Math 480: Introduction to Mathematical Formalization

Lecture 3: Why formalize?

Jarod Alper

University of Washington



Computers are useless. They can only give you answers.

—Pablo Picasso (1968)
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(1) Mathematics behind Al

Investing 1n applied machine
learning without understanding the
mathematical foundations 1s like imnvesting 1n

health care without understanding biology.
—Rebecca Willett (2023)




The trillion dollar question

Why

are neural networks as A neural network 1s a specific type ot tunction:

effective as they are?
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Many 1nteresting mathematical questions:

L What types of functions can neural networks effectively learn?

L What is the tradeoff in number of layers and their dimension?

L How to avoid the curse of dimensionality?



(2) Formalization

L Mathematical formalization is the translation of
mathematical proofs into a formal language that can
be checked by a computer.

L This is achieved using a proof assistant, an interactive
program that facilitates the translation of a proof into a
sequence of logical deductions from the axioms.

L There are many proof assistants:

Lean o Agda, COq, MlZ&I’, HOL, Isabelle, image by DALLE-3




Why tformalize?

A word of warning - and apology. There are several thousand
formulas 1in this paper which allow one or more sign-like
ambiguities'... I have made a superhuman effort to achieve
consistency and even to make correct statements: but I still
cannot guarantee the result. — David Mumfiord (1966)

P = Complete confidence in correctness

L Improving understanding

Lo Training computers
L Mathematical exposition
L Software verification



(3) Autoformalization

L Autoformalization 1s the generation of a
proof by a computer. EE— ol |
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L& The formal:informal proof ratio

= Current ratio 1s between 100 — oo, depending on field.
-= Goal 1s to get the ratio less than 1.

Ly Examples:

= Numina's solution to the 2024 AIMO progress prize T iDL
= Deepmind's Silver-level 2024 performance

L Deepmind used a reinforced learning algorithm
called AlphaProof 1n similar spirit to AlphaZero that
learned Go, Chess, Shogi entirely through self-play.



Alphaproof and Alphazero

L AlphaZero uses probabilistic tree search and a deep neural
network, which 1s trained to not only to learn a good
valuation function of a board state but also a probability
distribution called a policy for effective next moves.
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L Unfortunately, most ML research 1s
narrowly focused on the competition-
level math, artificial benchmarks, and
proof-of-concept results. Their tools are
not available for us to experiment with.



(4) Machine learning in mathematical research

L In the 1770s, Felkel and Vega computed factorization tables up to 408,000.
This ispired Legendre and Gauss to conjecture the prime number theorem.

L In the 1960s, Birch and Swinnerton-Dyer used a primitive computer to count
solutions to elliptic curves over finite fields, leading to their famous conjecture.

Machine learning algorithms of today are

a massively superpowered version of this.

What have they been good at?

L Using large data sets to find relationships, e.g., elliptic curve murmurations (He,
et al) and knot invariants (Davies, et al)

L Generate counterexamples for conjectures, e.g., graph theory (Wagner)

L Produce efficient formulas/representations, e.g., tensor decompositions for
matrix multiplication (AlphaTensor)



(5) Meaning of mathematics in the age of Al

*What do we do when computers outperform

humans 1n the Olympiad?
*What about when they become better at

proving theorems?
*What 1f they discover a five page elementary
proof of Fermat's Last Theorem?

*What if they become better at generating
conjectures or synthesizing mathematics?

*What if they become better at teaching mathematics? — o image by AL_
What 1f they become better at writing mathematics?

What 1f they become better at understanding

mathematics? What if they become better at being

mathematicians? What 1f they become better at being

human? What 1f they become better at being? What 1t

they become? What 1f they? What 1f? What?



(5) Meaning of mathematics in the age of Al

L Mathematics is ultimately a human endeavor.

L AT will change the way we do research, the way we write, and
even the way we think, but 1t will be up to us to determine
what mathematical statements we value and to develop a

. im_age by DALLE-3
human understanding.

L It is also imperative to recognize and address the
risk (short-term, medium-term, and existential)
and cthical 1ssues of Al



Existence risk

Populare literature addressing Al risks

*Nick Bostrom, Superintellgience: Paths, Dangers, and Strategies

*Max Tegmark, Life 3.0: Being human 1n the age of Artificial Intelligence

*Toby Ord, The Precipice: Existential risk and the future and humanity



A paper clip apocalypse
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Infrastructure profuéion can result from final goals that would have been perfectly
innocuous if they had been pursued as limited objectives. Consider the following
two examples:

* Riemann hypothesis catastrophe. An Al, given the final goal of evaluating the
Riemann hypothesis, pursues this goal by transforming the Solar System into
“computronium” (physical resources arranged in a way that is optimized for

computation)—including the atoms in the bodies of whomever once cared about

the answer.&

» Paperclip Al. An Al, designed to manage production in a factory, is given the final
goal of maximizing the manufacture of paperclips, and proceeds by converting
first the Earth and then increasingly large chunks of the observable universe into
paperclips.

In the first example, the prootf or disproof of the Riemann hypothesis that the Al
produces is the intended outcome and is in itself harmless; the harm comes from the
hardware and infrastructure created to achieve this result. In the second example,
some of the paperclips produced would be part of the intended outcome; the harm
would come either from the {factories created to produce the paperclips
(infrastructure profusion) or from the excess of paperclips (perverse instantiation).



A paper clip apocalypse

NEW

s One might think that the risk of a malignant infrastructure profusion failure arises

NICK BOSTROM only if the AI has been given some clearly open-ended final goal, such as to
SUPERIPI:I}ITEI;:‘I%FI:ISE manufacture as many paperclips as possible. It is easy to see how this gives the
superintelligent Al an insatiable appetite for matter and energy, since additional

resources can always be turned into more paperclips. But suppose that the goal is
instead to make at least one million paperclips (meeting suitable design
specifications) rather than to make as many as possible. One would like to think that
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recommend

e | \\ ol an Al with such a goal would build one factory, use it to make a million paperclips,
Ll \“ ‘ and then halt. Yet this may not be what would happen.

<ol Unless the AI’s motivation system is of a special kind, or there are additional

- elements in its final goal that penalize strategies that have excessively wide-ranging

impacts on the world, there is no reason for the Al to cease activity upon achieving
its goal. On the contrary: if the Al is a sensible Bayesian agent, it would never assign
exactly zero probability to the hypothesis that it has not yet achieved its goal—this,
after all, being an empirical hypothesis against which the Al can have only uncertain
perceptual evidence. The Al should therefore continue to make paperclips in order to
reduce the (perhaps astronomically small) probability that it has somehow still
failed to make at least a million of them, all appearances notwithstanding. There is
nothing to be lost by continuing paperclip production and there is always at least
some microscopic probability increment of achieving its final goal to be gained.



Can the risk be quantified?

Existential catastrophe via Chance within next 100 years

TH E A\steroid or comet impact ~ 1 1n 1,000,000
PRECIPICE Supervolcanic eruption ~ 11n 10,000
Stellar explosion ~ 1 1n 1,000,000,000
Total natural risk ~ 11 10,000
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Climate change ~ 1 m 1,000
Other environmental damage ~ 1 1n 1,000

e OB Yoe ) R-D

“Naturallv™ arising pandemics ~ 1 m 10,000
Engineered pandemics ~11n 30
Unaligned aruhcial intelligence ~11mn 10
Untoreseen anthropogenic risks ~11n 30
Other anthropogenic risks ~11n 50
Total anthropogenic risk ~1mé
Total exastennial nsk ~1mé6
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BEING HUMAN IN THE AGE OF
ARTIFICIAL INTELLIGENCE

“Original, accessiblerand provocative. . . . Enjoy the ride.”
—Science

MAX TEGMARK

Author of Our Mathematical Universe

When will Al surpass human leve\?
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MAX TEGMARK

Author of Our Mathematical Universe
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Evolution of Proof

Rigor has ceased to be thought of
as a cumbersome style of formal dress that
one has to wear on state occasions and discards
with a sigh of relief as soon as one comes home. We do
not ask any more whether a theorem has been
rigorously proved but whether it has been proved.

—Andre Weil (1956)




Example: evolution of Hilbert's basis theorem

Ist irgend eine nicht abbrechende Reihe von Formen der n Vern-

derlichen x1,xo,...,x, gegeben, etwa Fi, F5, F3, ..., so giebt es
stets eine Zahl m von der Art, dass eine jede Form jener Reihe
Hilbert (1890) in die Gestalt
F=AFR+A¥F+.---+ A, F,
bringen lsst, wo A, Aa, ..., A,, geeignete Formen der nmlichen n

Vernderlichen sind.



Example: evolution of Hilbert's basis theorem

If any non-terminating sequence of forms of the n wvariables

x1,%2,...,Tny 1S given, for instance Fi, Fs, F3, ..., then there al-
ways exists a number m of such a kind that every form of that
Hilbert (1890) sequence can be written as

F=A1FR+AF+---+ Ay, Fpp,

where A1, Aa, ..., A are suitable forms of the same n variables.



Example: evolution of Hilbert's basis theorem

If any non-terminating sequence of forms of the n wvariables
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where A1, Aa, ..., A are suitable forms of the same n variables.

Pour tout anneau commutatif neethérien C', [’anneau de polynémes

Bourbaki (1961) Clz] is neethérien.
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