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WEEK 1, JAN 4, 6: DIMENSION

Lecture 1: Introduction to dimension.
• Define Krull dimension of a ring A.
• Discuss dimension 0 rings. Recall Artinian rings and various equiv-

alences.
• Prove that a PID has dimension 1.
• Prove that if I ⊂ R is a nilpotent ideal, then dimR/I = dimR.

Lecture 2: Conservation of dimension under integral extensions.
• Prove that if R → S is an integral ring extension, then dimR =
dimS.
• Define the codimension (or height) of a prime p ⊂ A, denoted as
codim p, as the supremum of the lengths k of strictly descending
chains

p = p0 ⊃ p1 ⊃ · · · ⊃ pk
of prime ideals. Note that codim p = dimAp.
• Prove: if φ : R→ S is an integral ring homomorphism, then dim I =
dimφ−1(I).
• Discuss codimension 0 primes (i.e. minimal primes).
• Prove: if R is Noetherian and f ∈ R is a non-unit, then any prime
p ( (f) has codim(p) = 0.

WEEK 2, JAN 9, 11 (JAN 13 CANCELLED): KRULL’S HAUPTIDEALSATZ
AND CONSEQUENCES

Lecture 3: Krull’s Hauptidealsatz.
• State and prove Krull’s Principal Ideal Theorem (a.k.a. Krull’s

Hauptidealsatz): if A is a Noetherian ring and f ∈ A is not a unit,
then height(f) ≤ 1; that is, for every prime ideal p containing f ,
height p ≤ 1.
• State and prove the following generalization of Krull’s Principal

Ideal Theorem: if A is a Noetherian ring and I = (x1, . . . , xn) ⊂ A
is a proper ideal. Then height I ≤ n; that is height p ≤ n for every
prime ideal p containing I (or equivalently, for every prime ideal
which is minimal among prime ideals containing I).
• Prove corollary: dim k[x1, . . . , xn] = n.
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Lecture 4: System of parameters.
• Prove the converse theorem to Krull’s principal ideal theorem: if
A is a Noetherian ring and I ⊂ A is a proper ideal of height n.
Then there exist x1, . . . , xn ∈ I such that height(x1, . . . , xi) = i for
i = 1, . . . , n.
• Reinterpret dimension: if (R,m) is a Noetherian local ring, them
dimR is the smallest number n such that there exists x1, . . . , xm ∈ m
with R/(x1, . . . , xm) Artinian. Such a sequence x1, . . . , xm ∈ m is
called a system of parameters for R.
• Prove corollary: if (R,m) → (S, n) is a local homomorphism of

local Noetherian rings, then dimS ≤ dimR + dimS/mS.
• Prove corollary: if R is a Noetherian ring, then dimR[x] = dimR+
1.

WEEK 3, JAN 18, 20 (JAN 16 MLK HOLIDAY): FLATNESS

Lecture 5: Basics on flatness.
• Review of Tor. Key properties: short exact sequences induce long

exact sequences of Tor groups, Tori(P,M) = 0 for P projective and
i > 0, compatibility with localization, Tori(M,N) = Tori(N,M)
and thus can be computed as a derived functor in either the first
or second term.
• Examples of flat and non-flat modules
• Prove Going Down Theorem for flatness
• Prove: if (R,m) → (S, n) is a flat local homomorphism of local

Noetherian rings, then dimS = dimR + dimS/mS.

Lecture 6: Homological characterization of flatness:
• Prove: Let R be a ring. An R-module M is flat if and only if
TorR1 (R/I,M) for all finitely generated ideals I ⊂ R.
• Examples: flatness over the dual numbers, flatness over PIDs.
• Equational Criterion for Flatness: An R-module M is flat if and

only if the following condition is satisfies: For every relation 0 =∑
i nimi withmi ∈M and ni ∈ R, there exist elementsm′j ∈M and

elements aij ∈ R such that∑
j

aijm
′
j = mi for all i and

∑
i

aijni = 0 for all j.

WEEK 4, JAN 23, 25, 27: ARTIN–REES LEMMA, KRULL’S INTERSECTION
THEOREM, LOCAL CRITERION OF FLATNESS

Lecture 7: flatness ⇐⇒ projective.
• Reinterpret equational criterion for flatness using commutative di-

agrams.
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• Prove: if M is finitely presented R-module, then M is flat ⇐⇒
projective. If in addition R is a local, then flat ⇐⇒ free ⇐⇒
projective.
• State and motivate simple version of Local Criterion for Flatness.

Lecture 8: Artin–Rees Lemma and Local Criterion for Flatness.
• Give motivation of the Artin–Rees Lemma.
• Prove Artin–Rees Lemma: Let R be a Noetherian ring and I ⊂ R

an ideal. Let M ′ ⊂ M be an inclusion of finitely generated R-
modules. If M = M0 ⊃ M1 ⊃ M2 ⊃ · · · is an I-stable filtration, so
is M ′ ⊃M ′ ∩M1 ⊃M ′ ∩M2 ⊃ · · · .
• Prove Krull’s Intersection Theorem: Let R be a Noetherian ring,
I ⊂ R an ideal and M a finitely generated R-module. Then there
exists x ∈ I such that

(1− x)
⋂
k

IkM = 0.

In particular, if (R,m) is local, then
⋂
mkM = 0 and

⋂
mk = 0. Or

if R is a Noetherian domain and I is any ideal, then
⋂
Ik = 0.

• State general version of Local Criterion for Flatness: if (R,m) →
(S, n) is a local homomorphism of local Noetherian rings and M is
a finitely generated S-module, then

M is flat as an S-module ⇐⇒ TorR1 (R/m,M) = 0.

Lecture 9: Fibral Flatness Theorem.
• Finish proof of Local Criterion for Flatness.
• Prove the Fibral Flatness Theorem: Consider a local homomor-

phisms (R,m) → (S, n) → (S ′, n′) of local Noetherian rings. Let
M be a finitely generated S ′-module which is flat over R. Then M
is flat over S if and only if M/mM is flat over S/mS.
• Discuss special case of the Fibral Flatness Theorem when R =
k[x](x).

WEEK 5, JAN 30, FEB 1, 3: GRADED MODULES AND COMPLETIONS

Lecture 10: Graded modules and flatness.
• Summary of flatness results.
• State Openness of Flatness and Grothendiecke’s generic freeness

(without proof).
• Graded modules and Hilbert functions.
• Prove: Let R =

⊕
d≥0Rd be a graded ring which is finitely gener-

ated as an R0-algebra by elements of degree 1. Assume R0 is a lo-
cal Noetherian domain. Let M be a finitely generated R-modules.
Then M is flat/R0 if and only if for p ∈ SpecR0, the Hilbert func-
tion HM⊗R0

k(p) := dimk(p)Md ⊗R0 k(p) is independent of p.
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Lecture 11: Completions.
• Definition of the completion of a ring (and module) with respect

to an ideal.
• Arithmetic and geometric examples.
• Show that ifR is Noetherian and I ⊂ R is an ideal, then M⊗R R̂→
M̂ is an isomorphism for all finitely generated modules M .
• Conclude that R→ R̂ is flat.

Lecture 12: Completions continued.
• Show that if R is Noetherian, then so is the completion R̂ of R

along an ideal I .
• Conclude that R Noetherian =⇒ R[[x]] Noetherian.
• Mention Hensel’s Lemma.
• Mention Cohen’s Structure Theorem.

WEEK 6, FEB 8, 10 (FEB 6 SNOW DAY): REGULAR SEQUENCES AND
KOSZUL COMPLEXES

Lecture 13: regular sequences.
• Introduce regular sequences: we say x1, . . . , xn ∈ R that is a M -

regular sequence if xi is a non-zero divisor on M/(x1, . . . , xi−1)M
for i = 1, . . . , n and that M 6= (x1, . . . , xn)M .
• Give examples.
• Prove: Let R be a ring and x1, . . . , xn be a regular sequence. Set
I = (x1, . . . , xn). Show that the natural homomorphism

R/I[y1, . . . , yn]→ GrIR, yi 7→ xi ∈ I/I2,
is an isomorphism. In particular, I/I2 is a free R/I-module of rank
n.
• State more general version (which has the same proof) when M is

an R-module and x1, . . . , xn is a M -regular sequence.

Lecture 14: Koszul complex.
• Finish proof of proposition from last class.
• Introduce alternating products.
• Give concrete definition of the Koszul complex: if R is a ring,
M is an R-module and x = (x1, . . . , xn) ∈ Rn, then K(x;M)• =
K(x1, . . . , xn;M)• is the chain complex ofR-modules whereK(x;M)k =
∧k(Rn) and the differential ∧k(Rn) → ∧k−1(Rn) is defined by ei1 ∧
· · · ∧ eik 7→

∑k
j=1(−1)jxijei1 ∧ · · · ∧ êij ∧ · · · ∧ eik .

• Write down examples in the case n = 1, 2, 3.

WEEK 7, FEB 13, 15, 17: KOSZUL HOMOLOGY, DEPTH AND REGULARITY

Lecture 15: Koszul complexes and regular sequences.
• Reintrepret the Koszul complex as a tensor product of complexes.
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• Define Koszul homology: if R is a ring, M is an R-module and
x = (x1, . . . , xn) ∈ Rn, then Hi(x;M) := Hi(K(x;M)).
• Prove: Let R be a ring, M be an R-module and x = (x1, . . . , xn) ∈
Rn. If x is an M -regular sequence, then Hi(x;M) = 0 for i ≥ 1.
• Show that the converse is true if (R,m) is a local Noetherian ring,
M is a finitely generated R-module and x1, . . . , xn ∈ m.

Lecture 16: depth.

• Finish proof of converse from previous lecture.
• State the theorem: Let R be a Noetherian ring and M be a finitely

generatedR-module. Let x = (x1, . . . , xn) ∈ Rn and set I = (x1, . . . , xn) ⊂
R. Assume IM 6= M . Let d be the smallest integer such that
Hn−d(x;M) 6= 0. Then any maximal M -regular sequence in I has
length d.
• Define the depth of I on M , denoted by depth(I,M), as this smallest

integer d.
• Give examples.
• Begin proof of theorem.

Lecture 17: depth and regular local rings.

• Finish proof characterizing depth.
• State (but do not prove): Let R be a Noetherian ring, I ⊂ R be

an ideal and M be a finitely generated graded R-module. Assume
I + Ann(M) 6= R. Then depth(I,M) is the smallest i such that
ExtiR(R/I,M) 6= 0.
• Define a regular local ring (R,m) as a Noetherian local ring such

that dimR = dimR/mm/m2.
• Give a few examples: e.g., say when k[x1, . . . , xn](x1,...,xn)/(f) is reg-

ular.
• Prove that a regular local ring is a domain.

WEEK 8, FEB 22, 24 (FEB 20 PRESIDENT’S DAY): FREE RESOLUTIONS
AND PROJECTIVE DIMENSION

Lecture 17: minimal free resolutions and projective dimension.

• Show that if (R,m) is a regular local ring and x1, . . . , xk are ele-
ments of m which are linearly independent in m/m2, then x1, . . . , xk
is a regular sequence and R/(x1, . . . , xk) is a regular local ring.
Such a sequence whose length is equal to dimR is called a egular
system of parameters.
• Introduce the projective dimension of a module M , denoted by
pdM , as the smallest length of a projective resolution of M .
• Introduce the global dimension of a ring R, dentoed by gl dimM ,

as the supremum of pdM over finitely generated R-modules M .
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• Define a minimal free resolution of an R-module M as a free res-
olution · · · → Fk

dk−→ Fk−1 → · · · → F0 → M such that im(dk) ⊂
mFk−1.
• Show: if (R,m) is a local Noetherian ring and M is a finitely gen-

erated R-module, then pdM is equal to length of any minimal
free resolution and is also characterized by the smallest i such that
TorRi+1(R/m,M) = 0. Conclude that gl dimR = pdR/m

Lecture 18: Auslander–Buchsbaum Theorem.
• Recall notions and results from previous lecture.
• Show that if (R,m) is a regular local ring, then dimR = gl dimR/m.

Discuss examples showing that this is not true if R is not regular.
• Discuss (without proof) graded analogues: minimal graded free

resolutions, graded Betti numbers and namely Hilbert’s Syzygy
Theorem (any finitely generated graded module over the polyno-
mial ring k[x1, . . . , xn] has a finite free graded resolutions of length
≤ n.
• Recall the notion of depth and prove that if R is a Noetherian ring

and I ⊂ R is an ideal, then depth(I, R) ≤ codim I ..
• Prove the Auslander-Buchsbaum Theorem: Let (R,m) be a Noe-

therian local ring and M 6= 0 be a finitely generated R-module
with pdM <∞. Then

pdM = depth(m, R)− depth(m,M).

WEEK 9, FEB 27, MAR 1 (MAR 3 CANCELLED): THE
AUSLANDER–BUCHSBAUM–SERRE THEOREM AND COHEN–MACAULAY

RINGS

Lecture 19: Homological characterization of regular rings.
• Prove the Auslander–Buchsbaum–Serre Theorem: If (R,m) is a

Noetherian local ring, the following are equivalent:
(i) R is regular.

(ii) gl dimR <∞.
(iii) pdR/m <∞.

Lecture 20: Cohen-Macaulay rings.
• Prove the following corollaries of the Auslander–Buchsbaum–Serre

Theorem:
– If R is a regular local ring, then so is Rp for every prime ideal
p.

– k[x1, . . . , xn] is a regular ring (i.e., all localizations at prime
ideals are regular local rings).

• Define a Noetherian local ring (R,m) to be Cohen–Macaulay if
depth(m, R) = dimR.
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• Show that the following examples of Cohen–Macaulay rings: (1)
regular local rings, (2) local Artinian rings, and (3) local Noetherian
dimension 1 reduced rings.
• Prove: If (R,m) is a Cohen–Macaulay local ring and p is an as-

sociated prime, then p is a minimal prime and dimR = dimR/p.
(In other words, Cohen–Macaulay rings can have no embedded
primes (i.e. associated but not minimal primes) and is equidimen-
sional.)
• Give some examples of rings that are not Cohen–Macaulay: k[x, y]/(x2, xy),
k[x, y, z]/(xz, yz),...

WEEK 10, MAR 6, 8, 10: COHEN–MACAULAY, NORMAL, COMPLETE
INTERSECTIONS AND GORENSTEIN RINGS

Lecture 21: Properties of Cohen-Macaulay rings and Miracle Flatness.
• Prove: If (R,m) is a Cohen–Macaulay local ring, then for any ideal
I ⊂ R, we have depth(I, R) = dimR − dimR/I = codim I . (In
particular, the defining property of being Cohen–Macaulay holds
for all ideals. Also, in the homework, we will see that Cohen–
Macaulay rings satisfy a stronger dimension condition known as
catenary.)
• Prove: Let (R,m) be a Cohen–Macaulay local ring. Then x1, . . . , xn ∈
m is a regular sequence if and only if dimR/(x1, . . . , xn) = dimR−
n. In other words, if (R,m) is a Cohen–Macaulay local ring, then
any system of parameters is a regular sequence.
• Prove Miracle Flatness: Let (R,m) → (S, n) be a local homomor-

phism of Noetherian local rings. Suppose that R is regular and
S is Cohen–Macaulay. Then R → S is flat if and only if dimS =
dimR + dimS/mS.

Lecture 22: Complete Intersections and Normal rings.
• Define a Noetherian local ring (R,m) to be a complete intersection

if the completion R̂ is the quotient of a regular local ring by a regu-
lar sequence. Observe that any regular local ring modulo a regular
sequence is a complete intersection.
• Show that any complete intersection local ring is Cohen–Macaulay.

Give an example of a Cohen–Macaulay ring (e.g. k[x, y]/(x, y)2)
which is not a complete intersection.
• Given a Noetherian local ring (R,m) with residue field k = R/m

and minimal generators x1, . . . , xn of m, define the invariants εi(R) =
dimkHi(x1, . . . , xn) (the Koszul homology). The number of mini-
mal generators is called the embedding dimension of R is denoted
embdim(R).
• State: R is a complete intersection if and only if dimR = embdimR−
ε1(R). Give several examples of both when this holds and doesn’t.
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• Recall that a domain R is called normal if it is integrally closed in
its fraction field.
• For a Noetherian ring R, introduce Serre’s properties:

(Ri) for all p ∈ SpecR with codim(p) ≤ i, Rp is regular.
(Si) for all p ∈ SpecR, depthRp ≥ min(codim(p), i).
Note that: R is regular if and only if (Ri) holds for all i and R is
Cohen–Macaulay if and only if (Si) holds for all i.
• Reinterpret the Conditions (S0), (S1) and (S2). State that R is re-

duced if and only if (R0) and (S1) hold.
• State Serre’s Normality Criterion: LetR be a Noetherian ring. Then
R is normal if and only if (R1) and (S2) hold. (Prove the⇐ impli-
cation.)
• Mention Algebraic Hartog’s: If R is a normal Noetherian domain,

then R =
⋂

codim(p)=1Rp.

Lecture 23: Gorenstein rings.

• Recall the notion of an injective module and an injective resolu-
tion. If R is a ring, define the injective dimension of an R-module,
denoted by inj dimRM , as the smallest length of an injective reso-
lution of M .
• State (and explain some of the implications in) the following lemma:

If R is a ring and M is an R-module, then the following are equiv-
alent:

(i) inj dimRM ≤ n.
(ii) Extn+1

R (N,M) = 0 for all R-modules N .
(iii) Extn+1

R (R/I,M) = 0 for all ideals I ⊂ R.
If, in addition, (R,m) is local and M is finitely generated, then the
above is also equivalent to:
(iv) Extn+1

R (R/p,M) = 0 for all p ∈ SpecR.
If, in addition, (R,m) is a Noetherian local ring and M is finitely
generated, then the above is also equivalent to:
(iv) Extn+1

R (R/m,M) = 0.
• Conclude: (R,m) is a Noetherian local and M is a finitely gener-

atedR-module, then inj dimRM is the largest i such that ExtiR(R/m,M) 6=
0.
• State: If (R,m) is a Noetherian local and M is a finitely gener-

ated R-module with inj dimRM < ∞, then dimM ≤ inj dimRM =
depth(m, R).
• Compare the above characterizations and properties of injective

dimension with what we’ve seen for projective dimension.
• Define a Noetherian local ring (R,m) to be Gorenstein if inj dimRR <
∞.
• Give the following equivalences (explaining some of the implica-

tions): Let (R,m) is a Noetherian local ring of dimension n with
residue field k = R/m, then the following are equivalent
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(i) R is Gorenstein.
(ii) inj dimRR = n.

(iii) ExtiR(k,M) = 0 for some i > n.
(iv)

ExtiR(k,M) =

{
0 i 6= n
k i = n.

(v) R is Cohen–Macaulay and ExtnR(k,R) = k.
(vi) There exists a regular sequence x1, . . . , xn ∈ m such thatR/(x1, . . . , xn)

is Gorenstein and dimension 0.
• Prove: Let (R,m) be a Noetherian local ring. Then

regular =⇒ complete intersection =⇒ Gorenstein =⇒ Cohen–Macaulay

Give examples showing that each implication is strict.


