Math 504: Modern Algebra, Fall Quarter 2017 Jarod Alper Homework 6

Due: Monday, November 13

Problem 6.1.

- (1) Prove that $x^3 + nx + 2 \in \mathbb{Z}[x]$ is irreducible if and only if $n \neq 1, -3, -5$.
- (2) Factor $x^8 1$ over each of the following rings: (a) \mathbb{Z} , (b) $\mathbb{Z}/2$ and (c) $\mathbb{Z}/3$.

Problem 6.2.

- (1) Let R be a commutative ring. Show that $R^n \cong R^m$ are isomorphic as R-modules if and only if n = m.
- (2) Let k be a field and V be an infinite dimensional vector space with a countable basis. Let R be the ring $\operatorname{End}_k(V)$ of k-linear endomorphisms. Show that $R^2 \cong R$ as (left) R-modules.

Problem 6.3. Let R be a ring and M', M and M'' be R-modules. Let $f: M' \to M$ and $g: M \to M''$ be R-module homomorphisms. We say that

$$0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$$

is a short exact sequence if f is injective, g is surjective and $\operatorname{im}(f) = \ker(g)$. (In other words, this condition is requiring that f is injective and that $M'' \cong M/M'$ where we have identified M' with the image submodule $\operatorname{im}(f) \subset M$, or equivalently that g is surjective and $M' \cong \ker(g)$.)

- (1) Let $0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ be a short exact sequence of R-modules. Show that M is Noetherian if and only if M' and M'' are Noetherian.
- (2) Let R be a Noetherian ring. Show that any finitely generated R-module is a Noetherian R-module.

Problem 6.4. Recall that if M is an R-module, then (1) $\operatorname{Tor}_R(M) = \{m \mid \text{there exists } r \in R \text{ such that } rx = 0\}$, (2) M is torsion if $M = \operatorname{Tor}_R(M)$ and (3) the $rank \operatorname{rk}(m)$ of M is the maximum number of R-linearly independent elements of M.

Let R be an integral domain.

- (1) Show that $\operatorname{rk}(M) = n$ if and only if there exists a submodule $R^n \subset M$ such that M/R^n is torsion.
- (2) For R-modules M and M', show that $rk(M \oplus M') = rk(M) + rk(M')$.
- (3) For R-modules M and M', show that $\operatorname{Tor}_R(M \oplus M') \cong \operatorname{Tor}_R(M) \oplus \operatorname{Tor}_R(M')$.

Problem 6.5. Let R be an integral domain. Recall that if M is an R-module, then $Ann(M) = \{r \in R \mid rm = 0 \text{ for all } m \in M\}.$

- (1) If M is a finitely generated R-module, show that if M is torsion, then $\operatorname{Ann}(M) \neq 0$.
- (2) Give a counterexample to the above statement if M is not finitely generated.

Problem 6.6. Suppose that R is a commutative ring such that every submodule of a free module is also free. Show that R is a PID.