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Problem 7.1. Taylor 3.2.8.

Proof. Define function g : C → C by

g(z) =

{
sin(z)/z, z ̸= 0

1, z = 0.

We want to show g is entire. Since sin(z) is entire and z is analytic and not zero on C \ {0}, it follows g
is analytic on C \ {0}, it suffices to show g is analytic around 0. Recall we have power series expansion for
sin(z) around 0:

sin(z) =

∞∑
k=0

(−1)k

(2k + 1)!
z2k+1, z ∈ C.

Thus by definition of g,

g(z) =

∞∑
k=0

(−1)k

(2k + 1)!
z2k, z ∈ C \ {0}.

Let ck denote the coefficient of the power series of sin(z), then c1 = (−1)0/1! = 1, then the power series∑∞
k=0

(−1)k

(2k+1)!z
2k has value 1 at z = 0, which agrees with the value of g at 0. Therefore we conclude g has

power series expansion

g(z) =

∞∑
k=0

(−1)k

(2k + 1)!
z2k, z ∈ C.

Therefore it follows g is analytic around 0, hence g is entire.

Problem 7.2. Taylor 3.2.9.

Proof. Since f is analytic on the disk Dr(z0), we have a power series expansion for f about z0 with radius
r (Theorem 3.2.5):

f(z) =

∞∑
k=0

ak(z − z0)
k, z ∈ Dr(z0).

Since f ̸= 0 on Dr(z0), it’s not the case that ak = 0 for all k ≥ 0, thus there exists a minimal k such that
ak ̸= 0. Then

f(z) =

∞∑
n=k

ak(z − z0)
k = (z − z0)

k
∞∑

n=0

ak+n(z − z0)
n, z ∈ Dr(z0).

Define g(z) :=
∑∞

n=0 ak+n(z − z0)
n for z ∈ Dr(z0), since by construction g has a power series expansion

about z0 with radius r, it is analytic on Dr(z0). Furthermore, by construction ak = g(z0) ̸= 0.

Lemma 0.1. Recall given z0 ∈ C we define limz→z0 g(z) = ∞ if for all K > 0 there exists δ > 0 such that
|g(z)| > K whenever |z − z0| < δ.

Let g : C → C be a function then limz→∞ g(z) = limz→0 g(1/z).
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Proof. We consider two cases:

1. limz→∞ g(z) = ∞. We want to show limz→0 g(1/z) = ∞ as well, in other words, for any K > 0 there
exists δ > 0 such that |z| < δ implies |g(1/z)| > K.
Let K > 0 be given, since limz→∞ g(z) = ∞, there exists M > 0 such that |z| > M implies |g(z)| > K.
Define δ := 1/M > 0, then if |z| < δ, we have |1/z| > 1/δ = M , then |g(1/z)| > K as we wished.

2. Suppose limz→∞ g(z) = L ∈ C. We want to show limz→0 g(1/z) = L as well, in other words, for any
ϵ > 0 there exists δ > 0 such that |z| < δ implies |g(1/z)− L| < ϵ.
Let ϵ > 0 be given, since limz→∞ g(z) = L, there exists R > 0 such that |z| > R implies |g(z)− L| < ϵ.
Define δ := 1/R, then if |z| < δ, we have |1/z| > 1/δ = R, then |g(1/z)− L| < ϵ as we wished.

Problem 7.3. Taylor 3.3.2.

Proof. By Lemma 0.1 it suffices to show limz→0 f(1/z) = ∞ if and only if limz→∞ 1/f(z) = 0.

1. Suppose limz→0 f(1/z) = ∞. Let ϵ > 0 be given, we want R > 0 such that |z| > R implies |1/f(z)| < ϵ.
Since limz→0 f(1/z) = ∞, there exists δ > 0 such that |z| < δ implies then |f(1/z)| > 1/ϵ. Define
R := 1/δ, then if |z| > R, we know |1/z| < 1/R = δ, then |f(1/(1/z))| = |f(z)| > 1/ϵ, then |1/f(z)| < ϵ
as we wished.

2. Suppose limz→∞ 1/f(z) = 0. Let K > 0 be given, we want δ > 0 such that |z| < δ implies |f(1/z)| > K.
Since limz→∞ 1/f(z) = 0, there exists R > 0 such that |z| > R implies |1/f(z)| < 1/K. Define
δ := 1/R, then if |z| < δ, then |1/z| > 1/δ = R, then |1/f(1/z)| < 1/K, then |f(1/z)| > K as we
wished.

Problem 7.4. Taylor 3.3.3.

Proof. Suppose f : C → C is entire, and limz→∞ f(z) = ∞, suppose f(z) ̸= 0 for all z ∈ C, then the
function 1/f is well-defined and analytic on the whole complex plane. By the previous problem we know
limz→∞ 1/f(z) = 0, then we can find R > 0 such that |1/f(z)| < 1 whenever |z| > R. Since the closed disk
DR(0) = {z ∈ C : |z| ≤ R} is a compact and 1/f is continuous on it, the function 1/f attains a maximum
value M at some z0 ∈ DR(0), therefore for all z ∈ C, |1/f(z)| ≤ max{1,M}, the function 1/f is bounded
on C. By Liouville’s Theorem the function 1/f must be constant, there’s some c ∈ C such that 1/f(z) = c
for all z ∈ C. But this contradicts the assumption that limz→∞ f(z) = ∞ as there’s no z ∈ C such that
|f(z)| > c.

Problem 7.5. Taylor 3.3.5.

Proof. Suppose we are given an entire function f = u + iv such that u is bounded on C. Consider
g(z) := ef(z) = eu(z)eiv(z). Then |g(z)| =

∣∣eu(z)eiv(z)∣∣ = ∣∣eu(z)∣∣ is bounded on C. Since f is entire and the
exponential function is entire, by composition, g is entire, but g is also bounded, thus g is constant, i.e.,
there’s some c ∈ C such that g(z) = c for all z ∈ C. Since ez ̸= 0 for all z ∈ C, c cannot be zero, thus
f(z) = log(c) ∈ C for all z ∈ C, f is constant.

Problem 7.6. Taylor 3.3.6.

Proof. Let f be an entire nonconstant function, suppose for contradiction that f(C) is not dense in C, then
there exists z0 ∈ C and r > 0 such that Dr(z0) ⊆ C \ f(C). Define g(z) := 1/(f(z) − z0), since z0 ̸∈ f(C),
the function g is well-defined and entire. We claim the function g must be bounded, it suffices to show there
exists ϵ > 0 such that |f(z)− z0| > ϵ for all z ∈ C. Put ϵ to be r/2 suffices, since for all z ∈ C, f(z) ̸∈ Dr(z0),
which means |f(z)− z0| ≥ r > r/2 = ϵ. Since the entire function g is bounded, it follows g is constant, and
hence f = z0 + 1/g is also constant.
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Problem 7.7. Taylor 3.3.15.

Proof. Let p be a polynomial of degree n with real coefficients, then by fundamental theorm of algebra it
factors into linear terms over C:

p(z) = λ(z − z1)(z − z2) · · · (z − zn), zi, λ ∈ C.

Problem 10 tells us that if (z−r) is a factor of p, where r ∈ C\R, then (z−r) is also a factor of p. Therefore
it suffices to show for r ∈ C \ R, (z − r)(z − r) is a polynomial of degree at most 2 with real coefficients.
Expand the product we get (z − r)(z − r) = z2 − (r + r)zz + rr. Since r + r = Re(r) and rr = |r|2 are real,
the product is a polynomial of degree 2 of real coefficients.

Problem 7.8. Taylor 3.4.4.

Solution: Recall we have power series expansion of sin(z) around 0:

sin(z) =

∞∑
k=0

(−1)k

(2k + 1)!
z2k+1, z ∈ C.

Therefore sin(z)− z has power series expansion around 0:

sin(z)− z =

∞∑
k=1

(−1)k

(2k + 1)!
z2k+1 = z3

∞∑
k=1

(−1)k

(2k + 1)!
z2k−2, z ∈ C.

Define g(z) :=
∑∞

k=1
(−1)k

(2k+1)!z
2k−2, then g(0) = (−1)1/3! ̸= 0, thus sin(z) − z has zero of order 3 at 0 with

the factorization given above. □
Problem 7.9. Taylor 3.4.9.

Proof. Since f and g are analytic on U , and z0 ∈ U , they have power series expansion around z0, by
Theorem 3.4.1 there exists k, l ∈ N and we may write

f(z) = (z − z0)
kf̃(z), z ∈ Dr1(z0),

g(z) = (z − z0)
lg̃(z), z ∈ Dr2(z0),

where f̃ and g̃ are analytic on Dr1(z0) and Dr2(z0) respectively and f̃(z0), g̃(z0) ̸= 0. Thus we know in
particular that limz→z0 f̃(z) = f̃(z0) ̸= 0, limz→z0(f̃)

′(z) = (f̃)′(z0) ∈ C, limz→z0(g̃)
′(z) = (g̃)′(z0) ∈ C.

Therefore,

lim
z→z0

f ′(z)

g′(z)
= lim

z→z0
z∈Dr1

(z0)

z∈Dr2 (z0)

f ′(z)

g′(z)
= lim

z→z0
z∈Dr1

(z0)

z∈Dr2 (z0)

[(z − z0)
kf̃(z)]′

[(z − z0)lg̃(z)]′
. = lim

z→z0

[(z − z0)
kf̃(z)]′

[(z − z0)lg̃(z)]′
.

Notice since f(z0) = g(z0) = 0, we must have k, l ≥ 1. By product rule for complex differentiable functions,

lim
z→z0

f ′(z)

g′(z)
= lim

z→z0

k(z − z0)
k−1f̃(z) + (z − z0)

k(f̃)′(z)

l(z − z0)l−1g̃(z) + (z − z0)l(g̃)′(z)
.

We consider the following three cases:

1. k = l. In this case
lim
z→z0

f ′(z)

g′(z)
= lim

z→z0

kf̃(z) + (z − z0)(f̃)
′(z)

kg̃(z) + (z − z0)(g̃)′(z)

Using the theorem on sum, product and quotient of converging limits, we conclude

lim
z→z0

f ′(z)

g′(z)
=

kf̃(z0) + 0

kg̃(z0) + 0
=

f̃(z0)

g̃(z0)
.
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2. k < l. Then
lim
z→z0

f ′(z)

g′(z)
= lim

z→z0

kf̃(z) + (z − z0)(f̃)
′(z)

l(z − z0)l−kg̃(z) + (z − z0)l−k+1(g̃)′(z)
.

Observe the limit of the numerator exists and nonzero,

lim
z→z0

kf̃(z) + (z − z0)(f̃)
′(z) = kf̃(z0) ∈ C \ {0}.

However the limit of the denominator is

lim
z→z0

l(z − z0)
l−kg̃(z) + (z − z0)

l−k+1(g̃)′(z) = 0 + 0 = 0.

Thus we conclude the limz→z0 f
′(z)/g′(z) is unbounded, in which case we denote the limit by ∞.

3. l < k. Then
lim
z→z0

f ′(z)

g′(z)
= lim

z→z0

k(z − z0)
k−lf̃(z) + (z − z0)

k−l+1(f̃)′(z)

lg̃(z) + (z − z0)(g̃)′(z)
.

Using the theorem on sum, product and quotient of converging limits, we conclude,

lim
z→z0

k(z − z0)
k−lf̃(z) + (z − z0)

k−l+1(f̃)′(z) = 0 + 0 = 0,

and
lim
z→z0

lg̃(z) + (z − z0)(g̃)
′(z) = lg̃(z0) ̸= 0.

Therefore, limz→z0 f
′(z)/g′(z) = 0.

Problem 7.10. Exercises Taylor 3.4.12–16.

Solution:

1. Observe the function z − z3 is entire, and it is only zero when z = 0 or z = ±1, thus f is analytic on
C\{0, 1,−1}. If there were isolated singularities of f , they may only occur at 0, 1 and −1. First we look
at 0, near the origin the function f has factorization f(z) = z−1g(z) where g(z) = 1/[(z + 1)(z − 1)],
which is analytic around 0, thus f has a pole of order 1 at 0. Secondly we look at 1, similarly we have
factorization f(z) = (z − 1)−1g(z) where g(z) = 1/[z(z + 1)], which is analytic around 1, thus f has a
pole of order 1 at 1. Finally by the same reasoning, f has a pole of order 1 at −1 as well.

2. By power series expansion of sin(z), we have

sin(1/z) =

∞∑
k=0

(−1)k

(2k + 1)!
z−(2k+1), z ∈ C \ {0}.

Since there are infinitely many terms in the power series expansion of sin(1/z) about 0 where z has
negative exponent. Thus sin(1/z) has an essential singularity at 0. Away from 0 however, the function
1/z is analytic, hence by composition sin(1/z) is analytic on C \ {0}, hence 0 is the only isolated
singularity of sin(1/z).

3. Since the numerator of f is ez − 1− z, which is entire; the denominator of f is z2, which is also entire.
It follows the isolated singularity of f may only occur at where denominator vanishes, which happens
only if z = 0. Recall we have power series expansion of ez about 0:

ez =

∞∑
n=0

zn

n!
, z ∈ C,
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then we have

f(z) =

(∑∞
n=0 z

n/n!
)
− 1− z

z2
=

∞∑
n=2

zn−2

n!
, z ∈ C \ {0}.

If we define f(0) to be 1/2, the function f has power series expansion
∑∞

n=2
zn−2

n! around 0, hence we
conclude f has a removable singularity at 0.

4. Observe f(z) = z+1−ez

z(ez−1) , and both the numerator and the denominator are entire and the denominator
is only zero when z = 2πin for n ∈ Z. Thus the isolated singularity of f may only occur at those
points. By change of variable we have power series expansion of ez−2πin around 2πin:

ez−2πin =

∞∑
k=0

(z − 2πin)k

k!
, z ∈ C.

Observe since e2πin = 1, the left hand side equals ez, thus we have power series expansion of ez around
2πin:

ez =

∞∑
k=0

(z − 2πin)k

k!
, z ∈ C.

Therefore we have power series expansion of the numerator around 2πin:

z + 1− ez = 2πin−
∞∑
k=2

(z − 2πin)k

k!
, z ∈ C.

If n = 0, it can be factored as

z + 1− ez = z2
(
−

∞∑
k=2

zk−2

k!

)
=: z2g(z).

Thus the numerator is entire and has a zero of order 2 at 0, it does not have a zero at 2πin for n ̸= 0.
Consider the denominator z(ez−1), observe the function z is entire and is zero when n = 0, it’s nonzero
when n ̸= 0. Furthermore the power series expansion of ez − 1 around 2πin has factorization

ez − 1 = (z − 2πin)

∞∑
k=1

(z − 2πin)k−1

k!
.

Therefore we conclude the denominator is entire and has a zero of order 2 at 0, and has a zero of order
1 at 2πin when n ̸= 0. We conclude using Example 3.4.10 that f has a removable singularity at 0 and
a pole at 2πin for n ∈ Z, n ̸= 0. Recall to remove a removable singularity, we define the value of the
function to be the constant term in its power series expansion around that singularity. Since f has
power series expansion around 0:

f(z) =
z2(−

∑∞
k=2 z

k−2/k!)

z2(
∑∞

k=1 z
k−1/k!)

=
−
∑∞

k=2 z
k−2/k!∑∞

k=1 z
k−1/k!

,

the constant term is the constant term of the numerator (−1/2) divided by the constant term of the
denominator 1, which is −1/2.

5. Recall the principal branch of the logarithm log(z) is analytic on C \ (−∞, 0]. Since the denominator
(1− z)2 is entire and is zero only when z = 1, it follows f is analytic on C \ ((−∞, 0] ∪ {1}).
Observe for all z0 ∈ (−∞, 0], and all open ball containing z0, the open ball also contains points in
(−∞, 0], this tells us none of points in (−∞, 0] is an isolated singularity of f , we only need to consider
the point z0 = 1.
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Recall we have power series expansion of log(1 + z) around 0:

log(1 + z) =

∞∑
n=1

(−1)n+1

n
zn, |z| < 1,

then by a change of variable, we have a power series expansion of log(z) around 1:

log(z) =

∞∑
n=1

(−1)n+1

n
(z − 1)n, |z − 1| < 1.

We can factor this expansion into:

log(z) = (z − 1)
( ∞∑

n=1

(−1)n+1

n
(z − 1)n−1

)
=: (z − 1)g(z), |z − 1| < 1.

Then g is analytic around 0 and g(1) ̸= 0, thus log(z) has a zero of order 1 at 1. Since the denominator
(z − 1)2 has a zero of order 2 at 1, it follows from Example 3.4.10 that f has a pole of order 1 at 1.

□


