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1. Lagrange’s Solution to the Quartic

Lagrange actually proved the fundamental theorem on symmetric functions in the course of
developing a more systematic approach to solving polynomial equations. In this lecture, we’ll
see how Lagrange made use of the theorem to give a solution to the general quartic equation.
Lagrange’s solution begins with the following observation, which tells you how to turn an
arbitrary function into a symmetric function.

Lemma 1.1. Let f1 ∈ k[α1, . . . , αn] be any polynomial, and let f1, . . . , fk be the orbit of f1
under the action of Sn, i.e. the set of all functions you get by acting on f1 with elements of
Sn. If s(x1, . . . , xk) is any symmetric function in k variables, then s(f1, . . . , fk) is a symmetric
function in α1, . . . , αn.

Example 1.2. Let f1 = (α1 + α2)(α3 + α4) ∈ k[α1, α2, α3, α4]. One can easily check that the
orbit of f1 is:

f1 = (α1 + α2)(α3 + α4)

f2 = (α1 + α3)(α2 + α4)

f3 = (α1 + α4)(α2 + α3)

According to the theorem, any symmetric function of f1, f2, f3 must give a symmetric function
of the αi. In particular, one can verify by inspection that f1 +f2 +f3, f1f2 +f1f3 +f2f3, f1f2f3
are all symmetric in α1, . . . , α4. It follows of course that they can be expressed as polynomials
in the elementary symmetric functions, and indeed one can easily check:

f1 + f2 + f3 = 2s2(α1, . . . , α4)

f1f2 + f1f3 + f2f3 = (Exercise!)

f1f2f3 = (Exercise!)

How does Lagrange use this to solve the quartic polynomial? Given an equation

f(x) = x4 + a2x+ a3 + a4 = 0,

Lagrange starts by assuming that f(x) has 4 distinct roots α1, α2, α3, α4. (It is not true of
course that all degree 4 polynomials have 4 distinct roots - this extra assumption is a weakness
of Lagrange’s method, and later in the course we will have the technical machinery to get
around it.) As we discussed in the last lecture, these roots must satisfy the four equations:
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s1(α1, α2, α3, α4) = α1 + α2 + α3 + α4 = −a1 = 0.

s2(α1, α2, α3, α4) = a2

s3(α1, α2, α3, α4) = −a3
s4(α1, α2, α3, α4) = a4

Thus, we are given three complex numbers a2, a3, a4, and we want to find four complex numbers
α1, α2, α3, α4 satisfying the above equations. Though we don’t know what α1, α2, α3, α4 are,
Lagrange begins by defining f1, f2, f3 to be the expressions in Example 1.2. In other words, we
have used four unknown complex numbers to define three more unknown complex numbers.
The key point, however, is that we have a way to find formulas for f1, f2, f3 in terms of
a2, a3, a4. Here comes Lagrange’s stroke of genius - consider the cubic polynomial:

(x− f1)(x− f2)(x− f3) = x3 − (f1 + f2 + f3)x
2 + (f1f2 + f1f3 + f2f3)x− f1f1f3

As we argued in Example 1.2, the coefficients of this polynomial are symmetric functions in
α1, α2, α3, α4. By the fundamental theorem of symmetric functions, we can therefore write
the coefficients of this function as polynomials in a2, a3, a4. But this means that we can use
our solution for the cubic to solve for f1, f2, f3 in terms of a2, a3, a4! Needless to say, actually
writing down the formula would be a rather tedious affair, but the key point is that we know
one exists.

Once we have solved for f1, f2, f3, it is easy to see that we can solve for α1, α2, α3, α4.
Indeed, using the equation

α1 + α2 + α3 + α4 = 0,

we see that

f1 = (α1 + α2)(α3 + α4) = −(α1 + α2)
2,

and we conclude that

α1 + α2 =
√
−f1,

α3 + α4 = −
√
−f1.

Similarly, we have

α1 + α3 =
√
−f2,

α2 + α4 = −
√
−f2,

α1 + α4 =
√
−f3,

α2 + α3 = −
√
−f3.

From here, one can solve for each of the αi individually. For example,

α1 =
(α1 + α2) + (α1 + α3)− (α2 + α3)

2
=

√
−f1 +

√
−f2 +

√
−f3

2
.

We have solved the quartic!
Now, let us step back from the particulars of this example, and consider Lagrange’s overall

strategy. If we are trying to solve a polynomial of degree n, Lagrange’s strategy is to find a
function of the roots f1(α1, . . . , αn) whose orbit f1, . . . , fk under Sn is less than n. Assuming
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we know how to solve equations of degree less than n, we can solve for f1, . . . , fk by considering
the polynomial

k∏
i=1

(x− fi).

As in the example of the quartic, the fundamental theorem of symmetric functions implies that
the coefficients of this polynomial will be polynomials in the original coefficients a1, . . . , an, so
we can solve.

Of course, as someone pointed out in class, if we take the orbit of f1 to be too small, e.g.
if we simply take f1 to be a symmetric function, then knowing the value of f1 won’t help us
much in our quest to solve for the αi’s. The idea, therefore, is to find a function which has
a small enough orbit that you can solve for it, but is also a useful bridge to solving for the
αi’s. In fact, Lagrange spent the last years of his life looking for a function f(α1, α2, α3, α4, α5)
which would allow him to solve the quintic. Alas, we now know that solving the quintic is
impossible.

Let us now step back and consider the overall idea of Galois Theory. The problem with
polynomials is that they are really not very transparent. When we solved the cubic in Lecture
1, we found that we could essentially reduce the cubic equation to a quadratic equation. In
some sense, therefore, there was a quadratic equation “hidden” inside the cubic equation.
Similarly, Lagrange found a cubic equation “hidden” inside a quartic equation. We need
to switch to a kind of mathematical structure in which this hidden structure becomes more
transparent.

In the following weeks, we will see how to associate to any polynomial f(x) ∈ K[x] a certain
algebraic object L/K, called a field extension. While the field extension contains, in some
sense, all the relevant information about f , it is much easier to deal with. For example,
the fact that solving the cubic involves a hidden quadratic equation, will appear as the fact
the associated field extension L/K has an intermediate extension associated to a quadratic
equation, i.e. we have a picture like this:

L

x3+a2x+a3 K ′

x2+a3x−(a32)/27
K

Thus, the problem of solving polynomials will be reduced to understanding the structure of
field extensions, especially the problem of understanding all the intermediate field extensions
of a given field extension. This problem, in turn, will turn out to be solvable in terms of pure
group theory. Associated to a field extension L/K, we will define a certain group G(L/K)
called the Galois group of the extension. Subfields will correspond to subgroups/quotients
of the Galois group, just as Lagrange’s intermediate cubic equation was found by finding a
homomorphism S4 → S3. This will give us a very pretty answer to our original problem!


