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1 Smoothness

1.1 I-Smoothness of Algebras

Let I / B be an ideal of an A-algebra B. We say that B is I-smooth over A if the following
condition holds, given an A-algebra C with an ideal N such that N2 = 0, any A-algebra
homomorphism f : B → C/N continuous for the discrete topology on C/N and the I-adic
topology on B factors through C.

B C/N

A C

f

g

1.1.1 Remark: Note that continuity of f is equivalent to having f(In) = 0 for some n

1.1.2 Remark: Suppose that g exists, then if f(In) = 0 we have g(In) ⊆ N so that g(I2n) ⊆
N2 = 0 so that g is continuous for the discrete topology of C. This implies that for an I-
smooth map we may lift over any nilpotent ideal, as if Nk = 0 we may look first at the
map C/N2 → C/N with kernel N/N2 to lift to C/N2, then continue in this fashion lifting
to C/N3 and so on until we have lifted f to C/Nk = C. We see that regardless of what N
is, we obtain a system of maps to C/Nk for all k, so that this will define a map to Ĉ the
N -adic completion of C, so in particular if C is N -adically complete this will define a map
to C factoring f .

When I = (0) then the notion of 0-smoothness imposes no condition on f . Clearly
we see that if I ⊆ J , then I-smoothness implies J-smoothness. In the language of EGA
I-smoothness is called formal smoothness for the I-adic topology where it was defined for
arbitrary topologies on B. We will use the terminology I-smoothness, and reserve formal
smoothness to mean 0-smoothness to keep in line with the language used for schemes. h

1.1.3 Theorem
Transitivity: Let A g−→ B

g′−→ B′ be ring homomorphisms, and suppose that g′ is continuous
for the I-adic topology of B and I ′-adic topology of B′. If B is I-smooth over A and B′ is
I ′-smooth over B then B′ is I ′ smooth over A.
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Proof
Suppose that u is given in the following diagram.

B′ C/N

B C

A

u

vg′

w

g

As u ◦ g′ : B → C/N is continuous, by I-smoothness of B there exists a lifting w : B → C.
Then, by I ′-smoothness of B′ over B we lift u to a map v : B′ → C. �

1.1.4 Theorem
Base-change: Let A be a ring, B and A′ two A-algebras, and set B′ = B ⊗A A′. If B is
I-smooth over A, then B′ is IB′-smooth over A′.

Proof
We have the diagram

B B′ C/N

A A′ C

f u

g

v

With f, g the natural maps into B′ = B ⊗A A′. If u satisfies u(IkB′) = 0, there is a lifting
w : B → C of u ◦ f . Now define u′ : B′ = B ⊗A A′ → C by u′ = w ⊗ v, this is a lifting of u
to C (use that ⊗A is a pushout). �

1.1.5 Lemma
Let A be a ring, and S a multiplicative subset. Then S−1A is formally smooth over A.

Proof
Suppose we have a diagram of the form

S−1A C/N

A C

f

g

π

To define a lifting of g from S−1A→ C by universal property of S−1A we must show that S
maps to units inside of C. Consider that for s ∈ S, f(s/1) = π(g(s)) is a unit, so that g(s)
is a unit modulo a nilpotent ideal. However anything that is a unit modulo a nilpotent ideal
is a unit to begin with, so that g(s) is a unit as required. �
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We now provide a few more examples of I-smoothness.

1.1.6 Proposition
Let A be a ring, then A[x] is formally smooth over A, and A[[x]] is I-smooth over A where
I = (x).

Proof
As A[x] is a free A-algebra we can prove an even stronger lifting property. Given a diagram
of the form

A[x] C/N

A C

u

where C is an arbitrary A-algebra and N an arbitrary ideal we can lift u to a map A[x]→ C.
Let c ∈ C be a preimage of u(x) via the map C → C/N , then we can define the A-algebra
map A[x]→ C sending x to c, and this provides a map making the diagram commute.

Now assume we are given a diagram

A[[x]] C/N

A C

u

where u(xn) = 0, and N is an ideal of square zero. Pick a preimage c of u(x) in C. We
define a map f : A[[x]]→ C by sending

∑
aix

i to
∑
aic

i, to see that this latter sum is finite
we note that cn ∈ N so that cm = 0 for m ≥ 2n. This defines a lifting of u to C so that
A[[x]] is I-smooth over A. �

1.1.7 Lemma
Let (R,m) and (S, n) be rings with finitely generated ideals. Endow R and S with the m
and n-adic topologies respectively, and let f : R → S be a map of topological rings (which
is to say that f(mk) ⊆ n for some k, or that it is a continuous ring map). The the following
are equivalent:

(a) R→ S is n-smooth.

(b) R→ Ŝ is n̂-smooth.

(c) R̂→ Ŝ is n̂-smooth.

where R̂, Ŝ are the m and n-adic completions of R and S respectively.

Proof
The proof is simple, albeit messy, after noting a few facts. As the ideals used are finitely
generated implies that R̂ is m̂-adically complete (which isn’t needed for the proof), that
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mR̂ = m̂, and R/mk = R̂/m̂k in the sense that there is a commutative diagram

R R̂

R/mk R̂/m̂k∼

With the same statements holding for S and Ŝ.
We now make an observation about formal smoothness, suppose there is a commutative

diagram
S C/N

R C

u

f

g

where u(nm) = 0. Suppose that u factors through C via u′, then note that as u′(nm) maps
to 0 via C → C/N that it lies in N , so then u′(n2m) ⊆ N2 = 0 so that u′ factors through
S/n2m as does u. Similarly, if f(mk) ⊆ n then we see that g(m2km) = 0 so that g factors
through R/m2km. We thus can form a commutative diagram

S C/N

S/n2m

R/m2km

R C

u

g

Note that conversely, simply from u(nm) = 0 that u factors through S/n2m as does g factor
through R/m2km so that the diagram above will always exist with the exception of the
dotted arrow. Thus the question of lifting u is exactly the same as finding the dotted arrow
S/n2m → C making the diagram commute. Noting that Ŝ/n̂2m = S/n2m with a similar
statement for R gives one the idea of how to prove the equivalences of the theorem as
factoring the required map reduces to factoring a map through a quotient. In fact, I claim
that the entire equivalence can be show by staring at certain parts of the following diagram
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long enough

Ŝ

S C/N

S/n2m

R/m2km

R C

R̂

We briefly run through the arguments showing (a) =⇒ (b) =⇒ (c) =⇒ (a).
If the map Ŝ → C/N maps n̂m to 0 then the map S → C/N maps nm to 0. By smoothness

of S over R one can then form the diagram omitting R̂ and the maps involving it, smoothness
gives the existence of the dotted map. By our above discussion we see that this lifts the map
Ŝ → C/N as well. For (b) =⇒ (c) we start with almost the same setup, the only thing that
must be argued is why the map R̂ → C maps m̂2km to 0. This follows as if we send m2km

through the composition R→ R̂→ Ŝ → S/n2m → C we see that this maps m2km to 0. This
however by commutativity is the same as sending it through R → C, then as the image of
m2km along R → R̂ is m̂2km we see that m̂2km is sent to 0 in C, letting us factor R̂ → C
through R/m2km. For the final direction, we start originally with the diagram not involving
Ŝ and R̂, and it is not a priori clear that we have maps Ŝ → C/N or R̂ → C. We can
however define these as the composition Ŝ → S/n2m → C/N and R̂ → R/m2km → C, then
by smoothness of Ŝ over R̂ we obtain the dotted arrow showing that R→ S is n-smooth.�

For fields we can characterize formal smoothness. A field extension k → K is formally
smooth if and only if it is a separable extension. Here, separable must be expanded to include
transcendental extensions, and the definition is that K is separable over k if for any field
extension k′ of k, that k′ ⊗k K is reduced. In the case that K is an algebraic extension of k
this notion agrees with the usual notion of separability of field extensions. If k is a perfect
field, then any field extension is separable under our notion of separable so that every field
is formally smooth over k. Details can be found in §26 of Matsumura’s Commutative Ring
Theory.

We now require two technical results on I-smoothness. The former is simply to be used
later when discussing Cohen rings, while the latter is a very powerful form of lifting which
will be required to lift a map which is not continuous for the I-adic topology only using
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I-smoothness. We present a simplified version which is all that is needed for our purposes.

1.1.8 Lemma
Let R→ S be a ring map, and I / R an ideal. Assume

(1) I2 = 0,

(2) R→ S is flat, and

(3) R/I → S/IS is formally smooth.

Then R→ S is formally smooth.

Proof
Tag 031L. �

1.1.9 Theorem
Let (R,m)→ (S, n) be a local ring map. Assume that R→ S is n-smooth. Consider a solid
commutative diagram

S A/J

R A

ψ

of homomorphisms of local rings, for the complete local ring (A, I) and (A/J, I/J), where J
is a closed ideal of A (this is true for example when A is Noetherian). Then there exists a
dotted arrow making the diagram commute which is a local map.

Proof
First note that A = lim←−A/I

n and A/J = lim←−A/(J + In) as J is a closed ideal. Let
An,m = A/(Jn + Im) be R-algebras given the discrete topology, and consider the following
diagram

...
...

...

. . . A/(J3 + I3) A/(J2 + I3) A/(J + I3)

. . . A/(J3 + I2) A/(J2 + I2) A/(J + I2)

. . . A/(J3 + I1) A/(J2 + I1) A/(J + I)

Each of these squares defines a surjection An+1,m+1 → An+1,m ×An,m An,m+1 with kernel of
square zero (this is the fibered product of rings, it is a pullback in the category of rings. It
is defined for rings with maps f : A→ C and g : B → C as the subring of A×B of elements
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(a, b) such that f(a) = g(b). When A,B are Noetherian and f, g are both surjective it
is also Noetherian.) We inductively define R-algebra maps ϕn,m : S → An,m. First define
ϕ1,m : S → A/(J+Im) as ψ mod J+Im, as ψ was a local map we see that ϕ1,m(nm) ⊆ J+Im

so that each ϕ1,m is continuous. Define ϕn,1 inductively starting with ϕ1,1 using n-smoothness
of R→ S, namely as a dotted map making the following diagram commute

S A/(Jn−1 + I)

R A/(Jn + I)

ϕn−1,1

ϕn,1

We now define the rest of the ϕn,m by induction on n + m, namely we take the surjection
(ϕn+1,m, ϕn,m+1) : S → An+1,m ×An,m An,m+1 (this exists by universal property of fibered
products) and lift this this map using n-smoothness of R→ S. This can be described using
the following diagram

S An+1,m ×An,m An,m+1

R An+1,m+1

(ϕn+1,m,ϕn,m+1)

ϕn+1,m+1

Because the universal property of (ϕn+1,m, ϕn,m+1) (or one can look at the concrete construc-
tion) this ensures that the system of maps ϕn,m are compatible with the transition maps in
the system An,m, which is to say these two triangles commute

S An−1,m

An,m

ϕn−1,m
S An,m−1

An,m

ϕn,m−1

As a result, we can take the maps ϕn = ϕn,n mod In gives us maps S → A/In which are
compatible so they define a map S → lim←−A/I

n = A. When modding out by J this agrees
with ψ as we know that A/J = lim←−A/(J + In). As ψ(n) ⊆ I/J we see that ϕ(n) ⊆ I so that
ϕ is a map of local rings. �

1.2 Formal Smoothness of Schemes

We will call a morphism f : X → Y of schemes formally smooth if given any diagram of the
following form

X T

Y T ′

f
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Where T is a closed subscheme of T ′ an affine scheme defined by an ideal sheaf whose square
is zero, that there exists a map T ′ → X making the diagram commute. One notices that is
X, Y are affine, equal to Spec B and Spec A, then dualizing this says that B is a formally
smooth A-algebra. As was done for the smoothness of algebras one gains as a result that
one may lift maps across nilpotent ideal sheaves.

1.2.1 Lemma
Let f : X → Y be a formally smooth map of schemes. Let U ⊆ X be an open subscheme,
and V ⊆ Y an open subscheme such that f(U) ⊆ V . Then f�U : U → V is formally smooth.

Proof
Suppose there is a commutative diagram of the following form:

U T

V T ′

f�U

g

Composing g with the inclusion into X we obtain a map g′ from T ′ → X such that g′�T= g,
but as T and T ′ have the same topological space, we see that g′(T ′) ⊆ U implying that g′
factors through U as desired. �

2 The Main Result
Now that we have defined formal smoothness we can state the main result, and begin a proof.
The bulk of the proof is a commutative algebra result, but armed with what we already have
it is easy to reduce to the commutative algebra result.

2.0.1 Theorem
Let f : X → Y be a formally smooth map of locally Noetherian schemes. Then f is flat.

Proof
Let x ∈ X, and let y = f(x). Take an affine neighborhood V of y, then take an affine
neighborhood U 3 x contained in f−1(V ), then by Lemma 1.2.1 f �U : U → V is formally
smooth. So we may assume that X = Spec B, Y = Spec A are affine schemes with A,B
Noetherian. Letting x = p and y = q be the primes of B,A corresponding to x, y we must
show that Aq → Bp is flat. We will first show that it is formally smooth.

First, note by Theorem 1.1.4 (Base-Change) that Bq is formally smooth over Aq. Then, we
can obtain Bp as a localization of Bq, and combining Lemma 1.1.5 which says Bp is formally
smooth over Bq with Theorem 1.1.3 (Transitivity) we see that Bp is formally smooth over
Aq. Flatness then follows from the next theorem (as formally smooth implies I-smooth for
any I). �
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2.0.2 Theorem
Let (A,m, k) and (B, n, k′) be Noetherian local rings, and ϕ : A→ B a local homomorphism.
Set B′ = B ⊗A k = B/mB and n′ = n/mB. Then the following are equivalent:

(a) B is n-smooth over A,

(b) B is flat over A and B′ is n′-smooth over k.

The proof of this theorem is a hard exercise in commutative algebra which we will un-
dertake later. The result to the author’s knowledge was first proven by Grothendieck as
EGA 0IV (19.7.1), and the proof is very long and difficult. It was used to prove the Co-
hen Structure Theorem for complete Noetherian local rings. Another proof exists due to
Michel Andrè in his book Homologie des algèbres commutatives which uses what is now
called Andrè-Quillen homology which is simplicial / homotopical in nature. The third and
final proof is due to Nicholae Radu, and uses the Cohen Structure Theorem which can be
proven without this result to avoid a circular argument. This is the proof we have chosen
to present. It is worthwhile to note that all three of these proofs are in French, and there
(to the author’s knowledge) doesn’t appear to be a proof in English published anywhere
although one direction does appear in the Stacks Project (and the other direction may well
be in Stacks Project as well).

3 Algebra Results

3.1 The Local Criterion for Flatness

The local criterion for flatness refers to one of many variants of a theorem (much in the way
Nakayama’s lemma refers to several related results), we will only need one variant which we
will state here.

3.1.1 Theorem
Let R→ S be a local homomorphism of Noetherian local rings. Let I 6= R be an ideal of R,
and M a finite S-module. If TorR1 (M,R/I) = 0 and M/IM is flat over R/I then M is flat
over R.

As an application of the Local Criterion we can prove the following theorem which will
play an important role in our proof.

3.1.2 Theorem
Let R→ S be a local homomorphism of Noetherian local rings. Assume R is a regular local
ring and maps a regular system of parameters of R to a regular sequence in S. Then R→ S
is flat.

Proof
Let x1, . . . , xn be a regular system of parameters for R, and let (x1, . . . , xn) = m. We see
that S/mS is flat over R/m as the latter is a field. We do induction (upwards) based on
for what i we know that S/(x1, . . . , xi) is flat over R/(x1, . . . , xi). If we know it for i, R′ =
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R/(x1, . . . , xi−1)→ S ′ = S/(x1, . . . , xi−1) for Theorem 3.1.1. We see that TorR1 (S ′, R′/xi) is
the xi-torsion of S ′ as xi is regular on R′ since x1, . . . , xn is a regular sequence on R, but
then as it is also regular on S this torsion is 0. We can then conclude that S/(x1, . . . , xi−1)
is flat over R/(x1, . . . , xi−1). Continuing by induction we see S is flat over R. �

3.2 The Cohen Structure Theorem

The Cohen structure theorem provides a characterization of complete local Noetherian rings.
Some of the results apply to arbitrary complete local rings, and as a result of the work done
if a complete local ring has a finitely generated maximal ideal it is Noetherian. We will
present relevant parts of the Cohen structure theorem that will be used in our proof.c

3.2.1 Equicharacteristic and Mixed Characteristic Rings

The first topic we must introduce is the notion of equicharacteristic and mixed characteristic
rings. A local ring (A,m, k) is called equicharacteristic if char A = char k. If a ring is not
equicharacteristic it is called mixed characteristic. We see that the only way a ring can be
mixed characteristic is if it is characteristic 0 and its residue field has characteristic p, or if
its characteristic is pn for n > 1 and its residue field is characteristic p. There is a useful
characterization of equicharacteristic rings which we present as a proposition.

3.2.1 Proposition
Let (A,m, k) be a local ring. Then A is equicharacteristic if and only if it contains a field.

Proof
Suppose thatA contains a field, and first that it is characteristic 0. A necessarily must contain
Q as if it contained a positive characteristic field it too would have positive characteristic.
We then see that for any n ∈ Z non-zero that n is invertible in A, so that n /∈ m. It follows
that k has characteristic 0 as if it was characteristic p we would have p ∈ m. If A instead
has characteristic pn then the field it contains must be characteristic p, but then we see that
A has characteristic p as well.

Now instead suppose that A is equicharacteristic and is characteristic 0. As k is also
characteristic 0 we see that n /∈ m for any n ∈ Z non-zero, so that n is invertible in A. Thus,
A contains Q. If A has characteristic p then it contains Fp as the map Z → A has kernel
(p). �

3.2.2 Cohen Rings

A Cohen ring is defined to be a complete DVR Λ with uniformizer p, which is to say it has
maximal ideal pΛ. We require one result on Cohen rings.

3.2.2 Proposition
Let Λ be a Cohen ring whose residue field has characteristic p. Then, for any n ≥ 1, the map
Z/pnZ→ Λ/pnΛ is formally smooth. In particular, Λ is (p)-smooth over Zp, the p-adics.
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Proof
If n = 1 then this follows from our characterization of formal smoothness for fields; namely
Z/pZ is a perfect field, then as Λ/pΛ is also a field it is a separable extension and thus
formally smooth. For other n we argue by induction; namely if Z/pnZ→ Λ/pnΛ is formally
smooth we will apply 1.1.8 to the map Z/pn+1Z → Λ/pn+1Λ with the ideal I = (pn). It is
clear that I2 = 0, and the map is formally smooth after modding out by I by assumption,
so it remains to show the map is flat. We will the use the local criterion for flatness 3.1.1
at the ideal J = (p), taking R = Z/pn+1Z, S = M = Λ/pn+1Λ. Clearly M/JM is flat over
R/J , the latter being Fp, so it remains to show that TorR1 (M,R/J) = 0. This being 0 is
equivalent to the map (p) ⊗R M → (p)M being injective. Any element of the former can
be written as upk ⊗ vpm where u, v are units, so that we can further rewrite this as upk ⊗ v
where u, v are units. This then maps to uvpk, and if this is 0 in M = Λ/pnΛ this says k ≥ n,
but then upk ⊗ v = 0 to begin with so the map is injective. �

3.2.3 The Structure Theorem

We state the necessary parts of the Cohen structure theorem. Many excellent sources on the
structure theorem exists, Matsumura §28 and 29 cover it although it builds on work done in
§25 and 26 on differentials, and there is the stacks project page Tag 0323.

3.2.3 Theorem
Let (A,m, K) be a complete local ring. There then exists a Cohen ring Λ and a map Λ→ A
which induces an isomorphism on residue fields. If A is equicharacteristic we can take Λ to
be a field isomorphic to K. If m is finitely generated by generators x1, . . . , xn there exists a
surjective map Λ[[X1, . . . , Xn]] given by Xi 7→ xi and the original map Λ→ A. As a result,
A ∼= Λ[[X1,...,Xn]]

I
and is Noetherian, if A is a regular local ring then I = 0.

4 The proof of Theorem 2.0.2
2.0.2 Theorem
Let (A,m, k) and (B, n, k′) be Noetherian local rings, and ϕ : A→ B a local homomorphism.
Set B′ = B ⊗A k = B/mB and n′ = n/mB. Then the following are equivalent:

(a) B is n-smooth over A,

(b) B is flat over A and B′ is n′-smooth over k.

Before we begin the proof we note that this is essentially a translation and slight expansion
of the proof by Nicholae Radu entitled Sur La Structure Des Algèbres Locales Noethériennes
Formellement Lisses which translates to On the Structure of Formally Smooth Noetherian
Algebras.

p. 11
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4.1 (a) =⇒ (b)
Proof
The first thing to note is that we may replace A → B with Â → B̂. Indeed, by Lemma
1.1.7 the map Â→ B̂ is still n̂-smooth as a local homomorphism is continuous. Noting that
A → Â and B → B̂ are faithfully flat, we see that if we can show Â → B̂ is flat, then the
composition A → Â → B̂ = A → B → B̂ is flat, then by faithful flatness of B̂ over B we
see A→ B is flat. Finally, note that B′ = B̂′ and that n̂′ = n′ so that the final condition of
(b) is satisfied if we can show it for Â → B̂. We thus can assume that A and B are m and
n-adically complete respectively.

By Theorem 1.1.4 (Base-Change) we see that B′ is n′-smooth over k. Suppose that p is
the characteristic of k. Let W be a Cohen ring such that W [[x1, . . . , xn]]→ A is surjective,
and W ′ a Cohen ring such that W ′[[y1, . . . , ym]] → B is surjective. Let W0 = Zp the p-adic
integers if W is not a field, and W0 the prime field of W otherwise. Note that W and W ′ are
W0 algebras, indeed in the case that W0 is a field, then A is equicharacteristic so that p = 0
in A, but then ϕ(p) = p = 0 in B as well. Then B is equicharacteristic which means that
W ′ is also a field of characteristic p so that it contains W0 as well. The map W → A → B
induces a map W → W ′[[y1, . . . , ym]] making the following diagram commute,

W W ′[[y1, . . . , ym]]

A B

π

ψ

π′

ϕ

To see this, we will first handle the case where W0 is a field. In this case, as W0 is a perfect
field, W is formally smooth over it, then by examining the following diagram

W B

W0 W ′[[y1, . . . , ym]]

ϕπ

π′

We note thatW ′[[y1, . . . , ym]] is a local ring with maximal ideal I = (p, y1, . . . , ym), and asW ′

was pW -adically complete this is I-adically complete, so that it is kerπ′-adically complete.
Thus by formal smoothness of W over W0, ϕπ lifts to a map to W ′[[y1, . . . , ym]].

In the case that W0 = Zp, we consider the same diagram, but as W is not formally
smooth over Zp we run into an issue. We note however that W is (p)-smooth over Zp, and
the map W → B is a local map. As W ′[[y1, . . . , ym]] is a complete local ring we can apply
Theorem 1.1.9 to lift the map W → B to a map to W ′[[y1, . . . , ym]].

We can then define a new map Ψ: W [[x1, . . . , xn]]→ W ′[[x1, . . . , xn, y1, . . . , ym]] by send-
ing xi to xi and then defining it on W by sending a to ψ(a). Note that a regular system of
parameters of W [[x1, . . . , xn]] is given by p, x1, . . . , xn and one of W ′[[x1, . . . , xn, y1, . . . , ym]]
by p, x1, . . . , xn, y1, . . . , ym so that Ψ sends a regular system of parameters to a subset of a
regular sequence so that it is flat. Define a map W ′[[x1, . . . , xn, y1, . . . , ym]]→ B by sending
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xi to ϕ((W [[x1, . . . , xn]] → A)(xi)), then defining the rest via π′, then this is a surjective
map as π′ was surjective. We then obtain a commutative diagram with surjective vertical
maps

A′ = W [[x1, . . . , xn]] W ′[[x1, . . . , xn, y1, . . . , ym]] = B′

A B

Ψ

ϕ

Now C = B′⊗A′ A is a complete local ring as it is a quotient of B′ (as A is a quotient of
A′) which is complete. There is a map h : C → B which is surjective as B′ → B is surjective,
then note that we can apply Theorem 1.1.9 to the identity map B → B to obtain a dotted
arrow making the following diagram commute

B B

A C

id

which is to say that C → B splits, so B embeds as a summand of C as an A-module. As B′
is flat over A′, we see that C = B′ ⊗A′ A is flat over A, then as B is a direct summand of C
we see that B is flat over A as desired. �

4.2 (b) =⇒ (a)
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