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• Problem 2

1. One checks that the norm N(a + bi) = a2 + b2 satisfies the property that if N(α) is a
prime integer, then α is irreducible in Z[i]. Writing an integer n = a2 + b2 as a sum of
two squares yields a factorization n = (a+ bi) · (a− bi) in Z[i]. Here 13 = 32 + 22 and
17 = 12 + 42. Hence

13 =(3 + 2i)(3− 2i)

17 =(1 + 4i)(1− 4i)

Then as was noted above, 3 ± 2i and 1 ± 4i has prime norm. This shows that the
two factorizations I just wrote down are the factorizations of 13 and 17 into irreducible
factors.

2.

221 = 13 · 17 = (3 + 2i)(3− 2i) · (1 + 4i)(1− 4i) =(3 + 2i)(1 + 4i) · (3− 2i)(1− 4i)

= (−5 + 14i) · (−5− 14i) =52 + 142

On the other hand we have 221 = (3 + 2i)(1− 4i) · (3− 2i)(1 + 4i) = 112 + 102.

• Problem 3 and 6

Four properties of ω will be used:

– ω = −1
2

+
√
3
2
i;

– ω2 + ω + 1 = 0

– ω · ω̄ = 1 and

– ω + ω̄ = −1

Step 1: A better description of Z[ω].
By property 2, a+ bω+ cω2 = (a− c) + (b− c)ω. Hence every element in Z[ω] can be written
as a + bω for some a, b ∈ Z. I claim that such expression is actually unique. For this, if
a+ bω = a′ + b′ω, then using the first property, we get

a− b

2
+

√
3b

2
i = a′ − b′

2
+

√
3b′

2
i.

Comparing the real and imaginary parts, we conclude that

a− b

2
=a′ − b′

2√
3b

2
=

√
3b′

2

Hence a = a′ and b = b′.

Step 2: Define a multiplicative norm N on Z[ω].
Inspired by our previous experiences of constructing norms, one naturally tries (and pray)

N(a+ bω) := (a+ bω) · (a+ bω).
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Since a+ bω = a+ bω̄, with property 3 and 4 of ω, we have

(a+ bω) · (a+ bω̄) = a2 − ab+ b2.

Since this is just the complex norm of a + bω, the function N is multiplicative. Moreover
this also implies N(a + bω) is non-negative. One can also check this by looking at the
discriminant of the quadric a2−ab+ b2. For example, for every fixed b ∈ Z, the discriminant
D(b) is b2− 4b2 = −3b2. So when b = 0, the norm is a2, which is non-negative. When b 6= 0,
D(b) < 0 so a2 − ab+ b2 is either positive or negative as a function in a. Plugging in a = 0,
we get a positive value so a2 − ab+ b2 is strictly greater than zero as a function of a with a
fixed non-zero b.

Step 3: Check that N we just defined is a Euclidean norm.
Z[ω] ⊂ C is a subring. Hence Z[ω] is an integral domain. N is non-negative as we have
seen. The main task is to show that for any a+ bω and c+ dω, either c+ dω|a+ bω or there
exist m+ nω and r + sω such that

a+ bω = (m+ nω) · (c+ dω) + r + sω

with N(r + sω) < N(c + dω). Suppose c + dω does not divide a + bω. Then in C, with
property 4 of ω we have

a+ bω

c+ dω
=

(a+ bω)(c+ dω̄)

(c+ dω)(c+ dω̄)
=
ac+ bd− ad
N(c+ dω)

+
bc− ad

N(c+ dω)
ω.

Let α = ac+bd−ad
N(c+dω)

and β = bc−ad
N(c+dω)

. Choosing m,n ∈ Z such that |m−α| ≤ 1
2

and |n−β| ≤ 1
2
,

we have
a+ bω = (c+ dω)(m+ nω) + (c+ dω)(α−m+ (β − n)ω).

Since a + bω and (c + dω)(m + nω) ∈ Z[ω], (c + dω)(m − α + (n − β)ω) ∈ Z[ω]. Set
r + sω = (c+ dω)α−m+ (β − n)ω). Then to prove N(r + sω) < N(c+ dω), it is sufficient
to prove that the complex norm |α−m+ (β − n)ω| < 1. But this follows from our choice of
m and n. So far we have done problem 3.

Step 4: Compute the units of Z[ω].
I claim that α ∈ Z[ω] is a unit if and only if N(α) = 1. If α is a unit, then

1 = N(1) = N(α · α−1) = N(α)N(α−1).

Since N is non-negative, we see that N(α) = 1. But 1 = a2 − ab + b2 only when (a, b) =
(±1, 0), (0,±1), (1, 1), (−1,−1). We see that the possible choices of a unit is ±1, ±ω, 1 + ω
and −1− ω. One easily checks that these are units. Therefore the claim is proved.

Step 5: 7.6(a) ⇐⇒ 7.6(b)
The ring map ϕ : Z[x]→ Z[ω] that sends x to ω is surjective. Let me show that ϕ has kernel
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(x2 + x + 1), namely, if f ∈ Z[x] is a polynomial such that f(ω) = 0 as complex numbers,
then x2 + x+ 1|f. This is because if α ∈ C is a complex root for f , then

0 = f(α) = f(α) = f(ᾱ)1.

So ᾱ is also a complex root for f. We know that ω and ω̄ are the two roots of x2 + x+ 1 as
(x− ω)(x− ω̄) = x2 + x+ 1. Hence if f(ω) = 0, then f(ω̄) = 0. Viewing f as a polynomial
in C[x], we see that both (x−ω) and (x− ω̄) divides f . Therefore, x2 +x+ 1|f inside C[x].
With a bit of work one shows that if (x2 + x+ 1) · g(x) = f(x) in C[x], then g has integral
coefficients, meaning that x2 + x+ 1|f in Z[x]. Hence ϕ has kernel (x2 + x+ 1). By the first
isomorphism theorem, we have

Z[x]/(x2 + x+ 1) ' Z[ω].

Given a prime integer p, the prime ideal (p) ⊂ Z[ω] corresponds to the ideal (p+(x2+x+1)) =
(p, x2 + x + 1)/(x2 + x + 1) ⊂ Z[x]/(x2 + x + 1). Observing that Z � Z/p induces an
isomorphism

Z[x]/p ' (Z/p)[x]

and using the third isomorphism theorem, we get that

Z[ω]/(p) '(Z[x]/(x2 + x+ 1))/((p, x2 + x+ 1)/(x2 + x+ 1))

'Z[x]/(p, x2 + x+ 1)

'(Z[x]/p)/((p, x2 + x+ 1)/p)

'(Z/p)[x]/(x2 + x+ 1).

By step 3, Z[ω] is a PID. Hence p ⊂ Z[ω] is irreducible if and only if (p) ⊂ Z[ω] is maximal
if and only if Z[ω]/(p) is a field. By the fact that Z[ω]/(p) ' (Z/p)[x]/(x2 + x + 1), this is
equivalent to that (x2 + x+ 1) ⊂ (Z/p)[x] is a maximal ideal. But (Z/p)[x] is a PID, hence
this is equivalent to that x2 + x+ 1 is irreducible in (Z/p)[x].

Step 6: Problem 7.6(a).
Suppose x2 + x+ 1 has a root α in Z/p, then

α3 − 1 = (α− 1) · (α2 + α + 1) = 0.

Since p 6= 3, α 6= 1. Therefore the order of α is three. The order of α divides the order of
the multiplicative group (Z/p)×, which has order p − 1. Therefore, 3|p − 1. Conversely, if
3|p− 1, say 3k = p− 1, then

xp−1 − 1 = (x
p−1
3 − 1)(x

2(p−1)
3 + x

p−1
3 + 1).

But we know xp−1 − 1 factors into distinct linear polynomials in Z/p. Since (Z/p)[x] is a

UFD, some linear factor of xp−1 − 1 divides x
2(p−1)

3 + x
p−1
3 + 1, meaning that there is an

α ∈ Z/p such that α
2(p−1)

3 + α
p−1
3 + 1 = 0 in Z/p. Let β = α

p−1
3 , we see that x2 + x+ 1 has

a root β in Z/p.

1Make sure you understand where integrality of f is used! In fact, we only need that f has real coefficients.
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Step 7: Problem 7.6(c)
Suppose p = α · β where both α and β are not units in Z[ω]. Then

p2 = N(p) = N(α)N(β).

By step 4, N(α), N(β) > 1. So we can only have N(α) = N(β) = p. Then p = a2 − ab + b2

for some integers a, b. Conversely, if p = a2 − ab + b2, then p = (a + bω) · (a + bω̄) =
(a+ bω) · (a− b− bω). Since N(a− bω) = N(a+ bω̄) = p > 1, we see that both a+ bω and
a+ bω̄ are not units. Hence p factors in Z[ω].

• Problem 7.8
See Theorem 9.10 of http://www.math.uconn.edu/~kconrad/blurbs/ugradnumthy/Zinotes.
pdf.

http://www.math.uconn.edu/~kconrad/blurbs/ugradnumthy/Zinotes.pdf
http://www.math.uconn.edu/~kconrad/blurbs/ugradnumthy/Zinotes.pdf

