
Math 504: Modern Algebra, Fall Quarter 2017
Jarod Alper
Homework 9

Due: Friday, December 8

Problem 9.1.

(a) If R and S are semisimple rings, show that R × S is a semisimple ring.
Conclude that any finite product Mn1(D1)× · · · ×Mnk

(Dk) of matrix rings
over divisions rings Di is semisimple.

(b) If R is a PID and a ∈ R, show that R/a is a semisimple ring if and only if a
is squarefree (that is, there is no prime element p ∈ R such that p2 divides a).

Problem 9.2. Recall that the Artin–Wedernburn theorem on semisimple rings
states that any semisimple ring is a finite product of matrix rings over divisions
rings. Also recall from HW Problem 8.3 that the group algebra C[G] of a finite
group is a semisimple ring. For each of the following groups, explicitly give an
isomorphism of C[G] with a product of matrix rings over divisions rings.

(a) G = Z/n for any positive integer n, and
(b) G = S3.

Problem 9.3 (Artin–Wederburn characterization of simple rings). A ring R is
called simple if R has no non-zero, proper two-sided ideals.1 For a ring R, show
that the following are equivalent:

(i) R is a simple Artinian ring,
(ii) R ∼= Mn(D) for a division ring D, and

(iii) R is semisimple and all simple R-modules are isomorphic.

Hint: Show directly that (iii) ⇒ (ii) ⇒ (i). You are free to use anything proven
in lecture or from previous homeworks. For (i) ⇒ (iii), first use that R is Artinian
to show that there exists a simple R-submodule M ⊂ R. Second, use that R is
simple to show that AnnR(M) = 0. Third, use that R is Artinian to show that
there is an injection R→Mn for some n (for instance, use the Artinian property
to choose φ : R→Mn such that ker(φ) ⊂ R is minimal, and then show that such
a φ is necessarily injective). Finally, conclude that (iii) holds.

Problem 9.4.

(a) Prove that Z/n⊗Z Z/m ∼= Z/d where d is the greatest common divisor of n
and m.

(b) Prove that Q⊗Z Q ∼= Q.
(c) Prove that if R is a commutative ring, I ⊂ R is an ideal and M is an R-module,

then M ⊗R R/I = M/IM .
(d) Prove that there is an isomorphism of rings C⊗R C ∼= C× C.

1Warning: It is not true that a ring R is simple if and only if R is simple as a left R-module.
For example, a matrix ring Mn(D) over a division ring D is a simple ring (from HW Problem

7.6). But Mn(D) it not simple as an R-module since, for instance, the subset Mi ⊂ Mn(D),
consisting of matrices where only the ith column is nonzero, is a nonzero proper left-ideal.
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(e) Let Fpn be the finite field with pn elements where p is prime. Prove that there
is an isomorphism of rings

Fpn ⊗Fp
Fpn ∼= Fpn × · · · × Fpn︸ ︷︷ ︸

n times

.

Hint: You may use the fact that Fpn ∼= Fp[x]/(f) for some irreducible monic
polynomial f(x) ∈ Fp[x] of degree n.

Problem 9.5. Let Λn = Z[x1, . . . , xn]Sn be the ring of symmetric functions. The
homogeneous symmetric function hi ∈ Λn is the sum of all monomials of total
degree i (i ≥ 0):

h0 = 1,

h1 = x1 + · · ·+ xn,

h2 = x21 + · · ·+ x2n + x1x2 + · · ·+ xn−1xn,

h3 =
∑
i

x3i +
∑
i,j

x2ixj +
∑

i<j<k

xixjxk,

and so on. In class, we proved that Λn is a polynomial ring on the elementary
symmetric functions e1, . . . , en. In this problem, we’ll prove the “dual fundamental
theorem of symmetric polynomials”, that Λn is also a polynomial ring on h1, . . . , hn.
(For deep reasons from representation theory, the ei’s are “dual” to the hi’s.)

(a) Define power series A(t), B(t) ∈ Λn[[t]] by A(t) =
∑

i≥0 hit
i and B(t) =∑

i≥0 eit
i. Show that

A(t) =

n∏
i=1

1

1− xit
, B(t) =

n∏
i=1

(1 + xit).

(These factorizations take place in Z[x1, . . . , xn][[t]]. )

Hint: For A(t), use geometric series.

(b) Deduce that A(t)B(−t) = 1. By equating tk coefficients, deduce Newton’s
identities: e0h0 = 1, and for k ≥ 1,

hk − hk−1e1 + hk−2e2 − · · ·+ (−1)kek = 0.

Hint: Argue by induction that each ei is a polynomial in h1, . . . , hi and vice
versa.

(c) Show that Λn = Z[h1, . . . , hn].

Hint: Define an abstract ring homomorphism φ : Z[h1, . . . , hn] → Λn by
sending hi to hi. Show φ is surjective using part (b) and the fact that
Λn
∼= Z[e1, . . . , en]. To show φ is injective, argue that for each d, the degree-d

parts of both rings have the same rank (as free abelian groups), namely the
number of partitions of d with all parts ≤ n. Note that hi has degree i.
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