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Menelaus’s theorem, ⇠ 70-140 AD
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Karl Georg Christian von Staudt, 1798–1867



Veblen-Young theorem (1908)

Given a projective geometry P=(points, lines) of dim. n � 2
(with very few axioms),

there is a unique field K such that P ⇠= KPn.



Recall: a scheme X is a

topological space |X |, and a

sheaf of rings OX on the open subsets of |X |.

Main question

How to read o↵ properties of X from |X |?
Does |X | alone determine X?

Example: dimX= Krull dimension of |X |.



Negative results — easy ones

– For curves CK , we see only the cardinality of K .
– Normalization is frequently homeomorphism.
– Purely inseparable maps are homeomorphisms.
– If K/L finite, then any K -variety X can be viewed as an

L-variety with the same |X |. To fix this:
• maximal choice K = H0(X ,OX ), equivalently
• X is geometrically irreducible over K .



Negative results — surprising ones

– (Wiegand–Krauter, 1981) |P2
F | same for all finite fields.

– (K.- Mangolte, 2009)
S1, S2: blow-up of RP2 in same number of points. Then

every Euclidean-homeo � : S1(R) ⇠ S2(R)
can be approximated by  : S1(R) ⇠ S2(R) that are
both Euclidean and Zariski homeomorphisms.

Holds for C 0 and C1-approximations.



Theorem (Topology determines sheaf theory)
– K , L fields of char. 0,
– XK ,YL normal, projective, geom. irred. varieties,
– |XK | ⇠ |YL| homeomorphism.
Assume

1 either dimX � 4,
2 or dimX � 3 and K , L are finitely generated /Q.

Then K ⇠= L and XK
⇠= YL.

Will outline the proof of a simpler theorem, its proof has the
same basic ideas.



Theorem (Topology determines projective space)
– charL = 0, K arbitrary,
– YL normal, projective, geom. irreducible of dimension n � 2
– |Pn

K | ⇠ |YL| a homeomorphism. Then

1 YL
⇠= Pn

L and

2 K ⇠= L.



Scip = set-theoretic complete intersection property

X variety, Z ⇢ X closed subset.

• a divisor DZ ⇢ Z is SCI i↵ DZ = Supp(DX \ Z )
for some divisor DX .

• Z irreducible: scip i↵ every divisor DZ ⇢ Z is SCI.
• Z = [Zi reducible: scip i↵ [iDZi is SCI for

all divisors ; 6= DZi ⇢ Zi

• Z is generically scip i↵ there is a finite set ⌃ ⇢ X
such that scip holds if
– DZ \ ⌃ = ; (makes it easier)
– then also DX \ ⌃ = ; (makes it harder).



Algebraic geometry lemma I

Lemma 1. [Zero sets determine section] Z variety, L line
bundle, si 2 H0(Z , Lni ). Equivalent

1 sm1
1 = u · sm2

2 for some u 2 k[Z ]⇥,
2 Supp(s1 = 0) = Supp(s2 = 0),

provided:
3 zero set is irreducible, and
4 either Z normal or zero set is disjoint from a certain

finite ⌃(Z ) ⇢ Z .

Irreducibility can be guaranteed if
– dimZ � 2 (by Bertini),
– dimZ � 1 and k is finitely generated (by Hilbert).



Algebraic geometry lemma II

Lemma 2. (Boissière-Gabber-Serman) If X normal, there is
a finite ⌃ncar ⇢ X such that every divisor disjoint from ⌃ncar

is Cartier.



Homework I

HW 1. dimX � 2, quasi-proj k-variety. Equivalent:
– Every irreducible curve C ⇢ X is scip.
– k is locally finite (=algebraic over Fp).

HW 2. L1, L2 ⇢ Pn linear spaces, meeting at a point.
– Then L1 [ L2 is generically scip.
– (line) [ (conic) ⇢ P2 is not generically scip.

Key observation
D ⇢ Pn divisor, C ⇢ Pn geom connected curve.
Assume chark = 0. Then D [ C is generically scip i↵

• D = hyperplane and C = line.



First special case of Theorem 2

Corollary. Assume charK = 0. Then |Pn
L| ⇠ |Pn

K | i↵ K ⇠= L.

Proof. Pick � : |Pn
L| ⇠ |Pn

K |. HL ⇢ Pn
L hyperplane, `L ⇢ Pn

L.

) HL [ `L is generically scip.

) �(HL) [ �(`L) is generically scip.

) �(HL) ⇢ Pn
K is a hyperplane.

) �(linear space) ⇢ Pn
K is a linear space.

Finish by Veblen-Young.



Key observation, statement

Proposition
X normal, projective, ⇢(X ) = 1, chark = 0.
Z ,W ⇢ X irreducible, dim(Z \W ) = 0.
Assume that Z [W is generically scip. Then

1 Z \W is reduced and

2 either k[Z \W ] = k[Z ] or k[Z \W ] = k[W ].

If Z ,W are set-theoretic complete intersections then

3 Z \W is a k-point.



Key observation, proof I

Choose L ample such that
H0(X , L) ! H0(Z \W , LZ\W ) is surjective.

Choose general sZ , sW 2 H0(X , L), set
Supp(sZ |Z = 0) = [iAi and Supp(sW |W = 0) = [jBj .

Generically scip ) 9 Cartier Dij ⇢ X such that
Supp(Dij |Z[W ) = Ai + Bj (multiplicities = ?)

Linear algebra ) 9 D such that
D|Z = mZ (sZ |Z = 0) and D|W = mW (sW |W = 0).

Since ⇢(X ) = 1, D = (s = 0) for s 2 H0(X , Lm). By Lem 1

s r |Z = uZ · smZ |Z for some uZ 2 k[Z ]⇥,
s r |W = uW · smW |W for some uW 2 k[W ]⇥.

(⇤)



Key observation, proof II

s r |Z = uZ · smZ |Z for some uZ 2 k[Z ]⇥,
s r |W = uW · smW |W for some uW 2 k[W ]⇥,

(⇤)

hence (sZ/sW )m|Z\W = uW |Z\W · u�1
Z |Z\W is in

image of: k[W ]⇥ ⇥ k[Z ]⇥ ! k[Z \W ]⇥.

We can arrange sZ/sW to be an arbitrary element of
k[Z \W ]⇥, hence

k[Z \W ]⇥
�
k[W ]⇥ ⇥ k[Z ]⇥ is a torsion group.



Key observation, proof III

k[Z \W ]⇥
�
k[W ]⇥ ⇥ k[Z ]⇥ is a torsion group.

Apply next to A = k[Z \W ], L1 = k[W ], L2 = k[Z ].

HW 3, Algebra lemma. A Artin k-algebra, chark = 0.
L1, L2 ⇢ A subfields. Equivalent

1 A⇥/L⇥1 · L⇥2 is torsion,
2 A⇥/L⇥1 · L⇥2 has finite rank,
3 either A = L1 or A = L2.

Note. Key case: A is a field.

I would like to see a simple proof.



Topology determines Pn, proof

Recall Thm: If � : |Pn
K | ⇠ |YL| homeomorphism, then

YL
⇠= Pn

L and K ⇠= L.

Assume: ⇢(Y ) = 1.

Pick H [ ` ⇢ Pn
K generically scip.

) �(H) [ �(`) ⇢ YL generically scip,
) �

�(H) · �(`)� = 1,
) �

�(H) : H 2 |OPn(1)| is a linear system.
(Needs more argument, mainly if ⇢(Y ) > 1.)

) It gives YL
⇠= Pn

L.

We already proved that then K ⇠= L.

HW 4. K perfect, infinite and � : |Pn
K | ⇠ |Pn

K | homeo.
If � identity on K -points, then identity.



⇠ = linear equivalence
⇠s = linear similarity: m1D1 ⇠ m2D2 for some m1,m2 6= 0.
⇠sa = linear similarity + D1,D2 ample and irreducible.

Main steps of the proof of Theorem 1

Step 1. |X | determines ⇠sa.
Step 2.

�|X |,⇠sa

�
determines ⇠.

Step 3. (Lieblich–Olsson)
�|X |,⇠� determines X .



Toward Step 1: Ampleness criterion

HW 5. X normal, projective, dimX � 3.
Then an irreducible divisor H is Q-Cartier and ample i↵
(⇤) For every divisor D ⇢ X and closed points p, q 2 X \ D,
there is a divisor H(p, q) ⇢ X such that

1 H \ D = H(p, q) \ D,
2 p /2 H(p, q) and q 2 H(p, q).



Toward Step 1: Linear similarity

HW 6. X normal, projective, dimX � 3,
H1,H2 irreducible, Q-Cartier, ample.

Then H1 ⇠sa H2 i↵

(*) Let C1,C2 ⇢ X be any 2 disjoint, irred curves.
Then there is a Q-Cartier, ample H 0 such that
Supp(H 0 \ Ci) = Supp(Hi \ Ci) for i = 1, 2.



Toward Step 2: Linking = Liaison

Variant of scip. Fix L ample.

Defn. L-linking is free on Z [W if

given HZ ⇠sa L,HW ⇠sa L, there is H ⇠sa L such that

H \ (Z [W ) = (HZ \ Z ) [ (HW \W ).



Toward Step 2: Residue fields of points.

Proposition

dimX � 4 and chark = 0.
For p, q 2 X equivalent:

1 There is a k(p) ,! k(q).
2 There are irreducible subvarieties Z ,W such that

1 dimZ = 1, dimW = 2,
2 Supp(Z \W ) = {p},
3

q 2 Z ,

4
W is SCI, and

5
L-linking is free on Z [W .



Toward Step 2: Isomorphism of zero-cycles

Corollary
�|X |,⇠sa

�
determines isomorphism of

0-dimensional reduced subschemes.

HW 7. X normal, chark = 0, Z a zero-cycle of degree 0.
Then Z is rationally equivalent to a zero-cycle

X⇥
k(pi)� k(qi)

⇤
where k(pi) ⇠= k(qi) 8i .



Some questions I ran into

Conjecture
Ck smooth, projective curve, genus � 1, k not locally finite.
L very ample. For s 2 H0(Ck , L) write
(s = 0) =: {pi(s) : i 2 I} and (s = 0)k̄ =: {p̄i(s) : i 2 Ī}.
Then, for ‘most’ sections,

– [pi(s)] 2 Pic(Ck) are linearly independent (weak form).

– [p̄i(s)] 2 Pic(Ck̄) are linearly independent (strong form).



Conjecture

C smooth, projective curve over Q̄.
Then for ‘most’ ample line bundles L,

every section of Lm has at least g(C ) zeros for every m � 1.

Notes.
– not sure what ‘most’ means.
– true for nodal rational curves.


