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Math 404 HW 4 Solutions

1 Problem 5.4

Let 1 be a primitive 9th root of unity.

(a) What is the minimal polynomial for n?

(b) Write ! as a Q-linear combination of 1,7,7?,...,7°.

1. We understand the minimal polynomials for primitive p-th roots of
unity where p is a prime, so here we try to relate the study of this 9th
root of unity to that of a primitive 3rd root of unity. In particular,
note that (%) = 1 and 7 # 1, so that % is a primitive 3rd root of
unity. The last homework yields that n? is a root of f(x) = 2%+ + 1.
Thus, we have that n is a root of

g(x) = f(2*) =2+ 2 + 1.
Then we note that
gl +1) = 2% + 62° + 152" + 212° + 1822 + 92 + 3

which satisfies Eisenstein’s criterion at p = 3, so is irreducible. Thus,
we have that g(z) is irreducible, and so is the minimal polynomial for

7.
[

2. We give two solutions. One that is more following your nose, and
another that’s more abstract.



1.1 Following your nose

Suppose we have a linear combination

with a; € Q. By definition of multiplicative inverses, this is true if and

only if
5

i=0
The left hand side of this equation is a polynomial 7. By definition of a
minimal polynomial, this holds if and only if there is some h(z) € Q|x]

so that .
<Z aixiH) —1=h(x) (®+2°+1).
i=0

Since the left hand side is a nonzero polynomial of degree at most 6,
the only possibility is that h(z) is a nonzero constant. Investigating
the constant terms on both sides yields that we must have h(x) = —1.
This yields a5 = —1,a, = —1, and a; = 0 for all other 7. That is, we
have

0t = - — 2.

1.2 More abstract

~

We know by previous work that we have an isomorphism ¢ : Q[z]/(g(z)) —
Q(n) defined by sending = — 1. We also know that the former ring is

a Q-vector space with basis 1,z,...,2° (all powers of x smaller than
the degree of g). Since Q[z]/(g(x)) is a field, with 1 identified under
this isomorphism with the class of x, we must have that 1/z is a lin-
ear combination of these z’. Furthermore, if we actually go back and
look at our proof that Q[x]/(g(z)) is a field when g is irreducible, we
actually get an algorithm for finding the inverses of elements.

Since ¢ is irreducible and = does not divide g (if it did, then by ir-
reducibility we would have g = = so n = 0), we must have that the
greatest common divisor of g and x is 1. Furthermore, by applying



the Euclidean algorithm, we can produce polynomials u and v so that
ug+vx = 1. Then the class of v will be the inverse of x in Q[x]/(g(x)).
And we can furthermore find these u and v by just doing repeated
division with remainder.

Indeed, by one division with remainder we get
g=a2"+2° +1=2(2"+2%+ 1

Rearranging gives
l=g+a(—2°—27).

Thus, we have that —z° — x?

@ yields 7t = —n — n?.

= 77! in the quotient ring, and applying

O

Exercise The reasoning above applies much more generally. See if you
can carry it out for any field extension K C K(n), with n algebraic. Let
g(x) ="+ Z?:_Ol a;x’ be the minimal polynomial for n. Show that ay # 0,
and find a formula for 1/n in terms of the a;. Furthermore, let h(x) € K|z]
be a nonzero polynomial of degree less than n. Let v = g(n). Show abstractly
that v=1 can be written as a K-linear combination of ', with 0 < i <mn — 1.
See if you can use this to find (1 +n)~" in Q(n) where n is a primitive 9th
root of unity.



2 Problem 5.5

Determine the splitting fields Q C K of each of the following polyno-
mials defined over Q and compute the degree |K : Q).

(a) Let v/2 denote the real cube root of 2. Let w be a primitive cube root
of unity. I claim K = Q(+/2,w), and |K : Q| = 6. For the first claim,
note that the other roots of f are a = wv/2 and B = w? /2. This shows
that Q(+v/2,w) contains all the roots of f, so by minimality we have
K C Q(\‘Q/Z w). For the reverse containment, note that K contains /2
and a, so K also contains a/+v/2 = w. Thus, we have K = Q(v/2,w).

For the degree statement, consider the tower of fields Q C Q(v/2) C
Q(v/2,w). Since f is irreducible over Q by Eisenstein, the degree of
the first field extension is three. For the extension Q(v/2) C Q(v/2,w),
recall that w is a root of ¢ = 2% + z + 1. So this extension is of
degree either 2 or 1. However, it can not be of degree 1, as ¥/2 € R
so Q(¥/2) C R but w & R. Thus, this extension must be degree 2, and
the result holds by the multiplicative property of the degree.

]

(b) Let v/3 denote the real fourth root of 3. I claim that K = Q(v/3,1),
and |K : Q] = 8. For the first claim, note that the roots of f are
++/3 and +iv/3, which shows that all the roots of f are in Q({l/g, i), SO
K C @(\‘75, i). For the reverse containment, note that since K contains

all the roots of f, it contains v/3 and 2&*/3 =i, so we get K D Q(v/3,1),

and equality holds.

For the degree statement, consider the tower of fields Q € Q(v/3) C
Q(v/3,1). Since f is irreducible over Q by Eisenstein, the first extension
is of degree 4. Since i is a root of ¢ = 2? + 1, we have that the
latter extension is of degree at most 2. Since V3 e R, we have that



Q(v3) C R. Since i ¢ R, we must have that Q(v/3) # Q(v/3,1),
and so this extension must be of degree 2. The result holds by the
multiplicative property of the degree.

]

Let n be a primitive 9th root of unity. I claim that K = Q(7n), and
that |K : Q| = 6. The latter statement will follow from the first, as
we previously showed that n has a minimal polynomial of degree 6.
By definition of primitive roots, the roots of f are the elements 7 for
0 < ¢ < 8. This shows that Q(n) contains all the roots of f, so we
must have K C Q(n). Since 71 is a root of f, we must have n € K so
Q(n) € K, and the result holds.



3 Problem 5.6

Show that the multiplicative group F; of nonzero elements is isomor-
phic to Z/10Z.

Proof. We have a group homomorphism ¢ : Z — Fj] sending 1 — 2 (the
former as a group under addition, and the latter as a group under multiplica-
tion). Computing powers of 2 mod 11 yields that ¢ is surjective. Furthermore
we can just see that ¢(10) = 1 and ¢(n) # 1 for 0 < n < 10. This shows
that ker(p) = 10Z, so the first isomorphism theorem yields Fy; = Z/10Z.
The other possible choices of generators are 8, 7, and 6. O
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