55. Conditioned on getting the first typist the probability of getting k errors is $e^{-3}(3)^k/k!$. Conditioned on getting the second the probability of getting k errors is $e^{-4.2}(4.2)^k/k!$. Let X be the number of errors, let T_1 be the event that the first typist types the paper and let T_2 be the event that the second typist types the paper. Then

$$P(X = 0) = P\left(\{X = 0\}\mid T_1\right) + P\left(\{X = 0\}\mid T_2\right)$$

$$= P(T_1)P\left(\{X = 0\}\mid T_1\right) + P(T_2)P\left(\{X = 0\}\mid T_2\right)$$

$$= .5(e^{-3}) + .5(e^{-4.2})$$

$$\approx .0325.$$

57. The probability that a Poisson random variable 3 has value 0, 1 and 2 is approximately 0.050, 0.149 and 0.224 respectively. Thus the probability of 3 or more accidents is about $1 - (.05 + .149 + .224) = .577$. When we condition on at least one accident we get

$$P(X \geq 3 \mid X \geq 1) = \frac{P(X \geq 3 \text{ and } X \geq 1)}{P(X \geq 1)}$$

$$\approx .606$$

58. (a) $P(\text{Bin}(8, .1) = 2) \approx .149$ while $P(\text{Poisson}(.8) = 2) \approx .144$.
(b) $P(\text{Bin}(10, .95) = 9) \approx .315$ while $P(\text{Poisson}(9.5) = 9) \approx .130$.
(c) $P(\text{Bin}(10, .1) = 0) \approx .349$ while $P(\text{Poisson}(1) = 0) \approx .368$.
(d) $P(\text{Bin}(9, .2) = 4) \approx .066$ while $P(\text{Poisson}(1.8) = 4) \approx .072$.

59. To calculate the approximate probability we use the approximate Poisson distribution with parameter $(50)\left(\frac{1}{100}\right) = .5$. We get that the probability of 0 and 1 wins to be about .607 and .303 respectively. Thus the probability of winning
(a) at least once is about $1 - .607 = .393$.
(b) exactly once is about .303.
(c) at least twice is about $1 - .607 - .303 = .090$.

To calculate the actual probabilities we would use the $\text{Bin}(50, .01)$ distribution. We get that the probability of 0 and 1 wins to be about .605 and .306 respectively. Thus the probability of winning

(a) at least once is about $1 - .605 = .395$.
(b) exactly once is about .306.
(c) at least twice is about $1 - .605 - .306 = .089$.

61. Let X be the number of full houses that you are dealt. X is a $\text{Bin}(1000, .0014)$ random variable. We can approximate it by a Poisson variable with parameter 1.4.

\[
P(X \geq 2) = 1 - P(X = 0) - P(X = 1) \\
= 1 - (.986)^{1000} - \binom{1000}{1} (.986)^{999}(.014)^1 \\
\approx .4083
\]

while the Poisson approximation is

\[
P(X \geq 2) = 1 - P(X = 0) - P(X = 1) \\
\approx 1 - e^{-1.4} (1.4)^0 - e^{-1.4} (1.4)^1 / 1! \\
\approx .4082.
\]

64. (a) Let X be the number of people who commit suicide in a month. X is a $\text{Bin}(400, 0.00001)$ random variable. We can approximate it by a Poisson variable with parameter 4.

\[
P(X \geq 8) = 1 - \sum_{k=0}^{7} \binom{400000}{k} (.99999)^{400000-k} (.00001)^k \approx .948866
\]

while the Poisson approximation is

\[
P(X \geq 8) \approx \sum_{k=0}^{7} e^{-4} (4)^k / k! \approx .948867.
\]
(b) Let Y be the number of months with at least 8 suicides. Then

$P(Y \geq 2) = 1 - P(Y = 0) - P(Y = 1)$

$\approx 1 - (.949)^{12} - 12(.051)(.949)^{11}$

$\approx .123$

(c) Let Z be the first month with at least 8 suicides. Z is negative binomial with $p = .051133$. The probability mass function of Z is

$P(Z = k) = (.948867)^{k-1}(.051133)$.

65. Let Y be the number of people with the disease. The distribution of Y is Bin(500, .001). We can approximate Y by a Poisson distribution with parameter $\lambda = .5$. Then

(a) The probability that there is at least one person with the disease is

$P(Y \geq 1) = 1 - P(Y = 0) = 1 - e^{-5}(.5)^{0}/0! \approx .3935$.

(b) The probability that there is more than one person with the disease is

$P(Y \geq 2) = 1 - P(Y = 0) - P(Y = 1)$

$= 1 - e^{-5}(.5)^{0}/0! - e^{-5}(.5)^{1}/1!$

$\approx .2293$.

(c) Let Z be the number of people other than Jones who have the disease. Z is a Bin(499, .001) random variable which we can approximate with a Poisson random variable with $\lambda = 4.99$. If there are more than one person with the disease then $Z \geq 1$.

$P(Z \geq 1) = 1 - P(Z = 0) = 1 - e^{-4.99}(.499)^{0}/0! \approx .3935$

68. Let X_i be the number antiballistic missiles that hit the ith missile. Let Y be the number of missiles that get destroyed by an antiballistic missile. Thus Y is the number of i such that $X_i > 0$. Using the Poisson paradigm we get that each missile independently has a probability of about

$P(X = 0) = e^{-5}5^{0}/0! \approx .99326$.
of being not hit. Since the events are independent and have the same distribution

\[P(Y = 10) = P\left(\cap_{i=1}^{10} \{ X_i > 0 \} \right) \]
\[= \prod_{i=1}^{10} \left(1 - P(X_i = 0) \right) \]
\[\approx (1 - e^{-5})^{10} \approx 0.065373. \]

75. Let \(X \) denote the number of tails that occur before a heads occurs for the tenth time. The distribution of \(X + 1 \) is negative binomial with parameters 10 and .5.

\[P(X + 1 = k) = \binom{k-1}{9} .5^{k-10} .5^{10} \]

or

\[P(X = k) = \binom{k}{9} .5^{k+1}. \]

80. (a) The probability that both number the player selects are among the 20 that the casino selects is

\[\alpha = \frac{20}{80} \frac{19}{79}. \]

The fair payoff \(f \) is the value that makes the expected winnings equal to 0.

\[E(W) = f \alpha + (-1)(1 - \alpha) = 0 \]

or

\[f = (1 - \alpha)/\alpha \approx 15.63. \]

(b) There are \(\binom{80}{20} \) total number of choices for how the casino can choose the 20 numbers. If the player chooses \(n \) and \(k \) of the \(n \) are among the numbers the casino chose then \(n - k \) are not. There are \(\binom{n}{k} \) ways to choose \(k \) out of the \(n \) (that the player chose) and \(\binom{80-n}{20-k} \) to choose \(20 - k \) out of \(80 - n \) (that the player did not choose). Thus the probability of choosing \(k \) out of \(n \) is

\[P_{n,k} = \frac{\binom{n}{k} \binom{80-n}{20-k}}{\binom{80}{20}}. \]
(c) Let \(W \) be the winnings and \(X \) be the number of balls selected correctly. Let \(W'(X) \) be the winnings if \(X \) balls are selected. (If \(s \) is an element of our state space (a selection of 20 numbers) then \(W(s) = W'(X(s)) \).)

\[
E(W) = \sum_{k=0}^{10} P(X = k)W'(k) = \sum_{k=0}^{10} P_{10,k}W'(k)
\]

\[
= (-1)\sum_{k=0}^{4} P_{10,k} + \sum_{k=5}^{10} P_{10,k}W'(k)
\]

\[
\approx (-1)(\sum_{k=0}^{4} P_{10,k}) + (1)P_{10,5} + (17)P_{10,6} + (179)P_{10,7}
\]

\[
+ (1299)P_{10,8} + (2599)P_{10,9} + (24999)P_{10,10}
\]

\[
\approx -.2057
\]

82. Let \(X \) be the number of transistors in a lot that are sampled and defective. The distribution of \(X \) is Bin(4, .1). The lot is rejected if \(X \geq 1 \).

\[
P(X \geq 1) = 1 - P(X = 0) = 1 - (.9)^4 = .3439.
\]