What determines a variety?

János Kollár

with Max Lieblich, Martin Olsson and Will Sawin

April, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Menelaus's theorem, \sim 70-140 AD

 $\frac{AF}{FB} \times \frac{BD}{DC} \times \frac{CE}{EA} = -1.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Karl Georg Christian von Staudt, 1798–1867

◆□▶ ◆昼▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Veblen-Young theorem (1908)

Given a projective geometry $\mathbf{P}=(\text{points, lines})$ of dim. $n \ge 2$ (with very few axioms), there is a unique field K such that $\mathbf{P} \cong K\mathbb{P}^n$.

Recall: a scheme X is a

- topological space |X|, and a
- sheaf of rings \mathcal{O}_X on the open subsets of |X|.

Main question

• How to read off properties of X from |X|?

▲ロト ▲園ト ▲ヨト ▲ヨト - ヨー つくで

• Does |X| alone determine X?

Example: dim X = Krull dimension of |X|.

Negative results — easy ones

- For curves C_K , we see only the cardinality of K.
- Normalization is frequently homeomorphism.
- Purely inseparable maps are homeomorphisms.
- If K/L finite, then any K-variety X can be viewed as an L-variety with the same |X|. To fix this:
 - maximal choice $K = H^0(X, \mathcal{O}_X)$, equivalently

• X is geometrically irreducible over K.

Negative results — surprising ones

- (Wiegand-Krauter, 1981) $|\mathbb{P}_{F}^{2}|$ same for all finite fields. - (K.- Mangolte, 2009) S_{1}, S_{2} : blow-up of \mathbb{RP}^{2} in same number of points. Then every Euclidean-homeo $\Phi : S_{1}(\mathbb{R}) \sim S_{2}(\mathbb{R})$ can be approximated by $\Psi : S_{1}(\mathbb{R}) \sim S_{2}(\mathbb{R})$ that are **both** Euclidean and Zariski homeomorphisms.

Holds for C^0 and C^∞ -approximations.

▲□ ▲ □ ▲ □ ▲ □ ● ● ●

Theorem (Topology determines sheaf theory)

- K, L fields of char. 0,
- $-X_K$, Y_L normal, projective, geom. irred. varieties,
- $-|X_{K}| \sim |Y_{L}|$ homeomorphism.

Assume

• either dim $X \ge 4$,

• or dim $X \ge 3$ and K, L are finitely generated $/\mathbb{Q}$.

Then $K \cong L$ and $X_K \cong Y_L$.

Will outline the proof of a simpler theorem, its proof has the same basic ideas.

Theorem (Topology determines projective space)

- $-\operatorname{char} L = 0$, K arbitrary,
- Y_{L} normal, projective, geom. irreducible of dimension $n\geq 2$

▲ロト ▲理ト ▲ヨト ▲ヨト ヨー のへの

- $-|\mathbb{P}_{K}^{n}| \sim |Y_{L}|$ a homeomorphism. Then
 - $\bullet Y_L \cong \mathbb{P}_L^n \text{ and }$
 - **2** $K \cong L.$

Scip = set-theoretic complete intersection property

X variety, $Z \subset X$ closed subset.

- a divisor $D_Z \subset Z$ is SCI iff $D_Z = \text{Supp}(D_X \cap Z)$ for some divisor D_X .
- *Z* irreducible: scip iff every divisor $D_Z \subset Z$ is SCI.
- $Z = \bigcup Z_i$ reducible: scip iff $\bigcup_i D_{Z_i}$ is SCI for

all divisors $\emptyset \neq D_{Z_i} \subset Z_i$

- Z is generically scip iff there is a finite set Σ ⊂ X such that scip holds if
 - $-D_Z \cap \Sigma = \emptyset$ (makes it easier)
 - then also $D_X \cap \Sigma = \emptyset$ (makes it harder).

Algebraic geometry lemma I

Lemma 1. [Zero sets determine section] Z variety, L line bundle, $s_i \in H^0(Z, L^{n_i})$. Equivalent

• $s_1^{m_1} = u \cdot s_2^{m_2}$ for some $u \in k[Z]^{\times}$,

2 Supp
$$(s_1 = 0) =$$
Supp $(s_2 = 0)$,

provided:

- 2 zero set is irreducible, and
- either Z normal or zero set is disjoint from a certain finite ∑(Z) ⊂ Z.

Irreducibility can be guaranteed if

- $-\dim Z \ge 2$ (by Bertini),
- $-\dim Z \ge 1$ and k is finitely generated (by Hilbert).

Algebraic geometry lemma II

Lemma 2. (Boissière-Gabber-Serman) If X normal, there is a finite $\Sigma^{ncar} \subset X$ such that every divisor disjoint from Σ^{ncar} is Cartier.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Homework I

HW 1. dim $X \ge 2$, quasi-proj k-variety. Equivalent:

- Every irreducible curve $C \subset X$ is scip.
- -k is locally finite (=algebraic over \mathbb{F}_p).

HW 2. $L_1, L_2 \subset \mathbb{P}^n$ linear spaces, meeting at a point.

- Then $L_1 \cup L_2$ is generically scip.
- (line) \cup (conic) $\subset \mathbb{P}^2$ is **not** generically scip.

Key observation

 $D \subset \mathbb{P}^n$ divisor, $C \subset \mathbb{P}^n$ geom connected curve.

Assume chark = 0. Then $D \cup C$ is generically scip iff

• D = hyperplane and C = line.

First special case of Theorem 2

Corollary. Assume char $\mathcal{K} = 0$. Then $|\mathbb{P}_L^n| \sim |\mathbb{P}_K^n|$ iff $\mathcal{K} \cong L$. Proof. Pick $\Phi : |\mathbb{P}_L^n| \sim |\mathbb{P}_K^n|$. $H_L \subset \mathbb{P}_L^n$ hyperplane, $\ell_L \subset \mathbb{P}_L^n$.

- \Rightarrow $H_L \cup \ell_L$ is generically scip.
- $\Rightarrow \Phi(H_L) \cup \Phi(\ell_L)$ is generically scip.
- $\Rightarrow \Phi(H_L) \subset \mathbb{P}^n_K$ is a hyperplane.
- $\Rightarrow \Phi(\text{linear space}) \subset \mathbb{P}^n_K$ is a linear space.

Finish by Veblen-Young.

Key observation, statement

Proposition

X normal, projective, $\rho(X) = 1$, chark = 0. Z, $W \subset X$ irreducible, dim $(Z \cap W) = 0$. Assume that $Z \cup W$ is generically scip. Then 2 $\cap W$ is reduced and 2 either $k[Z \cap W] = k[Z]$ or $k[Z \cap W] = k[W]$. If Z, W are set-theoretic complete intersections then 3 $Z \cap W$ is a k-point.

Key observation, proof I

Choose *L* ample such that $H^0(X, L) \to H^0(Z \cap W, L_{Z \cap W})$ is surjective. Choose general $s_{Z}, s_{W} \in H^{0}(X, L)$, set $\operatorname{Supp}(s_{Z}|_{Z}=0)=\cup_{i}A_{i}$ and $\operatorname{Supp}(s_{W}|_{W}=0)=\cup_{i}B_{i}$. Generically scip $\Rightarrow \exists$ Cartier $D_{ii} \subset X$ such that $Supp(D_{ii}|_{Z \cup W}) = A_i + B_i$ (multiplicities = ?) Linear algebra $\Rightarrow \exists D$ such that $D|_{7} = m_{7}(s_{7}|_{7} = 0)$ and $D|_{W} = m_{W}(s_{W}|_{W} = 0)$. Since $\rho(X) = 1$, D = (s = 0) for $s \in H^0(X, L^m)$. By Lem 1 $s^r|_{\mathcal{I}} = u_{\mathcal{I}} \cdot s^m_{\mathcal{I}}|_{\mathcal{I}}$ for some $u_{\mathcal{I}} \in k[\mathcal{I}]^{\times}$, (*) $s^r|_W = u_W \cdot s^m_W|_W$ for some $u_W \in k[W]^{\times}$.

Key observation, proof II

$$\begin{split} s^{r}|_{Z} &= u_{Z} \cdot s_{Z}^{m}|_{Z} & \text{for some } u_{Z} \in k[Z]^{\times}, \\ s^{r}|_{W} &= u_{W} \cdot s_{W}^{m}|_{W} & \text{for some } u_{W} \in k[W]^{\times}, \end{split} \tag{*}$$
 $\begin{aligned} \text{hence } (s_{Z}/s_{W})^{m}|_{Z \cap W} &= u_{W}|_{Z \cap W} \cdot u_{Z}^{-1}|_{Z \cap W} \text{ is in} \\ & \text{image of: } k[W]^{\times} \times k[Z]^{\times} \to k[Z \cap W]^{\times}. \end{aligned}$ $\begin{aligned} \text{We can arrange } s_{Z}/s_{W} \text{ to be an arbitrary element of} \\ k[Z \cap W]^{\times}, \text{ hence} \end{aligned}$

 $k[Z \cap W]^{\times}/k[W]^{\times} \times k[Z]^{\times}$ is a torsion group.

 $k[Z \cap W]^{\times}/k[W]^{\times} \times k[Z]^{\times}$ is a torsion group.

Apply next to $A = k[Z \cap W]$, $L_1 = k[W]$, $L_2 = k[Z]$.

HW 3, Algebra lemma. A Artin k-algebra, chark = 0. $L_1, L_2 \subset A$ subfields. Equivalent

• $A^{\times}/L_1^{\times} \cdot L_2^{\times}$ is torsion,

2
$$A^{\times}/L_1^{\times} \cdot L_2^{\times}$$
 has finite rank,

• either
$$A = L_1$$
 or $A = L_2$.

Note. Key case: *A* is a field.

I would like to see a simple proof.

Topology determines \mathbb{P}^n , proof

Recall Thm: If $\Phi : |\mathbb{P}_{K}^{n}| \sim |Y_{L}|$ homeomorphism, then $Y_{L} \cong \mathbb{P}_{L}^{n}$ and $K \cong L$.

Assume: $\rho(Y) = 1$.

We already proved that then $K \cong L$.

HW 4. *K* perfect, infinite and $\Phi : |\mathbb{P}_{K}^{n}| \sim |\mathbb{P}_{K}^{n}|$ homeo. If Φ identity on *K*-points, then identity. $\sim =$ linear equivalence

 $\sim_{s} =$ linear similarity: $m_1D_1 \sim m_2D_2$ for some $m_1, m_2 \neq 0$. $\sim_{sa} =$ linear similarity $+ D_1, D_2$ ample and irreducible.

Main steps of the proof of Theorem 1

Step 1. |X| determines \sim_{sa} . **Step 2.** $(|X|, \sim_{sa})$ determines \sim . **Step 3.** (Lieblich-Olsson) $(|X|, \sim)$ determines X.

Toward Step 1: Ampleness criterion

HW 5. X normal, projective, dim $X \ge 3$. Then an irreducible divisor H is Q-Cartier and ample iff (*) For every divisor $D \subset X$ and closed points $p, q \in X \setminus D$, there is a divisor $H(p,q) \subset X$ such that

- **2** $p \notin H(p,q)$ and $q \in H(p,q)$.

Toward Step 1: Linear similarity

HW 6. X normal, projective, dim $X \ge 3$, H_1, H_2 irreducible, Q-Cartier, ample. Then $H_1 \sim_{sa} H_2$ iff

(*) Let $C_1, C_2 \subset X$ be any 2 disjoint, irred curves. Then there is a Q-Cartier, ample H' such that $Supp(H' \cap C_i) = Supp(H_i \cap C_i)$ for i = 1, 2.

Toward Step 2: Linking = Liaison

Variant of scip. Fix *L* ample. **Defn.** *L*-linking is free on $Z \cup W$ if given $H_Z \sim_{sa} L$, $H_W \sim_{sa} L$, there is $H \sim_{sa} L$ such that $H \cap (Z \cup W) = (H_Z \cap Z) \cup (H_W \cap W)$.

Toward Step 2: Residue fields of points.

Proposition

- dim $X \ge 4$ and chark = 0. For $p, q \in X$ equivalent:
 - There is a $k(p) \hookrightarrow k(q)$.

2 There are irreducible subvarieties Z, W such that

- dim Z = 1, dim W = 2,
- $2 \quad \operatorname{Supp}(Z \cap W) = \{p\},$
- $\bullet W is SCI, and$
- **6** *L*-linking is free on $Z \cup W$.

Toward Step 2: Isomorphism of zero-cycles

Corollary

(|X|,∼_{sa}) determines isomorphism of 0-dimensional reduced subschemes.

HW 7. X normal, chark = 0, Z a zero-cycle of degree 0. Then Z is rationally equivalent to a zero-cycle

 $\sum [k(p_i) - k(q_i)] \text{ where } k(p_i) \cong k(q_i) \forall i.$

Some questions I ran into

Conjecture

 C_k smooth, projective curve, genus ≥ 1 , k not locally finite. L very ample. For $s \in H^0(C_k, L)$ write $(s = 0) =: \{p_i(s) : i \in I\}$ and $(s = 0)_{\bar{k}} =: \{\bar{p}_i(s) : i \in \bar{I}\}.$

Then, for 'most' sections,

- $-[p_i(s)] \in \operatorname{Pic}(C_k)$ are linearly independent (weak form).
- $-[\bar{p}_i(s)] \in \operatorname{Pic}(C_{\bar{k}})$ are linearly independent (strong form).

Conjecture

C smooth, projective curve over $\overline{\mathbb{Q}}$. Then for 'most' ample line bundles *L*, every section of *L^m* has at least g(C) zeros for every $m \ge 1$.

Notes.

- not sure what 'most' means.
- true for nodal rational curves.