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1 Cohomology and Base Change

Given a proper morphism f : X → Y of noetherian schemes and a coherent sheaf
F on X, we would like to know:

(a) When is Rif∗F a vector bundle on Y ?

(b) For a morphism of schemes Y ′ → Y inducing a cartesian diagram

XY ′
g′
//

f ′

��

X

f

��

Y ′
g
// Y,

when is the comparison map

φiY ′ : g∗Rif∗F → Rif ′∗g
′∗F (1.1)

an isomorphism?

When f : X → Y is flat, Flat Base Change tells us that (1.1) is always an
isomorphism. Cohomology and Base Change provides an answer when F is flat
over Y .

Cohomology and Base Change is an essential tool in moduli theory. It can be
applied to verify properties of families of objects and construct vector bundles on
moduli spaces. For instance, for a family π : C→ S of smooth curves, we can verify
that π∗Ω

⊗k
C/S is a vector bundle for k > 0 and that its constructions commutes

with base change on S (Proposition 1.9). This in turn can be applied to show that
C embeds canonically into PS(π∗Ω

⊗k
C/S) allowing us to verify the algebraicity of

Mg (??). Applying this result to the universal family π : Ug →Mg yields vector
bundles π∗Ω

⊗k
Ug/Mg

on Mg; when k = 1, this is a vector bundle of rank g called

the Hodge bundle.
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1.1 Algebraic input

The key algebraic input to Cohomology and Base Change is the following:

Theorem 1.1. Let f : X → SpecA be a proper morphism of noetherian schemes
and F be a coherent sheaf on X which is flat over A. There is a complex

K• : 0→ K0 → K1 → · · · → Kn → 0

of finitely generated, projective A-modules such that Hi(X,F ) = Hi(K•) for all i.
Moreover, for any morphism SpecB → SpecA of schemes, Hi(XB , FB) =

Hi(K• ⊗A B) where XB := X ×SpecA SpecB and FB is the pullback of F to XB.

Proof. See [Mum70, p.46] or [Vak17, 28.2.1]. This is established by choosing a
finite affine cover {Ui} of X and considering the corresponding alternating Céch
complex C• on {Ui} with coefficients in F . Then C• is a finite complex of free
(but not finitely generated) A-modules and Hi(X,F ) = Hi(C•). The result is
then obtained by inductively refining C• to build a finite complex K• of finitely
generated, projective A-modules which is quasi-isomorphic to C•.

Remark 1.2 (Perfect complexes). A bounded complex K• of coherent sheaves
on a noetherian scheme X is perfect if there is an affine cover X =

⋃
i Ui such that

each K•|Ui
is quasi-isomorphic to a bounded complex of vector bundles on Ui.

(By a vector bundle, we mean a locally free sheaf of finite rank—this is equivalent
to the corresponding module on Γ(Ui,OUi

)) to be finitely generated, projective.)
If X is affine (resp. has the resolution property, i.e. every coherent sheaf is the
quotient of a vector bundle), K• is perfect if and only if it is quasi-isomorphic to a
bounded complex of vector bundles on X [SP, Tag 066Y] (resp. [SP, Tag 0F8F]).
Moreover, the compact objects in DQCoh(X) are precisely the perfect complexes
[SP, Tag 09M8].

With this terminology in place, Theorem 1.1 has the following translation:
Rf∗F ∈ Db

Coh(SpecA) is perfect [SP, Tag 07VK]. More generally, if F • is a perfect
complex on X, then Rf∗F

• is also perfect [SP, Tag 0A1H].

1.2 Theorems of Semicontinuity, Grauert and Cohomology
and Base Change

Theorem 1.1 tells us for a proper morphism X → SpecA and coherent sheaf F on
X flat over A, the cohomology Hi(X,F ) can be computed using a perfect complex
K•. Since Zariski-locally on the base, the complex K• is a finite complex of free
objects, this reduces cohomological questions to linear algebra.

The Semicontinuity Theorem is a direct consequence of Theorem 1.1; see
[Mum70, p. 50], [Har77, Thm. 12.8] or [Vak17, 28.2.4].

Theorem 1.3 (Semicontinuity Theorem). Let f : X → Y be a proper morphism
of noetherian schemes and F be a coherent sheaf on X which is flat over Y .

(1) For each i ≥ 0, the function

Y → Z, y 7→ Hi(Xy, Fy)

is upper semicontinuous.
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(2) The function

Y → Z, y 7→
∞∑
i=0

Hi(Xy, Fy)

is locally constant.

When the base scheme is reduced, Grauert’s Theorem provides a criterion for
when the higher pushforward sheaves Rif∗F are vector bundles.

Theorem 1.4 (Grauert’s Theorem). Let f : X → Y be a proper morphism of
noetherian schemes and let F be a coherent sheaf on X which is flat over Y .
Assume that Y is reduced and connected. For each integer i, the following are
equivalent:

(1) the function y 7→ hi(Xy, Fy) is constant; and

(2) Rif∗F is a vector bundle and the comparison map

φiy : Rif∗F ⊗ κ(y)→ Hi(Xy, Fy)

is an isomorphism for all y ∈ Y .

If these conditions hold, then we have the following additional properties:

(a) for all morphisms g : Y ′ → Y of schemes, the comparison map φiY ′ : g∗Rpf∗F →
Rif ′∗g

′∗F of (1.1) is an isomorphism; and

(b) The comparison map φi−1y : Ri−1f∗F ⊗ κ(y)→ Hi−1(Xy, Fy) is an isomor-
phism.

Proof. See [Mum70, p.51-2], [Har77, Cor. 12.9] and [Vak17, 28.1.5].

Grauert’s Theorem is proved by using that Rf∗F is a perfect complex and
a somewhat involved linear algebra argument to show that Rif∗F ⊗ κ(y) have
constant dimension. Since Y is reduced, this implies that Rif∗F is a vector bundle.
When Y is not reduced, the local criterion for flatness can be leveraged to provide
the following useful criteria for (a) when the comparison maps φiy are isomorphisms

and (b) when Rif∗F is a vector bundle.

Theorem 1.5 (Cohomology and Base Change). Let f : X → Y be a proper and
finitely presented morphism of schemes, and let F be a finitely presented sheaf
on X which is flat over Y . Suppose that for a point y ∈ Y and integer i, the
comparison map φiy : Rif∗F ⊗κ(y)→ Hi(Xy, Fy) is surjective. Then the following
hold

(a) There is an open neighborhood V ⊂ Y of y such that for any morphism
Y ′ → V of schemes, the comparison map φiY ′ of (1.1) is an isomorphism.
In particular, φip is an isomorphism.

(b) φi−1p is surjective if and only if Rif∗F is a vector bundle in an open neigh-
borhood of p.

Proof. See [EGA, III.7.7.5, III.7.7.10, III.7.8.4], [Har77, Thm. 12.11] and [Vak17,
28.1.6].

Remark 1.6. For moduli-theoretic applications, it is important to be able to
apply Cohomology and Base Change in the non-noetherian setting. Using the
methods of Noetherian Approximation from §??, it is not hard hard to see how
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the general statement follows from the noetherian version. Since the statement is
local on Y , we can assume Y is affine and we can write Y = limi Yi as a limit of
affine schemes of finite type over Z. Since X → Y is finitely presented, there exists
an index 0 and a finitely presented morphism X0 → Y0 such that X ∼= X0 ×Y0

Y
(??). For each i > 0, we can define Xi = X0×Y0

Yi and we have X ∼= Xi×Yi
Y . By

??, Xi → Yi is proper for i� 0. By ????, there exist an index j and a coherent
sheaf Fj on Xj that pullsback to F under X → Xj . For i ≥ j, set Fi to be the
pullback of Fj under Xi → Xj . By ????, Fi is flat over Yi for i � 0. We may
know apply noetherian Cohomology and Base Change to the data of Xi → Yi and
Fi for i � 0, and we may deduce the same properties for X → Y and F under
the base change Y → Yi.

Corollary 1.7. Let f : X → Y be a proper morphism of noetherian schemes and
let F be a coherent sheaf on X which is flat over Y . The following are equivalent:

(1) Hi(Xy, Fy) = 0 for all y ∈ Y and i > 0; and

(2) Rif∗F = 0 for all i and f∗F is a vector bundle whose construction commutes
with base change on Y (i.e. for all morphisms g : Y ′ → Y of schemes, the
comparison map φ0Y ′ : g∗f∗F → f ′∗g

′∗F of (1.1) is an isomorphism).

Proof. The implication (2) =⇒ (1) is clear. For the converse, since φiy : Rif∗F ⊗
κ(y) → Hi(Xy, Fy) = 0 is surjective for all y ∈ Y and i > 0, Cohomology and
Base Change (Theorem 1.5(a)) implies that each φiy is an isomorphism and it

follows that Rif∗F = 0 for i > 0. We now apply Cohomology and Base Change
three times: Theorem 1.5(b) with i = 1 implies that φ0y is surjective for all y ∈ Y ,
Theorem 1.5(b) with i = 0 (as φ−1y is necessarily surjective) implies that f∗F is a
vector bundle and Theorem 1.5(a) with i = 0 implies that the construction of f∗F
commutes with base change on Y .

In each of the above statements, the flatness of F over Y was crucial. Without
flatness, one can still sometimes have base change results in special cases. The
following result is sometimes quite useful:

Proposition 1.8. Let f : X → Y be a projective morphism of noetherian schemes,
let OX(1) be a relatively ample line bundle on X, and let be a coherent sheaf on X.
For any morphism of schemes g : Y ′ → Y , the comparison map φ0Y ′ : g∗f∗F (d)→
f ′∗g
′∗F (d) of (1.1) is an isomorphism for d� 0.

Proof. TO ADD

1.3 Applications to moduli theory

Here is a typical application of Cohomology and Base Change to moduli theory.
The following proposition is used to establish properties of smooth families of
curves (??) and its argument applies in the same way to families of stable curves
(??).

Proposition 1.9. Let π : C→ S be a family of smooth curves of genus g ≥ 2 (i.e.
C→ S is a smooth, proper morphism of schemes such that every geometric fiber
is a connected curve of genus g). Then

(1) π∗OC = OS;
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(2) For k > 1, the pushforward π∗(Ω
⊗k
C/S) is a vector bundle of rank (2k−1)(g−1)

whose construction commutes with base change on S and Riπ∗(Ω
⊗k
C/S) = 0

for i > 0.

(3) The pushforward π∗(ΩC/S) is a vector bundle of rank g whose construction
commutes with base change on S and R1π∗(ΩC/S) ∼= OS while Riπ∗(ΩC/S) ∼=
OS = 0 for i ≥ 2.

Proof. To see (1), observe that the global functions H0(Cs,OCs
) = κ(s) are con-

stants since Cs is proper and geometrically connected. It follows that φ0s : π∗OC ⊗
κ(s)→ H0(Cs,OCs

) is surjective. Cohomology and Base Change (Theorem 1.5(a)-
(b) with i = 0) implies that φ0s is an isomorphism and that π∗OC is a line bundle.
On a fiber over s ∈ S, the natural map OS → π∗OC induces a surjective map

κ(s)→ π∗OC⊗κ(s) (as post-composing with π∗OC⊗κ(s)
φ0
s−→ H0(Cs,OCs) = κ(s)

is the identity). Thus OS → π∗OC is surjective morphism of line bundles, hence
an isomorphism.

For (2) with k > 1, H1(Cs,Ω
⊗k
Cs/κ(s)

) = H0(Cs,Ω
⊗(1−k)
Cs/κ(s)

) for all s ∈ S by

Serre–Duality (??) and this vanishes as deg(Ω
⊗(1−k)
Cs/κ(s)

) < 0. Note that we also

have the vanishing of Hi(Cs, ,Ω
⊗k
Cs/κ(s)

)) for i ≥ 2 since dimCs = 1. Cohomology

and Base Change (Theorem 1.5(a)) gives the vanishing of the higher pushforward
Riπ∗(Ω

⊗k
C/S) = 0 for i > 0. On the other hand, h0(Cs,Ω

⊗k
Cs/κ(s)

) = deg(Ω⊗k
Cs/κ(s)

) +

1− g = (2k − 1)(g − 1) by Easy Riemann–Roch (??). Corollary 1.7 implies that
π∗(Ω

⊗k
C/S) is a vector bundle of rank (2k − 1)(g − 1).

For (3), observe that since ΩC/S is a relative dualizing sheaf, Grothendieck–
Serre Duality implies that R1π∗ΩC/S

∼= π∗OC and this is identified with OS by
(1). For i ≥ 2, Hi(Cs,ΩC/S ⊗ κ(s)) = 0 and Cohomology and Base Change
(Theorem 1.5(a)) implies that Riπ∗ΩC/S = 0. Cohomology and Base Change
(Theorem 1.5(b) with i = 2) implies that φ1s : R1π∗ΩC/S⊗κ(s)→ H1(Cs,ΩCs/κ(s))
is surjective for any s ∈ S and thus an isomorphism (Theorem 1.5(a) with i = 1).
Since R1π∗ΩC/S

∼= π∗OC
∼= OS is a line bundle, applying Theorem 1.5(b) with

i = 1 implies that φ0s : π∗ΩC/S⊗κ(s)→ H0(Cs,ΩCs/κ(s)) is surjective and applying
Theorem 1.5(a)-(b) with i = 0 implies that π∗ΩC/S is a vector bundle of rank
h0(Cs,ΩCs/κ(s)) = g whose construction commutes with base change.

1.4 Applications to line bundles

Given a flat, proper morphism f : X → Y , when is a line bundle L on X the
pullback of a line bundle on Y ? More generally, is there a largest subscheme
Z ⊂ Y where LZ on XZ = X ×Y Z is the pullback of a line bundle on Z? In this
section, we provide three answers in increasing complexity.

As we will need to impose conditions on the fibers Xy, we first discuss rela-
tionships between various conditions.

Lemma 1.10. Let f : X → Y be a flat, proper morphism of noetherian schemes.
Consider the following conditions:

(1) the geometric fibers of f : X → Y are connected and reduced;

(2) h0(Xy,OXy
) = 1 for all y ∈ Y ; and

(3) OY = f∗OX and this holds after arbitrary base change (i.e. OT = fT,∗OXT

for a morphism T → Y of schemes).
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Then (1) =⇒ (2) ⇐⇒ (3).

Proof. If (1) holds, then H0(XyOXy
) ⊗κ(y) κ(y) = H0(X ×Y κ(y),O

X×Y κ(y)
) =

κ(y) by Flat Base Change and the fact that a connected, reduced and proper
scheme over an algebraically closed field has only constant functions. This gives
(2).

If (2) holds, then the comparison map φ0y : f∗OX ⊗ κ(y) → H0(Xy,OXy
) =

κ(y) is necessarily surjective as we have the global section 1 ∈ H0(Y, f∗OX).
Theorem 1.5 (with i = 0) implies that f∗OX is a line bundle and that OY → f∗OX
is a surjection of line bundles, hence an isomorphism. Since the same argument
applies to the base change XT → T , this gives (3). The converse (3) =⇒ (2)
follows by consider the base change T = Specκ(y)→ Y .

When Y is reduced, Grauert’s Theorem provides a complete answer to when a
line bundle is a pullback.

Proposition 1.11 (Version 1). Let f : X → Y be a flat, proper morphism of
noetherian schemes such that h0(Xy,OXy) = 1 for all y ∈ Y . Let L be a line
bundle on X. If Y is reduced, then L = f∗M for a line bundle M on Y if and only
if Ly is trivial for all y ∈ Y . Moreover, if these conditions hold, then M = f∗L
and the adjunction morphism f∗f∗L→ L is an isomorphism.

Proof. The condition on geometric fibers implies that h0(Xy, Ly) = 1 and Grauert’s

Theorem (Theorem 1.4) implies that f∗L is a line bundle and that f∗L⊗ κ(y)
∼→

H0(Xy, Ly) is an isomorphism. We claim that f∗f∗L→ L is surjective. It suffices
to show that (f∗f∗L)|Xy → L|Xy is surjective. Denoting fy : Xy → Specκ(y),

we have identifications (f∗f∗L)|Xy
= f∗y (f∗L ⊗ κ(y)) = f∗y ( ˜H0(Xy, Ly)) = OXy

and the claim follows. Since f∗f∗L → L is a surjection of line bundles, it is an
isomorphism.

Exercise 1.12. Show that if Y is a connected and reduced noetherian scheme
and E is a vector bundle, then Pic(PY (E)) = Pic(Y )× Z. See also [Har77, Exer.
III.12.5].

Proposition 1.13 (Version 2). Let f : X → Y be a flat, proper morphism of
noetherian schemes such that the geometric fibers are integral. For a line bundle
L on X, the locus

{y ∈ Y | Ly is trivial} ⊂ Y

is closed.

Proof. The important observation here is that for a geometrically integral and
proper scheme Z over field k, a line bundle M is trivial if and only if h0(Z,M) > 0
and h0(Z,M∨) > 0. To see that the latter condition is sufficient, observe that
we have a non-zero homomorphisms OZ → M and OZ → M∨, the latter of
which dualizes to a non-zero map M → OZ . Since Z is integral, the composition
OZ →M → OZ is also non-zero and is defined by a constant in H0(Z,OZ) = k.
It follows that M → OZ is a surjective map of line bundles, hence an isomorphism.
By the Semicontinuity Theorem (Theorem 1.3) the condition that h0(Xy, Ly) > 0
and h0(Xy, L

∨
y ) > 0 are each closed, and the statement follows. See also [Mum70,

p. 51].
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Remark 1.14. If the geometric fibers are only connected and reduced, the locus
may fail to be closed. For example consider a family of smooth curves f : X → Y
where Y is a curve and X is a smooth surface. For a closed point x ∈ X, consider
the blow-up BlxX → X and let E be the exceptional divisor. Then BlxX → Y
is a flat, proper morphism and the fiber over f(x) ∈ Y is connected and reduced,
but reducible. The line bundle L = OBlxX(E) has the property that the fiber Ly
is trivial if and only if y 6= f(x).

The two versions above can be combined to the following powerful statement
for a flat, proper morphism X → Y . For moduli-theoretic applications, it is
essential that we allow the possibly that Y is non-reduced and that the fibres Xy

be reducible. The proposition will be applied in the text to show that the locus of
curves C in a Hilbert scheme HilbP (P5g−6/Z) which are tri-canonically is a closed
condition.

Proposition 1.15 (Version 3). Let f : X → Y be a flat, proper morphism of
noetherian schemes such that h0(Xy,OXy

) = 1 for all y ∈ Y (resp. the geometric
fibers are integral). For a line bundle L on X, there is a unique locally closed
(resp. closed) subscheme Z ⊂ Y such that

(1) LZ on XZ = X ×Y Z is the pullback of a line bundle on Z; and

(2) if T → Y is any morphism of schemes such that LT on XT is the pullback
of a line bundle on T , then T → Y factors through Z.

Remark 1.16. In other words, the functor

Sch /Y → Sets,

(T → Y ) 7→
{
{∗} if LT is the pullback of a line bundle on T
∅ otherwise

is representable by a closed subscheme of Y .

Proof. By the Semicontinuity Theorem (Theorem 1.3), the locus V = {y ∈ Y |
h0(Xy, Ly) ≤ 1} is open. Since for points y /∈ V , Ly is not trivial, we may replace
Y with V and assume that h0(Xy, Ly) ≤ 1 for all y ∈ Y .

Observe that if L = f∗M for a line bundle M on Y , then by using the
projection formula and the fact that OY = f∗OX (Lemma 1.10), we see that
f∗L ∼= f∗f

∗M ∼= f∗f
∗OY ⊗M ∼= f∗OX ⊗M ∼= M is a line bundle and that the

adjunction map f∗f∗L → L is an isomorphism. The same holds for the base
change XT → T , and we conclude that LT is a pullback of a line bundle on T if
and only if fT,∗L is a line bundle and f∗T fT,∗L→ L is an isomorphism. This latter
condition is Zariski-local on Y . We see therefore that the question is Zariski-local
on Y and T . We will show that any point y ∈ Y has an open neighborhood where
the proposition holds.

By applying Theorem 1.1 and after replacing Y with an open affine neighbor-

hood of y, we may assume that there is a homomorphism d : Ar0
d−→ Ar1 of finitely

generated and free A-modules such that for any morphism SpecB → SpecA,
H0(XB , LB) = ker(d ⊗A B). Consider the dual d∨ of d, we define M as the
cokernel in the sequence

Ar1
d∨−−→ Ar0 →M → 0.
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For any ring homomorphism A→ B, we have a right exact sequence

Br1
d∨⊗AB−−−−−→ Br0 →M ⊗A B → 0

which after applying the contravariant left-exact functor HomB(−, B) becomes

0→ HomB(M ⊗A B,B)→ Br0
d⊗AB−−−−→ Br1 .

We conclude that

H0(XB , LB) = HomB(M ⊗A B,B) = HomA(M,B). (1.2)

Applying this toA→ κ(y) for any y ∈ SpecA, we haveH0(Xy, Ly) = HomA(M,κ(y)) =
M ⊗A κ(y).

If h0(Xy, Ly) = 0, then Ly is not trivial and there is an open neighborhood U of

y such that M̃ |U = 0. The proposition holds over U since there are no morphisms
T → U from a non-empty scheme such that LT is a pullback. On the other hand, if
h0(Xy, Ly) = 1, then M⊗Aκ(y) = κ(y) and by Nakayama’s lemma, after replacing
Y with an open affine neighbhorhood of y, there is a surjection A→ M . Write
M = A/I for an ideal I and define the closed subscheme Z = V (I) ⊂ Y . Observe
that H0(Z,LZ) = HomA(A/I,A/I) = A/I so that fZ,∗LZ is the trivial line
bundle. For an A/I-algebra B, we have that H0(XB , LB) = HomA(A/I,B) = B.
It follows that the comparison map H0(XZ , LZ) ⊗A/I B → H0(XB , LB) is an
isomorphism, or in other words the construction of fZ,∗LZ commutes with base
change.

We claim that T → Y factors through Z if and only if fT,∗LT is a line bundle.
This question is Zariski-local on T so we may assume T = SpecB is affine. If
fT,∗LT is a line bundle, we may assume fT,∗LT = OT is trivial since the question
is local on T . Then B = HomA(A/I,B) implies that I ⊂ ker(A→ B) or in other
words that A→ B factors as A→ A/I → B.

Finally, considering the adjunction morphism λ : f∗ZfZ,∗LZ → LZ on XZ , we
claim that for y ∈ Z, Ly is trivial if and only if λ|Xy

is surjective. If λ|Xy
is

surjective, then using that fZ,∗LZ = OZ , we have a surjection OXy
→ Ly of

line bundles, hence an isomorphism. For converse, observe that since fZ,∗LZ
commutes with base change, the comparison map fZ,∗LZ ⊗ κ(y) = H0(Xy, Ly)
is an isomorphism. Denoting fy : Xy → Specκ(y), we have identifications
(f∗ZfZ,∗LZ)|Xy

= f∗y (fZ,∗LZ ⊗ κ(y)) = f∗y fy,∗Ly under which λ|Xy
corresponds to

the adjunction map f∗y fy,∗Ly → Ly which is an isomorphism. Replacing Z with
Z \ Supp(coker(λ)) establishes the proposition in the case that h0(Xy,OXy

) = 1
for all y ∈ Y . If the fibers are geometrically integral, then Proposition 1.13 implies
that Z is closed.

See also [Mum70, p. 90], [Vie95, Lem. 1.19] and [SP, Tags 0BEZ and 0BF0].

Remark 1.17. Note that to prove the strongest version, we needed the strongest
version of our various cohomology and base change results, namely Theorem 1.1.

Remark 1.18. For a flat, proper morphism X → S, define the Picard functor as

PicX/S : Sch /S → Sets, T 7→ Pic(XT )/f∗T Pic(T ).

If f : X → S has geometrically integral fibers, then the existence of a closed
subscheme Z ⊂ Y characterized by Proposition 1.15 is equivalent to the di-
agonal morphism PicX/S → PicX/S ×S PicX/S of presheaves over Sch /S being
representable by closed immersions, i.e. PicX/S is separated over S.
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4, 8, 11, 17, 20, 24, 28, 32 (1960, 1961, 1961, 1963, 1964, 1965, 1966,
1967).

[Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-
Heidelberg, 1977, Graduate Texts in Mathematics, No. 52.

[Mum70] David Mumford, Abelian varieties, Tata Institute of Fundamental Re-
search Studies in Mathematics, No. 5, Published for the Tata Institute
of Fundamental Research, Bombay; Oxford University Press, London,
1970.

[SP] The Stacks Project Authors, Stacks Project, http://stacks.math.

columbia.edu, 2020.

[Vak17] Ravi Vakil, The rising sea: Foundations of algebraic geometry,
math216.wordpress.com, 2017.

[Vie95] Eckart Viehweg, Quasi-projective moduli for polarized manifolds, Ergeb-
nisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathemat-
ics and Related Areas (3)], vol. 30, Springer-Verlag, Berlin, 1995.

9

http://stacks.math.columbia.edu
http://stacks.math.columbia.edu

	Cohomology and Base Change

