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Problem 7.1. Taylor 3.2.8.
Proof. Define function g : C — C by

_Jsin(z)/z, z#0
g(z)_{l, 2=0.

We want to show g is entire. Since sin(z) is entire and z is analytic and not zero on C\ {0}, it follows g
is analytic on C\ {0}, it suffices to show g is analytic around 0. Recall we have power series expansion for
sin(z) around 0:

. o~ (=D*
sin(z) = Z (2(k:+>1)!22k+1’ z € C.
k=0

Thus by definition of g,

- CDE g
g(z)—z(2k+1)!z , z€C\{0}.

k=0
Let ¢; denote the coefficient of the power series of sin(z), then ¢; = (—1)°/1! = 1, then the power series

k
Yoo %z% has value 1 at z = 0, which agrees with the value of g at 0. Therefore we conclude g has
power series expansion

()750:& 2k cC
9Z_k:0(2k+1)!2’ S

Therefore it follows g is analytic around 0, hence g is entire. O
Problem 7.2. Taylor 3.2.9.

Proof. Since f is analytic on the disk D,.(2q), we have a power series expansion for f about zy with radius
r (Theorem 3.2.5):

f(z)= Zak(z —20)%,  z€Dy(x).
k=0

Since f # 0 on D,(zp), it’s not the case that ay = 0 for all ¥ > 0, thus there exists a minimal k& such that
ar # 0. Then

f(z)= Z ar(z — 20)% = (2 — 2)* Z ak+n(z — 20)", 2z € Dy(20).
n=k n=0

Define g(z) := Y07 j ak+n(z — 20)" for z € D,(20), since by construction g has a power series expansion
about zp with radius r, it is analytic on D, (zg). Furthermore, by construction a, = g(zo) # 0. O

Lemma 0.1. Recall given zo € C we define lim,_, ,, g(z) = oo if for all K > 0 there exists 6 > 0 such that
lg(2)| > K whenever |z — zg| < 4.

Let g : C — C be a function then lim,_, o g(z) = lim,_,0g(1/2).



Proof. 'We consider two cases:

1. lim, 00 g(2) = 00. We want to show lim,_,o g(1/2z) = oo as well, in other words, for any K > 0 there
exists 0 > 0 such that |z| < ¢ implies |g(1/2)| > K.
Let K > 0 be given, since lim,_,+ g(z) = 00, there exists M > 0 such that |z| > M implies |g(z)| > K.
Define 6 := 1/M > 0, then if |z| < §, we have |1/z] > 1/6 = M, then |g(1/2)| > K as we wished.

2. Suppose lim,_,+ g(z) = L € C. We want to show lim,_,0g(1/z) = L as well, in other words, for any
€ > 0 there exists § > 0 such that |z| < ¢ implies |g(1/z) — L| < e.

Let € > 0 be given, since lim,_,~ g(z) = L, there exists R > 0 such that |z| > R implies |g(z) — L| < e.
Define 0 := 1/R, then if |z| < §, we have |1/z| > 1/§ = R, then |g(1/z) — L| < € as we wished.

O
Problem 7.3. Taylor 3.3.2.
Proof. By Lemma 0.1 it suffices to show lim,_,¢ f(1/z) = oo if and only if lim,_,., 1/f(z) = 0.

1. Suppose lim,_,q f(1/2) = co. Let € > 0 be given, we want R > 0 such that |z| > R implies |1/f(z)| < e.

Since lim,_,¢ f(1/2z) = oo, there exists § > 0 such that |z| < ¢ implies then |f(1/z)] > 1/e. Define
R:=1/6, thenif |z| > R, we know [1/z| < 1/R = 4§, then |f(1/(1/2))] = |f(2)| > 1/e, then |1/f(2)| < €
as we wished.

2. Suppose lim,_,o 1/f(2) = 0. Let K > 0 be given, we want § > 0 such that |z| < ¢ implies |f(1/z)| > K.

Since lim,_ o, 1/f(2) = 0, there exists R > 0 such that |z| > R implies |1/f(z)] < 1/K. Define
d := 1/R, then if |z| < §, then |1/z| > 1/6 = R, then |1/f(1/z)| < 1/K, then |f(1/z)| > K as we
wished.

O
Problem 7.4. Taylor 3.3.3.

Proof.  Suppose f : C — C is entire, and lim,_,, f(2) = oo, suppose f(z) # 0 for all z € C, then the
function 1/f is well-defined and analytic on the whole complex plane. By the previous problem we know
lim, o 1/f(2) = 0, then we can find R > 0 such that |1/f(z)| < 1 whenever |z| > R. Since the closed disk
Dr(0) = {z € C: 2| < R} is a compact and 1/f is continuous on it, the function 1/f attains a maximum
value M at some zg € Dg(0), therefore for all z € C, |1/f(2)| < max{1, M}, the function 1/f is bounded
on C. By Liouville’s Theorem the function 1/f must be constant, there’s some ¢ € C such that 1/f(z) = ¢
for all z € C. But this contradicts the assumption that lim,_, . f(z) = oo as there’s no z € C such that
|f(2)] > e O

Problem 7.5. Taylor 3.3.5.

Proof.  Suppose we are given an entire function f = w 4 iv such that u is bounded on C. Consider
g(2) == ef?) = v (=) Then |g(2)| = |e“*)e™(#)| = |¢“(*)| is bounded on C. Since f is entire and the
exponential function is entire, by composition, g is entire, but g is also bounded, thus g is constant, i.e.,
there’s some ¢ € C such that g(z) = ¢ for all z € C. Since e* # 0 for all z € C, ¢ cannot be zero, thus
f(z) =log(c) € C for all z € C, f is constant. O

Problem 7.6. Taylor 3.3.6.

Proof.  Let f be an entire nonconstant function, suppose for contradiction that f(C) is not dense in C, then
there exists zp € C and r > 0 such that D,(z9) C C\ f(C). Define g(z) := 1/(f(z) — 20), since zg & f(C),
the function g is well-defined and entire. We claim the function g must be bounded, it suffices to show there
exists € > 0 such that | f(z) — 29| > € for all z € C. Put € to be /2 suffices, since for all z € C, f(z) & D, (%),
which means |f(z) — 29| > 7 > r/2 = €. Since the entire function g¢ is bounded, it follows g is constant, and
hence f = zp + 1/g is also constant. O



Problem 7.7. Taylor 3.3.15.

Proof. Let p be a polynomial of degree n with real coefficients, then by fundamental theorm of algebra it
factors into linear terms over C:

p(z) =AMz —21)(z—22) - (2 — 2z), zi,A€C.

Problem 10 tells us that if (z —r) is a factor of p, where r € C\R, then (z—7) is also a factor of p. Therefore
it suffices to show for r € C\ R, (z — r)(z — T) is a polynomial of degree at most 2 with real coefficients.
Expand the product we get (z — r)(z — ) = 22 — (r + )2z + 7. Since r + 7 = Re(r) and 77 = |r|* are real,
the product is a polynomial of degree 2 of real coefficients. O

Problem 7.8. Taylor 3.4.4.

Solution: Recall we have power series expansion of sin(z) around O0:

. o~ (=D*
sin(z) = Z mz%"'l, z € C.
k=0

Therefore sin(z) — z has power series expansion around 0:

oo )k 9
L2kl _ .3 -2
sin(z —_ =z , ze€C.
) ; 2%t 1) 2 T

Define g(z) := > py (2k ,,22’C 2 then g(0) = (—1)1/3! # 0, thus sin(z) — z has zero of order 3 at 0 with
the factorization given above ([l

Problem 7.9. Taylor 3.4.9.

Proof. Since f and g are analytic on U, and zy € U, they have power series expansion around zp, by
Theorem 3.4.1 there exists k,l € N and we may write

f(2)=(z=20)"f(2), =€ Dr(20),
9(z) = (2 = 20)'§(2), 2 € Dry(20),

hus we know in

where f and § are analytic on D, (z) and D, (z0) respectively and f(z0),G(z0) # 0.
9)'(2) = (9)'(20) € C.

particular that lim, ., f(z) = f( 0) # 0, lim. .. (f)(2) = (f)(20) € C, lim,_.,(3)' (2
Therefore,

— 4

O N W (e 0 ) G (1)

1 = 1 = 1 - ——— = = lim ——F——-—.

IO~ SO~ T CEEU ) S S R CEET)
zEDr;(zo) zEDri(zo)

Notice since f(z9) = g(20) = 0, we must have k,I > 1. By product rule for complex differentiable functions,

P ke ) ) + (- ) ()
S g(z) = 1z ) () + (2~ 20 @) ()

We consider the following three cases:

1. k£ =1. In this case B B
/ k _ /
i LG _ iy B+ G =) (1))
S g(z) e kg() + (2 - 20)(@) (2)
Using the theorem on sum, product and quotient of converging limits, we conclude
f'(z) _ kf(20) +0 _ f(20)
g 9(20)

lim

S5 (=) kglzo) 40




2. k <. Then

ORI, BF(2) + (2= 20) () (2)
220 ¢'(2) 220 Uz — 20)7RG(2) + (2 — 20)! R HH(9) (=)
Observe the limit of the numerator exists and nonzero,

lim kf(2) + (2 = 20)(f)'(2) = kf(20) € C\ {0}.

Z—r20

However the limit of the denominator is

lim I(z — 20) 7%G(2) + (z — 20) T H(§) () =0+ 0 = 0.

zZ—r2z0
Thus we conclude the lim,_, ., f'(z)/¢’(z) is unbounded, in which case we denote the limit by co.

3. Il < k. Then

zgrzlo g'(2) - zgrzlo 1g(z) + (2 — 20)(9)'(2)

Using the theorem on sum, product and quotient of converging limits, we conclude,

) k= 20) ) + (= 20 ()

lim k(z — 20)* 7 f(2) + (2 — 20)F () (2) =04+ 0 =0,

zZ—r 20

and
lim 15(2) + (= — 20)(3)'(2) = l§(z0) # 0.

Z—r20

Therefore, lim,_,,, f'(z)/¢'(z) = 0.

Problem 7.10. Exercises Taylor 3.4.12—-16.

Solution:

1. Observe the function z — 22 is entire, and it is only zero when z = 0 or z = %1, thus f is analytic on

C\{0,1, —1}. If there were isolated singularities of f, they may only occur at 0,1 and —1. First we look
at 0, near the origin the function f has factorization f(z) = z271g(2) where g(z) = 1/[(z + 1)(z — 1)],
which is analytic around 0, thus f has a pole of order 1 at 0. Secondly we look at 1, similarly we have
factorization f(z) = (z — 1)71g(z) where g(z) = 1/[z(z + 1)], which is analytic around 1, thus f has a
pole of order 1 at 1. Finally by the same reasoning, f has a pole of order 1 at —1 as well.

2. By power series expansion of sin(z), we have

sin(1/z) = i (_71)16'2_(%“), z € C\ {0}.
= (2k+1)!

Since there are infinitely many terms in the power series expansion of sin(1/z) about 0 where z has
negative exponent. Thus sin(1/z) has an essential singularity at 0. Away from 0 however, the function
1/z is analytic, hence by composition sin(1/z) is analytic on C \ {0}, hence 0 is the only isolated
singularity of sin(1/z).

3. Since the numerator of f is e — 1 — z, which is entire; the denominator of f is 22, which is also entire.
It follows the isolated singularity of f may only occur at where denominator vanishes, which happens
only if z = 0. Recall we have power series expansion of e* about 0:

X _n
z
e’z:g —, z€C,
n!
n=0



then we have

f(z) = (E”_Ozn/jl) i =§:Z:, 2 eC\ {0}

z

n=2

If we define f(0) to be 1/2, the function f has power series expansion > -, Zn—Tz around 0, hence we
conclude f has a removable singularity at 0.

. Observe f(z) = i?‘eij‘f), and both the numerator and the denominator are entire and the denominator
is only zero when z = 2min for n € Z. Thus the isolated singularity of f may only occur at those

points. By change of variable we have power series expansion of e*~2™" around 27in:

z—2min __ - (Z B QWin)k
D S L
k=0

Observe since 27" = 1, the left hand side equals e*, thus we have power series expansion of ¢* around
2min:

o0 .

R (z — 2min)*

e’ = E T, z e C.
k=0

Therefore we have power series expansion of the numerator around 27mwin:

2. (z — 2min)k

s o
z+1-—e —2mn—z X , zeC.
k=2
If n =0, it can be factored as
2 o 2 2
z4+1—-€e =z (—Z o )z:zg(z).
k=2

Thus the numerator is entire and has a zero of order 2 at 0, it does not have a zero at 2win for n # 0.
Consider the denominator z(e?—1), observe the function z is entire and is zero when n = 0, it’s nonzero
when n # 0. Furthermore the power series expansion of e* — 1 around 27in has factorization

o0 _ 2 . k—1
ef—1= (z—2win)2%.
k=1 ’

Therefore we conclude the denominator is entire and has a zero of order 2 at 0, and has a zero of order
1 at 2min when n # 0. We conclude using Example 3.4.10 that f has a removable singularity at 0 and
a pole at 2min for n € Z,n # 0. Recall to remove a removable singularity, we define the value of the
function to be the constant term in its power series expansion around that singularity. Since f has
power series expansion around 0:

f(Z) — Zz(_ ZZO:Q zk_Q/k!) - _ 220:2 zk_2/k!
22(220:1 Zkfl/kl) Z:"Zl Zkfl/k! )

the constant term is the constant term of the numerator (—1/2) divided by the constant term of the
denominator 1, which is —1/2.

. Recall the principal branch of the logarithm log(z) is analytic on C\ (—o0,0]. Since the denominator
(1 — 2)? is entire and is zero only when z = 1, it follows f is analytic on C\ ((—o0, 0] U {1}).

Observe for all zg € (—00,0], and all open ball containing zp, the open ball also contains points in
(—00, 0], this tells us none of points in (—oo, 0] is an isolated singularity of f, we only need to consider
the point zp = 1.



Recall we have power series expansion of log(1 + z) around 0:

oo -1 n+1
log(1+ 2) = Z %z", |z| < 1,
n=1

then by a change of variable, we have a power series expansion of log(z) around 1:

& 1 n+1
log(z) = Z ( (z=1", |z—-1] <L
n=1
We can factor this expansion into:
e -1 n+1 .
log(2) = (2 — 1)(2 %(2« —p)n 1) = (2 Dg(2), |z—1]<1.
n=1

Then g is analytic around 0 and g(1) # 0, thus log(z) has a zero of order 1 at 1. Since the denominator
(2 — 1)? has a zero of order 2 at 1, it follows from Example 3.4.10 that f has a pole of order 1 at 1.

O



