Haim's Notes About
Invariant Distributions, Beurling Transforms and Tensor Tomography in Higher Dimensions
by Gabriel P. Paternain, Mikko Salo, Gunther Uhlmann

Table of Contents

1 Page 318 (PDF Page 14) Decomposition of X. 1
2 Page 349 (PDF Page 45) Differential of Distance Function 3
3 Page 350 (PDF page 46) Local Coordinate Expression for Decomposition of Gradient over $\boldsymbol{S M}$ 4
4 References 6

1 Page 318 (PDF Page 14) Decomposition of X

Decomposition of X. The geodesic vector field behaves nicely with respect to the decomposition into fibrewise spherical harmonics: it maps Ω_{m} into $\Omega_{m-1} \oplus \Omega_{m+1}$ [23, Proposition 3.2]. Hence on Ω_{m} we can write

$$
X=X_{-}+X_{+}
$$

where $X_{-}: \Omega_{m} \rightarrow \Omega_{m-1}$ and $X_{+}: \Omega_{m} \rightarrow \Omega_{m+1}$. By [23, Proposition 3.7] the operator X_{+}is overdetermined elliptic (i.e. it has injective principal symbol). One can gain insight into why the decomposition $X=X_{-}+X_{+}$holds as follows. Fix $x \in M$ and consider local coordinates which are geodesic at x (i.e. all Christoffel symbols vanish at x). Then $X u(x, v)=v^{i} \frac{\partial u}{\partial x^{i}}$. We now use the following basic fact about spherical harmonics: the product of a spherical harmonic of degree m with a spherical harmonic of degree one decomposes as the sum of a spherical harmonics of degree $m-1$ and $m+1$. Since the v^{i} have degree one, this explains why X maps Ω_{m} to $\Omega_{m-1} \oplus \Omega_{m+1}$.

In this section I'd like to fill in the details on the highlighted items. First we prove the stated fact about products of spherical harmonics:

Lemma 1.1: Suppose that $a \in H_{1}\left(S^{d-1}\right)$ and $b \in H_{m}\left(S^{d-1}\right)$ are spherical harmonics of order 1 and m respectively on the sphere S^{d-1} sitting in Euclidean space \mathbb{R}^{d} with respect to the (flat) Euclidean Laplacian. Then the product ab is in $H_{m+1}\left(S^{d-1}\right) \oplus H_{m-1}\left(S^{d-1}\right)$.
Proof: Let $S=S^{d-1}$ and let r^{2} denote the polynomial $\left(x_{1}\right)^{2}+\cdots+\left(x_{d}\right)^{2}$ over \mathbb{R}^{d}. Let \mathcal{P}_{k} denote the set of all homogeneous (complex valued) polynomials of degree k in \mathbb{R}^{d} and let

$$
\mathcal{H}_{k}=\left\{P \in \mathcal{P}_{k}: \Delta P=0\right\} .
$$

Recall the standard fact that

$$
H_{k}(S)=\left\{\left.P\right|_{S}: P \in \mathcal{H}_{k}\right\}
$$

and that these spaces are perpendicular to each other with respect to the $L^{2}(S)$ inner product (see for instance [1] and my notes about that book). Now, we have that $a=\left.\tilde{a}\right|_{S}$ and $b=\left.\tilde{b}\right|_{S}$ where $\tilde{a} \in \mathcal{H}_{1}$ and $\tilde{b} \in \mathcal{H}_{m}$. Hence $a b=\left.\tilde{a} \tilde{b}\right|_{S}$ where clearly $\tilde{a} \tilde{b} \in \mathcal{P}_{m+1}$. Now, by Corollary 2.50 in [1] we have that $\tilde{a} \tilde{b}=\sum_{k=0}^{\lfloor m / 2\rfloor} f_{m+1-2 k}$ where each $f_{m+1-2 k} \in r^{2 k} \mathcal{H}_{m+1-2 k}$ and so $a b \in$ $\oplus_{k=0}^{[m / 2]} H_{m+1-2 k}(S)$. Hence the lemma will be proved if we can show that $a b \perp H_{j}(S)$ for $j \leq$ $m-3$ with respect to the $L^{2}(S)$ inner product.

Fix any $j \leq m-3$ and take a basis $\left\{Y_{\mu}: \mu=1, \ldots, l\right\}$ of $H_{k}(S)$. We have to show that for any $\mu=1, \ldots, l$,

$$
\int_{S} a b \overline{Y_{\mu}}=0
$$

Observe that the integral on the left-hand side is equal to

$$
\int_{S} b \overline{\bar{a} Y_{\mu}}
$$

Now, \bar{a} and Y_{μ} are spherical harmonics of order 1 and j respectively and hence by similar arguments as above their product is in $\bigoplus_{k=0}^{\lfloor j / 2\rfloor} H_{j+1-2 k}(S)$. Since $b \in H_{m}(S)$ is perpendicular to the latter, we get that the above integral is indeed equal to zero.

Next let's discuss why this implies that X maps Ω_{m} into $\Omega_{m-1} \oplus \Omega_{m+1}$. Fix any integer $m \geq 0$ and take any $u \in \Omega_{m}$. Following the text, take any point x_{0} and consider normal coordinates $\left(x^{i}\right)$ centered at x_{0} which naturally generate the coordinates $v^{j} \partial / \partial x^{j} \mapsto\left(x^{i}, v^{j}\right)$ of $T M$. Let $\left(g_{i j}\right)$ denote the metric tensor in these coordinates. Above the point x_{0} we have that $X=v^{i} \partial / \partial x^{i}$. So the claim will follow from the above lemma if we show that the only possible nonzero Fourier mode of $\partial u_{m} / \partial x^{i}$ on the sphere above x_{0} is m. Unfortunately, doing this in our coordinates of $T M$ is a little inconvenient, so we construct another set of coordinates.

Let $\left(b_{i}\right)$ be the smooth orthonormal frame over the domain of $\left(x^{i}\right)$ obtained by applying the Gram-Schmidt orthogonalization process to the frame $\left(\partial / \partial x^{i}\right)$. This frame gives us another set of coordinates of $T M$ given by $w^{j} b_{j} \mapsto\left(x^{i}, w^{j}\right)$. Let $\left(\alpha_{\mu}^{v}\right)$ be the coefficients in the relation $b_{\mu}=$ $\alpha_{\mu}^{\nu} \partial / \partial x^{\nu}$. Thinking about how the Gram-Schmidt orthogonalization process works, it's not hard to see that each $\partial g_{i j} / \partial x^{r}$ being equal to zero at $x=x_{0}$ implies that all of the partials $\partial \alpha_{\mu}^{\nu} / \partial x^{r}$ are zero at $x=x_{0}$ as well (hint: use induction). Furthermore, if we let $\left(\beta_{\mu}^{\nu}\right)$ be the coefficients in the inverse relation $\partial / \partial x^{\mu}=\beta_{\mu}^{\nu} b_{v}$, it's not hard to see that the β_{μ}^{ν} 's share the same property of
the α_{μ}^{v} 's mentioned in the previous sentence. From this observation we see that above $x_{0}, X=$ $w^{i} \partial / \partial x^{i}$. So we simply need to show that on the sphere above x_{0}, the only possible nonzero Fourier mode of the partial $\partial u_{m} / \partial x^{i}$ taken with respect to $\left(x^{i}, w^{j}\right)$ is $m .{ }^{1}$ We do this by showing that on the sphere above $x_{0}, \partial u_{m} / \partial x^{i}$ is perpendicular to Fourier modes of order other than m.

Choose some nonnegative integer $j \neq m$. Let Y be a harmonic polynomial homogeneous of degree j over \mathbb{R}^{n} with respect to the (flat) Euclidean Laplacian. Consider the smooth function \mathcal{Y} defined over TM near x_{0} given by

$$
\begin{equation*}
\mathcal{Y}\left(x, w^{i} b_{i}\right)=Y\left(w^{1}, \ldots, w^{n}\right) . \tag{1.2}
\end{equation*}
$$

To prove our claim, it will be sufficient to show that $\left\langle\partial u_{m} / \partial x^{i}, \mathcal{Y}\right\rangle_{L^{2}\left(s_{x_{0}} M\right)}=0$. Observe that the inner product on the left-hand side is equal to

$$
\begin{gathered}
\int_{S_{x_{0} M}} \frac{\partial u_{m}}{\partial x^{i}}\left(x_{0}, w\right) \mathcal{Y}\left(x_{0}, w\right) d w_{S_{x_{0}} M} \\
=\left.\frac{\partial}{\partial x^{i}}\right|_{x=x_{0}}\left(\int_{S_{x_{0} M}} u_{m}(x, w) \mathcal{Y}(x, w) d w_{S_{x_{0} M} M}\right)-\left.\int_{S_{x_{0} M}} u_{m}\left(x_{0}, w\right) \frac{\partial}{\partial x^{i}}\right|_{x=x_{0}}(\mathcal{Y}(x, w)) d w_{S_{x_{0}} M} .
\end{gathered}
$$

The first term on the right-hand side is equal to zero since u_{m} is constantly perpendicular to the Fourier modes of order j. By (1.2) above, the second term is also equal to zero. Hence, we've proven the claim.

2 Page 349 (PDF Page 45) Differential of Distance Function

The hypersurface $S M$ in $T M$ is given by $S M=f^{-1}(1)$ where $f: T M \rightarrow \mathbb{R}$ is the function $f(x, y)=g_{j k}(x) y^{j} y^{k}$. A computation gives

$$
d f\left(X^{j} \delta_{x_{j}}+Y^{k} \partial_{y_{k}}\right)=2 y_{k} Y^{k}
$$

In this section I'd like to fill in the details on the highlighted equation. If $f(x, y)=g_{\mu \nu}(x) y^{\mu} y^{\nu}$, then

$$
d f\left(X^{j} \delta_{x_{j}}+Y^{k} \partial_{y_{k}}\right)=X^{j}\left(\frac{\partial g_{\mu v}}{\partial x^{j}} y^{\mu} y^{v}-\Gamma_{j k}^{l} y^{k} 2 g_{l v} y^{v}\right)+Y^{k} 2 g_{k v} y^{v}
$$

Now, $g_{k v} y^{v}=y_{k}$ (i.e. we lower an index on y). Moreover, by renaming variables we can also rewrite the term

[^0]$$
\Gamma_{j k}^{l} y^{k} 2 g_{l v} y^{v}=\Gamma_{j \mu}^{l} y^{\mu} g_{l v} y^{v}+\Gamma_{j v}^{l} y^{v} g_{l \mu} y^{\mu}
$$

Hence the right-hand side of the previous equation can be rewritten as

$$
\left(\frac{\partial g_{\mu v}}{\partial x^{j}}-\Gamma_{j \mu}^{l} g_{l v}-\Gamma_{j v}^{l} g_{\mu l}\right) X^{j} y^{\mu} y^{v}+2 y_{k} Y^{k}=\nabla g(X, y, y)+2 y_{k} Y^{k}=2 y_{k} Y^{k}
$$

since $\nabla g \equiv 0$.
We can actually rewrite the quantity $y_{k} Y^{k}$ in a coordinate invariant way. To see how, first let's prove a lemma that's interesting in its own write. Take the projection map $\pi: T M \rightarrow M$ and recall the well-known connection map $K: T T M \rightarrow T M$, the latter of which is described in my notes about [2].

Lemma 2.1: The sets $\left\{\delta_{x_{j}}: j=1 \ldots, n\right\}$ and $\left\{\partial_{y_{k}}: k=1, \ldots, n\right\}$ form bases for ker K and ker $d \pi$ respectively. In particular, we get that $\left\{\delta_{x_{j}}, \partial_{y_{k}}\right\}$ form a basis of $T_{(x, y)}$ TM by the wellknown that $T M=\operatorname{ker} K \oplus \operatorname{ker} d \pi$.

Proof: It's clear that $\left\{\delta_{x_{j}}\right\}$ and $\left\{\partial_{y_{k}}\right\}$ are linearly independent sets of vectors. It's easy to see that each $\partial_{y_{k}} \in \operatorname{ker} d \pi$. The fact that $\delta_{x_{j}} \in \operatorname{ker} K$ follows from

$$
K\left(\delta_{x_{j}}\right)=\left(\left(-\Gamma_{j v}^{k} y^{v}\right)+\Gamma_{j v}^{k} y^{v}\right) \partial_{x_{k}}=0
$$

Since the $\delta_{x_{j}}$ are in the kernel of K and K maps $X^{j} \delta_{x_{j}}+Y^{k} \partial y_{k}$ to $Y^{k} \partial_{x^{k}}$, we see that the quantity $y_{k} Y^{k}$ can be rewritten in the coordinate invariant manner:

$$
y_{k} Y^{k}=y^{\mathrm{b}} K\left(X^{j} \delta_{x_{j}}+Y^{k} \partial y_{k}\right)
$$

3 Page 350 (PDF page 46) Local Coordinate Expression for Decomposition of Gradient over SM

where $p: T M \backslash\{0\} \rightarrow S M$ is the projection $p(x, y)=\left(x, y /|y|_{g(x)}\right)$. We see that the decomposition $\nabla_{S M} u=(X u) X+\stackrel{\mathrm{h}}{\nabla} u+\stackrel{\vee}{\nabla} u$ has the following form in local coordinates:

$$
\begin{aligned}
& X u=v^{j} \delta_{j} u, \\
& \stackrel{\mathrm{~h}}{\nabla} u=\left(\delta^{j} u-\left(v^{k} \delta_{k} u\right) v^{j}\right) \partial_{x_{j}}, \\
& \stackrel{\vee}{\nabla} u=\left(\partial^{k} u\right) \partial_{x_{k}} .
\end{aligned}
$$

In this section I'd like to show how these equations are derived. Let's start with the first one.
Lemma 3.1: The following are true

$$
\begin{aligned}
X=v^{k} \delta_{x_{k}} & \text { in } T M \\
X=v^{k} \delta_{k} & \text { in } S M
\end{aligned}
$$

Proof: We have by the well-known equation for the geodesic vector field over TM that (in the second equality below I change the index names)

$$
X=v^{k} \partial_{x_{k}}-\Gamma_{i j}^{k} v^{i} v^{j} \partial_{y_{k}}=v^{k}\left(\partial_{x_{k}}-\Gamma_{k j}^{l} v^{j} \partial_{y_{l}}\right)=v^{k} \delta_{x_{k}} .
$$

Now take any $u \in S M$. Observe that $X u=X(u \circ p)$ since X is tangent to $S M$. Hence

$$
X u=v^{k} \delta_{x_{k}}(u \circ p)=v^{k} \delta_{k}(u)
$$

and so indeed $X=v^{k} \delta_{k}$ over $S M$.

Next let's derive the equation for $\stackrel{\vee}{\nabla} u$. Let $i_{S M}: S M \rightarrow T M$ denote the inclusion of $S M$ into $T M$. For any $u \in C^{\infty}(S M)$, we define $\delta^{j}(u)$ and $\partial^{k}(u)$ for $j, k=1, \ldots, n$ to be the components

$$
d i_{S M}(\operatorname{grad} u)=\delta^{j}(u) \delta_{x_{j}}+\partial^{k}(u) \partial_{y_{k}}
$$

Since $u \circ p(x, y)$ is unchanged when y is scaled, it's not hard to see that $d i_{S M}(\operatorname{grad} u)=$ $\operatorname{grad}(u \circ p)$ and hence the above equation can be rewritten as

$$
\operatorname{grad}(u \circ p)=\delta^{j}(u) \delta_{x_{j}}+\partial^{k}(u) \partial_{y_{k}}
$$

As a side note, it's not hard to see that each operator δ^{j} and ∂^{k} are linear and satisfy the property of a derivation and thus are tangent vectors to $S M$. Observe also that these two operators look like they are raising the indices of u. This is made precise by the following lemma.

Lemma: The following are true:

$$
\begin{aligned}
\delta^{j} & =g^{j i} \delta_{i} \\
\partial^{k} & =g^{k r} \partial_{r} .
\end{aligned}
$$

Proof: For any $u \in C^{\infty}(S M)$ and any $w \in T T M$ we have that (here $\left.\langle\cdot \cdot\rangle\right\rangle$ is the Sasaki metric - see my notes about [2]).

$$
\langle\operatorname{grad}(u \circ p), w\rangle=\left\langle\delta^{j}(u) \delta_{x_{j}}+\partial^{k}(u) \partial_{y_{k}}, w^{i} \delta_{x_{i}}+w^{r} \partial_{y_{r}}\right\rangle=g_{j i} \delta^{j}(u) w^{i}+g_{k r} \partial^{k}(u) w^{r}
$$

On the other hand,

$$
\langle\operatorname{grad}(u \circ p), w\rangle=w^{i} \delta_{x_{i}}(u \circ p)+w^{r} \partial_{y_{r}}(u \circ p)
$$

Equating the two right-hand sides gives

$$
\begin{aligned}
& g_{i j} \delta^{j}(u)=\delta_{x_{i}}(u \circ p), \\
& g_{r k} \partial^{k}(u)=\partial_{y_{r}}(u \circ p)
\end{aligned}
$$

From here the lemma follows.

Now, let $\pi: T M \rightarrow M$ denote the natural and recall the well-known connection map $K: T T M \rightarrow$ $T M$, the latter of which is described in my notes about [2]. Let "proj $\mathrm{ker}_{K}: T M \rightarrow \operatorname{ker} K$ " and " $\operatorname{proj}_{\operatorname{ker} d \pi}: T M \rightarrow \operatorname{ker} d \pi$ " denote the projection maps associated to the orthogonal decomposition $T M=\operatorname{ker} K \oplus \operatorname{ker} d \pi$. Then we have by definition that

$$
\stackrel{\mathrm{v}}{\nabla} u=K\left(\operatorname{proj}_{\operatorname{ker} d \pi}\left(d i_{S M}(\operatorname{grad} u)\right)\right)=K\left(\partial^{k}(u) \partial_{y_{k}}\right)=\partial^{k}(u) \partial_{x_{k}} .
$$

Similarly we have that

$$
\stackrel{\mathrm{h}}{\nabla} u=d \pi\left[\operatorname{proj}_{\operatorname{ker} K}\left(d i_{S M}(\operatorname{grad} u)\right)-\left\langle d i_{S M}(\operatorname{grad} u), X\right\rangle X\right] .
$$

Since X is tangent to $S M$, it's not hard to see that the second quantity in the square brackets is $X(u) X$. Hence the above quantity is equal to

$$
d \pi\left[\delta^{j}(u) \delta_{x_{j}}\right]-d \pi[X(u) X]=\delta^{j}(u) \partial_{x_{j}}-X(u) v^{j} \partial_{x_{j}}
$$

If we use Lemma 3.1 above, we can rewrite this last quantity as

$$
\stackrel{\mathrm{h}}{\nabla} u=\left(\delta^{j}(u)-v^{k} \delta_{k}(u) v^{j}\right) \partial_{x_{j}}
$$

4 References

Additional works referenced above:

1. Folland, G. B. (1995). Introduction to Partial Differential Equations (2nd ed.). Princeton: Princeton University Press.
2. Paternain, G., Salo, M., \& Uhlmann, G. (2022). Geometric Inverse Problems, With Emphasis in Two Dimensions. Cambridge: Cambridge University Press \& Assessment.

[^0]: ${ }^{1}$ This is a different task from before since, except at $x=x_{0}$, the partial $\partial u_{m} / \partial x^{i}$ is not necessarily the same thing with respect to the coordinates $\left(x^{i}, v^{j}\right)$ and $\left(x^{i}, w^{j}\right)$.

