
Lecture 1 : Introduction

We will start with a simple combinatorial problem. Consider {−1, 1}1000. How many
elements

x ∈ {−1, 1}1000

satisfy ∣∣∣∣
1000∑
i=1

xi

∣∣∣∣ ≥ 50?

More generally, for any n ∈ N and λ > 0 how many elements

x ∈ {−1, 1}n

satisfy ∣∣∣∣
n∑

i=1

xi

∣∣∣∣ ≥ λn?

The answer is given by the binomial distribution. We are only seeking approximations.
This is a question that we will spend a fair deal of time on this quarter. Today we
will be satisfied with a crude upper bound.

Fact: For any r ∈ R

(r + 1)2 + (r − 1)2 = (r2 + 2r + 1) + (r2 − 2r + 1) = 2(r2 + 1).

For x ∈ {−1, 1}n we write Sn(x)
∑n

i=1 xi and for m < n we write x|m for the restriction
of x to the first m terms.

Lemma 1.0.1 ∑

x∈{−1,1}n

(Sn(x))2 = n2n.

Proof: By induction. It is easy to check that it is true for n = 1. Assume it is true
for n.
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For each y ∈ {−1, 1}n+1 we will write it as a pair (x, a) where x ∈ {−1, 1}n and
a ∈ {−1, 1}.

∑

y∈{−1,1}n+1

(
n+1∑
i=1

yi

)2

=
∑

y∈{−1,1}n+1

(Sn(y|n) + yn+1)
2

=
∑

X∈{−1,1}n

(Sn(X) + 1)2 + (Sn(x)− 1)2

= 2


 ∑

x∈{−1,1}n

(Sn(x))2 + 1




= 2(n2n + 2n)

= (n + 1)2n+1.

Fix λ > 0 and n ∈ N. Let

Aλ,n = {x ∈ {−1, 1}n : |Sn(x)| > λn}.

Then
n2n =

∑

x∈{}n

Sn(x)2 ≥
∑

x∈Aλ,n

s(x)2 ≥ |Aλ,n|(λn)2.

Rearranging we get that

Aλ,n ≤ 2n

λ2n
.

We have proven the following theorem.

Theorem 1.0.2 For any λ > 0

lim
n→∞

Aλ,n

2n
→ 0.

This is a version of the weak law of large numbers.

Key Concepts

1. variance

2. large deviations

3. Chebychev’s inequality
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There is one real drawback of the approach that we took. It works fine for finite
statements but it doesn’t allow us to make statements about infinite objects like
{−1, 1}∞.

What questions do we want to ask? For example what fraction of x ∈ {−1, 1}∞
satisfy

lim
n→∞

1

n

n∑
i=1

xi → 0?

Although it is possible to answer this question using discrete statements, we will
introduce measure theory which will make such questions possible to state formally.
One question which we will be interested in is for what fraction of x ∈ {−1, 1}N does

lim
n→∞

1

n
Sn(x) = 0?

Since the set of x which satisfy this condition is infinite, as is the set of x which
don’t satisfy the condition. We cannot answer this question like we did with counting
arguments above. With measure theory this question will be easy to state.

But now we show how to give an answer to a similar question which can be analyzed
by combinatorial means.

Define

Bε,N0,N =

{
x ∈ {−1, 1}N : there exists m such that n0 < m ≤ N with

1

m
Sm(x)| > ε

}
.

We wish to show that for every ε > 0 there exists N0 such that 1
2N |Bε,N0,N for all

N > N0. This is a finite version that indicates that for “most” x ∈ {−1, 1}N we
have that 1

n
Sn(x) → 0. We won’t quite be able to do this today but there is a slight

modification of our argument can be made to work.

Fix ε > 0, N0 and N . For every x ∈ B = Bε,N0,N there exists an m such that x|m is
in Aε,m. And for every element of Aε,N there are exactly 2N−m elements of B. Thus
by our previous estimate

|B| ≤
N∑

m=N0+1

|Aε,m|2N−m ≤
N∑

m=N0+1

2m

εn
2N−m ≤

N∑
m=N0+1

2N

εm
.

If the series
∑

C
m

were summable then we could just choose N0 large enough so that
the sum were less than ε and be done. Unfortunately that isn’t true. In about two
weeks we will return to this argument to show how it modify this argument to make
it work.
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We will define

B̃ε,N0,N =

{
x ∈ {−1, 1}N : there exists m such that n0 < m ≤ N with

1

m
Sm(x)| > ε/2

and m is a perfect square

}
.

We will then prove the following two statements:

1. for every ε > 0 there exists N0 such that 1
2N |B̃ε,N0,N | < ε for all N > N0 and

2. Bε,N0,N ⊂ B̃ε,N0,N .

Combining these two proves the result.
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2.1 Probability spaces

This lecture introduces some ideas from measure theory which are the foundation of
the modern theory of probability. The notion of a probability space is defined, and
Dynkin’s form of the monotone class theorem is presented.

Definition 2.1.1 Let Ω be a set of points ω. In probability theory, Ω represents all
possible outcomes of an experiment or observation.

Example 2.1.2 Tossing a coin has a set of outcomes Ω = {Head, Tail}.

Example 2.1.3 The position of a body in a 3-D Euclidean space belongs to the set
Ω = R3.

A subset of Ω is called an event. It is natural to ask questions such as whether or
not an outcome of a random experiment belongs to to a event. To do this, we need
to define the events under consideration – we need to define a class of subsets of
the space Ω. Since we’ll want to talk about combinations of events, a systematic
treatment will require this class of subsets to have some nice set-theoretic properties.
The next definition spells this out precisely.

Definition 2.1.4 A class F of subsets of a space Ω is called a field if it contains Ω
itself and is closed under complements and finite unions. That is

1. Ω ∈ F
2. A ∈ F implies Ac ∈ F
3. A,B ∈ F implies A ∪B ∈ F

Recall that A ∩B = (A ∪B)c. Thus, a set of subsets F that is closed under comple-
ments is is closed under unions if and only if it is also is closed under intersections.
Therefore, closure under union in the definition above could be replaced by closure
under intersection.
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Definition 2.1.5 A class F of subsets of Ω is a σ-field if it is a field and if it is
closed under the formation of countable unions. That is,

1. F is a field.

2. A1, A2, ... ∈ F implies A1 ∪ A2 ∪ .... ∈ F .

A field is closed under finite set theoretic operations whereas a σ-field is closed un-
der countable set theoretic operations. In a problem dealing with probabilities, one
usually deals with a small class of subsets A, for example the class of subintervals
of (0, 1]. It is possible that if we perform countable operations on such a class A of
sets, we might end up operating on sets outside the class A. Hence, we would like to
define a class denoted by σ(A) in which we can safely perform countable set-theoretic
operations. This class σ(A) is called the σ-field generated by A, and it is defined as
the intersection of all the σ-fields containing A (exercise: show that this is a σ-field).
σ(A) is the smallest σ-field containing A.

Definition 2.1.6 A real-valued set function1 P on a σ-field F is a probability mea-
sure if it satisfies the following conditions:

1. 0 ≤ P(A) ≤ 1 for A ∈ F .

2. P(∅) = 0,P(Ω) = 1.

3. If {Ai}i∈N are disjoint events in F , then P(
⋃

i Ai) =
∑∞

i=0 PAi.

If F is a σ-field, then the triple (Ω,F ,P) is called a probability measure space or
simply a probability space. The countable additivity of the probability measure gives
rise to the following properties that are stated in a theorem. Here, Ai ↑ A means
that we are given a countable collection {Ai}i∈N, Ai ⊆ Aj for i < j and

⋃∞
i=1 Ai = A.

Similarly, Ai ↓ A means Ai ⊇ Aj for i < j and
⋂∞

i=1 Ai = A.

Theorem 2.1.7 Let P be a probability measure on a field F .

1. Continuity from below: If An and A lie in F and An ↑ A, then P(An) ↑ P(A).

2. Continuity from above: If An and A lie in F and An ↓ A, then P(An) ↓ P(A).

3. Countable subadditivity: If A1, A2... is a countable collection of events in F ,

P

( ∞⋃

k=1

Ak

)
≤

∞∑

k=1

P(Ak). (2.1)

1A set function is a function whose domain is a class of sets.
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Example 2.1.8 If A is the class of subintervals of Ω = (0, 1), then the sigma field
generated by A, denoted by B, is called the collection of Borel sets of the unit interval.
The probability space on a unit interval is then defined as (Ω,B,P), where Ω = (0, 1),
P(B) = λ(B) for B ∈ B. Here λ denotes Lebesgue measure, for which λ((a, b]) = b−a.

Caratheodory’s Extension Theorem

Example (0, 1]

Let A be the collection of all sets of the form

A = (a1, b1 ∪ (a2, b2] ∪ · · · ∪ (an, bn]

for some n ∈ N and some sequence 0 ≤ a1 < b1 ≤ a2 < · · · < bn.

It is easy to check that A is an algebra and that µ(A) =
∑n

i=1 bi− ai is a measure on
A. Thus by Theorem we can extend µ to a measure on σ(A).

Example {0, 1}N

Let A be the collection of all sets of the form

A = {x : x1 = a1, . . . , xn = an}

for some n ∈ N and some sequence a ∈ {0, 1}n.

For A ∈ A we can define µ(A) = 2−n. It is easy to check that µ is a measure on the
algebra generated by A (finite unions of elements in A). Thus by Theorem we can
extend µ to a measure on σ(A).

We could also have chosen

µ(A) = p#{i:ai=1}(1− p)#{i:ai=0}

or

µ(A) = p#{i:ai=1and i is prime}(1−p)#{i:ai=0}and i is primeq#{i:ai=1and i is not prime}(1−q)#{i:ai=0}and i is not prime

or any other of millions of choices.

Show that B = {x : limm→∞ 1
m

Sm(x) = .7} is in σ(A).


