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Let K ⊆ L be a finite extension and assume that K is infinite. Then there
exists a minimal set of generators α1, . . . , αn ∈ L such that L = K(α1, . . . , αn).
Let fi ∈ K[x] be the minimal polynomials for each αi respectively.

Claim. We can choose αi such that fi 6= fj when i 6= j.

Proof. We will prove by induction on n. Clearly it is true for n = 1. Assume
true for n − 1. Consider K(α1, . . . , αn−1) ⊂ K(α1, . . . , αn). If fn 6= fi for all
i = 1, . . . , n − 1, then we are done. Otherwise, fn = fi for some i = 1, . . . , n − 1.
Let S denote the set of the union of all the roots of f1, . . . , fn−1 that lie in L. Clearly,
|S| if finite and αn ∈ S by assumption. Now consider the set H = {λαn | λ ∈ K×}.
H is infinte because the field K is. Therefore there exists βn ∈ H such that βn /∈ S.
Consider the minimal polynomial gn of β, then gn 6= fi for all i = 1, . . . , n − 1.
Replace αn by βn and we have L = K(α1, . . . , αn) = K(α1, . . . , βn) and we are
done. �

Lemma 1.1. For any σ ∈ Gal(L/K), fi(σ(αi)) = 0.

Proof. Let fi(x) = amx
m + am−1x

m−1 + · · · + a0. Since αi is a root of fi, we
have

amα
m
i + · · ·+ a0 = 0.

By applying σ to both sides, we get

σ(am)σ(αi)
m + · · ·+ σ(a0) = 0.

Since σ is identity on K, we have σ(ai) = ai for all i and this proves the claim.
�

Lemma 1.2. Let σ ∈ Gal(L/K). Then σ(αi) is not a root for any fj, j 6= i.

Proof. Suppose σ(αi) satisfies fj(σi) for some j 6= i. Let fj(x) = amx
m+ · · ·+a0

with ai ∈ K. Then f(σ(αi)) = 0 implies amσ(αi)
m + · · ·+ a0 = 0. Applying σ−1,

we get amα
m
i + · · ·+ a0 = 0 which implies fj(αi) = 0. But that is a contradiction

to our choices of αi since fj is not the minimal polynomial of αi. �

For each i = 1, . . . , n, let Si denote the set of distinct roots of fi that are in
L. Set mi = |Si| ≤ deg fi. Clearly,

∏n
i=1mi ≤

∏n
i=1 deg fi = [L : K]. Consider

S = S1 × · · · × Sn and let α = (α1, . . . , αn) ∈ S.

Define the map
θ : Gal(L/K)→ S

σ 7→ (σ(α1), . . . , σ(αn))

We will also write σ(α) := (σ(α1), . . . , σ(αn)). With this notation, θ(σ) = σ(α).
By lemma 1.1 and 1.2, this map is well defined.
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Lemma 1.3. Let β = (β1, . . . , βn) ∈ S. Then there exists σ ∈ Gal(L/K) such that
σ(α) = β.

Proof. We can write the field L as a quotient L = K[x1, . . . , xn]/(f1, . . . , fn)
where αi is the image of xi in L for each i. Here each fi(xi) is considered as a
polnomial in the variable xi. Define a ring homomorphism

Ψ : K[x1, . . . , xn]→ K[x1, . . . , xn]/(f1, . . . , fn) = L

g(x1, . . . , xn) 7→ g(β1, . . . , βn)

Note that Ψ(xi) = βi for each i = 1, . . . , n and that Ψ(c) = c for c ∈ K. We want
to show that Ψ induces a homomorphism Ψ : L → L. By the first isomorphism
theorem, it is enough to show that Ψ(fi(xi)) = 0 for all i = 1, ..., n. But then
Ψ(fi(xi)) = fi(βi) = 0 since βi is a root of fi and we are done. �

Proposition 1.4. The map θ induces a bijection between Gal(L/K) and S.

Proof. Let σ, σ′ ∈ Gal(L/K) such that σ(α) = σ′(α). Then σ(σ′)−1(α) = α.
But then σ(σ′)−1(αi) = αi for all i, that is, it fixes the whole of L and therefore
must be identity. Hence we have σ = σ′. This proves the injectivity of θ.

Surjectivity follows from lemma 1.3. �

Corollary 1.5. If K is infinite, then |Gal(L/K)| ≤ [L : K].

Proof. It follows from the fact that |Gal(L/K)| = |S| = |S1| × · · · |Sn| =∏n
i=1mi ≤

∏n
i=1 deg fi = [L : K]. �

Corollary 1.6. Let K is infinite, then |Gal(L/K)| = [L : K] if and only if K ⊆ L
is normal and separable.

Proof. If K ⊆ L is normal and separable, then |Si| = deg fi. Hence |S| = [L : K]
and therefore |Gal(L/K)| = [L : K].

Conversely, if |Gal(L/K)| = [L : K], then |S| =
∏
mi =

∏
deg fi = [L : K].

This is possible if mi = deg fi. This means that all the roots of fi lie in L, that is,
L is the splitting field for all fis and therefore L is normal.

Also, the roots of fis are all distinct and therefore α1, . . . , αn are all separable
which implies L = K(α1, . . . , αn) is separable. �

Definition 1.7. A finite extension K ⊆ L is called Galois if it is both normal and
separable over K.


