Math 504: Modern Algebra, Fall Quarter 2017 Jarod Alper Homework 3 Due: Monday, October 16

Problem 3.1. Show that two permutations in S_n are conjugate if and only if they have the same cycle type.

Problem 3.2. Suppose $G \subset SO_3(\mathbb{R})$ is a subgroup of order 12. As in lecture, let $\Omega \subset S^2$ be the set of points on the sphere fixed by a non-identity element of G. Suppose that the action of G on Ω has 3 orbits of size 6, 4 and 4.¹ Show that G is the symmetry group of a tetrahedron.

Problem 3.3. Let p be a prime. Find a p-Sylow subgroup of $GL_n(\mathbb{F}_p)$. How many p-Sylows are there?

Problem 3.4. Find all 2, 3 and 5-Sylow subgroups of A_5 .

Problem 3.5. Classify up to isomorphism finite groups of order 18.

Problem 3.6. Classify up to isomorphism finite groups of order 20.

¹In the notation from lecture, this means that $(n_1, n_2, n_3) = (6, 4, 4)$ and $(r_1, r_2, r_3) = (2, 3, 3)$, where n_i is the size of the *i*th orbit and r_i is the order of the stabilizer of an element in the *i*th orbit.