4/19 Friday, April 19, 2019 11:32 AM	
Last time: Discussed graphs We defined the languages HAMPATH	
CLIQUE We showed they are in NP.	
Today: NP-Campleteness. First, we need to discuss Bodean formulas.	
Boolean expression: A Boolean binary number is 0 or 1. Important operations.	
1) NOT LT) $TO=1$, $TI=0$ 2) AND (Λ) $\begin{cases} 0 \wedge 0 = 0 \\ 0 \wedge 1 = 0 \end{cases}$ $ \Lambda 0 = 0$ $ \Lambda 1 = 1$	
3) OR (V) [ovo=0 Vo=1 ovl=1 Vl=1 A Bodean variable is a variable x which takes either o	or l.
IR -> Z/2. A Bestean expression is an expression imply	
Boolean variables and NOTs. ANDs and ORS Notation: $x = -x$ = opposite of x	
= opposite of χ = $(-\chi, \chi_2 \vee \chi_5) \wedge (\chi_3 \vee \chi_5)$ Example $(\chi_1 \vee \chi_2 \vee \chi_5) \wedge (\chi_3 \vee \chi_5)$	
Grangle In Boolean variable X, Y, Z. $ \beta = \chi V (\chi \chi) V(\chi \chi Z) $	
X X 2 D 0 0 0 0 0 Satisfiable	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
We can represent Boolean expression as circuits using li Ext: X, X2 X3 X4 X5	IOT, AND, OR gates
	Satis f'uble
	X ₁ X ₂ X ₃ X ₄ X ₅ 1 0 1 0 0
$(x_1 \vee \overline{X_2} \vee 7_5) \wedge (x_3 \vee \overline{X_5}).$	
Def ⁿ . A Bodean expresson β in variable χ_1, \ldots, χ_n if \exists assignment of $\chi_i = 0$ or 1 .	Satisfable
So that $\beta(x_1,,x_n)=1$.	
DEFINE the language.	
SAT = { Boolean & which are satisf, Here, we are encoding the Briary expenses	Table } rellar as a binary string
Rrop. : SATEM	
PE: Branch over all possibilities $X_1 = 0$ or 1 , $X_2 = 0$ or 1 , $-$ check if $\phi(x_1, -, x_n) = 1$	$\chi_{1} = 1$ $\chi_{2} = 0$
It yes, a cight.	$\chi_{2} = 0$ $\chi_{2} = 0$ $\chi_{3} = 0$
	χ_{3}
	$\chi_{N} = 0$.
Reall PCNP Ques: Is P=NP?	running time: O(n)
Ques: Is P=Nt! Thm (Cook-Lein Thm)	
SAT, GP (SAP)	TGP SATAP,
In other words, it you show SA: You've shown * SAT is as hard as every or	P=NP. P+MP. ther problems in NP.
	P complete If the following is true:
A EMP and A EP (=>) P= MP. Cook-Lehn Thm SAT is MP-	
HW: Shaw HAMPATH,	CLIQUE are NP-complete
	'NT A
Ques Haw can you show that MAIN TECHNIQUE	
We'll show that every other	Language in MP can be reduced to
Reducing problems to other problems	
24sln(x2) - chain rules	
Let's consider a TM Tollo [] w	
If M terminates on an input, then, let the output be string on the tape after it terminates. In physical time	
Def A language C E* can be reduced to BC E* ITM M which always terminates and such that.	if
input EA \Longrightarrow output EB . Prop. D If A can be reduced E A . B decldable \Longrightarrow A . decldable.	
B decidable \Rightarrow A decidable. 3 If A can be reduced to B in pdy time B \neq P \Rightarrow A \in P.	
PF O Let M be TM reduces A to B. If B deddable, let N be a TM deddes B.	
Design a new TM Given input w, run M en w.	
Run N on the output of M. WGA M > output G B N > accepts ? _ Mon	
w & A M > output & B N > accepts } = Mod w & R M > output & B. N > rejects } = declde	
2. Let M be TM reduces A to B in poly time. If BEP, Let N be a TM dedles B in polythme Design a new TM 3 in polytime.	