
COURSE SUMMARY FOR MATH 504, FALL QUARTER 2017-8:

MODERN ALGEBRA

JAROD ALPER

Week 1, Sept 27, 29: Introduction to Groups

Lecture 1: Introduction to groups.

• Defined a group and discussed basic properties (e.g., uniqueness of identity and
inverses)

• Discussed examples: (Z,+), (R×,×), ((Z/p)×,×), symmetries of the square (i.e.,
the dihedral group D8), general linear group, symmetric group

• Defined subgroups
• Discussed examples: Z ⊂ R, D8 ⊂ S4, the subgroup 〈a1, . . . , an〉 ⊂ G generated

by elements a1, . . . , an ∈ G
• Defined the order |G| of a group G and the order |a| of an element a ∈ G.
• Stated Lagrange’s theorem: if G is a finite group and H ⊂ G, then |H| divides
|G|.

• Showed how Lagrange’s theorem implies Fermat’s Little Theorem: if p is a prime
and a is an integer not divisible by p, then ap−1 ≡ 1 mod p.

Lecture 2: Group homomorphisms and normal subgroups.

• Defined group homomorphisms, injectivity, surjectivity, isomoprhisms, automor-
phisms, kernels, and images.

• Discussed centers, normalizers and centralizers.
• Discussed cosets and quotients. Showed if H ⊂ G is a normal subgroup, then
G/H is naturally a group such that the projection G → G/H is a surjective
homomorphism.

• Discussed the four basis isomorphism theorems.
• Discussed direct and semi-direct products.

Week 2, Oct 2, 4, 6: Products, simple groups and group actions

Lecture 3: Semi-direct products.

• Discussed definition of semi-direct products.
• Proved that if G is a group, H E G normal subgroup and K ⊂ G is a subgroup

satisfying HK = G and H ∩ K = 1, then G is isomorphic to the semi-direct
product H oφ K where φ : K → Aut(H) is defined by φ(k)(h) = hkh−1 for
h ∈ H and k ∈ K.

• Discussed examples: D2n
∼= Z/no Z/2 and Q× oQ.

• Discussed the universal property of the direct product.
• Defined the free product in terms of a universal property.

Lecture 4: Free groups, finitely generated groups, simple groups and the
Jordan–Hölder theorem.

• Defined the free group F (S) on a set S in terms of the universal property: for any
map S → G to a group G, there is a unique group homomorphism F (S)→ G
compatible with the maps from S.
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• Constructed the free group F (S) directly and showed that its satisfies the
universal property.

• Showed that finitely generated groups are quotients of free groups.
• Stated the classification theorem for finitely generated abelian groups (to be

proved later when we discuss finitely generated modules over a PID).
• Defined simple groups and composition series.
• Stated the Jordan–Hölder theorem and proved the existence of composition series

(while the uniqueness is a homework exercise).

Lecture 5: Group actions.

• Introduced the notion of a group G acting on a set Ω. Defined the stabilizer
Gx ⊂ G and orbit O(x) ⊂ Ω of a point x ∈ Ω. Proved that the map G/Gx → O(x)
taking a coset hGx to hx is bijective.

• Discussed the examples of G acting on itself via left multiplication and via
conjugation.

• Discussed again the symmetries of the regular n-gon and cube.
• Defined the orthogonal group On(R).
• Proved that any finite subgroup G ⊂ O2(R) is isomorphic to Z/n or D2n for

some n.

Week 3, Oct 9, 11, 13: Platonic solids and the Sylow theorems

Lecture 6: Platonic solids.

• Proved that any element of SO3(R) is a rotation about some line.
• Stated the theorem that any finite subgroup G ⊂ SO3(R) is isomorphic to either:

(1) Z/n as the subgroup of rotations about a fixed line, (2) D2n as the subgroup
of symmetries of a regular n-gon in a plane, (3) A4 as the subgroup of symmetries
of a tetrahedron, (4) S4 as the subgroup of symmetries of a cube or octahedron,
or (5) A5 as the subgroup of symmetries of a dodecahedron or icosahedron.

• Following the exposition in Chapter 6, Artin’s Algebra, we proved the theorem in
the case that the action of G on the set Ω = {p ∈ S2 | ∃ g 6= 1 ∈ G with gp = p}
has one or two orbits.

Lecture 7: More on Platonic solids and Cauchy’s theorem.

• Finished the classification of finite subgroups of SO3(R) handling the case when
Ω has 3 orbits.

• Proved the following key lemma: Let H be a finite group of order pn for a
prime p and S be a finite set with an action of H. Define SH = {s ∈ S | hs =
s for all h ∈ H}. Then |SH | ≡ |S| mod p.

• Using this lemma, we proved Cauchy’s theorem: If G is a finite group and p is a
prime dividing |G|, then there exists an element of order p.

Lecture 8: The Sylow theorems.

• Recalled key lemma from last lecture which was used repeatedly in the proofs of
Sylow’s theorems.

• Defined p-groups and p-subgroups.
• Proved that if H ⊂ G is a p-subgroup of a finite group, then |NG(H) : H| ≡ |G :
H| mod p.

• Proved the First Sylow Theorem: If G is a finite group of order pnm where p is
a prime not dividing m, then for each i = 0, . . . , n, there exists a subgroup of G
of order pi. In fact, for each i = 0, . . . , n− 1, any subgroup of order pi is normal
in some subgroup of order pi+1.

• Defined p-Sylow subgroups.
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• Proved the Second Sylow Theorem: Let H,P be p-subgroups of a finite group
G such that P is a p-Sylow subgroup. Then H ⊂ gPg−1 for some g ∈ G. In
particular, all p-Sylow subgroups are conjugate.

• Proved the Third Sylow Theorem. Let G be a finite group of order pnm where
p is a prime not dividing m. Let np be the number of p-Sylow subgroups of G.
Then np ≡ 1 mod p and np|m.

Week 4, Oct 16, 18, 20: Classification of finite groups and Introduction
to Rings

Lecture 9: Classification of finite groups.

• Today’s lecture summarized various material on finite groups that useful to
classify all finite groups of a particular order.

• Began by summarizing Sylow’s theorems.
• Stated the proposition: if G is a finite group and H ⊂ G is a subgroup such that
|G : H| is the smallest prime dividing |G|, then H is normal.

• Stated the proposition: Let H,K be groups and ϕ : K → Aut(H) be a group
homomorphism. Then
(1) If φ ∈ Aut(K), then H oϕ K ∼= H oϕ◦φ K; and
(2) If ψ ∈ Aut(H), then H oϕ K ∼= H oψ−1ϕψ K.

• Stated the proposition that

Aut(Z/pn) = (Z/pn)×
{

Z/((p− 1)pn−1) if p is odd
Z/2× Z/2n−1 if p=2.

and Aut(Z/pn1
1 × · · · × Z/pnk

k ) ∼= (Z/pn1
1 )× × · · · × (Z/pnk

k )× if p1, . . . , pk are
distinct primes.

• Classified groups of order pq for primes p < q.
• Classified groups of order p2 for a prime p.
• Classified groups of order p3 for a prime p.

Lecture 10: Introduction to Rings I.

• Corrected discussion of the classification of groups of order p3 with an emphasis
on distinguishing the case p = 2 from the case of odd primes p.

• Defined rings. Our definition requires that a ring has a multiplicative identity 1.
• Defined commutative rings, division rings and fields.
• Provided basic examples: Z, Q, R, C, Z/n
• Provided additional examples: zero ring, quaternions, matrix rings
• Discussed the group of units R× in a ring R. Showed that the units Mn(R)×

in the matrix ring Mn(R) over a ring R is precisely GLn(R) = {A ∈ Mn(R) |
det(A) ∈ R×.

Lecture 11: Introduction to Rings II.

• Defined the group ring R[G] of a finite group G over a ring R.
• Discussed the ring of continuous functions on a topological space X.
• Defined an integral domain and zero-divisors.
• Proved that an integral domain which is a finite set is necessarily a field.
• Defined a ring homomorphism φ : R → S of rings R and S. Our definition

requires that φ(1) = 1.
• Defined a ring isomorphism to be a bijective ring homomorphism, and show that

this implies that that there is an inverse which is also a ring isomorphism.
• Defined the kernel and image of a ring homomorphism.
• Defined left ideals, right ideals and two-sided ideals.
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• Discussed examples: (1) if φ : R→ S is a ring homomorphism, then ker(φ) is a
2-sided ideal, (2) if R is a ring and a ∈ R, then Ra = {xa | x ∈ R} is a left ideal
and aR = {ax | x ∈ R} is a right ideal (and if R is commutative, we denote
(a) := Ra = aR), (3) discussed examples of left ideals in matrix rings that are
not right ideals.

• Showed that any ideal in Z is equal to (n) for some integer n.
• Quickly defined prime ideals and maximal ideals.

Week 5, Oct 23, 25, 27: More on Rings

Lecture 12: Quotient rings, localization and Euclidean domains.

• Discussed the quotient ring R/I of a ring R by a two-sided ideal I.
• Discussed the four isomorphism theorem for rings.
• Defined the localization S−1R of a commutative ring R at a multiplicative

system.
• Discussed the examples: (1) if R is an integral domain, the fraction field of R is

Frac(R) := S−1R where S = (R \ 0)−1, (2) if f ∈ R, the ring Rf := S−1R where
S = {1, f, f2, . . .}, if p ⊂ R is a prime ideal, then Rp := S−1R where S = R \ p.

• Defined Euclidean domains and principal ideal domains (PIDs).
• Showed that any Euclidean domain is a PID.

Lecture 13: UFDs.

• Showed that if R is a PID, then every non-zero prime is maximal.
• Defined prime and irreducible elements in an integral domain.
• Showed that in any integral domain R, prime elements are always irreducible.

Moreover, we established the converse if R is a PID.
• Motivated and defined a Unique Factorization Domain (UFD).
• Showed that if R is a UFD, then every irreducible element is prime.
• Stated the main theorem: If R is a PID, then R is a UFD. This gives us the

implications
Euclidean domain⇒ PID⇒ UFD.

• Showed that if R is a commutative ring, then the following are equivalent:
(1) Every ascending chain of ideals terminates, and (2) Every ideal is finitely
generated. These equivalent properties define a Noetherian ring.

• Proved that if R is Noetherian domain, then every element has a factorization
into irreducible elements.

Lecture 14: Gauss’s lemma.

• Finished the proof from last time that a PID is a UFD. In fact, we proved that if
R is a Noetherian ring, then R is a UFD if and only if every irreducible element
is prime.

• Proved Gauss’s lemma.
• Discussed an important corollary of Gauss’s lemma: if R is a UFD with fraction

field K and f(x) ∈ R[x] is a polynomial such that the greatest common divisor
of the coefficients is 1 (e.g., f is a monic polynomial), then f is irreducible in
R[x] if and only if f is irreducible in K[x].

Week 6, Oct 30, Nov 1, 3: Criteria for irreducibility and Introduction to
modules

Lecture 15: Criteria for irreducibility.

• Proved that if R is a UFD, so is R[x]. Discussed examples.
• Discussed various methods to show a polynomial is irreducible.
• Proved Eisenstein’s criterion.
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• Discussed examples including x4 + 1 and xp−1 + xp−2 + · · ·+ x+ 1 for a prime p.

Lecture 16: Introduction to Modules I.

• Defined a left R-module M (also called just an R-module) over a ring R.
• Discussed the case that R = k is a field. In this case modules are simply vector

spaces.
• Discussed examples of R-modules: (1) R, (2) Rn, (3) left ideals I ⊂ R, (4) if
R→ S is a ring homomorphism, S can be viewed as an R-module.

• Discussed modules over particular rings: (1) R = k is a field, (2) R = Z, and (3)
R = k[x].

• Defined ring homomorphisms (and isomorphisms, injections, surjections), kernels,
and images.

Lecture 17: Introduction to Modules II.

• Defined quotients M/N of an R-module M by a submodule N ⊂M .
• Discussed the isomorphism theorems for R-modules.
• Defined a basis of an R-module and the notion of a free module.
• Given a set {Mi}i∈I of R-modules, defined direct products

∏
i∈IMi and direct

sums
⊕

i∈IMi. Discussed their universal properties.
• Proved that an R-module M is free if and only if M ∼=

⊕
i∈I R for some index

set I.
• Defined the annihilator AnnR(M) of an R-module M . Showed that if M is free,

then AnnR(M) = 0. Gave the counterexample of M = I = (x, y) of a module
over k[x, y] which has AnnR(M) = 0 but is not free.

Week 7, Nov 6, 8

Lecture 18:

• Defined the condition that an R-module be finitely generated. Defined the rank
of a module. Given an R-module M , also discussed the submodule TorR(M) =
{m ∈ M | rm = 0 for some r 6= 0}, and the ideal AnnR(M) = {r ∈ R | rm =
0 for all m imM}.

• Stated Theorem 1: if R is a PID and M is a finitely generated R-module, then
M ∼= Rr ⊕R/(a1)⊕ · · · ⊕R/(ak) for r ∈ Z and non-zero and non-unit elements
a1, . . . , ak ∈ R such that a1| · · · |ak.

• Discussed a general sketch of the proof.
• Stated Theorem 2: If R is a PID and N ⊂ Rn is a submodule, then (1) N is

free of some rank k, and (2) there exists a basis y1, . . . , yn of Rn and non-zero
elements a1| · · · |ak of R such that a1y1, . . . , akyk is a basis of N .

• Showed how Theorem 2 implies Theorem 1.

Lecture 19:

• Proved Theorem 2 from last lecture.

Week 8, Nov 13, 15, 17

Lecture 20:

• Showed using the Chinese Remainder Theorem that if R is a PID and a =
pn1
1 · · · pns

s is a factorization of an element a ∈ R, then R/a ∼= R/pn1
1 ⊕· · ·⊕R/pns

s .
• Stated a second version of the classification of finitely generated modules over

a PID: if R is a PID and M is a finitely generated R-module, then M ∼=
Rr ⊕ R/(pn1

1 ) ⊕ · · · ⊕ R/(pns
s ) for r ∈ Z and irreducible (but not necessarily

distinct) elements pi ∈ R.
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• Stated the uniqueness properties in the two versions of the main decompositions
results for finitely generated modules over a PID. Sketched the proof of this.

• Showed how the first version of the classification theorem for finitely generated
modules over a PID implies the rational canonical form of a linear transformation
of a finite dimensional vector space. That is, we showed: if T : V → V is a linear
transformation of a finite dimensional vector space V over k, then there exists
polynomials f1|f2| · · · |fk and a basis β of V such that the matrix representation
of T with respect to β is a block diagonal matrix with blocks Mfi , where each
block has 1’s along the subdiagonal and the negative of the coefficients of fi in
last column.

Lecture 21:

• Recalled the definition of the minimal and characteristic polynomial. With
the notation of the rational canonical form (from the last lecture) of a linear
transformation T : V → V of a finite dimensional vector space, we showed that:

(1) the characteristic polynomial of T is
∏k
i=1 fk, (2) the minimal polynomial

is fk, (3) (Cayley-Hamilton) the minimal polynomial divides the characteristic
polynomial, and (4) the characteristic polynomial divides some power (in fact,
the kth power suffices) of the minimal polynomial.

• Recalled the eigenvalues of a linear transformation.
• Showed how the second version of the classification theorem for finitely generated

modules over a PID implies the Jordan canonical form of a linear transformation
T : V → V of a finite dimensional vector space over k as the long as the
characteristic polynomial of T splits over k.

• If R is a ring, we defined simple R-modules and composition series.
• We stated that any two composition series have the same length and the same

factors after reordering. The proof follows from the same proof (from HW) for
the analogous fact for composition series of finite groups.

Lecture 22:

• We discussed many examples of non-commutative rings.
• Recalled the group algebra R[G] of a finite group G over a ring R.
• Recalled the matrix rings Mn(R) over a ring R.
• If R is a ring and M is an R-module, we defined the endomorphism ring EndR(M)

of M over R.
– If M = R, we showed that EndR(R) = Rop is the opposite ring.
– If I ⊂ R is a two-sided ideal, then EndR(R/I) = EndR/I(R/I) = (R/I)op.
– If M = Rn, we showed that EndR(Rn) = Mn(Rop).

• If R is a ring, we defined the free algebra R〈x1, . . . , xn〉 over R.
• If R is a ring and M is an R-module, we showed that the following are equivalent:

(1) M is simple, (2) M = Rx for any non-zero x ∈M , and (3) M ∼= R/I where
I ⊂ R is a maximal left ideal.

• We stated that an R-module M has a composition series if and only if M is
Artinian and Noetherian. We proved the ‘⇐’ direction.

Week 9, Nov 20, 22

Lecture 23:

• Recalled the proposition from last time that an R-module M has a composition
series if and only if M is Artinian and Noetherian. We proved the ‘⇒’ direction.

• If D is a division ring and R = Mn(D), we showed that Dn is a simple R-module.
Moreover, we gave a composition series of R as an R-module.

• We also discussed the simple modules over a PID.
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• We proved Schur’s lemma: If φ : M → N is an R-module homomorphism of
simple R-modules, then either φ = 0 or φ is an isomorphism.

• We discussed the corollary: if M is a simple R-module, then EndR(M) is a
division ring.

• If D is a division ring, V = Dn, and R = EndD(V ) = Mn(Dop), then V is also
an R-module. We proved that the morphism D → EndR(V ), which sends d ∈ D
to the R-module homomorphism V → V, v 7→ dv, is an isomorphism.

• We proved that if R is a k-algebra with k algebraically closed and M is a simple
R-module of finite dimension as a k-vector space, then EndR(M) = k.

• If G is a finite group, we defined a representation of G as a vector space V
together with a group homomorphism G → GL(V ). We emphasized that a
C[G]-module is precisely the same as a representation of G and that under this
corresponding a simple C[G]-module corresponds to an irreducible representation
of G.

Lecture 24:

• Discussed Zorn’s lemma.
• Used Zorn’s lemma to prove that if R is a ring and M is a semisimple R-module,

then M contains a simple R-module.
• We defined an R-module M to be semisimple if and only if for every R-submodule
P ⊂M , there exists an R-submodule Q ⊂M such that M ∼= P ⊕Q.

• We proved that any submodule or quotient module of a semisimple module is
also semisimple.

• We proved that for an R-module M , the following are equivalent: (1) M is
semisimple, (2) M ∼=

∑
i∈IMi where each Mi ⊂ M is simple, and (3) M ∼=⊕

i∈IMi where each Mi ⊂M is simple.

Week 10, Nov 27, 29, Dec 1

Lecture 25:

• We defined a semisimple module M to be of finite length if M ∼=
⊕n

i=1Mi where
each Mi is simple.

• We proved that if M is a semisimple R-module of finite length, then EndR(M) ∼=
Mn1

(D1)× · · · ×Mnk
(Dk) for division rings D1, . . . , Dk.

• We defined a ring R to be semisimple if R is semisimple as a left R-module.
• We proved that for a ring R, the following are equivalent: (1) R is semisimple, (2)

every R-module is semisimple, and (3) every short exact sequence of R-modules
splits. Moreover, if these conditions hold, then R is of finite length and every
simple R-module appears as an R-submodule of R.

• Discussed in detail the example of a matrix ring Mn(D) over a division ring D.
• Discussed other examples.
• We proved the Artin–Wederburn theorem: if R is a semisimple ring, then R

is isomorphic to a finite product of matrix rings over division rings; that is,
R ∼= Mn1(D1)× · · · ×Mnk

(Dk) (as rings) where each Di is a division ring.

Lecture 26: (Guest lecture by Jake Levinson)

• Proved that the ring Z[x1, . . . , xn]Sn of Sn-invariant polynomials is the polyno-
mial ring Z]e1, . . . , en] genererated by the elementary symmetric polynomials
e1, . . . , en.

Lecture 27: (Discussion section led by Charles Godfrey)
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Week 11, Dec 4, 6, 8

Lecture 28:

• If R is a ring, M is a right R-module, and N is a left R-module, we defined the
concept of a middle linear map M ×N → G to an abelian group G.

• We defined the tensor product of M and N over R as an abelian group M ⊗RN
together with a middle linear map φ : M×N →M⊗RN such that if ψ : M×N →
G is any other middle linear map, then there exists a unique group homomorphism
χ : M ⊗R N → G such that ψ = χ ◦ φ.

• We constructed M ⊗R N as the quotient of the free abelian group F generated
by the set M ×N by the subgroup generated by (1) (x+ x′, y)− (x, y)− (x′, y)
for x, x′ ∈M and y ∈ N , (2) (x, y+ y′)− (x, y)− (x, y′) for x ∈M and y, y′ ∈ N
and (3) (xr, y) = (x, ry) for x ∈M , y ∈ N and r ∈ R.

• Specializing to the case that R is commutative, we showed that if M and
N are R-modules, then M ⊗R N is an R-module and M × N → M ⊗R N
is bilinear. Moreover, M ⊗R N satisfies the following universal property: if
ψ : M × N → Q is a bilinear map to an R-module Q, then there is a unique
R-module homomorphism χ : M ⊗R N → Q such that ψ = χ ◦ φ.

• We established that HomR(M ⊗R N,Q) ∼= HomR(M,HomR(N,Q)).

Lecture 29:

• Recalled the definition of the universal property of the tensor product M ⊗R N
of modules M and N over a commutative ring R.

• Established that there are isomorphisms:
(1) M ⊗R N → N ⊗RM where x⊗ y 7→ y ⊗ x,
(2) (M ⊗R N)⊗R P →M ⊗R (N ⊗R P ) where (x⊗ y)⊗ z 7→ x⊗ (y ⊗ z),
(3) M ⊗R R→M where x⊗ r 7→ rx, and
(4)

(⊕
i∈IMi

)
⊗R N →

⊕
i∈I(Mi ⊗R N) (here {Mi}i∈I is a set of R-modules)

defined by qi(x)⊗ n 7→ q̃i(x⊗ n), where qi : Mi →
⊕

i∈IMi and q̃i : Mi ⊗R
N →

⊕
i∈I(Mi ⊗R N) denote the inclusions into the direct sums.

(5) Established that if M is a free R-module with basis {xi}i∈I and N is a free
R-module with basis {yj}j∈J , then M ⊗R N is a free R-module with basis
{xi ⊗ yj}(i,j)∈I×J . In particular, Rn ⊗Rm ∼= Rnm.

(6) Discussed the following additional structures on tensor products. (1) If
R → S is a ring homomorphism and M is an R-module, then M ⊗R S
is naturally an S-module where if s ∈ S and m ⊗ s′ ∈ M ⊗R S, then
s · (m⊗ s′) = m⊗ (ss′). (2) If R→ S and R→ T are ring homomorphisms,
then S ⊗R T is naturally a ring where (s ⊗ t) · (s′ ⊗ t′) = (ss′) ⊗ (tt′) for
s, s′ ∈ S and t, t′ ∈ T .

Lecture 30:

• We introduced the following classical question in 19th century invariant theory.
Let Pold(Cn) be the vector space of homogeneous degree d polynomials in
x1, . . . , xn. Explicitly,

Pold(Cn) =
{ ∑
I=(i1,...,in)

aIx
I | aI ∈ C

}
,

where xI = xi11 · · ·xinn .

• Defined the polynomial ring C[aI ] over the
(
n+d−1

d

)
variables aI . The ring C[ai]

is the ring of polynomials defined on the vector space Pold(Cn). The group SLn
acts on Cn and therefore on Pold(Cn) and therefore also on C[aI ].
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• The question of tremendous importance in the 19th century was: What is the ring
C[aI ]

SLn consisting of polynomials in the aI ’s invariant under SLn? Discussed
the case of binary quadrics (n = d = 2) and binary quartics (n = 2, d = 4).

• We sketched Hilbert’s original argument that the invariant ring C[aI ]
SLn is

finitely generated as a C-algebra.
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