COURSE SUMMARY FOR MATH 508,
WINTER QUARTER 2017:
ADVANCED COMMUTATIVE ALGEBRA

JAROD ALPER

WEEK 1, JAN 4, 6: DIMENSION

Lecture 1: Introduction to dimension.

e Define Krull dimension of a ring A.

e Discuss dimension 0 rings. Recall Artinian rings and various equiv-
alences.

e Prove that a PID has dimension 1.

e Prove thatif / C R is a nilpotent ideal, then dim R/ = dim R.

Lecture 2: Conservation of dimension under integral extensions.

e Prove that if R — S is an integral ring extension, then dim R =
dim S.

e Define the codimension (or height) of a prime p C A, denoted as
codimp, as the supremum of the lengths £ of strictly descending
chains

P=Poop1 0O
of prime ideals. Note that codim p = dim A,.

e Prove: if $: R — Sisanintegral ring homomorphism, then dim I =
dim ¢~ (1).

e Discuss codimension 0 primes (i.e. minimal primes).

e Prove: if R is Noetherian and f € R is a non-unit, then any prime
p C (f) has codim(p) = 0.

WEEK 2, JAN 9, 11 (JAN 13 CANCELLED): KRULL'S HAUPTIDEALSATZ
AND CONSEQUENCES

Lecture 3: Krull’s Hauptidealsatz.

e State and prove Krull’s Principal Ideal Theorem (a.k.a. Krull’s
Hauptidealsatz): if A is a Noetherian ring and f € A is not a unit,
then height(f) < 1; that is, for every prime ideal p containing f,
heightp < 1.

e State and prove the following generalization of Krull’s Principal
Ideal Theorem: if A is a Noetherian ring and / = (zy,...,z,) C A
is a proper ideal. Then height I < n; that is height p < n for every
prime ideal p containing I (or equivalently, for every prime ideal
which is minimal among prime ideals containing 7).

e Prove corollary: dim k[z1, ..., z,] = n.
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Lecture 4: System of parameters.

e Prove the converse theorem to Krull’s principal ideal theorem: if
A is a Noetherian ring and I C A is a proper ideal of height n.
Then there exist z1,...,z, € I such that height(zy,...,z;) = i for
1=1,...,n.

e Reinterpret dimension: if (R, m) is a Noetherian local ring, them
dim R is the smallest number n such that there exists 1, ..., z,, € m
with R/(z1,...,2,) Artinian. Such a sequence zy,...,z, € mis
called a system of parameters for R.

e Prove corollary: if (R,m) — (S,n) is a local homomorphism of
local Noetherian rings, then dim S < dim R 4 dim S/mS.

e Prove corollary: if R is a Noetherian ring, then dim R[z] = dim R +
1.

WEEK 3, JAN 18, 20 (JAN 16 MLK HOLIDAY): FLATNESS

Lecture 5: Basics on flatness.

e Review of Tor. Key properties: short exact sequences induce long
exact sequences of Tor groups, Tor;(P, M) = 0 for P projective and
i > 0, compatibility with localization, Tor;(M,N) = Tor;(N, M)
and thus can be computed as a derived functor in either the first
or second term.

e Examples of flat and non-flat modules

e Prove Going Down Theorem for flatness

e Prove: if (R,m) — (S,n) is a flat local homomorphism of local
Noetherian rings, then dim S = dim R + dim S/mS.

Lecture 6: Homological characterization of flatness:

e Prove: Let R be a ring. An R-module M is flat if and only if
Torf(R/I, M) for all finitely generated ideals I C R.

e Examples: flatness over the dual numbers, flatness over PIDs.

e Equational Criterion for Flatness: An R-module M is flat if and
only if the following condition is satisfies: For every relation 0 =
>, nim; withm; € M and n; € R, there exist elements m’; € M and
elements a;; € R such that

Z agm; =m; foralli and Z a;;n; = 0 for all j.
7 7

WEEK 4, JAN 23, 25, 27: ARTIN-REES LEMMA, KRULL'S INTERSECTION
THEOREM, LOCAL CRITERION OF FLATNESS
Lecture 7: flatness <= projective.

e Reinterpret equational criterion for flatness using commutative di-
agrams.
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e Prove: if M is finitely presented R-module, then M is flat <=
projective. If in addition R is a local, then flat <= free <=
projective.

e State and motivate simple version of Local Criterion for Flatness.

Lecture 8: Artin—-Rees Lemma and Local Criterion for Flatness.

e Give motivation of the Artin—Rees Lemma.

e Prove Artin—-Rees Lemma: Let R be a Noetherian ring and I C R
an ideal. Let M’ C M be an inclusion of finitely generated R-
modules. If M = My D M; D M, D --- is an [-stable filtration, so
isM DM NONM, DM NMy,D---.

e Prove Krull’s Intersection Theorem: Let R be a Noetherian ring,
I C Ranideal and M a finitely generated R-module. Then there
exists z € I such that

(1—a)(\I*M =0.

In particular, if (R, m) is local, then (\m*M = 0 and (\m* = 0. Or
if R is a Noetherian domain and I is any ideal, then () I* = 0.

e State general version of Local Criterion for Flatness: if (R, m) —
(S, n) is a local homomorphism of local Noetherian rings and M is
a finitely generated S-module, then

M is flat as an S-module <= Torf(R/m, M) = 0.

Lecture 9: Fibral Flatness Theorem.

e Finish proof of Local Criterion for Flatness.

e Prove the Fibral Flatness Theorem: Consider a local homomor-
phisms (R, m) — (S,n) — (5’,n') of local Noetherian rings. Let
M be a finitely generated S’-module which is flat over R. Then M
is flat over S if and only if M /mM/ is flat over S/mS.

e Discuss special case of the Fibral Flatness Theorem when R =

klz]()-

WEEK 5, JAN 30, FEB 1, 3: GRADED MODULES AND COMPLETIONS

Lecture 10: Graded modules and flatness.

e Summary of flatness results.

e State Openness of Flatness and Grothendiecke’s generic freeness
(without proof).

e Graded modules and Hilbert functions.

e Prove: Let R = @, R4 be a graded ring which is finitely gener-
ated as an Ry-algebra by elements of degree 1. Assume Ry is a lo-
cal Noetherian domain. Let M be a finitely generated R-modules.
Then M is flat/ R if and only if for p € Spec R,, the Hilbert func-
tion Huep k() 1= dimyp) Mg ®r, k(p) is independent of p.
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Lecture 11: Completions.

e Definition of the completion of a ring (and module) with respect
to an ideal.

o Arithmetic and geometric examples.

e Show that if R is Noetherian and I C Ris anideal, then M ®p R—
M is an isomorphism for all finitely generated modules M.

e Conclude that R — Ris flat.

Lecture 12: Completions continued.

e Show that if R is Noetherian, then so is the completion R of R
along an ideal 1.

e Conclude that R Noetherian = R][[z]|] Noetherian.

e Mention Hensel’s Lemma.

e Mention Cohen’s Structure Theorem.

WEEK 6, FEB 8, 10 (FEB 6 SNOW DAY): REGULAR SEQUENCES AND
KOszUL COMPLEXES

Lecture 13: regular sequences.

e Introduce regular sequences: we say zi,...,, € R thatisa M-
regular sequence if z; is a non-zero divisor on M/(xy,...,z;1)M
fori=1,...,nand that M # (z1,...,2,) M.

e Give examples.

e Prove: Let R be a ring and z,, ..., z, be a regular sequence. Set
I = (x1,...,x,). Show that the natural homomorphism

R/Iy1, ..., ys) — Gr/R, yi > x; € 1/17,

is an isomorphism. In particular, /I? is a free R/I-module of rank

n.
e State more general version (which has the same proof) when M is
an R-module and z, ..., z, is a M-regular sequence.

Lecture 14: Koszul complex.

e Finish proof of proposition from last class.

e Introduce alternating products.

e Give concrete definition of the Koszul complex: if R is a ring,
M is an R-module and z = (zy,...,2,) € R", then K(z; M), =
K(z1,...,2,; M), is the chain complex of R-modules where K (z; M );, =
AF(R™) and the differential A*(R") — A*1(R") is defined by ¢;, A
o Aeg, Zle(—l)jxijeil Ao NG A A ey,

e Write down examples in the case n = 1,2, 3.

WEEK 7, FEB 13, 15, 17: KOSZUL HOMOLOGY, DEPTH AND REGULARITY

Lecture 15: Koszul complexes and regular sequences.
e Reintrepret the Koszul complex as a tensor product of complexes.
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e Define Koszul homology: if R is a ring, M is an R-module and
r=(z1,...,2,) € R", then H;(x; M) := H;(K(z; M)).

e Prove: Let R be a ring, M be an R-module and = = (z1,...,x,) €
R". If x is an M-regular sequence, then H;(x; M) = 0 fori > 1.

e Show that the converse is true if (R, m) is a local Noetherian ring,
M is a finitely generated R-module and z4,...,z, € m.

Lecture 16: depth.

e Finish proof of converse from previous lecture.

e State the theorem: Let R be a Noetherian ring and M be a finitely
generated R-module. Letz = (z1,...,2,) € R"andset] = (zy,...,2,) C
R. Assume IM # M. Let d be the smallest integer such that
H,_q(x; M) # 0. Then any maximal M-regular sequence in / has
length d.

e Define the depth of I on M, denoted by depth(I, M), as this smallest
integer d.

e Give examples.

e Begin proof of theorem.

Lecture 17: depth and regular local rings.

e Finish proof characterizing depth.

e State (but do not prove): Let R be a Noetherian ring, I C R be
an ideal and M be a finitely generated graded R-module. Assume
I + Ann(M) # R. Then depth(I, M) is the smallest i such that
Ext’%(R/I, M) # 0.

e Define a regular local ring (R, m) as a Noetherian local ring such
that dim R = dimp/, m/m?.

e Give a few examples: e.g., say when k[z1, ..., 2](z,,..2,)/(f) is Teg-
ular.

e Prove that a regular local ring is a domain.

WEEK 8, FEB 22, 24 (FEB 20 PRESIDENT’S DAY): FREE RESOLUTIONS
AND PROJECTIVE DIMENSION

Lecture 17: minimal free resolutions and projective dimension.

e Show that if (R, m) is a regular local ring and z1,. ..,z are ele-
ments of m which are linearly independent in m/m?, then x4, . .., z;,
is a regular sequence and R/(xy,...,x;) is a regular local ring.
Such a sequence whose length is equal to dim R is called a egular
system of parameters.

e Introduce the projective dimension of a module M, denoted by
pd M, as the smallest length of a projective resolution of M.

e Introduce the global dimension of a ring R, dentoed by gldim M/,
as the supremum of pd M over finitely generated R-modules M.
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e Define a minimal free resolution of an R-module M as a free res-
olution --- — I}, LN F,y — -+ — Fy — M such that im(dy) C
mF] k—1-

e Show: if (R, m) is a local Noetherian ring and M is a finitely gen-
erated R-module, then pd M is equal to length of any minimal
free resolution and is also characterized by the smallest i such that
Torf,(R/m, M) = 0. Conclude that gldim R = pd R/m

Lecture 18: Auslander-Buchsbaum Theorem.

e Recall notions and results from previous lecture.

e Show that if (R, m) is a regular local ring, then dim R = gldim R/m.
Discuss examples showing that this is not true if R is not regular.

e Discuss (without proof) graded analogues: minimal graded free
resolutions, graded Betti numbers and namely Hilbert’s Syzygy
Theorem (any finitely generated graded module over the polyno-
mial ring k[z1, ..., z,] has a finite free graded resolutions of length
<n.

e Recall the notion of depth and prove that if R is a Noetherian ring
and I C Ris an ideal, then depth(7, R) < codim /..

e Prove the Auslander-Buchsbaum Theorem: Let (R, m) be a Noe-
therian local ring and M # 0 be a finitely generated R-module
with pd M < oo. Then

pd M = depth(m, R) — depth(m, M).

WEEK 9, FEB 27, MAR 1 (MAR 3 CANCELLED): THE
AUSLANDER-BUCHSBAUM~-SERRE THEOREM AND COHEN-MACAULAY
RINGS

Lecture 19: Homological characterization of regular rings.

e Prove the Auslander-Buchsbaum-Serre Theorem: If (R,m) is a
Noetherian local ring, the following are equivalent:
(i) Risregular.
(ii) gldim R < oo.
(iii) pd R/m < oo.

Lecture 20: Cohen-Macaulay rings.

e Prove the following corollaries of the Auslander-Buchsbaum-Serre

Theorem:
- If R is a regular local ring, then so is R, for every prime ideal
p.
- klx1,...,x,] is a regular ring (i.e., all localizations at prime

ideals are regular local rings).
e Define a Noetherian local ring (R, m) to be Cohen-Macaulay if
depth(m, R) = dim R.
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e Show that the following examples of Cohen-Macaulay rings: (1)
regular local rings, (2) local Artinian rings, and (3) local Noetherian
dimension 1 reduced rings.

e Prove: If (R, m) is a Cohen-Macaulay local ring and p is an as-
sociated prime, then p is a minimal prime and dim R = dim R/p.
(In other words, Cohen-Macaulay rings can have no embedded
primes (i.e. associated but not minimal primes) and is equidimen-
sional.)

e Give some examples of rings that are not Cohen-Macaulay: k[z, y]/ (2%, zy),

klx,y, z]/(xz,yz),...

WEEK 10, MAR 6, 8, 10: COHEN-MACAULAY, NORMAL, COMPLETE
INTERSECTIONS AND GORENSTEIN RINGS

Lecture 21: Properties of Cohen-Macaulay rings and Miracle Flatness.

e Prove: If (R, m) is a Cohen—-Macaulay local ring, then for any ideal
I C R, we have depth(/,R) = dimR — dim R/I = codim /. (In
particular, the defining property of being Cohen-Macaulay holds
for all ideals. Also, in the homework, we will see that Cohen—
Macaulay rings satisfy a stronger dimension condition known as

catenary:.)
e Prove: Let (R, m) be a Cohen-Macaulay local ring. Then z, ..., z, €
m is a regular sequence if and only if dim R/(z4,...,2,) = dim R —

n. In other words, if (R, m) is a Cohen-Macaulay local ring, then
any system of parameters is a regular sequence.

e Prove Miracle Flatness: Let (R,m) — (5,n) be a local homomor-
phism of Noetherian local rings. Suppose that R is regular and
S is Cohen-Macaulay. Then R — S is flat if and only if dim S =
dim R + dim S/mS.

Lecture 22: Complete Intersections and Normal rings.

e Define a Noetherian local ring (R, m) to be a complete intersection
if the completion R is the quotient of a regular local ring by a regu-
lar sequence. Observe that any regular local ring modulo a regular
sequence is a complete intersection.

e Show that any complete intersection local ring is Cohen-Macaulay.
Give an example of a Cohen—Macaulay ring (e.g. k[z,y]/(z,y)?)
which is not a complete intersection.

e Given a Noetherian local ring (R, m) with residue field k£ = R/m
and minimal generators z1, . . ., z,, of m, define the invariants ¢;(R) =
dimy, H;(z1, ..., x,) (the Koszul homology). The number of mini-
mal generators is called the embedding dimension of R is denoted
emb dim(R).

e State: Ris a complete intersection if and only if dim R = emb dim R—
€1(R). Give several examples of both when this holds and doesn't.
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e Recall that a domain R is called normal if it is integrally closed in
its fraction field.

e For a Noetherian ring R, introduce Serre’s properties:
(R;) for all p € Spec R with codim(p) < i, R, is regular.
(S;) for all p € Spec R, depth R, > min(codim(p), ).
Note that: R is regular if and only if (R;) holds for all ¢ and R is
Cohen-Macaulay if and only if (.5;) holds for all :.

e Reinterpret the Conditions (Sp), (S1) and (S3). State that R is re-
duced if and only if (Ry) and (S;) hold.

e State Serre’s Normality Criterion: Let R be a Noetherian ring. Then
R is normal if and only if (R;) and (S;) hold. (Prove the < impli-

cation.)
e Mention Algebraic Hartog’s: If R is a normal Noetherian domain,
then R = mcodim(p):l RF"

Lecture 23: Gorenstein rings.

e Recall the notion of an injective module and an injective resolu-
tion. If R is a ring, define the injective dimension of an R-module,
denoted by inj dimy M, as the smallest length of an injective reso-
lution of M.

e State (and explain some of the implications in) the following lemma:
If R is a ring and M is an R-module, then the following are equiv-
alent:

(i) injdimzy M < n.
(ii) Ext%™ (N, M) = 0 for all R-modules N.
(iii) Ext’s"'(R/I, M) = 0 for all ideals I C R.
If, in addition, (R, m) is local and M is finitely generated, then the
above is also equivalent to:
(iv) Ext)s'(R/p, M) = 0 for all p € Spec R.
If, in addition, (R, m) is a Noetherian local ring and M is finitely
generated, then the above is also equivalent to:
(iv) Ext;™(R/m, M) = 0.

e Conclude: (R, m) is a Noetherian local and M is a finitely gener-
ated R-module, then inj dimj, M is the largest i such that Ext’y (R/m, M) #
0.

e State: If (R, m) is a Noetherian local and M is a finitely gener-
ated R-module with injdimy M < oo, then dim M < injdimp M =
depth(m, R).

e Compare the above characterizations and properties of injective
dimension with what we’ve seen for projective dimension.

e Define a Noetherian local ring (R, m) to be Gorenstein if inj dimp R <
Q.

e Give the following equivalences (explaining some of the implica-
tions): Let (R, m) is a Noetherian local ring of dimension n with
residue field £ = R/m, then the following are equivalent
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(i) R is Gorenstein.
(i) injdimp R = n.
(iii) Exty(k, M) = 0 for some i > n.
(iv)
Exctiy(k, M) { vz
(v) Ris Cohen-Macaulay and Ext,(k, R) = k.
(vi) There exists a regular sequence z1, ..., z,, € msuch that R/(z,. ..
is Gorenstein and dimension 0.
e Prove: Let (R, m) be a Noetherian local ring. Then

regular =—> complete intersection = Gorenstein = Cohen-Macaulay

Give examples showing that each implication is strict.



