Math 404 HW 1 Solutions

Problem 1.1

To find g(x), we use polynomial long division:

(x-1) Jad + 2t 4+ 23+ 22 +2 -5
Our result is that g(z) = 2* + 223 + 32* + 42 + 5.

Problem 1.2

The short answer to this problem is theorem 6.14 plus theorem 5.10. Below
is a solution that’s self-contained except for recourse to theorem 4.8
We will prove (3) = (2) = (1) = (3).

(3) implies (2)

Suppose k[z]/(f) is a field. Let p,q € k[x] so that pg € (f). Note that this
means [pg] = 0 in k[z]/(f). To show that (f) is prime, we must show that
at least one of p or ¢ is in (f).

So suppose p ¢ (f). Then we have that [p] # 0in k[z]/(f), by definition of
quotient rings. Since k[z]/(f) is a field, there is another element ¢ € k[z]/(f)
so that ¢[p] = 1. Then we compute



Thus, we have that [¢q] = 0. By definition of quotient rings, we have that
q € (f). Thus, we have shown that if pg € (f) but p ¢ (f) then ¢ € (f).
Similar reasoning shows that if pg € (f) but ¢ ¢ (f) then p € (f). Either
way, at least one of p or ¢ is in (f), so (f) is prime. ]

(2) implies (1)

Suppose that f = gh. This means in particular that f divides gh (as gh =
1-f), so that gh € (f). Since (f) is prime, at least one of g or hisin (f). Say
without loss of generality that g € (f). Then there is another polynomial p
so that ¢ = fp. Then we have

[ =gh= fph,

so that f(1 — ph) = 0. Since f is a non-constant polynomial, we must have
1—ph = 0. Thus, we have that h is a unit, and so it is a constant polynomial.
Thus we have shown that in any factorization of f, at least one of the terms
is constant, so f is irreducible.

O

(1) implies (3)

Suppose f is irreducible. We wish to show that k[z|/(f) is a field. So let a be
a nonzero element of k[z]/(f). By definition of quotient rings, there is some
polynomial g so that a = [g]. Since a # 0, we must have that g ¢ (f), by
definition of quotient rings. Since the elements of (f) are those polynomials
divisible by f, we must have that f does not divide g.

Let d be the greatest common divisor of f and g. Since f is irreducible
and d divides f, we have that either d = 1, or d = c¢f, for some nonzero
constant c¢. However we also have that d divides g, say ¢ = pd. Thus, if we
had d = ¢f then we would have

g =pd = pcf,

so that f divides g, a contradiction.
Thus, we must have that d = 1. By theorem 4.8 in Hungerford, there are
polynomials u and v so that

l=d= fu+ gv.



Taking conjugacy classes, and recalling the definition of arithmetic of conju-
gacy classes we have that

[1] = [ful + [g] - [v].
Since fu € (f), we have that [fu] = 0, so that

Thus, we have shown that a has a multiplicative inverse. Since a was an
arbitrary nonzero element of k[z|/(f), this ring is a field, as desired.
O

Problem 1.3

(a) We'll present two solutions. One via the first isomorphism theorem,
and the other by exhibiting homomorphisms in both directions.

First Isomorphism Theorem

We seek to get a surjective homomorphism ¢ : R[z] — C with kernel
equal to (2% + 2 + 1), so that we may apply the first isomorphism
theorem and conclude

Rlz]/(z* + 2+ 1) = C

To get ¢, we just need a homomorphism R — C and an element
f € C so that f = ¢(x). We have a homomorphism R — C given by
the standard inclusion. So now we just need a good choice for .

To ensure that ker(p) D (2% + 2 + 1), we must have
0=p(@*+z+1)=p@) +p@)+1=F+5+1,

that is, we must have that 3 is a root of 2% +x + 1. Using the quadratic
formula, we can pick
-1 V3
P=m iy
So we have our desired ¢ with kernel containing (22 +z+1). Moreover,
the quadratic formula shows that this polynomial has no roots in R.



Since it is of degree 2, it is irreducible over R. By problem 2, we have
that (z% + x + 1) is maximal. Since (1) = 1 # 0, we have that ker(y)
is a proper ideal containing the maximal ideal (2 +x + 1), so we must
have (22 + z + 1) = ker(p).

Thus, all that remains to be shown is that ¢ is surjective. To show this
it suffices to show that there is some f € R[z] such that ¢(f) = i, as

then for any a+bi € C we would have ¢(a+bf) = a+bi, so surjectivity
would hold.

To find a polynomial mapping to i, note that any polynomial f € R[z]
can be written in the form f = ¢(z?+ 2+ 1)+r with deg(r) < 1. Then
we note

o(f)=v(q) -0+ p(r) =p(r).

Thus, if there was some element f with ¢(f) = ¢, then we could assume
without loss of generality that f is of degree 1.

That is, we are searching for real numbers a, b so that

i =p(a+ bx)
:a+b<_71+i§>

b V3
=a— —+1b—.
a 2+z 7

Equating real and imaginary parts, we see that this equality holds if
and only if

Solving this system of equations shows that

()

and by previous reasoning ¢ is surjective, and the result holds.



Second solution, Defining inverse homomorphisms

Getting a homomorphism v : A := R[z]/(z* + 2 + 1) — C is the same
as giving a homomorphism R — C and an element g € C so that
2+ B+1=0,so that B = ¥(z).

The homomorphism R — C is just the standard inclusion of rings.

To find the desired [, we use the quadratic formula, and get one choice

of root as /3
-1 V3
ety

Thus we get a map R[z]/(2? + 2 + 1) — C sending = to S.

To define an inverse homomorphism A : C — Z, we recall that C =
R[i]/(i* + 1), so we seek a map R — A and an element o € A so that
a?+1 =0 (and we define (i) = a).

We may use the above to solve for ¢ in terms of # and get an equality
in C
, 1 n 2 3
= —4+ —
V3 V3

This motivates defining A : C — A by

1 2
ANi)=—=+—7=r =1«
3 3
Compute
1 4 4 4
a2+1:(§+§x+§x2)+1:g(l—l—x—{—xz):()

because 1 + x + 22 = 0 in A, by definition of A.

To check that A and v are inverses, we just need to check that Aoy)(x) =
x and ¢ o \(7) = i.

We compute



=_71+%§A(¢)
-1 V3/1 2
PR (ﬁ*ﬁ)
-1
:7+§+ZL’

The computation that 1) o A(7) = ¢ is similar.

0
Let A = TFs[z,y|, let I < A= (23 2%y% y?), and let B = A/I. We are
trying to find the size of B.

First recall that the composite homomorphism F3 — A — B naturally
makes B and Fs-vector space. I claim that B has a basis consisting of
the conjugacy classes of the following 8 elements of A:

Lz, 2%y, v, vy, %y, vy°

Proving this claim will solve the problem, as then B will be exactly the
sset of linear combinations of these 8 elements with coefficients in Fj,
of which there are 3% = 6,561. So now we prove the claim by showing
these elements span, and that they are independent.

Spanning

To prove that they span, let b = [f] in B, with f € A. Recall that
f € A may be written in the form

_ E : i,
f= a; ;Y
1,j>0

with all the a;; € F5 and all but finitely many a; ; = 0.



Note that if ¢ > 3 then

ai,jxiyj = x3(ai7jxi_3yj) el
Thus, for any ¢ > 3 we may define g = f—a; ;z'y’, so that b = [f] = [g],
but ¢ has a zero coefficient in front of the term zty’.

Thus, we may assume without loss of generality that f has no monomial
terms with the degree of = at least 3. Similarly, we may assume without
loss of generality that f has no monomial terms with the degree of y
at least 3, and has zero coefficient in front of z%y%. This means that f
is a linear combination of the desired 8 elements, and so [f] is a linear
combination of the desired 8 conjugacy classes.

Independence
We must show that if the conjugacy class of
[ = a0 + a10r 4 a202” + ao 1y + a2y’ + a11xy + aza 2’y + a1 pxy’

is zero in B, then all the a; ; = 0.

If [f] =0, then in A we must have
f=pr®+qy’ +ra’y?

for some p, q,r € A. But then pz? could only have nonzero monomials
of degree at least 3 in x, qy® could only have nonzero monomials of
degree at least 3 in y, and rz?y? could only have nonzero monomials
of degree at least 2 in x and y. None of these monomials include the
monomials of f, so this equality could only hold if both sides of the
desired equality are zero. By definition of the polynomial ring, this
holds if and only if all the a; ; = 0.

]



Problem 1.4

Part (a)

To show that the polynomial f(x) = 2° — 22 + 1 is irreducible over Q[z].
It might be tempting to try and factor this polynomial over C; however,
one of the significant results we have seen in 403 is that there is no formula
for factoring a quintic (5" degree polynomial). Then, we’ll need to be a
little more sneaky. We cannot straight away use Eisenstein’s Criterion, be-
cause all of our coefficients are 1. What can we do then? (pause for suspense)

5

Let’s recall from last quarter that we have Gauss’s Lemma which ef-
fectively says that is a polynomial is irreducible over Z, then it is irreducible
over Q. To show that f is irreducible over Z, we will evaluate at x + 1 and
take everything mod 2. Evaluating at x + 1, we see that

fla+1l)=(z+1)0° - (z+1)*+1

= (2° + 52" +102° + 102° + 5 + 1) — (2 + 22 + 1) + 1
=2° + 521 4+ 102° + 922 + 3z + 1

Now, taking mod 2, we get 2%+ 124 + 023 + 122+ 1o +1 = 25+ 2t + 22 + 2+ 1.
Call this new polynomial g(z).

It is important to check that there is no root in our field Z/2Z for this
new polynomial; if there was, it would be reducible because there would be
a linear factor.

9(0) =1 mod 2
g(1) =1 mod 2

Since the top degree is 5 and there are no linear factors, IF g was re-
ducible, it would have to factor into a quadratic term and a cubic term.
Moreover, since ¢ is monic and it’s constant term is 1, we express this as
g(z) = (2% + ax? + bx + 1)(z* + cx + 1). This tells us the following:

a+ c =1 (the coefficient of 2% is 1)

l14+ac+b=0
a+b+c+1=1
b+c=1



You can check that these relations are true by multiplying out the two factor
polynomials. These four relations simultaneously being satisfied leads us to
a contradiction, and so we have shown that g is irreducible in Z/27Z.

Therefore, f(z) is irreducible in Z, and by applying Gauss’s Lemma, ir-
reducible over Q.

Note: I use the terminology "irreducible over Q” and ”irreducible in Qz]”
interchangeably.

Part (b)

We aim to factor f(z) = x° — z € Fs[z] into irreducibles. For this problem,
we will need to recognize that F5 is the field with 5 elements, factor f with

coefficients in this field, and demonstrate that each factor is irreducible in
this field.

We begin with 25 — z = 0. Pulling out an z term, we get (2! — 1)z =
0. Then, we concentrate on the 4" degree term, which we can factor as
(22 4+ 1)(2% — 1). First we look at the 2% — 1 term: 2% — 1 = (z + 1)(z — 1).
Then, our current factorization is (z% + 1)(z + 1)(z — 1)x.

Because we are in Fs, 22 +1 = 0, so (z — 2) divides (2z? + 1). Using
polynomial long division, we get that (x — 2)(x — 3) = 2% + 1. Now, because
we have factored the polynomial into linear terms, we have an irreducible
factorization: (z—2)(x—3))(z+1)(z—1)z. Note that —1 is not an element of
our field, so we need to recall that —1 = 4 in F5, and so our final factorization
is (x —2)(x — 3))(z — 1)(z — 4)x.

Problem 1.5

Part (a)

To find the solutions to f(z) = z° — 3z + 2 = 0, we will use Cardano’s
Formula.
Given 2 — 3z +2 = 0, we let x = %1 so that this cubic becomes

o+ 28+ 1 = (1¥)2 +2(y®) + 1 = 0. Using the quadratic formula with



10

respect to the quantity y®, we have that the roots of this quadratic are
y> = =221 = 1. If this step is confusing, you can re-label y° as z in the
above equation, and then it’ll look more like a quadratic you're used to.

This gives
y=-1
YT T

Now, we plug each y value into our equation x = y+ %, and get the following:

Fory = -1, 2 = =2.

Fory:e?:%—k%g,wegetthatx:l.
Fory:e%:%—%g,we get again that x = 1.

Then, the roots are —2, 1.

Part (b)

2% + 3x — 36 = 0. Which solutions are real? rational?

Following the calculation from part (a), we use the substitution that
r =y + i Then 23 + 3z — 36 = 0 becomes y® — 36y — 1, which we can
re-write at (y3)? — 363> — 1 = 0. Then, we apply the quadratic formula to
this equation, regarding y® as our variable. This gives us

/= 36 + /362 + 4
N 2

=18 £ V325

=18+ 5v13

Thus, y = v/18 & 5v/13. Now, we recall our initial substitution of z = y + i
In solving for = for each of our y values, we get that:

For y = v/18 + 5V/13, = = 3.
For y = v/18 — 5113, x = 3Li(v/39 — 3i).
For y = v/18 — 5v/13, x = 1i(v/39 + 3i).

The only one of these roots that is rational is x = 3.



