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0.1 Course Outline

0.1.1 Potential Topics

• regular local rings, regular sequences

• toric varieties

• algebraic groups

• geometric invariant theory

• flatness, deformation theory

• formal schemes, ind-schemes

• (rigid) analytic spaces

• intersection theory

• positivity in algebraic geometry

0.1.2 Assignments

Weekly reflections of 3 things:

• 2 research things (theorems, facts, ...)

• 1 teaching/exposition/communication thing.

Class presentation

• 30-minute lecture.



Chapter 1

All Things Regular

Useful reference

David Eisenbud, Commutative Algebra with a View towards Algebraic Geometry [Eis95]

1.1 March 31: Regular Local Rings,

Auslander-Buchsbaum

“Math is the art of giving the same name to different things.”

— Henri Poincaré

1.1.1 Regular Local Rings

Definition 1.1. A noetherian local ring pR,m, κq is regular if dimKrull R “ dimκ m{m2.

A ring R is regular if for all p P Spec R, Rp is a noetherian regular local ring. M:

We

should

create

a

cheat-

sheet

for di-

men-

sion

the-

ory

Problem 1.2.

1. Find a non-noetherian ring R such that every Rp is noetherian.

2. Find a noetherian ring R with dim R “ 8, but every localization Rp has finite

Krull dimension.

Example 1.3.

1. Any field k.

3
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2. The local rings krx1, . . . , xnspx1,...,xnq and kx1, . . . , xn.

3. The ring krx1, . . . , xns.

Example 1.4. Non-examples include krx, ys{py2q and krx, ys{xy. The problem is we

are modding out by elements in m2.

Cheerful Fact

dim R{I “ dim R{
?

I.

Main goal over the next 2 weeks:

Theorem 1.5 (Auslander - Buchsbaum; Serre). Let pR,mq be a noetherian regular local

ring. Then, the following are equivalent:

1. The ring R is regular.

2. Every finitely generated R-module M has a finite free resolution

0 Ñ R‘nd Ñ ¨ ¨ ¨ Ñ R‘n1 Ñ R‘n0 Ñ M Ñ 0. (1.1.1)

3. The R-module κ “ R{m has a finite free resolution.

Moreover, if R is regular and there is a resolution

0 Ñ Kd Ñ R‘nd´1 Ñ ¨ ¨ ¨ Ñ R‘n0 Ñ M Ñ 0, (1.1.2)

then the kernel Kd is free.

Remark. The number d in Equation (1.1.1) is called the projective dimension of M.

Example 1.6.

1. Any field k. Everything is automatically free.

2. The local ring krxspxq. The residue field κ – k has a finite free resolution

0 krxspxq krxspxq k 0

pxq “ kerp¨xq

¨x

–
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so krxspxq is regular by (3) of Theorem 1.5.

3. The local ring R “ krx, yspx,yq. The residue field k has a finite free resolution

0 R R‘2 R k 0

¨

˚

˝

´y

x

˛

‹

‚

px yq

so R is regular by (3).

Example 1.7. Non-example. Let R “ krεs{pε2q. (Some authors may simply write

krεs). The obvious free resolution

¨ ¨ ¨ R R R k 0

pεq pεq pεq – k

¨ε ¨ε ¨ε

doesn’t terminate.

1.1.2 Applications of Auslander-Buchsbaum

Corollary 1.8. If pR,mq is a noetherian regular local ring and p P Spec R is a prime ideal,

then pRp, pRpq is regular.

Proof

Since R is regular, by item 2 of Auslander-Buchsbaum, there is a finite free resolution

0 Ñ R‘nd Ñ ¨ ¨ ¨ Ñ R‘n0 Ñ R{p Ñ 0.

Since localization is flat, tensoring with Rp is exact. Therefore, there is a finite free

resolution

0 Ñ R‘nd
p Ñ ¨ ¨ ¨ Ñ R‘n0

p Ñ k Ñ 0,

so Rp is regular by item 3 of Theorem 1.5. ■

Corollary 1.9 (Faithfully flat descent). Let R Ñ R1 be a faithfully flat homomorphism of

local rings. If R1 is regular, then R is regular.
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Proof

Outline.

(1) If R1 is noetherian, then R is noetherian.

(2) Let M be a finitely generated R-module. If M bR R1 is free, then M is free.

(3) Let d “ dim R. Choose a resolution

0 Ñ Kd Ñ R‘nd Ñ ¨ ¨ ¨ Ñ R‘n0 Ñ R{m Ñ 0.

Faithful flatness implies that tensoring with R1 is exact, so we get a resolution

0 Ñ pKdqR1 Ñ pR1
q

‘nd Ñ ¨ ¨ ¨ Ñ pR1
q

‘n0 Ñ pR1
q{m Ñ 0.

By item 3 of Theorem 1.5, pKdqR1 is free, so Kd is also free.

■
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1.2 April 2: Regular Sequences, Cohen-Macaulay

I think some intuition leaks out in every step of an induction proof.

–– Jim Propp, January 22 2000 at an AMS Special Session

Cheerful Fact

Some high-powered versions of Auslander-Buchsbaum.

1. If X is a smooth quasiprojective scheme, then every coherent sheaf has a finite

resolution by vector bundles, so there is an isomorphism K0pXq
–

ÝÑ G0pXq.

2. If X is smooth, then the bounded derived category DbpCohXq is isomorphic to

the category of perfect complexes PerfX (i.e. locally free resolutions).

1.2.1 Regular Sequences

Definition 1.10. Let R be a ring and M be an R-module. An element x P R is a

nonzero-divisor on M if the map M ¨x
Ñ M is injective.

Remark. This is nuanced when R is non-reduced!

Definition 1.11. An (ordered) sequence of elements x1, x2, . . . , xn is an M-regular

sequence if

(1) The element xi is a nonzero-divisor for M{px1, . . . , xi´1q.

(2) One has M ‰ px1, . . . , xnqM.

Remark. The second item is to exclude constants. By Nakayama’s Lemma, (2) is also

automatic for a local ring pR,mq.

Example 1.12.

1. Any sequence in R is regular for R‘1.

2. The sequence 2, x P Zrxs is regular for Zrxs.

Example 1.13. Non-examples.

1. The ring krx, ys{pxy, y2q has no nonzero-divisors aside from field constants, so

it has no regular sequences.

2. For the ring krx, y, zs, the sequence x, yp1 ´ xq, zp1 ´ xq is regular, while the

reordered sequence yp1 ´ xq, zp1 ´ xq, x is not. Indeed, zp1 ´ xq vanishes on
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the p1 ´ xq component of yp1 ´ xq, so it doesn’t ’cut down the correct number

of dimensions.’

Cheerful Fact

(To be proven.) If pR,mq is local noetherian, then regularity does not depend on the

ordering of the sequence. Furthermore, any two maximal regular sequences have

the same length.

Definition 1.14. Let pR,mq be a noetherian local ring and M a finitely generated

R-module. The depth of M is

depthRpMq :“ maxtd | there is a regular sequence x1, . . . , xdu.

Definition 1.15. The local ring pR,mq is Cohen-Macaulay (CM) if dim R “

depthRpRq. A Noetherian ring S is CM if all its localizations at primes are CM.

Remark. In general, one has depth R ď dim R.

Example 1.16.

1. The polynomial ring krx1, . . . , xns is CM.

2. The ring Zrxs.

3. The non-reduced ring krx, ys{pxy, y2q is not CM since it has dimension 1 but

depth 0.

4. The ring krx, ys{pxyq is CM. In general, krx1, . . . , xns{p f q is CM – one first uses

the Hauptidealsatz to show that the dimension is n ´ 1. Then, one shows there

is a nonzerodivisor.

5. Artinian local rings are CM: dim R “ 0 ùñ depth R “ 0.

Proposition 1.17. Let pR,mq be local noetherian.

1. If x1, . . . , xn is a regular sequence and R{px1, . . . , xnq is regular, then R is regular.

2. If R is regular and x1, . . . , xi P m is linearly independent in m{m2, the x1, . . . , xi is a

regular sequence and R{px1, . . . , xiq is regular. (Nakayama: a basis of m{m2 lifts to a

set of generators for m.)

3. A sequence x1, . . . , xn is regular iff xd
1, . . . , xd

n is regular.
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1.2.2 Regular Sequence vs. System of Parameters

Definition 1.18. Let pR,mq be a noetherian local ring with Krull dimension d. A

system of parameters for R is an (unordered) set of elements x1, . . . , xd satisfying

either of the following conditions:

(1) The ideal m is a minimal prime over px1, . . . , xdq.

(2) The radical
a

px1, . . . , xdq “ m.

(3) The ideal px1, . . . , xdq is m-primary, i.e. the module R{px1, . . . , xdq has finite

length.

Proposition 1.19. If the noetherian local ring R is CM, then every system of parameters is

a regular sequence. cf. Stack Exchange

1.2.3 Associated Graded Modules

Let R be a ring, I an ideal, and M an R-module. There is a filtration M Ě IM Ě I2M Ě ¨ ¨ ¨ ,

and we define the associated graded module to be

grI M :“ pM{Iq ‘ pIM{I2Mq ‘ ¨ ¨ ¨ “
à

kě0
pIk M{Ik`1Mq.

Proposition 1.20. Let R be a ring, x1, . . . , xn a regular sequence, and I :“ px1, . . . , xnq.

Then, the map

φ : pR{Iqry1, . . . , yns Ñ grI R, yi ÞÑ xi P I{I2

is an isomorphism.

Proof

Proof by induction on n. ■

Remark. The above can be viewed as a flat degeneration technique, where Spec R

degenerates into Spec grI R. Namely, there is a flat family X Ñ A1 where the

generic fiber is Spec R but the special fiber is Spec grI R.

Jarod’s guess: X “ SpecpR ‘ I ‘ I2 ‘ ¨ ¨ ¨ q Rees blow up algebra. Correct?

https://math.stackexchange.com/questions/1365347/systems-of-parameters-are-exactly-r-sequences
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Corollary 1.21. If I is generated by the regular sequence x1, . . . , xn, then the module

Id{Id`1 is free of rank
`n`d´1

d
˘

. Geometrically, if a subscheme Z Ď X is locally defined by

regular sequences, then NZ{X is a vector bundle.

First notice that the associated graded ring grI M is the symmetric algebra SymR{I I{I2.

We know the sheaf version of I{I2 is the conormal bundle N_
Z{X “ IZ{X{I2

Z{X. Therefore,

the sheaf version of the associated graded ring w.r.t an ideal is the structure sheaf of the

conormal bundle Spec
´

SymX N_
Z{X

¯

.

Proposition 1.22. If pR,mq is a regular local ring then R is a domain.

To prove this, we will require the following lemma.

Lemma 1.23. If pR,mq is a regular local ring with κ “ R{m, then grm R – κrx1, . . . , xns.

Proof

The notetaker is indebted to Soham Ghosh for the following argument. Let n “

dim R “ dimκ m{m2. The result is evident when n “ 0. For n ą 0, we first show that

R contains a nonzero divisor x1 that is not a unit. Assume by way of contradiction

that every element of m is a zero divisor. Then, m is covered by the associated

primes of the zero ideal [Sta25, Section 00L9]

m “
ď

piPAssp0q

pi, (1.2.1)

and there are finitely many associated primes. By Prime Avoidance Lemma [Sta25,

Lemma 00DS], Equation (1.2.1) cannot be true unless there is only one associated

prime tpu “ Assp0q for which m “ p. This implies m is a minimal prime, so

dim R “ 0 – contradiction! Therefore, we can always find a nonzero divisor x1 P m.

Take such an x1 P m and let x1 P m{m2 be its image. Choose a basis x1 . . . , xn for

m{m2. By Nakayama’s Lemma, this basis lifts to a set of generators x1, . . . , xn of m.

We show that x1, . . . , xn is a regular sequence by induction on n “ dim R.

When n “ 1, the statement is evident. Now assume the result is true for dimension

n ´ 1. Let R be a regular local ring of dimension n. If R contains a nonzero divisor

x1 that is not a unit, then by item 2 of Proposition 1.17, R{x1 is a regular local

ring of dimension n ´ 1, so the inductive hypothesis applies, and we conclude that

x1, . . . , xn is a regular sequence in R. ■

https://stacks.math.columbia.edu/tag/00L9
https://stacks.math.columbia.edu/tag/00DS
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1.3 April 7: Koszul Complex and Koszul Homology I

One way to put the dichotomy in a more philosophical or literary framework is to say that algebra

is to the geometer what you might call the ’Faustian offer’. As you know, Faust in Goethe’s story

was offered whatever he wanted (in his case the love of a beautiful woman), by the devil, in return

for selling his soul. Algebra is the offer made by the devil to the mathematician. The devil says: ’I

will give you this powerful machine, it will answer any question you like. All you need to do is

give me your soul: give up geometry and you will have this marvellous machine.’ (Nowadays you

can think of it as a computer!) Of course we like to have things both ways; we would probably

cheat on the devil, pretend we are selling our soul, and not give it away. Nevertheless, the danger

to our soul is there, because when you pass over into algebraic calculation, essentially you stop

thinking; you stop thinking geometrically, you stop thinking about the meaning.

– Sr. Michael Atiyah [Ati02]

1.3.1 Regular Local Rings (Cont.)

Proposition 1.24. A regular local ring is a integral domain.

Proof

Let R be a regular local ring with unique maximal ideal m. We prove by induction

on the Krull dimension d :“ dimpRq that R is an integral domain.

Base case. If d “ 0, then R is a field by definition, hence a domain.

Inductive step: Suppose that every regular local ring of dimension less than d is a

domain, and let dimpRq “ d ě 1.

Since R is regular, m{m2 has dimension d. In particular, by Nakayama’s lemma we

have m2 ‰ m.

Since R is noetherian, the set of minimal prime ideals is finite. Suppose, by way of

contradiction, that

m Ď m2
Y

ď

q minimal

q.

Prime Avoidance Lemma [Sta25, Lemma 00DS] implies that m is contained either in

m2 (which is impossible) or in one of the minimal primes. In the latter case, m is

itself a minimal prime, forcing dimpRq “ 0, contradicting d ě 1. Hence, there exists

https://stacks.math.columbia.edu/tag/00DS


CHAPTER 1. ALL THINGS REGULAR 12

an element

x P mz

´

m2
Y

ď

q minimal

q
¯

.

Set S “ R{pxq and denote by n “ mS the unique maximal ideal of S. By Krull’s

Hauptidealsatz [Sta25, Lemma 00KV], dimpSq “ d ´ 1. Also, the natural surjection

m{m2
Ñ n{n2

shows that dimR{mpn{n2q ď d ´ 1. Thus, S is regular and, by the induction hypothe-

sis, an integral domain.

Since S is an integral domain, the ideal pxq in R is prime. Because x is chosen

outside every minimal prime, there exists some minimal prime q properly contained

in pxq. Now, for any y P q we have y “ ax for some a P R. Since x R q, it must be that

a P q, and hence q “ xq. By Nakayama’s Lemma [Sta25, Section 07RC] it follows

that q “ p0q. Therefore, R has no nonzero minimal prime ideals and is an integral

domain. ■

Remark. A scheme X of finite type over an algebraically closed field k. TFAE:

• The scheme X is smooth.

• (locally integral) the local ring OX,p is regular for all p P X.

• The local ring OX,p is regular for all closed points p P Xpkq.

Proposition 1.25. A regular local ring is a UFD.

Proof

See [Sta25, Section 0FJH]. ■

Remark. A scheme X of finite type over an algebraically closed field k is locally

factorial if every local ring is a UFD. For integral separated locally factorial schemes,

the map from the Picard group Pic to the Weil class group Cl is subjective (see

Figure 3.26).

Corollary 1.27. Let pR,mq be a regular local ring. Then, any element x P m´m2 is regular,

and R{x is regular.

Proof. Compute that dim R{x “ dim R ´ 1 by Hauptidealsatz.

https://stacks.math.columbia.edu/tag/00KV
https://stacks.math.columbia.edu/tag/07RC
https://stacks.math.columbia.edu/tag/0FJH
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ClpXqCaClpXq

PicpXq

take vanishing of sections

- not injective: Spec krt2, t3s

- not surjective: xy “ z2

- normal ùñinjective
- locally factorial ùñisomorphic

X Noetherian integral.

take dual of ideal sheaves

- injective
- integralùñisomorphic

Figure 3.26: Implications on class groups

Corollary 1.28. Let pR,mq be a regular local ring. If x1, . . . , xi are linearly independent in

m{m2, then x1, . . . , xi is regular, and R{px1, . . . , xiq remains regular.

Proof

Induction. See also Lemma 1.23. ■

Corollary 1.29. The following are equivalent for a sequence of elements x1, . . . , xn in a

regular local ring pR,mq.

• The sequence x1, . . . , xn forms a basis of m{m2.

• The sequence x1, . . . , xn generates m.

• The quotient R{px1, . . . , xnq is zero-dimensional.

• The sequence x1, . . . , xn is a system of parameters.

Proposition 1.30. Let pR,mq be a noetherian local ring. If x1, . . . , xn is a regular sequence

such that R{px1, . . . , xnq is regular, then R is regular.

Proof

Again, induction on the length n. If n “ 1, then this is Corollary 1.27. Now

assume the result holds for n. Then, for a sequence x1, . . . , xn`1, the ring R{px1q

is regular. Let m be the image of m in R{x1. We have dim R{x1 “ dim R ´ 1 and

dimm{m2 ě dimm{m2 ´ 1. Then, dimm{m2 ě dim R which implies that R is regular.

■
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1.3.2 Koszul Complex & Koszul Homology

Let R be a commutative ring and M an R-module. The exterior algebra of M is

ľ‚
M “

à

kě0

ľk
M “ R ‘ M ‘

ľ2
M ‘ ¨ ¨ ¨

“
R ‘ M ‘ Mb2 ‘ ¨ ¨ ¨

submodule generated by x b x
.

(1.3.1)

The exterior algebra is graded commutative: x ^ y “ p´1q|x|¨|y|y ^ x.

Example 1.31. M “ R‘n “ R ¨ te1, . . . , enu. Then
Źk M “ R‘pn

kq “ R ¨ teI | I P
`

rns

k

˘

u.

Definition 1.32. [Sta25, Section 0621] Let R be a ring. Let f : M Ñ R be an R-module

map. The Koszul complex Kp f q‚ associated to f is the commutative differential

graded algebra defined as follows:

(1) the underlying graded algebra is the exterior algebra Kp f q‚ “
Ź

M,

(2) the differential d : Kp f q‚ Ñ Kp f q‚ is the unique derivation such that dpxq “ f pxq

for all x P M “ Kp f q1.

Explicitly, if m1 ^ . . . ^ mn is one of the generators of degree n in Kp f q‚, then

d pm1 ^ . . . ^ mnq “
ÿ

i“1,...,n

p´1q
i`1 f pmiq m1 ^ . . . ^ xmi ^ . . . ^ mn.

In the case that M is a finite free module, the map f is given by a sequence of ring

elements x1, . . . , xn. In this case, the Koszul complex may be written explicitly as

Kpx1, . . . , xnq‚ :Ñ
ľk

M
dk
ÝÑ

ľk´1
M Ñ ¨ ¨ ¨ Ñ

ľ2
M Ñ M Ñ R,

or

Kpx1, . . . , xnq‚ :Ñ R‘pn
kq

dk
ÝÑ R‘p n

k´1q Ñ ¨ ¨ ¨ Ñ R‘n px1 ...xnq
ÝÝÝÝÝÑ R.

Cheerful Fact

Michael: Let OPi be the coherent sheaf over Pn that is the pushforward along the

standard inclusion. Let krx0, . . . , xns be the homogenous coordinate ring of Pn. Then,

https://stacks.math.columbia.edu/tag/0621
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the Koszul complex Kpxi`1, . . . , xnq‚ upgrades to a locally free resolution of OPi ,

0 Ñ OPnp´n ` iq‘pn´i
n´iq Ñ ¨ ¨ ¨ Ñ OPnp´2q

‘pn´i
2 q Ñ OPnp´1q

‘pn´i
1 q Ñ OPn Ñ OPi Ñ 0.

One uses this to show that the Grothendieck group K0pPnq is generated by rOp1qs

as a ring.

Goal: Use Kpx1, . . . , xnq‚ to test if the sequence is regular.

Definition 1.33. For an R-module N, we define the Koszul complex with coefficients

in N to be

Kpx1, . . . , xn; Nq‚ :“ Kpx1, . . . , xnq‚ b N.

(In the more general case, Kp f ; Nq‚ :“ Kp f q‚ b N.)

Definition 1.34. The Koszul homology H‚px1, . . . , xn; Nq is the homology of the

complex Kpx1, . . . , xn; Nq‚.

Example 1.35. R “ krxs. The Koszul complex Kpxq‚ : 0 “
Ź2 R Ñ R ¨x

ÝÑ R continues

to the free resolution

0 Ñ R ¨x
ÝÑ R Ñ k Ñ 0

of the ground field. We have H0pxq “ k and Hipxq “ 0 for i ě 1. The fact that

H1pxq “ 0 implies that p¨xq is injective.

Example 1.36. Here are some more examples.

0 ÝÑ krx, ys

¨

˚

˝

´y

x

˛

‹

‚

ÝÝÝÝÑ krx, ys
2

ˆ

x y
˙

ÝÝÝÝÝÑ krx, ys ÝÑ k Ñ 0.

0 ÝÑ krx, y, zs

¨

˚

˚

˚

˚

˝

z

´y

x

˛

‹

‹

‹

‹

‚

ÝÝÝÝÑ krx, y, zs
3

¨

˚

˚

˚

˚

˝

´y ´z 0

x 0 ´z

0 x y

˛

‹

‹

‹

‹

‚

ÝÝÝÝÝÝÝÝÝÝÝÝÑ krx, y, zs
3

ˆ

x y z
˙

ÝÝÝÝÝÝÝÝÑ krx, y, zs ÝÑ k Ñ 0.
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In all cases we have

Hipx1, . . . , xnq “

$

&

%

k i “ 0

0 i ą 0.

Theorem 1.37. Let R be a ring, M an R-module, and x1, . . . , xn an M-regular sequence.

Then,

Hipx; Mq “

$

&

%

M{px1 . . . , xnq i “ 0

0 i ą 0.

In other words, the Koszul complex Kpx1, . . . , xn; Mq‚ is exact except at degree 0.
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1.4 April 9: Koszul Homology II

Michael: what was the quote again? It was kinda long and I didn’t follow

1.4.1 Koszul Complex & Koszul Homology II

Theorem 1.38. Let R be a ring and M an R-module. Let x1, . . . , xn be a sequence of

elements of R. Consider the following:

(1) The sequence x1, . . . , xn is regular.

(2) The homology groups Hipx1, . . . , xn; Mq “ 0 for i ą 0.

(3) The first homology group H1px1, . . . , xn; Mq “ 0.

The implications (1) ñ p2q ñ p3q always hold. If pR,mq is noetherian local and M is

finitely generated, then p3q ñ p1q.

The idea of the proof is to show that Kpx1, . . . , xnq‚ –
Â

i Kpxiq‚. We need the following

facts from homological algebra.

1. Shifting complexes. If C‚ is a complex and d P Z is an integer, then the complex Crds‚

is defined as Crdsi “ Ci`d, i.e. shifted to the left by d. Then, HipCrds‚q “ Hi`dpC‚q.

2. Tensoring complexes. Given a pair of complexes C‚ and D‚, the tensor product

pC b Dq‚ is defined as

pC b Dqd “
à

d“i`j
Ci b Dj

dkpα b βq “ dα b β ` p´1q
|α|α b dβ.

(1.4.1)

Lemma 1.39.

Kpx1, . . . , xnq‚ – Kpx1, . . . , xn´1q b Kpxnq‚.

Proof

Expand definitions. write out the n = 2 case. ■

Remark. There is a short exact sequence of complexes 0 Ñ R Ñ Kpxq‚ Ñ Rr´1s Ñ 0

given by
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0 0

0 R R

R R 0

0 0

–

¨x

–

More generally, the sequence

0 Ñ C‚ Ñ C b Kpxq‚ Ñ C‚r´1s Ñ 0

is short exact for any complex C‚.

Corollary 1.40. There is a short exact sequence

0 Ñ Kpx1, . . . , xn´1; Mq‚ Ñ Kpx1, . . . , xn; Mq Ñ Kpx1, . . . , xn´1; Mqr´1s‚ Ñ 0.

(1.4.2)

Proof

Proof of Theorem 1.38. p1q ùñ p2q Induction on n. The case n “ 1 is Example 1.35.

Assume the implication holds for n. Then, the short exact sequence 1.4.2 from

Corollary 1.40

0 Ñ Kpx1, . . . , xn´1; Mq‚ Ñ Kpx1, . . . , xn; Mq Ñ Kpx1, . . . , xn´1; Mqr´1s‚ Ñ 0

induces a long exact sequence

¨ ¨ ¨ Ñ Hipx1, . . . , xn´1; Mq Ñ Hipx1, . . . , xn; Mq Ñ Hi´1px1, . . . , xn´1; Mq Ñ ¨ ¨ ¨

(1.4.3)

in Koszul homology. For degrees i ą 1, the LES forces Hipx1, . . . , xn; Mq to be 0. For

degree 1, (1.4.3) becomes

0 Ñ H1px1, . . . , xn; Mq Ñ H0px1, . . . , xn´1; Mq
¨xn
ÝÝÑ H0px1, . . . , xn´1; Mq Ñ ¨ ¨ ¨ (1.4.4)

where the connecting homomorphism d0 “ p¨xnq is injective since xn is regular. Thus



CHAPTER 1. ALL THINGS REGULAR 19

the kernel H1px1, . . . , xn; Mq vanishes.

p2q ùñ p3q Immediate.

p3q ùñ p1q when pR,mq is noetherian local Claim 1: H1px1, . . . , xnq “ 0 implies

that H1px1, . . . , xiq “ 0 for all 0 ď i ď n. The proof is by descending induction: if

H1px1, . . . , xiq “ 0, then the long exact sequence (1.4.3) becomes

¨ ¨ ¨ Ñ H1px1, . . . , xi´1q
¨xi
ÝÑ H1px1, . . . , xi´1q Ñ 0 “ H1px1, . . . , xiq Ñ ¨ ¨ ¨ (1.4.5)

so the map p¨xiq is surjective, but Nakayama’s Lemma implies that xi ¨

H1px1, . . . , xi´1q “ 0. Therefore, H1px1, . . . , xi´1q “ 0.

Claim 2: The sequence x1, . . . , xn is regular. The proof is by induction on i. The case

i “ 1 is again Example 1.35. Assuming that x1, . . . , xi is regular, the LES (1.4.3) at

degree 0 reads

¨ ¨ ¨ Ñ H1px1, . . . , xi`1q “ 0 Ñ M{px1, . . . , xiq
–H1px1,...,xiq

¨xi`1
ÝÝÝÑ M{px1, . . . , xiq Ñ ¨ ¨ ¨ (1.4.6)

which implies p¨ ¨ ¨ xi`1q is injective on M{px1, . . . , xiq, hence regular. ■

Corollary 1.41. Let pR,mq be noetherian local and M be a finitely generated R-module.

Then, the fact that x1, . . . , xn is regular does not depend on the ordering of x1, . . . , xn.

Proof

Since tensoring is commutative, we have

Kpx1, . . . , xnq‚ –
Lemma 1.39

â

Kpxiq‚ – Kpxw1 , . . . , xwnq‚

for any permutation w P Sn. Then, implication p3q ùñ p1q of Theorem 1.38 implies

that both sequences of regular. ■

Corollary 1.42. For the sequence x1, . . . , xn P krx1, . . . , xns, the Koszul complex

Kpx1, . . . , xnq‚ is a free resolution of the ground field k.
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1.4.2 Regularity & Dimension Theory

Definition 1.43. Let R be a noetherian local ring and M a finitely generated R

-module. The projective dimension of M, denoted pdpMq, is the minimum length

of finite free resolutions of M. The global dimension R, denoted gldimpRq, is the

supremum of pdpMq for all finitely generated modules M.

Definition 1.44. Let pR,mq be a noetherian local ring. A minimal free resolution of

an R-module M is a finite free resolution 0 Ñ Fl
dl
ÝÑ ¨ ¨ ¨ Ñ F0 Ñ M Ñ 0 such that

im di Ď mFi.

Cheerful Fact

From a minimal resolution, one gets a list of ranksprk F0, . . . , rk Flq called the Betti

numbers of M. For a graded ring R, one instead obtains a two-dimensional array

called the Betti table. The Macaulay2 language is a computer algebra system that

offers many amazing functionalities including the computation of Betti tables [GS,

betti]. Below is a small example from the documentation page (linked above):

i6 : R = QQ[a,b,c, Degrees => {-1,-2,-3}];

i7 : heft R

o7 = {-1}

o7 : List

i8 : betti koszul vars R

0 1 2 3

o8 = total: 1 3 3 1

0: 1 1 . .

1: . 1 1 .

2: . 1 1 .

3: . . 1 1

o8 : BettiTally

https://macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/Macaulay2Doc/html/_betti.html


CHAPTER 1. ALL THINGS REGULAR 21

Proposition 1.45. Let pR,m, κq be a noetherian local ring.

1. For a finitely generated module M, the projective dimension pdpMq is equal to the

length of any minimal free resolution which is equal to the minimal i such that

Tori`1pκ, Mq “ 0.

2. If F‚ Ñ M is a minimal free resolution, then rk Fi “ dim Tori`1pκ, Mq.

Proof

2 Any minimal free resolution

0 Ñ R‘dl Ñ ¨ ¨ ¨ Ñ R‘d0 Ñ M Ñ 0

becomes

0 Ñ κ‘dl 0
ÝÑ ¨ ¨ ¨

0
ÝÑ κ‘d0 0

ÝÑ Mκ Ñ 0

so the ranks di are equal to the dimensions of Tori`1pκ, Mq – κ‘di . ■

Remark. Tor is a bifunctor, and TorpA, Bq can be computed by either E‚ Ñ A or

F‚ Ñ B.

Proposition 1.46.

gldimpRq “ pdpκq.

Proof

ě This direction follows from definition.

ď Let n “ pdpκq. Then, there is a free resolution 0 Ñ Fn Ñ ¨ ¨ ¨ Ñ F0 Ñ κ Ñ 0,

which implies Toripκ, Mq “ 0 for all i ą n. See ?? . By Proposition 1.45, it follows

that pdpMq ď n. ■

Theorem 1.47. Let pR,m, κq be a noetherian local ring. The following are equivalent.

(1) The ring R is regular.

(2) The global dimension gldimpRq is finite.

(3) The projective dimension pdpκq is finite.
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Proof

We prove the two important implications, noting that the other implications follows

from definition.

Regular ùñ pdpκq ă 8 Let x1, . . . , xn be a minimal set of generators for m. Then,

by Corollary 1.29, x1, . . . , xn is a regular sequence, so the Koszul resolution is a finite

free resolution of κ, the length of which upper bounds pdpκq.

pdpκq ă 8 ùñ R regular Jarod: Good topic for a student lecture! ■
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