
 













Math 404 HW 4 Solutions

1 Problem 5.4

Let η be a primitive 9th root of unity.

(a) What is the minimal polynomial for η?

(b) Write η−1 as a Q-linear combination of 1, η, η2, . . . , η5.

1. We understand the minimal polynomials for primitive p-th roots of
unity where p is a prime, so here we try to relate the study of this 9th
root of unity to that of a primitive 3rd root of unity. In particular,
note that (η3)3 = 1 and η3 6= 1, so that η3 is a primitive 3rd root of
unity. The last homework yields that η3 is a root of f(x) = x2 + x+ 1.
Thus, we have that η is a root of

g(x) := f(x3) = x6 + x3 + 1.

Then we note that

g(x+ 1) = x6 + 6x5 + 15x4 + 21x3 + 18x2 + 9x+ 3

which satisfies Eisenstein’s criterion at p = 3, so is irreducible. Thus,
we have that g(x) is irreducible, and so is the minimal polynomial for
η.

2. We give two solutions. One that is more following your nose, and
another that’s more abstract.
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1.1 Following your nose

Suppose we have a linear combination

η−1 =
5∑

i=0

aiη
i

with ai ∈ Q. By definition of multiplicative inverses, this is true if and
only if (

5∑
i=0

aiη
i+1

)
− 1 = 0.

The left hand side of this equation is a polynomial η. By definition of a
minimal polynomial, this holds if and only if there is some h(x) ∈ Q[x]
so that (

5∑
i=0

aix
i+1

)
− 1 = h(x) · (x6 + x3 + 1).

Since the left hand side is a nonzero polynomial of degree at most 6,
the only possibility is that h(x) is a nonzero constant. Investigating
the constant terms on both sides yields that we must have h(x) = −1.
This yields a5 = −1, a2 = −1, and ai = 0 for all other i. That is, we
have

η−1 = −η5 − η2.

1.2 More abstract

We know by previous work that we have an isomorphism ϕ : Q[x]/(g(x))
∼−→

Q(η) defined by sending x 7→ η. We also know that the former ring is
a Q-vector space with basis 1, x, . . . , x5 (all powers of x smaller than
the degree of g). Since Q[x]/(g(x)) is a field, with η identified under
this isomorphism with the class of x, we must have that 1/x is a lin-
ear combination of these xi. Furthermore, if we actually go back and
look at our proof that Q[x]/(g(x)) is a field when g is irreducible, we
actually get an algorithm for finding the inverses of elements.

Since g is irreducible and x does not divide g (if it did, then by ir-
reducibility we would have g = x so η = 0), we must have that the
greatest common divisor of g and x is 1. Furthermore, by applying
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the Euclidean algorithm, we can produce polynomials u and v so that
ug+vx = 1. Then the class of v will be the inverse of x in Q[x]/(g(x)).
And we can furthermore find these u and v by just doing repeated
division with remainder.

Indeed, by one division with remainder we get

g = x6 + x3 + 1 = x(x5 + x2) + 1.

Rearranging gives
1 = g + x(−x5 − x2).

Thus, we have that −x5 − x2 = x−1 in the quotient ring, and applying
ϕ yields η−1 = −η5 − η2.

Exercise The reasoning above applies much more generally. See if you
can carry it out for any field extension K ⊂ K(η), with η algebraic. Let
g(x) = xn +

∑n−1
i=0 aix

i be the minimal polynomial for η. Show that a0 6= 0,
and find a formula for 1/η in terms of the ai. Furthermore, let h(x) ∈ K[x]
be a nonzero polynomial of degree less than n. Let γ = g(η). Show abstractly
that γ−1 can be written as a K-linear combination of ηi, with 0 ≤ i ≤ n− 1.
See if you can use this to find (1 + η)−1 in Q(η) where η is a primitive 9th
root of unity.
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2 Problem 5.5

Determine the splitting fields Q ⊂ K of each of the following polyno-
mials defined over Q and compute the degree |K : Q|.

(a) f(x) = x3 − 2.

(b) f(x) = x4 − 3

(c) f(x) = x9 − 1.

(a) Let 3
√

2 denote the real cube root of 2. Let ω be a primitive cube root
of unity. I claim K = Q( 3

√
2, ω), and |K : Q| = 6. For the first claim,

note that the other roots of f are α = ω 3
√

2 and β = ω2 3
√

2. This shows
that Q( 3

√
2, ω) contains all the roots of f , so by minimality we have

K ⊂ Q( 3
√

2, ω). For the reverse containment, note that K contains 3
√

2
and α, so K also contains α/ 3

√
2 = ω. Thus, we have K = Q( 3

√
2, ω).

For the degree statement, consider the tower of fields Q ⊂ Q( 3
√

2) ⊂
Q( 3
√

2, ω). Since f is irreducible over Q by Eisenstein, the degree of
the first field extension is three. For the extension Q( 3

√
2) ⊂ Q( 3

√
2, ω),

recall that ω is a root of g = x2 + x + 1. So this extension is of
degree either 2 or 1. However, it can not be of degree 1, as 3

√
2 ∈ R

so Q( 3
√

2) ⊂ R but ω 6∈ R. Thus, this extension must be degree 2, and
the result holds by the multiplicative property of the degree.

(b) Let 4
√

3 denote the real fourth root of 3. I claim that K = Q( 4
√

3, i),
and |K : Q| = 8. For the first claim, note that the roots of f are
± 4
√

3 and ±i 4
√

3, which shows that all the roots of f are in Q( 4
√

3, i), so
K ⊂ Q( 4

√
3, i). For the reverse containment, note that since K contains

all the roots of f , it contains 4
√

3 and i 4√3
4√3 = i, so we get K ⊃ Q( 4

√
3, i),

and equality holds.

For the degree statement, consider the tower of fields Q ⊂ Q( 4
√

3) ⊂
Q( 4
√

3, i). Since f is irreducible over Q by Eisenstein, the first extension
is of degree 4. Since i is a root of g = x2 + 1, we have that the
latter extension is of degree at most 2. Since 4

√
3 ∈ R, we have that
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Q( 4
√

3) ⊂ R. Since i 6∈ R, we must have that Q( 4
√

3) 6= Q( 4
√

3, i),
and so this extension must be of degree 2. The result holds by the
multiplicative property of the degree.

(c) Let η be a primitive 9th root of unity. I claim that K = Q(η), and
that |K : Q| = 6. The latter statement will follow from the first, as
we previously showed that η has a minimal polynomial of degree 6.
By definition of primitive roots, the roots of f are the elements ηi for
0 ≤ i ≤ 8. This shows that Q(η) contains all the roots of f , so we
must have K ⊂ Q(η). Since η is a root of f , we must have η ∈ K so
Q(η) ⊂ K, and the result holds.
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3 Problem 5.6

Show that the multiplicative group F×11 of nonzero elements is isomor-
phic to Z/10Z.

Proof. We have a group homomorphism ϕ : Z → F×11 sending 1 7→ 2 (the
former as a group under addition, and the latter as a group under multiplica-
tion). Computing powers of 2 mod 11 yields that ϕ is surjective. Furthermore
we can just see that ϕ(10) = 1 and ϕ(n) 6= 1 for 0 < n < 10. This shows
that ker(ϕ) = 10Z, so the first isomorphism theorem yields F×11 ∼= Z/10Z.
The other possible choices of generators are 8, 7, and 6.
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