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Lecture 3: Why formalize?



Computers are useless. They can only give you answers. 

—Pablo Picasso (1968) 



What is Math AI?

1  Mathematics behind AI

2 Formalization
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4 Machine learning to assist research

5 Mathematics in the age of AI
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Mathematics behind AI1

Investing in applied machine 
learning without understanding the 

mathematical foundations is like investing in 
health care without understanding biology.  

—Rebecca Willett (2023)



The trillion dollar question

A neural network is a specific type of function:  

linear maps

Many interesting mathematical questions: 
What types of functions can neural networks effectively learn?

What is the tradeoff in number of layers and their dimension?

non-linear functions defined coordinate-wise by an 
activation function, e.g.,   ReLu(x) = max(0,x)

How to avoid the curse of dimensionality?

Why 
are neural networks as 
effective as they are?



Formalization2

Mathematical formalization is the translation of 
mathematical proofs into a formal language that can 
be checked by a computer. 

This is achieved using a proof assistant, an interactive 
program that facilitates the translation of a proof into a 
sequence of logical deductions from the axioms.

There are many proof assistants:          

Lean , Agda, Coq, Mizar, HOL, Isabelle, ... image by DALLE-3



Why formalize?

A word of warning - and apology. There are several thousand 
formulas in this paper which allow one or more `sign-like 
ambiguities'... I have made a superhuman effort to achieve 
consistency and even to make correct statements: but I still 
cannot guarantee the result.                — David Mumford (1966)

Complete confidence in correctness
Improving understanding
Training computers
Mathematical exposition
Software verification

Reasons



Autoformalization3

Examples:
Numina's solution to the 2024 AIMO progress prize 
Deepmind's Silver-level 2024 performance

Deepmind used a reinforced learning algorithm 
called AlphaProof in similar spirit to AlphaZero that 
learned Go, Chess, Shogi entirely through self-play.  
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The formal:informal proof ratio
Current ratio is between , depending on field.100 − ∞
Goal is to get the ratio less than 1.

Autoformalization is the generation of a  
proof by a computer.



Alphaproof and Alphazero

Unfortunately, most ML research is 
narrowly focused on the competition-
level math, artificial benchmarks, and 
proof-of-concept results.  Their tools are 
not available for us to experiment with.

AlphaZero uses probabilistic tree search and a deep neural 
network, which is trained to not only to learn a good 
valuation function of a board state but also a probability 
distribution called a policy for effective next moves.

By replacing moves with logical steps 
and board states with proof states, 
these same techniques apply to proof 
generation.
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Machine learning in mathematical research4

In the 1770s, Felkel and Vega computed factorization tables up to 408,000.  
This inspired Legendre and Gauss to conjecture the prime number theorem.  
In the 1960s, Birch and Swinnerton-Dyer used a primitive computer to count 
solutions to elliptic curves over finite fields, leading to their famous conjecture.

Machine learning algorithms of today are 
a massively superpowered version of this.

Using large data sets to find relationships, e.g., elliptic curve murmurations (He, 
et al) and knot invariants (Davies, et al)
Generate counterexamples for conjectures, e.g., graph theory (Wagner) 

What have they been good at?

Produce efficient formulas/representations, e.g., tensor decompositions for 
matrix multiplication (AlphaTensor)



Meaning of mathematics in the age of AI5
•What do we do when computers outperform 
humans in the Olympiad?

•What if they become better at teaching mathematics?  
What if they become better at writing mathematics?  
What if they become better at understanding 
mathematics?  What if they become better at being 
mathematicians?  What if they become better at being 
human?  What if they become better at being?  What if 
they become? What if they?  What if?  What? 

•What if they become better at generating 
conjectures or synthesizing mathematics?

•What if they discover a five page elementary 
proof of Fermat's Last Theorem?  

•What about when they become better at 
proving theorems?  
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Meaning of mathematics in the age of AI5

Mathematics is ultimately a human endeavor. 

AI will change the way we do research, the way we write, and 
even the way we think, but it will be up to us to determine 
what mathematical statements we value and to develop a 
human understanding.

It is also imperative to recognize and address the 
risk (short-term, medium-term, and existential) 
and ethical issues of AI.
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Existence risk

•Toby Ord, The Precipice: Existential risk and the future and humanity

•Nick Bostrom, Superintellgience: Paths, Dangers, and Strategies

Populare literature addressing AI risks

•Max Tegmark, Life 3.0: Being human in the age of Artificial Intelligence



A paper clip apocalypse infrastructure in the service of some goal, with the side effect of preventing the
realization of humanity’s axiological potential.

Infrastructure profusion can result from final goals that would have been perfectly
innocuous if they had been pursued as limited objectives. Consider the following
two examples:
 
• Riemann hypothesis catastrophe. An AI, given the final goal of evaluating the

Riemann hypothesis, pursues this goal by transforming the Solar System into
“computronium” (physical resources arranged in a way that is optimized for
computation)—including the atoms in the bodies of whomever once cared about
the answer.8

• Paperclip AI. An AI, designed to manage production in a factory, is given the final
goal of maximizing the manufacture of paperclips, and proceeds by converting
first the Earth and then increasingly large chunks of the observable universe into
paperclips.

In the first example, the proof or disproof of the Riemann hypothesis that the AI
produces is the intended outcome and is in itself harmless; the harm comes from the
hardware and infrastructure created to achieve this result. In the second example,
some of the paperclips produced would be part of the intended outcome; the harm
would come either from the factories created to produce the paperclips
(infrastructure profusion) or from the excess of paperclips (perverse instantiation).

One might think that the risk of a malignant infrastructure profusion failure arises
only if the AI has been given some clearly open-ended final goal, such as to
manufacture as many paperclips as possible. It is easy to see how this gives the
superintelligent AI an insatiable appetite for matter and energy, since additional
resources can always be turned into more paperclips. But suppose that the goal is
instead to make at least one million paperclips (meeting suitable design
specifications) rather than to make as many as possible. One would like to think that
an AI with such a goal would build one factory, use it to make a million paperclips,
and then halt. Yet this may not be what would happen.

Unless the AI’s motivation system is of a special kind, or there are additional
elements in its final goal that penalize strategies that have excessively wide-ranging
impacts on the world, there is no reason for the AI to cease activity upon achieving
its goal. On the contrary: if the AI is a sensible Bayesian agent, it would never assign
exactly zero probability to the hypothesis that it has not yet achieved its goal—this,
after all, being an empirical hypothesis against which the AI can have only uncertain
perceptual evidence. The AI should therefore continue to make paperclips in order to
reduce the (perhaps astronomically small) probability that it has somehow still
failed to make at least a million of them, all appearances notwithstanding. There is
nothing to be lost by continuing paperclip production and there is always at least
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exactly zero probability to the hypothesis that it has not yet achieved its goal—this,
after all, being an empirical hypothesis against which the AI can have only uncertain
perceptual evidence. The AI should therefore continue to make paperclips in order to
reduce the (perhaps astronomically small) probability that it has somehow still
failed to make at least a million of them, all appearances notwithstanding. There is
nothing to be lost by continuing paperclip production and there is always at least
some microscopic probability increment of achieving its final goal to be gained.

Now it might be suggested that the remedy here is obvious. (But how obvious was
i t before it was pointed out that there was a problem here in need of remedying?)
Namely, if we want the AI to make some paperclips for us, then instead of giving it
the final goal of making as many paperclips as possible, or to make at least some
number of paperclips, we should give it the final goal of making some specific
number of paperclips—for example, exactly one million paperclips—so that going
beyond this number would be counterproductive for the AI. Yet this, too, would
result in a terminal catastrophe. In this case, the AI would not produce additional
paperclips once it had reached one million, since that would prevent the realization
of its final goal. But there are other actions the superintelligent AI could take that
would increase the probability of its goal being achieved. It could, for instance,
count the paperclips it has made, to reduce the risk that it has made too few. After it
has counted them, it could count them again. It could inspect each one, over and
over, to reduce the risk that any of the paperclips fail to meet the design
specifications. It could build an unlimited amount of computronium in an effort to
clarify its thinking, in the hope of reducing the risk that it has overlooked some
obscure way in which it might have somehow failed to achieve its goal. Since the AI
may always assign a nonzero probability to having merely hallucinated making the
million paperclips, or to having false memories, it would quite possibly always
assign a higher expected utility to continued action—and continued infrastructure
production—than to halting.

The claim here is not that there is no possible way to avoid this failure mode. We
will explore some potential solutions in later pages. The claim is that it is much
easier to convince oneself that one has found a solution than it is to actually find a
solution. This should make us extremely wary. We may propose a specification of a
final goal that seems sensible and that avoids the problems that have been pointed
out so far, yet which upon further consideration—by human or superhuman
intelligence—turns out to lead to either perverse instantiation or infrastructure
profusion, and hence to existential catastrophe, when embedded in a superintelligent
agent able to attain a decisive strategic advantage.

Before we end this subsection, let us consider one more variation. We have been
assuming the case of a superintelligence that is seeking to maximize its expected
utility, where the utility function expresses its final goal. We have seen that this
tends to lead to infrastructure profusion. Might we avoid this malignant outcome if
instead of a maximizing agent we build a satisficing agent, one that simply seeks to
achieve an outcome that is “good enough” according to some criterion, rather than
an outcome that is as good as possible?

There are at least two different ways to formalize this idea. The first would be to
make the final goal itself have a satisficing character. For example, instead of giving
the AI the final goal of making as many paperclips as possible, or of making exactly



Can the risk be quantified?







5 Evolution of Proof

Rigor has ceased to be thought of 
as a cumbersome style of formal dress that 

one has to wear on state occasions and discards 
with a sigh of relief as soon as one comes home. We do 

not ask any more whether a theorem has been 
rigorously proved but whether it has been proved. 

—André Weil (1956) 



Example: evolution of Hilbert's basis theorem
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