BkG is M as a
k-vector space (forgetting the A-module structure).

(4) Show that the pushforward of M along [SpecA/G] → SpecAG is the G-
invariants MG of the representation which is naturally an AG-module.

The condition of being a vector bundle, line bundle or coherent (in the noethe-
rian setting) are étale local (Proposition B.4.4).

Definition 3.1.10. Let X be a Deligne–Mumford stack and F be a quasi-coherent
OX-module.

(1) We say that F is a vector bundle (resp. line bundle) if for every (equivalently,
there exists) étale presentation U → X from a scheme, the pullback f∗F is a
vector bundle (resp. line bundle).

(2) If in addition X is noetherian, we say F is coherent if for every (equivalently
there exists) étale presentation U → X from a scheme, the pullback f∗F is a
vector bundle.

Definition 3.1.11 (Quasi-coherent algebras). Let X be a Deligne–Mumford stack.
A quasi-coherent OX-algebra is a quasi-coherent OX-module A which is a ring
object in Sh(Xét).
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Definition 3.1.12 (Relative spectrum). If A is a quasi-coherent OX-algebra on a
Deligne–Mumford stack A, let SpecX A be the stack whose objects over a scheme
S consists of a morphism f : T → X and a morphism f∗A→ OT of OT -algebras.

Exercise 3.1.13. Show that SpecX A is an algebraic stack affine over X.

Exercise 3.1.14. Let f : X → Y be a quasi-compact and quasi-separated mor-
phism of Deligne–Mumford stacks.

(1) Show that there is factorization f : X→ Spec f∗OX → Y.

(2) Show that f is affine if and only if X→ Spec f∗OX is an isomorphism.

(3) Show that f is quasi-affine if and only if X→ Spec f∗OX is an open immer-
sion.

3.1.4 Line bundles

Here we collect facts about line bundles that will come in handy later. We first
extend Proposition F.2.2 from schemes to algebraic spaces.

Proposition 3.1.15. Let f : X → Y be a finite morphism of algebraic spaces and
L be a line bundle on Y . If L is ample, then so is f∗L. If f is surjective, then
the converse is true.

Proof. To be added.

3.2 Local quotient structure of Deligne–Mumford
stacks

In this section, we show that any Deligne–Mumford stack X is étale-locally near
a point x isomorphic to a quotient stack [SpecA/Gx] of an affine scheme by the
stabilizer group scheme. Conceptually, this tells us that just as schemes (resp.
algebraic spaces) are obtained by gluing affine schemes in the Zariski-topology
(resp. étale-topology), Deligne–Mumford stacks are obtained by gluing quotient
stacks [SpecA/G] in the étale topology.1 Practically, this allows one to reduce
many properties of Deligne–Mumford stacks to quotient stacks [SpecA/G]. We
will take advantage of this local structure in order to construct a coarse moduli
space (Theorem 3.3.17).

Theorem 3.2.1 (Local Structure Theorem of Deligne–Mumford Stacks). Let X

be a separated Deligne–Mumford stack and x ∈ X(k) be a geometric point with
stabilizer Gx. There exists an affine and étale morphism

f : ([SpecA/Gx], w)→ (X, x)

where w ∈ (SpecA)(k) such that f induces an isomorphism of stabilizer groups at
w. Moreover, it can be arranged that f−1(BGx) ∼= BGw.

1Of course, Deligne–Mumford stacks are also étale locally schemes but the étale neighborhoods
([SpecA/Gx], w)→ (X, x) produced by Theorem 3.2.1 preserve the stabilizer group at w.
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Proof. Let (U, u) → (X, x) be an étale representable morphism from an affine
scheme, and let d be the degree over x, i.e. the cardinality of Speck×X U . Since
X is separated, U → X is affine. Define the scheme

(U/X)d := U ×X · · · ×X U︸ ︷︷ ︸
d times

.

For a scheme S, a morphism S → (U/X)d corresponds to a morphism S → X and
d sections s1, . . . , sd of US := U ×X S → S.

Let (U/X)d0 be the quasi-affine subscheme (U/X)d which is the complement
of all pairwise diagonals, i.e. a map S → (U/X)d0 corresponds to S → X and n
distinct sections s1, . . . , sn : S → US (distinct meaning the intersection of si and
sj is empty for i 6= j). There is an action of Sd on (U/X)d by permuting the
sections and (U/X)d0 ⊂ (U/X)d is equivariant. An object of the quotient stack
[(U/X)d0/Sd] over a scheme S corresponds to a diagram

Z
� � //

  

US //

��

U

��

S // X

where Z ↪→ US is a closed subscheme such that Z → S is finite étale of degree d.
Note that we have a point w ∈ [(U/X)d0/Sd](k) corresponding to Z

∼→ Speck×XU .
There is an induced representable morphism [(U/X)d0/Sd]→ X and a commutative
diagram

(U/X)d0
� � //

��

(U/X)d

��

[(U/X)d0/Sd]

&&

U

��

X

Set W := (U/X)d0. The morphism [W/Sd] → X is étale at w and induces an
isomorphism of stabilizer groups at w. By quotienting out by Gx ⊂ Sd instead, we
also have a morphism [W/Gx]→ X which is étale and stabilizer preserving at w.
By removing all other preimages of x and we may replace W with a Gx-invariant
affine open subscheme of W containing w. The induced morphism f : [W/Gx]→ X

is affine and étale such that f−1(BGx) ∼= BGw.

Remark 3.2.2. A variant of Theorem 3.2.1 holds for non-separated Deligne–
Mumford stacks. If X is a Deligne–Mumford stack with separated and quasi-
compact diagonal, there exists a representable (but not necessarily affine) and
étale morphism f : ([SpecA/Gx], w) → (X, x). In fact, the same proof works as
long as we rely on the fact that such Deligne–Mumford stacks have quasi-affine
diagonal.

Exercise 3.2.3. Use a similar technique to the above proof to establish that if X
is any algebraic stack with separated and quasi-compact diagonal and x ∈ X(k)
is a field-valued point, then there exists a smooth presentation U → X from a
scheme and a point u ∈ U(k) over x.
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Exercise 3.2.4. Use Exercise 3.2.3 to show that Theorem 3.2.1 remains true if
x ∈ X(k) is an arbitrary field-valued point.

Exercise 3.2.5. Let X be a Deligne–Mumford stack. Show that X is isomorphic
to a quotient stack [U/G] where U is an affine scheme (resp. scheme, algebraic
space) and G is a finite group if and only if there exists a finite étale morphism
V → X from an affine scheme (resp. scheme, algebraic space).

3.3 Existence of coarse moduli spaces: The Keel-
Mori Theorem

The goal of this section is to establish the Keel–Mori Theorem: any separated
Deligne–Mumford stack X of finite type over a noetherian scheme admits a
separated coarse moduli space π : X → X (see Theorem 3.3.17). One can view
this theorem as a way to remove the stackiness of a Deligne–Mumford stack where
at the expense of sacrificing universal properties of X (e.g. existence of a universal
family), one can replace X with an algebraic space without changing the underlying
topological space.

We will later apply this theorem to show that the Deligne–Mumford stack Mg

parameterizing stable curves admits a coarse moduli space π : Mg →Mg where
Mg is a separated algebraic space, which we later show to be proper and then
finally projective.

To prove Theorem 3.3.17, we first show that if X is a quotient stack [SpecA/G]
by a finite group, then [SpecA/G] → SpecAG is a coarse moduli space (Theo-
rem 3.3.8). We then reduce to this case by applying the Local Structure Theorem
of Deligne–Mumford Stacks (Theorem 3.2.1) we construct étale neighboorhods
[Spec(Ai)/G] → X and show that their coarse moduli spaces Spec(AGi ) glue in
the étale topology to a coarse moduli space of X.

3.3.1 Coarse moduli spaces

We begin with the definition:

Definition 3.3.1. A morphism π : X→ X from an algebraic stack to an algebraic
space is a coarse moduli space if

(1) for any algebraically closed field k, the induced map X(k)/∼ → X(k), from
the set of isomorphism classes of objects of X over k, is bijective, and

(2) π is universal for maps to algebraic spaces, i.e. any other map from X→ Y
factors uniquely as

X

π

��   

X // Y.

If in addition X = [U/G] is a quotient stack, we often write the coarse moduli
space as U/G and call it the geometric quotient of U by G.

Remark 3.3.2. In practice, we desire coarse moduli spaces with additional
properties of π : X→ X as otherwise it is difficult to work with this notion. For
instance, it is not true that this notion is stable under étale base change (or even
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open immersions) or that π∗OX = OX . However, we emphasize that the Keel–Mori
Theorem produces a coarse moduli space π : X→ X with the additional properties:
(a) it is stable under flat base change, (b) π∗OX = OX , (c) π is proper (and in
particular separated!) and (d) π is a universal homeomorphism.

Lemma 3.3.3. Let π : X→ X be a coarse moduli space such that for any étale
morphism X ′ → X from an affine scheme, the base change X×X X ′ → X ′ is a
coarse moduli space. Then the natural map OX → π∗OX is an isomorphism.

Proof. As π is universal for maps to algebraic spaces, we have that Map(X,A1)→
Map(X,A1) is bijective or in other words Γ(X,OX) ∼= Γ(X,OX). For any étale map
X ′ → X, the base change X′ = X×X X ′ → X ′ is also a coarse moduli space and
thus Γ(X ′,OX′) ∼= Γ(X′,OX′). This shows that OX → π∗OX is isomorphism.

The property that a given map is a coarse moduli space can be checked étale
locally

Lemma 3.3.4. Let π : X→ X be a morphism to an algebraic space. Suppose that
there is an fppf covering {Xi → X} such that X×X Xi → Xi is a coarse moduli
space for each i. Then π : X→ X is a coarse moduli space.

Proof. Axiom (1) of a coarse moduli space is a condition on geometric fibers
and can thus be checked étale-locally while Axiom (2) follows from descent of
morphisms of algebraic spaces in the étale topology.

3.3.2 Quotients by finite groups

In this section, we establish a special case of the Keel–Mori Theorem for quotient
stacks [SpecA/G] by finite groups (Theorem 3.3.8).

If a finite group G acts on an affine scheme SpecA, then G also acts on the
ring A and we define the invariant ring as

AG = {f ∈ A | g · f = f for all g ∈ G}.

Lemma 3.3.5. Let R be a noetherian ring. Let G be a finite group acting on
an affine scheme SpecA of finite type over R. Then AG → A is finite and AG is
finitely generated over R.

Proof. We first show that AG → A is integral. If a ∈ A, then
∏
g∈G(x − ga) ∈

AG[x] is polynomial with invariant coefficients such that a as a root. Since AG → A
is of finite type (as R→ A is of finite type) and integral, it is finite (c.f [AM69,
Cor. 5.2]). Since R is noetherian, we may conclude that R→ AG is of finite type
(c.f. [AM69, Prop. 7.8].

The invariant ring is compatible with flat base change.

Lemma 3.3.6. Let G be a finite group acting on an affine scheme SpecA.
If AG → B is a flat ring homomorphism, then G acts on the affine scheme
Spec(B ⊗AG A) and B = (B ⊗AG A)G.

Proof. By definition, the invariant ring is the equalizer

0→ AG → A
p1−−⇒
p2

∏
g∈G

A
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where p1(f) = (f)g∈G and p2(f) = (gf)g∈G. Since AG → B is flat, we have that

0→ B → A⊗AG B
p1−−⇒
p2

∏
g∈G

A⊗AG B

is also exact and we conclude that B = (B ⊗AG A)G.

Exercise 3.3.7. Let AG → B be an arbitrary ring homomorphism and consider
the commutative diagram

SpecB ⊗AG A

��

//

uu

SpecA

��

Spec(B ⊗AG A)G // SpecB // SpecAG.

(1) Show that Spec(B ⊗AG A)G → SpecB is an integral homeomorphism.

(2) If |G| is invertible in A, show that B → (B ⊗AG A)G is an isomorphism.

Theorem 3.3.8. Let R be a noetherian ring. Let G be a finite group acting on
an affine scheme SpecA of finite type over R. Then π : [SpecA/G]→ SpecAG is
a coarse moduli space such that

(1) AG is finitely generated over R,

(2) π is a proper universal homeomorphism, and

(3) the base change of π along any flat morphism X ′ → SpecAG of noetherian
algebraic spaces is a coarse moduli space.

Proof. We’ve seen in Lemma 3.3.5 that AG → A is finite and AG is finitely
generated over R. We divide the remainder of the proof into three steps:

Step 1: π is a proper universal homeomorphism and in particular bijective on
geometric points: Since SpecA → SpecAG and SpecA → [SpecA/G] are both
proper, so is π. As SpecA→ SpecAG is finite and dominant, it is surjective and
therefore so is π. To see that π is injective on geometric points, suppose that x and
x′ are two k-points of SpecA with distinct orbits in Spec(A⊗R k). Let f ∈ A⊗R k
be a function with f |Gx = 0 and f |Gx′ = 1. Then f̃ =

∏
g∈G gf is a G-invariant

function with f ′(π(x)) = 0 and f ′(π(x′)) = 1. Thus π(x) 6= π(x′). Finally, as π is
bijective and universally closed, its set-theoretic inverse is continuous, and thus π
is a homeomorphism. The base change of π along a morphism SpecB → SpecAG

factors as [Spec(B ⊗AG A)/G]→ Spec(B ⊗AG A)G → SpecB where the first map
is a homeomorphism by the above argument and the second is by Exercise 3.3.7,
and we conclude that π is a universal homeomorphism.

Step 2: π is universal for maps to algebraic spaces: Set X = [SpecA/G] and
X = SpecAG. We need to show that if Y is any algebraic space, then the natural
map

Map(X,Y )→ Map(X, Y ) (3.3.1)

is bijective. If h1, h2 : X → Y are two maps such that h1 ◦ π = h2 ◦ π, let E → X
be the equalizer of h1 and h2, i.e. the pullback of the diagonal Y → Y × Y along
(h1, h2) : X → Y × Y . The equalizer E → X is a monomorphism and locally of
finite type. By construction π : X → X factors through E → X and since π is
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universally closed and schematically dominant (i.e. OX → π∗OX is injective), so
is E → X. As any universally closed and locally of finite type monomorphism
is a closed immersion, we conclude that E → X is an isomorphism. (Note that
this argument only used that X → X is universally closed and schematically
dominant.)

For the surjectivity of (3.3.1), let ϕ : X → Y be a map. We claim that
the question is étale-local on X. Indeed, if X ′ → X is an étale cover and

χ′ : X ′ → Y is a morphism such that the two compositions X ′ ×X X→ X ′
χ′−→ Y

and X ′ ×X X → X
ϕ−→ Y agree, then by the injectivity of (3.3.1), the two

compositions X ′ ×X X ′ ⇒ X ′
χ−→ Y agree and χ′ : X ′ → Y descends to a

morphism χ : X → Y . Étale descent also implies the commutativity of ϕ = χ ◦ π.

We may therefore assume that AG is strictly henselian. Since X is quasi-
compact, we may assume that Y is quasi-compact as ϕ : X→ Y factors through a
quasi-compact open algebraic subspace of Y . Let Y ′ → Y be an étale presentation
from an affine scheme and let X′ := X×Y Y ′. As AG → A is finite, A is also strictly
henselian and f : Y ′×Y SpecA→ SpecA has a section s : SpecA→ Y ′×Y SpecA,
which is a G-invariant open and closed immersion, and descends to a section
s : X→ X′ of X′ → X. To summarize, we have a commutative diagram

X′ //

ϕ′

��

X

s
ww π //

ϕ

��

X

��

Y ′
g
// Y

where X
ϕ−→ Y factors as X

s−→ X′
ϕ′−→ Y ′

g−→ Y . Since X and Y ′ are affine,

the equality Γ(X,OX) = Γ(X,OX) implies that X
s−→ X′

ϕ′−→ Y ′ factors through
π : X → X via a morphism X → Y ′. The composition X → Y ′ → Y yields the
desired dotted arrow above.

Step 3: the coarse moduli space property is preserved under flat base change: By
Lemma 3.3.4, it suffices to consider morphisms Y ′ → Y from an affine scheme.
But in this case, Lemma 3.3.6 implies that the base change X×Y Y ′ ∼= [SpecB/G]

with Y ′ ∼= SpecBG and the above argument shows that X×Y Y ′
g−→ Y ′ is also a

coarse moduli space.

Example 3.3.9. If G is a finite group, the map BG = [Speck/G]→ Speck is a
coarse moduli space.

Example 3.3.10. Assume char(k) 6= 2. If G = Z/2 acts on A1 = Speck[x] via
−1 · x = −x, then [A1/G]→ Speck[x2] is a coarse moduli space.

Similarly, if G = Z/2 acts on A2 = Spec k[x, y] via −1 · (x, y) = (−x,−y), then

[A2/G]→ A2/G = Speck[x2, xy, y2]

is a coarse moduli space. By setting A = x2, B = xy and C = y2, the invariant
ring can be identified with k[A,B,C]/(B2 −AC) so that the quotient A2/G is a
cone over a conic, and in particular singular.
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Exercise 3.3.11. Suppose that G is a finite group acting on an affine scheme
SpecA of finite type over a noetherian ring R. If x ∈ SpecA is a closed point,
show that there is an isomorphism

ÂGx ∼= ÂG

between the Gx-invariants of the completion at SpecA at x and the completion
of SpecAG at the image of x.

The following exercise generalizes Theorem 3.3.8 from quotients of finite groups
to quotients of finite flat groupoids.

Exercise 3.3.12. Let X be an algebraic stack separated and of finite type over
a noetherian ring B. Suppose that there exists a finite and flat morphism U =
SpecA→ X from an affine scheme. Set R := U ×X U so that R ⇒ U is a finite
flat groupoid of affine schemes, and define AR ⊂ A as the subring of R-invariants,
i.e. the subring of elements a ∈ A such that s∗a = t∗a ∈ Γ(R,OR). Note that AR

is identified with Γ(X,OX). Show that π : X→ SpecAR is a coarse moduli space
satisfying properties (1)-(3) of Theorem 3.3.8.

3.3.3 Descending étale morphisms to quotients

Proposition 3.3.13. Let G be a finite group and f : SpecA → SpecB be a
G-equivariant morphism of affine schemes of finite type over a noetherian ring R.
Let x ∈ SpecA be a closed point. Assume that

(a) f is étale at x and

(b) the induced map Gx → Gf(x) of stabilizer groups is bijective.

Then there is an open affine neighborhood W ⊂ SpecAG of the image of x such
that W → SpecAG → SpecBG is étale and π−1

A (W ) ∼= W ×SpecBG [SpecB/G],
where πA : [SpecA/G]→ SpecAG.

Remark 3.3.14. In other words, after replacing SpecAG with an affine neighbor-
hood W of πA(x) and SpecA with π−1

A (W ), it can be arranged that the diagram

[SpecA/G]

πA

��

f
// [SpecB/G]

πB

��

SpecAG // SpecBG

(3.3.2)

is cartesian where both horizontal maps are étale.

In the proof of the Keel–Mori Theorem (Theorem 3.3.17), this proposition will
be applied in the following form.

Corollary 3.3.15. Let G be a finite group and f : SpecA → SpecB be a G-
equivariant morphism of affine schemes of finite type over a noetherian ring R.
Assume that for every closed point x ∈ SpecA,

(a) f is étale at x and

(b) the induced map Gx → Gf(x) of stabilizer groups is bijective.

118



Then SpecAG → SpecBG is étale and (3.3.2) is cartesian.

Proof of Proposition 3.3.13. Set y = f(x). We first claim that the question is
étale local around πB(y) ∈ SpecBG. Indeed, if Y ′ → SpecBG is an affine
étale neighborhood of πB(y), we let X ′,X′ and Y′ denote the base changes of
SpecAG, [SpecA/G], and [SpecB/G]. By Lemma 3.3.6, we know that Y′ ∼=
[SpecB′/G] with Y ′ ∼= SpecB′G and similarly for X′ and X ′. If the result holds
after this base change, there is an open neighborhood W ′ ⊂ X ′ containing a
preimage of πA(x) such that W ′ ↪→ X ′ → Y ′ is étale and such that the preimage
of W ′ in X′ is isomorphic to W ′ ×Y ′ Y′. Taking W as the image of W ′ under
X ′ → SpecAG and applying étale descent yields the desired claim.

We may therefore assume that BG is strictly henselian. As BG → B is finite
(Lemma 3.3.5), B is also strictly henselian. Thus SpecA→ SpecB has a section
s : SpecB → SpecA taking y to x, and the morphism s is necessarily a G-invariant
open and closed immersion. The result is clear in this case.

Remark 3.3.16. Here’s a conceptual reason for why we should expect the induced
map of quotients to be étale. For simplicity, assume that R = k is an algebraically
closed field. Let Â and B̂ be the completions of the local rings at x and f(x).

The stabilizers Gx and Gf(x) act on Spec Â and Spec B̂, respectively, and the

map Spec Â→ Spec B̂ is equivariant with respect to the map Gx → Gf(x). The

completion ÂG of AG at the image of x is isomorphic to ÂGx (Exercise 3.3.11)

and similarly B̂G = B̂Gf(x) . Since f is étale at x, B̂ → Â is an isomorphism and

since Gx → Gf(x) is bijective, the induced map B̂G → ÂG is an isomorphism and
SpecAG → SpecBG is étale at the image of x.

3.3.4 The Keel–Mori Theorem

We now state and prove the Keel–Mori Theorem.

Theorem 3.3.17. Let X be a Deligne-Mumford stack separated and of finite type
over a noetherian algebraic space S. Then there exists a coarse moduli space
π : X→ X with OX = π∗OX such that

(1) X is separated and of finite type over S,

(2) π is a proper universal homeomorphism, and

(3) for any flat morphism X ′ → X of noetherian algebraic spaces, the base
change X×X X ′ → X ′ is a coarse moduli space.

Remark 3.3.18. More generally for any algebraic stack X (without any noetherian
or finiteness conditions) such that the inertia stack IX is finite over X, there exists
a coarse moduli space π : X → X with π separated [KM97, Con05, Ryd13]. In
particular, it holds for algebraic stacks with finite but non-reduced automorphism
groups.

Proof. We first handle the case when S = SpecR is affine. The question is Zariski-
local on X: if {Xi} is a Zariski-open covering of X with coarse moduli spaces
Xi → Xi, then since coarse moduli spaces are unique (Definition 3.3.1(2)), the
Xi’s glue to form an algebraic space X and a map X → X, which is a coarse
moduli space by Lemma 3.3.4. It thus suffices to show that any closed point
x ∈ |X| has an open neighborhood which admits a coarse moduli space.

119



By the Local Structure Theorem of Deligne–Mumford Stacks (Theorem 3.2.1),
there exists an affine and étale morphism

f :
(
W = [SpecA/Gx], w

)
→ (X, x)

such that f induces an isomorphism of geometric stabilizer groups at w. (Recall
that the geometric stabilizer of w is simply the stabilizer group of any geometric
point Speck→W with image w; see Definition 2.4.10).

We claim that since X is separated, the locus U consisting of points z ∈ |W|,
such that f induces an isomorphism of geometric stabilizer groups at z, is open.
To establish this, we will analyze the natural morphism IW → IX×XW of relative
group schemes over W as the fiber of this morphism over z ∈ W(k) is precisely
the morphism Gz → Gf(z) of stabilizers. We will exploit the cartesian diagram

IW
Ψ //

��

IX ×X W

��

W // W×X W.

Since W→ X is representable, étale and separated, the diagonal W→W×X W

is an open and closed immersion and thus so is Ψ. Since IX → X is finite, so is
p2 : IX×XW→W. Thus p2(|IX×XW| \ |IW|) ⊂ |W| is closed and its complement,
which is identified with the locus U, is open.

Let πW : W→ W = Spec(AGx) be the coarse moduli space (Theorem 3.3.8).
Choose an affine open subscheme X1 ⊂W containing πW(w). Then X1 = π−1

W (X1)

is isomorphic to a quotient stack [Spec(A1)/Gx] such that X1 = Spec(AGx1 ). This
provides an étale and affine morphism

g : (X1 = [Spec(A1)/Gx], w)→ (X, x)

which induces a bijection on all stabilizer groups.
We now show that the open substack X0 := im(f) admits a coarse moduli space.

Define X2 := X1×XX1 and X3 := X1×XX1×XX1. Since g is affine, each Xi is of the
form [Spec(Ai)/Gx] and there is a coarse moduli space πi : Xi → Xi = Spec(AGxi ).
By universality of coarse moduli spaces, there is a diagram

X3

π3

��

//
//
//
X2

π2

��

//
// X1

π1

��

g
// X0 = im(f)

π0

��

X3
//

//
// X2

//
// X1

// X0

(3.3.3)

where the natural squares commute. Since g induces bijection of stabilizer groups
at all points, the same is true for each projection X2 → X1 and X3 → X2.
Corollary 3.3.15 implies that each map X2 → X1 and X3 → X2 is étale, and the
natural squares of solid arrows in (3.3.3) are cartesian.

The universality of coarse moduli spaces induces an étale groupoid structure
X2 ⇒ X1. To check that this is an étale equivalence relation, it suffices to check
that X2 → X1 × X1 is injective on k-points but this follows easily from the
observation the |X2| → |X1| × |X1| is injective on closed points. Therefore there is
an algebraic space quotient X0 := X1/X2 and a map X1 → X0. By étale descent
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along X1 → X0, there is a map π0 : X0 → X0 making the right square in (3.3.3)
commute.

To argue that π : X0 → X0 is a coarse moduli space, we will use the commuta-
tive cube

X2
//

��

}}

X1

��

}}

X1
//

��

X0

��

X2
//

}}

X1

}}

X1
// X0,

where the top, left, and bottom faces are cartesian. It follows from étale descent
along X1 → X0 that the right face is also cartesian and since being a coarse
moduli space is étale local on X0 (Lemma 3.3.4), we conclude that X0 → X0 is a
coarse moduli space. Except for the separatedness, the additional properties in
the statement are étale local on X0 so they follow from the analogous properties
of the coarse moduli space [Spec(A1)/Gx]→ Spec(AGx1 ) from Theorem 3.3.8. As
X0 → X0 is proper, the separatedness of X0 is equivalent to the separatedness of
X0.

Finally, the case when S is a noetherian algebraic space can be reduced to the
affine case by imitating the above argument to étale-locally construct the coarse
moduli space of X.

Remark 3.3.19. The more general case when X is an algebraic stack with finite
inertia IX → X (see Remark 3.3.18) is proven in an analogous but more technical
manner. Namely, the use of the Local Structure Theorem for Deligne–Mumford
stacks (Theorem 3.2.1) is replaced by the existence of an étale neighborhood
W → X around any closed point such that W admits a finite flat presentation
V →W from an affine scheme and the corresponding groupoid R := V ×WV ⇒ V
is a finite flat groupoid of affine schemes. This in turn is proven in an analogous
way to Theorem 3.2.1 where one chooses a quasi-finite and flat surjection U → X

and one replaces the use of [(U/X)d0/Sd]) with a Hilbert stack H whose objects
over a scheme S consists of a morphism S → X and a closed subscheme Z ↪→ US
finite and flat (rather than finite and étale) over S. Finally, the existence of a
coarse moduli space for quotients [V/R] is proven analogously to Theorem 3.3.8
(see Exercise 3.3.12).

3.3.5 Refinements and examples

The Local Structure Theorem of Deligne–Mumford Stacks (Theorem 3.2.1) can
also be formulated étale locally on a coarse moduli space:

Corollary 3.3.20 (Local Structure of Coarse Moduli Spaces). Let X be a Deligne–
Mumford stack of finite type and separated over a noetherian algebraic space S,
and let π : X→ X be its coarse moduli space. For any closed point x ∈ |X| with
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geometric stabilizer group Gx, there exists a cartesian diagram

[SpecA/Gx] //

��

X

π

��

SpecAGx // X

such that SpecAGx → X is an étale neighborhood of π(x) ∈ |X|.

Proof. This follows from the uniqueness of coarse moduli spaces and the construc-
tion of the coarse moduli space in the proof of Theorem 3.3.17. Alternatively,
it follows from the Local Structure Theorem of Deligne–Mumford stacks (Theo-
rem 3.2.1) and Exercise 3.3.21

Exercise 3.3.21. Establish the following generalization of Proposition 3.3.13:
Let S be a noetherian algebraic space. Let f : X→ Y be a morphism of Deligne–
Mumford stacks separated and of finite type over S and

X

πX

��

f
// Y

πY

��

X // Y

be a commutative diagram where πX : X→ X and πY : Y→ Y are coarse moduli
spaces. Let x ∈ |X| be a closed point such that

(1) f is étale at x and

(2) the induced map Gx → Gf(x) of geometric stabilizer groups is bijective.

Then there exists an open neighborhood U ⊂ X of πX(x) such that U → X → Y
is étale and πX(U) ∼= U ×Y Y.

Exercise 3.3.22. With the hypotheses of Theorem 3.3.17, if in addition the order
of every stabilizer group is invertible in S, show that X→ X is a universal coarse
moduli space, i.e. for every X ′ → X, the base change X×X X ′ → X ′ is a coarse
moduli space.

Exercise 3.3.23. Let char(k) 6= 2 and G = Z/2.

(1) Let G act on the non-separated union X = A1
⋃
x 6=0 A1 simultaneously

exchanging the copies of A1. The quotient [X/G] is a Deligne–Mumford
stack with quasi-finite but not finite inertia, and in particular non-separated.
Show nevertheless that there is a coarse moduli space [X/G]→ A1.

(2) Let X be the non-separated union A2
⋃
x 6=0 A2. Let G = Z/2 act on X by

simultaneously exchanging the copies of A2 and by acting via the involution
y 7→ −y on each copy. Show that [X/G] does not admit a coarse moduli
space.

3.3.6 Descending line bundles to the coarse moduli space

Definition 3.3.24. A noetherian Deligne–Mumford stack X is tame if for every
geometric point x ∈ X(K), the order of AutX(K)(x) is invertible in Γ(X,OX).
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Remark 3.3.25. If X is defined over a field k, then this means that the order of
AutX(K)(x) is prime to the characteristic of k.

We say that a vector bundle E on X descends to its coarse moduli space
π : X→ X if there exists a vector bundle E on X and an isomorphism E ∼= π∗E.

Proposition 3.3.26. Let X be a tame Deligne-Mumford stack separated and of
finite type over a noetherian algebraic space S, and let π : X → X be its coarse
moduli space. A vector bundle E on X descends to a vector bundle on X if and
only if for every closed point x ∈ |X|, the pullback of E to the residual gerbe Gx is
trivial.

Remark 3.3.27. The condition that E|Gx is trivial is equivalent to the condition
that automorphism group AutX(K)(x) of a representative x : SpecK → X of x
acts trivially on the fiber E⊗K = x∗E. Note that this latter condition is insensitive
to field extensions.

Proof. To be added.

When X is not tame, we have the following variant of descending line bundles.

Proposition 3.3.28. Let X be a Deligne-Mumford stack separated and of finite
type over a noetherian algebraic space S, and let π : X→ X be its coarse moduli
space. If L is a line bundle on X, then for N sufficiently divisible L⊗N descends
to X.

Proof. To be added.

3.4 Global structure of algebraic spaces and Deligne–
Mumford stacks

Theorem 3.4.1. Any noetherian algebraic space has a dense open algebraic
subspace which is a scheme.

Proof. Let f : V → X be an étale presentation of a noetherian algebraic space
X. There exists an open algebraic subspace U ⊂ X such that f−1(U) → U is
finite and étale. By Exercise 3.2.5, U is isomorphic to a quotient stack [V/G] for
the free action of a finite group G on a scheme V . If V1 ⊂ V is a dense open
subscheme which is affine, then V2 =

⋂
g gV1 is a G-invariant quasi-affine open.

Repeating this argument, we can choose a dense open affine subscheme V3 ⊂ V1

and now V4 =
⋂
g gV3 is a G-invariant affine open. Theorem 3.3.8 implies that

V4/G ∼= SpecAG is a dense open algebraic subspace of U .

Remark 3.4.2. The above result is not necessarily true if X is not quasi-separated,
e.g. A1/Z (Example 2.9.26).

Theorem 3.4.3 (Le Lemme de Gabber). Let X be a Deligne-Mumford stack
separated and of finite type over a noetherian algebraic space S. Then there exists
a finite, generically étale, and surjective morphism U → X from a scheme U .

Proof. To be added.

By applying Chow’s lemma to U , we obtain:

Corollary 3.4.4. There exists a projective, generically étale, and surjective
morphism V → X from a scheme V quasi-projective over S.
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Chapter 4

Moduli of stable curves

4.1 Nodal curves

A curve over a field k is a pure one-dimensional scheme C of finite type over k. If
C is a proper curve, we define the arithmetic genus of C or simply the genus of C
as

g(C) = 1− χ(C,OC)

which is equal to h1(C,OC) if C is geometrically connected and reduced.
The following easy version of Riemann-Roch holds for singular curves (c.f.

[Har77, Exer. IV.1.7]):

Theorem 4.1.1 (Easy Riemann–Roch). Let C be an integral projective curve of
genus g. If L is a line bundle on C, then

χ(C,L) = degL+ 1− g.

Proper curves are projective: the case of smooth curves is handled in [Har77,
Prop. II.6.7] and in general properties of ampleness reduce the projectivity of a

curve C to the projectivity of the normalization C̃red of the reduction. It is also
true that any pure one-dimensional separated algebraic space is a scheme (see [SP,
Tag 0ADD]).

4.1.1 Review of smooth curves

We review some basic properties of smooth curves which we would later like to
generalize for nodal curves.

If C is a smooth curve, then the sheaf of differentials ΩC is a line bundle. Serre
Duality is a deep result, indispensable in the study of curves, that states that ΩC
is in fact a dualizing sheaf on C.

Theorem 4.1.2 (Serre–Duality for Smooth Curves). [Har77, Cor. III.7.12] If
C is a smooth projective curve over k, then ΩC is a dualizing sheaf, i.e. there is
a linear map tr : H1(C,ΩC)→ k such that for any coherent sheaf F, the natural
pairing

Hom(F,ΩC)×H1(C,F)→ H1(C,ΩC)
tr−→ k

is perfect.
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Remark 4.1.3. The pairing being perfect means that the Hom(F,ΩC) is identified
with the dual H1(C,F)∨. If F is a vector bundle, there is a functorial isomorphism

H0(C,F∨ ⊗ ωC) ∼= H1(C,F)∨.

Taking F = ωC , we see that H1(C,ωC) ∼= H0(C,OC)∨ and in particular that
the trace map tr : H1(C,ωC) → k is an isomorphism if C is connected and
H0(C,OC) = k (e.g. k is algebraically closed).

While Easy Riemann–Roch (Theorem 4.1.1) is essentially a trivial consequence
of long exact sequences in cohomology, Serre–Duality is substantially more difficult,
even for smooth projective curves. Combining Easy Riemann–Roch and Serre
Duality leads to the more powerful version of Riemann–Roch.

Theorem 4.1.4 (Riemann–Roch). [Har77, Thm IV.1.3] Let C be a smooth
projective curve of genus g. If L is a line bundle on C, then

h0(C,L)− h0(C,ΩC ⊗ L∨) = degL+ 1− g (4.1.1)

Remark 4.1.5. This is often written in divisor form as h0(C,L)−h0(C,K−L) =
degL+ 1− g where K denotes the canonical divisor, i.e. ΩC = OC(K).

Like Riemann–Roch, Riemann–Hurwitz plays an essential role in the study
of smooth curves. Riemann–Hurwitz informs us on how the sheaf of differentials
behaves under finite morphisms of smooth curves; the statement is postponed
until our discussion of branched covers; see Theorem 4.6.3.

Positivity of divisors on curves

The following consequence of Riemann–Roch provides a useful criteria to determine
whether a given line bundle is basepoint-free, ample or very ample.

Corollary 4.1.6. [Har77, Cor. IV.3.2] Let C be a smooth projective curve over
k and L be a line bundle on C.

(1) if degL < 0, then h0(C,L) = 0;

(2) if degL > 0, then L is ample;

(3) if degL ≥ 2g, then L is basepoint-free; and

(4) if degL ≥ 2g + 1, then L is very ample.

For a smooth projective curve C of genus g > 1, we can use Riemann–Roch and
Serre–Duality to compute that: (a) h0(C,ωC) = h1(C,OC) = g, (b) h1(C,ωC) =
h0(C,OC) = k and (c) ΩC has degree 2g − 2 and is thus ample on C. Similarly,
if k > 1, we have: (a) h0(C,ω⊗kC ) = (2k − 1)(g − 1), (b) h1(C,ω⊗kC ) = 0 and (c)

Ω⊗kC has degree 2k(g − 1) and is very ample if k ≥ 3. Note that ΩC is not very
ample precisely when C is hyperelliptic.

On the other hand, if g = 1 then ΩC
∼= OC , and if g = 0 then C = P1 and

ωC = O(−2).

Families of smooth curves

Definition 4.1.7. A family of smooth curves (of genus g) over a scheme S is a
smooth and proper morphism C→ S of schemes such that every geometric fiber
is a connected curve (of genus g).
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The relative sheaf of differentials ΩC/S is a line bundle on C such that for any
geometric point s : SpecK → S, the restriction ΩC/S |Cs is identified with ΩCs .
More generally, for any morphism T → S of schemes, the pullback of ΩC/S to
C×S T is canonically isomorphic to ΩC×ST/T .

We now will apply Cohomology and Base Change [Har77, Thm III.12.11] to
show that for k ≥ 3, the kth relative pluricanonical sheaf Ω⊗k

C/S is relatively very

ample and that its pushforward is a vector bundle on S.

Proposition 4.1.8 (Properties of Families of Smooth Curves). Let C→ S be a
family of smooth curves of genus g ≥ 2. Then for k ≥ 3, Ω⊗k

C/S is relatively very

ample and π∗(Ω
⊗k
C/S) is a vector bundle of rank (2k − 1)(g − 1).

Proof. For any geometric point s : SpecK → S, the fiber Ω⊗k
C/S ⊗ K = Ω⊗kCs

is

very ample (Corollary 4.1.6) and therefore Ω⊗k
C/S is relatively very ample as this

property can be checked on geometric fibers for a proper morphisms locally of
finite presentation. Since H1(Cs,Ω

⊗k
Cs/κ(s)) = 0 for all s ∈ S, Cohomology and

Base Change implies that π∗(Ω
⊗k
C/S) is a vector bundle whose fiber at s is identified

with H0(Cs,Ω
⊗k
Cs/κ(s)), which has dimension (2k−1)(g−1) by Riemann–Roch.

It is also true that the relative sheaf of differentials ΩC/S is also a relative
dualizing sheaf, i.e. satisfies a relative version of Serre–Duality.

4.1.2 Nodes

Definition 4.1.9 (Nodes). Let C be a curve over a field k.

• If k is algebraically closed, we say that p ∈ C is a node if there is an
isomorphism ÔC,p ∼= k[[x, y]]/(xy).

• If k is an arbitrary field, we say that p ∈ C is a node if there exists a node
p′ ∈ Ck over p.

We say that C is a nodal curve if every closed point is either smooth or nodal.

Figure 4.1: A node of a curve over C viewed algebraically (left hand side) or
analytically (right hand side).

If k is not algebraically closed, the completion of the local ring of a node
may not be isomorphic to k[[x, y]]/(xy). However, it becomes isomorphic after a
separable field extension of k.

Lemma 4.1.10. If C is a curve over a field k and p ∈ C is a node, there exists a
finite separable field extension k→ k′, a point p′ ∈ Ck′ over p and an isomorphism
ÔCk′ ,p

′ ∼= k′[[x, y]]/(xy).
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Proof. TO BE ADDED

If C is a curve over a field k and p ∈ C is a node, then there exists a finite
separable field extension k→ k′ and a common étale neighborhood

(U, u)

{{ ((

(C, p) (Spec k′[x, y]/(xy), 0).

(4.1.2)

Indeed, this follows directly from Lemma 4.1.10 and an application of Artin
Approximation (Corollary A.4.17). We will prove a more general and relative
statement in Theorem 4.1.21.

Exercise 4.1.11. Provide a proof of the existence of the common étale neighbor-
hood in (4.1.2) without appealing to Artin Approximation.

4.1.3 Genus formula

Let C be a connected, nodal and projective curve over an algebraically closed
field k with δ nodes z1, . . . , zδ ∈ C and ν irreducible components C1, . . . , Cν . Let
g(C̃i) be the genus of the normalization C̃i of Ci, i.e. the geometric genus of Ci.

The normalization π : C̃ → C induces a short exact sequence

0→ OC → π∗OC̃ →
⊕
i

κ(pi)→ 0.

The long exact sequence of cohomology is

0→ H0(C,OC)︸ ︷︷ ︸
1

→ H0(C̃,OC̃)︸ ︷︷ ︸
ν

→ ⊕iκ(pi)︸ ︷︷ ︸
δ

→ H1(C,OC)︸ ︷︷ ︸
g

→ H1(C̃,OC̃)︸ ︷︷ ︸∑
i g(C̃i)

→ 0

with the labels underneath indicating the dimension. We therefore obtain:

Proposition 4.1.12 (Genus Formula). The genus g of C satisfies g =
∑ν
i=1 g(C̃i)+

δ − ν + 1.

Figure 4.2: An example of a nodal curve of genus 14.

Remark 4.1.13. Notice that δ − ν + 1 is precisely the number of connected
regions bounded by the one-dimensional picture of C. Thus, the genus of a nodal
curve can be easily computed from the picture by summing the geometric genera
of the irreducible components and adding the number of such regions.
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4.1.4 The dualizing sheaf

If C is a projective nodal curve, then C is locally a complete intersection and
therefore it has a dualizing sheaf ωC and trace map trC : H1(C,ωC)→ k [Har77,
III.7.11], i.e. for any coherent sheaf F, the natural pairing

Hom(F, ωC)×H1(C,F)→ H1(C,ωC)
tr−→ k

is perfect. The most important properties of the dualizing sheaf ωC is that (1) it
exists and is a line bundle and (2) that its powers ω⊗kC are very ample for k ≥ 3
and thereby provide pluricanonical embeddings into projective space.

Explicit description of ωC

Given the importance of dualizing sheaf ωC , it is natural to seek a more explicit
description. Let Σ := Csing be the singular locus and U = C \ σ. Let π : C̃ → C

be the normalization of C, and let Σ̃ and Ũ be the preimages of Σ and U as in
the diagram

Ũ �
� j̃

//

��

C̃

π

��

Σ̃? _oo

��

U
� � j

// C Σ?
_oo

Let Σ = {z1, . . . , zn} be an ordering of the points and π−1(zi) = {pi, qi}. Since C̃
is smooth, the sheaf of differentials ΩC̃ is a dualizing sheaf and is a line bundle.
There is a short exact sequence

0→ ΩC̃ → ΩC̃(Σ̃)→ OΣ̃ → 0 (4.1.3)

induced by a choice of non-zero section t ∈ Γ(C̃,OC̃(Σ̃)). As ΩC̃(Σ̃)|Ũ = ΩŨ , we

can interpret sections of ΩC̃(Σ̃) as rational sections of ΩC̃ with at worst simple

poles along Σ̃. Evaluating (4.1.3) on an open Ṽ ⊂ C̃ yields

0 // Γ(Ṽ ,ΩC̃) // Γ(Ṽ ,ΩC̃(Σ̃)) //
⊕

y∈Ṽ ∩Σ̃ κ(y)

s � // (resy(s))

where the last map takes a rational section s ∈ Γ(Ṽ ∩ Ũ ,ΩC̃) to the tuple whose

coordinate at y ∈ Ṽ ∩ Σ̃ is the residue resy(s) of s at y.

Definition 4.1.14. We define the subsheaf ωC ⊂ π∗ΩC̃(Σ̃) by declaring that
sections along V ⊂ C consist of rational sections s of ΩC̃ along π−1(V ) with at

worst simple poles along Σ̃ such that for all zi ∈ V ∩ Σ, respi(s) + resqi(s) = 0.

The definition implies that ωC sits in the following two exact sequences:

0 // ωC // π∗ΩC̃(Σ̃)

s 7→ (respi(s)− resqi(s))

//
⊕

zi∈Σ k // 0 (4.1.4)

129



0 // π∗ΩC̃
// ωC

s 7→ (respi(s))

//
⊕

zi∈Σ k // 0 (4.1.5)

Example 4.1.15 (Local calculation). Let C = Speck[x, y]/(xy). Then C̃ =
A1 t A1 with coordinates x and y respectively. The singular locus of C is Σ =
{0} with preimage Σ̃ = {p, q} consisting of the two origins. Then Γ(C̃,ΩC̃) =

Γ(A1, ωA1)× Γ(A1, ωA1) and (dxx ,−
dy
y ) is a rational section with opposite residues

at p and q. In fact, any section of Γ(C,ωC) is of the form(
f(x)

dx

x
, g(y)

−dy
y

)
= (f(0) + f(x) + g(y)) · (dx

x
,
−dy
y

)

for polynomials f(x) and g(y) such that f(0) = g(0), which is precisely the

condition for (f, g) ∈ Γ(C̃,OC̃) to descend to a global function on C. In other

words, ωC ∼= OC with generator (dxx ,−
dy
y ).

Example 4.1.16. Let C be the nodal projective plane cubic and P1 → C be
the normalization with coordinates [x : y] such that 0 and ∞ are the fibers of
the node. Observe that the rational differential η := dx

x = −dyy on P1 satisfies
res0 η + res∞ η = 0. It is easy to see that any local section of ωC is a multiple of
η or in other words that η : OC → ωC is an isomorphism.

Exercise 4.1.17. Let C be a nodal curve over k.

1. Show that if π : C ′ → C is an étale morphism, then π∗ωC ∼= ωC′ . (Hint: Use
the fact that normalization commutes with étale base change.)

2. Conclude that ωC is a line bundle.

Despite the explicit description of ωC in Definition 4.1.14, it is difficult to
directly establish Serre Duality for C. However, this can be shown using the
normalization C̃ → C and Serre Duality for Smooth Curves (Theorem 4.1.2) which
itself is a difficult result.

Exercise 4.1.18. If C is a nodal proper curve over k, show that ωC is a dualizing
sheaf.

Combining the two exercises above, we have:

Proposition 4.1.19. If C is a nodal proper curve over k, then ωC is a dualizing
line bundle.

Exercise 4.1.20. If C is a nodal curve and T ⊂ C is a subcurve with complement
T c := C \ T , show that

ωC |T = ωT (T ∩ T c)

4.1.5 Local structure of nodes

Recall that if C→ S is a smooth family of curves, then any point p ∈ C over s ∈ S
is étale-locally isomorphic to relative affine space of dimension 1. More precisely,
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there are étale neighborhoods

(C, p)

��

(U, u)
étoo ét //

��

(S′ ×Z A1
Z, (s

′, 0))

ww

(S, s) (S′, s′)
étoo

where S′ ×Z A1
Z = A1

S′ → S′ is the base change of A1
Z → SpecZ.

We apply the powerful result of Artin Approximation to obtain a similar
structure result around a node.

Theorem 4.1.21 (Local Structure of Nodes). Let π : C→ S be a flat and finitely
presented morphism such that every geometric fiber is a curve (i.e. pure one-
dimensional). Let p ∈ C be a node in a fiber Cs. There is a commutative diagram

(C, p)

��

(U, u)
étoo ét //

��

(SpecA[x, y]/(xy − f), (s′, 0))

tt

(S, s) (SpecA, s′)
étoo

(4.1.6)

where each horizontal arrow is a residually-trivial pointed étale morphism and
f ∈ A is a function vanishing at s′.

Remark 4.1.22. In other words, any such morphism is étale-locally on the source
and target the base change of the morphism

SpecZ[x, y, t]/(xy − t)→ SpecZ[t]

by the map SpecA→ SpecZ[t] induced by t 7→ f .

Sketch. See [SP, Tag 0CBY] for more details.

Step 1: Reduce to S of finite type over Z. Using Absolute Noetherian Approxima-
tion, we may assume that S is of finite type over Z.

Step 2: Reduce to the case where ÔCs,p
∼= κ(s)[[x, y]]/(xy). By Lemma 4.1.10,

there exists a finite separable field extension κ(s)→ k′ and a point p′ ∈ Cs×κ(s) k′
such that the completions of its local ring is isomorphic to k′[[x, y]]/(xy). Let
(S′, s′) → (S, s) be an étale morphism such that κ(s′) ∼= k′ are isomorphic over

κ(s). After replacing S with S′, we may assume that ÔCs,p
∼= κ(s)[[x, y]]/(xy).

Step 3: Show that ÔC,p
∼= ÔS,s[[x, y]]/(xy − f) where f ∈ m̂s. We will use

Schlessinger’s theorem in formal deformation theory. If ÔS,s is characteristic 0,
set Λ = κ(s) with maximal ideal mΛ = 0; otherwise let (Λ,mΛ) be a complete
discrete valuation ring of characteristic zero with residue field Λ/mΛ

∼= κ(s) (this
is unique by Cohen’s structure theorem). Schlessinger’s theorem applied to the
local deformation functor of the node p ∈ Cs implies that if D→ SpecB is a flat
family over a complete local ring (B,mB) such that the central fiber D×BB/mB is
isomorphic to Cs, then there exists dotted arrows completing a cartesian diagram

Cs
� � //

��

D //

��

Spec Λ[[t, x, y]]/(xy − t)

��

Specκ(s) �
�

// SpecB // Spec Λ[[t]]
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Setting Ĉ := C ×S Spec ÔS,s and p̂ = (p, s) ∈ Ĉ, we apply the above result to

Spec Ô
Ĉ,p̂
→ Spec ÔS,s yields a cartesian diagram

Spec Ô
Ĉ,p̂

//

��

Spec Λ[[t, x, y]]/(xy − t)

��

Spec ÔS,s // Spec Λ[[t]]

(4.1.7)

The completion of the local ring of C at p is identified with the completion of
C ×S Spec ÔS,s at (p, s), and by the diagram above is further identified with

ÔS,s[[x, y]]/(xy − f).

Step 4: Apply Artin Approximation. We will apply Artin Approximation to the
following functor:

F : (Sch /S)→ Sets

(T → S) 7→

commutative diagrams

C

��

CToo

��

// SpecZ[t, x, y]/(xy − t)

��

S Too // SpecZ[t]


The diagram (4.1.7), after post-composing with Specκ(s)[[t] → SpecZ[t] and

Specκ(s)[[t, x, y]](xy−t)→ SpecZ[t, x, y]/(xy−t) yields an element ξ̂ ∈ F (Spec ÔS,s).

(Missing details here: we only obtain a map Spec Ô
Ĉ,p̂
→ Spec Λ[[t, x, y]]/(xy− t))

but we need a map Ĉ→ SpecZ[t, x, y]/(xy − t)). Applying Artin Approximation
(Corollary A.4.17) with N = 2 produces a diagram as in (4.1.6) where SpecA→ S
and U → C are étale. To check that U → SpecA[x, y]/(xy − f) is étale at u,
we will argue that U → SpecA[x, y]/(xy − f) induces an isomorphism on com-

pletions at u. Step 3 implies that ÔC,p
∼= ÔU,u is isomorphic to the completion

of SpecA[x, y]/(xy − f) at (s′, 0). Thus, U → SpecA[x, y]/(xy − f) induces an

endomorphism R → R of a complete local noetherian ring R ∼= ÔU,u which is
surjective modulo m2

R. Lemma A.4.18 implies that R → R is surjective, and
applying the general fact that surjective endomorphisms of noetherian rings are
isomorphism, we conclude that R→ R is an isomorphism.

As a result, for a morphism C→ S as in Theorem 4.1.21, the locus C≤nod ⊂ C

of points which are either smooth or nodal is open. And if we add a properness
condition on C→ S, then π(C \ C≤nod) ⊂ S is closed and therefore the locus of
points s ∈ S such that Cs is a nodal curve is the open subscheme S \ π(C \ C≤nod).

Corollary 4.1.23. If C→ S is a flat, proper and finitely presented morphism of
schemes such that every geometric fiber is a curve, then the locus of points s ∈ S
such that Cs is nodal is open.

We will apply the above corollary later to conclude that the stack parameteriz-
ing families of nodal curves is an open substack of the stack of all curves.

The following exercise establishes a similar structure statement for a family of
possibly non-reduced curves over a DVR.
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Exercise 4.1.24. Let R be a DVR with uniforming parameter t. Let C→ ∆ =
SpecR be a flat, proper and finitely presented morphisms such that each geometric
fiber is a curve. Assume that C is regular. Let p ∈ C0.

(1) If p is a smooth point in the reduced fiber (C0)red. Show that after possibly
an extension of DVRS, there exists an étale neighborhood of p (defined over
R)

SpecR[x, y]/(xa − t)→ C

(2) If p is a node in the reduced fiber (C0)red. Show that there exists an étale
neighborhood of p (defined over R)

SpecR[x, y]/(xayb − t)→ C.

4.2 Stable curves

Stable curves were introduced in joint work by Mayer and Mumford [Mum64].

4.2.1 Definition and equivalences

An n-pointed curve is a curve C over a field k together with an ordered collection
of k-points p1, . . . , pn ∈ C which we call the marked points. A point q ∈ C of an
n-pointed curve is called special if q is a node or a marked point.

Definition 4.2.1 (Stable curves). An n-pointed curve (C, p1, . . . , pn) over k is
stable if C is a connected, nodal and projective curve, and p1, . . . , pn ∈ C are
distinct smooth points such that

(1) every smooth rational subcurve P1 ⊂ C contains at least 3 special points,
and

(2) C is not of genus 1 without marked points.

We define (C, p1, . . . , pn) to be semistable by replacing (1) with the condition that
every smooth rational subcurve P1 ⊂ C contains at least 2 (rather than 3) special
points, we obtain the notion of a semistable curve. We define (C, p1, . . . , pn) to be
prestable by dropping both condition (1) and (2), i.e. C is a connected, nodal and
projective curve and the points pi are distinct smooth points of C. Note that in
the unpointed case for connected projective curves, there is no distinction between
a nodal curve and prestable curve.
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Figure 4.3: The curves in the top row are stable while those in the second row are
not.

Remark 4.2.2. Note that there are no n-pointed stable curve of genus g if
(g, n) ∈ {(0, 0), (0, 1), (0, 2), (1, 0)} or equivalently 2g − 2 + n ≤ 0. We will often
impose the condition that 2g − 2 + n > 0 in order to exclude these special cases.

An automorphism of a stable curve (C, p1, . . . , pn) is an automorphism α : C
∼→

C such that α(pi) = pi. We denote by Aut(C, p1, . . . , pn) the (abstract) group of
automorphisms.

Proposition 4.2.3. Let (C, p1, . . . , pn) be an n-pointed prestable curve. The
following are equivalent:

(1) (C, p1, . . . , pn) is stable;

(2) Aut(C, p1, . . . , pn) is finite; and

(3) ωC(p1 + · · ·+ pn) is ample.

Proof. The equivalence (1)⇐⇒ (2) follows Exercise 4.2.4 and the fact that the
only smooth, connected and projective n-pointed curves (C, {pi}) with positive
dimensional automorphism groups are when either C = P1 with n ≤ 2 or C is a
genus 1 curve with n = 0.

To see the equivalence with (3), we will use the fact that for a subcurve T ⊂ C,

we have ωC |T = ωT (T ∩ T c) (Exercise 4.1.20). If π : C̃ → C is the normalization,
then: ωC(p1 + · · ·+ pn) is ample ⇐⇒ π∗

(
ωC(p1 + · · ·+ pn)

)
is ample ⇐⇒ for

each irreducible component T ⊂ C, ωC(p1 + · · ·+pn)|T = ωT (
∑
pi∈T pi+(T ∩T c))

is ample. This latter condition holds precisely if each P1 ⊂ C̃ contains at least
three points that lie over nodes or marked points.

Exercise 4.2.4. Let (C, p1, . . . , pn) be an n-pointed nodal projective curve such

that the points pi are distinct and smooth. Let π : C̃ → C be the normalization
of C, p̃i ∈ C̃ be the unique preimage of pi and q̃1, . . . , q̃m ∈ C̃ be an ordering of
the preimages of nodes.

(1) Show that (C, {pi}) is stable if and only if every connected component of

(C̃, {p̃i}, {q̃i}) is stable.

(2) Show that the automorphism group scheme Aut(C, {pi}) is an algebraic
group.
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(3) Show that Aut(C, {pi}) is naturally a closed subgroup of Aut(C̃, {p̃i}, {q̃i})
with the same connected component of the identity (i.e. Aut(C, {pi})◦ =

Aut(C̃, {p̃i}, {q̃i})◦).
(4) Provide an example where Aut(C, {pi}) 6= Aut(C̃, {p̃i}, {q̃i}).

4.2.2 Positivity of ωC

Exercise 4.2.5. If C is a stable curve, show that ω⊗kC is very ample for k ≥ 3 by
showing that its sections separates points and tangent vectors. In other words, for
distinct points x, y ∈ C(k), you must show that the maps

H0(C,ω⊗kC )→
(
ω⊗kC ⊗ κ(x)

)
⊕
(
ω⊗kC ⊗ κ(y)

)
H0(C,ω⊗kC )→ ω⊗kC ⊗ OC,x/m

2
x

are surjective.
Hint: It suffices to prove that H1(C, IxIy · ω⊗kC ) = 0 where Ix and Iy are the

ideal sheaves of (possibly equal) points x, y ∈ C(k). By applying Serre Duality,

it suffices to show that Hom(IxIy, ω
⊗(1−k)
C ). Establish this by a case analysis on

whether x, y are smooth or nodal.

Exercise 4.2.6. Prove that for an n-pointed stable curve (C, p1, . . . , pn) that(
ωC(

∑
i pi)

)⊗k
is very ample for k ≥ 3.

Exercise 4.2.7.

(1) If C is the nodal union C1 ∪ C2 of genus i and g − i curves along a single
node p = C1 ∩ C2 ∈ C, show that ωC has a basepoint at p.

(2) If C the nodal union C1 ∪ E ∪ C2 of genus i, 1 and g − i− 1 curves along
nodes at C1 ∩ C2 = p1 and C1 ∩ C2 = p2, show that ω⊗2

C is not ample.

4.2.3 Families of stable curves

Definition 4.2.8.

(1) A family of n-pointed nodal curves is a flat, proper and finitely presented
morphism C → S of schemes with n sections σ1, . . . , σn : S → C such that
every geometric fiber Cs is a (reduced) connected nodal curve.

(2) A family of n-pointed stable curves (resp. semistable curves, prestable curves)
is a family C→ S of n-pointed nodal curves such that every geometric fiber
(Cs, σ1(s), . . . , σn(s)) is stable (resp. semistable, prestable).

If C → S is a family of prestable curves, then C → S is locally a complete
intersection morphism and thus there is a relative dualizing line bundle ωC/S that
is compatible with base change T → S and in particular restricts to the dualizing
line bundle ωCs on any fiber of C → S; see [Har66b] or [Liu02, §6.4]. Note also
that since the geometric fibers are stable curves, the image of each σi is a divisor
contained in the smooth locus and we can form the line bundle ωC/S(σ1 + · · ·σn).

We have the following generalization of Proposition 4.1.8 which is proven in the
same way but using the very ampleness of third tensor power of ωC(p1 + · · ·+ pn)
in Exercise 4.2.6.

Proposition 4.2.9 (Properties of Families of Stable Curves). Let (C→ S, {σi})
be a family of n-pointed stable curves of genus g, and set L := ωC/S(

∑
i σi). If
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k ≥ 3, then L⊗k is relatively very ample and π∗L
⊗k is a vector bundle of rank

(2k − 1)(g − 1) + kn.

Proposition 4.2.10 (Openness of Stability). Let (C → S, {σi}) be a family of
n-pointed nodal curves. The locus of points s ∈ S such that (Cs, {σi(s)}) is stable
is open.

Proof. The locus in S where σ1(s), . . . , σn(s) are distinct and smooth is open. We
may thus assume that (C→ S, {σi}) is a family of prestable n-pointed curves.

Argument 1: since Aut(C/S, σ1, . . . , σn) → S is a group scheme of finite
type, upper semicontinuity implies that the locus of points s ∈ S such that
Aut(Cs, σ1(s), . . . , σn(s)) is finite is open. By the equivalence Proposition 4.2.3(2),
this open subset is identified with the stable locus.

Argument 2: there is a relative dualizing sheaf ωC/S and the locus of points
s ∈ S such that ωC/S |Cs ∼= ωCs is ample is open. By the equivalence Proposi-
tion 4.2.3(3), this is open subset is identified with the stable locus.

4.2.4 Automorphisms, deformations and obstructions

Automorphisms, deformations and obstructions of a stable curve C are governed
by Ext0(ΩC ,OC), Ext1(ΩC ,OC), and Ext2(ΩC ,OC), respectively.

Proposition 4.2.11. Let (C, p1, . . . , pn) be an n-pointed stable curve of genus g
over k. Then

dimk Exti(ΩC(
∑
i

pi),OC) =

 0 if i = 0
3g − 3 + n if i = 1

0 if i = 2

Proof. We may assume k = k and for simplicity we handle the case that there are
no marked points, i.e. n = 0. Let π : C̃ → C be the normalization, Σ ⊂ C be the
nodes of C and Σ̃ = π−1(Σ).

In the proof, we will use the local-to-global spectral sequence

Ep,q2 = Hp(C,E xtqOC (ΩC ,OC))⇒ Extp+qOC
(ΩC ,OC).

Since dimC = 1, we have that Ep,q2 = 0 if p ≥ 2.
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To compute Ext0, we claim that there is an isomorphism HomOC̃
(ΩC̃(Σ̃),OC̃)→

HomOC (ΩC ,OC) (details omitted), or in other words that regular vector fields on C

correspond to regular vector fields on C̃ vanishing at the preimages of nodes. Since
the pointed normalization (C̃, Σ̃) is smooth and each connected component is stable

(Exercise 4.2.4), the degree of the restriction of TC̃(−Σ̃) to each connected compo-

nent of C̃ is strictly negative. Thus, HomOC̃
(ΩC̃(Σ̃),OC̃) = H0(C̃, TC̃(−Σ̃)) = 0.

To compute that Ext2 = 0, we will show that E1,1
2 = E0,2

2 = 0. For q > 0,
E xtqOC (ΩC ,OC)z = Ext1

OC,z
(ΩC,z,OC,z) vanishes at smooth points z ∈ C as

ΩC,z is locally free. Thus E xt1OC (ΩC ,OC) is a zero-dimensional sheaf supported

only at the nodes of C and E1,1
2 = H1(C,E xt1OC (ΩC ,OC)) = 0. Similarly,

E xt2OC (ΩC ,OC) is supported at the nodes, and for a node z ∈ C, we have an

identification E xt2OC (ΩC ,OC)z = Ext2
ÔC,z

(Ω
ÔC,z/k, ÔC,z). At a node z ∈ C, we

can write ÔC,z = k[[x, y]]/(xy) and we have a locally free resolution

0→ ÔC,z

(
y
x

)
−−→ Ô⊕2

C,z

(dx,dy)−−−−→ Ω
ÔC,z/k → 0 (4.2.1)

from which we conclude that E xt2OC (ΩC ,OC)z = 0 and thus E0,2
2 = 0. (Alter-

natively, we can find a Zariski-open neighborhood U ⊂ C of z and an embed-
ding U ↪→ An defined by an ideal sheaf I, and use the locally free resolution
0 → I/I2 → ΩAn ⊗ OC → ΩC → 0.) As E0,2

2 = E1,1
2 = E2,0

2 = 0, we have
Ext2

OC
(ΩC ,OC) = 0.

To compute Ext1, we analyze the low degree exact sequence associated to the
the above spectral sequence:

0→ E1,0
2 → Ext1

OC
(ΩC ,OC)→ E0,1

2 → E2,0
2 = 0.

Since E xt(ωC ,OC) is supported only at the nodes,

E0,1
2 = H0(C,E xt1OC (ωC ,OC))

=
∏
z∈Σ

Ext1
OC,z

(ΩC,z,OC,z)

=
∏
z∈Σ

Ext1
ÔC,z

(Ω
ÔC,z

, ÔC,z) using Ω̂C,z = Ω
ÔC,z

(4.2.2)

By Infinitesimal Deformation Theory, the group Ext1
OC

(ΩC ,OC) classifies first

order deformations of C and likewise Ext1
ÔC,z

(Ω
ÔC,z

, ÔC,z) classifies first order

deformations of the singularity ÔC,z. The natural map

Ext1
OC

(ΩC ,OC)→ Ext1
ÔC,z

(Ω
ÔC,z

, ÔC,z)

is given by restricting first order deformations
C

��

� � // C

��

Speck �
�

// Speck[ε].

�

 7→


Spec ÔC,z

��

� � // Spec ÔC,z

��

Speck �
�

// Speck[ε].

�


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and corresponds to the map Ext1
OC

(ΩC ,OC)→ E0,1
2 under the identification in

(4.2.2). The kernel of this map is identified with first order deformations of C that
preserve all the nodes, which in turn is identified with first order deformations
of the pointed normalization (C̃, Σ̃), which are classified by Ext1

OC̃
(ΩC̃(Σ̃),OC̃).

This yields an identification

E1,0
2 = H1(C,H om(ΩC),OC) = Ext1

OC̃
(ΩC̃(Σ̃),OC̃). (4.2.3)

We are finally prepared to calculate dimk Ext1
OC

(ΩC ,OC) = dimk E
1,0
2 +

dimk E
0,1
2 . First, we may use the locally free resolution in (4.2.1) to compute that

dimk Ext1
ÔC,z

(Ω
ÔC,z

, ÔC,z) = 1 and the identification (4.2.2) implies that

dimk E
0,1
2 = (# nodes). (4.2.4)

On the other hand, writing C̃ =
⊔
i C̃i and Σ̃i = C̃i ∩ Σ̃ and using that ΩC̃i

is a
line bundle, we can compute using the identification (4.2.3) that

dimk E
0,1
2 = dimk Ext1

OC̃
(ΩC̃(Σ̃),OC̃)

=
∑
i

dimk Ext1
OC̃i

(ΩC̃i(Σ̃i),OC̃)

=
∑
i

h1(C̃i, TC̃i(−Σ̃i))

=
∑
i

h0(C̃i,Ω
⊗2

C̃i
(Σ̃i)) (Serre Duality)

=
∑
i

(
deg Ω⊗2

C̃i
(Σ̃i) + 1− g(C̃i)

)
(Riemann–Roch)

=
∑
i

(
3g(C̃i)− 3 + |Σ̃i|

)
= 3

∑
i

g(C̃i)− 3(# comp) + 2(# nodes).

(4.2.5)

Adding (4.2.4) and (4.2.5) together with the Genus Formula (Proposition 4.1.12)

that g =
∑
i g(C̃i)− (# comp) + (# nodes) + 1, we can wrap up the calculation:

dimk E
1,0
2 + dimk E

0,1
2 = 3

∑
i

g(C̃i)− 3(# comp) + 3(# nodes) = 3g − 3.

We have already seen that the k-points of the automorphism group scheme
Aut(C, p1, . . . , pn) is a finite (abstract) group (Proposition 4.2.3). The vanishing
of Ext0 implies that an n-pointed stable curve (C, p1, . . . , pn) has no infinitesimal
automorphisms, i.e. that the Lie algebra TeAut(C, p1, . . . , pn) is trivial. Since the
automorphism group scheme Aut(C, p1, . . . , pn) is of finite type, this implies that
Aut(C, p1, . . . , pn) is finite and discrete. Once we know that the algebraicity of
the stack Mg,n, we can conclude by Theorem 2.6.3 that Mg,n is Deligne–Mumford.

Meanwhile, the vanishing of Ext2 implies that there are no obstructions to
deforming C. Assuming the algebraicity of Mg,n, this will allow us to invoke the
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Formal Lifting Criterion (Proposition 2.7.1) to establish that Mg,n is smooth over
SpecZ.

Since Ext1 parametrizes isomorphism classes of deformations of (C, p1, . . . , pn),
it is identified with the Zariski tangent space of Mg,n at the point corresponding
to (C, p1, . . . , pn). This will allow us to conclude that Mg,n has relative dimension
3g − 3 + n over SpecZ.

4.2.5 Rational tails and bridges

Definition 4.2.12 (Rational tails and bridges). Let (C, p1, . . . , pn) be an n-
pointed prestable curve. We say that a smooth rational subcurve E ∼= P1 ⊂ C
is

• a rational tail if E ∩ Ec = 1 and E contains no marked points;

• a rational bridge if either E ∩ Ec = 2 and E contains no marked points, or
E ∩ Ec = 1 and E contains one marked point.





















.-

EE E P E 2 p

e as e as
0 To 0 To

E P

yep
P

L a 2
Figure 4.4: (A) features a rational tail while (B) and (C) feature rational bridges.

From the definition of stability (Definition 4.2.1), we see that if (C, p1, . . . , pn)
is not stable and (g, n) 6= (1, 0), then C necessarily contains a rational tail or
bridge. Note that C can also contain a chain of rational tails or bridges of arbitrary
length.





















.-

EE E P E 2 p

e as e as
0 To 0 To

E P

yep
P

L a 2

Figure 4.5: Examples of chains of rational tails and bridges

Suppose that C → ∆ = SpecR is a family of nodal curves over a DVR R
such that the generic fiber C∗ is smooth. If E ∼= P1 ⊂ C′0 is a smooth rational
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subcurve in the central fiber, then E2 = −E · Ec; indeed this follows from
0 = E · C0 = E · E + E · Ec. Thus if E is rational tail (resp. rational bridge
without a marked point), then E2 = −1 (resp. E2 = −2).



























Ez E P E 2 p

sas sas

To

E P

yep

4 a 2

Figure 4.6: In (A) (resp. (B)), the exceptional component E meets the rest of the
curve at one point (resp. two points) and E2 = −1 (resp. E2 = −2).

4.2.6 The stable model

Let (C, p1, . . . , pn) be an n-pointed prestable curve. Let Cst be the curve obtained
by removing all rational bridges and tails Ei, i.e. Cst = C \ ∪iEi, and let
π : C → Cst be the induced morphism. If we set p′i = π(pi), then (Cst, p′1, . . . , p

′
n)

is a stable curve, which we call the stable model of (C, {pi}) and π : C → Cst the
stabilization morphism.

44

a f

si a
Figure 4.7: Examples of stable models of curves with rational tails and bridges.

Note that if (C, {pi}) is semistable, then ωC(
∑
i pi) is trivial on rational bridges

and is the pullback of the ample line bundle ωCst(
∑
i p
′
i) under the stabilization

morphism π : C → Cst.
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The stabilization construction extends to families of nodal curves.

Proposition 4.2.13. Let (C→ S, σ1, . . . , σn) be a family of n-pointed prestable
curves. There is a unique morphism π : C→ Cst over S such that

(1) (Cst → S, {σ′i}) is an n-pointed family of stable curves where σ′i = π ◦ σi;
(2) for each s ∈ S, (Cs, {σi(s)})→ (Cst

s , {σ′i(s)}) is the stable model; and

(3) OCst = π∗OC and R1π∗OC = 0 and this remains true after base change by
any morphism S′ → S of schemes;

(4) If C→ S is a family of semistable curves, then ωC/S(
∑
i σi) is the pullback

of the relatively ample line bundle ωCst/S(
∑
i σ
′
i).

Proof. TO ADD. See [SP, Tag 0E7B] or [ACG11, Prop. 10.6.7].

4.3 The stack of all curves

4.3.1 Families of arbitrary curves

In this subsection, we redefine a curve over a field k to mean a scheme C of finite
type over k of dimension 1 (rather than pure dimension 1). The genus of C is
defined as g(C) = 1− χ(C,OC).

Remark 4.3.1. The reason we allow for non-pure dimensional and non-connected
curves is that they may arise as deformations of connected pure one-dimensional
curves; without this relaxation, the stack of all curves would fail to be algebraic.
For instance, consider a rational normal curve P1 ↪→ P3 embedded via [x, y] 7→
[x3, x2y, xy2, ty3] for any t 6= 0. As t→ 0, these curves degenerate in a flat family
to a non-reduced curve C0 which is supported along a plane nodal cubic and has
an embedded point at the node; see [Har77, Ex. 9.8.4]. On the other hand, the
curve C0 deforms to the disjoint union of a plane nodal cubic and a point in P3.

A family of curves over a scheme S is a flat, proper and finitely presented
morphism C→ S of algebraic spaces such that every fiber is a curve.

A family of n-pointed curves is a family of curves C → S together with n
sections σ1, . . . , σn : S → C (with no condition on whether they are distinct or
land in the relative smooth locus of C over S).

Remark 4.3.2. While any pure one-dimensional separated algebraic space over
a field is in fact a scheme, in the relative setting the total family C may not be a
scheme. There are examples of a family of prestable genus 0 curves [Ful10, Ex.
2.3] and a family of smooth genus 1 curves [Ray70, XIII 3.2] where the total family
is not a scheme .

Therefore, if we wish define a stack of all curves, then in order to satisfy the
decent condition, we better allow for the case that the total family is not a scheme.
In the stable case however there is no difference: if C→ S is a family of curves
(with C an algebraic space) such that every geometric fiber is stable, then ωC/S is
relatively ample (Proposition 4.2.9) and C→ S is projective; in particular, C is a
scheme.

Proposition 4.3.3. If C→ S is a family of curves over a scheme S, there exists
an étale cover S′ → S such that CS′ → S′ is projective.
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Vague sketch. Approach 1: Local to global

For a point s ∈ S, define Sn = SpecOS,s/m
n+1
s and Ŝ = Spec ÔS,s. Consider

the cartesian diagram

Cs = C0

��

� � // C1

��

� � // · · · Ĉ

��

// C

��

Specκ(s) = S0
� � // S1

� � // · · · Ŝ // S

Case 1: Cs → Specκ(s). Since separated one-dimensional algebraic spaces are
schemes and that proper one-dimensional schemes are projective, there exists an
ample line bundle L0 on C0.

Case 2: Cn → Sn. The obstruction to deforming a line bundle Ln on Cn to Ln+1

on Cn+1 lives in H2(C0,OC0
) and thus vanishes as dimC0 = 1. Thus there exists

a compatible sequence of line bundles Ln on Cn. Since ampleness is an open
condition in families and L0 is ample, Ln is also ample.

Case 3: Ĉ → Ŝ with Ŝ noetherian. Use Grothendieck’s Existence Theorem:
Coh(ĉC)→ lim←−Coh(Cn) is an equivalence of categories. The classical case is when

Ĉ → Ŝ is a proper morphism of schemes. Chow’s Lemma for Algebraic Spaces
implies that there exists a projective birational morphism C′ → Ĉ of algebraic
spaces such that C′ → Ŝ is projective. This allows one to reduce Grothendieck’s
Existence Theorem for Ĉ→ Ŝ to C′ → Ŝ using devissage similar to how the proper
case of schemes is reduced to the projective case.

As a result, we can extend the sequence of line bundle Ln to a line bundle L̂
on Ĉ which is ample (using again that ampleness is an open condition in families).

Case 4: S is of finite type over Z. For any closed point s ∈ S, apply Artin
Approximation to the functor

Sch /S → Sets, (T → S) 7→ Pic(CT )

to obtain an étale neighborhood (S′, s′) → (S, s) of s and a line bundle L′ on
CS′ extending L0. By openness of ampleness, we can replace S′ with an open
neighborhood of s′ such that L′ is relatively ample over S′.

Case 5: S is an arbitrary scheme. Apply Noetherian Approximation.

Approach 2: Explicitly extend an ample line bundle
The idea here is to use geometric methods to extend a line bundle Ls on Cs

to a line bundle on C. If we assume in addition that every fiber of C → S is
generically reduced (and thus also generically smooth), then we may follow the
argument of [Ols16, Cor. 13.2.5]. Choose smooth points p1, . . . , pn ∈ Cs such
that every irreducible one-dimensional component of Cs contains at least one
of the pi’s. Our hypothesis imply that the relative smooth locus C0 of C → S
surjects onto S. As smooth morphisms étale locally have sections, there is an étale
neighborhood S′ → S of s and sections σi : S

′ → C0 extending pi. The line bundle
L′ := OCS′ (σ1 + · · ·+ σn) extends the ample line bundle Ls := OCs(p1 + · · ·+ pn).
By openness of ampleness in families, L′ is relatively ample over S′ in an open
neighborhood of s′.

(An alternative argument that works without any restrictions is presented
in [Hal13, Lem. 1.2] (based on ideas in [SGA4 1

2 , IV.4.1]) where one first uses
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Noetherian approximation and étale localization to reduce to S = SpecR where R
is an excellent strictly henselian local ring. One can then reduce to the case where
C is a scheme by appealing to the fact that there exists a finite surjection C′ → C

from a scheme and the fact that C satisfies the Chevalley-Kleiman property (i.e.
every finite set of points is contained in an open affine) if and only if C′ does.
Using deformation theory as above, one can further reduce to the case where C is
reduced. Finally, one attempts to explicitly extend an ample line bundle on Cs by
extending a function f ∈ Γ(U,OCs) to a function defined on an open neighborhood
of s ∈ C so that it defines an effective Cartier divisor.)

Remark 4.3.4. Raynaud gives an example of a family of smooth g = 1 curves
over an affine curve which is Zariski-locally projective but not projective [Ray70,
XIII 3.1]. The examples in Remark 4.3.2 are not even Zariski-locally projective.

4.3.2 Algebraicity of the stack of all curves

Definition 4.3.5. Let Mall
g,n denote the category over Schét whose objects over a

scheme S consists of families of curves C→ S and n sections σ1, . . . , σn : S → C.
A morphism (C′ → S′, σ′1, . . . , σ

′
n)→ (C→ S, σ1, . . . , σn) is the data of a cartesian

diagram

C′

��

g
// C

��

S′
f
//

σ′i

AA

S

σi

AA

such that g ◦ σ′i = σi ◦ f .

As a stepping stone to the algebraicity of Mall
g,n, we first show that the diagonal

is representable.

Lemma 4.3.6. The diagonal Mall
g,n →Mall

g,n ×Mall
g,n is representable.

Proof. For simplicity, we handle the case when n = 0. Let S be a scheme and
S →Mall

g ×Mall
g be a morphism corresponding to families of curves C1 → S and

C2 → S. Considering the cartesian diagram

IsomS(C1,C2) //

��

S

��

Mall
g

// Mall
g ×Mall

g ,

we need to show that IsomS(C1,C2) is an algebraic space. By Proposition 4.3.3,
there exists an étale cover S′ → S such that CS′ → S′ is projective. Since
IsomS(C1,C2)×S S′ = IsomS′(C1,S′ ,C2,S′), the morphism IsomS′(C1,S′ ,C2,S′)→
IsomS(C1,C2) is representable, surjective and étale. We may thus assume that C1

and C2 are projective over S.
We will use the following fact from scheme theory: if X → Y is a morphism of

schemes each proper over S, there exists an open subscheme S0 ⊂ S such that
for any map T → S of schemes XT

∼→ YT is an isomorphism if and only if T → S
factors through S0 ⊂ S.
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Consider the inclusion of functors:

IsomS(C1,C2) ⊂ MorS(C1,C2) ⊂ HilbS(C1 ×S C2)

where the second inclusion assigns to a morphism C1
α−→ C2 the graph C1

Γα
↪→

C1 ×S C2 (and is similarly defined on T -valued points). The first inclusion is a
representable open immersion by the above fact. Analyzing the second inclusion,
we see that a subscheme [Z ⊂ C1 ×S C2] ∈ HilbS(C1 ×S C2)(S) is in the image of

element of Mor(C1,C2)(S) if and only if the composition Z ↪→ C1 ×S C2
p1−→ C1 is

an isomorphism (and similarly for T -valued points). Therefore, the above fact
also establishes that the second inclusion is a representable open immersion.

Theorem 4.3.7. Mall
g,n is an algebraic stack locally of finite type over SpecZ.

Sketch.

• Suffices to show the n = 0 case: Mall
g,1 is the universal family over Mall

g and

more generally Mall
g,n+1 is the universal family over Mall

g,n. (We will see that

the same holds for Mg but this is a more remarkable fact since an n-pointed
stable curve can become unstable if a marked point is forgotten.)

• Mall
g is a stack over SchÉt: Suppose S′ → S is an étale cover of schemes,

C′ → S′ is a family of curves, and α : p∗1C
′ → p∗2C

′ is an isomorphism
over S′ ×S S′ satisfying the cocycle condition. The quotient of the étale
equivalence relation

R′ := p∗1C
′
p1 //

p2◦α
// C
′

is an algebraic space C := C′/R and C→ S is a family of curves such that
CS′ ∼= C′.

• It to suffices show that for all projective curves C0 over a field k, there exists
a representable, smooth morphism U → Mall

g from a scheme with [C0] in

the image. Choose an embedding C0 ↪→ PN such that h1(C0,OC0
(1)) = 0,

and let P (t) be its Hilbert polynomial.

• Let H := HilbP (PNZ /Z) be the Hilbert scheme, which is projective over Z
by Theorem D.0.1. Considering the universal family

C
� � //

��

PNH

~~

H,

there is a point h0 ∈ H(k) such that Ch0 = C0 as closed subschemes
of PNk . Cohomology and Base Change implies that there exists an open
neighborhood H ′ ⊂ H of h0 such that for all s ∈ H ′, h1(Cs,OCs(1)) = 0.

• Consider the morphism

H ′ →Mall
g , [C ↪→ Pn] 7→ [C],

which is representable by Lemma 4.3.6 and the fact that representability of
the diagonal implies that any morphism from a scheme is representable (see
the argument of Corollary 2.4.4).
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• Claim: H ′ →Mall
g is smooth.

We will use the Formal Lifting Criterion (Proposition 2.7.1)—even though we
don’t yet know Mall

g is algebraic, we may still use this criterion as we know

that H ′ →Mall
g is representable so it suffices to show for all maps S →Mall

g

from a scheme, the induced morphism H ′S → S is a smooth morphism of
algebraic spaces. We need to check that for all surjections A→ A0 of local
artinian rings with residue field k such that k = ker(A → A0) and for all
diagrams

Speck [C⊂PNk ]

##%%

SpecA0

[C0⊂PNA0
]
//

� _

��

H ′

f

��

SpecA

[C⊂PNA ]

;;

[C]
// Mall

g

(4.3.1)

of solid arrows, there exists a dotted arrow. The existence of a dotted arrow
in the above diagram is equivalent to the existence of a dotted arrow in the
below diagram

PNk PNA0
PNA

��

C

��

� � //
, �

::

C0

��

� � //
, �

99

C

��

- 


<<

Speck �
�

// SpecA0
� � // SpecA

of solid arrows: a lifting of the diagram (2.7.3) corresponds to a family C→
SpecA extending C0 → SpecA0. By Theorem E.1.1, there is cohomology
class ob ∈ H2(C, TC) such that ob = 0 if and only if there exists a lifting.
Since C is a curve, H2(C, TC) = 0.

• Use deformation theory to extend C0 ↪→ PNA0
to C ↪→ PNA . We will use the

simplifying assumption that C is a local complete intersection; the general
case is handled by more advanced deformation theory (see [Hal13, Prop.
4.2]). This implies that the ideal sheaf I defining C ↪→ PNk is cut out locally
by a regular sequence and that I/I2 is a vector bundle on C fitting into an
exact sequence

0→ I/I2 → ΩPNk |C → ΩC → 0.

Applying Hom(−,OC) gives a long exact sequence where the relevant terms
for us are

Hom(I/I2,OC)→ Ext1(ΩC ,OC)→ Ext1(ΩPNk |C ,OC) = H1(C, TPNk |C).

The first term classifies embedded deformations of C0 ↪→ PNA0
over A0 to

C′ ↪→ PNA over A while the second term classifies deformations of C0 over A0

to C′ over A. The boundary map Hom(I/I2,OC)→ Ext1(ΩC ,OC) assigns
an embedded deformation [C′ ↪→ PNA ] to [C′].
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Finally, we have the restriction of the Euler sequence to C

0→ OC → OC(1)⊕(N+1) → TPN |C → 0.

Since H2(C,OC) = 0 (as dimC = 1) and H1(C,OC(1)) = 0 (as [C] ∈
H ′), we conclude that H1(C, TPN |C) = 0. Thus, our given deformation
[C] ∈ Ext1(ΩC ,OC) maps to 0 in H1(C,OC(1)), and thus is the image of an
embedded deformation [C ↪→ PNA ] ∈ Hom(I/I2,OC).

4.3.3 Algebraicity of Mg,n: openness and boundedness of
stable curves

Consider the inclusions of prestacks

Mg,n ⊂Mg,n ⊂Mss
g,n ⊂Mpre

g,n ⊂M≤nodal
g,n ⊂Mall

g,n (4.3.2)

where Mg,n (resp. Mss
g,n,M

pre
g,n, M≤nodal

g,n ) denotes the full subcategory of Mall
g,n con-

sisting of n-pointed families (C→ S, σ1, . . . , σn) of stable curves (resp. semistable,
prestable, and nodal curves).

• By Theorem 4.3.7, Mall
g,n is an algebraic stack locally of finite type over

SpecZ.

• M≤nodal
g,n ⊂Mall

g,n is an open substack: this is equivalent to showing that C
π−→

S is a family of curves (with C possibly an algebraic space) then the locus {s ∈
S | Cs is nodal} ⊂ S is open. This is established in Corollary 4.1.23 when
C is a scheme by relying on the Local Structure of Nodes (Theorem 4.1.21)

and can be established in general by choosing an étale cover C′
g−→ C by a

scheme and using the observation that a point p ∈ C′ is node in its fiber
C′π(p) if and only if g(p) ∈ Cπ(p) is a node.

• Mpre
g,n ⊂ M≤nodal

g,n is an open substack: for a family (C → S, {σi}) of nodal
curves, the locus {s ∈ S | σi(s) are disjont and smooth} is open.

• Mss
g,n ⊂ Mpre

g,n is an open substack: the condition that a prestable curve
(C→ S, {σi}) is semistable is equivalent to the nefness of ωC/S(σ1 + · · ·σn)
and nefness is an open condition in flat families.

• Mg,n ⊂ Mss
g,n is an open substack: the condition that a semistable curve

(C → S, {σi}) is stable is equivalent to the ampleness of ωC/S(σ1 + · · ·σn)
and ampleness is an open condition in families. See also Proposition 4.2.10.

It follows that each prestack featured in (4.3.2) is an algebraic stack locally of
finite type over SpecZ.

To show the boundedness (i.e. finite typeness or equivalently quasi-compactness)
of Mg,n, we will appeal to the fact that if (C, p1, . . . , pn) is an n-pointed stable
curve over a field k, then the third power of the twist of the dualizing sheaf

(ωC/k(p1 + · · · pn)
)⊗3

is very ample (Exercise 4.2.5). Let P (t) be the Hilbert

polynomial of C ↪→ PNbase embedded via (ωC/k(p1 + · · · pn)
)⊗3

; this is independent

of [C, {pi}] ∈Mg,n. Consider the closed subscheme

H ⊂ HilbP (PNZ /Z)× (PN )n
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of an embedded curve and n points (C ↪→ PN , p1, . . . , pn) such that pi ∈ C. There
is a forgetful functor

H →Mall
g,n [C ↪→ PN , p1, . . . , pn] 7→ (C, p1, . . . , pn).

Since HilbP (PNZ /Z) is a projective scheme (Theorem D.0.1) and in particular
quasi-compact and the image of |H| → |Mall

g,n| contains Mg,n, we conclude that

Mg,n is quasi-compact.
At this point, we’ve shown that Mg,n is an algebraic stack of finite type over

SpecZ. We now invoke each part of Proposition 4.2.11 characterizing automor-
phisms, deformations and obstructions of stable curve exactly as in the proof of
the analogous fact for Mg (Proposition 2.7.4). Indeed, Ext0(ΩC(

∑
i pi),OC) = 0

implies that the Lie algebra of Aut(C, {pi}) is trivial and thus that Aut(C, {pi}) is
a finite and reduced group scheme. By the Characterization of Deligne–Mumford
stacks (Theorem 2.6.3), we conclude that Mg,n is Deligne–Mumford. Since
Ext2(ΩC(

∑
i pi),OC) = 0, there are no obstructions to deforming stable curves

and the Formal Lifting Criterion (Proposition 2.7.1) implies that Mg,n is smooth
over SpecZ. Finally, since dimk Ext1(ΩC(

∑
i pi),OC) = 3g − 3 + n and there is a

bijection of this Ext group with the Zariski tangent space of [C, {pi}] ∈Mg,n×ZK,
we see that Mg,n → SpecZ has relative dimension 3g − 3 + n.

Putting everything together, we’ve proved:

Theorem 4.3.8. If 2g−2+n > 0, then Mg,n is a quasi-compact Deligne–Mumford
stack smooth over SpecZ of relative dimension 3g − 3 + n.

Exercise 4.3.9. Show that Mg,n is algebraic by following the proof of Theo-
rem 2.1.11.

4.4 Stable reduction: properness of Mg,n

In the section, we discuss stable reduction of curves. Following the exposition of
[HM98, §3.C], we give a complete proof in characteristic 0 relying on the birational
geometry of surfaces and specifically the existence of embedded resolutions for
curves on surfaces (see Section F.1).

Theorem 4.4.1 (Stable Reduction). Let R be a DVR with fraction field K,
and set ∆ = SpecR and ∆∗ = SpecK. If (C∗ → ∆∗, s∗1, . . . , s

∗
n) is a family of

n-pointed stable curves of genus g, then there exists a finite cover ∆′ → ∆ of
spectrums of DVRs and a family (C′ → ∆′, s′1, . . . , s

′
n) of stable curves extending

C∗ ×∆∗ ∆′∗ → ∆′∗.

Remark 4.4.2. This theorem was first established in [DM69] by embedding
the generic fiber into its Jacobian and reducing the statement to semistable
reduction for abelian varieties, which had been established in [SGA7-I, SGA7-II].
Interestingly, Gieseker also established this theorem by using GIT rather than
the geometry of families of curves over a DVR [Gie82]. Later arguments due to
Artin–Winters [AW71] and Saito [Sai87] follow essentially the strategy outlined
below. See [SP, Tag 0C2Q] or Remark 4.4.7 for more background.

After introducing the basic strategy to establish Stable Reduction in Sec-
tion 4.4.1, we prove Stable Reduction (Theorem 4.4.1) in characteristic 0 in
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Section 4.4.2. We also illustrate in Sections 4.4.3 and 4.4.4 how one can explicitly
compute the stable limit of a given family C∗ → ∆∗ of stable curves: while the
proof of Stable Reduction offers a strategy, additional care and techniques are
needed to get an explicit handle on the stable limit. Finally, in Section 4.4.5, we
prove the uniqueness of the stable limit (Proposition 4.4.14) in arbitrary (possibly
mixed) characteristic. This implies the properness of Mg,n via the Valuative
Criterion for Properness (Proposition 2.8.5).

Theorem 4.4.3. If 2g − 2 + n > 0, the Deligne–Mumford stack Mg,n is proper
over SpecZ.

By applying the Keel–Mori Theorem (Theorem 3.3.17), we obtain:

Corollary 4.4.4. If 2g−2+n > 0, there exists a coarse moduli space Mg,n →Mg,n

where Mg,n is an algebraic space proper over SpecZ.

4.4.1 Basic strategy

We provide the basic strategy to exhibit the existence of stable reduction for a
given family C∗ → ∆∗ of stable curves. For simplicity of notation, we assume that
there are no marked points, i.e. n = 0.

Throughout, we use the notation: ∆ = SpecR for a DVR R, ∆∗ = SpecK
with K the fraction field of R, t ∈ R uniformizer, and 0 = (t) ∈ SpecR the unique
closed point.

Step 0: Reduce to the case where C∗ → ∆∗ is smooth. If C∗ has k nodes, then
possibly after a finite extension of K we can arrange that each node is given by
a K-point pi ∈ C∗(K). Let (C̃∗, p̃1, . . . , p̃2k) be the pointed normalization. By
induction on the genus g (relying on stable reduction for 2k-pointed curves of
genus < g), we perform stable reduction on each connected component and then
take the nodal union along sections. After possibly an extension of K (and R),
this produces a family of curves C→ ∆ extending C∗ → ∆∗.

Step 1: Find some flat extension C→ ∆.
Using that ω⊗3

C∗/∆∗ is very ample (Proposition 4.2.9), we may embed C∗ as a

closed subscheme of P5g−6×∆∗. The scheme-theoretic image C of C∗ ↪→ P5g−6×∆
is flat over ∆ using the Flatness Criterion over Smooth Curves (Proposition A.2.4)
and the fact the closure doesn’t introduce any embedded points in the central
fiber. Thus we have a proper flat family of curves C → ∆ extending C∗ → ∆∗.
(This is the same argument that establishes the valuative criterion for properness
of the Hilbert scheme.)

Step 2: Use Embedded Resolutions to find a resolution of singularities C̃→ C so
that the reduced central fiber (C̃0)red is nodal.

Applying Embedded Resolutions (Theorem F.1.2), there is a finite sequence of
blow-ups at closed points of C0 yielding a projective birational morphism

C̃ //

��

C

��

∆
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such that C̃ is regular, C̃ → ∆ is a (flat) family of curves and such that the

preimage C̃0 of C0 has set-theoretic normal crossings, i.e. (C̃0)red is nodal. Replace

C with C̃.

Step 3: Take a ramified base extension ∆′ = SpecR → SpecR = ∆ by t 7→ tm

such that the central fiber of the normalization of C×∆ ∆′ becomes reduced and
nodal.

We will explain the details of this step in Section 4.4.2. This step is where we
will use the characteristic 0 assumption. Replacing C with the normalization C̃′ of
C̃′ = C×∆ ∆′, we may assume that C→ ∆ is a prestable family (i.e. nodal family)
of curves with C regular.

Step 4: After taking the minimal model C̃min → C, contract all rational tails and
bridges in the central fiber.

In other words, we take the stable model of the family C̃min → ∆ as in
Proposition 4.2.13. Alternatively as we argue in Section 4.4.2, one can explicitly
contract the rational tails (smooth rational−1 curves) and rational bridges (smooth
rational −2) curves.

Semistable reduction

In Step 4 above, if we stop after contracting only rational tails (and not the
rational bridges), i.e. the smooth rational −1 curves, then we obtain a family
C→ ∆ of semistable curves such that C is regular (by Theorem F.1.5). This is
called Semistable Reduction, an important variant of Stable Reduction.

Theorem 4.4.5 (Semistable Reduction). Let R be a DVR with fraction field K,
and set ∆ = SpecR and ∆∗ = SpecK. If C∗ is a smooth projective curve over
∆∗, there exists a cover ∆′ → ∆ of spectrums of DVRs and a family C′ → ∆′ of
semistable curves extending C∗ ×∆∗ ∆′∗ → ∆′∗ such that C′ is regular.

4.4.2 Proof of stable reduction in characteristic 0

Proof of Theorem 4.4.1 in characteristic 0. Following Steps 0-2 in the basic strat-
egy discussed in Section 4.4.1, we may assume that C→ ∆ is a generically smooth
family of stable curves such that the reduced central fiber (C0)red is nodal and C

is regular.

Step 3: Perform a base change ∆′ → ∆ such that the normalization of the total
family C×∆ ∆′ has a reduced and nodal central fiber. Around any point p ∈ C0, we
can choose local coordinates x, y (either étale-locally or formally locally at p) such
that the morphism C→ ∆ can be described explicitly as follows (Exercise 4.1.24):

• If p ∈ (C0)red is a smooth point, then (x, y) 7→ xa and the multiplicity of the
irreducible component of C0 containing p is a.

• If p ∈ (C0)red is a separating node (i.e. C0 \ p is disconnected), then
(x, y) 7→ xayb and the two components of C0 containing p have multiplicities
a and b.

• If p ∈ (C0)red is a non-separating node, then (x, y) 7→ xaya and the compo-
nents of C0 containing p has multiplicity a.
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Let m be the least common multiple of the multiplicities of the irreducible
components of C0. Let ∆′ = SpecR→ SpecR = ∆ be defined by t 7→ tm where t
denotes a uniformizing parameter. Let C′ := C×∆ ∆′ and C̃′ be its normalization
Let ρ be a primitive mth root of unity. If p ∈ (C0)red is a smooth point, then
C′ locally around the unique preimage of p is defined by xa = tm which factors
as
∏a−1
i=0 (x − ρitm/a). Thus p ∈ C has a preimages in C̃′ and each preimage is

locally defined by x = ρitm/a and is thus a smooth point in the central fiber C̃′0. If
p ∈ (C0)red is a node defined by xayb, then one computes that each preimage of p
is locally defined by tk = xy (see Exercise 4.4.6) and thus is a reduced and nodal

point in C̃′0. Note that if k > 1, then C̃′ has an Ak−1-singularity at the preimage.

We now replace C with C̃′. At the expense of introducing singularities into the
total family, we have arranged the central fiber to be reduced and nodal.

Step 4: Take a minimal resolution of C and contract curves with negative self-
intersection. Let C′ → C be a Minimal Resolution (Theorem F.1.1) which replaces
each Ak-singular with a chain of bk2 c rational curves. At this stage C′ → ∆ is a
prestable family of curves, i.e. a proper flat family of reduced nodal curves, such
that the total family C′ is regular. The central fiber C′0 however may not be stable.

If C′0 is not stable, then it contains either a rational tail or bridge as in
Figure 4.6. Each rational tail E has self-intersection −1 can be blown down by
Castelnuovo’s Contraction Theorem (Theorem F.1.5). Contracting all rational
tails yields a projective birational morphism C′ → C′min, which is the Relative
Minimal Model (Corollary F.1.7). Replacing C with C′min, we obtain a semistable
family C→ ∆ of curves such that the total family C is regular.

Finally, we apply the stabilization construction (Proposition 4.2.13) to obtain a
morphism C→ Cst contracting each rational bridge and where Cst → ∆ is a stable
family of curves. We note that Cst is precisely the relative canonical model of C
(Proposition 4.2.13(4)). Alternatively, one can realize this final step by iteratively
contracting each rational bridge E since each such subcurve satisfies E2 = −2.
Indeed, a version of Castelnuovo’s Contraction Theorem is valid even if E2 < −1
(the only difference is that the contracted surface may not be regular) and the
contraction yields a family of stable curves.

Exercise 4.4.6. Let a, b,m be positive integers such that both a and b divide m.
Let X = Speck[x, y, t]/(tm − xayb) and X̃ → X be its normalization. Show that
each preimage of the origin is locally defined by tk = xy, and in particular is a
reduced and nodal point in the fiber over t = 0.

Remark 4.4.7. The above argument fails if the residue field of R has positive
characteristic p. Indeed, in Step 3, if any of the multiplicities of the components
of the central fiber are divisible by p, then the extension SpecR→ SpecR given
by t 7→ tm is not tamely ramified and the base change C ×∆ ∆′ may remain
non-reduced.

A different approach is therefore needed in positive characteristic. The approach
of [AW71] starts as above by taking a resolution of singularities C of some family
of curves over R extending C∗. One then chooses an extension K → K ′ (and a
corresponding extension R→ R′ of DVRs) such that C∗ has a K ′-point and such
that the l-torsion Pic(C∗K′)[l]

∼= (Z/lZ)2g for a sufficiently large prime l 6= p. This
magically forces the central fiber of C×R R′ to be reduced and nodal! See [AW71]
or [SP, Tag 0E8C].
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4.4.3 First examples

In these examples ∆ = SpecR where R is a DVR with uniformizing parameter t.

Example 4.4.8 (Nodal elliptic curves). Consider the family of elliptic curves
(C∗ → ∆∗, σ) defined by the equation y2z = x(x − z)(x − tz) in P2 × ∆ and
the section σ(t) = [0, 1, 0]. The stable limit in M1,1 as t→ 0 is the nodal cubic
y2z = x2(x− z); see Figure 19.

Example 4.4.9 (Colliding marked points). Let C be a smooth curve and consider
the constant family C = C ×∆. Let p ∈ C be a k-point and σ1 : ∆ → C be the
constant section t 7→ p. Suppose that σ2 : ∆ → C is another section meeting σ1

transversely at (p, 0) ∈ C as shown below:

Figure 4.8:

To obtain the stable limit, we simply blowing up the surface at (p, 0). The
stable limit is the nodal union of C and P1 at p.

For a more involved example of colliding points, consider again the constant
family C ×∆ with sections locally defined by (σ1, σ2, σ3) = (t2,−t2, 4t).

I Hip

t NII

Htt HII

Figure 4.9:

After blowing up twice, the sections become disjoint but the central fiber is
unstable as the exceptional component E1

∼= P1 only has one node and one marked
point. The stable limit is obtained by contracting E1.

Example 4.4.10 (A node degenerating to a cusp). Consider a smooth curve C
with two points p, q ∈ C. Gluing p and q yields a nodal curve. Now if we fix p and
slide q toward p, we have a family of nodal curves C∗ → C \ p as in Figure 4.10.
For instance, this family could be defined locally by y2 = x3 + tx2 in which case
we have an extension C → C where the central fiber Cp (given by t = 0) has a
cusp. We would like to compute the stable limit.
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Figure 4.10: What is the stable limit of the above nodal degeneration?

In this case, the base curve is C itself but it would be no different to work
over SpecOC,p. The pointed normalization of the family C∗ extends to a family
C × C → C with the diagonal section ∆ and the constant section Γp = {p} × C.
44 44144

I NH 4h44

I We

Htt HII I

Figure 4.11: Recipe for computing the stable reduction

We first find the stable limit of the pointed normalization exactly as in Exam-
ple 4.4.9: we blowup so that the strict transforms ∆̃ and Γ̃p become disjoint. We

then glue the sections ∆̃ and Γ̃p to obtain a family C→ C of nodal curves where
the central fiber is the nodal union of C and a rational nodal curve at the point
p ∈ C.

The above examples are too simple to reveal the general stable reduction
procedure as no base changes were needed.

4.4.4 Explicit stable reduction

The biggest challenge in explicitly computing the stable limit of a family C∗ →
∆∗ following the basic strategy of Section 4.4.1 is in Step 3: computing the
normalization C̃′ of the family C′ = C×∆ ∆′ obtained by base changing C→ ∆
along a ramified cover ∆′ → ∆ defined by t 7→ tm. It is often simpler to factor
∆′ → ∆ as a composition of prime order base changes and use the following
observation.

Proposition 4.4.11. Let C→ ∆ be a generically smooth, proper and flat family
such that (C0)red is nodal. As a divisor on C, we may write C0 =

∑
aiDi where

ai is the multiplicity of the irreducible component Di. Let ∆′ → ∆ be defined by
t 7→ tp where p is prime, and set C′ := C ×∆ ∆′ with normalization C̃′. Then
C̃′ → C is a branched cover ramified over

∑
(ai mod p)Di.

Example 4.4.12 (Stable Reduction of an A2k+1-singularity). Suppose C → ∆
is a generically smooth family degenerating to a A2k+1-singularity in the central
fiber such that the local equation around the singular point is y2 = x2k+1 + t.
In particular, the total family C is smooth. Figure 4.12 provides a pictorial
representation of the stable reduction procedure.
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Figure 4.12: Recipe for computing the stable limit of a A2k+1-singularity. The
altered components in each step are colored in red while the green numbers indicate
the multiplicity of the component.

We are already given a flat limit C→ ∆ so may begin with Step 2.

Step 2: Repeatedly blow-up to find a resolution of singularities C̃→ C so that the
reduced central fiber (C̃0)red is nodal.

We repeatedly blow up the (reduced) singular point in the central fiber. To keep
track of the local equations, we will always use local coordinates x, y on the original
surface and x̃, ỹ on the new surface. In one chart of the blowup, x̃ = x, ỹ = y/x
with exceptional divisor x̃ = 0 while in the other chart, x̃ = x/y, ỹ = y with
exceptional divisor ỹ = 0.

For the first blow up, the preimage of y2 − x2k+1 in the chart x̃ = x, ỹ = y/x
is given by x̃2(ỹ2 − x̃2k−1) and in the other chart by ỹ2(1 − x̃2k+1ỹ2k−1). The
exceptional divisor E1 has multiplicity 2.

For the second blow up, the preimage of x2(y2−x2k−1) in the chart x̃ = x, ỹ =
y/x is given by x̃4(ỹ2 − x̃2k−3) and in the other chart by x̃2ỹ4(1 − x̃2k−1ỹ2k−3)
(where x̃ defines E1 and ỹ defines E2). The new exceptional divisor E2 has
multiplicity 4.

After k blow ups, one obtains a surface with local equation x2k(y2 − x) at the
singular point in the central fiber. The equation y2 − x defines the normalization
C̃0 of the original central fiber and x defines the exceptional divisor Ek which
has multiplicity 2k. There is a chain of nodally attached exceptional divisors
Ek, . . . , E1 such that the multiplicity of Ei is 2i.

Blowing up again, the strict transform of x2k(y2−x) in the chart x̃ = x/y, ỹ = y
becomes x̃2kỹ2k+1(ỹ− x̃) where x̃ defines Ek, ỹ defines the new exceptional divisor

F which has multiplicity 2k + 1, and ỹ − x̃ defines C̃0.
Blowing up one final time, the strict transform of x2ky2k+1(y− x) in the chart

x̃ = x, ỹ = y/x becomes x̃4k+2ỹ2k+1(ỹ − 1) where x̃ defines the new exceptional
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divisor G which has multiplicity 4k + 2, ỹ defines F and ỹ − 1 defines C̃0. In
particular, the (non-reduced) central fiber is set-theoretically nodal.

Step 3: Perform a base change ∆′ → ∆ such that the normalization of the total
family C×∆ ∆′ has a reduced and nodal central fiber.

We begin by base changing by ∆′ → ∆, t 7→ t2k+1 and normalizing. For this
analysis, we assume that 2k + 1 is prime but one can inductively apply the same
process to a prime factorization of 2k + 1 and obtain the same result in the
end; the only difference is in the numerics of the multiplicities of the exceptional
components Ei but these can be resolved in the last step in the same way.

By applying Proposition 4.4.11, the new surface is a degree 2k+1 cover ramified
over C̃0 +

∑
iEi as the other components of the central fiber have multiplicities

divisible by 2k + 1. The preimage G′ of G is 2k + 1 degree cover of P1 ramified
over two points, each with ramification index 2k. By Riemann–Hurwitz, the genus
g(G′) of G′ satisfies 2g(G′)−2 = (2k+1)(g(P1)−2)+R and since the ramification
divisor R has degree 2(2k), we see that g(G′) = 0. Meanwhile, the preimage of F
is the disjoint union of 2k + 1 smooth rational curves F1, . . . , F2k+1. Over ∆, the
new special fiber is

(2k + 1)C̃0 + (4k + 2)G′ + (2k + 1)
∑
i

Fi + (2k + 1)
∑
i

2iEi

which over ∆′ becomes C̃0 + 2G′ +
∑
i Fi +

∑
i 2iEi

We now base change by ∆′ → ∆, t 7→ t2 and normalize. By Proposition 4.4.11,
the new surface is a 2 : 1 cover ramified over C̃0 +

∑
i Fi. The preimage H of

G′ ∼= P1 is a 2 : 1 cover ramified over 2k+ 2 points, with one of those points being
the node H ∩ C̃0. Thus G′ is a hyperelliptic curve of genus g attached to C̃0 at a
ramification point (otherwise known as a Weierstrass point). The new central fiber
over ∆′ becomes reduced except for the components Ei which have multiplicity i.

Finally, we inductively base change and normalize by the ramified covers
defined by t 7→ tk, . . . , t 7→ t2 so that the central fiber becomes reduced and nodal.

Step 4: Contract rational tails in the central fiber.
The exceptional components Fi are smooth rational −1 curves which we can

contract. We then inductive contract E1, E2, . . . , Ek (note that while E1 is a −1
curve, E2 is a −2 curve but becomes a −1 curve once E1 is contracted). In the end,
we obtain a reduced central fiber which is the nodal union of the normalization
C̃0 of the original central fiber and a hyperelliptic genus k curve H. The node in
H is a ramification point of the 2 : 1 cover H → P1 while the node in C̃0 is the
preimage of the singular point of C0.

The above example begs the following questions:

• Precisely which hyperelliptic curve H appears in the stable limit?

• How does the stable limit depend on the choice of degeneration? By cal-
culating the deformation space of a A2k+1-singularity, one sees that any
degeneration can be written locally as y2 = x2k+1+a2k−1(t)x2k−1+· · ·+a0(t)
for polynomials a2k−1, . . . , a0. In other words, we are asking how does the
stable limit depend on ai(t). In particular, what happens when the total
family of the surface is singular (e.g. y2 = x2k+1 + t2)?
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These questions are addressed in detail in [HM98, §3.C] in the case of a cusp
y2 = x3 (i.e. k = 1). The reader is also encouraged to refer to loc. cit. for
additional examples of stable reduction and other aspects of this story.

Exercise 4.4.13. Work out the stable reduction of a smooth family of curves
degenerating to an A2k+2-singularity with local equation y2 = x2k+2 + t.

4.4.5 Separatedness of Mg,n

We now show that the stable limit is unique. The following proposition establishes
via the Valuative Criterion for Separatedness (Proposition 2.8.5) that Mg,n is
separated.

Proposition 4.4.14. Let R be a DVR with fraction field K, and set ∆ = SpecR
and ∆∗ = SpecK. If (C → ∆, σ∗1 , . . . , σ

∗
n) and (D → ∆, τ∗1 , . . . , τ

∗
n) are families

of n-pointed stable curves, then any isomorphism α∗ : C∗ → D∗ over ∆∗ with
τ∗i = α∗ ◦ σ∗i of the generic fibers as pictured

C∗
α∗ //

!!

D∗

��

C
α //

��

D

��

∆∗ �
�

// ∆

extends to a unique isomorphism α : C→ D over ∆ with τi = α ◦ σi.

Proof. We will prove the case when there are no marked points (n = 0) and the
generic fiber C∗ ∼= D∗ is smooth over ∆∗. We leave the general case to the reader.

Let C̃ → C and D̃ → D be the minimal resolutions (Corollary F.1.7). Let

Γ ⊂ C̃×∆ D̃ be the closure of the graph C∗
(id,α∗)−−−−→ C∗×∆∗D

∗ of α∗ and let Γ̃→ Γ
be the minimal resolution. We have a commutative diagram

Γ̃

�� ��

C̃

��

D̃

��

C

  

D

~~

∆.

(4.4.1)

Since Γ̃→ C̃ and Γ̃→ C̃ are birational morphisms of smooth projective surfaces
over ∆ and the relative dualizing sheaves are line bundles, we have identifications
of the pluricanonical sections

Γ(C̃, ω⊗k
C̃/∆

) ∼= Γ(Γ̃, ω⊗k
Γ̃/∆

) ∼= Γ(D̃, ω⊗k
D̃/∆

)

for each non-negative integer k; see [Har77, Thm. II.8.19]. Furthermore, we know

that C and D are the stable models of C̃ and C̃ obtained by contracting rational
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tails and bridges (Proposition 4.2.13). Thus we have an isomorphism

C ∼= Proj
⊕
k

Γ(C̃, ω⊗k
C̃/∆

) ∼= Proj
⊕
k

Γ(D̃, ω⊗k
D̃/∆

) ∼= D

extending α∗ : C∗ → D∗.

Remark 4.4.15. We can also argue more explicitly using our understanding of
the birational geometry of surfaces. First, notice that the local structure of the
surface C or D around a node z in the central fiber is of the form xy = tn+1,
where t ∈ R is a uniformizer (Theorem 4.1.21). This is an An-surface singularity

and in particular normal, and its preimage under the resolution C̃→ C is a chain
E1 ∪ · · · ∪ En of rational bridges with E2

i = −2. By construction, there are no

smooth rational −1 curves in the fibers of C̃→ C and D̃→ D, and since C and
D are families of stable curves, they have no rational tails and thus no smooth
rational −1 curves. We conclude that C̃ and D̃ are birational smooth surfaces
over ∆ with no smooth rational −1 curves whose generic fibers C∗ and D∗ are
isomorphic.

By the Structure Theorem of Birational Morphisms of Surfaces (Theorem F.1.3),

both Γ̃→ C̃ and Γ̃→ D̃ are the compositions of finite sequences of blow-ups at
closed points. Since Γ̃ is minimal over Γ, there are no smooth rational −1 curves
in Γ̃ that get contracted under both Γ̃→ C̃ and Γ̃→ D̃.

We now claim that Γ̃→ C̃ and Γ̃→ D̃ are isomorphism. Suppose for instance
that Γ̃ → C̃ is not an isomorphism. Then there is a smooth rational −1 curve
E ⊂ Γ̃ not contracted under Γ̃ → D̃ and let E

D̃
⊂ D̃ be its image. On the one

hand, since blowing up only decreases the self-intersection number (indeed, if we

write the pre-image of E
D̃

in Γ̃ as E + F , then the projection formula implies
that E2

D̃
= E · (E + F ) = E2 + E · F ), we have that E2

D ≥ E2 = −1. The Hodge

Index Theorem for Exceptional Curves (Theorem F.1.4) implies however that the
self-intersection of E

D̃
must be negative, and we conclude that E2

D̃
= −1. On the

other hand, since E
D̃

is not a smooth rational −1 curve, E
D̃

must be a singular

curve and one of the blow-ups in the composition Γ̃→ D̃ must be along a singular
point of E

D̃
. But this implies that exceptional locus F of Γ̃ → D̃ intersects E

with multiplicity at least 2 so that E2
D̃
≥ E2 + 2, a contradiction.

We finish the proof as before by observing that both C and D are the stable
models of C̃ ∼= D̃. Since the stable model is unique (Proposition 4.2.13), there is
an isomorphism C

∼→ D extending C∗
∼→ D∗.

4.5 Gluing and forgetful morphisms

4.5.1 Gluing morphisms

Proposition 4.5.1. There are finite morphisms of algebraic stacks

Mi,n ×Mg−i,m →Mg,n+m−2(
(C, p1, . . . , pn), (C ′, p′1, . . . , p

′
m)
)
7→ (C ∪ C ′, p1, . . . , pn−1, p

′
1, . . . , p

′
m).

(4.5.1)

and
Mg−1,n →Mg,n−2

(C, p1, . . . , pn) 7→ (C/pn−1 ∼ pn , p1, . . . , pn−2).
(4.5.2)
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Figure 4.13: (A) is an example of (4.5.1) while (B) is an example of (4.5.2)

Remark 4.5.2. To simplify the notation, we chose to write only the case of
gluing the nth marked point pn and the mth marked point p′m curve in (4.5.1),
and likewise only case of gluing the pn−1 and pn in (4.5.2). Clearly the same holds
for the gluing of any two points.

Sketch. To simplify the notation, we will establish the proposition in the following
two cases:

(a) In (4.5.1), we assume n = m = 1.

(b) In (4.5.2), we assume n = 2.

Note that once we establish the existence of the morphisms of algebraic stacks, it
follows from Stable Reduction (Theorem 4.4.1) that the morphisms are proper. By
inspection, they are clearly representable and have finite fibers and thus follows
that the morphisms are finite.

Case (a): Let (C
π−→ S, σ) and (C′

π′−→ S, σ′) be two families of 1-pointed stable
curves over a scheme S.

Argument 1 (pushout construction): Consider the pushout diagram

S

σ′

��

σ // C

��

C′ // C̃

which exists by Ferrand’s Theorem on the Existence of Pushouts (Theorem 4.5.5).

We claim that C̃ → S is a family of stable curves. First, note that C̃ → S is
proper as there is a finite cover CtC′ → C with CtC′ proper over S. One can use
properties of pushouts to show that C̃→ S is flat (missing details). It remains to

chose that the geometric fibers of C̃→ S are stable curves and in particular nodal.
For any point s ∈ S, since σ(s) is a smooth point of C, there is an étale

neighborhood SpecA[x]→ C of σ(s) which pulls back to an étale neighborhood
SpecA→ S of s. Since an étale morphism from an affine scheme extend over closed
immersions (missing reference), there is an étale neighborhood SpecA[y]→ C′ of
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σ′(s) which also pulls back to SpecA→ S. The geometric pushout of [SpecA[x]←
SpecA→ SpecA[y]] is SpecA[x, y]/(xy), and we have a commutative cube

SpecA

��

uu

� � // SpecA[y]
ss

��

SpecA[x]

��

� � // SpecA[x, y]/(xy)

��
S �
�

//

tt

C

ssC′
� � // C̃

We see by Proposition 4.5.6 that SpecA[x, y]/(xy)→ C̃ is an étale neighbor-

hood of the image of s. This shows that C̃→ S is nodal along S and since C̃ is
either isomorphic to C or C′ outside S, we see that C̃ → S is a nodal family of
curves. Finally one checks (missing details) that C̃s is identified with the nodal
union Cs and Cs′ , which is stable.

Argument 2 (Proj construction): We know that ωC(σ) is ample. There is a
surjection ωC(σ) → Oσ1 and for each k ≥ 0, the pushforward of the surjection
(ωC(σ))⊗k → Oσ1 under π : C → S is π∗(ωC(σ)⊗k) → OS . We have a similar
construction for π′ : C′ → S, and we can consider the fiber product of quasi-
coherent OS-modules

Ak //

��

π∗(ωC(σ)⊗k)

��

π∗(ωC′(σ
′)⊗k) // OS

One checks that A :=
⊕

k≥0 Ak is a finitely generated quasi-coherent OS-algebra

and that C̃ := ProjS A is a family of stable curves over S such that C̃s is the nodal
union Cs of Cs′ .

Case (b): Let (C→ S, σ1, σ2) be a 2-pointed family of stable curves over a scheme
S.

Argument 1 (pushout construction): We use the pushout diagram

S t S

��

σ1tσ2 // C

��

S // C̃

By the étale local properties of pushouts (Proposition 4.5.6), the local structure

of C̃ is determined by the pushout diagram

SpecA×A
(0,1)

//

��

SpecA[t]

��

SpecA // SpecA×A×A A[t].

The subalgebra A ×A×A A[t] ⊂ A[t] consists of functions f ∈ A[t] such that
f(0) = f(1) ∈ A. The elements x := t2−1 and y := t3− t generate A×A×AA[t] as
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an A-algebra and since x and y satisfy y2 = x2(x+ 1), we see that A×A×A A[t] ∼=
A[x, y]/(y2 − x2(x+ 1)).

Argument 2 (Proj construction): One defines C̃ := ProjS
⊕

k≥0 Ak where Ak is
defined as the fiber product

Ak //

��

OS

∆

��

π∗(ωC(σ1)⊗k) t π∗(ωC(σ2)⊗k) // OS t OS .

Aside: pushouts

Definition 4.5.3. Consider a commutative diagram of schemes

X0
� � i //

f0

��

X

f

��

Y0
� � j

// Y,

(4.5.3)

where i and j are closed immersions and f0 and f are affine. If the induced map

OY → j∗OY0
×(j◦f0)∗OX0

f∗OX

is an isomorphism of sheaves, then we say that the diagram is a geometric pushout,

and that Y is a geometric pushout of the diagram [Y0
f0←− X0

i−→ X].

Example 4.5.4. In the affine case where X = SpecA, X0 = SpecA0, Y0 =
SpecB0, then Spec(A×A0

B0) is a geometric pushout.

Theorem 4.5.5 (Ferrand’s Theorem on the Existence of Pushouts). [Fer03, Thm.
5.4] Let f0 : X0 → Y0 be a finite morphism of schemes and X0 ↪→ X be a closed
immersion of schemes. Assume that X and Y0 satisfy the following property: every
finite set of points is contained in an affine open subscheme. Then there exists a
geometric pushout Y such that the corresponding diagram (4.5.3) is a cartesian
(i.e. fiber product) and cocartesian (i.e. pushout). Moreover f restricts to an

isomorphism X \X0
f−→ Y \ Y0.

We will also need étale-local properties of the pushout.

Proposition 4.5.6. Consider a diagram of schemes as in (4.5.3) where f is
affine and i is a closed immersion. The question of whether the diagram is a
pushout is étale-local on Y . Moreover, suppose

X ′0

��

xx

� � // X ′

xx

��

Y ′0

��

� � // Y ′

��

X0
� � //

xx

X

xx
Y0
� � // Y

is a commutative cube of schemes where the back and left faces are cartesian and
the top and bottom faces are geometric pushouts. If Y ′0 → Y0 and X ′ → X are
étale, then so is X ′ → X.
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4.5.2 Boundary divisors of Mg

Define the closed substacks

δ0 = im(Mg−1,2 →Mg)

δi = im(Mi,1 ×Mg−i,1 →Mg)

where i = 1, . . . , bg/2c.
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Figure 4.14: Examples of stable curves in the boundary.

Once we show that Mg is dense in Mg, it will follow that δ0 and δi are the
closure of the locus of curves with a single node as featured in (A) and (B) of
Figure 4.14.

To see that δ0 and δi are divisors in Mg, we can do a simple dimension
count. As Mg−1,2 → Mg and Mi,1 ×Mg−i,1 → Mg are finite morphisms, we
compute that dim δ0 = dimMg−1,2 = 3(g − 1) − 3 + 2 = 3g − 4 and that
dim δi = dimMi,1 + dimMg−i,1 = (3i− 3 + 1) + (3(g − i)− 3 + 1) = 3g − 4.

By analyzing the formal deformation space of a stable curve, one can show
that more is true: δ = δ0 ∪ · · · ∪ δb g2 c is a normal crossings divisor.

4.5.3 The forgetful morphism

Proposition 4.5.7. There is a morphism of algebraic stacks

Mg,n →Mg,n−1

(C, p1, . . . , pn)
)
7→ (Cst, p1, . . . , pn−1).

160



where (Cst, p1, . . . , pn−1) is the stable model of (C, p1, . . . , pn−1).

Figure 4.15: In (A), the nth point is simply forgotten. In (B), if pn is forgotten,
then the curve is no longer stable and we must contract the rational bridge.

Proof. If (C → S, σ1, . . . , σn) is an n-pointed family of stable curves, then if we
forget the nth section, the (n − 1)-pointed family (C → S, σ1, . . . , σn−1) may
not be stable. However, we have already constructed the stable model (Cst →
S, σ1, . . . , σn−1) in Proposition 4.2.13.

4.5.4 The universal family Mg,1 →Mg

Let Ug → Mg be the universal family: this is a proper and flat morphism of
algebraic stacks whose geometric fibers are genus g curves. (The existence of
the universal family follows from applying descent and the 2-Yoneda Lemma
(Lemma 1.3.18) to the identity morphism id: Mg →Mg.) Objects of Ug over a
scheme S correspond to a family of stable curves C→ S and a section σ : S → C

(that may land in the relative singular locus).

There is a morphism of algebraic stacks

Mg,1 → Ug

sending (C→ S, σ) to (Cst → S, σst) where C→ Cst is the stabilization of C→ S
(see Proposition 4.2.13) and σst = π ◦ σ. In other words, there is a 2-commutative
diagram

Mg,1
//

!!

Ug

��

Mg

where Mg,1 →Mg is the forgetful morphism of Proposition 4.5.7.
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Figure 4.16: In Example (A), Mg,1 → Ug sends (C, p) to itself while in Example
(B), the morphism sends (C, p) to the curve (C ′, p′) obtained by contracting the
rational bridge.

Proposition 4.5.8. The morphism Mg,1 → Ug is an isomorphism over Mg.
In other words, the morphism Mg,1 → Mg, which forgets the marked point and
stabilizes the the curve, is the universal family.

Sketch.

Strategy 1: Construct an inverse [Knu83, Thm. 2.4].
We construct an inverse morphism Ug →Mg,1 defined as follows. Let C→ S

be a family of stable curves and σ : S → C be an arbitrary section defined by an
ideal sheaf Iσ. Define the coherent OC-module K by

0→ OC
δ−→ I∨σ ⊕ OC → K→ 0

where δ = (ι∨, id) with ι : I ↪→ OC denoting the inclusion, and define

C′ = Proj SymK→ S

One then needs to show that σ∗(I∨σ/OC) is a line bundle [Knu83, Lem. 2.2].
This requires some work: Knudsen introduces the notion of a stably reflexive
OC-module, shows that Iσ is stable reflexive, and uses this to deduce that that
σ∗(I∨σ/OC) is a line bundle. The surjection σ∗K→ σ∗(K/OC) ∼= σ∗(I∨σ/OC) defines
a section σ′ : S → C and one checks that (C′ → S, σ′) is a 1-pointed family of
stable curves.

Strategy 1: Show Mg,1 → Ug is an isomorphism by showing it separates points
and tangent vectors.

We will use the following exercise (which can be established via descent by
reducing to the case of schemes):

Exercise 4.5.9. Suppose f : X → Y is a proper morphism of algebraic stacks
such that

(a) For every geometric point x ∈ X(k), f induces a fully faithful functor of
groupoids X(k)→ Y(k). (This encodes both that f is injective on geometric
points and that f induces an isomorphism of automorphism groups at any
geometric point.)

(b) f induces an injection on the tangent spaces at geometric points.
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Then f is a closed immersion.

By Stable Reduction (Theorem 4.4.1), both Mg,1 and Ug are proper; thus
Mg,1 → Ug is also proper. It is easy to directly check that Mg,1 → Ug induces an
equivalence of groupoids at geometric points. It remains to check (c). Once we
do show (c), then Exercise 4.5.9 implies that Mg,1 → Ug is a closed immersion.
But since this map is also surjective and Ug is reduced, we conclude that it is an
isomorphism.

Let (C ′, p′) ∈ Mg,1 be a one-pointed stable curve over k, and (C, p) be its
image in Ug. Let Ip and Ip′ be the ideal sheaf defining p and p′ respectively. We
claim that the map

Ext1(ΩC′ , Ip′) = TMg,1,(C′,p′)
→ TUg,(C,p) = Ext1(ΩC , Ip)

is injective.
If C ′ is a stable curve, the statement is obvious. Otherwise, denote π : C ′ → C

as the stabilization. We have the following properties:

(1) π∗OC′ = OC and R1π∗OC′ = 0.

(2) π∗Ip′ = Ip and R1π∗Ip′ = 0.

(3) 0→ κ(p)→ ΩC → π∗ΩC′ → 0 is exact.

The map on Ext’s takes an extension

[0→ Ip′ → E′ → ΩC′ → 0] ∈ Ext1(ΩC′ , Ip′)

to the extension [E] ∈ Ext1(ΩC , Ip) defined by the diagram

κ(p)

��

κ(p)

��

0 // Ip // E //

��

ΩC //

s

zz

��

0

0 // π∗Ip′ // π∗E
′ // π∗ΩC′ //

s
ww

0.

We need to show that if E is the trivial extension, then so is E′. If [E] = 0 ∈
Ext1(ΩC , Ip), let s : ΩC → E be a section of E → ΩC . One checks that s is
the identity on κ(p) and therefore descends to a morphism s : π∗ΩC′ → π∗E

′.
Adjunction gives an natural equivalence

HomOC (π∗ΩC′ , π∗E
′) = HomOC (π∗π∗ΩC′ , E

′)

By abuse of notation, denote by s the corresponding homomorphism π∗π∗ΩC′ →
E′, and one checks that it descends to a map s′ : ΩC′ → E′ as pictured:

π∗π∗ΩC′

��

s

{{

0 // Ip′ // E′ // ΩC′ //

s′

ee 0

Thus the original extension E′ was trivial.

Exercise 4.5.10. Show that the above arguments can be modified to show that
Mg,n+1 →Mg,n is a universal family.
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4.6 Irreducibility

In this section, we show that the algebraic stack Mg,n is irreducible over any
algebraically closed field k. After reviewing properties of branched coverings in
§4.6.1, we provide the classical topological argument due to Clebsch and Hurwitz
in the late 19th century establishing irreducibility of Mg in characteristic 0 (Theo-
rem 4.6.14). We then provide a purely algebraic argument for the irreducibility
of Mg,n (Theorem 4.6.17) by using admissible covers to show that every smooth
curves degenerates to a singular stable curve and induction on the genus to show
that the boundary δ = Mg \Mg is connected. Finally, in §4.6.4, we provide the
arguments from the seminal papers from 1969 of Deligne and Mumford [DM69]
and Fulton [Ful69] which establish the irreducibility of Mg,n in positive charac-
teristic (where Fulton’s argument has the restriction p > g + 1) by reduction to
characteristic 0.

Before beginning, we make a few simple remarks regarding the relation between
connectedness and irreducibility of Mg,n, between connectedness/irreducibility of
Mg versus Mg, and between the connectedness/irreducibility of the stack versus
coarse moduli space. Since Mg,n is a smooth algebraic stack, its irreducibility is
equivalent to its connectedness. Moreover, since Mg,n+1 →Mg,n is the universal
family (Proposition 4.5.8) and in particular has connected fibers, it suffices to
verify the connectedness of Mg. We thus have equivalences

Mg,n irreducible ⇐⇒ Mg,n connected

⇐⇒ Mg connected

⇐⇒ Mg connected and dense in Mg

Finally, we note that since the coarse moduli space Mg,n → Mg,n induces a

homeomorphism |Mg,n|
∼→ |Mg,n| on topological spaces, each statement above

can be equivalently stated in terms of the coarse moduli space.

4.6.1 Branched coverings

Recall that a finite morphism f : C → P1 is said to be ramified at p ∈ P1 of index
e(p) if the OC,p-module (ΩC/P1)p is non-zero of length e(p) − 1. Note that by
definition f is unramified at p precisely when (ΩC/P1)p = 0. If in addition f is flat
or equivalently all associated points of f map to the generic point of P1 (which is
guaranteed for instance if C is connected and reduced), then this is equivalent to
f being étale at p.

Definition 4.6.1. A branched covering of P1 is a finite morphism f : C → P1

from a smooth connected curve C such that the extension K(P1) → K(C) on
functions fields is separable. We say that f : C → P1 is simply branched if for each
branched point x ∈ P1, there is at most one ramification point in the fiber f−1(x)
and such a point has index 2.

Remark 4.6.2. Note that in the definition, we require C to be connected.
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Figure 4.17: Examples of branched coverings: (A) is simply branched while (B)
and (C) are not. While the picture may suggest that the source curve C is not
smooth, C is in fact smooth over the base field k. However, the map C → P1 is
not smooth and the pictures above are designed to reflect the singularities of C
over P1.

Theorem 4.6.3 (Riemann–Hurwtiz). [Har77, Prop. IV.2.3] If f : C → P1 is a
branched covering and R =

∑
P∈C length(ΩC/P1)P · P is the ramification divisor

on C, then ΩC ∼= f∗ΩP1 ⊗ O(R). In particular,

2g(C)− 2 = deg(f)(−2) + degR.

Riemann–Hurwitz implies that a simply branched covering f : C → P1 is
ramified over b = 2g + 2d− 2 distinct points.

Remark 4.6.4. More generally, if C → D is a finite morphism of smooth,
connected and projective curves such that K(D) → K(C) is separable, then
Riemann–Hurwitz states that ΩC ∼= f∗ΩD⊗O(R) and 2g(C)−2 = deg(f)(2g(D)−
2) + degR.

Example 4.6.5. For a local model of a branched cover, consider the map
f : A1

k → A1
k defined by x 7→ xn. The relative sheaf of differentials is ΩA1

k/A1
k

=

k[x]〈dx〉/(nxn−1dx) and thus if char(k) does not divide n, then f : A1
k → A1

k is
étale over A1

k and ramified at 0 with index n− 1.

Exercise 4.6.6. Show that any branched covering is étale-locally isomorphic to
A1

k → A1
k, x 7→ xn around a branched point of index n− 1.

Lemma 4.6.7. Let C be a smooth, projective and connected curve of genus g
over an algebraically closed field k of characteristic 0. If L is a line bundle of
degree d ≥ g + 1, then for a general linear series V ⊂ H0(C,L) of dimension 2,

C
V−→ P1 is simply branched.

Proof. We proceed with a dimension count. Since h0(C,L) = d + 1 − g, the
dimension of the Grassmanian Gr(2, H0(L)) of 2-dimensional subspaces is 2(d−
g− 1). Since char(k) = 0, any finite morphism C → P1 is automatically separable.

Thus, if C
V−→ P1 is not simply branched, then one of the following three conditions

must hold:

(a) V has a base point;

(b) there exists a ramification point with index > 2; or

(c) there exists 2 ramification points in the same fiber.

We handle only case (b) and leave the other cases to the reader. There must exist
a section s ∈ V vanishing to order 3 at a point p ∈ C, i.e. s ∈ H0(C,L(−3p)).
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The dimension of V ∈ Gr(2, H0(L)) having a branched point at p ∈ C with index
at least 3 can be calculated as

dimPH0(L(−3p)) + dimP(H0(L)/〈s〉) = 2d− 2g − 4.

Varying p ∈ C, the locus of all V ∈ Gr(2, H0(L)) failing condition (b) is thus
2d− 2g − 3 = dim Gr(2, H0(L))− 1.

For a branched cover C → P1, we denote by Aut(C/P1) = 1 the group of
automorphisms C → C over P1.

Lemma 4.6.8. If C → P1 is a simply branched cover of degree d > 2 in charac-
teristic 0, then Aut(C/P1) is trivial.

Proof. Any automorphism C → C over P1 must fix the 2g+2d−2 branched points
but this contradicts the classical result of Mayer which asserts that there are no
non-trivial automorphisms of a smooth curve fixing more than 2g + 2 points.

The above lemma shows that there are no stacky issues that arises when
defining moduli spaces of simply branched covering. We define

Hd,b := {C → P1 simply branched covering of degree d over b points}

as the moduli space simply branched coverings where b = 2g+ 2d− 2. The moduli
space Hd,b can be defined either as a topological space (if k = C) or as an algebraic

space; we leave the details to the reader. Denoting Symb P1 \∆ as the variety of
b unordered distinct points in P1 (which can also be written as the complement
Pb \∆ of the discriminant hypersurface), we have a diagram

Hd,b

}} %%

Mg Symb P1 \∆

(4.6.1)

where a simple branched covering [C → P1] gets mapped to [C] under Hd,b →Mg

and the b branched points under Hd,b → Symb P1 \∆.

Lemma 4.6.9. In characteristic 0, the morphism Hd,b → Symb P1 \∆ is finite
and étale.

Proof. We only establish étaleness. It is straightforward to see that Hd,b →
Symb P1 \ ∆ is a topological covering space. Consulting Figure 4.18, given a
branched covering f : C → P1 and a branched point p ∈ C, we can choose an
analytic open neighborhood U ⊂ P1 around f(p) such that f−1(U) → U is
isomorphic to an open neighborhood of C → C, x 7→ xn. For any other point
q′ ∈ U , we can construct a branched cover C ′ → P1 which outside U is the same
as C → P1 and over U is locally isomorphic to x 7→ xn but centered over q′ (rather
than f(p)).

166



Figure 4.18:

For an algebraic argument, it suffices to show that for a covering f : C → P1

simply branched over p1, . . . , pb, the map

Def(C
f−→ P1)→ Def({pi}bi=1 ⊂ P1)

on first order deformation spaces is bijective. There is an identification Def(C
f−→

P1) = H0(C,Nf ) where Nf sits in a short exact sequence

0→ TC → f∗TP1 → Nf → 0.

On cohomology, this induces a short exact sequence

0→ H0(C, f∗TP1)→ H0(C,Nf )→ H1(C, TC)→ 0.

Riemann–Roch allows us to compute h0(C, f∗TP1) = 2d+1−g and h1(TC) = 3g−3,

and thus dim Def(C
f−→ P1) = h0(C,Nf ) = 2d + 2g − 2 = b is the same as the

dimension of Def({pi}bi=1 ⊂ P1). We leave the remaining details to the reader.

Relation between algebraic and topological branched coverings

The Clebsch–Hurwitz argument below relies on the following correspondence
between topological, analytic, and algebraic branched coverings. (Topological
and analytic coverings can be defined analogously to algebraic coverings—to be
added.) This can be viewed as a version of the Riemann Existence Theorem.

Proposition 4.6.10. Over C, there are natural bijections

{C → P1 algebraic branched coverings} ←→ {C → P1 topological branched coverings}
←→ {C → P1 analytic branched coverings}

Proof. An algebraic branched covering is clearly topological and if C → P1 is a
topological covering, then the holomorphic structure on P1 induces naturally a
holomorphic structure on C such that C → P1 is analytic. The Riemann Existence
Theorem implies than any holomorphic branched covering is in fact algebraic.
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Monodromy actions

Let C → P1 be a (topological) branched covering over C and B ⊂ P1 its ramifica-
tion locus. Choose a base point p ∈ P1 \B. The monodromy action of π1(P1 \B, p)
on the fiber π−1(p) is defined as follows: for γ ∈ π1(P1 \B, p) and q ∈ π−1(p), then
the path γ : [0, 1]→ P1 lifts uniquely to a path γ̃ : [0, 1]→ C such that γ̃(0) = q
and the action is defined by γ · q = γ̃(1).

Figure 4.19:

We now summarize some of the key properties of the monodromy action.

Proposition 4.6.11. Let B ⊂ P1 be a finite subset, p ∈ P1 \ B be a point, and
d > 0 a positive integer. There is a natural bijection between topological branched
coverings C → P1 of degree d and group homomorphisms ρ : π1(X \ B, x) → Sd
such that im(ρ) ⊂ Sd is a transitive subgroup. Here two branched covers C → P1

and C ′ → P1 are equivalent if there is an isomorphism C → C ′ over P1, and two
homomorphisms ρ, ρ′ : π1(X \B, x)→ Sd are equivalent if they differ by an inner
automorphism of Sd, i.e. ∃h ∈ Sd such that ρ′ = h−1ρh.

Moreover, if we let σ1, . . . , σb be simple loops around the b distinct points of
B, then π1(P1 \B, x) = 〈σi|σ1 · · ·σb = 1〉, and under this correspondence a simply
branched cover corresponds to a homomorphism π1(X \B, p)→ Sd such that each
σi maps to a transposition.

Remark 4.6.12. Recall that by definition in a branched covering C → P1, the
curve C is necessarily connected. This is the reason for the condition above
that im(ρ) ⊂ Sd is transitive: any group homomorphism ρ : π1(X \ B, x) → Sd
corresponds to a possibly non-connected branched covering C → P1, and C is
connected if and only if im(ρ) ⊂ Sd is transitive.

Remark 4.6.13. Like with Riemann–Hurwitz, the fact that the base is P1 plays
no role: the above proposition holds for arbitrary branched covers of smooth
curves (except for the explicit description of π1).

4.6.2 The Clebsch–Hurwitz argument

We now provide the classical argument due to Clebsch [Cle73] and Hurwitz
[Hur91] that Mg is connected over C. For a modern treatment, see [Ful69, §1].
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This argument uses a single non-algebraic input, namely Riemann’s Existence
Theorem in the form of Proposition 4.6.10. There are of course other non-algebraic
approaches, e.g. using Teichmüller theory.

By taking d ≥ g + 1, we know that every smooth, projective and connected
complex curve C of genus g admits a map C → P1 which is a covering simply
branched over b = 2d+ 2g − 2 points (Lemma 4.6.7). This shows that the map

Hd,b →Mg, [C → P1] 7→ [C]

is surjective, where Hd,b is the moduli space of coverings C → P1 simply branched
over b points. The connectedness of Hd,b thus implies the connectedness of Mg.

Theorem 4.6.14 (Clebsch, Hurwitz). Hd,b is connected.

Proof. We will use the diagram

Hd,b

}}

β

%%

Mg Symb P1 \∆

where Hd,b →Mg is surjective (Lemma 4.6.7) and β : Hd,b → Symb P1 \∆ is finite
and étale (Lemma 4.6.9).

For any finite set B = {p1, . . . , pb} ⊂ P1 of b = 2d+2g−2 points and p ∈ P1\B,
the fundamental group π1(P1 \B, p) = 〈σi|σ1 · · ·σb = 1〉 acts on the fiber π−1(p)
of a simply branched covering π : C → P1. Similarly, π1(Symb P1 \∆, B) acts on
the fiber Hd,B := β−1(B) of β : Hd,b → Symb P1 \∆. Using Proposition 4.6.11,
we have bijections

Hd,b = β−1(B) = {coverings C → P1 simply branched over B}

= {group homomorphisms π1(P1 \B, p) ρ−→ Sd such that

im(ρ) ⊂ Sd is transitive and each ρ(σi) is a transposition}
= {(τ1, . . . , τb) ∈ (Sd)

b | each τi is a transposition and τ1 · · · τb = 1}.

The connectedness of Hd,b is equivalent to the transitivity of the action of

π1(Symb P1 \∆, B) on the fiber Hd,B. The strategy of proof is to find loops in

Symb P1 \∆ that act on (τ1, . . . , τb) ∈ Hd,B in a prescribed way and to find enough
loops so that we can show that each orbit contains the element

τ ∗ :=
(

(12), (12), (13), (13), . . . , (1 d− 1), (1 d− 1)︸ ︷︷ ︸
2(d−2)

, (1d), (1d), · · · , (1d)︸ ︷︷ ︸
2g+2

)
.
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Figure 4.20:

Referring to Figure 4.20, we define the loop

Γi : [0, 1]→ Symb P1 \∆

t 7→ (p1, . . . , pi−1, γi(t), γ
′
i(t), pi+2, . . . , pb).

One checks that

Γi · (τ1, . . . , τb) = (τ1, . . . , τi−1, τ
−1
i τi+1τi, τi, τi+2, . . . , τb)

and that for any element (τ1, . . . , τb) ∈ Hd,B , there exists a sequence Γi1 , . . . ,Γik
of loops such that τ ∗ = Γi1Γi2 · · ·Γik · (τ1, . . . , τb). We leave the details of this
combinatorial problem to the reader.

4.6.3 Irreducibility using admissible covers

We now give a completely algebraic argument of the irreducibility of Mg in charac-
teristic 0. The main idea is to show that every smooth curve of genus g degenerates
in a one-dimensional family to a singular stable curve (Proposition 4.6.15) and
to show the connectedness of δ = Mg \Mg using the inductive structure of the
boundary and explicitly the gluing maps of Proposition 4.5.1. The most challeng-
ing aspect of this argument is in degenerating a smooth curve to a singular stable
curve. To achieve this, we will use the theory of admissible covers. We follow the
treatment in Fulton’s appendix of the paper [HM82] by Harris and Mumford that
introduced admissible covers as a means to compute the Kodaira dimension of
Mg.

Proposition 4.6.15. Let C be a smooth, projective and connected curve of genus
g over an algebraically closed field k of characteristic 0. There exists a connected
curve T with points t1, t2 ∈ T and a family C → T of stable curves such that
Ct1
∼= C and Ct2 is a single stable curve.

Proof. By Lemma 4.6.7, for d� 0 there exists a finite covering C → P1 of degree
d simply branched over b = 2g + 2d − 2 distinct points p1, . . . , pb ∈ P1. This
defines a b-pointed stable curve G = [P1, {pi}] ∈M0,n. By Lemma 4.6.9, we may
assume that G ∈M0,n is general. Since M0,n is connected, G degenerates to the
b-pointed rational curve (D0, q1, . . . , qb) which is the nodal union of a chain of
b − 2 P1’s where q1, q2 lie on the first P1, q3 on the second P1, and so on with
qb−1, qb lying on the last P1; see Figure 4.21.
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Figure 4.21:

In other words, there is a DVR R with fraction field K and a map ∆ =
SpecR→M0,n corresponding to a b-pointed stable family (D→ ∆, σi) such that
the generic fiber (D∗, σ∗i ) is isomorphic to G = (P1, {gi}) and the special fiber
to (D0, {qi}). We have a simply branched covering C∗ → ∆∗ which fits into a
diagram

C∗

��

� � // C

��

D∗
� � //

��

D

��

∆∗ �
�

// ∆

and extends to a finite morphism C → D by taking C as the integral closure of
OD in K(C∗).

Figure 4.22:

Purity of the branch locus implies that the ramification of C→ D is a divisor
when restricted to the relative smooth locus of C→ D. Therefore, the central fiber
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C0 → D0 is ramified over σ1(0), . . . , σb(0) and possibly over irreducible components
of D0 (where C0 may be non-reduced). As in the proof of stable reduction, after
a suitable base change ∆ → ∆, t 7→ tm and replacing C with the normalization
C×∆ ∆, we can arrange that C0 → D0 is ramified only over σi(0) and possibly
over nodes of D0. By an analysis of possible extensions C→ D, one can show that
C0 is a nodal curve (missing details). Therefore C→ ∆ is a family of nodal curves.

Since C0 necessarily has nodes, we are done if C0 is a stable curve! Otherwise,
we can contract rational tails and bridges to obtain the stable model Cst → ∆
(Proposition 4.2.13). We must check that Cst

0 is not smooth. Let T ⊂ Cst
0 be

any smooth irreducible component. Applying Riemann–Hurwitz to the induced
morphism T → P1 ⊂ D0 shows that 2g(T )− 2 = −2d+R where R is the degree
of the ramification divisor on T . If the component P1 ⊂ D0 is a rational tail (i.e.
is either the first or last P1 in the chain), then R ≤ 2 + (d − 1) as T → P1 is
simply ramified over the two marked points and has index at worst d− 1 over the
node. On the other hand, if P1 ⊂ D0 is a rational bridge, then R ≤ 1 + 2(d− 1).
In either case, we have R ≤ 2d − 1 and 2g(T ) − 2 ≤ −2 + (2d − 1) = 1 which
establishes that g(T ) = 0. We’ve shown every smooth irreducible component of
Cst

0 is rational which immediately implies that Cst
0 is singular.

Proposition 4.6.16. If we assume that Mg′,n′ is irreducible for all g′ < g, then
the boundary δ = Mg \Mg is connected.

Proof. We write δ = δ0 ∪ · · · ∪ δbg/2c where δ0 = im(Mg−1,2 → Mg) and

δi = im(Mi,1 ×Mg−i,1 → Mg) as defined in §4.5.2 using the gluing maps from
Proposition 4.5.1. The hypotheses imply that δ0 and δi are connected (and even
irreducible). But on the other hand, the boundary divisors δi intersect! Namely,
for any i, j = 0, . . . , bg/2c, the intersection δi∩δj contains curves as in Figure 4.23.

g i j

E I
i j

g i i fo f

C

Figure 4.23:
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Theorem 4.6.17. Mg,n is irreducible.

Proof. Since Mg,n is smooth (Theorem 4.3.8), the irreducibility of Mg,n is equiva-
lent to its connectedness. Since Mg,n+1 → Mg,n is the universal family (Propo-
sition 4.5.8) and in particular has connected fibers, it suffices to verify the con-
nectedness of Mg. Since every smooth curve degenerates to a stable singular
curve in the boundary δ = Mg \Mg (Proposition 4.6.15) and the boundary δ
itself is connected (Proposition 4.6.16) by induction on g, we obtain that Mg is
connected.

Remark 4.6.18 (Admissible Covers). The above argument was motivated by
the theory of admissible covers as introduced by Harris and Mumford [HM82].
Admissible covers are a generalization of simply branched covers C → P1 where
the source and target curve are allowed to have nodal singularities. The main goal
is to extend the map Hd,b → Mg taking [C → P1] → [C] to a map Hd,b → Mg

over the boundary where Hd,b also has a moduli interpretation.

An admissible cover of degree d over a stable b-pointed genus 0 curve (B, p1, . . . , pb)
is a morphism f : C → B such that

(a) f−1(Bsm) = Csm and Csm → Bsm is simply branched of degree d over
the points pi, i.e. each ramification index is 2 and there is at most one
ramification point in every fiber; and

(b) for every node q ∈ B and every node r ∈ C over q, the local structure (either
formally or étale) of C → B at r is of the form k[x, y]/(xy)→ k[x, y]/(xy)
defined by (x, y) 7→ (xm, ym) for some m.

This definition extends to families of admissible covers and the stack Hd,b pa-
rameterizing admissible covers of degree d branched over b points is a proper
Deligne–Mumford stack.

The total space C of an admissible cover need not be stable. Nevertheless, using
the contraction morphism (Proposition 4.2.13), there is a morphism Hd,b →Mg

sending an admissible cover [C → B] to the stable model Cst of C. There is also
a finite morphism Hd,b →M0,n sending [C → B] to (B, {pi}) where pi ∈ B are
the branched points. To summarize, there is a diagram

Hd,b

}} ""

Mg M0,n

extending the uncompactified diagram (4.6.1).

The argument of Proposition 4.6.15 can be rewritten in this language. For
d � 0, given a smooth curve [C] ∈ Mg, we choose a preimage [C → P1] ∈ Hd,b

(Lemma 4.6.7). By Lemma 4.6.9, we can assume that the branched points
g1, . . . , gb ∈ P1 are general. Since M0,n is connected, there is a map ∆ = SpecR→
M0,n (where R is a DVR) such that the generic point maps to (P1, {gi}) and the
closed points maps to the b-pointed stable curve (D0, q1, . . . , qb) of Figure 4.21.
Since Hd,b →M0,n is finite, we may use the valuative criterion to lift ∆→M0,n to
∆→ Hd,b such that the image of the generic point is [C → P1]. The composition
∆→ Hd,b →Mg gives the desired degeneration.
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4.6.4 Irreducibility in positive characteristic: Deligne–Mumford
and Fulton’s arguments

The year 1969 was a remarkable year for mathematics in part due to the seminal
contributions of Deligne and Mumford’s paper [DM69] and Fulton’s paper [Ful69].
The papers provided independent arguments for the irreducibility of Mg in positive
characteristic (where Fulton’s argument has the restriction that p > g + 1). Both
papers relied on the connectedness of Mg over C and the time, there was no purely
algebraic argument; the algebraic argument establishing Theorem 4.6.17 used
admissible covers and became available only in 1982. The connectedness of Mg

over C is a classical result. Clebsch and Hurwitz’s arguments in the 19th century
(featured in Theorem 4.6.14) used the Hurwitz space of branched covers and used
on a single non-algebraic input, namely the Riemann’s Existence Theorem. There
are of course other non-algebraic arguments, e.g. using the Teichmüller space.

Deligne–Mumford’s first argument

The first argument appearing [DM69] is very similar in spirit to the argument in
§4.6.3. As with most results, there are many approaches to construct a proof and
the first approach in [DM69, §3] reflects the state of technology at the time.

For a field k of characteristic p, the argument for irreducibility of Mg ×Z k
proceeds along three steps:

Step 1: There is no proper connected component of Mg ×Z k.
Let W (k) be the Witt vectors for k; W (k) is a complete local noetherian

ring whose generic point η has characteristic 0 and whose closed point 0 has
residue field is k. (For example, W (Fp) = Zp is the ring of p-adics.) We now use
the existence of a quasi-projective coarse moduli space Mg →Mg over W (k) as
established in [GIT]. (Although appearing in the definitive book on GIT, this
would not be viewed as a “GIT construction” today as it relies on some ad hoc
techniques and doesn’t use the Hilbert–Mumford criterion. Indeed, the standard
GIT toolkit only became available in positive characteristic in 1975 after Haboush
resolved Mumford’s conjecture [Hab75] and in the relative setting in 1977 after
Seshadri’s paper [Ses77].)

Choosing a projective compactification Mg ⊂ X over W (k), the connectedness
of the generic fiber of Mg → SpecW (k) ensures that the generic fiber of Xη is
also connected. The scheme Mg is normal as GIT quotients (or alternatively
coarse moduli spaces) preserve normality. By taking the normalization of X, we
can assume that X is also normal. Zariski’s connectedness theorem implies that
the number of connected components in a fiber Xw is independent of w ∈W (k).
Thus, X0 is also connected.

Suppose Y ⊂ Mg ×W (k) k is a proper connected component. Then Y ⊂
Mg ×W (k) k ⊂ X0 is an open subscheme; but it’s also a closed subscheme since Y
is proper. Since X0 is connected, we conclude that Y = Mg ×W (k) k is proper and
irreducible. To obtain a contradiction, denote by Ag,k the moduli of principally
polarized g-dimensional abelian varieties over k and consider the morphism

Θ: Mg ×W (k) k→ Ag,k, C 7→ Jac(C)

assigning to a smooth curve C its Jacobian Jac(C). The properness of Mg×W (k) k
implies that the image would be a closed but there are explicit examples where
the closure of the image of Θ contains products of lower dimensional Jacobians.
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Step 2: There is no connected component of Mg ×Z k consisting entirely of smooth
curves.

Let Mg,1, . . . ,Mg,r be the connected components of Mg. For each i, Step
1 implies that Mg,i is not proper. Let ∆ = Speck[[t]] and ∆∗ = Speck((t)) →
Mg,i := Mg∩Mg,i be a morphism that does not extend to ∆. By Stable reduction,
after possibly replacing ∆ with a finite extension, ∆∗ → Mg,i extends to a
morphism ∆→Mg. This shows that Mg,i \Mg,i is non-empty.

Step 3: The boundary δ = Mg \Mg is connected.
Note that Steps 1 and 2 show that every smooth curve degenerates to a

singular stable curve (Proposition 4.6.15). This step proceeds precisely as in
Proposition 4.6.16 but without using the formalism of the moduli Mg,n of n-
pointed stable curves and the gluing morphisms.

Deligne–Mumford’s second argument

The stack Mg of stable curves is smooth and proper over SpecZ. Zariski’s
connectedness theorem implies that for any smooth and proper morphism X → Y
of schemes, the number of connected components of a geometric fiber is a locally
constant function on Y . (In fact, for a flat and proper morphism X → Y , this
function is lower semi-continuous and it is enough for the fibers of X → Y to be
geometrically normal in order to show constancy.) This fact extends to morphisms
of algebraic stacks. Applying this fact to the morphism Mg → SpecZ, we see
that the connectedness of any geometric fiber follows from the connectedness of
Mg ×Z C. In [DM69, §5], the connectedness of Mg ×Z C is argued by relating it
to the moduli of Teichmüller structures of level n and the connectedness of the
Teichmüller space [Man39].

Fulton’s argument

In [Ful69], Fulton defines the Hurwitz scheme Hd,b of simply branched covers over
Z and shows that there is a diagram

Hd,b

}} %%

Mg Symb P1 \∆

defined over Z. He shows that the map Hd,b → Symd P1 \ ∆, taking a simply
branched cover to its branch locus, is étale. Moreover, if all primes p ≤ g + 1 are
inverted, then Hd,b → Symd P1 \P1 is finite; examples are given where is not finite
over primes p ≤ g+ 1. Fulton then establishes a “reduction theorem” allowing him
to deduce the connectedness of Hd,b ×Z Fp from Hd,b ×Z C for primes p > g + 1.

4.7 Projectivity

In this section, we prove that the coarse moduli space Mg,n is projective (The-
orem 4.7.14). We follow the approach introduced by Kollár in [Kol90] partially
building on ideas of Viehweg (see [Vie95]). We will primarily focus on the un-
pointed coarse moduli space Mg as this will be enough to deduce the projectivity
of Mg,n.
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To introduce the general strategy to establish projectivity, we need to introduce
some terminology. Let π : Ug →Mg be the universal family and for each integer
k ≥ 1 define the kth pluri-canonical bundle as the vector bundle

π∗(ω
⊗k
Ug/Mg

) (4.7.1)

on Mg. Its rank r(k) can be computed via Rieman–Roch:

r(k) :=

{
g if k = 1
(2k − 1)(g − 1) if k > 1.

(4.7.2)

We obtain line bundles on Mg by taking the determinant

λk := detπ∗(ω
⊗k
Ug/Mg

).

These provide natural candidates of line bundles on Mg that descend to ample
line bundles on Mg.

Strategy for projectivity: Show that for k � 0, a positive power of λk
descends to an ample line bundle on the coarse moduli space Mg.

Outline of this section: In §4.7.1, we prove Kollar’s Criterion for ampleness
(Theorem 4.7.5). In §4.7.2, we setup the application of Kollár’s Criterion to Mg

by establishing Proposition 4.7.13: projectivity of Mg follows from (a) Stable
Reduction (Theorem 4.4.1) and (b) the nefness of π∗(ω

⊗k
C/T ) for a family of stable

curves C→ T over a smooth projective curve and for k � 0 (Theorem 4.7.17). In
§4.7.3, we prove this nefness statement which finishes the proof of projectivity.
Finally, in §4.7.4, we compare this argument to the GIT construction of Mg.

4.7.1 Kollár’s criteria

In this section, we prove Kollár’s Criterion for projectivity (Theorem 4.7.5), which
we will apply to show that λk is ample on Mg for k � 0. We first extend ampleness
criteria of §F.2.2 to proper algebraic spaces and in particular establish that the
Nakai–Moishezon criterion still holds (Theorem 4.7.4).

Lemma 4.7.1. Let X be a proper Deligne-Mumford stack with coarse moduli
space X→ X. Suppose that L is a line bundle on X satisfying

(a) L is semiample (i.e. LN is basepoint-free for some N > 0); and

(b) for every map f : T → X from a proper integral curve such that f(T ) ⊂ |X|
is not a single point, degL|T > 0.

Then for some N > 0, L⊗N descends to an ample line bundle. In particular, X is
projective.

Remark 4.7.2. Lemma F.2.16 handles the case when X is a scheme. Even though
we won’t actually quote this lemma, it provides a basic technique which underlies
many ampleness arguments, e.g. the Nakai-Moishezon criterion.

Proof. For N sufficiently divisible, consider the diagram

X

&&��

X // P(H0(X, LN )).
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Property (a) implies that X→ P(H0(X, LN )) is well-defined and (b) implies that
it doesn’t contract curves. The universal property for coarse moduli spaces gives
the existence of the factorization X → P(H0(X, LN )), which also doesn’t contract
curves. Thus X → P(H0(X, LN )) is quasi-finite and proper (as both X and
projective space are proper), and thus finite by Zariski’s Main Theorem. It follows
that the pullback M of O(1) under X → P(H0(X, LN )) is ample; moreover, the
pullback of M under X→ X is L⊗N .

Remark 4.7.3. The semiampleness condition in (a) can be very challenging to
verify in practice. Keep in mind that in the GIT approach, semiampleness is hard-
coded into the definition of semistability (see Remark 4.7.22). If G is a reductive
group acting linearly on projective space P(V ) and L = O(1) is the corresponding
G-line bundle on [P(V )/G], then a nonzero vector v ∈ V is in the stable base
locus of L (i.e. s(v) = 0 for all s ∈ Γ([P(V )/G], L⊗d) and d > 0) if and only if
0 ∈ Gv ⊂ V if and only if there exists a one-parameter subgroup λ : Gm → G such
that limt→0 λ(t) · v = 0. This latter equivalence is the Hilbert–Mumford criterion
and can sometimes be verified combinatorially.

On the other hand, in Kollár’s Criterion, the existence of sufficient sections of
the line bundle follows from the bigness of suitable vector bundles.

Theorem 4.7.4 (Nakai–Moishezon Criterion). If X is a proper algebraic space, a
line bundle L is ample if and only if for all irreducible closed subvarieties Z ⊂ X,
c1(L)dimZ · Z > 0

Proof. By Le Lemme de Gabber (Theorem 3.4.3), there exists a finite surjection
f : X ′ → X from a scheme X, and L is ample if and only if f∗L is ample
(Proposition 3.1.15). The statement then follows for the Nakai–Moisezon Criterion
for schemes (Theorem F.2.18).

Let X be a proper algebraic space over k. Let W → Q be a surjection of
vector bundles of rank w and q. Suppose that W has structure group G→ GLw.
There is a classifying map

X → [Gr(q,kw)/G]

x 7→ [W ⊗ κ(x)� Q⊗ κ(x)]

which is well-defined because a choice of isomorphism W ⊗ κ(x) ∼= κ(x)w of the
fiber of W over x is well-defined up to the structure group G. Thus, the image of
x is identified with the quotient [κ(x)w ∼= W ⊗ κ(x)� Q⊗ κ(x)] ∈ Gr(q,kw).

For simplicity, we state the following criteria in characteristic 0. The criteria
first appears in [Kol90, Lem. 3.9] with improvements from [KP17, Thm. 4.1].

Theorem 4.7.5 (Kollár’s Criterion). Let X be a proper algebraic space over a
field k of characteristic 0. Let W � Q be a surjection of vector bundles of rank w
and q, where W has structure group G→ GLw. Suppose that

(a) The classifying map X(k)→ Gr(q,kw)(k)/G(k) has finite fibers; and

(b) W is nef.

Then detQ is ample.

Remark 4.7.6. Condition (a) is equivalent to the map |X| → |[Gr(q,kw)/G]|
on topological spaces having finite fibers. This set-theoretic condition is weaker
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than the quasi-finiteness1 of X → [Gr(q,kw)/G], as the latter condition also
requires that for every x ∈ X(k) only finitely many elements of G(k) leave
ker(W ⊗ κ(x)→ Q⊗ κ(x)) invariant (or equivalivalently that the image of x in
[Gr(q,kw)/G] has finite stabilizer.) In fact, Condition (a) is equivalent to quasi-
finiteness of the projection morphism im(X → X×[Gr(q,kw)/G])→ [Gr(q,kw)/G]
from the scheme-theoretic image of the graph of the classifying map; it is this
property that we will use in the proof.

Remark 4.7.7. An easy case of this theorem is when W is the trivial vector
bundle so that there is a reduction of structure group to the trivial group G = {1}.
In this case, the classifying map X → Gr(q,kw) is quasi-finite by condition (a)
and proper since both X and Gr(q,kw) are proper. Thus X → Gr(q,kw) is finite
and det(Q) is ample as its the pullback of the ample line bundle on Gr(q,kw)
defining the Plücker embedding.

Note that in the above theorem, we do not require that the image of X
lands in the G-stable locus of Gr(q,kw). However, if this is true, then we have a
commutative diagram

X //

&&

[Gr(q,kw)ss/G]

��

Gr(q,kw)//G

where Gr(q,kw)//G denotes the projective GIT quotient. Since the image of X
lands in the stable locus, X → Gr(q,kw)//G is quasi-finite; as it’s also proper, we
conclude that it’s finite. Moreover, we obtain ampleness of (detQ)w ⊗ (detW )−q,
the pullback of the ample line bundle Gr(q,kw)//G coming from GIT. This is a
stronger ampleness statement than merely the ampleness of detQ.

Remark 4.7.8. The nefness of det(Q) is an immediate consequence of the nefness
of W as det(Q) =

∧q
Q is a quotient of

∧q
W , which is nef by Proposition F.2.27.

The proof will proceed by reducing the ampleness of detQ to its bigness, which in
turn is established by using the quasi-finiteness and nefness to express detQ as
the sum of an effective line bundle and a big and globally generated line bundle.

Proof of Theorem 4.7.5. We will verify the Nakai–Moishezon criterion: for each
irreducible subvariety Z ⊂ X, we verify that det(Q)|Z is big. Since both conditions
(a) and (b) also hold for Z and the restrictions W |Z � Q|Z , it suffices to verify
that if X is an integral scheme with W � Q satisfying (a) and (b), then det(Q)
is big.

The property of bigness (unlike ampleness) is conveniently invariant under
birational maps (and we desire this flexibility because in the proof of Proposi-
tion 4.7.9 below, we will make a series of reductions where we perform blowups to
resolve the indeterminacy locus of certain rational maps). In fact, for a generically
quasi-finite and proper morphism f : Y → X of integral schemes, the projection
formula implies that det(f∗Q)dimY = deg(f) det(Q)dimX > 0 and thus det(Q) is
big if and only if f∗(detQ) is big. By Le Lemme de Gabber (Corollary 3.4.4), there
exists a projective, generically quasi-finite and surjective morphism f : Y → X
from a projective integral scheme. By taking the normalization, we can assume

1Recall that a morphism f : X→ Y of algebraic stacks is quasi-finite if |X| → |Y| has finite
fibers and the relative inertia IX/Y is quasi-finite (or equivalently for every field-valued point
x ∈ X(K) the morphism AutX(K)(x)→ AutY(K)(f(x)) has finite cokernel).
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that Y is normal. The theorem therefore follows from the bigness of f∗(detQ),
which is the conclusion of the following proposition.

Proposition 4.7.9. Let Y be a normal projective integral scheme over a field k
of characteristic 0. Let W � Q be a surjection of vector bundles of rank w and q,
where W has structure group G→ GLw. Suppose that

(a′) The classifying map Y (k)→ Gr(q,kw)(k)/G(k) generically has finite fibers;

(b) W is nef.

Then detQ is big.

Remark 4.7.10. Condition (a′) means that there is a non-empty open subscheme
U ⊂ Y such that U(k)→ Gr(q,kw)(k)/G(k) has finite fibers.

Note that the difference in the hypotheses between Theorem 4.7.5 and Propo-
sition 4.7.9 is that we relaxed the condition on the classifying map from having
finite fibers to generically having finite fibers but now we assume that Y is already
projective (in addition to being normal and integral). Also the conclusion is
weaker in that it asserts the bigness of det(Q) rather than the ampleness.

Proof.

Step 1: Use the universal basis map to lift the classifying map to a morphism
P \∆→ Gr(q,kw) where P ⊂ PY ((W∨)⊕w) is a closed subscheme and ∆ ⊂ P is a
divisor.

Define P̃ := PY ((W∨)⊕w) as the projective space of matrices whose columns

belong to W , and let π̃ : P̃→ Y denote the projection. There is a universal basis
map

O⊕w
P̃
→ π̃∗W ⊗ OP̃(1) (4.7.3)

defined by the isomorphisms

H0(P̃, π̃∗W ⊗ OP̃(1)) ∼= H0(Y, π̃∗(π̃
∗W ⊗ OP̃(1))) ∼= H0(Y,W ⊗ (W∨)⊕w).

The universal basis map (4.7.3) restricts to an isomorphism on the complement

P̃\∆ where ∆ ⊂ P̃ is the divisor of matrices with determinant 0, and thus provides
a trivialization of (π̃∗W ⊗ OP̃(1))|P̃\∆. Note also that there is a natural PGLw

action on P̃ which is free on P̃ \∆ and such that π̃ : P̃ \∆→ Y is a PGLw-torsor
and fits into the cartesian diagram

P̃ \∆ //

��

Gr(q,kw)

��

// Speck

��

Y // [Gr(q,kw)/PGLw] // B PGLw .

We can also consider the fiber product with respect to the G-action

P \∆ := Y ×[Gr(q,kw)/G] Gr(q,kw).

The inclusion P \∆ ↪→ P̃ \∆ is a closed immersion and we define P ⊂ P̃ to be the
closure of P \∆, where we abuse notation by using the same symbol ∆ for the

divisor in P̃ and its intersection in P. One way to see that P\∆ = Y ×BGSpeck ↪→
Y ×B PGLw Speck = P̃ \∆ is a closed immersion is to realize it as the base change
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of the diagonal BG → BG ×B PGLw BG; here we use that BG → B PGLw is
separated (it is in fact even affine since G is reductive). Alternatively, one can

view P ⊂ P̃ as the closure of a generic G-orbit in P̃.
In summary, we have a cartesian diagram

P \∆ //

π

��

Gr(q,kw)

��

� � // P(
∧q kw)

��

Y // [Gr(q,kw)/G] �
�

// [P(
∧q kw)/G]

where the right-hand square is given by the Plücker embedding. The map P\∆→ Y

extends to a map π : P → Y (i.e. the composition P ↪→ P̃ π̃−→ Y ). The map
P \∆→ Gr(q,kw) is defined by the restriction of the composition

O⊕wP → π∗W ⊗ OP(1)→ π∗Q⊗ OP(1) (4.7.4)

of the universal basis map (4.7.3) with the quotient π∗W → π∗Q. The image of
(4.7.4) may not be locally free and thus the rational map P 99K Gr(q,kw) may not
be defined everywhere.

Step 2: Blowup P in order to extend the map P \∆→ Gr(q,kw).
(Note that if (4.7.4) is surjective, then P \ ∆ → Gr(q,kw) extends to a

morphism P → Gr(q,kw) such that the pullback of the Plücker line bundle is
π∗(detQ)⊗ OP(q).)

We blowup the image ideal sheaf of (4.7.4) (more precisely, if I ⊂ π∗(detQ)⊗
OP(q) denotes the image subsheaf of (4.7.4), we blowup I⊗(π∗(detQ)⊗OP(q))∨ ⊂
OP). This yields a map g : P′ → P which is an isomorphism over P \∆ and such
that P \∆→ Gr(q,kw) extends to a morphism γ : P′ → Gr(q,kw). This yields a
commutative diagram

P′

g

��

γ

&&

π′

��

P //

π

��

Gr(q,kw)

��

Y // [Gr(q,kw)/G].

The effective divisor E ⊂ P′ satisfies

g∗(π∗(detQ)⊗ OP(q)) ∼= γ∗OGr(q,kw)(1)⊗ OP′(E). (4.7.5)

where OGr(q,kw)(1) denotes the Plücker line bundle.

Step 3: Use the generic quasi-finiteness to show that γ∗(OGr(q,kw)(m))⊗ π′∗H∨ is
effective for some m > 0, where H is a ample line bundle on Y .

(Note that under the stronger assumption that the classifying map Y →
[Gr(q,kw)/G] is generically quasi-finite, then γ : P′ → Gr(q,kw) is also generically
quasi-finite. Thus γ∗OGr(q,kw)(1) is big and Kodaira’s Lemma (Proposition F.2.8)
immediately gives the desired statement.)
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Let Z be the scheme-theoretic image of the graph Y → Y × [Gr(q,kw)/G] of
the classifying map. The hypothesis that Y (k)→ Gr(q,kw)(k)/G(k) is generically
quasi-finite implies that Z → [Gr(q,kw)/G] is generically quasi-finite. Consider
the commutative diagram

P′
p

""

γ

))

P \∆
?�

OO

//

π

��

Z ′ �
�

//

γ′

,,

��

Y ×Gr(q,kw)

��

// Gr(q,kw)

��

Y // Z �
�

// Y × [Gr(q,kw)/G] // [Gr(q,kw)/G]

where the squares are cartesian and where Z ′ is the scheme-theoretic image of
P \∆→ Y ×Gr(q,kw) (and also of P′ → Y ×Gr(q,kw)). We see that γ′ : Z ′ →
Gr(q,kw) is also generically quasi-finite and it follows that γ′∗(OGr(q,kw)(1)) is
big. If we denote by H ′ the pullback of H to Z ′, then by Kodaira’s Lemma
(Proposition F.2.8), γ′∗(OGr(q,kw)(m))⊗H ′∨ is effective on Z for some m > 0. Its
pullback p∗(γ′∗(OGr(q,kw)(m))⊗H ′∨) ∼= γ∗(OGr(q,kw)(m))⊗π′∗H∨ is also effective.

Step 4: Pushforward a section to construct a map π∗OP(mq)∨ → (detQ)⊗m⊗H∨.
Using (4.7.5), we see that

γ∗(OGr(q,kw)(m))⊗ π′∗H∨ ∼= π′∗((detQ)⊗m ⊗H∨)⊗ g∗OP(mq)⊗ OP′(−mE)

⊂ π′∗((detQ)⊗m ⊗H∨)⊗ g∗OP(mq))

∼= g∗
(
π∗((detQ)⊗m ⊗H∨)⊗ OP(mq)

)
and therefore we may choose a non-zero section

OP′ → g∗
(
π∗((detQ)⊗m ⊗H∨)⊗ OP(mq)

)
.

Pushing forward under g : P′ → P and using the projection formula gives a non-zero
section

OP → π∗((detQ)⊗m ⊗H∨)⊗ OP(mq)

and pushing forward again under π : P→ Y gives a non-zero section

OY → (detQ)⊗m ⊗H∨ ⊗ π∗OP(mq)

which we rearrange as

π∗OP(mq)∨ → (detQ)⊗m ⊗H∨. (4.7.6)

Step 5: Show that the nefness of W implies the nefness of π∗OP(mq)∨.
We compare π∗OP(mq) to π∗OP̃(mq) ∼= Symmq((W∨)⊕w) (and their duals)

under the closed immersion P ↪→ P̃ (where we are using π to denote both projections

P → Y and P̃ → Y ). For m � 0, the map π∗OP̃(mq) → π∗OP(mq) is surjective
and dualizes to an inclusion

(π∗OP(mq))∨ ↪→ (π∗OP̃(mq))∨ ∼= Symmq((W )⊕w)
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of vector bundles on Y . Since W is nef, so is Symmq((W )⊕w) (Proposition F.2.27)
and therefore so is (π∗OP(mq))∨ (Proposition 4.7.11).

Step 6: Conclude that detQ is big.
(Note that if (4.7.6) is surjective, then the line bundle quotientN := (detQ)⊗m⊗

H∨ is nef. Thus (detQ)⊗m ∼= H ⊗N is written as the sum of an ample and nef
divisor, which is necessarily big.)

Blowing up the image ideal sheaf of (4.7.6), we obtain a birational morphism
s : Y ′ → Y and a quotient line bundle s∗π∗OP(mq)∨ � N ⊂ s∗(detQ)⊗m⊗ s∗H∨
which is nef. As N is nef and s∗H is big and globally generated, the sub-line
bundle s∗H ⊗ N ⊂ s∗(detQ)⊗m is big (Proposition F.2.14). The difference of
s∗(detQ)⊗m and s∗H ⊗ N is effective. Since the sum of a big and globally
generated line bundle is big, we can conclude that s∗(detQ)⊗m is big, which in
turn implies that detQ is big.

The proof above used the following property of nefness of vector bundles
complementing the basic results from Section F.2.3.

Proposition 4.7.11. Let X be a scheme of finite type over an algebraically closed
field k of characteristic 0 and W be a vector bundle of rank w. Let G be a reductive
group and suppose that W admits a reduction of the structure group G→ GLw.
Let V ⊂W be a G-subbundle corresponding a G-invariant subspace kv ⊂ kw. If
W is nef, then so is V .

Proof. In characteristic 0, representations of reductive groups are completely
reducible. Therefore kv ⊂ kw has a G-invariant complement kw−v ⊂ kw. Since
this expresses V as a quotient of W , we see that V is nef.

4.7.2 Application to M g

To apply Kollár’s Criterion to Mg, we will make use of multiplication maps
between pluri-canonical bundles and their symmetric products. Given a morphism
S → Mg corresponding to a family of stable curves π : C → S and an integer
d ≥ 0, we will consider the multiplication map

Symd π∗(ω
⊗k
C/S)→ π∗(ω

⊗dk
C/S ). (4.7.7)

For a stable curve C defined over a field k, this multiplication map is

SymdH0(C,ω⊗kC )→ H0(C,ω⊗dkC )

and its kernel consists of degree d equations cutting out the image of C
|ω⊗kC |−−−→

Pr(k)−1. If k ≥ 3, then ω⊗k
C/S is relatively very ample and thus C → S can be

recovered from the kernel of the multiplication map.

Remark 4.7.12. We emphasize here that this construction depends on k and d,
the same two integers which the GIT construction depends on (see Section 4.7.4).

Proposition 4.7.13. Let g ≥ 2. Assume that

(a) Mg is a proper Deligne–Mumford stack; and

(b) There exists a k0 > 0 such that for any family of stable curves C→ T over
a smooth projective curve T , π∗(ω

⊗k
C/T ) is nef for k ≥ k0.
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Then for k � 0 and N sufficiently divisible, the line bundle λ⊗Nk on Mg descends
to an ample line bundle on the coarse moduli space Mg. In particular, Mg is
projective.

Proof. Consider the universal curve C = Ug over S = Mg. Choose integers k and
d such that

• ω⊗k
C/S is relatively very ample and R1π∗ω

⊗k
C/S = 0;

• Every stable curve C
|ω⊗kC |
↪→ Pr(k)−1 is cut out by equations of degree d; and

• π∗(ω⊗kC/S) is nef.

The conditions imply that the multiplication map

W := Symd π∗(ω
⊗k
C/S)� π∗(ω

⊗dk
C/S ) =: Q

is surjective. Let w =
(
r(k)+d−1

d

)
and q = r(dk) be the ranks of W and Q,

respectively. Note that W has a reduction of the structure group to G := SLr(k).
The classifying map

Mg → [Gr(q,kw)/G]

[C] 7→
[

SymdH0(C,ω⊗kC )︸ ︷︷ ︸
Γ(Pr(k)−1,O(d))

� H0(C,ω⊗dkC )︸ ︷︷ ︸
Γ(C,O(d))

]
is injective as the conditions on d and k imply that the kernel of the multiplication
map uniquely determines C.

Let X → Mg be a finite cover where X is a proper algebraic space (Theo-
rem 3.4.3). By Kollár’s Criterion (Theorem 4.7.5), the pullback of λk to X is
ample for k � 0. By Proposition 3.3.28, for N sufficiently divisible, λ⊗Nk descends
to a line bundle L on Mg. Since the pullback of L under the finite morphism
X →Mg →Mg is ample, we conclude by Proposition 3.1.15 that L is ample.

In the next section, we will establish condition (b), the nefness of the pluri-
canonical bundles. This will allow us to conclude:

Theorem 4.7.14. If 2g − 2 + n > 0, then Mg,n is projective.

Proof. It suffices to handle the n = 0 case as Mg,n+1 →Mg,n is the universal family
(Proposition 4.5.8) and is a projective morphism (Proposition 4.2.9). The fact
that λk descends to an ample line bundle on Mg follows from Proposition 4.7.13
as Condition (a) is a consequence of Stable Reduction (see Theorem 4.4.3) while
(b) is Theorem 4.7.17.

Remark 4.7.15. It also possible to show projectivity of Mg,n directly using
Kollár’s Criterion applied to the determinant of π∗(L

k) where L := ωUg,n/Mg,n
(σ1+

· · ·+ σn) and Ug,n →Mg,n is the universal family with sections σ1, . . . , σn.

Remark 4.7.16. The criteria of Proposition 4.7.13 for ampleness generalizes
to any moduli of polarized varieties (see [Kol90, Thm. 2.6]); this was one of
the original motivations of Kollár’s paper. In recent years, Kollár’s Criterion
has been applied in more and more general settings to establish projectivity, e.g.
Hassett’s moduli space of weighted pointed curves [Has03], the moduli of stable
varieties of any dimension [KP17], and the moduli of K-polystable Fano varieties
[CP21, XZ20, LXZ21].
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4.7.3 Nefness of pluri-canonical bundles

In this section, we establish that π∗(ω
⊗k
C/T ) is nef for any k ≥ 2.

Theorem 4.7.17. For family of stable curves C → T over a smooth projective
curve T , π∗(ω

⊗k
C/T ) is nef for k ≥ 2.

Proof sketch: Let k be the base field.

Step 1: Reduction to characteristic p. Assume that char(k) = 0. Since C and T
are finite type over k, their defining equations only involve finitely many coefficients
of k. Thus there exists a finitely generated Z-subalgebra A ⊂ k and a cartesian
diagram

C

��

// C̃

��

T //

��

T̃

��

Speck // SpecA

where C̃ and T̃ are schemes of finite type over A. By possibly enlarging A, we can
arrange that T̃ → SpecA is a smooth and projective family of curves and that
C̃ → T̃ is a family of stable curves. Finally, by restricting along any morphism
SpecR → SpecA from a DVR such that the images of the closed and generic
points have characteristic p and 0, respectively, we may assume that A is a DVR.
Since nefness is an open condition for such proper flat families (Proposition F.2.28),
it suffices to prove the theorem when char(k) = p > 0.

Step 2: Second reductions. We reduce to the case where

(a) C is a smooth and minimal surface;

(b) C→ T is generically smooth; and

(c) the genus of T is at least 2

(details to be added). These conditions imply that C is of general type.

Step 3: Positive characteristic case. Let p = char(k). If π∗(ω
⊗k
C/T ) is not nef,

then there exists a quotient line bundle π∗(ω
⊗k
C/T ) � M∨ where d = degM > 0.

Consider the absolute Frobenius morphisms F : C→ C and F : T → T which fit
into a commutative diagram

C
F //

��

C

��

T
F // T.

By properties of the dualizing sheaf, we have F ∗π∗(ω
⊗k
C/T ) = π∗(ω

⊗k
C/T ). Since

degF ∗M = pd, we can apply the Frobenius repeatedly to arrange that d, the
degree of M , is as large as we want. Specifically, we can arrange that M ∼= ω⊗kT ⊗L
where L is a very ample line bundle on T . (This was the entire point of reducing
to characteristic p: to repeatedly apply the Frobenius to jack-up the degree.)
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The surjection π∗(ω
⊗k
C/T )�M∨ ∼= (ω⊗kT ⊗ L)∨ yields a surjection

π∗(ω
⊗k
C/T )⊗ ω⊗kT ⊗ L� OT

Since h1(T,OT ) ≥ 2, we have h1(T, π∗(ω
⊗k
C/T ) ⊗ ω⊗kT ⊗ L) ≥ 2. Using the Leray

spectral sequence to relate H1(π∗(ω
⊗k
C/T ) ⊗ ω⊗kT ⊗ L) to H1(C, ω⊗kC ⊗ π∗L), one

can show that h1(C, ω⊗kC ⊗ π∗L) ≥ 2 (details omitted). This however contradicts
Bombieri–Ekedahl vanishing in the form of Lemma 4.7.19 with D = π∗L.

Remark 4.7.18. For families of smooth curves, π∗(ωC/T ) is nef; this fact is
somewhat easier and was known earlier. If C→ S has no hyperelliptic fibers, then
Max Noether’s theorem on projective normality implies that Symd π∗(ωC/T )→
π∗(ω

⊗d
C/T ) is surjective. Therefore, the nefness of π∗(ωC/T ) implies the nefness of

both Symd π∗(ωC/T ) and the quotient π∗(ω
⊗d
C/T ) (Proposition F.2.27).

Lemma 4.7.19. Let S be a smooth projective surface over an algebraically closed
field k which is minimal and of general type. Let D be an effective divisor with
D2 = 0. If char(k) 6= 2, then H1(S, ω⊗nS (D)) = 0 for all n ≥ 2. If char(k) = 2,
then h1(S, ω⊗nS (D)) ≤ 1 for all n ≥ 2.

Proof. Bombieri–Ekedahl vanishing (Theorem F.3.1) implies that H1(S,K⊗−nS ) =
0 for all n ≥ 1. The Serre dual of this statement is that H1(S,K⊗nS ) = 0 for all
n ≥ 2. The statement follows from using the short exact sequence

0→ ω⊗nS → ω⊗nS (D)→ ω⊗nS |D → 0

and adjunction (details omitted).

4.7.4 Projectivity via Geometric Invariant Theory

The Geometric Invariant Theory (GIT) construction depends on two integers:

• k, the multiple of the dualizing sheaf used to obtain an embedding C
|ω⊗kC |−−−→

Pr(k)−1. We need k ≥ 3 for ω⊗kC to be very ample for a stable curve C but
we need k ≥ 5 for the GIT construction to yield Mg.

• d, the degree of the equations that we use to embed the Hilbert scheme
of k-canonically embedded curves into a Grassmanian. We need d� 0 to
obtain an embedding of the Hilbert scheme.

Assuming that k ≥ 3, a stable curve C of genus g is pluricanonically embedded
via

C
|ω⊗kC |−−−→ Pr(k)−1

where r(k) = (2k − 1)(g − 1). Let P (t) = χ(C,ω⊗kt) = (2kt − 1)(g − 1) be the
Hilbert polynomial of C in Pr(k)−1. Let H ′ ⊂ HilbP (Pr(k)−1) be the locally closed
subscheme of the Hilbert scheme parameterizing stable curves [C ↪→ Pr(k)−1]
embedded via ω⊗kC . Note that PGLr(k) acts naturally on HilbP (Pr(k)−1) and that
the subscheme H ′ is PGLr(k)-invariant.

Exercise 4.7.20. Extend Theorem 2.1.11 by establishing that:
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(a) H ′ ⊂ HilbP (Pr(k)−1 is a locally closed PGLr(k)-invariant subscheme, and

(b) Mg
∼= [H ′/PGLr(k)].

Let H = H ′ ⊂ HilbP (Pr(k)−1 be the closure of H ′. For d � 0, we have an
embedding into the Grassmanian of P (d)-dimensional quotients of Γ(Pr(k)−1,O(d))

H ↪→ Gr(P (d),Γ(Pr(k)−1,O(d))

[C ↪→ Pr(k−1)] 7→
[
Γ(Pr(k)−1,O(d))� Γ(C,O(d))

]
Note that there is a natural identification of this quotient with the multiplication
map

Γ(Pr(k)−1,O(d)) // // Γ(C,O(d))

SymdH0(C,ω⊗kC ) // // H0(C,ω⊗dkC ).

Let OGr(1) be the very ample line bundle on Gr(P (d),Γ(Pr(k)−1,O(d)) obtained
via the Plücker embedding

Gr(P (d),Γ(Pr(k)−1,O(d)) ↪→ P(∧P (d)Γ(Pr(k)−1,O(d))

[Γ(Pr(k)−1,O(d))� Γ(C,O(d))] 7→ [∧P (d)Γ(Pr(k)−1,O(d))� ∧P (d)Γ(C,O(d))];

see Section 0.5. Finally, let Ld = OGr(1)|H be the very ample line bundle on H
obtained by restricting O(1) under the composition

H ↪→ Gr(P (d),Γ(Pr(k)−1,O(d)) ↪→ P(∧P (d)Γ(Pr(k)−1,O(d)) (4.7.8)

As each morphism in (4.7.8) is PGLr(k)-equivariant, the line bundle Ld inherits a
PGLr(k)-linearization.

Definition 4.7.21. A point h ∈ H is said to be GIT semistable with respect to
Ld if there exists an equivariant section s ∈ Γ(H,L⊗Nd )PGLr(k) with N > 0 such
that s(h) 6= 0. The semistable locus Hss consisting of GIT semistable points is an
open PGLr(k)-invariant subscheme.

Remark 4.7.22. Stack-theoretically, the PGLr(k)-linearization Ld defines a line
bundle, which we will also denote by Ld, on the quotient stack [H/PGLr(k)] and
the open substack [Hss/PGLr(k)] is the largest open substack such the restriction
of Ld is semiample. In other words, h ∈ H is GIT semistable if and only h does
not lie in the stable base locus of Ld on [H/PGLr(k)].

Remark 4.7.23. These definitions clearly extend to the action of any algebraic
group G on a projective scheme X embedded G-equivariantly X ↪→ PN by a G-
linearization L. One of the main results of GIT is that if G is reductive, then the
graded ring

⊕
N≥0 Γ(H,L⊗Nd )PGLr(k) is finitely generated and that the morphism

Xss → Xss//G := Proj
⊕
N≥0

Γ(H,L⊗Nd )PGLr(k)

is a good quotient. Note that Xss is precisely the maximal locus where the rational
map X 99K Xss//G is defined.
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The GIT construction of Mg rests on the following difficult theorem:

Theorem 4.7.24. Let k ≥ 5 and d� 0. For h = [C ↪→ Pr(k)−1] ∈ H, the curve
C is a stable if and only if h ∈ H is GIT semistable with respect to Ld.

Remark 4.7.25. This theorem can be established using the Hilbert–Mumford
criteria. It is rather difficult to explicitly exhibit sections of Γ(H,L⊗Nd )PGLr(k)

and the Hilbert–Mumford criteria allows us to verify that a given point h ∈ H is
semistable by checking that for each one-parameter subgroup λ : Gm → PGLr(k),
the Hilbert–Mumford index µ(h, Ld), defined as the weight of Gm on the line in
the affine cone Ar(k) over limt→0 λ(t) · h ∈ H ⊂ Pr(k)−1, is negative. The beauty
of the Hilbert–Mumford criterion is that it magically guarantees the existence of
sections for you! Nevertheless, verifying the Hilbert–Mumford criterion even for a
smooth pluricanonical embedded curve is no easy task.

Given Theorem 4.7.24, we obtain Mg as the projective variety

Mg = Proj Γ(H,L⊗Nd )PGLr(k) .

Remark 4.7.26. As a spectacular corollary of Theorem 4.7.24, one obtains an
alternative proof of Stable Reduction (Theorem 4.4.1) in arbitrary characteristic.
This is perhaps surprising as the GIT argument uses rather little about the
geometry of stable curves and their families.

Remark 4.7.27 (The ample cone). For each k ≥ 5 and d� 0, GIT constructs a
line bundle on on Mg which descends to an ample line bundle on Mg. This class
can be expressed as

r(k)λdk − r(dk)λk.

Grothendieck–Riemann–Roch can be used to express each of the line bundles λk
as a linear combination of λ1 and δ, the boundary divisor. The asymptotic limit
of this class as d goes to infinity is proportional to

(12− 4

k
)λ1 − δ.

Taking k = 5, shows that 11.2λ− δ is ample.
However, even more is true! By bootstrapping the positivity deduced from

GIT, Cornalba and Harris showed that aλ− δ is ample if and only if a > 11, thus
determining the ample cone of Mg in the λ1δ-plane of NS1(Mg) [CH88].
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Appendix A

Properties of morphisms

In this appendix, we recall definitions and summarize properties for certain types
morphisms of schemes—locally of finite presentation, flat, smooth, étale, and
unramified.

We pay particular attention to properties that can be described functorially,
i.e. properties of schemes and their morphisms that can be characterized in terms
of their functors. The following properties of morphisms can be characterized
functorially:

• separated, universally closed and proper;

• locally of finite presentation; and

• smooth, étale and unramified.

Such descriptions are particularly advantageous for us since we systematically
study moduli problems via functors and stacks. For example, the valuative
criterion for properness for Mg amounts to checking that every family of curves
over a punctured curve (i.e. over the generic point of a DVR) can be extended
uniquely (after possibly a finite extension of the curve) to the entire curve (i.e.
DVR). Similarly, the smoothness of Mg can be shown by using the functorial
formal lifting criterion for smoothness.

A.1 Morphisms locally of finite presentation

A morphism of schemes f : X → Y is locally of finite type (resp. locally of finite
presentation) if for all affine open SpecB ⊂ Y and SpecA ⊂ f−1(SpecB), there is
surjection A[x1, . . . , xn]→ B of A-algebras (resp. a surjection φ : A[x1, . . . , xn]→
B such that the ideal ker(φ) ⊂ A[x1, . . . , xn]) is finitely generated). If in addition
f is quasi-compact (resp. quasi-compact and quasi-separated), we say that f is of
finite type (resp. of finite presentation).

Remark A.1.1. When Y is locally noetherian, these two notions coincide. How-
ever, in the non-noetherian setting even closed immersions may not be locally of
finite presentation; e.g. SpecC ↪→ SpecC[x1, x2, . . .]. Since functors and stacks
are defined in these notes on the entire category of schemes, it is often necessary
to work with non-noetherian schemes. In particular, when defining a moduli
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functor or stack, we need to specify what families of objects are over possibly
non-noetherian schemes. Morphisms of finite presentation are better behaved than
morphisms of finite type and so we often use the former condition. For example,
when defining a family of smooth curves π : C→ S, we require not only that π is
proper and smooth, but also of finite presentation.

The following is a very useful functorial criterion for a morphism to be locally
of finite presentation. First recall that an inverse system (or projective system) in
a category C is a partially ordered set (I,≥) which is filtered (i.e. for every i, j ∈ I
there exists k ∈ I such that k ≥ i and k ≥ j) together with a functor I → C.

Proposition A.1.2. A morphism f : X → Y of schemes is locally of finite
presentation if and only if for every inverse system {SpecAλ}λ∈I of schemes over
Y , the natural map

colim−−−→
λ

MorY (SpecAλ, X)→ MorY (Spec(colim−−−→
λ

Aλ), X) (A.1.1)

is bijective.

We won’t include a proof here but we will mention a conceptual reason for
why you might expect this to be true: any ring A (e.g. C[x1, x2, . . .]) is the union
(or colimit) of its finitely generated subalgebras Aλ. The requirement that any
map SpecA→ X factors through SpecAλ → X for some λ can be viewed as the
condition that specifying SpecA→ X over Y depends on only a finite amount of
data and therefore can is a type of finiteness condition on X over Y . We encourage
the reader to convince themselves the above proposition holds in the case of a
morphism of affine schemes.

Remark A.1.3. As we desire to define and study moduli stacks X that are of
finite type over a field k, the following analogous condition to (A.1.1) better hold:
for all inverse system {SpecAλ}λ∈I of k-schemes, the natural functor

colim−−−→
λ

MORk(SpecAλ,X)→ MORk(Spec(colim−−−→
λ

Aλ),X)

is an equivalence. It turns out for many moduli stacks, this condition can be
checked directly even before knowing algebraicity. In fact, this locally of finite
presentation condition (often also referred to as limit-preserving) is the first axiom
in Artin’s criteria for algebraicity.

A.2 Flatness

You can’t get very far in moduli theory without internalizing the concept of flatness.
While its definition is seemingly abstract and algebraic, it is a magical geometric
property of a morphism X → Y that ensures that fibers Xy ‘vary nicely’ as y ∈ Y
varies. This principle is nicely illustrated by the fact that a subscheme X ⊂ PnY is
flat over an integral scheme Y if and only if the function assigning a point y to
the Hilbert polynomial of the fiber Xy ⊂ Pnκ(y) is constant (Proposition A.2.5).
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A.2.1 Definition and equivalences

A morphism f : X → Y of schemes is flat if for all affine opens SpecB ⊂ Y and
SpecA ⊂ f−1(SpecB), the ring map B → A is flat, i.e. the functor

−⊗B A : Mod(B)→ Mod(A)

is exact. More generally, a quasi-coherent OX -module F is flat over Y if for all affine
opens as above, Γ(SpecA,F) is a flat B-module, i.e. the functor −⊗BΓ(SpecA,F)
is exact.

Flat Equivalences A.2.1. Let f : X → Y be a morphism of schemes and F be
a quasi-coherent OX -module. The following are equivalent:

(1) F is flat over Y ;

(2) There exists a Zariski-cover {SpecBi} of Y and {SpecAij} of f−1(SpecBi)
such that Γ(SpecAij ,F) is flat as an Bi-module under the ring map Bi →
Aij ;

(3) For all x ∈ X, the OX,x-module Fx is flat as an OY,y-module.

(4) The functor

QCoh(Y )→ QCoh(X), G 7→ f∗G⊗OX F

is exact.

If x ∈ X, we say that a morphism f : X → Y of schemes is flat at x (resp. a
quasi-coherent OX -module F is flat at x) if there exists a Zariski-open neighborhood
U ⊂ X containing x such that f |U (resp. F|U ) is flat over Y . This is equivalent
to the flatness of OX,x (resp. Fx) as an OY,y-module.

A.2.2 Useful geometric properties

Proposition A.2.2 (Openness of Fppf Morphisms). Let f : X → Y be a mor-
phism of schemes. If f is flat and locally of finite presentation, then f(U) ⊂ Y is
open for every open U ⊂ X.

The following simple corollary will be used to reduce certain properties of flat
and locally of finite presentation morphisms to the affine case.

Corollary A.2.3. If f : X → Y is a faithfully flat and locally of finite presentation
morphism of schemes and {Vi} is an affine open cover of Y , then there exist an
open cover {Uij}j∈J of f−1(Vi) for each i such that Uij is quasi-compact and
f(Uij) = Vi.

Proposition A.2.4 (Flatness Criterion over Smooth Curves). Let C be an integral
and regular scheme of dimension 1 (e.g. the spectrum of a DVR or a smooth
connected curve over a field) and X → C a quasi-compact and quasi-separated
morphism of schemes. A quasi-coherent OX-module F is flat over C if and only
if every associated point of F maps to the generic point of C.

Recall that if X ⊂ PnK is a subscheme and F is a quasi-coherent OX -module,
the Hilbert polynomial of F is PF(n) = χ(X,F(n)) ∈ Q[n].
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Proposition A.2.5 (Flatness vs the Hilbert Polynomial). Let Y be an integral
scheme and X ⊂ PnY a closed subscheme. A quasi-coherent OX-module F is flat
over Y if and only if the function

Y → Q[n], y 7→ PF|Xy

assigning a point y ∈ Y to the Hilbert polynomial of the restriction F|Xy to the
fiber Xy ⊂ Pnκ(y) is constant.

Proposition A.2.6 (Generic flatness). Let f : X → S be a finite type morphism
of schemes and F be a finite type quasi-coherent OX-module. If S is reduced,
there exists an open dense subscheme U ⊂ S such that XU → U is flat and of
presentation and such that F|XU is flat over U and of finite presentation as on
OXU -module.

A.2.3 Faithful flatness

For a ring A, an A-module M is faithfully flat if for all non-zero map φ : N → N ′

of A-modules, the induced map φ⊗AM : N ⊗AM → N ′ ⊗AM is also non-zero.

Faithfully Flat Equivalences A.2.7. Let R be a ring and M be an A-module.
The following are equivalent:

(1) M is faithfully flat;

(2) for any A-module N and non-zero element n ∈ N , the map M → N ⊗M
given by m 7→ m⊗ n is non-zero;

(3) for any non-zero A-module N , we have N ⊗AM is non-zero;

(4) the functor −⊗RM : Mod(R)→ Mod(R) is faithfully exact, i.e. a sequence
N ′ → N → N ′′ of A-modules is exact if and only if N ′⊗AM → N ⊗AM →
N ′′ ⊗AM is exact; and

(5) M is flat and for all maximal ideals m ⊂ A, the quotient M/mM is non-zero.

If in addition M = B is an A-algebra, then the above are also equivalent to:

(6) SpecB → SpecA is flat and surjective.

A morphism f : X → Y of schemes is faithfully flat if f is flat and surjective.
This is equivalent to the condition that f∗ : QCoh(Y )→ QCoh(X) is faithfully
exact. It is also equivalent to the condition that a quasi-coherent OY -module (resp.
a morphism of quasi-coherent OY -modules) is zero if and only if its pullback is.

A.3 Étale, smooth and unramified morphisms

A.3.1 Smooth morphisms

A morphism f : X → Y of schemes is smooth if f is locally of finite presentation
and flat, and the geometric fiber X

κ(y)
= X ×Y Specκ(y) of any point y ∈ Y is

regular.

Smooth Equivalences A.3.1. Let f : X → Y be morphism of schemes locally
of finite presentation. The following are equivalent:

(1) f is smooth;
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(2) f is formally smooth, i.e. for any surjection A→ A0 of rings with nilpotent
kernel and any commutative diagram

SpecA0
//

� _

��

X

f

��

SpecA //

;;

Y

of solid arrows, there exists a dotted arrow filling in the diagram;

(This is often referred to as the Formal Lifting Criterion for Smoothness.)

(3) for every point x ∈ X, there exist affine open neighborhoods SpecB of f(x)
and SpecA ⊂ f−1(SpecB) of x and an A-algebra isomorphism

B ∼=
(
A[x1, . . . , xn]/(f1, . . . , fr)

)
g

for some f1, . . . , fr, g ∈ A[x1, . . . , xn] with r ≤ n such that the determinant

det(
δfj
δxi

)1≤i,j≤r ∈ B of the Jacobi matrix, defined by the partial derivatives
with respect first r xi’s, is a unit.

(This is often referred to as the Jacobi Criterion for Smoothness.)

If in addition X and Y are locally of finite type over an algebraically closed field
K, then the above are equivalent to:

(4) for all x ∈ X(K), there is an isomorphism ÔX,x ∼= ÔY,y[[x1, . . . , xr]] of

ÔY,y-algebras.

If f : X → Y is a smooth morphism of schemes, then ΩX/Y is a locally free
OX -module of finite rank. If Y is connected, the rank of ΩX/Y is the dimension
of any fiber.

A.3.2 Étale morphisms

A morphism f : X → Y of schemes is étale if f is smooth of relative dimension 0
(i.e. f is smooth and dimXy = 0 for all y ∈ Y ).

Étale Equivalences A.3.2. Let f : X → Y be morphism of schemes locally of
finite presentation. The following are equivalent:

(1) f is étale;

(2) f is smooth and ΩX/Y = 0;

(3) f is flat and for all y ∈ Y , the fiber Xy is isomorphic to a disjoint union⊔
i SpecKi where each Ki is separable field extension of κ(y); (This is exactly

the condition that f is flat and unramified; see Section A.3.3.)

(4) f is formally étale, i.e. for any surjection A → A0 of rings with nilpotent
kernel and any commutative diagram

SpecA0
//

� _

��

X

f

��

SpecA //

;;

Y

of solid arrows, there exists a unique dotted arrow filling in the diagram;

(This is often referred to as the Formal Lifting Criterion for Étaleness.)
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(5) for every point x ∈ X, there exist affine open neighborhoods SpecB of f(x)
and SpecA ⊂ f−1(SpecB) of x and an A-algebra isomorphism

B ∼=
(
A[x1, . . . , xn]/(f1, . . . , fn)

)
g

for some f1, . . . , fn, g ∈ A[x1, . . . , xn] such that the determinant det(
δfj
δxi

)1≤i,j≤n ∈
B is a unit.

(This is often referred to as the Jacobi criterion for étaleness.)

If in addition X and Y are locally of finite type over an algebraically closed field
K, then the above are equivalent to:

(6) for all x ∈ X(K), the induced map ÔY,y → ÔX,x on completions is an
isomorphism

If in addition X and Y are smooth over K, then the above are equivalent to:

(7) for all x ∈ X(K), the induced map TX,x → TY,y on tangent spaces is an
isomorphism.

A.3.3 Unramified morphisms

A morphism f : X → Y of schemes is unramified if f is locally of finite type and
every geometric fiber is discrete and reduced. Note that this second condition is
equivalent to requiring that for all y ∈ Y , the fiber Xy is isomorphic to a disjoint
union

⊔
i SpecKi where each Ki is separable field extension of κ(y).

!
a

Warning A.3.3. We are following the conventions of [RG71] and [SP] rather
than [EGA] as we only require that f is locally of finite type rather than locally
of finite presentation.

Unramified Equivalences A.3.4. Let f : X → Y be morphism of schemes
locally of finite type. The following are equivalent:

(1) f is unramified;

(2) ΩX/Y = 0;

(3) f is formally unramifed, i.e. for any surjection A → A0 of rings with
nilpotent kernel and any commutative diagram

SpecA0
//

� _

��

X

f

��

SpecA //

;;

Y

of solid arrows, there exists at most one dotted arrow filling in the diagram.

(This is often referred to as the Formal Lifting Criterion for Unramifiedness.)

If in addition X and Y are locally of finite type over an algebraically closed field
K, then the above are equivalent to:

(4) for all x ∈ X(K), the induced map ÔY,y → ÔX,x on completions is surjective.

A.3.4 Further properties

The following proposition states that any smooth morphism X → Y is étale locally
(on the source and target) of the form AnR → SpecR and in particular has sections
étale locally on the target.
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Proposition A.3.5. Let X → Y be a morphism of schemes which is smooth at
a point x ∈ X. There exists affine open subschemes SpecA ⊂ X and SpecB ⊂ Y
with x ∈ SpecA, and a commutative diagram

X

��

SpecA

��

oo // AnB

{{

Y SpecBoo

where U → AnB is étale.

Proposition A.3.6 (Fiberwise criteria for étaleness/smoothness/unramifiedness).
Consider a diagram

X

��

//

S

Y

��

of schemes where X → S and Y → S are locally of finite presentation. Assume
that X → S is flat in the étale/smooth case. Then X → Y is étale (resp. smooth,
unramified) if and only if Xs → Ys is for all s ∈ S.

Remark A.3.7. With the same hypotheses, let x ∈ X be a point with image
s ∈ S. Then X → Y is étale (resp. smooth, unramified) at x ∈ X if and only if
Xs → Ys is at x.

Corollary A.3.8. If f : X → Y is a proper morphism of finite presentation, then
the set y ∈ Y such that Xy → Specκ(y) is smooth defines an open subset.

Proof. By Remark A.3.7, if y ∈ Y is a point such that Xy → Specκ(y) is smooth,
then f : X → Y is smooth in an open neighborhood of Xy. If Z ⊂ X is the closed
locus where f : X → Y is not smooth, then f(Z) ⊂ Y is precisely the locus where
the fibers of f are not smooth. Since f is proper, f(Z) is closed.

Proposition A.3.9. Let X → Y be a smooth morphism of noetherian schemes.
For any point x ∈ X with image y ∈ Y ,

dimx(X) = dimy(Y ) + dimx(Xy).

A.4 Artin approximation

In this section, we discuss the deep result of Artin Approximation (Theorem A.4.10)
which can be vaguely expressed as the following principle:

Principle. Algebraic properties that hold for the completion ÔS,s of the
local ring of a scheme S at a point s also hold in an étale neighborhood
(S′, s′)→ (S, s).

Artin approximation is related to another equally deep and powerful result
known as Néron–Popescu Desingularization (Theorem A.4.4). Both Artin Ap-
proximation and Néron–Popescu are difficult theorems which we will not attempt
to prove here. However, we will show at least how Artin Approximation easily
follows from Néron–Popescu Desingularization.
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A.4.1 Néron–Popescu Desingularization

Definition A.4.1. A ring homomorphism A → B of noetherian rings is called
geometrically regular if A→ B is flat and for every prime ideal p ⊂ A and every
finite field extension k(p)→ k′ (where k(p) = Ap/p), the fiber B ⊗A k′ is regular.

Remark A.4.2. It is important to note that A → B is not assumed to be of
finite type. In the case that A→ B is a ring homomorphism (of noetherian rings)
of finite type, then A→ B is geometrically regular if and only if A→ B is smooth
(i.e. SpecB → SpecA is smooth).

Remark A.4.3. It can be shown that it is equivalent to require the fibers B⊗A k′
to be regular only for inseparable field extensions k(p) → k′. In particular, in
characteristic 0, A→ B is geometrically regular if it is flat and for every prime
ideal p ⊂ A, the fiber B ⊗A k(p) is regular.

Theorem A.4.4 (Néron–Popescu Desingularization). Let A → B be a ring
homomorphism of noetherian rings. Then A→ B is geometrically regular if and
only if B = colim−−−→Bλ is a direct limit of smooth A-algebras.

Remark A.4.5. This was result was proved by Néron in [Nér64] in the case that
A and B are DVRs and in general by Popescu in [Pop85], [Pop86], [Pop90]. We
recommend [Swa98] and [SP, Tag 07GC] for an exposition on this result.

Example A.4.6. If l is a field and ls denotes its separable closure, then l→ ls is
geometrically regular. Clearly, ls is the direct limit of separable field extensions
l→ l′ (i.e. étale and thus smooth l-algebras). If l is a perfect field, then any field
extension l→ l′ is geometrically regular—but if l→ l′ is not algebraic, it is not
possible to write l′ is a direct limit of étale l-algebras. On the other hand, if l is a
non-perfect field, then l→ l is not geometrically regular as the geometric fiber is
non-reduced and thus not regular.

In order to apply Néron–Popescu Desingularization, we will need the following
result, which we will also accept as a black box. The proof is substantially easier
than Néron–Popescu’s result but nevertheless requires some effort.

Theorem A.4.7. If S is a scheme of finite type over a field k or Z and s ∈ S is
a point, then OS,s → ÔS,s is geometrically regular.

Remark A.4.8. See [EGA, IV.7.4.4] or [SP, Tag 07PX] for a proof.

Remark A.4.9. A local ring A is called a G-ring if the homomorphism A→ Â
is geometrically regular. We remark that one of the conditions for a scheme S to
be excellent is that every local ring is a G-ring. Any scheme that is finite type
over a field or Z is excellent.

A.4.2 Artin Approximation

Let S be a scheme and consider a contravariant functor

F : Sch /S → Sets
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where Sch /S denotes the category of schemes over S. An important example of a
contravariant functor is the functor representing a scheme: if X is a scheme over
S, then the functor representing X is:

hX : Sch /S → Sets, (T → S) 7→ MorS(T,X). (A.4.1)

We say that F is locally of finite presentation or limit preserving if for every
direct limit lim−→Bλ of OS-algebras Bλ (i.e. a direct limit of commutative rings Bλ
together with morphisms SpecBλ → S), the natural map

lim−→F (SpecBλ)→ F (Spec lim−→Bλ)

is bijective. This should be viewed as a finiteness condition on the functor F .
Indeed, a scheme X is locally of finite presentation over S if and only if its function
MorS(−, X) is (Proposition A.1.2).

Theorem A.4.10 (Artin Approximation). Let S be an excellent scheme (e.g. a
scheme of finite type over a field or Z) and let

F : Sch /S → Sets

be a limit preserving contravariant functor. Let s ∈ S be a point and ξ̂ ∈
F (Spec ÔS,s). For any integer N ≥ 0, there exist a residually-trivial étale mor-
phism

(S′, s′)→ (S, s) and ξ′ ∈ F (S′)

such that the restrictions of ξ̂ and ξ′ to Spec(OS,s/m
N+1
s ) are equal.

Remark A.4.11. The following theorem was originally proven in [Art69, Cor. 2.2]
in the case that S is of finite type over a field or an excellent dedekind domain.
We also recommend [BLR90, §3.6] for an accessible account of the case of excellent
and henselian DVRs.

Remark A.4.12. The condition that (S′, s′)→ (S, s) is residually trivial means
that the extension of residue fields κ(s) → κ(s′) is an isomorphism. To make
sense of the restriction ξ′ to Spec(OS,s/m

N+1
s ), note that since (S′, s′)→ (S, s) is a

residually-trivial étale morphism, there are compatible identifications OS,s/m
N+1
s

∼=
OS′,s′/m

N+1
s′ ).

Remark A.4.13. It is not possible in general to find ξ′ ∈ F (S′) restricting to

ξ̂ or even such that the restrictions of ξ′ and ξ̂ to SpecOS,s/m
n+1
s agree for all

n ≥ 0. For instance, F could be the functor Mor(−,A1) representing the affine

line A1 and ξ̂ ∈ ÔS,s could be a non-algebraic power series.

A.4.3 Alternative formulation of Artin Approximation

Consider the functor F : Sch /S → Sets representing an affine scheme X =
SpecA[x1, . . . , xn]/(f1, . . . , fm) of finite type over an excellent affine scheme S =
SpecA. Restricted to the category of affine schemes over S (or equivalently
A-algebras), the functor is:

F : AffSch /S → Sets

SpecB 7→ {a = (a1, . . . , an) ∈ B⊕n | fi(a) = 0 for all i}

Applying Artin Approximation to the functor F , we obtain:
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Corollary A.4.14. Let R be an excellent ring and A be a finitely generated
R-algebra. Let m ⊂ A be a maximal ideal. Let f1, . . . , fm ∈ A[x1, . . . , xn] be

polynomials. Let â = (â1, . . . , ân) ∈ Âm be a solution to the equations f1(x) =
· · · = fm(x) = 0. Then for every N ≥ 0, there exist a residually-trivial étale ring
homomorphism (A,m)→ (A′,m′) and a solution a′ = (a′1, . . . , a

′
n) ∈ A′⊕n to the

equations f1(x) = · · · = fm(x) = 0 such that a′ ∼= â mod mN+1.

Remark A.4.15. Although this corollary may seem weaker than Artin Approxi-
mation, it is not hard to see that it in fact directly implies Artin Approximation.
Indeed, writing S = SpecA, we may write ÔS,s as a direct limit of finite type
A-algebras and since F is limit preserving, we can find a commutative diagram

Spec ÔS,s

��

ξ̂

))
SpecA[x1, . . . , xn]/(f1, . . . , fm)

ξ
// F.

The vertical morphism corresponds to a solution â = (â1, . . . , ân) ∈ Ô⊕nS,s to the
equations f1(x) = · · · = fm(x) = 0. Applying Corollary A.4.14 yields the desired
étale morphism (SpecA′, s′)→ (SpecA, s) and a solution a′ = (a′1, . . . , a

′
n) ∈ A′⊕n

to the equations f1(x) = · · · = fm(x) = 0 agreeing with â up to order N (i.e.
congruent modulo mN+1). This induces a morphism

ξ′ : SpecA′ → SpecA[x1, . . . , xn]/(f1, . . . , fm)→ F

which agrees with ξ̂ : Spec ÔS,s → F to order N .

Alternatively, we can state Corollary A.4.14 using henselian rings. Recall that
a local ring (A,m) is called henselian if the following analogue of the implicit
function theorem holds: if f1, . . . , fn ∈ A[x1, . . . , xn] and a = (a1, . . . , an) ∈
(A/m)⊕n is a solution to the equations f1(x) = · · · = fn(x) = 0 modulo m and
det
(
∂fi
∂xj

(a)
)
i,j=1,...,n

6= 0, then there exists a solution a = (a1, . . . , an) ∈ A⊕n

to the equations f1(x) = · · · = fn(x) = 0. Equivalently, if (A,m) is a local
k-algebra with A/m ∼= k, then (A,m) is henselian if every étale homomorphism
(A,m)→ (A′,m′) of local rings with A/m ∼= A′/m′ is an isomorphism. Also, if S
is a scheme and s ∈ S is a point, one defines the henselization OhS,s of S at s to be

OhS,s = lim−→
(S′,s′)→(S,s)

Γ(S′,OS′)

where the direct limit is over all étale morphisms (S′, s′)→ (S, s). In other words,
OhS,s is the local ring of S at s in the étale topology.

Corollary A.4.16. Let (A,m) be an excellent local henselian ring (e.g. the
henselization of the local ring of a scheme of finite type over a field or Z). Let

f1, . . . , fm ∈ A[x1, . . . , xn]. Suppose that â = (â1, . . . , ân) ∈ Â⊕n is a solution to
the equations f1(x) = · · · = fm(x) = 0. For any integer N ≥ 0, there exists a
solution a = (a1, . . . , an) ∈ A⊕n to the equations f1(x) = · · · = fm(x) = 0 such
that â ∼= a mod mN+1.
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A.4.4 A first application of Artin Approximation

The next corollary states an important fact which you may have taken for granted:
if two schemes are formally isomorphic at two points, then they are isomorphic in
the étale topology.

Corollary A.4.17. Let X1, X2 be schemes of finite type over an excellent scheme
S. Suppose x1 ∈ X1, x2 ∈ X2 are points such that ÔX1,x1

and ÔX2,x2
are iso-

morphic as OS-algebras. Then there exists a common residually-trivial étale
neighborhood

(X3, x3)

&&yy

(X1, x1) (X2, x2) .

(A.4.2)

Proof. The functor

F : Sch /X1 → Sets, (T → X1) 7→ Mor(T,X2)

is limit preserving as it can be identified with the representable functor
MorX1

(−, X2×X1) corresponding to the finite type morphism X2×X1 → X1. The

isomorphism ÔX1,x1
∼= ÔX2,x2 provides an element of F (Spec ÔX1,x1). By applying

Artin Approximation with N = 1, we obtain a diagram as in (A.4.2) with X3 → X1

étale at x3 with κ(x2)
∼→ κ(x3) and such that OX2,x2

/m2
x2
→ OX3,x3

/m2
x3

is an

isomorphism. By Lemma A.4.18, ÔX2,x2
→ ÔX3,x3

is surjective. But we also know

that ÔX3,x3
is abstractly isomorphic to ÔX2,x2

and since any surjective endomor-

phism of a noetherian ring is an isomorphism, we conclude that ÔX2,x2 → ÔX3,x3

is an isomorphism and therefore that (X3, x3)→ (X2, x2) is étale.

Lemma A.4.18. Let (A,mA)→ (B,mB) be a local homomorphism of noetherian
complete local rings. If A/m2

A → B/m2
B is surjective, so is A→ B.

Proof. This follows from the following version of Nakayama’s lemma for noetherian
complete local rings (A,m): if M is a (not-necessarily finitely generated) A-module
such that

⋂
k m

kM = 0 and m1, . . . ,mn ∈ F generate M/mM , then m1, . . . ,mn

also generate M (see [Eis95, Exercise 7.2]).

A.4.5 Néron–Pescue Desingularization =⇒ Artin Approx-
imation

By Theorem A.4.7, the morphism OS,s → ÔS,s is geometrically regular. By

Néron–Popescu Desingularization (Theorem A.4.4), ÔS,s = lim−→Bλ is a direct
limit of smooth OS,s-algebras. Since F is limit preserving, there exist λ, a

factorization OS,s → Bλ → ÔS,s and an element ξλ ∈ F (SpecBλ) whose restriction

to F (Spec ÔS,s) is ξ̂.
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Let B = Bλ and ξ = ξλ. Geometrically, we have a commutative diagram

Spec ÔS,s
g
//

ξ̂

''

&&

SpecB

��

ξ
// F

SpecOS,s

where SpecB → SpecOS,s is smooth. We claim that we can find a commutative
diagram

S′

##

� � // SpecB

��

SpecOS,s

(A.4.3)

where S′ ↪→ SpecB is a closed immersion, (S′, s′) → (SpecOS,s, s) is étale, and
the composition SpecOS,s/m

N+1
s → S′ → SpecB agrees with the restriction of

g : Spec ÔS,s → SpecB.1

To see this, observe that the B-module of relative differentials ΩB/OS,s is
locally free. After shrinking SpecB around the image of the closed point under
Spec ÔS,s → SpecB, we may assume ΩB/OS,s is free with basis db1, . . . , dbn. This
induces a homomorphism OS,s[x1, . . . , xn]→ B defined by xi 7→ bi and provides a
factorization

SpecB //

��

AnOS,s

yy

SpecOS,s

where SpecB → AnOS,s is étale. We may choose a lift of the composition

OS,s[x1, . . . , xn]→ B → ÔS,s → OS,s/m
N+1
s

to a morphism OS,s[x1, . . . , xn]→ OS,s. This gives a section s : SpecOS,s → AnOS,s
and we define S′ as the fibered product

S′� _

��

// SpecOS,s� _

s

��

SpecB //

�

AnOS,s .

This gives the desired Diagram A.4.3. The composition ξ′ : S′ → SpecB
ξ−→ F is

an element which agrees with ξ̂ up to order N .
By “standard direct limit” methods, we may “smear out” the étale morphism

(S′, s′) → (SpecOS,s, s) and the element ξ′ : S′ → F to find an étale morphism

1This is where the approximation occurs. It is not possible to find a morphism S′ → SpecB →
SpecOS,s which is étale at a point s′ over s such that the composition Spec ÔS,s → S′ → SpecB
is equal to g.
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(S′′, s′′) → (S, s) and an element ξ′′ : S′′ → F agreeing with ξ̂ up to order N .
Since this may not be standard for everyone, we spell out the details. Let
SpecA ⊂ S be an open affine containing s. We may write S′ = SpecA′ and
A′ = OS,s[y1, . . . , yn]/(f ′1, . . . , f

′
m). As OS,s = lim−→g/∈ms

Ag, we can find an element

g /∈ ms and elements f ′′1 , . . . , f
′′
m ∈ Ag[y1, . . . , yn] restricting to f ′1, . . . , f

′
m. Let

S′′ = SpecAg[y1, . . . , yn]/(f ′′1 , . . . , f
′′
m) and s′′ ∈ S′′ be the image of s′ under S′ →

S′′. Then S′′ → S is étale at s′′. As A′ = lim−→h/∈ms
Ahg[y1, . . . , yn]/(f ′1, . . . , f

′
m)

and F is limit preserving, we can, after replacing g with hg, find an element
ξ′′ ∈ F (S′′) restricting to ξ′ and, in particular, agreeing with ξ̂ up to order N .
Finally, we shrink S′′ around s′′ so that S′′ → S is étale everywhere.
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Appendix B

Descent

It is hard to overstate the importance of descent in moduli theory. The central idea
of descent is as simple as it is powerful. You already know that many properties
of schemes and their morphisms can be checked on a Zariski-cover, and descent
theory states that they can also be checked on étale covers or even faithfully flat
covers. For example, if Y ′ → Y is étale and surjective, then a morphism X → Y
is proper if and only if X ×Y Y ′ → Y ′ is.

The applications of descent reach far beyond moduli theory. For instance, it
can be used to reduce statements about schemes over a field k to the case when k
is algebraically closed since k → k is faithfully flat, or reduce statements over a
local noetherian ring A to its completion Â since A→ Â is faithfully flat.

References: [BLR90, Ch.6], [Vis05], [Ols16, Ch. 4], [SP, Tag 0238], [EGA,
§IV.2], and [SGA1, §VIII.7] (other descent results are scattered throughout EGA
and SGA).

B.1 Descent for quasi-coherent sheaves

Descent theory rests on the following algebraic fact.

Proposition B.1.1. If φ : A→ B is a faithfully flat ring map, then the sequence

A
φ
// B

b7→b⊗1
//

b7→1⊗b
// B ⊗A B

is exact. More generally, if M is an A-module, the sequence

M
m 7→m⊗1

// M ⊗A B
m⊗b7→m⊗b⊗1

//

m⊗b7→m⊗1⊗b
// M ⊗A B ⊗A B (B.1.1)

is exact.

Remark B.1.2. By Faithfully Flat Equivalences A.2.7, A→ B and M →M⊗AB
are necessarily injective.

Proof. Since A→ B is faithfully flat, the sequence (B.1.1) is exact if and only if
the sequence

M ⊗A B
m⊗b′ 7→m⊗1⊗b′

// M ⊗A B ⊗A B
m⊗b⊗b′ 7→m⊗b⊗1⊗b′

//

m⊗b⊗b′ 7→m⊗1⊗b⊗b′
// M ⊗A B ⊗A B ⊗A B
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is exact. The above sequence can be rewritten as

M ⊗A B
x 7→x⊗1

// (M ⊗A B)⊗B (B ⊗A B)
x⊗y 7→x⊗y⊗1

//

x⊗y 7→x⊗1⊗y
// (M ⊗A B)⊗B (B ⊗A B)⊗B (B ⊗A B)

which is precisely sequence (B.1.1) applied to ring B → B⊗AB given by b 7→ 1⊗b
and the B-module M⊗AB. Since this ring map has a section B⊗AB → B given by
b⊗b′ 7→ bb′, we can assume that in the statement φ : A→ B has a section s : B → A
with s ◦ φ = idA. Let x ∈ M ⊗A B such that x ⊗ 1 = 1 ⊗ x ∈ M ⊗A B ⊗A B.
Applying idM ⊗ idB ⊗s : M ⊗A B ⊗A B → M ⊗A B ⊗A A ∼= M ⊗A B to the
identity x ⊗ 1 = 1 ⊗ x yields that x = (idM ⊗s)(x) ∈ M where idM ⊗s denotes
the composition M ⊗A B →M ⊗A A

∼→M .

Proposition B.1.3. Let f : X → Y be a faithfully flat morphism of schemes
that is either quasi-compact or locally of finite presentation. Let F and G be
quasi-coherent OY -modules. Let p1, p2 denote the two projections X ×Y X → X

and q denote the composition X ×Y X
pi−→ X

f−→ Y . Then the sequence

HomOY (F,G)
f∗
// HomOX (f∗F, f∗G)

p∗1 //

p∗2

// HomOX×Y X
(q∗F, q∗G)

is exact.

Remark B.1.4. The special case that F = OY implies that 0 → Γ(Y,G)
f∗−→

Γ(X, f∗G)
p∗1−p

∗
2−−−−→ Γ(X ×Y X, q∗G) is exact. When X and Y are affine, this is

precisely Proposition B.1.1.

Proof. This can be reduced to Proposition B.1.1 by first reducing to the case
that Y is affine. If f is quasi-compact, we reduce to the case that X is affine by
choosing a finite affine cover {Ui} and replacing X with the affine scheme

⊔
i Ui.

If f is locally of finite presentation, we apply Corollary A.2.3 to reduce to the
quasi-compact case. We leave the details to the reader.

Proposition B.1.5. Let f : X → Y be a faithfully flat morphism of schemes that
is either quasi-compact or locally of finite presentation. Let F be a quasi-coherent
OX-module and α : p∗1F → p∗2F an isomorphism of OX×YX-modules satisfying the
cocycle condition p∗12α ◦ p∗23α = p∗13α on X ×Y X ×X Y . Then there exists a quasi-
coherent OY -module G and an isomorphism φ : F → f∗G such that p∗1φ = p∗2φ ◦ α
on X ×Y X. The data (F, φ) is unique up to unique isomorphism.

Remark B.1.6. The following diagram may be useful to internalize the above
statement:

p∗12α ◦ p∗23α = p∗13α p∗1F
α−→ p∗2 F ∃G

X ×Y X ×Y X
p12 //

p23 //

p13 // X ×Y X
p1 //

p2

// X
f
// Y

Keep in mind the special case that X =
⊔
i Yi where {Yi} is an open covering of

Y in which case the above fiber products correspond to intersections.
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The cocycle condition p∗12α ◦ p∗23α = p∗13α should be understood as the com-
mutativity of

p∗12p
∗
1F

p∗12α // p∗12p
∗
2F p∗23p

∗
1F

p∗23α

��

p∗13p
∗
1F

p∗13α // p∗13p
∗
2F p∗23p

∗
2F

and the condition that p∗1φ = p∗2φ ◦ α should be understood as the commutativity
of

p∗1F
p∗1φ //

α

��

p∗1f
∗G

p∗2F
p∗2φ // p∗2f

∗G.

Remark B.1.7. Propositions B.1.3 and B.1.5 together can be reformulated as
the statement that the category QCoh(Y ) is equivalent to the category of descent
datum for X → Y , denoted by QCoh(X → Y ). Here the objects of QCoh(X → Y )
are pairs (F, α) consisting of a quasi-coherent OX -module F and an isomorphism
α : p∗1F → p∗2F satisfying the cocycle condition. A morphism (F′, α′)→ (F, α) is a
morphism β : F′ → F such that

p∗1F
′ α′ //

p∗1β

��

p∗2F
′

p∗2β

��

p∗1F
α // p∗2F

commutes.

B.2 Descent for morphisms

The following result implies that if Z is a scheme, the functor Mor(−, Z) : Sch→
Sets is a sheaf in the fppf topology.

Proposition B.2.1. Let f : X → Y be a faithfully flat morphism of schemes
that is either quasi-compact or locally of finite presentation. If g : X → Z is any
morphism to a scheme such that p1 ◦ g = p2 ◦ g on X ×Y X, then there exists a
unique morphism h : Y → Z filling in the commutative diagram

X ×Y X
p1 //

p2

// X
f
//

g

��

Y

h

��

Z

of solid arrows.

B.3 Descending schemes

Proposition B.3.1 (Effective Descent for Open and Closed Immersions). Let
f : X → Y be a faithfully flat morphism of schemes that is either quasi-compact
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or locally of finite presentation. If Z ⊂ X is a closed (resp. open) subscheme such
that p1

−1(Z) = p−1
2 (Z) as closed (resp. open) subschemes of X ×Y X, then there

exists a closed (resp. open) subscheme W ⊂ Y such that Z = f−1(W ).

To formulate effective descent for morphisms that are not monomorphisms,
we need to specify an isomorphism of pullbacks satisfying a cocycle condition.
We will use the following notation: if f : X → Y and W → Y are morphisms of
schemes, we denote f∗W as the fiber product X ×Y W .

Proposition B.3.2 (Effective Descent for Affine Immersions). Let f : X → Y be
a faithfully flat morphism of schemes that is either quasi-compact or locally of
finite presentation. If Z → X is an affine morphism and α : p1

∗(Z)
∼→ p∗2(Z) is an

isomorphism over X×Y X satisfying p∗12α◦p∗23α = p∗13α, then there exists an affine
morphism W → Y and an isomorphism φ : Z → f∗(W ) such that p∗1φ = p∗2φ ◦ α.

Remark B.3.3. It is helpful to interpret the above statement using the diagram

p∗12α ◦ p∗23α = p∗13α p∗1Z
α−→ p∗2Z

����

Z

��

// W

��

X ×Y X ×Y X
p12 //

p23 //

p13 // X ×Y X
p1 //

p2

// X
f
// Y.

Proposition B.3.4 (Effective Descent for Quasi-affine Immersions). Let f : X →
Y be a faithfully flat morphism of schemes that is either quasi-compact or locally of
finite presentation. If Z → X is a quasi-affine morphism and α : p1

∗(Z)
∼→ p∗2(Z)

is an isomorphism over X ×Y X satisfying p∗12α ◦ p∗23α = p∗13α, then there exists
an quasi-affine morphism W → Y and an isomorphism φ : Z → f∗(W ) such that
p∗1φ = p∗2φ ◦ α.

Proposition B.3.5 (Effective Descent for Separated and Locally Quasi-finite
Morphisms). Let f : X → Y be a faithfully flat morphism of schemes that is either
quasi-compact or locally of finite presentation. If Z → X is a separated and locally
quasi-finite morphism of schemes and α : p1

∗(Z)
∼→ p∗2(Z) is an isomorphism over

X ×Y X satisfying p∗12α ◦ p∗23α = p∗13α, then there exists an quasi-affine morphism
W → Y and an isomorphism φ : Z → f∗(W ) such that p∗1φ = p∗2φ ◦ α.

Corollary B.3.6. Let P be one of the following properties of morphisms of
schemes: open immersion, closed immersion, locally closed immersion, affine,
quasi-affine or separated and locally quasi-finite. Let f : X → Y be a faithfully flat
morphism of schemes that is either quasi-compact or locally of finite presentation.
Let Q→ Y be a map of sheaves and consider the fiber product

QX

��

// Q

��

X
f
// Y.

If QX is a scheme and QX → X has P, then Q is a scheme and Q→ Y has P.

Proof. As QX is the pullback of Q, there is a canonical isomorphism α : p∗1QX →
p∗2QX satisfying the cocycle condition. By Propositions B.3.1, B.3.2, B.3.4
and B.3.5, there exists a quasi-affine morphism W → Y that pulls back to
QX → X. The reader to left to check that the natural map Q → W is an
isomorphism.
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B.4 Descending properties of schemes and their
morphisms

B.4.1 Descending properties of morphisms

Proposition B.4.1 (Properties flat local on the target). Let Y ′ → Y be a
faithfully flat morphism of schemes that is either quasi-compact or locally of finite
presentation. Let P be one of the following properties of a morphism of schemes:

(i) isomorphism;

(ii) surjective;

(iii) proper;

(iv) flat;

(v) smooth;

(vi) étale;

(vii) unramified.

Then X → Y has P if and only if X ×Y Y ′ → Y ′ does.

Proposition B.4.2 (Properties smooth local on the source). Let X ′ → X be
a smooth and surjective morphism of schemes. Let P be one of the following
properties of a morphism of schemes:

(i) surjective;

(ii) smooth;

Then X → Y has P if and only if X ′ → X → Y does.

Proposition B.4.3 (Properties étale local on the source). Let X ′ → X be an
étale and surjective morphism of schemes. Let P be one of the following properties
of a morphism of schemes:

(i) surjective;

(ii) étale;

(iii) smooth.

Then X → Y has P if and only if X ′ → X → Y does.

MORE PROPERTIES TO BE ADDED

B.4.2 Descent for properties of quasi-coherent sheaves

Proposition B.4.4. Let f : X → Y be a faithfully flat morphism of schemes that
is either quasi-compact or locally of finite presentation. Let P ∈ {finite type, finite
presentation, vector bundle} be a property of quasi-coherent sheaves. If G is a
quasi-coherent OY -module, then G has P if and only if f∗G does. If X and Y are
noetherian, then the same holds for the property of coherence.
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Appendix C

Algebraic groups and actions

C.1 Algebraic groups

C.1.1 Group schemes

Definition C.1.1. A group scheme over a scheme S is a morphism π : G → S
of schemes together with a multiplication morphism µ : G×S G→ G, an inverse
morphism ι : G→ G and an identity morphism e : S → G (with each morphism
over S) such that the following diagrams commute:

G×S G×S G
idG×µ//

µ×idG

��

G×S G

µ

��

G×S G
µ

// G

Associativity

G

(ι,idG)

��

(idG,ι)
//

e◦π

%%

G×S G

µ

��

G×S G
µ

// G

Law of inverse

G

(idG,e◦π)

��

(e◦π,idG)
//

idG

%%

G×S G

µ

��

G×S G
µ

// G

Law of identity

A morphism φ : H → G of schemes over S is a morphism of group schemes if
µG ◦ (φ× φ) = φ ◦ µH . A closed subgroup of G is a closed subscheme H ⊂ G such

that H → G
µG−−→ G×G factors through H ×H.

Remark C.1.2. If G and S are affine, then by reversing the arrows above gives
Γ(G,OG) the structure of a Hopf algebra over Γ(S,OS).

Exercise C.1.3. Show that a group scheme over S is equivalently defined as a
scheme G over S together with a factorization

Sch /S //

MorS(−,G)
##

Gps

��

Sets

where Gps→ Sets is the forgetful functor.
(We are not requiring that there exists a factorization; the factorization is part

of the data. Indeed, the same scheme can have multiple structures as a group
scheme, e.g. Z/4 and Z/2× Z/2 over C.)

Example C.1.4. The following examples of group schemes are the most relevant
for us. Let S = SpecR and V be a free R-module of finite rank:
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1. The multiplicative group scheme over R is Gm,R = SpecR[t]t with comulti-
plication µ∗ : R[t]t → R[t]t ⊗R R[t′]t′ given by t 7→ tt′.

2. The additive group scheme over R is Ga,R = SpecR[t] with comultiplication
µ∗ : R[t]→ R[t]⊗R R[t′] given by t 7→ t+ t′.

3. The general linear group on V is

GL(V ) = Spec(Sym∗(End(V ))det)

with the comultiplication µ∗ : Sym∗(End(V ))→ Sym∗(End(V ))⊗RSym∗(End(V ))
which can be defined as following: choose a basis v1, . . . , vn of V and
let xij : V → V where vi 7→ vj and vk 7→ 0 if k 6= 0, and then define
µ∗(xij) = xi1x

′
1j + · · ·+ xinx

′
nj .

4. The special linear group on V is SL(V ) is the closed subgroup of GL(V )
defined by det = 1.

5. The projective linear group PGLn is the affine group scheme

Proj(Sym∗(End(V )))det

with the comultiplication defined similarly to GL(V ).

We write GLn,R = GL(Rn), SLn,R = GL(Rn) and PGLn,R = PGL(Rn). We often
simply write Gm, GLn, SLn and PGLn when there is no possible confusion on
what the base is.

Exercise C.1.5. (1) Provide functorial descriptions of each of the group schemes
above.

(2) Show that any abstract group G can be given the structure of a group scheme⊔
g∈G S over any base S. Provide both explicit and functorial descriptions.

C.1.2 Group actions

Definition C.1.6. An action of a group scheme G
π−→ S on a scheme X

p−→ S is
a morphism σ : G×S X → X over S such that the following diagrams commute:

G×S G×S X
idG×σ//

σ×idG

��

G×S X

σ

��

G×S X
σ // G

Compatibility

X
e◦p,idX//

idX

##

G×S X

σ

��

X
Law of identity

If X → S and Y → S are schemes with actions of G→ S, a morphism f : X → Y
of schemes over S is G-equivariant if σY ◦ (id×f) = f ◦ σX , and is G-invariant if
G-equivariant and Y has the trivial G-action.

Exercise C.1.7. Show that giving a group action of G → S on X → S is the
same as giving an action of the functor MorS(−, G) : Sch /S → Gps on the functor
MorS(−, X) : Sch /S → Sets.

(This requires first spelling out what it means for a functor to groups to act on
a functor to sets.)
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C.1.3 Representations

To define a representation, for simplicity we specialize to the case when S = SpecR
and G are affine. The case that most interests us of course is when R is a field. A
representation (or comodule) of a group scheme G→ SpecR is an R-module V
together with a homomorphism σ̂ : V → Γ(G,OG) ⊗R V (often referred to as a
coaction).

A representation V of G induces an action of G on A(V ) = Spec Sym∗ V , which
we refer to as a linear action. Morphisms of representations and subrepresentations
are defined in the obvious way.

Exercise C.1.8. If R = k is a field and V is a finite dimensional vector space,
show that giving V the structure as a representation is the same as giving a
homomorphism G→ GL(V ) of group schemes.

A representation V of G is irreducible if for every subrepresentation W ⊂ V is
either 0 or V .

Example C.1.9 (Diagonaliable group schemes). If A is a finitely generated
abelian group, we let R[A] be the free R-module generated by elements of A. The
R-module R[A] has the structure of an R-algebra with multiplication on generators
induced from multiplication in A. The comultiplication R[A]→ R[A]⊗R → R[A′]
defined by a 7→ a⊗ a′ defines a group scheme D(A) = SpecR[A] over SpecR. A
group scheme G over SpecR is diagonalizable if G ∼= D(A) for some A.

If A = Zr, then D(A) = Grm,A is the r-dimensional torus. If A = Z/n,
then D(A) = µn = Spec k[t]/(tn − 1). The classification of finitely generated
abelian groups implies that any diagonalizable group scheme is a product of
Grm × µn1 × · · ·µnk .

Exercise C.1.10. Describe D(A) as a functor Sch /R→ Gps.

Each element a ∈ A defines a one-dimensional representation Wa = A of D(A)
defined by the coaction Wa → R[A]⊗RWa defined by 1 7→ a⊗ 1.

Proposition C.1.11. Any free representation of a diagonalizable group scheme
is a direct sum of one-dimensional representations.

Proof. Let G = D(A) and let V = Ar be a free representation of G with coaction
σ̂ : V → R[A]⊗R V . Then for each a ∈ A,

Va := {v ∈ V | σ̂(v) = a⊗ v}

is isomorphic toW dimVa
a asG-representations. Then V ∼= ⊕a∈AVa asG-representations.

The details are left to the reader.

If V is a representation of an affine group scheme G over SpecR with coaction
σ̂, the invariant subrepresentation is defined as V G = {v ∈ V | σ̂(v) = 1 ⊗ v}.
Observe that V G = V0 using the notation in the proof above.

C.2 Properties of algebraic groups

An algebraic group over a field k if a group scheme G of finite type over k. While
we are not assuming that G is affine nor smooth. We are primarily interested in
affine algebraic groups.
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Algebraic Group Facts C.2.1. Let G be an affine algebraic group over a field
k.

(1) Every representation V of G is a union of its finite dimensional subrepresen-
tations.

(2) There exists a finite dimensional representation V and a closed immersion
G ↪→ GL(V ) of group schemes.

(3) If G acts on an affine scheme X of finite type over k, there exist a finite
dimensional representation V of G and a G-invariant closed immersion
X ↪→ A(V ).

(4) If char(k) = 0, then G is smooth.

Exercise C.2.2. Show that a separated group scheme G → S of finite type is
trivial if and only if the fiber Gs is trivial for each s ∈ S.

C.3 Principal G-bundles

The following definition of a principal G-bundle is an algebraic formulation of the
topological notion of a fiber bundle P → X with fiber G where G acts freely on
P and P → X is G-invariant (i.e. equivariant with respect to the trivial action of
G on X) with fibers isomorphic to G.

C.3.1 Definition and equivalences

Definition C.3.1. Let G→ S be a flat group scheme locally of finite presentation.
A principal G-bundle over an S-scheme X is flat morphism P → X locally of
finite presentation with an action of G via σ : G×S P → P such that P → X is
G-invariant and

(σ, p2) : G×S P → P ×X P, (g, p) 7→ (gp, p)

is an isomorphism.
A principal G-bundle is also often referred to as a G-torsor (see Defini-

tion C.3.12 and Exercise C.3.13).

Morphisms of principal G-bundles are G-equivariant morphisms.

Exercise C.3.2. Show that P → X is principal G-bundle over the S-scheme X
if and only if P → X is a principal G×S X-bundle over the X-scheme X.

Exercise C.3.3. Show that a morphism of principal G-bundles is necessarily an
isomorphism.

We call a principal G-bundle P → X trivial if there is a G-equivariant isomor-
phism P ∼= G×X where G acts on G×X via multiplication on the first factor.
The following proposition characterizes principal G-bundles as morphisms P → X
which are locally trivial.

Proposition C.3.4. Let G→ S be a flat group scheme locally of finite presen-
tation and P → X be a G-equivariant morphism of S-schemes where X has the
trivial action. Then P → X is a principal G-bundle if and only if there exists
a faithfully flat and locally of finite presentation morphism X ′ → X, and an
isomorphism P ×X X ′ → G×S X ′ of principal G-bundles over X ′. Moreover, if
G→ S is smooth, then X ′ → X can be arranged to be étale.
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Proof. The ⇒ direction follows from the definition by taking X ′ = P → X. For
⇐, after base changing G→ S by X → S, we assume that G is defined over X (see
Exercise C.3.2). Let GX′ and PX′ be the base changes of G and P along X ′ → X.
The base change of the action map (σ, p2) : G×X P → P ×X P along X ′ → X is
the action map GX′ ×X′ PX′ → PX′ ×X′ PX′ of GX′ acting on PX′ over X ′. Since
PX′ is trivial, this latter action map is an isomorphism. Since the property of being
an isomorphism descends along faithfully flat and locally of finite presentation
morphisms (Proposition B.4.1), we conclude that (σ, p2) : G×X P → P ×X P is
an isomorphism.

The final statement follows from the fact that smooth morphisms have sections
étale-locally (Proposition A.3.5).

Exercise C.3.5. Let L/K be a finite Galois extension and G = Gal(L/K) be
the finite group scheme over SpecK. Show that SpecL→ SpecK is a principal
G-bundle.

Exercise C.3.6. If X is a scheme, show that there there is an equivalence of
categories

{line bundles on X} → {principal Gm-bundle on X}
L 7→ A(L) \ 0

between the groupoids of line bundles on X and Gm-torsors on X and (where the
only morphisms allowed are isomorphisms). If L is a line bundle (i.e. invertible
OX -module), then A(L) denotes the total space Spec Sym∗ L∨ and 0 denotes the
zero section X → A(L).

Exercise C.3.7.

(1) Show that the standard projection An+1 \ 0→ Pn is a principal Gm-bundle.

(2) For each line bundle O(d) on Pn, explicitly determine the corresponding
principal Gm-bundle. In particular, for which d does O(d) correspond to the
principal Gm-bundle of (1).

Exercise C.3.8. Let X be a scheme

(1) If E is a vector bundle on X of rank n, define the frame bundle is the functor

FrameX(E) : Sch /X → Sets, (T → X) 7→ {trivializations α : f∗E
∼→ OnT }.

Show that FrameX(E) is representable by scheme and that FrameX(E)→ X
is a principal GLn-bundle.

(2) If P → X is a principal GLn-bundle, then define P ×GLn An := (P ×
An)/GLn where GLn acts diagonally via its given action on P and the
standard action on An. (The action is free and the quotient (P ×An)/GLn
can be interpreted as the sheafification of the quotient presheaf Sch /X →
Sets taking T 7→ (P × An)(T )/GLn(T ) in the big Zariski (or big étale)
topology or equivalently as the algebraic space quotient (???). Show that
(P × An)/GLn is representable by scheme and is the total space of a vector
bundle over X.

(3) show that there there is an equivalence of categories

{vector bundles on X} → {principal GLn-bundles on X}
E 7→ FrameX(E)

locally free sheaf associated to (P × An)/GLn ← [ (P → X)
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between the groupoids of vector bundles on X and principal GLn-bundles
on X.

Exercise C.3.9. What is the GL2-torsor on P1×P1 corresponding to O(1)�O(1)?

Exercise C.3.10. Let G → S be a smooth, affine group scheme. Let P → X
and Q→ X be principal G-bundles. Show that the functor

IsomX(P,Q) : Sch /X → Sets

(T
f−→ X) 7→ Isomprincipal G-bundles/T(f∗P, f∗Q)

is representable by a scheme which is a principal G-bundle over X.

C.3.2 Descent for principal G-bundles

Proposition C.3.11 (Effective Descent for Principal G-bundles). Let G→ S be
a flat and affine group scheme of finite presentation Let f : X → Y be a faithfully
flat morphism of schemes over S that is either quasi-compact or locally of finite
presentation. If P → X is a principal G-bundle and α : p1

∗(P )
∼→ p∗2(P ) is an

isomorphism of principal G-bundles over X ×Y X satisfying p∗12α ◦ p∗23α = p∗13α,
then there exists a principal G-bundle Q→ Y and an isomorphism φ : P → f∗(Q)
of principal G-bundles such that p∗1φ = p∗2φ ◦ α.

C.3.3 G-torsors

A G-torsor is a categorical generalization of a principal G-bundle which makes
sense with respect to any sheaf of groups on a site.

Definition C.3.12. Let S be a site and G a sheaf of groups on S. A G-torsor on
S is a sheaf P of sets on S with a left action σ : G× P → P of G such that

(a) For every object X ∈ S, there exists a covering {Xi → X} such that
P (Xi) 6= 0, and

(b) The action map (σ, p2) : G× P → P × P is an isomorphism.

Exercise C.3.13. If G→ S is a flat and affine group scheme of finite presentation,
show that any G-torsor on the big étale topology (Sch /S)Ét is representable by a
principal G-bundle.
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Appendix D

Hilbert and Quot schemes

In this section, we state that the Hilbert and Quot functors are representable by
a projective scheme. Let X → S be a projective morphism of noetherian schemes
and OX(1) be a relatively ample line bundle on X. Let P ∈ Q[z] be a polynomial.

Theorem D.0.1. The functor

HilbP (X/S) : Sch /S → Sets

(T → S) 7→
{

subschemes Z ⊂ X ×S T flat and finitely presented over T
such that Zt ⊂ X ×S κ(t) has Hilbert polynomial P for all t ∈ T

}
is represented by a scheme projective over S.

Theorem D.0.2. If F is a coherent sheaf on X, the functor

QuotP (F/X/S) : Sch /S → Sets

(T
f−→ S) 7→

{
quotients f∗F → Q of finite presentation such that
Qt on X ×S κ(t) has Hilbert polynomial P for all t ∈ T

}
is represented by a scheme projective over S.

Remark D.0.3.

(1) Theorem D.0.1 is a special case of Theorem D.0.2 by taking F = OX .

(2) A morphism of noetherian schemes X → S is projective if there is a coherent
sheaf E on S such that there is a closed immersion X ↪→ P(E) over S
[EGA, §II.5], [SP, Tag 01W8]. The definition of projectivity in [Har77,
II.4] is stronger as it requires X ↪→ PnS . There is an intermediate notion
of strongly projective morphisms requiring X ↪→ P(E) where E is a vector
bundle over S. In this case if X → S is strongly projective, one can show
that HilbP (X/S)→ S and QuotP (F/X/S)→ S are also strongly projective;
[AK80].

(3) When T is noetherian, the conditions that Z be finitely presented and Q be
of finite presentation in the definitions of HilbP (X/S) and QuotP (F/X/S)
are superfluous.

These theorems are the backbone of many results in moduli theory and in
particular are essential for establishing properties about the moduli stacks Mg
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of stable curves and Vss
r,d of vector bundles over a curve. While the reader could

safely treat these results as black boxes (and we encourage some readers to do
this), it is also worthwhile to dive into the details. The proof follows the same
strategy as the construction of the Grassmanian (Proposition 0.5.7) but it involves
several important new ingredients: Castelnuovo–Mumford regularity and flattening
stratifications.
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Appendix E

Deformation Theory

E.1 Deformations of varieties

E.1.1 Smooth varieties

A first order deformation of a scheme X over a field k is a flat morphism X →
Speck[ε] (where where ε2 = 0) and a cartesian diagram

X

��

� � // X

��

Speck �
�

// Speck[ε].

� (E.1.1)

An automorphism of a first order deformation (E.1.1) is an automorphism of X
over Spec k[ε] that restricts to the identity on X.

We say that a surjection A� A0 of local rings with residue field k is a small
extension if ker(A → A0) = k. Let X0 → SpecA0 be a flat morphism, which
we may view as a deformation of its central fiber X = X0 ×SpecA0

Spec k. A
small deformation of X0 → SpecA0 over SpecA0 ↪→ SpecA is a flat morphism
X→ SpecA and a cartesian diagram

X

��

� � // X0

��

� � // X

��

Speck �
�

// SpecA0
� � //

�

SpecA.

� (E.1.2)

An automorphism of a small deformation is an automorphism of X over SpecA
that restricts to the identity on X0.

Theorem E.1.1. Let A� A0 be a small extension of local rings with residue field
k. Let X0 → SpecA0 be a smooth morphism with central fiber X = X0 ×SpecA0

Spec k.

(1) The group of automorphisms of a small deformation of X0 over SpecA0 ↪→
SpecA is bijective to H0(X,TX).

(2) If there exists a small deformation of X0 over SpecA0 ↪→ SpecA, then the
set of isomorphism classes of all such small deformations is bijective to
H1(X,TX).
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(3) There is an element ob ∈ H2(X,TX) with the property that there exists a
small deformation of X0 over SpecA0 ↪→ SpecA if and only if ob = 0.
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Appendix F

Birational Geometry

F.1 Resolution of singularities for surfaces

By a surface, we mean an integral scheme of finite type over an algebraically
closed field k of pure dimension 2.

Theorem F.1.1 (Minimal Resolutions). Let X be a surface. There exists a

unique projective birational morphism π : X̃ → X from a smooth surface such that
every other resolution Y → X factors as Y → X̃ → X (or equivalently such that
KX̃ · E ≥ 0 for every π-exceptional curve E).

Proof. See [Kol07, Thm. 2.16].

Theorem F.1.2 (Embedded Resolutions of Curves in Surfaces). Let X be a
surface and X0 ⊂ X be a curve. There is a finite sequence of blow-ups at reduced
points of X0 yielding a projective birational morphism X̃ → X such that X̃ is
smooth and such that the preimage X̃0 of X0 has set-theoretic normal crossings,
i.e. (X̃0)red is nodal.

Proof. See [Har77, Thm V.3.9] and [Kol07, Thm. 1.47].

Theorem F.1.3 (Structure Theorem of Birational Morphisms of Surfaces). Any
projective birational morphism f : X → Y of smooth surfaces is the composition
of blowing up smooth points.

Proof. See [Har77, Thm V.5.5] and [Kol07, Thm 2.13].

Theorem F.1.4 (Hodge Index Theorem for Exceptional Curves). Let f : X → Y
be a projective and generically finite morphism of surfaces with X smooth and Y
quasi-projective. Let E1, . . . , En be the exceptional curves. Then the intersection
form matrix (Ei · Ej) is negative-definite. In particular, E2

i < 0 for each i.

Proof. See [Kol07, Thm 2.12].

Theorem F.1.5 (Castelnuovo’s Contraction Theorem). Let X be a smooth pro-
jective surface and E a smooth rational curve with E2 = −1. Then there is a
projective morphism X → Y to a smooth surface and a point y ∈ Y such that
f−1(y) = E and X \ E → Y \ {y} is an isomorphism.
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Proof. See [Har77, Thm. V.5.7] and [Kol07, Thm 2.14].

Remark F.1.6. If E2 < 0, then E can still be contracted to a point but the
surface may be singular.

One can show that the process of repeatedly contracting smooth rational −1
curves in a smooth projective surface terminates (see [Har77, Thm 5.8]). Thus
by applying Castelnuovo’s Contractibility Criterion a finite number of times, one
obtains:

Corollary F.1.7 (Existence of Relative Minimal Models). A smooth surface X
admits a projective birational morphism X → Xmin to a smooth surface such
that every projective birational morphism Xmin → Y to a smooth surface is an
isomorphism. In particular Xmin has no smooth rational −1 curves.

F.2 Positivity

The standard reference for this material is [Laz04a, Laz04b].

F.2.1 Positivity of line bundles: basic properties

Ample line bundles

Let X be a proper scheme over an algebraically closed field k. A line bundle L
on X is ample if for some m > 0, L⊗m is very ample, i.e. defines an embedding

X
|L⊗m|
↪→ PN into projective space. Ampleness can be equivalently characterized

by the condition that for every x ∈ X, there exists a section s ∈ Γ(X,L) such
that Xs = {s 6= 0} is affine and contains x, or cohomologically by the condition
that for every coherent sheaf F on X, the cohomology groups Hi(X,F ⊗Lm) = 0
vanish for i > 0 and m� 0.

Proposition F.2.1 (Openness of Ampleness). [Laz04a, Thm. 1.2.17] Let X → S
be a proper morphism of schemes and L be a line bundle on X. If for some
s ∈ S, the restriction Ls of s to the fiber Xs is ample, then there exists an open
neighborhood U ⊂ S of s such that Lt is ample on Xt for all t ∈ U .

We also recall that ampleness can be checked on finite covers

Proposition F.2.2. [Har77, Exer III.5.7] Let f : X → Y be a finite morphism
of schemes and L be a line bundle on Y . If L is ample, then so is f∗L. If f is
surjective, then the converse is true.

Remark F.2.3. As an immediate consequence, we see that a line bundle L on
X is ample if and only if its restriction L(Xi)red

to the reduced subscheme of each
irreducible component Xi is ample.

Nef line bundles

A line bundle L on a proper scheme X is nef if for every irreducible curve∫
C

c1(L) ≥ 0.
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Proposition F.2.4 (Openness of Nefness). Let X be a proper and flat scheme
over a DVR R and L be a line bundle on X. Let 0, η ∈ SpecR be the closed and
generic points. If L|X0

is nef, then so is L|Xη .

Proof. To be added.

Remark F.2.5. For proper, flat and surjective morphisms X → S, it is shown
in [Laz04a, Prop 1.4.14] that if L|Xs is ample for a point s ∈ S, then there exists
a countable union B ⊂ S of proper subschemes not containing s such that L|Xt
is nef for every t ∈ S \ B. It is not known whether there exists an open subset
s ∈ U ⊂ S with L|Xt nef for t ∈ S.

Proposition F.2.6. Let f : X → Y be a proper morphism and L be a line bundle
on Y . If L is nef, then so is f∗L. If f is surjective, then the converse is true.

Theorem F.2.7 (Kleiman’s Theorem). If L is a line bundle on a proper scheme
X, then L is nef if and only if for every irreducible subvariety Z ⊂ X of dimension
k, ∫

Z

c1(L)k ≥ 0.

Proof. See [Laz04a, Thm. 1.4.9], [Kol96, Thm. 2.17], or the original source
[Kle66].

It’s also worthwhile to keep in mind that ample and nef line bundles generate
cones Amp(X),Nef(X) ⊂ N1(X)R, called the ample cone and nef cone. As a
consequence of Kleiman’s theorem, one can show that for a projective variety, the
nef cone is the closure of the ample cone and the ample cone is the interior of the
nef cone; see [Laz04a, Thm. 1.4.23].

Effective, globally generated, and semiample line bundles

We have the following notions for a line bundle L on X:

• L is effective if Γ(X,L) 6= 0;

• L is globally generated (or basepoint free) if for every x ∈ X, there exists
s ∈ Γ(X,L) with s(x) 6= 0, or equivalent the linear series |L| defines a

morphism X
|L|−−→ Ph0(X,L)−1; and

• L is semiample if for some m > 0, L⊗m is globally generated.

A semiample line bundle L is necessarily nef; indeed if for some m > 0, L⊗m

defines a morphism f : X → PN with f∗O(1) ∼= L⊗m, then the projection formula
implies that

∫
C
c1(L⊗m) =

∫
f(C)

c1(O(1)) ≥ 0. We thus have the implications

globally generated =⇒ semiample =⇒ nef

Big line bundles

A line bundle L on a normal variety X is big if for some m > 0, the rational map

φm : X
|L⊗m|
99K PN is birational onto its image for some m > 0. For a possibly non-

normal variety X, we say a line bundle L is big if its pullback to the normalization
is big.
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Proposition F.2.8 (Kodaira’s Lemma). Let X be a projective variety and L be
a big line bundle. If E is an effective line bundle, then for m sufficiently divisible,
L⊗m ⊗ E∨ is effective

Proof. See [Laz04a, Prop. 2.2.6].

Proposition F.2.9 (Equivalences of bigness). We have the following equivalences
for a line bundle L = OX(D) on an irreducible variety:

L is big ⇐⇒ dim imφm = dimX for m sufficiently divisible
⇐⇒ there exists a constant C such that h0(X,L⊗m) ≥ C ·mdimX for

m sufficiently divisible
⇐⇒ for any ample divisor A on X, there exists a positive integer

m > 0 and an effective divisor N on X such that mD = A+N
(linear equivalence).

⇐⇒ there exists an ample divisor A on X, a positive integer m > 0 and
an effective divisor N on X such that mD ≡ A+N (numerical
equivalence).

Proof. See [Laz04a, §2.2] for details; the last three equivalences follow from
Kodaira’s lemma.

As a consequence of Proposition F.2.9, we see that up scaling (i.e. taking
positive tensor powers), a big line bundle is the same as the sum of an ample and
effective line bundle. In particular, the sum of a big and effective line bundle is
also big. To summarize,

big
up to scaling⇐=======⇒ ample + effective

big + effective =⇒ big.

Finally, we mention that if H is an ample line bundle on X and E is an effective
line bundle on X, then for m� 0, mH +E (or H⊗m ⊗E in tensor notation) is
ample (in fact very ample); see [Laz04a, Ex. 1.2.10].

Proposition F.2.10. Let f : X → Y be a generically quasi-finite and proper
morphism of varieties such that f∗OX = OY (e.g. f is a proper birational
morphism of normal varieties). For a line bundle L on Y , L is big if and only if
f∗L is big.

Proof. The projection formula

f∗f
∗L⊗m ∼= L⊗m ⊗ f∗OX ∼= L⊗m

implies that Γ(Y, f∗L⊗m) = Γ(X,L⊗m). The result follows from the above
equivalences since X and Y have the same dimension.

Theorem F.2.11 (Asymptotic Riemann-Roch). Let X be a proper scheme of
dimension n and let L be a nef line bundle on X. Then the Euler characteristic
χ(X,L⊗m) is a polynomial of degree ≤ n in m

χ(X,L⊗m) =
(c1(L)n)

n!
mn +O(mn−1).

Remark F.2.12. See [Laz04a, Cor. 1.4.41] for a proof in the projective case and
[Kol96, Thm. VI.2.15] in general.

222



This immediately yields the following useful characterization of bigness for nef
line bundles.

Corollary F.2.13. On a proper scheme of dimension n, a nef line bundle L is
big if and only if c1(L)n > 0.

As a further consequence, we obtain:

Proposition F.2.14. On a proper scheme X, if B is a big and globally generated
line bundle and N is a nef line bundle, then B ⊗N is big.

Remark F.2.15. In other words,

(big & globally generated) + nef =⇒ big.

Note that the pullback of an ample line bundle under a birational morphism is
big and globally generated, and that the converse is true after take sufficiently
high tensor power.

Proof. Using additive notation, write D = B +N . Since B is globally generated,
B is nef and thus so is D. By Corollary F.2.13, it suffices to verify that Dn > 0.
We compute that

Dn = (B +N)n = Bn +

n∑
i=1

(
n

i

)
Bn−i ·N i > 0

where Bn > 0 as B is big and nef, and Bn−i · N i ≥ 0 for i ≥ 1 by Kleiman’s
theorem (Theorem F.2.7).

F.2.2 Ampleness criteria

We review general techniques here to show that a line bundle L on a proper scheme
X is ample. Perhaps the first strategy to keep in mind is that if L is semiample
and strictly nef, then L is ample.

Lemma F.2.16. Let X be a proper scheme. If L is a semiample line bundle and∫
T
c1(L) = degL|C > 0 for all curves T , then L is ample.

Proof. For some m > 0, L⊗m defines a morphism f : X → PN which does not
contract any curves. It follows that f : X → PN is a proper and quasi-finite
morphism of schemes, thus finite. Therefore, L⊗m = f∗O(1) is ample.

See also Lemma 4.7.1 for a similar property of algebraic spaces and Deligne–
Mumford stacks.

Remark F.2.17. The semiampleness condition can be very challenging to verify
in practice. However, there are powerful basepoint-free theorems in birational
geometry stemming either from vanishing theorems or analytic methods that
can reduce semiampleness to bigness and nefness. For instance, Kawamata’s
basepoint-free states that if (X,∆) is a proper klt pair with ∆ effective and D
is a nef Cartier divisor such that aD −KX −∆ is nef and big for some a > 0,
then D is semiample [KM98, Thm. 3.3]. One can contrast this result with the
Abundance Conjecture that states that if (X,∆) is a proper log canonical pair
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with ∆ effective, then the nefness of KX + ∆ implies semiampleness [KM98, Conj.
3.12].

Alternatively, it is a classical result of Zariski and Wilson that if X is a normal
projective variety and D is a nef and big divisor, then D is semiample if and only if
its graded section ring

⊕
n Γ(X,OX(nD)) is finitely generated; see [Laz04a, Thm.

2.3.15]. While [BCHM10] can sometimes be apply to verify the finite generation,
this result already presumes the projectivity of X; nevertheless, this can be applied
for instance to show that a given birational model of X is projective.

In positive characteristic, Keel’s theorem provides another technique: on a
projective variety X, a nef line bundle L is semiample if and only if the restriction
of L to the exceptional locus E is semiample, where E is defined as the union of
irreducible subvarieties the Z ⊂ X satisfying LdimZ · Z = 0 [Kee99].

Numerical criteria for ampleness

The Nakai–Moishezon Criterion1 for ampleness provides a convenient method to
establish projectivity. We state the criteria for proper schemes but this is extended
to proper algebraic spaces in Theorem 4.7.4.

Theorem F.2.18 (Nakai–Moishezon Criterion). If X is a proper scheme, a line
bundle L is ample if and only if for all irreducible closed subvarieties Z ⊂ X,
c1(L)dimZ · Z > 0

Remark F.2.19. Using Corollary F.2.13, the Nakai–Moishezon Criterion trans-
lates to:

L is ample ⇐⇒ L|Z is big for all irreducible closed subvarieties Z ⊂ X.

Proof. Let n = dimX. First, if L is very ample, then for some m > 0, L⊗m is
very ample and mnc1(L)dimZ · Z = c1(L⊗m)dimZ · Z > 0 as its the degree of Z
under the projective embedding defined by L⊗m. To show the converse, we follow
the proofs of [Laz04a, Thm. 1.2.23], [Kol96, Thm VI.2.18], and [Har77, Thm.
V.1.10] (surface case). Since we already know that L is nef, it suffices to show
that L is semiample (Lemma F.2.16).

First, by Proposition F.2.2, we may assume that X is a normal variety and we
write L = OX(D) for a divisor D. Since D is big on X, some positive multiple mD
is effective; replacing D by mD, there exists a non-zero section s ∈ H0(X,OX(D)).
In particular, OX(D) is globally generated away from the support of D. We aim
to show that for m� 0, OX(mD) is also globally generated on D.

By induction on n = dimX, we can assume that OX(D)|D is ample; the base
case for the induction is n = 1, where a line bundle is ample if and only if it has
positive degree. Consider the exact sequence

0→ OX((m− 1)D)→ OX(mD)→ OD(mD)→ 0.

Form� 0, OD(mD) is globally generated andH1(X,OD(mD) = 0. It follows that
H1(X,OX((m−1)D))� H1(X,OX(mD)) is surjective but since each vector space
is finitely generated, we see that these surjections eventually become isomorphisms
for m� 0. Thus, for m� 0, H0(X,OX(mD))→ H0(D,OD(mD)) is surjective
and OX(mD) is globally generated on D.

1This is also known as the Nakai Criterion or the Nakai–Moishezon–Kleiman Criterion. See
[Laz04a, §1.2.B] for a historical account and further references.
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We use this criterion to establish Kollar’s Ampleness Criteria (Theorem 4.7.5),
which we in turn apply to establish the projectivity of Mg. The following two
additional numerical criteria for ampleness will not be used in these notes but are
included to offer a more complete treatment.

Theorem F.2.20 (Kleiman’s Criterion). If X is a projective scheme, a divisor
D is ample if and only if for all C ∈ NE(X), D · C > 0.

Remark F.2.21. See [Laz04a, Thm. 1.4.23] for a proof. Note that it is not
enough to check that D · C for only irreducible curves C ⊂ X; one must check it
on curve classes in the closure NE(X) of the effective cone of curves. See [Har66a,
p.50-56] for a counterexample due to Mumford.

Kleiman’s Criterion is not known to hold for proper schemes or algebraic
spaces.

Theorem F.2.22 (Sesahdri’s criterion). If X is a proper scheme, a line bundle
L is ample if and only if there exists an ε > 0 such that for every point x ∈ X and
every irreducible curve C ⊂ X, c1(L) · C > εmultx(C), where multx(C) denotes
the multiplicity of C at x.

Remark F.2.23. See [Laz04a, Thm. 1.4.13] or [Kol96, Thm. 2.18] for a proof.
This criterion also holds for proper algebraic spaces; see [Cor93].

F.2.3 Nef vector bundles

In Kollár’s Criterion (Theorem 4.7.5), nefness of vector bundles plays an essential
role:

Definition F.2.24. A vector bundle E on a scheme X is called nef (or semipos-
itive) if for every map f : C → X from a proper curve, every quotient line bundle
of f∗E � L has nonnegative degree.

We note that when E is a line bundle, then this is clearly equivalent to the
usual notion of nefness: for all proper curves C ⊂ X, degL|C ≥ 0.

Proposition F.2.25. Let E be a vector bundle on a proper scheme X. Then the
following are equivalent:

E is nef ⇐⇒ for every map f : C → X from a proper curve, every quotient
vector bundle of f∗E �W has nonnegative degree;

⇐⇒ OProjX E(1) is nef on ProjX E.

Remark F.2.26. See [Har66a] or [Laz04b, Ch. 6] for details. There is a similar
notion of an ample vector bundle (which we won’t need in these notes) where one
defines a vector bundle E to be ample if OProjX E(1) is ample on ProjX E. This
notion also has some nice equivalences. If X is an irreducible projective variety and
E is globally generated, then E is ample if and only if for every map f : C → X
from a proper curve, every quotient line bundle of f∗E � L is non-trivial. There
are also cohomological characterizations of ampleness for vector bundles in the
same spirit as their line bundle counterparts. Moreover, nefness of E can then be
characterized as requiring that for every map f : C → X from a proper curve and
for every ample line bundle H on C, the vector bundle H ⊗ f∗E is ample.

Proposition F.2.27.
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(1) Quotients and extensions of nef vector bundles are nef.

(2) If E is nef, then so is
∧k

E and Symk E for k ≥ 0.

Proof. Part (1) follows from the definition of nefness. Part (2): to be added.

As a consequence of Proposition F.2.4 and the first equivalence of Proposi-
tion F.2.25, we obtain that nefness is open in a proper flat family over a DVR:

Proposition F.2.28 (Openness of Nefness). Let X be a proper and flat scheme
over a DVR R and E be a vector bundle on X. Let 0, η ∈ SpecR be the closed
and generic points. If E|X0 is nef, then so is E|Xη .

F.3 Vanishing theorems

Kollár’s argument for the projectivity of Mg makes use of the following vanishing
theorem in positive characteristic due to Ekedahl [Eke88]. The characteristic zero
version is due to Bombieri [Bom73].

Theorem F.3.1 (Bombieri–Ekedahl vanishing). Let S be a smooth projective
surface over k which is minimal and of general type. If char(k) 6= 2, then
H1(S,K⊗−nS ) = 0 for all n ≥ 1. If char(k) = 2, then h1(S,K⊗−nS ) ≤ 1 for all
n ≥ 2.
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espaces homogènes, Lecture Notes in Mathematics, Vol. 119, Springer-
Verlag, Berlin-New York, 1970.

[RG71] Michel Raynaud and Laurent Gruson, Critères de platitude et de ivité.
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