
Math 404 HW 6 Solutions

1 Problem 6.1

Determine the splitting fields Q ⇢ K of the following polynomials
defined over Q and compute the degree |K : Q|.

(a) f(x) = x4 + 1

(b) f(x) = x3 � 3x+ 2.

For (b), note that f = (x � 1)2(x + 2), so the splitting field is just Q itself,
with degree 1. So we just answer (a).

Proof. I claim that K = Q(
p
i), and |K : Q| = 4. We may also write

K = Q(
p
2, i), but we won’t be writing up a solution in that vein.

To see this, let ↵ be a root of f . Then the roots of f are ±↵,±i↵. But
note that since ↵4 = �1, we have that ↵2 = ±i. Let’s say without loss of
generality that ↵ =

p
i. Thus we have that the roots of f are ±↵,±↵3. This

shows that all the roots of f live in Q(
p
i). That is, we have that K ⇢ Q(

p
i),

and the reverse containment holds because
p
i is a root of f .

For the degree statement, consider the chain of fields Q ⇢ Q(i) ⇢ Q(
p
i).

The first extension is of degree 2 by standard arguments. The second exten-
sion will be of degree 2 provided we can show that

p
i 62 Q(i), and then the

multiplicative property of the degree will yield the desired result.
For this, suppose towards a contradiction that we have z2 = i for some

z 2 Q(i). Then we may uniquely write z = a+ bi for a, b 2 Q. Then we have

i = z2 = a2 � b2 + 2abi.
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Linear independence of 1 and i over Q yields the equalities

0 = a2 � b2

1 = 2ab.

The second equality yields that neither a nor b are zero, and that b = 1
2a .

Plugging this into the first equality and rearranging yields a4 = 1/4 so a2 =
±1/2, so (1/a)2 = ±2. This yields that

p
±2 is rational, which is false. Thus,

we must have that
p
i 62 Q(i), and the result holds.

As a remark, the computations at the end here show that
p
i = 1p

2
(1+ i),

which can be used to get the alternate description K = Q(
p
2, i). Which

form you choose is a matter of aesthetic taste.
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2 Problem 6.2

(a) Show that Q(
p
2, i) is the splitting field of f(x) = x2 � 2

p
2x + 3

over Q(
p
2).

(b) Find a polynomial f(x) 2 Q[x] whose splitting field is Q( 3
p
2, i,

p
3).

(a) Let K be the splitting field of f . We compute the roots of f using the
quadratic formula as

↵± =
p
2± i.

This shows that all the roots of f are elements of Q(
p
2, i), so by

minimality we get K ✓ Q(
p
2, i). For the reverse containment, note

that since ↵+ and ↵0 are in K, we have that

i =
↵+ � ↵�

2
2 K,

so by minimality we have Q(
p
2, i) ✓ K and equality holds, as desired.

(b) Ideally we’d want at least to have that f( 3
p
2) = f(i) = 0. Then

by definition of minimal polynomials, we’d have that g(x) := (x3 �
2)(x2 + 1) divides f (this follows from the fact that the roots of these
two polynomials are disjoint). I claim that the splitting field of g is the
desired field.

To see this, let K be the splitting field of g, and let L = Q( 3
p
2, i,

p
3).

Note that the roots of g are

±i, 3
p
2, and 3

p
2

 
�1

2
± i

p
3

2

!
,

which are all evidently elements of L. Since K is the smallest subfield
of C containing Q and the roots of g, we get K ⇢ L. For the reverse
containment, note that since i and 3

p
2 are in K, we have that

p
3 =

3
p
2
⇣

�1
2 + i

p
3
2

⌘
� 3

p
2
⇣

�1
2 � i

p
3
2

⌘

2 3
p
2i

2 K.
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Thus, by minimality of L, we have that L ⇢ K, and equality holds, as
desired. Similar reasoning would also have worked with (x3�2)(x2�3).
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3 Problem 6.3

Let K be a field and let L = K(↵) be a simple field extension of K.
If L is normal over K, show that L is the splitting field of the minimal
polynomial of ↵.

Proof. Let f(x) 2 K[x] be the minimal polynomial for ↵. Since f is irre-
ducible, has one root in L, and L is normal, we have that f splits in L.
Since L is generated over K by just the one root of f , it is also generated
by all the roots of f . The conclusions of the previous two sentences are the
defining properties of the splitting field for f , so L is the splitting field for
F , as desired.



6

4 Problem 6.4

(a) Count the number of monic irreducible polynomials over F3 of de-
gree 2, 3, and 4.

(b) For each d = 2, 3, 4, explicitly exhibit a monic irreducible polyno-
mail f 2 F3[x] of degree d.

Throughout this problem, for any finite set X, we will let #X denote the
number of elements in X. For any d let Id denote the set of irreducible
polynomials of degree d in F3[x]. I claim

#I2 = 3

#I3 = 8

#I4 = 18

this answers (a), and we will see 3 ways to get at this answer below.
For (b), I claim that x2 +1, x3 � x+1, and x4 + x� 1 are all irreducible.

The first two can be verified by checking they have no roots. The third
can be verified to have no roots. So after checking that x2 + 1, x2 + x � 1,
and x2 � x � 1 are all the irreducible monic quadratics, we can verify that
x4 + x � 1 is irreducible by shwoing that none of these irreducible monic
quadratics divide it. The rest of this solution is dedicated to three ways of
solving (a).

4.1 Algorithmic solution

One approach is to algorithmically produce a list of all monic irreducible poly-
nomials of a given degree given knowledge of monic irreducible polynomials
of smaller degree, where we can show that a monic polynomial is irreducible
by checking via division with remainder if it is divisible by smaller degree
monic irreducibles. And indeed for degrees 2 and 3, we just need to check
divisibility by the linear polynomials, which is just whether or not they have
a root. For degree 4 we need to check for roots and divisibility by the 3
irreducible monic degree 2 polynomials. I will not be writing up the details
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of this approach, though it works just fine, and has the added benefit of pro-
ducing a list of irreducible polynomials as you go. The downside is there’s
quite a lot of tedium, some of which can be diminished using the Polynomi-
alRemainder function in Mathematica, and then reducing the remainder it
gives you mod 3.

4.2 Leveraging finite field properties

In my opinion the most elegant way to compute this is to prove that for any
prime p and positive integer n that f(x) = xpn � x 2 Fp[x] factors as the
product of all monic irreducible polynomials in Fp[x] of degrees dividing n.

Indeed, if we have an irreducible polynomial g dividing f , then we may
consider the field L = Fp[x]/(g). Since f splits in Fpn , so does g. In particular,
there is some root of g in Fpn , so picking one of these roots yields a chain
of field extensions Fp ⇢ L ⇢ Fpn . The multiplicative property of the degree
yields that |L : Fp| = deg g divides |Fpn : Fp| = n. So every irreducible factor
of f has degree dividing n. Showing that any irreducible polynomial of degree
dividing n divides f amounts to more or less reversing this reasoning using
some splitting field trickery.

Counting degrees in this factorization of f as the product of all monic
irreducible polynomials of degree dividing n yields

pn =
X

d|n

d ·#Id.

Starting with the direct computation #I1 = p (the monic irreducible linear
polynomials are just x � ↵ for ↵ 2 Fp), this yields a recursive formula for
#Id given #Ic with c < d. For instance, we have

p2 = 1 ·#I1 + 2 ·#I2 = p+ 2#I2,

so #I2 = (p2 � p)/2. In the case p = 3, this yields #I2 = 3, as we claimed.
We also compute

33 = 1 ·#I1 + 3 ·#I3 = 3 + 3 ·#I3.

Solving this yields #I3 = 8.
Finally we have

34 = 1 ·#I1 + 2 ·#I2 + 4 ·#I4
= 3 + 6 + 4 ·#I4,
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so #I4 = 18.

4.3 Combinatorial proof

There is a third option sitting in between the two above ideas, which is to
simply count the outputs of the algorithm described in the first method. To
do this, let Pd denote the set of monic polynomials of degree d in F3, and let
Rd denote the set of reducible monic polynomials of degree d. So we have
the basic relationship

#Id = #Pd �#Rd.

Furthermore, we have #Pd = 3d (we can choose from any of three possible
coe�cients for the d nonleading terms, and we pick 1 for the leading term).
Thus, we reduce the problem of determining Id to determining Rd. And we
can split up the count of Rd by the degrees of polynomials appearing in de-
composition into monic irreducibles, so we can determine Rd given knowledge
of Ic for c < d.

We can start o↵ the count with #I1 = 3, that there are three monic
irreducible degree 1 polynomials over F3. So for I2, we have

#I2 = 32 �#R2

= 9�#{L1 · L2 : Li 2 I1}.

To count this last set, we need a small lemma, which you may have seen
before, but I’m including here for reference.

Lemma 1. Let X be a set of size n. Then the number of ways of picking k
elements out of X without distinguishing the order in which they are picked
and allowing repetition is ✓

n+ k � 1

k

◆
.

We will give a proof of this lemma at the end, but before doing so we’ll
see how we can use it to finish up the count.

We had shown above that

#I2 = 9�#{L1 · L2 : Li 2 I1}.
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Since #I1 = 3, this latter set is obtained by picking two elements out of the
size 3 set I1 without order and with repition allowed. That is, we have

#I2 = 9�
✓
3 + 2� 1

2

◆
= 9�

✓
4

2

◆
= 9� 6 = 3.

Similarly, since any reducible cubic is either the product of three linear poly-
nomials or a linear polynomial and an irreducible quadratic, we get

#I3 = #P3 �#R3

= 33 �
⇣
#{L1L2L3 : Li 2 I1}+#{L ·Q : L 2 I1 and Q 2 I2}

⌘

= 27�
✓✓

3 + 3� 1

3

◆
+#I1 ·#I2

◆

= 27� (10 + 3 · 3)
= 8 .

Any reducible degree 4 polynomial is either the product of 4 linear polyno-
mials, the product of 2 linear polynomials and an irreducible quadratic, the
product of 1 linear polynomial and an irreducible cubic, or the product of
two irreducible quadratics. This yields

#R4 = #{L1L2L3L4 : Li 2 I1}+#{L1L2Q : Li 2 I1 and Q 2 I2}
+#{LC : L 2 I1 and C 2 I3}+#{Q1Q2 : Qi 2 I2}

=

✓
3 + 4� 1

4

◆
+

✓
3 + 2� 1

2

◆
· 3 + 3 · 8 +

✓
3 + 2� 1

2

◆

= 63.

Thus, we have
#I4 = #P4 �#R4 = 34 � 63 = 18 ,

as desired.

Proof. Proof of lemma (1)
One way I like to think about this is to think of X as the set of n flavors

of soda you can buy at a vending machine, and we’re trying to count the
number of ways to fill up a shopping cart with k sodas. The argument that
follows is often called a “stars and bars” argument.
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One way you could think about listing all the possibilities out is to order
the flavors somehow (maybe top left in the vending machine down to bottom
right), and think about creating a tally for each of the flavors in order. To
do this, you could write down n � 1 separators |, to separate the tally for
each flavor from the one before and after (think, if you have 2 flavors you’d
only need 1 separator, if you have 3 flavors you’d need 2 separators, etc.).
Then you could just fill up this tally with *’s between the the |’s, producing
something like the following for n = 3 and k = 6

⇤ ⇤ | ⇤ ⇤ ⇤ |⇤,
⇤| ⇤ | ⇤ ⇤ ⇤ ⇤

where the first row corresponds to 2 of the first type, 3 of the second, and 1
of the third. The second row would be 1 of the first and second types and 4
of the third. The key feature is that in all of these counts, you have k stars
corresponding to the k sodas you picked, and n� 1 separators. So no matter
what you’ll have n + k � 1 symbols written down. And actually if you just
keep track of which of these n+k� 1 symbols are the k stars, you could just
fill in the rest of the symbols as bars.

That is, we have established a bijection between fillings of a shopping cart
with k sodas from n flavors and subsets of size k from the set of n + k � 1
symbol positions. Since there are

�
n+k�1

k

�
such subsets, the result holds
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5 Problem 6.5

For each of the following field extensions, determine (a) whether it is
normal and (b) whether it is separable.

(a) Q ⇢ Q(
p
�5)

(b) Q(i) ⇢ Q(i, 3
p
2)

(c) Fp ⇢ Fpn where p is a prime.

(d) Fp(xp) ⇢ Fp(x) where p is a prime.

(a) This extension is both normal and separable. It is separable as Q has
characteristic zero. It is normal as Q(

p
�5) is the splitting field of

x2 + 5, and splitting fields are normal (proven in lecture).

(b) This extension is separable but not normal. It is separable because
Q(i) has characteristic zero. To see that is is not normal, consider the
polynomial f(x) = x3 � 3. I claim that f is irreducible over Q(i), but
that it has only one root in Q( 3

p
2, i). Showing this will prove that the

extension is not normal.

First we show that f is irreducible over Q(i). Since f is of degree 3, it
su�ces to show that f has no roots in Q(i). The roots of f are

3
p
2,

3
p
2

2
(�1 +

p
3i), and

3
p
2

2
(�1�

p
3i).

The elements of Q(i) may all be written uniquely in the form a + bi
with a, b 2 Q. Since 3

p
2 62 Q (say by Eisenstein on x3 � 2) and 1 and i

are linearly independent over R, none of the above elements have this
form, so none of them live in Q(i), and f is irreducible.

Now it just remains to show that nonreal roots of f are not in Q( 3
p
2, i).

Indeed, if either of the nonreal roots of f were in this field, then similar
algebra to that in problem 2 (b) would yield that

p
3 is in this field.

But then we would have a chain of fields

Q(i) ⇢ Q(i,
p
3) ⇢ Q(i, 3

p
2)
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Since
p
3 62 Q(i) the first extension is of degree 2. Then by the

multiplicative property of the degree, we would have that 2 divides
|Q(i, 3

p
2) : Q(i)|. However f is irreducible, it is the minimal poly-

nomial for 3
p
2 over Q(i), we have that |Q( 3

p
2, i) : Q(i)| = 3. Thus,

we have that 2 divides 3, which is false. Thus, our assumption that
Q( 3

p
2, i) contained one of the nonreal roots of f must not hold, as

desired.

(c) First, two lemmas

Lemma 2. Let R be a commutative ring where a prime number p is zero
in R. Then the map ' : R ! R defined by ↵ 7! ↵p is a homomorphism,
called the Frobenius homomorphism.

Proof. We compute

'(↵ + �) = (↵ + �)p

=
pX

i=0

✓
p

i

◆
↵i�p�i

=

✓
p

p

◆
↵p +

✓
p

0

◆
�p

= ↵p + �p

= '(↵) + '(p),

where the third equality holds as p divides all the binomial coe�cients�
p
i

�
for 1  i  p � 1 (we showed this in a previous homework), and

p = 0 in R. Multiplication is easier.

Lemma 3. Let K be a finite field of characteristic p. Then every
element of K has a p-th root.

Proof. We are trying to show that the Frobenius homomorphism is
surjective. Since it is a map between finite sets of the same size, it
su�ces to show that it is injective. Since it is a homorphism, it su�ces
to show that it has zero kernel. To show this, suppose '(↵) = 0. Then
↵p = 0. If ↵ 6= 0, then we may repeatedly multiply by ↵�1 on both
sides to conclude that 1 = 0, a contradiction. Thus, we must have that
' is injective, as desired.
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By the above lemma, we have that the extension Fp ⇢ Fpn is separable.
It is normal as Fpn is the splitting field of xpn � x. Or alternately you
can show that it is the splitting field of the minimal polynomial of a
generator of the multiplicative group F⇥

pn .

(d) This extension is normal but not separable. For normality, consider the
polynomial g(y) = yp � xp 2 Fp(xp)[y]. Note that in Fp(x)[y] we have

(y � x)p = yp � xp = g(y),

using lemma (2). So Fp(x) is the splitting field for g over Fp(xp), as g
splits there, and it is generated by the single root x.

To see that Fp(xp) ⇢ Fp(x) is not separable, let h(y) be the minimal
polynomial for x over Fp(xp). Since g(x) = 0, we have that h(y) divides
g(y) in Fp(xp)[y] (it turns out h(y) = g(y), but we won’t need to show
this). Then in Fp(x)[y] we have

h(y) | g(y) = (y � x)p

Furthermore, since x /2 Fp(xp), we have that h is of degree at least
2. Since Fp(x)[y] is a UFD, we have that h(y) = (y � x)n for some
n � 2. But this shows that h has a multiple root in Fp(x). Thus,
we have demonstrated an irreducible polynomial in the base field with
multiple roots in the extension field, so the extension is not separable,
as desired.


