THE GALOIS GROUP OF K C L WHEN K IS INFINITE

ARNAB SAHA

Let K C L be a finite extension and assume that K is infinite. Then there
exists a minimal set of generators ag,...,a, € L such that L = K(aq,...,an).
Let f; € K[z] be the minimal polynomials for each «; respectively.

Claim. We can choose o; such that f; # f; when ¢ # j.

Proof. We will prove by induction on n. Clearly it is true for n = 1. Assume
true for n — 1. Consider K(aq,...,an-1) C K(aq,...,an). If f, # f; for all
i=1,...,n—1, then we are done. Otherwise, f, = f; for some i =1,...,n — 1.
Let S denote the set of the union of all the roots of fi, ..., f,,—1 that liein L. Clearly,
|S| if finite and «,, € S by assumption. Now consider the set H = {\a, | A € K*}.
H is infinte because the field K is. Therefore there exists §,, € H such that 3, ¢ S.
Consider the minimal polynomial g, of 3, then g, # f; for alli =1,...,n — 1.
Replace oy, by B, and we have L = K(aq,...,a,) = K(ai,...,[,) and we are
done. [

Lemma 1.1. For any o € Gal(L/K), fi(c(a;)) = 0.

Proof. Let fi(z) = ama™ + @m_12™ 1 + -+ + ag. Since q; is a root of f;, we
have
amay 4+ +ag=0.
By applying o to both sides, we get
o(am)o(a)™ + -+ o(ag) = 0.

Since o is identity on K, we have o(a;) = a; for all ¢ and this proves the claim.
O

Lemma 1.2. Let 0 € Gal(L/K). Then o(a;) is not a root for any f;, j # i.

Proof. Suppose o(a;) satisfies f;(0;) for some j # i. Let f;(z) = amaz™+---+ao
with a; € K. Then f(o(;)) = 0 implies a,,0(ca;)™ + -+ + ap = 0. Applying o~ 1,
we get amal” + -+ + ap = 0 which implies f;(a;) = 0. But that is a contradiction
to our choices of a; since f; is not the minimal polynomial of ;. [

For each ¢ = 1,...,n, let .S; denote the set of distinct roots of f; that are in
L. Set m; = |S;| < deg f;. Clearly, []"_,m; < [[;-,degf; = [L : K|. Consider
S=51%x---x85,and let « = (a,...,a,) €S.

Define the map

0:Gad(L/K)— S
o (o(ar),...,olan))
We will also write o(a) := (o(a1),...,0(ay)). With this notation, 6(c) = o(«).
By lemma 1.1 and 1.2, this map is well defined.
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Lemma 1.3. Let 8= (B1,...,0,) € S. Then there exists o € Gal(L/K) such that
o(a) = B.

Proof. We can write the field L as a quotient L = K[z1,...,2,)/(f1,.-., fn)
where «; is the image of z; in L for each i. Here each f;(z;) is considered as a
polnomial in the variable x;. Define a ring homomorphism

U: Klzy,...,x5) = Klz1,.. . 20]/(f1, -y fn) =L
g(xla"'7xn) Hg(ﬂhaﬁn)

Note that ¥(z;) = B8; for each i = 1,...,n and that ¥(c) = ¢ for ¢ € K. We want
to show that ¥ induces a homomorphism ¥ : L — L. By the first isomorphism
theorem, it is enough to show that W(f;(z;)) = 0 for all ¢ = 1,...,n. But then
U(fi(z;)) = fi(Bi) = 0 since f; is a root of f; and we are done. [

Proposition 1.4. The map 0 induces a bijection between Gal(L/K) and S.
Proof. Let 0,0’ € Gal(L/K) such that o(a) = o’(a). Then o(c’) ) = a.

But then o(co’)"!(ay;) = «; for all 4, that is, it fixes the whole of L and therefore
must be identity. Hence we have o = ¢’. This proves the injectivity of 6.

Surjectivity follows from lemma 1.3. O

Corollary 1.5. If K is infinite, then |Gal(L/K)| < [L : K].

Proof. Tt follows from the fact that |Gal(L/K)| = |S| = [S1] x ---|Sn] =
[[oymi <I[Zidegfi=[L:K]. O
Corollary 1.6. Let K is infinite, then |Gal(L/K)| = [L : K] if and only if K C L
1s normal and separable.

Proof. If K C L is normal and separable, then |S;| = deg f;. Hence |S| = [L : K]
and therefore |Gal(L/K)| = [L : K].

Conversely, if |Gal(L/K)| = [L : K], then |S| = [[m; = [[deg f; = [L : K].
This is possible if m; = deg f;. This means that all the roots of f; lie in L, that is,
L is the splitting field for all f;s and therefore L is normal.

Also, the roots of f;s are all distinct and therefore a, ..., «a, are all separable
which implies L = K(ay, ..., a,) is separable. O

Definition 1.7. A finite extension K C L is called Galois if it is both normal and
separable over K.



