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Modern Algebra (Math 403)
Instructor: Jarod Alper
Winter 2018
January 29, 2018 Name: ︸ ︷︷ ︸

Read all of the following information before starting the exam:

• You may not consult any outside sources (calculator, phone, computer,
textbook, notes, other students, ...) to assist in answering the exam
problems. All of the work will be your own!

• Write clearly!! You need to write your solutions carefully and clearly in
order to convince me that your solution is correct. Partial credit will be
awarded.

• Good luck!

Problem Points

1 (25 points)

2 (25 points)

3 (25 points)

4 (25 points)

Total (100 points)

1



Problem 1. Write down a composition series for the dihedral group of order 12

D6 = 〈r, s | r6 = s2 = 1, rs = sr5〉.

Solution: Consider the sequence of subgroups

0 ⊂ 〈r2〉 ⊂ 〈r〉 ⊂ D6.

Observe that

• D6/〈r〉 ∼= Z/2;
• 〈r〉/〈r2〉 ∼= Z/2; and
• 〈r2〉 ∼= Z/3.

Each factor above is a cyclic group of prime order which we know from lecture is
a simple group. It follows that the above sequence is a composition series.



Problem 2. Let f(x) = 6x5 + 2x3 − x+ 1 and g(x) = x2 + 1 be polynomials in
Q[x]. Find polynomials q, r ∈ Q[x] such that f = qg + r with deg r < deg g or
r = 0.

Solution: We perform the division algorithm. Noticing that 6x3g and f have the
same leading term of 6x5, we compute that f − 6x3g = −4x3 − x+ 1. Since −4xg
and f−6x3g have the same leading term, we compute that f−(6x3−4x)g = 3x+1.
Thus, if we set q = 6x3 − 4x and r = 3x+ 1, we have that f = qg + r.



Problem 3. Prove that there is a ring isomorphism

C[x]/(x2 + 1) ∼= C× C.

Solution: Observe that x2 + 1 factors over C as x2 + 1 = (x + i)(x − i). If we
define the ideals I = (x + i) and J = (x − i), we see that I + J = (1) (since
1
2i ((x+ i)− (x− i)) = 1). By the Chinese Remainder Theorem for Rings (Problem
3.5–Judson 16.6.40), we have an isomorphism of rings

C[x]/(I ∩ J)→ C[x]/I × C[x]/J.

We also have that the ring homomorphism φ : C[x]/(x + i) → C defined by
φ(f) = f(−i) is an isomorphism. Likewise, C[x]/(x− i) ∼= C. Finally, we claim
that I ∩J = (x2 + 1). Clearly, (x2 + 1) ⊂ I ∩J . On other hand, suppose f ∈ I ∩J .
Then both x+i and x−i divides f which in turn implies that x2+1 = (x−i)(x+i)
divides f . Therefore I ∩ J ⊂ (x2 + 1). Combining the above observations, we
obtain the desired isomorphism.

Alternatively, we can define a map

ϕ : C[x]→ C× C, f 7→ (f(i), f(−i)).
One needs to check that: (1) ϕ is a ring homomorphism, (2) ϕ is surjective and
(3) ker(ϕ) = (x2 + 1). It is easy to check that (1) holds (details not included here
as we’ve already given a complete proof above). For (2), set f1 = 1

−2i (x− i) and

f2 = 1
2i (x + i). Clearly, ϕ(f1) = (0, 1) and ϕ(f2) = (1, 0). It follows that f is

surjective since for any (a1, a2) ∈ C× C, we have that f(a1f1 + a2f2) = (a1, a2).
For (3), observe that f ∈ ker(ϕ) if and only if f(i) = f(−i) = 0, that is, both i and
−i are roots. The latter conditions holds if and only both x+ i and x− i divides f ,
which is equivalent to x2 − 1 dividing f . Therefore, ker(ϕ) = (x2 + 1) and we may
appeal to the first isomorphism theorem to conclude that C[x]/(x2 + 1) ∼= C× C.



Problem 4.

(a) Let R be a commutative ring. Show that any maximal ideal of R is also prime.
(b) Give an example of a commutative ring R and an ideal p ⊂ R which is prime

but not maximal.

Solution: For (a), we could appeal to the following two facts from lecture. If
I ⊂ R is an ideal, then I is prime if and only if R/I is an integral domain, and I
is maximal if and only if R/I is a field. Since fields are integral domains, we see
that maximal ideals are prime.

Alternatively, we could argue directly. Let m ⊂ R be a maximal ideal and
suppose xy ∈ m. Let us suppose that both x and y are not in m and we’ll
try to get a contradiction. Since m is maximal and x, y /∈ m, we have that
m + (x) = m + (y) = R. Therefore, we can write 1 = z1 + r1x and 1 = z2 + r2y
with z1, z2 ∈ m and r1, r2 ∈ R. By taking the product of these expressions, we
have that

1 = 1 · 1 = (z1 + r1x)(z2 + r2y) = z1z2 + r1xz2 + z1r2y + r1r2xy,

but since z1, z2, xy ∈ m, the right hand expression is in the maximal ideal m. This
shows that 1 ∈ m, which is a contradiction. Thus x ∈ m or y ∈ m, and m is prime.

For (b), take R = Z and the ideal p = (0). Clearly p is prime but it is not
maximal (for instance, (0) ( (2) ( Z).


