
Math 404 HW 1 Solutions

Problem 1.1

To find g(x), we use polynomial long division:

(x-1) )x5 + x4 + x3 + x2 + x− 5
Our result is that g(x) = x4 + 2x3 + 3x4 + 4x+ 5.

Problem 1.2

The short answer to this problem is theorem 6.14 plus theorem 5.10. Below
is a solution that’s self-contained except for recourse to theorem 4.8

We will prove (3) =⇒ (2) =⇒ (1) =⇒ (3).

(3) implies (2)

Suppose k[x]/(f) is a field. Let p, q ∈ k[x] so that pq ∈ (f). Note that this
means [pq] = 0 in k[x]/(f). To show that (f) is prime, we must show that
at least one of p or q is in (f).

So suppose p /∈ (f). Then we have that [p] 6= 0 in k[x]/(f), by definition of
quotient rings. Since k[x]/(f) is a field, there is another element c ∈ k[x]/(f)
so that c[p] = 1. Then we compute

[q] = 1 · [q]
= (c[p]) · [q]
= c([p] · [q])
= c · [pq]
= c · 0
= 0.
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Thus, we have that [q] = 0. By definition of quotient rings, we have that
q ∈ (f). Thus, we have shown that if pq ∈ (f) but p /∈ (f) then q ∈ (f).
Similar reasoning shows that if pq ∈ (f) but q /∈ (f) then p ∈ (f). Either
way, at least one of p or q is in (f), so (f) is prime.

(2) implies (1)

Suppose that f = gh. This means in particular that f divides gh (as gh =
1 ·f), so that gh ∈ (f). Since (f) is prime, at least one of g or h is in (f). Say
without loss of generality that g ∈ (f). Then there is another polynomial p
so that g = fp. Then we have

f = gh = fph,

so that f(1− ph) = 0. Since f is a non-constant polynomial, we must have
1−ph = 0. Thus, we have that h is a unit, and so it is a constant polynomial.
Thus we have shown that in any factorization of f , at least one of the terms
is constant, so f is irreducible.

(1) implies (3)

Suppose f is irreducible. We wish to show that k[x]/(f) is a field. So let a be
a nonzero element of k[x]/(f). By definition of quotient rings, there is some
polynomial g so that a = [g]. Since a 6= 0, we must have that g /∈ (f), by
definition of quotient rings. Since the elements of (f) are those polynomials
divisible by f , we must have that f does not divide g.

Let d be the greatest common divisor of f and g. Since f is irreducible
and d divides f , we have that either d = 1, or d = cf , for some nonzero
constant c. However we also have that d divides g, say g = pd. Thus, if we
had d = cf then we would have

g = pd = pcf,

so that f divides g, a contradiction.
Thus, we must have that d = 1. By theorem 4.8 in Hungerford, there are

polynomials u and v so that

1 = d = fu+ gv.
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Taking conjugacy classes, and recalling the definition of arithmetic of conju-
gacy classes we have that

[1] = [fu] + [g] · [v].

Since fu ∈ (f), we have that [fu] = 0, so that

[1] = [g] · [v] = a · [v].

Thus, we have shown that a has a multiplicative inverse. Since a was an
arbitrary nonzero element of k[x]/(f), this ring is a field, as desired.

Problem 1.3

(a) We’ll present two solutions. One via the first isomorphism theorem,
and the other by exhibiting homomorphisms in both directions.

First Isomorphism Theorem

We seek to get a surjective homomorphism ϕ : R[x] → C with kernel
equal to (x2 + x + 1), so that we may apply the first isomorphism
theorem and conclude

R[x]/(x2 + x+ 1) ∼= C

. To get ϕ, we just need a homomorphism R → C and an element
β ∈ C so that β = ϕ(x). We have a homomorphism R → C given by
the standard inclusion. So now we just need a good choice for β.

To ensure that ker(ϕ) ⊃ (x2 + x+ 1), we must have

0 = ϕ(x2 + x+ 1) = ϕ(x)2 + ϕ(x) + 1 = β2 + β + 1,

that is, we must have that β is a root of x2 +x+1. Using the quadratic
formula, we can pick

β =
−1

2
+ i

√
3

2

So we have our desired ϕ with kernel containing (x2+x+1). Moreover,
the quadratic formula shows that this polynomial has no roots in R.



4

Since it is of degree 2, it is irreducible over R. By problem 2, we have
that (x2 + x+ 1) is maximal. Since ϕ(1) = 1 6= 0, we have that ker(ϕ)
is a proper ideal containing the maximal ideal (x2 + x+ 1), so we must
have (x2 + x+ 1) = ker(ϕ).

Thus, all that remains to be shown is that ϕ is surjective. To show this
it suffices to show that there is some f ∈ R[x] such that ϕ(f) = i, as
then for any a+bi ∈ C we would have ϕ(a+bf) = a+bi, so surjectivity
would hold.

To find a polynomial mapping to i, note that any polynomial f ∈ R[x]
can be written in the form f = q(x2 +x+1)+ r with deg(r) ≤ 1. Then
we note

ϕ(f) = ϕ(q) · 0 + ϕ(r) = ϕ(r).

Thus, if there was some element f with ϕ(f) = i, then we could assume
without loss of generality that f is of degree 1.

That is, we are searching for real numbers a, b so that

i = ϕ(a+ bx)

= a+ b

(
−1

2
+ i

√
3

2

)

= a− b

2
+ ib

√
3

2
.

Equating real and imaginary parts, we see that this equality holds if
and only if

0 = a− b

2

1 = b

√
3

2

Solving this system of equations shows that

ϕ

(
1√
3

+
2√
3
i

)
= i,

and by previous reasoning ϕ is surjective, and the result holds.
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Second solution, Defining inverse homomorphisms

Getting a homomorphism ψ : A := R[x]/(x2 + x+ 1)→ C is the same
as giving a homomorphism R → C and an element β ∈ C so that
β2 + β + 1 = 0, so that β = ψ(x).

The homomorphism R→ C is just the standard inclusion of rings.

To find the desired β, we use the quadratic formula, and get one choice
of root as

β =
−1

2
+ i

√
3

2

Thus we get a map R[x]/(x2 + x+ 1)→ C sending x to β.

To define an inverse homomorphism λ : C → Z, we recall that C ∼=
R[i]/(i2 + 1), so we seek a map R → A and an element α ∈ A so that
α2 + 1 = 0 (and we define λ(i) = α).

We may use the above to solve for i in terms of β and get an equality
in C

i =
1√
3

+
2√
3
β

This motivates defining λ : C→ A by

λ(i) =
1√
3

+
2√
3
x =: α

Compute

α2 + 1 = (
1

3
+

4

3
x+

4

3
x2) + 1 =

4

3
(1 + x+ x2) = 0

because 1 + x+ x2 = 0 in A, by definition of A.

To check that λ and ψ are inverses, we just need to check that λ◦ψ(x) =
x and ψ ◦ λ(i) = i.

We compute
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λ ◦ ψ(x) = λ

(
−1

2
+ i

√
3

2

)

=
−1

2
+

√
3

2
λ(i)

=
−1

2
+

√
3

2

(
1√
3

+
2√
3
x

)
=
−1

2
+

1

2
+ x

= x.

The computation that ψ ◦ λ(i) = i is similar.

(b) Let A = F3[x, y], let I E A = (x3, x2y2, y3), and let B = A/I. We are
trying to find the size of B.

First recall that the composite homomorphism F3 → A→ B naturally
makes B and F3-vector space. I claim that B has a basis consisting of
the conjugacy classes of the following 8 elements of A:

1, x, x2, y, y2, xy, x2y, xy2

Proving this claim will solve the problem, as then B will be exactly the
sset of linear combinations of these 8 elements with coefficients in F3,
of which there are 38 = 6,561. So now we prove the claim by showing
these elements span, and that they are independent.

Spanning

To prove that they span, let b = [f ] in B, with f ∈ A. Recall that
f ∈ A may be written in the form

f =
∑
i,j≥0

ai,jx
iyj

with all the ai,j ∈ F3 and all but finitely many ai,j = 0.
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Note that if i ≥ 3 then

ai,jx
iyj = x3(ai,jx

i−3yj) ∈ I.

Thus, for any i ≥ 3 we may define g = f−ai,jxiyj, so that b = [f ] = [g],
but g has a zero coefficient in front of the term xiyj.

Thus, we may assume without loss of generality that f has no monomial
terms with the degree of x at least 3. Similarly, we may assume without
loss of generality that f has no monomial terms with the degree of y
at least 3, and has zero coefficient in front of x2y2. This means that f
is a linear combination of the desired 8 elements, and so [f ] is a linear
combination of the desired 8 conjugacy classes.

Independence

We must show that if the conjugacy class of

f = a0,0 + a1,0x+ a2,0x
2 + a0,1y + a0,2y

2 + a1,1xy + a2,1x
2y + a1,2xy

2

is zero in B, then all the ai,j = 0.

If [f ] = 0, then in A we must have

f = px3 + qy3 + rx2y2

for some p, q, r ∈ A. But then px3 could only have nonzero monomials
of degree at least 3 in x, qy3 could only have nonzero monomials of
degree at least 3 in y, and rx2y2 could only have nonzero monomials
of degree at least 2 in x and y. None of these monomials include the
monomials of f , so this equality could only hold if both sides of the
desired equality are zero. By definition of the polynomial ring, this
holds if and only if all the ai,j = 0.
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Problem 1.4

Part (a)

To show that the polynomial f(x) = x5 − x2 + 1 is irreducible over Q[x].
It might be tempting to try and factor this polynomial over C; however,
one of the significant results we have seen in 403 is that there is no formula
for factoring a quintic (5th degree polynomial). Then, we’ll need to be a
little more sneaky. We cannot straight away use Eisenstein’s Criterion, be-
cause all of our coefficients are 1. What can we do then? (pause for suspense)

Let’s recall from last quarter that we have Gauss’s Lemma which ef-
fectively says that is a polynomial is irreducible over Z, then it is irreducible
over Q. To show that f is irreducible over Z, we will evaluate at x + 1 and
take everything mod 2. Evaluating at x+ 1, we see that

f(x+ 1) = (x+ 1)5 − (x+ 1)2 + 1

= (x5 + 5x4 + 10x3 + 10x2 + 5x+ 1)− (x2 + 2x+ 1) + 1

= x5 + 5x4 + 10x3 + 9x2 + 3x+ 1

Now, taking mod 2, we get x5+1x4+0x3+1x2+1x+1 = x5+x4+x2+x+1.
Call this new polynomial g(x).

It is important to check that there is no root in our field Z/2Z for this
new polynomial; if there was, it would be reducible because there would be
a linear factor.

g(0) = 1 mod 2

g(1) = 1 mod 2

Since the top degree is 5 and there are no linear factors, IF g was re-
ducible, it would have to factor into a quadratic term and a cubic term.
Moreover, since g is monic and it’s constant term is 1, we express this as
g(x) = (x3 + ax2 + bx+ 1)(x2 + cx+ 1). This tells us the following:

a+ c = 1 (the coefficient of x2 is 1)

1 + ac+ b = 0

a+ b+ c+ 1 = 1

b+ c = 1
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You can check that these relations are true by multiplying out the two factor
polynomials. These four relations simultaneously being satisfied leads us to
a contradiction, and so we have shown that g is irreducible in Z/2Z.

Therefore, f(x) is irreducible in Z, and by applying Gauss’s Lemma, ir-
reducible over Q.

Note: I use the terminology ”irreducible over Q” and ”irreducible in Q[x]”
interchangeably.

Part (b)

We aim to factor f(x) = x5 − x ∈ F5[x] into irreducibles. For this problem,
we will need to recognize that F5 is the field with 5 elements, factor f with
coefficients in this field, and demonstrate that each factor is irreducible in
this field.

We begin with x5 − x = 0. Pulling out an x term, we get (x4 − 1)x =
0. Then, we concentrate on the 4th degree term, which we can factor as
(x2 + 1)(x2 − 1). First we look at the x2 − 1 term: x2 − 1 = (x+ 1)(x− 1).
Then, our current factorization is (x2 + 1)(x+ 1)(x− 1)x.

Because we are in F5, 22 + 1 = 0, so (x − 2) divides (x2 + 1). Using
polynomial long division, we get that (x− 2)(x− 3) = x2 + 1. Now, because
we have factored the polynomial into linear terms, we have an irreducible
factorization: (x−2)(x−3))(x+1)(x−1)x. Note that −1 is not an element of
our field, so we need to recall that −1 ∼= 4 in F5, and so our final factorization
is (x− 2)(x− 3))(x− 1)(x− 4)x.

Problem 1.5

Part (a)

To find the solutions to f(x) = x3 − 3x + 2 = 0, we will use Cardano’s
Formula.

Given x3 − 3x + 2 = 0, we let x = y+1
y

so that this cubic becomes

y6 + 2y3 + 1 = (y3)2 + 2(y3) + 1 = 0. Using the quadratic formula with
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respect to the quantity y3, we have that the roots of this quadratic are
y3 = −2±

√
4−4

2
= −1. If this step is confusing, you can re-label y3 as z in the

above equation, and then it’ll look more like a quadratic you’re used to.

This gives
y = −1

y = e
iπ
3 =

1

2
± i
√

3

2

Now, we plug each y value into our equation x = y+ 1
y
, and get the following:

For y = −1, x = −2.
For y = e

iπ
3 = 1

2
+ i
√
3

2
, we get that x = 1.

For y = e
iπ
3 = 1

2
− i
√
3

2
, we get again that x = 1.

Then, the roots are −2, 1.

Part (b)

x3 + 3x− 36 = 0. Which solutions are real? rational?
Following the calculation from part (a), we use the substitution that

x = y + 1
y
. Then x3 + 3x − 36 = 0 becomes y6 − 36y3 − 1, which we can

re-write at (y3)2 − 36y3 − 1 = 0. Then, we apply the quadratic formula to
this equation, regarding y3 as our variable. This gives us

y3 =
36±

√
362 + 4

2

= 18±
√

325

= 18± 5
√

13

Thus, y =
3
√

18± 5
√

13. Now, we recall our initial substitution of x = y+ 1
y
.

In solving for x for each of our y values, we get that:

For y =
3
√

18 + 5
√

13, x = 3.

For y =
3
√

18− 5
√

13, x = −1
2
i(
√

39− 3i).

For y =
3
√

18− 5
√

13, x = 1
2
i(
√

39 + 3i).

The only one of these roots that is rational is x = 3.


