Math 504: Modern Algebra, Fall Quarter 2017
Jarod Alper

Homework 9

Due: Friday, December 8

Problem 9.1.

(a) If R and S are semisimple rings, show that R x S is a semisimple ring.
Conclude that any finite product M, (D7) x --- x M,, (D) of matrix rings
over divisions rings D; is semisimple.

(b) If Ris a PID and a € R, show that R/a is a semisimple ring if and ouly if a
is squarefree (that is, there is no prime element p € R such that p? divides a).

Problem 9.2. Recall that the Artin—-Wedernburn theorem on semisimple rings
states that any semisimple ring is a finite product of matrix rings over divisions
rings. Also recall from HW Problem 8.3 that the group algebra C[G] of a finite
group is a semisimple ring. For each of the following groups, explicitly give an
isomorphism of C[G] with a product of matrix rings over divisions rings.

(a) G =Z/n for any positive integer n, and

(b) G = Ss.

Problem 9.3 (Artin—-Wederburn characterization of simple rings). A ring R is
called simple if R has no non-zero, proper two-sided ideals.® For a ring R, show
that the following are equivalent:

(i) R is a simple Artinian ring,

(ii) R = M, (D) for a division ring D, and

(iii) R is semisimple and all simple R-modules are isomorphic.

Hint: Show directly that (iii) = (ii) = (i). You are free to use anything proven
in lecture or from previous homeworks. For (i) = (iii), first use that R is Artinian
to show that there exists a simple R-submodule M C R. Second, use that R is
simple to show that Anng(M) = 0. Third, use that R is Artinian to show that
there is an injection R — M™ for some n (for instance, use the Artinian property
to choose ¢p: R — M™ such that ker(¢) C R is minimal, and then show that such
a ¢ is necessarily injective). Finally, conclude that (iii) holds.

Problem 9.4.

(a) Prove that Z/n ®z Z/m = Z/d where d is the greatest common divisor of n
and m.

(b) Prove that Q ®z Q = Q.

(¢) Prove that if R is a commutative ring, I C R is an ideal and M is an R-module,
then M ®g R/I =M/IM.

(d) Prove that there is an isomorphism of rings C ®g C = C x C.

IWarning: It is not true that a ring R is simple if and only if R is simple as a left R-module.
For example, a matrix ring My (D) over a division ring D is a simple ring (from HW Problem
7.6). But My, (D) it not simple as an R-module since, for instance, the subset M; C My (D),
consisting of matrices where only the ith column is nonzero, is a nonzero proper left-ideal.



(e) Let Fpn be the finite field with p™ elements where p is prime. Prove that there
is an isomorphism of rings

Fpyn ®F, Fpn 2 Fpn X - X Fpn .
—_——
n times

Hint: You may use the fact that F,n = Fp[x]/(f) for some irreducible monic
polynomial f(x) € Fp[z] of degree n.

Problem 9.5. Let A,, = Z[z1,...,2,]°" be the ring of symmetric functions. The
homogeneous symmetric function h; € A, is the sum of all monomials of total
degree i (i > 0):

hO:]-v
h1:$1+"'+$n7
h2:m%_i'_..._f_xi—f—xlxz-’-"‘+xn71xnu

hs

fo + Zw?az] + Z LT T,

i i, i<j<k
and so on. In class, we proved that A, is a polynomial ring on the elementary
symmetric functions eq, ..., e,. In this problem, we’ll prove the “dual fundamental
theorem of symmetric polynomials”, that A, is also a polynomial ring on hq, ..., hy,.
(For deep reasons from representation theory, the e;’s are “dual” to the h;’s.)

() Define power series A(t), B(t) € An[f] by A(t) = Tizghat' and B(1) =
20 e;t". Show that
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(These factorizations take place in Z[z1, ..., 2,][[t]. )

Hint: For A(t), use geometric series.

(b) Deduce that A(t)B(—t) = 1. By equating t* coefficients, deduce Newton’s
identities: eghg = 1, and for k > 1,

hi — hg_1e1 + hp_geg — -+ (—=1)Fep = 0.

Hint: Argue by induction that each e; is a polynomial in hq,..., h; and vice
versa.

(¢) Show that A, = Z[hq, ..., hy)].

Hint: Define an abstract ring homomorphism ¢ : Z[hy,..., h,] = A, by
sending h; to h;. Show ¢ is surjective using part (b) and the fact that
A, 2 Zleq, ..., ey]. To show ¢ is injective, argue that for each d, the degree-d
parts of both rings have the same rank (as free abelian groups), namely the
number of partitions of d with all parts < n. Note that h; has degree i.



