Math 504: Modern Algebra, Fall Quarter 2017 Jarod Alper Homework 8 Due: Wednesday, November 29

Problem 8.1. Use Zorn's lemma to show the following: if R is a ring and $I \subset R$ is a proper left ideal, then there exists a maximal left ideal $\mathfrak{m} \subset R$ containing I. (In particular, every non-zero ring has a maximal left ideal.)

Problem 8.2. Let k be a field and D a division algebra over k (i.e. D is a division ring and there is a ring homomorphism $k \to D$). Suppose that D is finite dimensional over k as a k-vector space.

- (a) Show that for every element $a \in D$, there exists a monic polynomial $f(x) \in k[x]$ with f(a) = 0.
- (b) Conclude that if k is algebraically closed, then D = k.

Problem 8.3 (Maschke's Theorem). Let k be a field and G be a finite group such that |G| is invertible in k (that is, the characteristic of k does not divide the order of G). Show that any k[G]-module is semisimple. (Note that this establishes that k[G] is a semisimple ring.)

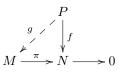
Hint: If M is a k[G]-module and $N \subset M$ is a k[G]-submodule, consider the quotient $\pi: M \to M/N$. First choose a section $s: M/N \to M$ as k-vector spaces (that is, s is a linear transformation such that $\pi \circ s = id$). This section will not in general be a k[G]-module homomorphism but we can define a new section (which you need to check is a k[G]-module homomorphism) as follows:

$$s' \colon M/N \to M \qquad x \mapsto \frac{1}{|G|} \sum_{g \in G} e_g s(e_{g^{-1}}x).$$

Problem 8.4. Let R be a ring and M be an R-module. Provide a counterexample to the following assertion: if $N \subset M$ is an R-submodule such that both N and M/N are semisimple, then M is semisimple.

Problem 8.5 (Sorry—this is a long exercise!). Let R be a ring.

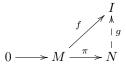
(a) An *R*-module *P* is called *projective* if given any surjective homomorphism $\pi: M \to N$ of *R*-modules and an *R*-module homomorphism $f: P \to N$, there exists an *R*-module homomorphism $g: P \to M$ such that $f = \pi \circ g$. In other words, there is a dotted arrow g making the diagram



commute. Show that the following are equivalent for an R-module P: (i) P is projective;

- (ii) Every surjection $p: M \to P$ splits; that is, there is an *R*-module homomorphism $s: P \to M$ with $p \circ s = id$; and
- (iii) There exists an *R*-module Q such that $P \oplus Q$ is a free *R*-module.

(b) Similarly, an *R*-module *I* is called *injective* if given any injective homomorphism $\pi: M \to N$ of *R*-modules and an *R*-module homomorphism $f: M \to I$, there exists an *R*-module homomorphism $g: N \to I$ such that $f = g \circ \pi$. In other words, there is a dotted arrow *g* making the diagram



commute. Show that the following are equivalent for an R-module I:

- (i) I is injective; and
- (ii) Every injection $s: I \to M$ splits; that is, there is an *R*-module homomorphism $p: M \to I$ with $p \circ s = id$

Hint: To show that (ii) \Rightarrow (i), given *R*-module homomorphisms $\pi \colon M \to N$ and $f \colon M \to I$, define

$$N \times_M I = (N \times I)/Q,$$

where $Q \subset N \times I$ is the *R*-submodule generated by elements of the form $(\pi(m), -f(m))$ for $m \in M$. Show that there is an injection $I \to N \times_M I$ and use this to get the desired homomorphism $N \to I$. (The construction $N \times_M I$ is an example of a *push-out* and it satisfies a universal property.)

Problem 8.6.

- (a) Show directly that any module over a division ring is both projective and injective.
- (b) If R is a PID, show that a finitely generated R-module is projective if and only if it is free.
- (c) Show that \mathbb{Q} is an injective \mathbb{Z} -module but is not a projective \mathbb{Z} -module.

Problem 8.7. Let R be a ring. Show that the following are equivalent:

- (i) R is semisimple;
- (ii) Every R-module is projective; and
- (iii) Every R-module is injective.