Haim's Notes About

Invariant Distributions, Beurling Transforms and Tensor Tomography in Higher Dimensions

by Gabriel P. Paternain, Mikko Salo, Gunther Uhlmann

Table of Contents

1	Page 318 (PDF Page 14) Decomposition of X	1
2	Page 349 (PDF Page 45) Differential of Distance Function	3
3	Page 350 (PDF page 46) Local Coordinate Expression for Decomposition of Gradient over SM	4
4	References	6

1 Page 318 (PDF Page 14) Decomposition of X

Decomposition of *X*. The geodesic vector field behaves nicely with respect to the decomposition into fibrewise spherical harmonics: it maps Ω_m into $\Omega_{m-1} \oplus \Omega_{m+1}$ [23, Proposition 3.2]. Hence on Ω_m we can write

$$X = X_- + X_+$$

where X_- : $\Omega_m \to \Omega_{m-1}$ and X_+ : $\Omega_m \to \Omega_{m+1}$. By [23, Proposition 3.7] the operator X_+ is overdetermined elliptic (i.e. it has injective principal symbol). One can gain insight into why the decomposition $X = X_- + X_+$ holds as follows. Fix $x \in M$ and consider local coordinates which are geodesic at x (i.e. all Christoffel symbols vanish at x). Then $Xu(x, v) = v^i \frac{\partial u}{\partial x^i}$. We now use the following basic fact about spherical harmonics: the product of a spherical harmonic of degree m with a spherical harmonic of degree one decomposes as the sum of a spherical harmonics of degree m - 1 and m + 1. Since the v^i have degree one, this explains why X maps Ω_m to $\Omega_{m-1} \oplus \Omega_{m+1}$.

In this section I'd like to fill in the details on the highlighted items. First we prove the stated fact about products of spherical harmonics:

Lemma 1.1: Suppose that $a \in H_1(S^{d-1})$ and $b \in H_m(S^{d-1})$ are spherical harmonics of order 1 and m respectively on the sphere S^{d-1} sitting in Euclidean space \mathbb{R}^d with respect to the (flat) Euclidean Laplacian. Then the product ab is in $H_{m+1}(S^{d-1}) \oplus H_{m-1}(S^{d-1})$.

Proof: Let $S = S^{d-1}$ and let r^2 denote the polynomial $(x_1)^2 + \dots + (x_d)^2$ over \mathbb{R}^d . Let \mathcal{P}_k denote the set of all homogeneous (complex valued) polynomials of degree k in \mathbb{R}^d and let

$$\mathcal{H}_k = \{ P \in \mathcal{P}_k : \Delta P = 0 \}.$$

Recall the standard fact that

$$H_k(S) = \{P|_S : P \in \mathcal{H}_k\}$$

and that these spaces are perpendicular to each other with respect to the $L^{2}(S)$ inner product

(see for instance [1] and my notes about that book). Now, we have that $a = \tilde{a}|_{S}$ and $b = \tilde{b}|_{S}$ where $\tilde{a} \in \mathcal{H}_{1}$ and $\tilde{b} \in \mathcal{H}_{m}$. Hence $ab = \tilde{a}\tilde{b}|_{S}$ where clearly $\tilde{a}\tilde{b} \in \mathcal{P}_{m+1}$. Now, by Corollary 2.50 in [1] we have that $\tilde{a}\tilde{b} = \sum_{k=0}^{\lfloor m/2 \rfloor} f_{m+1-2k}$ where each $f_{m+1-2k} \in r^{2k}\mathcal{H}_{m+1-2k}$ and so $ab \in \bigoplus_{k=0}^{\lfloor m/2 \rfloor} \mathcal{H}_{m+1-2k}(S)$. Hence the lemma will be proved if we can show that $ab \perp \mathcal{H}_{j}(S)$ for $j \leq m-3$ with respect to the $L^{2}(S)$ inner product.

Fix any $j \le m - 3$ and take a basis $\{Y_{\mu} : \mu = 1, ..., l\}$ of $H_k(S)$. We have to show that for any $\mu = 1, ..., l$,

$$\int_{S} ab\overline{Y_{\mu}} = 0.$$

Observe that the integral on the left-hand side is equal to

$$\int_{S} b \overline{\overline{a}} Y_{\mu}.$$

Now, \bar{a} and Y_{μ} are spherical harmonics of order 1 and *j* respectively and hence by similar arguments as above their product is in $\bigoplus_{k=0}^{\lfloor j/2 \rfloor} H_{j+1-2k}(S)$. Since $b \in H_m(S)$ is perpendicular to the latter, we get that the above integral is indeed equal to zero.

Next let's discuss why this implies that X maps Ω_m into $\Omega_{m-1} \bigoplus \Omega_{m+1}$. Fix any integer $m \ge 0$ and take any $u \in \Omega_m$. Following the text, take any point x_0 and consider normal coordinates (x^i) centered at x_0 which naturally generate the coordinates $v^j \partial/\partial x^j \mapsto (x^i, v^j)$ of TM. Let (g_{ij}) denote the metric tensor in these coordinates. Above the point x_0 we have that $X = v^i \partial/\partial x^i$. So the claim will follow from the above lemma if we show that the only possible nonzero Fourier mode of $\partial u_m/\partial x^i$ on the sphere above x_0 is m. Unfortunately, doing this in our coordinates of TM is a little inconvenient, so we construct another set of coordinates.

Let (b_i) be the smooth orthonormal frame over the domain of (x^i) obtained by applying the Gram-Schmidt orthogonalization process to the frame $(\partial/\partial x^i)$. This frame gives us another set of coordinates of *TM* given by $w^j b_j \mapsto (x^i, w^j)$. Let (α_{μ}^{ν}) be the coefficients in the relation $b_{\mu} = \alpha_{\mu}^{\nu} \partial/\partial x^{\nu}$. Thinking about how the Gram-Schmidt orthogonalization process works, it's not hard to see that each $\partial g_{ij}/\partial x^r$ being equal to zero at $x = x_0$ implies that all of the partials $\partial \alpha_{\mu}^{\nu}/\partial x^r$ are zero at $x = x_0$ as well (hint: use induction). Furthermore, if we let (β_{μ}^{ν}) be the coefficients in the role inverse relation $\partial/\partial x^{\mu} = \beta_{\mu}^{\nu} b_{\nu}$, it's not hard to see that the β_{μ}^{ν} 's share the same property of

the α_{μ}^{ν} 's mentioned in the previous sentence. From this observation we see that above $x_0, X = w^i \partial/\partial x^i$. So we simply need to show that on the sphere above x_0 , the only possible nonzero Fourier mode of the partial $\partial u_m/\partial x^i$ taken with respect to (x^i, w^j) is m.¹ We do this by showing that on the sphere above $x_0, \partial u_m/\partial x^i$ is perpendicular to Fourier modes of order other than m.

Choose some nonnegative integer $j \neq m$. Let Y be a harmonic polynomial homogeneous of degree j over \mathbb{R}^n with respect to the (flat) Euclidean Laplacian. Consider the smooth function \mathcal{Y} defined over TM near x_0 given by

(1.2)
$$\mathcal{Y}(x, w^i b_i) = Y(w^1, \dots, w^n).$$

To prove our claim, it will be sufficient to show that $\langle \partial u_m / \partial x^i, \mathcal{Y} \rangle_{L^2(S_{x_0}M)} = 0$. Observe that the inner product on the left-hand side is equal to

$$\int_{S_{x_0}M} \frac{\partial u_m}{\partial x^i}(x_0, w) \mathcal{Y}(x_0, w) dw_{S_{x_0}M}$$
$$= \frac{\partial}{\partial x^i} \bigg|_{x=x_0} \left(\int_{S_{x_0}M} u_m(x, w) \mathcal{Y}(x, w) dw_{S_{x_0}M} \right) - \int_{S_{x_0}M} u_m(x_0, w) \frac{\partial}{\partial x^i} \bigg|_{x=x_0} \left(\mathcal{Y}(x, w) \right) dw_{S_{x_0}M}.$$

The first term on the right-hand side is equal to zero since u_m is constantly perpendicular to the Fourier modes of order *j*. By (1.2) above, the second term is also equal to zero. Hence, we've proven the claim.

2 Page 349 (PDF Page 45) Differential of Distance Function

The hypersurface *SM* in *TM* is given by $SM = f^{-1}(1)$ where $f : TM \to \mathbb{R}$ is the function $f(x, y) = g_{jk}(x)y^j y^k$. A computation gives

$$df(X^j\delta_{x_j} + Y^k\partial_{y_k}) = 2y_kY^k.$$

In this section I'd like to fill in the details on the highlighted equation. If $f(x, y) = g_{\mu\nu}(x)y^{\mu}y^{\nu}$, then

$$df\left(X^{j}\delta_{x_{j}}+Y^{k}\partial_{y_{k}}\right)=X^{j}\left(\frac{\partial g_{\mu\nu}}{\partial x^{j}}y^{\mu}y^{\nu}-\Gamma_{jk}^{l}y^{k}2g_{l\nu}y^{\nu}\right)+Y^{k}2g_{k\nu}y^{\nu}.$$

Now, $g_{k\nu}y^{\nu} = y_k$ (i.e. we lower an index on y). Moreover, by renaming variables we can also rewrite the term

¹ This is a different task from before since, except at $x = x_0$, the partial $\partial u_m / \partial x^i$ is not necessarily the same thing with respect to the coordinates (x^i, v^j) and (x^i, w^j) .

Haim Grebnev

$$\Gamma^l_{jk} y^k 2g_{l\nu} y^\nu = \Gamma^l_{j\mu} y^\mu g_{l\nu} y^\nu + \Gamma^l_{j\nu} y^\nu g_{l\mu} y^\mu.$$

Hence the right-hand side of the previous equation can be rewritten as

$$\left(\frac{\partial g_{\mu\nu}}{\partial x^{j}} - \Gamma^{l}_{j\mu}g_{l\nu} - \Gamma^{l}_{j\nu}g_{\mu l}\right)X^{j}y^{\mu}y^{\nu} + 2y_{k}Y^{k} = \nabla g(X, y, y) + 2y_{k}Y^{k} = 2y_{k}Y^{k}$$

since $\nabla g \equiv 0$.

We can actually rewrite the quantity $y_k Y^k$ in a coordinate invariant way. To see how, first let's prove a lemma that's interesting in its own write. Take the projection map $\pi : TM \to M$ and recall the well-known connection map $K : TTM \to TM$, the latter of which is described in my notes about [2].

Lemma 2.1: The sets $\{\delta_{x_j} : j = 1 ..., n\}$ and $\{\partial_{y_k} : k = 1, ..., n\}$ form bases for ker K and ker $d\pi$ respectively. In particular, we get that $\{\delta_{x_j}, \partial_{y_k}\}$ form a basis of $T_{(x,y)}TM$ by the well-known that $TM = \ker K \oplus \ker d\pi$.

Proof: It's clear that $\{\delta_{x_j}\}$ and $\{\partial_{y_k}\}$ are linearly independent sets of vectors. It's easy to see that each $\partial_{y_k} \in \ker d\pi$. The fact that $\delta_{x_i} \in \ker K$ follows from

$$K\left(\delta_{x_j}\right) = \left(\left(-\Gamma_{j\nu}^k y^\nu\right) + \Gamma_{j\nu}^k y^\nu\right)\partial_{x_k} = 0.$$

Since the δ_{x_j} are in the kernel of *K* and *K* maps $X^j \delta_{x_j} + Y^k \partial y_k$ to $Y^k \partial_{x^k}$, we see that the quantity $y_k Y^k$ can be rewritten in the coordinate invariant manner:

$$y_k Y^k = y^{\flat} K \left(X^j \delta_{x_j} + Y^k \partial y_k \right).$$

3 Page 350 (PDF page 46) Local Coordinate Expression for Decomposition of Gradient over *SM*

where $p: TM \setminus \{0\} \to SM$ is the projection $p(x, y) = (x, y/|y|_{g(x)})$. We see that the decomposition $\nabla_{SM}u = (Xu)X + \stackrel{h}{\nabla}u + \stackrel{v}{\nabla}u$ has the following form in local coordinates:

$$Xu = v^{j} \delta_{j} u,$$

$$\stackrel{h}{\nabla} u = (\delta^{j} u - (v^{k} \delta_{k} u) v^{j}) \partial_{x_{j}},$$

$$\stackrel{v}{\nabla} u = (\partial^{k} u) \partial_{x_{k}}.$$

In this section I'd like to show how these equations are derived. Let's start with the first one.

Lemma 3.1: The following are true

$$\begin{split} X &= v^k \delta_{x_k} \quad in \ TM, \\ X &= v^k \delta_k \quad in \ SM. \end{split}$$

Proof: We have by the well-known equation for the geodesic vector field over *TM* that (in the second equality below I change the index names)

$$X = v^k \partial_{x_k} - \Gamma^k_{ij} v^i v^j \partial_{y_k} = v^k (\partial_{x_k} - \Gamma^l_{kj} v^j \partial_{y_l}) = v^k \delta_{x_k}$$

Now take any $u \in SM$. Observe that $Xu = X(u \circ p)$ since X is tangent to SM. Hence

$$Xu = v^k \delta_{x_k}(u \circ p) = v^k \delta_k(u)$$

and so indeed $X = v^k \delta_k$ over *SM*.

Next let's derive the equation for ∇u . Let $i_{SM} : SM \to TM$ denote the inclusion of SM into TM. For any $u \in C^{\infty}(SM)$, we define $\delta^{j}(u)$ and $\partial^{k}(u)$ for j, k = 1, ..., n to be the components

$$di_{SM}(\operatorname{grad} u) = \delta^{j}(u)\delta_{x_{j}} + \partial^{k}(u)\partial_{y_{k}}.$$

Since $u \circ p(x, y)$ is unchanged when y is scaled, it's not hard to see that $di_{SM}(\operatorname{grad} u) = \operatorname{grad}(u \circ p)$ and hence the above equation can be rewritten as

$$\operatorname{grad}(u \circ p) = \delta^{j}(u)\delta_{x_{i}} + \partial^{k}(u)\partial_{y_{k}}$$

As a side note, it's not hard to see that each operator δ^j and ∂^k are linear and satisfy the property of a derivation and thus are tangent vectors to *SM*. Observe also that these two operators look like they are raising the indices of *u*. This is made precise by the following lemma.

Lemma: The following are true:

$$\delta^{j} = g^{ji} \delta_{i},$$
$$\partial^{k} = g^{kr} \partial_{r}.$$

Proof: For any $u \in C^{\infty}(SM)$ and any $w \in TTM$ we have that (here $\langle \cdot, \cdot \rangle$ is the Sasaki metric – see my notes about [2]).

$$\langle \operatorname{grad}(u \circ p), w \rangle = \langle \delta^j(u) \delta_{x_i} + \partial^k(u) \partial_{y_k}, w^i \delta_{x_i} + w^r \partial_{y_r} \rangle = g_{ji} \delta^j(u) w^i + g_{kr} \partial^k(u) w^r.$$

On the other hand,

$$\langle \operatorname{grad}(u \circ p), w \rangle = w^i \delta_{x_i}(u \circ p) + w^r \partial_{y_r}(u \circ p).$$

Equating the two right-hand sides gives

$$g_{ij}\delta^{j}(u) = \delta_{x_{i}}(u \circ p),$$
$$g_{rk}\partial^{k}(u) = \partial_{y_{r}}(u \circ p).$$

From here the lemma follows.

Now, let $\pi : TM \to M$ denote the natural and recall the well-known connection map $K : TTM \to TM$, the latter of which is described in my notes about [2]. Let "proj_{ker K} : $TM \to \ker K$ " and "proj_{ker dπ} : $TM \to \ker d\pi$ " denote the projection maps associated to the orthogonal decomposition $TM = \ker K \oplus \ker d\pi$. Then we have by definition that

$$\stackrel{\scriptscriptstyle \vee}{\nabla} u = K\left(\operatorname{proj}_{\ker d\pi}\left(di_{SM}(\operatorname{grad} u)\right)\right) = K\left(\partial^k(u)\partial_{y_k}\right) = \partial^k(u)\partial_{x_k}.$$

Similarly we have that

$$\nabla^{\mathrm{h}} u = d\pi \left[\operatorname{proj}_{\ker K} \left(di_{SM} (\operatorname{grad} u) \right) - \langle di_{SM} (\operatorname{grad} u), X \rangle X \right].$$

Since X is tangent to SM, it's not hard to see that the second quantity in the square brackets is X(u)X. Hence the above quantity is equal to

$$d\pi \left[\delta^{j}(u) \delta_{x_{j}} \right] - d\pi [X(u)X] = \delta^{j}(u) \partial_{x_{j}} - X(u)v^{j} \partial_{x_{j}}.$$

If we use Lemma 3.1 above, we can rewrite this last quantity as

$$\stackrel{\mathrm{h}}{\nabla} u = \left(\delta^{j}(u) - v^{k}\delta_{k}(u)v^{j}\right)\partial_{x_{j}}.$$

4 References

Additional works referenced above:

- 1. Folland, G. B. (1995). *Introduction to Partial Differential Equations* (2nd ed.). Princeton: Princeton University Press.
- 2. Paternain, G., Salo, M., & Uhlmann, G. (2022). *Geometric Inverse Problems, With Emphasis in Two Dimensions*. Cambridge: Cambridge University Press & Assessment.