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Abstract

In this paper we formulate and prove a gauge equivalence for connections and
Higgs fields of suitable regularity that are mapped to the same function under the
non-abelian X-ray transform on nontrapping asymptotically hyperbolic (AH) spaces
with negative curvature and no nontrivial twisted conformal Killing tensor fields with
certain regularity. If one furthermore fixes such a connection with zero curvature, a
corollary provides an injectivity result for the non-abelian X-ray transform over Higgs
fields.
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1 Conventions/notations

In this paper we employ the following conventions/notations:

1. We employ the Einstein summation convention.

2. The dimension of our manifold will be n+ 1, and we’ll denote all indices related to its
dimension by 0, 1, . . . , n. When using the Einstein summation convention on indices
related to the manifold’s dimension, we employ the convention that Latin indices run
from 0 to n while Greek indices run from 1 to n.

3. The notation Ck denotes k times continuously differentiable objects. If the object is
scalar valued, we always assume that it is complex valued (e.g. Ck

(
M
)
= Ck

(
M ;C

)
).

4. Whenever we say “smooth,” we mean “C∞.” All diffeomorphisms are smooth.

5. If π : E → N is a vector bundle over a manifold N and S ⊆ N is a subset of N , then
we let E|S denote the restriction of E to the fibers over S (i.e. more precise notation
would be E|π−1[S]).

6. Continuing off of point 5), we write C∞(N ;E) for smooth sections of E (i.e. not simply
smooth maps from N to E).

7. We denote the geodesic vector field over the tangent and cotangent bundles (i.e. in-
finitesimal generator of the geodesic flow) byX. We will also letX denote its restriction
to the sphere and cosphere bundles SM and S∗M (described below), which makes sense
because X is tangent to it.

2 Introduction

2.1 Motivation

We begin by providing motivation for the non-abelian X-ray transform - the object of our
interest, delaying precise definitions for a later section. This transform is a generalization of
the so-called “scalar X-ray transform,” the latter of which is used in reconstructing images
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of the internals of patients after irradiating them with X-rays at various angles. The typical
mathematical problem for the scalar X-ray transform is the following: suppose that we have
a bounded subset D ⊆ Rn with smooth boundary and a continuous function ϕ : D → (0,∞)
over it. In our analogy, D represents the shape of our patient and ϕ the body’s X-ray
absorption coefficient at various points. Suppose we have a parametrized line l(t) that
enters D at t = 0 and leaves at t = texit, which represents the motion of an X-ray moving
through the body. The ray’s intensity I(t) along this path decays according to the law

dI

dt
= −ϕI, I(0) = I0, (2.1)

where I0 represents the initial intensity of the ray. We record I(texit) (i.e. the intensity
of the ray when it exits) and then repeat this procedure for all possible lines l that pass
through D, using the same value for I0 every time. The inverse problem is then to recover
the coefficient ϕ from knowing such data, which is equivalent to recovering a gray-scale image
of the patient’s internals. Immediately we may note that a necessary condition for this to
be possible to do is that two different ϕ’s cannot generate the same observation data. If
this is the case, we say that the scalar X-ray transform that takes ϕ to the observed data
is “injective.” It turns out that the answer to this problem is yes: one can indeed recover ϕ
from the mentioned data - see for instance Theorem 1.1.6 in [40].

The non-abelian X-ray transform is defined similarly, except that we turn (2.1) into a
system of equations by letting I by a column vector and ϕ a square matrix. The question is
also if one can recover the matrix ϕ from the collected data, or in other words if the operator
involved is injective. One application of this is in the recently introduced polarimetric neutron
tomography which attempts to reconstruct the structure of magnetic fields inside materials
after sending neutron beams through them - see for instance [20] and [8]. We will mention
a few more applications of this problem with references in Section 2.6 below.

We will actually be interested in a more sophisticated generalization of the transform, for
instance by allowing the paths “l” to be geodesics with respect to some Riemannian metric
g on D where D is now a smooth manifold. We will formulate I and ϕ to be a section and
endomorphism field respectively of a smooth vector bundle over M and formulate the time
derivative to be a connection (which may also be unknown) in the direction of the curve’s
velocity. It turns out that in this more general setting it is not possible to recover all of the
coefficients involved except in a special case when an additional assumption is made on the
connection - see for instance Theorem 2.7 and Corollary 2.10 below. However, in the case
when we can’t recover the coefficients, we do have a “gauge equivalence” understanding of
coefficients that produce the same data.

Such transforms have been well studied in the context of compact domains, and so a
direction of research that has received significant attention in recent years is whether it’s
possible to generalize X-ray results to noncompact domains. We in particular will be pursuing
this direction of research in this paper, in particular generalizing known results for the non-
abelian X-ray transform to a particular class of noncompact manifolds called “asymptotically
hyperbolic spaces.”
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2.2 Asymptotically Hyperbolic Spaces

In this section we introduce the geometry on which our transform will be defined. In this
paper we letM be a compact smooth manifold with smooth boundary of dimension n+1 with
n ≥ 1, whose interior we denote by M . We fix a boundary defining function ρ : M → [0,∞)
(i.e. ρ is smooth, ρ = 0 on and only on ∂M , and dρ|∂M ̸= 0). We also fix an asymptotically
hyperbolic (AH) Riemannian metric g on M , which is defined as a metric such that
the tensor g = ρ2g extends to a smooth Riemannian metric on all of M with |dρ|2ρ2g ≡ 1

along ∂M . The boundary of ∂M is thought of as the “infinity” where the metric g blows
up. Hence recalling that hyperbolic space has constant sectional curvature −1, the known
fact that the sectional curvatures of g tend to −1 as one approaches ∂M explains why such
metrics are given the name “AH.1”

In fact, the Poincaré ball model of hyperbolic space is the archetypical example of an AH
space. It is given by M = {|x| ≤ 1} ⊆ Rn+1, where |x| denotes the Euclidean length, and

g = 4
(dx1)

2
+ . . .+ (dxn+1)

2(
1− |x|2

)2 .

Indeed if one takes the boundary defining function ρ = 1− |x|2, then an elementary exercise
shows that |dρ|2ρ2g ≡ 1 along {|x| = 1}.

Taking our general AH space, we note that we can always construct boundary coordinates
of M of the form (ρ, y1, . . . , yn) in which the metric g takes the following convenient form.
Let ε > 0 be such that the flowout of the gradient of ρ with respect to the (smooth) metric
g = ρ2g is a diffeomorphism from (0, ε)× ∂M onto a collar neighborhood Cε of ∂M . Then,
fixing coordinates (y1, . . . , yn) of ∂M , this flowout provides us boundary coordinates (ρ, yµ)
of M in which the metric takes the form

g =
dρ2 + hµνdy

µdyν

ρ2
. (2.2)

We call such boundary coordinates (ρ, yµ) asymptotic boundary normal coordinates.
We will often assume that our boundary coordinates are in this form because several results
that we cite from [14] are only stated in such coordinates. However, assuming this extra
assumption on the coordinates will not cause us any issues.

By Proposition 1.8 in [29], AH spaces are complete. Furthermore, in some cases we
will assume that g is also nontrapping which means that for any complete g-geodesic
γ : (−∞,∞) → M , lim inft→±∞ ρ(γ(t)) = 0. Intuitively speaking, this condition requires
that γ eventually “escapes to infinity.”

2.3 Results

We now state our results. As mentioned in Section 2.2 above we assume in this paper that(
M ⊆ M, g

)
is an AH space and that ρ is a boundary defining function. Throughout this

1More generally, the sectional curvatures approaches −|dρ|2 restricted to the boundary - see [29] for a
precise statement.
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paper we also assume that we have a smooth complex d-dimensional vector bundle E over
M equipped with a smooth Hermitian inner product ⟨·, ·⟩E . Moreover, we assume that we
have a smooth section of the endomorphism bundle Φ : M → EndSkE that is skew-Hermitian
with respect to ⟨·, ·⟩E (i.e. ⟨Φu, v⟩E = −⟨u,Φv⟩E). Lastly, we assume that we have a unitary
smooth connection ∇E in E over M with respect to ⟨·, ·⟩E - meaning that

V ⟨u, v⟩E = ⟨∇E
V u, v⟩E + ⟨u,∇E

V v⟩E ,

when V is any smooth vector field over M and u, v are any smooth sections of E .
Take any unit-speed complete geodesic γ : (−∞,∞) → M such that lim inft→±∞ ρ(γ(t)) =

0. It follows from Lemma 2.3 in [14] that the limit of γ(t) in M exists as t → ±∞. The
analog of the (2.1) that we will be considering is the following initial value problem for a
section u : (−∞,∞) → E :

∇E
γ̇(t)u(t) + Φ(γ(t))u(t) = 0, lim

t→−∞
u(t) = e, (2.3)

where e is any element in Ex0 where x0 ∈ ∂M is the limit of γ(t) as t → −∞. The data
point that we “record” is

lim
t→∞

u(t). (2.4)

The question that we are interested then becomes whether we can recover Φ and ∇E from
the data recorded for all such possible pairs γ and e.

A bit of vocabulary: (2.3) is a type of differential equation called a transport equation,
and Φ is called a Higgs field. Going from the pair

(
∇E ,Φ

)
to the map that takes every

(γ, e) as above to its associated data (2.4) is called the non-abelian X-ray transform, of
which we give a more precise definition in Section 2.5 below.

To make rigorous sense of our problem however, we need to establish the well-definedness
of the solution to (2.3) and the data (2.4). Considering that we’re making use of the values
of the solution to (2.3) at plus or minus infinities, we accomplish this by imposing a decay
condition on Φ. The following is our main existence lemma:

Lemma 2.5. Suppose that Φ ∈ ρC∞(M ; EndSkE
)
and that γ : (−∞,∞) → M is a complete

geodesic such that lim inft→±∞ ρ(γ(t)) = 0. Then for any e ∈ Ex0 where x0 = limt→−∞ γ(t) ∈
∂M , the solution to (2.3) exists and so does the limit (2.4).

For future use, we remark that the above lemma and its proof work equally well if one
changes “t → ±∞” to “t → ∓∞” in its statement and in (2.3) and (2.4).

Before we state our main result, we establish a way of talking about the decay regularity
of the connection ∇E :

Definition 2.6. If N ≥ 0 is an integer, we say that the “connection symbols of ∇E are in
ρNC∞(M) in any boundary coordinates (of M) and frame (for E)” if the following holds.

For any boundary coordinates (xi) of M and any frame (bk) of E over these coordinates’
domain, the connection symbols EΓk

ij in the expression

∇E
vu = EΓk

ijv
iukbk

satisfy EΓk
ij ∈ ρNC∞(M), where vi are the components of v with respect to (∂/∂xi) and uk are

the components of u with respect to bk.
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As we mentioned earlier, the answer to our main problem is that we cannot recover the
connection and Higgs field from the data (2.4) because such data can come from two distinct

pairs
(
∇E ,Φ

)
and

(
∇̃E , Φ̃

)
. However if that is the case, the two pairs

(
∇E ,Φ

)
and

(
∇̃E , Φ̃

)
are related by a well understood gauge relation. The following is our main result on the
matter. To state it, we use the regularity spaces Rk(SM ; π∗E) and the notion of nontrivial
twisted conformal Killing tensor fields (CKTs for short) which are defined in Section 5.1 and
at the end of Section 5.3 respectively. Their role of the latter are to allow us to formulate a
technical assumption the connections that we need to make the vertical Fourier analysis in
the proof to work. To state the regularity conclusion at the end, we also use the unit tangent

bundle SM =
{
v ∈ TM : |v|g = 1

}
with projection map π : SM → M and the notion of

pullback bundles “π∗ . . .” (see Section 4.5 below).

Theorem 2.7. Assume that (M, g) is nontrapping and that the sectional curvatures of g
are negative. There exists an integer N0 ≥ 0 big enough dependent only on (M, g) such
that the following holds. Suppose that Φ ∈ ρN0+1C∞(M ; EndSkE

)
and that the connection

symbols of ∇E are in ρN0C∞(M) in any boundary coordinates and frame (in the sense of

Definition 2.6), and that we have another pair Φ̃ and ∇̃E satisfying the same conditions.

Suppose also that neither ∇ and ∇̃ have nontrivial twisted CKTs in R3(SM ; π∗E). Lastly,
suppose that the data (2.4) for all possible γ and e as above are the same for (2.3), and (2.3)

with Φ and ∇E replaced by Φ̃ and ∇̃E respectively. Then there exists an everywhere invertible
Q ∈ C0

(
M ; End E

)
∩ C∞(M ; End E|M) such that Q|∂M = id and over M satisfies

∇̃E = Q−1∇EQ, Φ̃ = Q−1ΦQ. (2.8)

Furthermore, (Q− id) ∈ R3(SM ; π∗ End E) when Q− id is lifted from M to SM by setting
(Q− id)(v) = (Q− id)(x) for any v ∈ SxM using the canonical identification (π∗ End E)v ∼=
(End E)x.

Remark 2.9. The notation ∇̃E = Q−1∇EQ means

∇̃E
vu = Q−1∇E

v (Qu)

for any tangent vector v ∈ TM and any section u ∈ C∞(M ; E
)
. The equations (2.8) are

called the gauge relation between the pairs
(
∇E ,Φ

)
and

(
∇̃E , Φ̃

)
, and we will provide

intuition below for where it comes from.

The natural question arises of what the value of N0 is in the above theorem that deter-
mines the decay rate required of both the Higgs fields (e.g. Φ) and the connection symbols
of the connections (e.g. of ∇E). We do not attempt to answer this question or to prove an
upper bound. In this paper we prove that it only depends on the geometry of the space
(M, g). Its size comes up when proving the regularity theorem for the transport equation,
and in particular we will need it to be big enough so that the decay rate of Φ and the con-
nection symbols will overpower the growth of the derivatives of the geodesic flow. Since the
latter are difficult to compute, albeit perhaps in some special cases such as the hyperbolic
space, our approach does not indicate exactly how big N0 needs to be for the proof to work.
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We point out that in the special case of when the connection is known and has zero
curvature (see Section 4.6 below for the latter), then it is possible to recover the Higgs
field. Furthermore, in this case we can also drop the assumption about the nonexistence of
twisted CKTs with suitable regularity because we’ll get it for free from the zero-curvature
assumption. Here is the precise statement:

Corollary 2.10. Assume that (M, g) is nontrapping, the sectional curvatures of g are neg-
ative, and that the curvature of ∇E is zero everywhere. There exists an integer N0 ≥ 0 big
enough dependent only on (M, g) such that the following holds. Suppose that the connection
symbols of ∇E are in ρN0C∞(M) in any boundary coordinates and frame (in the sense of

Definition 2.6). Suppose also that Φ, Φ̃ ∈ ρN0+1C∞(M ; EndSkE
)
are such that the data (2.4)

for all possible γ and e as above are the same for (2.3), and (2.3) with Φ replaced by Φ̃.

Then Φ = Φ̃.

A simple example of when the corollary applies is if M is a subset of Rn+1, E = M ×Cd

is the trivial bundle whose sections we write as column vectors, and the connection ∇E is
simply given by ∇E

vu =
[
v(u1), . . . , v

(
ud
)]
.

We end this section with discussion on intuition and outline of the proofs. The relation
(2.8) may look mysterious at first, so let us give intuition for it. The proof of Theorem
2.7 essentially begins with taking (2.3) and rewriting it in terms of endomorphism fields
U : R → End E in a way that it encodes the same data:

∇En
γ̇(t)U(t) + Φ(γ(t))U(t) = 0, lim

t→−∞
U(t) = id, (2.11)

where “∇En” is a natural connection on the space of endomorphism fields End E . Then we
ask the following question. Suppose that we have a connection ∇E , Higgs field Φ, and the
data (2.4) that it generates as above. How can we “come up” with another pair ∇̃E and Φ̃
that generates the same data set? To do this, we take an arbitrary endomorphism field Q
and manipulate the above equation as follows:

∇En
γ̇

(
QQ−1U

)
+ Φ

(
QQ−1U

)
= 0, since QQ−1 = id,

∇En
γ̇ (Q)Q−1U +Q∇En

γ̇

(
Q−1U

)
+ Φ

(
QQ−1U

)
= 0, product rule,

Q−1∇En
γ̇ (Q)Ũ +∇En

γ̇ Ũ +
(
Q−1ΦQ

)
Ũ = 0, multiply by Q−1 and set Ũ = Q−1U,

∇̃En
v Ũ + Φ̃Ũ = 0,

where in the last step we set ∇̃En
v Ũ := ∇En

v Ũ + Q−1∇En
v (Q)Ũ and Φ̃ := Q−1ΦQ. It’s quick

to see that ∇̃En
v and Φ̃ will generate the same data set (2.4) if Q|∂M = id and, that this

Q satisfies (2.8). The main point of Theorem 2.7 is that this is the only way that we can

produce another pair ∇̃E and Φ̃ with the same data set when the Higgs fields are skew
symmetric. This example is illustrative in the sense that from the above we see that the
gauge matrix Q is given by

Q = UŨ−1. (2.12)

In particular, the theorem is proved by taking the solution U to (2.11) and the solution Ũ

when ∇E and Φ are replaced by ∇̃E and Φ̃ respectively, and showing that (2.12) satisfies the
desired gauge relation (2.8).
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To elaborate more on the outline of the proof, we will show that Q−id satisfies a transport
equation of the specific form

∇π∗En
X W +ΨW = f (2.13)

on the sphere bundle SM where X is the geodesic vector field (c.f. (5.83) below). The
right-hand side f will be sufficiently regular at infinity and have Fourier modes of order
no bigger than one with respect to the vertical Laplacian. In Section 5.4 we will prove
a regularity theorem for transport equations that will imply that the solutions W is also
sufficiently regular at infinity. In Section 5.3 we will conduct a Fourier study of transport
equations that, combined with the just mentioned result, will imply that W , and hence Q,
have Fourier degree zero (i.e. are of the form C∞(M ; End E

)
). From there it will quickly

follow that Q satisfies the conclusions in Theorem 2.7.
One of the key steps in our investigation will be to generalize an identity called the

“Pestov identity” to vector bundles over AH spaces (i.e. Theorem 5.7 below). This is similar
to the Pestov identity for scalar functions that was generalized to nontrapping AH spaces
in [14] (see bottom of page 2892 there) which the authors accomplished by also generalizing
Santaló’s formula to AH spaces which required the additional assumption that the manifold
is nontrapping. We will take a different approach which will allow us to not assume that the
manifold nontrapping to prove this intermediate step. Of course, this will be more than we
need since in our final result Theorem 2.7 we do assume that (M, g) is nontrapping.

Another key feature of this paper is the formulation of regularity spaces to which solu-
tions of transport equations over SM of the form (2.13) belong to and to which we can apply
vertical differential operators while maintaining sufficient regularity at infinity. We’ve chosen
the regularity spaces Rk that we introduce in Section 5.1 below which will play a similar
role to Sobolev spaces in our paper. The approach that we take to study the existence and
regularity of solutions to transport equations (see Proposition 5.54) is to embed SM as a
subset of the b-cosphere bundle bS∗M and the 0-cosphere bundle 0S∗M (defined in Section
4.2). The bundle bS∗M provides a natural setting to prove the existence of solutions to trans-
port equations with boundary conditions at infinity due to the nice behavior of the geodesic
vector field X at the boundary ∂bS∗M . The bundle 0S∗M on the other hand provides a
convenient domain to prove the regularity of solutions at infinity due to its compactness.

2.4 Existence of Examples

Here we address the question of the existence of manifolds (M, g) and connections ∇E that
satisfy the assumptions of our main results Theorem 2.7 and Corollary 2.10. The existence of
a nontrapping AH space (M, g) with negative sectional curvature is provided by the Poincaré
ball model. More examples can be produced by (smoothly) deforming the metric slightly in
small enough regions; we provide a brief argument for this.

Suppose that our AH space (M, g) is nontrapping and has negative sectional curvature.
It’s clear that if one takes any open U ⊆ M whose closure is compact and contained in
the domain of local coordinates, then small enough deformations of the metric g over U
with respect to the coordinates’ C2-norm will preserve its negative curvature. So, let us
demonstrate that if this region and deformation are small enough, then we can also preserve
the nontrapping property of (M, g). Taking our boundary defining function ρ, it follows
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from Lemma 2.3 in [14] that there exists an ε > 0 such that if a g-geodesic γ makes its way
into the region {ρ < ε} at some time t0, then it will stay in {ρ < ε} for all t > t0 and will
escape to infinity (i.e. lim inft→∞ ρ(γ(t)) = 0). Now, let us suppose that our U above is
outside of this region: U ⊆ {ρ ≥ ε}. Let θg be the flow of the geodesic vector field Xg over
TM (we wrote “g” here for emphasis). The continuous dependence of solutions to ordinary
differential equations on parameters (e.g. see Theorem 7.4 of Chapter 1 in [5]) implies that
the map θg depends continuously on the values of g and its first and second order partials
in U . By assumption g is nontrapping, and hence all of its geodesics coming out of U will
eventually make their way to {ρ < ε} and escape to infinity. If we make U precompact in
coordinates, it’s not hard to see then that small enough deformations of the metric g over
U with respect to the C2-norm will also satisfy that all of their geodesics coming out of U
will eventually make their way to {ρ < ε}, and hence such deformations will be nontrapping.
This proves our claim.

Finally, the following result address the question of the existence of connections ∇E on
such AH spaces that satisfy the assumption of the nonexistence of nontrivial twisted CKTs
in R3(SM ; π∗E). Similar results can be found in [39, Corollary 3.6] and [7, Theorem 1.6].
We refer the reader to Section 4.6 for the definition of the curvature operator F E of ∇E .

Theorem 2.14. Assume that (M, g) is nontrapping and that the sectional curvatures of g
are negative. Then the sectional curvatures are bounded above by −κ for some κ > 0. For
any connection ∇E whose curvature norm satisfies

∥∥F E
∥∥
L∞ ≤ κ

√
n, there are no nontrivial

twisted CKTs in R3(SM ; π∗E).
Similar to the remark made after Corollary 2.10, an example of when this lemma applies

is ifM is a subset of Rn+1, E = M×Cd is the trivial bundle whose sections we write as column
vectors, and the connection ∇E is given by ∇E

vu =
[
v(u1) + EΓ1

ijv
iuj, . . . , v

(
ud
)
+ EΓd

ijv
iuj
]

where the connection symbols EΓk
ij decay fast enough at the boundary (i.e. EΓk

ij ∈ ρN0C∞(M)
for big enough N0 ≥ 0), and such that they and their first partials are small enough so that
the curvature estimate in the above lemma is satisfied.

2.5 Non-Abelian X-Ray Transform

We mention a way to formalize the operator that takes (∇,Φ) to the map taking pairs (γ, e)
as above to (2.4) using concepts that we introduce in Sections 4.1, 4.2, and 4.5 below. We will
not make use of this formulation, and only the material up to (2.15) and the two sentences
afterwards here will be used later in the paper. Throughout this section we assume that
(M, g) is nontrapping, Φ ∈ ρC∞(M ; End E

)
, and that the connection symbols of ∇E are in

C∞(M) in any boundary coordinates and frame (in the sense of Definition 2.6).

Consider the cotangent and b-cotangent bundles T ∗M and bT ∗M respectively, and their
unit cosphere bundles S∗M and bS∗M respectively. Suppose (ρ, y1, . . . , yn) are asymp-
totic boundary normal coordinates of M and consider the frame (dρ/ρ, dy1, . . . , dyn) span-
ning covectors in T ∗M . On page 2865 of [14] the authors remind the reader that this
extends to the boundary to become a smooth frame of bT ∗M and that furthermore if
ζ = η0dρ/ρ + ηµdy

µ ∈ bT ∗M
∣∣
∂M

is over the boundary, then the map

η0
dρ

ρ
+ ηµdy

µ 7−→ η0
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is well defined (i.e. independent of the coordinates (ρ, yµ) that we choose). The boundary
of the unit cosphere bundle bS∗M ⊆ bT ∗M turns out to have the following two components:

∂−
bS∗M =

{
ζ ∈ bT ∗M

∣∣
∂M

: η0 = 1
}

called the “incoming boundary, ”

∂+
bS∗M =

{
ζ ∈ bT ∗M

∣∣
∂M

: η0 = −1
}

called the “outgoing boundary.”

Let π : S∗M → M and πb : bS∗M → M denote the natural projection maps. Recall
that any unit-speed geodesic γ : (−∞,∞) → M is the image under π of an integral curve
σ : (−∞,∞) → S∗M of the geodesic vector field X. Letting Xb denote the pushforward of
X onto bS∗M

∣∣
M

via the canonical identification between T ∗M and bT ∗M
∣∣
M
, we have that

γ is the image under πb of an integral curve σb : (−∞,∞) → bS∗M
∣∣
M

of Xb. It follows from

the proof of Corollary 2.5 in [14] that the limit of any such curve exists in bS∗M :

limt→−∞ σb = ∂−
bS∗M,

limt→∞ σb = ∂+
bS∗M.

(2.15)

Intuitively, the first limit here can be thought of as the “initial velocity” of the geodesic as it
“enters” the AH space at infinity, while the second its “exit velocity” as it “leaves” at infinity.
Conversely, it follows from the same proof that every ζ ∈ ∂−

bS∗M (resp. ζ ∈ ∂+
bS∗M) is

the limit in bS∗M of a unique (up to reparameterization) such curve σb as t → −∞ (resp.
t → ∞).

Hence we may define the map

T (∇
E ,Φ) : π∗E|∂−bS∗M −→ π∗E|∂+bS∗M

as follows. Take any e ∈ π∗E|∂−bS∗M whose base point we denote by ζ ∈ ∂−
bS∗M . Let σb

be an integral curve of Xb with ζ = limt→−∞ σb and let ζexit = limt→∞ σb. Take the geodesic
γ = πb ◦ σb and let u be the solution to (2.3) where we let e also denote the element in Eπb(ζ)

that’s canonically identified to e ∈ (π∗E)ζ . Then we set

T (∇
E ,Φ)(e) = lim

t→∞
u(t)

making the similar canonical identification (π∗E)ζexit = Eπb(ζexit). We point out that this limit
exists by Lemma 2.5, and that the “T” here stands for “transport equation.”

Definition 2.16. Over the set of all
(
∇E ,Φ

)
such that Φ satisfies the decay conditions in

Lemma 2.5 above, the operator (
∇E ,Φ

)
7−→ T (∇

E ,Φ)

is called the non-abelian X-ray transform.

For example, another way to formulate Corollary 2.10 above is that for any g and ∇E

satisfying the conditions there, the non-abelian X-ray transform is injective over the set of
all Higgs field satisfying the decay condition also described there.
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2.6 Prior Research Discussion and Applications

A standard approach for studying injectivity properties of X-ray transforms is via energy
identities that was first introduced in [33]. The type of energy estimate that’s used in this
approach is called the Pestov identity (or Muhometov-Pestov identity) which over the
years has taken many forms as authors apply them in various contexts - see for instance [11],
[38], [41], and [42]. The mentioned paper [11] furthermore explains the connection between
X-ray transform over connections and inverse problems related to the wave equation. Of
recent works, in dimension two the authors of [37] used a Pestov identity to prove solenoidal
injectivity of the X-ray transform over tensors, and in their earlier work [36] they proved a
“Pestov type identity” to study the attenuated ray transform with a connection and Higgs
field.

The paper [39] proceeded to generalize these methods to manifolds of dimensions greater
than two, but it didn’t cover the case of connections. In [16] the authors generalized the setup
in [39] where they studied the X-ray transform for connections and Higgs fields together.
For instance, Theorem 2.7 above was proved in [16] in the case of when (M, g) is a compact
Riemannian manifold, has strictly convex boundary, has negative sectional curvature, the
boundary condition in (2.3) is changed to u(γ(a)) where γ : [a, b] → M is a unit-speed
geodesic traveling between boundary points, and (2.4) is changed to “recording” u(γ(b)). In
this paper we also generalize the Pestov identity proved in [16] to AH spaces, of which a
similar formula also appears in [43].

We mention the early work [1] that studied the injectivity of the X-ray transform for one-
forms. The work of [45] studied injectivity on tensor fields of rank m ≤ 2 for analytic simple
metrics and a generic class of two-dimensional simple metrics, and proved a stability estimate
for the normal operator. Later [44] proved injectivity on two-tensors for all two-dimensional
simple metrics which was then extended to tensors of all rank in [37]. The papers [50] and
[48] proved injectivity for functions and two-tensors respectively on Riemannian manifolds
that admit convex foliations. The paper [15] proved injectivity on tensors of all ranks over
Riemannian manifolds with negative curvature and strictly convex boundary. We mention
that the work [4] characterized the range of the non-abelian X-ray transform on simple
surfaces in terms of boundary quantities and that [3] and [31] proved stability estimates for
it over Higgs fields. Microlocal techniques have also been applied to the study of the X-ray
transform in the presence of conjugate points - we refer the reader to the works [21], [32],
[46], and [47].

In the noncompact realm, injectivity for the scalar X-ray transform over hyperbolic spaces
was proved in [19], and inversion formulas are given in [2] and [18]. In [25] the authors proved
analogous injectivity over Cartan-Hadamard manifolds and in [26] their results were extended
to higher dimensions and tensor fields. The paper [35] proved a gauge equivalence for the
X-ray transform for connections on Euclidean space assuming a bound on the size of the
connection in dimension two.

AH manifolds have gained interest in the past two decades partly due to their role in
physics such as the AdS/CFT conjecture made in [27]. The work [6] for instance describes
the role of integral geometry in the AdS/CFT correspondence. In this setting, the paper [14]
proved injectivity of the X-ray transform for tensor of all orders on asymptotically hyperbolic
spaces. On simple AH manifolds, the work [9] generalized their result for the scalar X-ray
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transform by proving a stability estimate for the normal operator. Analogous to the local
problem studied in [50], [10] proved a local injectivity result for the scalar X-ray transform
on AH spaces.

Regarding applications of the non-abelian X-ray transform, we also mention its appear-
ance in the theory of solitons when studying the Bogomolny equations in dimensions 2 + 1
- see [28] and [51] for details. The paper [22] describes its applications to coherent quantum
tomography. For a survey of the non-abelian X-ray transform and to read more about its
applications, we refer the reader to [34].
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3 Well-Definedness of the Non-abelian X-Ray Trans-

form

In this section we prove Lemma 2.5. Take any complete geodesic γ : (−∞,∞) → M and
any e ∈ Ex0 where x0 is the limit of γ(t) in M as t → −∞. Our plan is to

1. prove the existence and uniqueness of the solution to the initial value problem (2.3),
on an interval of the form (−∞, t0] for some t0 ∈ R,

2. argue the existence and uniqueness on the rest of the interval [t0,∞) (and hence ev-
erywhere),

3. and finally prove that the limit (2.4) exists.

We begin with 1), which we prove by mapping the infinite interval to a bounded one
and then applying standard existence and uniqueness results of ordinary differential equa-
tions (ODEs). Let (ρ, y1, . . . , yn) = (xi) be asymptotic boundary normal coordinates of M
containing x0 in their domain and let (bj) be a frame for E over the same domain. Let
EΓk

ij denote the connection symbols of ∇E with respect to (∂/∂xi) and (bk). Let t0 ∈ R be a
time such that the image of γ is contained in these coordinates for all times t ∈ (−∞, t0].
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Then, writing u = ukbk, in these coordinates for t ∈ (−∞, t0] we have that (2.3) becomes
the following system of ODEs

duk

dt
+ EΓk

ij γ̇
iuj + Φk

i u
i = 0, lim

t→−∞
uk = ek, k ∈ {1, . . . , d}, (3.1)

Let’s look at the growth rate of the γ̇i’s. By definition, g = g/ρ2 for some smooth metric g
on M . Since γ has a constant speed one, we have that

gij γ̇
iγ̇j = ρ2.

Clearly the image γ(−∞, t0] is a compact subset of our coordinates’ domain, and so the
matrix in the bilinear form v 7→ gijv

ivj has a minimum positive eigenvalue along this set.
Hence from the above we get that there exists a C > 0 such that each |γ̇i| ≤ Cρ.

Now, take the diffeomorphism h : (−π/2, s0] → (−∞, t0] given by h(s) = tan s. Making
the change of variables t = h(s) in (3.1) gives that for each k ∈ {1, . . . , d}

duk

ds
+ EΓk

ij γ̇
idh

ds
uj + Φk

i

dh

ds
ui = 0 on s ∈ (−π/2, s0), uk(−π/2) = ek.

In other words, the existence and uniqueness of a continuous solution u to this system of
initial value problems will prove 1). This in turn will follow from standard results on linear
ODEs (see for instance [5]) if we show that the above coefficients EΓk

ij γ̇
ih′ and Φk

i h
′ extend

continuously to s = −π/2.
It follows from Lemma 2.3 in [14] (specifically (2.11) there) that there exists a constant

C ′ > 0 such that for t ∈ (−∞, t0],

ρ ◦ γ(t) < C ′et. (3.2)

Since by assumption EΓk
ij ∈ C∞(M), |γ̇i| ≤ Cρ, and Φk

i ∈ ρC∞(M), we have that there

exists a constant C ′′ > 0 such that for s ∈ (−π/2, s0] both
∣∣EΓk

ij γ̇
ih′
∣∣ and ∣∣Φk

i h
′
∣∣ are bounded

above by
C ′′(ρ ◦ γ(h(s)))h′(s) ≤ C ′′C ′etan (s) sec2 (s) → 0 as s → −π/2+

Hence indeed EΓk
ij γ̇

ih′ and Φk
i h

′ extend continuously to s = −π/2.
Item 2) follows by applying standard existence and uniqueness theory of ODEs in coor-

dinates and frames of E as one travels along the geodesic. Item 3) is proved similarly to 1)
except one uses Lemma 2.3 in [14] in forward time (for instance, the et in (3.2) will change
to e−t).

■

4 Geometric Preliminaries

4.1 The b and 0 Cotangent Bundles

In this section we introduce the b and 0 cotangent bundles. We will only state their definitions
and properties, referring the reader to Section 2.2 in [30] for more details. We begin by
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recalling that lowering and raising an index with respect to g provides a bundle isomorphism
between the tangent and cotangent bundles over the interior:

♭ : TM −→ T ∗M, ♯ : T ∗M −→ TM.

The first bundle that we introduce is the b-tangent bundle “bTM ,” which comes with a
canonical smooth map F : bTM → TM that has the following two properties:

1. F is a bijection between smooth sections of bTM and smooth sections of TM that are
tangent to the boundary ∂M .

2. For any fixed point x ∈ M , F restricts to a linear homomorphism Fx : bTxM → TxM
that is also an isomorphism when x is in the interior M .

The second is the 0-tangent bundle “0TM ,” which is defined similarly as coming with
a smooth map H : 0TM → TM that has the following two properties:

1. H is a bijection between smooth sections of 0TM and smooth sections of TM that
vanish at the boundary ∂M .

2. For any fixed point x ∈ M , H restricts to a linear homomorphism Hx : 0TxM → TxM
that is also an isomorphism when x is in the interior M .

Of more importance to us will be the dual bundles bT ∗M and 0T ∗M , which are called
the b and 0 cotangent bundles respectively. They naturally generate pullback maps
F ∗ : T ∗M → bT ∗M and H∗ : T ∗M → 0T ∗M which are also bundle homomorphisms that are
isomorphisms on fibers over the interior M (c.f. points 2) above)

Remark 4.1. Considering that ♭, ♯, F,H, F ∗, H∗ are all isomorphisms (on fibers) over the
interior M , we will often identify two points in TM , T ∗M , bTM

∣∣
M
, bT ∗M

∣∣
M
, 0TM

∣∣
M
, and

0T ∗M
∣∣
M

as being the same if it’s possible to go from one to the other by a composition of
the “canonical identification” maps mentioned above.

We mention important frames for the b and 0 cotangent bundles near the boundary ∂M .
Suppose (ρ, y1, . . . , yn) = (xi) are boundary coordinates of M . Then it turns out that

F ∗
(
dρ

ρ

)
, F ∗(dy1), . . . , F ∗(dyn)

H∗
(
dx0

ρ

)
, . . . , H∗

(
dxn

ρ

)
extend smoothly to the boundary ∂M to be frames of bT ∗M and 0T ∗M respectively. It’s
standard to abuse notation by simply writing that dρ/ρ, dy1, . . . , dyn and dx0/ρ, . . . , dxn/ρ are
frames for bT ∗M and 0T ∗M respectively. Hence we often write coordinates of bT ∗M and
0T ∗M as η0dρ/ρ + ηµdy

µ 7→ (ρ, yµ, η0, ηµ) and ηidx
i/ρ 7→ (xi, ηi) respectively. For example,

if we consider the coordinates vi∂/∂xi 7→ (xi, vi) of TM , then the canonical identification
H∗ ◦ ♭ : TM |M → 0T ∗M is given by vi∂/∂xi 7→ (ρgijv

i)dxj/ρ.
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4.2 The b and 0 Cosphere Bundles

Suppose (ρ, y1, . . . , yn) are asymptotic boundary normal coordinates of M as described in
Section 2.2 above. We know that T ∗M has a fiber metric g. Thus the maps F ∗ : T ∗M →
bT ∗M and H∗ : T ∗M → 0T ∗M push g to become fiber metrics on bT ∗M

∣∣
M

and 0T ∗M
∣∣
M
,

which we denote by gb and g0 respectively. If we consider the boundary frames for bT ∗M
and 0T ∗M introduced at the end of Section 4.1 above, we have that these metrics are given
by (c.f. (2.2)) ∣∣∣η0 dρρ + ηµdy

µ
∣∣∣2
gb
= η20 + ρ2hµνηµην ,∣∣∣η0 dρρ + ηµ

dyµ

ρ

∣∣∣2
g0

= η20 + hµνηµην ,
(4.2)

where (hµν) denotes the inverse matrix of (hµν). From here we see that both gb and g0 extend
smoothly to all of bT ∗M and 0T ∗M respectively. This allows us to define the unit cosphere
bundles in bT ∗M and 0T ∗M :

bS∗M =
{
ζ ∈ bT ∗M : |ζ|bg = 1

}
,

0S∗M =
{
ζ ∈ bT ∗M :

∣∣ζ∣∣0g = 1
}
.

We note that in [14], they use the notation “S∗M” for what we denote by “bS∗M .” We let
πb :

bS∗M → M and π0 :
0S∗M → M denote the natural projection maps.

Remark 4.3. Similarly to the remark made in Remark 4.1, we will often identify two points
in SM , S∗M , bS∗M , and 0S∗M to be the same if it’s possible to go from one to the other
by a composition of the maps mentioned there.

We point out that it’s easy to see that both bS∗M and 0S∗M are smooth embedded
submanifolds with boundary of bT ∗M and 0T ∗M . We also note that by (4.2), gb degenerates
over ∂M (i.e. stops being positive definite) while g0 does not. In particular this implies that
bS∗M is not compact while 0S∗M is compact.

4.3 Splitting the Tangent Bundle

Next we define a natural Riemannian metric on the tangent space TM , called the Sasaki
metric, generated by g. We recommend that when checking many of the claims below,
to check them above the center of normal coordinates since in many cases the expressions
simplify considerably due to the vanishing of the Christoffel symbols and the first order
partials of g. Consider the tangent bundle’s projection map π : TM → M and its differential
dπ : TTM → TM . There is another natural map between these tangent spaces called the
connection map: K : TTM → TM , which is defined as follows. Take any ω ∈ TvTM and
let α : (a, b) → M be a smooth curve and V : (a, b) → TM a smooth vector field along α
such that (α, V )′(0) = ω. Then we set K(ω) to be the covariant derivative

K(ω) :=
DV

dt
(0).
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To check that this is independent of the α and V that we choose, a quick computation shows
that taking coordinates (xi) of M and the coordinates vi∂/∂xi 7→ (xi, vi) of TM , K is given
by

K

(
αi ∂

∂xi

∣∣∣∣
vi∂/∂xi

+ βi ∂

∂vi

∣∣∣∣
vi∂/∂xi

)
=
(
βk + Γk

ijα
ivj
) ∂

∂xk
,

where Γk
ij are the Christoffel symbols of g with respect to (∂/∂xi). Next, an easy exercise

shows that the kernels of dπ and K partition the tangent bundle’s tangent space at any
v ∈ TxM :

TvTM = H̃v ⊕ Ṽv (4.4)

where
H̃v = ker K|TvTM and Ṽv = ker dπ|TvTM .

The “Ṽ” stands for “vertical” because it can be imagined as being a tangent subspace at v
standing vertically above x, while the “H̃” stands for “horizontal.” As one can check, both
spaces are canonically identified (i.e. isomorphically mapped to) with TxM by the restricted
maps

dπ : H̃v −→ TxM,

K : Ṽv −→ TxM.

With this splitting in hand, the Sasaki metric G on TM is defined as follows: for any
ω, ς ∈ TvTM ,

⟨ω, ς⟩G = ⟨dπ(ω), dπ(ς)⟩g + ⟨K(ω),K(ς)⟩g.

It follows immediately that (4.4) is an orthogonal decomposition with respect to G.
We will only work with unit speed geodesics and hence most of our work will be done on

the unit sphere bundle

SM =
{
v ∈ TM : |v|g = 1

}
.

With a choice of unit normal, the Sasaki metric on TM induces a metric on SM which we’ll
also call the Sasaki metric and denote by G, relying on context to differentiate the two. It’s
not hard to see that at any v ∈ SM the tangent space of SM splits into the form

TvSM = H̃v ⊕ Vv

where Vv is the subspace of Ṽv that’s G-perpendicular to the unit normals to the “sphere”
SxM above x. Now, take the geodesic vector field X over SM . It’s easy to check that X
always lies in H̃v for all v ∈ SM and hence we obtain the splitting

TvSM = (RXv)⊕Hv ⊕ Vv (4.5)

where Hv denotes the orthogonal complement of RXv in H̃v. For future use, we point out
that restrictions of dπ and K map

dπ : Hv −→
{
v⊥
}
⊆ TxM,

K : Vv −→
{
v⊥
}
⊆ TxM.

(4.6)
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4.4 Integration on the (Co)Sphere Bundle

Since SM has a Riemannian metric G, it has a Riemannian density and hence the Lebesgue
measure generated by it (the latter two are independent of orientation). Hence we may
perform Lebesgue integration on SM with respect to G. If (xi) are local coordinates of M ,
(ri) is a frame of TM , and we take the coordinates viri 7→ (xi, vi) of TM , then it turns out
that the integral of any function f ∈ L1(SM) supported over our coordinates is given by the
iterated integral∫

f =

∫
f
(
x1, . . . , xn, v1, . . . , vn

)
dSx

(
v1, . . . , vn

)√
det gdx0 . . . dxn, (4.7)

where (v1, . . . , vn) are on the sphere |v|2g = 1 and dSx is the Lebesgue measure on SxM
induced by TxM with inner product gx. We refer the reader to Section 3.6.2 in [40] for a
proof. We point out that the (total) measure of SxM is the Euclidean surface area of the
Euclidean n-sphere for all x ∈ M , which for instance follows by looking at the center of
normal coordinates.

One example of the usefulness of this observation is that since in boundary coordinates√
det g is ρ−(n+1) times “something smooth” on M we have that any function of the form

ρn+1L∞(SM) is integrable.

4.5 Splitting the Connection Over the Unit Tangent Bundle

Let us take the natural projection map π : SM → M . The pullback (vector) bundle π∗E
over SM is defined as the set obtained by taking any point x ∈ M and attaching a copy of
Ex to every point of the sphere SxM above it. Formally,

π∗E :=
{
(v, e) : v ∈ SM, e ∈ Eπ(v)

}
.

We often canonically identify (v, e) ∼= e for fixed v. To every fiber (π∗E)v we impose the
inner product space structure of (Ex, ⟨·, ·⟩Ex). If (bi) is a smooth frame for E , then we turn
π∗E into a smooth vector bundle over SM (with smooth inner product) by declaring2 (π∗bi)
to be smooth frames for π∗E . The pullback connection ∇π∗E = π∗∇E in π∗E is defined to be
the unique connection so that if ω ∈ TSM and u0 : M → E is smooth, then

∇π∗E
ω (π∗u0) = π∗(∇E

dπ(ω)u0

)
. (4.8)

For a smooth section u = ujπ∗bj : SM → π∗E , the pullback connection is explicitly given by

∇π∗E
ω u = ω

(
uj
)
π∗bj + ujπ∗(∇E

dπ(ω)bj
)
. (4.9)

Remark 4.10. In the same way we can define the pullback bundles π∗
bE and π∗

0E on
bS∗M and 0S∗M respectively. In fact, over the interior we will often identify a section
u ∈ C∞(SM ; π∗E) as an element of C∞( bS∗M

∣∣
M
, π∗

bE|M
)
and C∞(0S∗M

∣∣
M
, π∗

0E|M
)
via

the natural identification (π∗e)v
∼= (π∗

be)ζ
∼= (π∗

0e)ζ
∼= e where v ∼= ζ ∼= ζ are identified points

on SxM , 0S∗
xM , and bS∗

xM respectively.

2Applying π∗ to bi means “bi ◦ π.”
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Having defined the splitting of the unit tangent bundle in (4.5), we now define a natural
splitting of the connection of any section u : SM → π∗E in the following form:

∇π∗Eu =
X

∇π∗Eu+
h

∇π∗Eu+
v

∇π∗Eu. (4.11)

Let’s start by defining
h

∇π∗Eu. We have that the full connection ∇π∗Eu is a tensor of the
form C∞(SM ;T ∗SM ⊗ π∗E). Now, consider the same tensor but with the first index raised

with respect to G:
[
∇π∗Eu

]♯ ∈ C∞(SM ;TSM ⊗ π∗E). Next, it’s an easy exercise to check
that there exists a unique map

PH : C∞(SM ;TSM ⊗ π∗E) −→ C∞(SM ;TSM ⊗ π∗E) (4.12)

that satisfies
PH(ω ⊗ e) = (projHω)⊗ e

where projH : TvTM → H ⊆ TvTM is the orthogonal projection map onto H. We then
define

h

∇π∗Eu := PH

([
∇π∗Eu

]♯ )
.

We define
X

∇π∗Eu and
v

∇π∗Eu in the same way but instead use analogous map PRX , projRX

and PV , projV respectively. However instead of using
X

∇π∗Eu, it’s more common to use the
related quantity

Xu := ∇π∗E
X u. (4.13)

The quantities Xu and
X

∇π∗Eu are equivalent in the sense that knowing one allows you to
compute the other. Hence we often record the decomposition (4.11) instead as

∇π∗Eu =

(
Xu,

h

∇π∗Eu,
v

∇π∗Eu

)
. (4.14)

The second two components are called the horizontal and vertical derivatives of u re-
spectively. However, it’s convenient to change the interpretation of the latter two derivatives
as follows.

We define the bundle N over SM by attaching to every v ∈ SxM a copy of
{
v⊥
}
⊆ TxM .

Formally,
N =

{
(v, w) : v ∈ SxM where x ∈ M and w ∈

{
v⊥
}}

.

To every fiber Nv we impose the inner product space structure of
({

v⊥
}
, gx
)
which we denote

by “⟨·, ·⟩Nv .” It’s an easy exercise to show that this is a smooth subbundle of π∗TM . By
(4.6) we can think of dπ and K as mapping

dπ : Hv −→ Nv,
K : Vv −→ Nv.

(4.15)

Hence at every v ∈ TM , the maps PH and PV above map into Hv ⊗ (π∗E)v and Vv ⊗ (π∗E)v
respectively. Thus using the identification (4.15) we can think of the horizontal and vertical
derivatives as both being N ⊗ π∗E-valued:

h

∇π∗Eu ∈ C∞(SM ;N ⊗ π∗E) and
v

∇π∗Eu ∈ C∞(SM ;N ⊗ π∗E).

18



We mention that we assign the natural inner product on N ⊗ π∗E (i.e. the unique one
satisfying ⟨z ⊗ e, z′ ⊗ e′⟩N⊗π∗E = ⟨z, z′⟩N ⊗ ⟨e, e′⟩π∗E). The reason that this interpretation
is useful is that it becomes natural to apply well-known adjoint formulas for the horizontal
and vertical derivatives over this space. In particular, it turns out that there are differential
operators

h

divπ
∗E : C∞(SM ;N ⊗ π∗E) −→ C∞(SM ; π∗E),

v

divπ
∗E : C∞(SM ;N ⊗ π∗E) −→ C∞(SM ; π∗E),

(4.16)

with the property that if u ∈ C∞(SM ; π∗E) and v ∈ C∞(SM ;N ⊗ π∗E) are such that at
least one of them is of compact support, then

⟨
h

∇π∗Eu, v⟩L2(N⊗π∗E) = −⟨u,
h

divπ
∗Ev⟩L2(π∗E) and ⟨

v

∇π∗Eu, v⟩L2(N⊗π∗E) = −⟨u,
v

divπ
∗Ev⟩L2(π∗E).

We will discuss this in more detail in Section 5.2 below. The operators in (4.16) are naturally
called the horizontal and vertical divergences respectively.

For future reference, we end this section with two more definitions. First, we define the
differential operator

X : C∞(SM ;N ⊗ π∗E) → C∞(SM ;N ⊗ π∗E),

differentiated from the X introduced in (4.13) by context, to be the unique operator satisfying
that for any Z ⊗ b ∈ C∞(SM ;N ⊗ π∗E),

X(Z ⊗ b) = X(Z)⊗ b+ Z ⊗ X(b), (4.17)

where X(Z) at any point v ∈ SM denotes the covariant derivative of Z along the unit speed
geodesic γ with initial velocity v at time t = 0:

X(Z)|v =
DγZ

dt
(0). (4.18)

Since Z⊥γ̇ implies that DγZ/dt ⊥γ̇, we see that X indeed maps into smooth sections of N⊗π∗E
(i.e. not simply into π∗TM ⊗ π∗E).

4.6 Curvatures

We now cover the curvature operators of E , π∗E , and simply the metric g. We start with
the first one. The operator ∇E maps between the following spaces of sections:

∇E : C∞(M ; E
)
−→ C∞(M ;T ∗M ⊗ E

)
Let Λk

(
T ∗M

)
denote the bundle of covariant alternating k-tensors and let

C∞(M ; Λk
(
T ∗M

)
⊗ E

)
denote the space of smooth sections of T ∗M ⊗ . . . ⊗ T ∗M ⊗ E that are alternating in their
first k arguments. The operators

∇E : C∞(M ; Λk
(
T ∗M

)
⊗ E

)
−→ C∞(M ; Λk+1

(
T ∗M

)
⊗ E

)
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are defined to be the unique operators that satisfy that for any θ ∈ C∞(M ; Λk
(
T ∗M

))
and

any u ∈ C∞(M ; E)
∇E(θ ⊗ u) = dθ ⊗ u+ (−1)kθ ∧∇Eu,

where θ ∧∇Eu denotes the wedge-like product:(
θ ∧∇Eu

)
(v1, . . . , vk+1, l) =

1

k!1!

∑
σ∈Sk+1

θ
(
vσ(1), . . . , vσ(k)

)
∇Eu

(
vσ(k+1), l

)
,

where Sk+1 denotes the set of permutations of k + 1 elements.
The curvature of ∇E is defined to be

fE := ∇E ◦ ∇E : C∞(M ; E
)
−→ C∞(M ; Λ2

(
T ∗M

)
⊗ E

)
.

A straightforward computation shows that in any coordinates (xi) of M and any frame (bi)
of E , the curvature fE applied to any smooth section u ∈ C∞(M ; E

)
is given by

fEu = ul

(
∂EΓk

jl

∂xi
− EΓm

il
EΓk

jm − ∂EΓk
il

∂xj
+ EΓm

jl
EΓk

im

)
dxi ⊗ dxj ⊗ bk. (4.19)

where EΓk
ij are the connection symbols of∇E with respect to (∂/∂xi) and (bk). The resemblance

of this tensor to the Riemann curvature tensor is the motivation for the name of fE .
Next we define a curvature operator associated to fE which acts over SM . Notice that

fE can be viewed as a C∞(M ; Λ2
(
T ∗M

)
⊗ E ⊗ E∗) tensor field by thinking of the u in (4.19)

as the fourth argument of fE (i.e. the argument of E∗). Hence it can also be canonically
identified with a map, denoted by the same letter, of the form

fE : C∞(M ;TM
)
× C∞(M ; E

)
−→ C∞(M ;T ∗M ⊗ E

)
.

In our coordinates and frames it is given by the following: if fij
k
l denotes the tensor com-

ponent written out in the parenthesis “(. . .)” in (4.19), then for any x ∈ M , v ∈ TxM , and
e ∈ Ex,

fE
x (v, e) = elfij

k
lv

idxj ⊗ bk. (4.20)

We define the curvature operator associated to fE to be the map

F E : C∞(SM ; π∗E) −→ C∞(SM ;N ⊗ π∗E)

given by the following. For any x ∈ M , v ∈ SxM , and e ∈ (π∗E)v,

F E
v (e) := PN⊗π∗E

([
fE
x (v, e)

]♯ )
. (4.21)

where ♯ raises the first index of fE
x (v, e) and PN⊗π∗E : π∗TM ⊗ π∗E → N ⊗ π∗E denotes

projecting the first component of a tensor product perpendicularly onto the normal bundle
(i.e. π∗TM onto N - c.f. (4.12)).

The last curvature quantity that we want to establish notation for is the ordinary curva-
ture of g. Let

R : C∞(M ;TM)× C∞(M ;TM)× C∞(M ;TM) −→ C∞(M ;TM)
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denote the Riemann curvature endomorphism given by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,

where ∇ is the Levi-Civita connection and [·, ·] is the Lie bracket. Recall that R is multi-
linear over C∞(M) and thus has well-defined restrictions to (TxM)3 → TxM for any fixed
x ∈ M . We define operators, denoted by the same letter,

R : C∞(SM ;N) −→ C∞(SM ;N)

R : C∞(SM ;N ⊗ π∗E) −→ C∞(SM ;N ⊗ π∗E)

given by the following, for any x ∈ M , v ∈ SxM , w ∈ Nv, and e ∈ (π∗E)v,

Rv(w) := Rx(w, v)v and Rv(w ⊗ e) := [Rx(w, v)v]⊗ e.

5 Gauge Equivalence of Connections and Higgs fields

In this section we build the necessary tools to prove Theorem 2.7, and then prove it at the
end.

5.1 The Regularity Spaces

For the majority of this paper we will be working with the solution to a transport equation
over SM . In particular, we will be making use of its L2 norm after we apply several differ-
ential operators to it that extends smoothly to the boundary of the 0-cosphere bundle. For
this reason, we will make use of the following regularity spaces:

Definition 5.1. For any fixed integer k ≥ 0, we define the spaces Rk(SM ; π∗E) and
Rk(SM ;N ⊗ π∗E) of order k to be the spaces of smooth sections u ∈ C∞(SM ; π∗E) and
w ∈ C∞(SM ;N ⊗ π∗E) respectively that satisfy the following.

We say that u ∈ Rk(SM ; π∗E) if for any smooth vector fields V1, ..., Vk ∈ C∞(0S∗M ;T 0S∗M
)

over the 0-cosphere bundle, any frame (bi) of E, and any compact subset K ⊆ dom (bi) ⊆ M ,
u = ujπ∗bj must satisfy that

uj, V1u
j, V2V1u

j, . . . , Vk . . . V1u
j are all in ρ

(n + 1)/2L∞[K]. (5.2)

We say that w ∈ Rk(SM ;N ⊗ π∗E) if for any smooth vector fields V1, ..., Vk ∈ C∞(0S∗M ;T 0S∗M
)
,

any boundary coordinates (ρ, yµ) = (xi) or interior coordinates (xi) of M , any frame (bi) of
E over these coordinates’ domain, w is of the form

w = ρwijπ∗ ∂

∂xi
⊗ π∗bj

(note the ρ in front), and satisfies that for any compact subset K ⊆ dom (xi) ⊆ M ,

wij, V1w
ij, V2V1w

ij, . . . , Vk . . . V1w
ij are all in ρ

(n + 1)/2L∞[K]. (5.3)
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We sometimes omit writing the domain of our space and simply write Rk when either
the domain is of no importance or clear from context. The power “(n+ 1)/2” above is chosen
to ensure that both u and w as above are in L2 - see Remark 5.6 below.

Remark 5.4. We point out that (5.2) and (5.3) only need to be checked in an atlas of M . To

see why, take any pair of coordinates and frames (ρ, yµ) = (xi), (bj) and (ρ, ỹµ) = (x̃i),
(
b̃j

)
as above whose domains intersect. The coefficients αj

i and βj
i in the transformation laws

∂/∂xi = αj
i
∂/∂x̃i and bi = βj

i b̃j will be smooth on M and hence smooth on 0S∗M (when lifted).
Thus αj

i and βj
i will be bounded over any compact subset K of M , and the same thing will

hold if we apply smooth vectors V1, . . . , Vk to them as in the above definition. From here it
quickly follows that (5.2) and (5.3) only need to be checked in an atlas of M .

Remark 5.5. Regarding continuity at infinity, from (5.2) it follows that any element of
Rk(SM ; π∗E) extends continuously to 0S∗M if we identify it as an element of C∞(0S∗M

∣∣
M
, π∗E|M

)
(see Remark 4.10) and set it to be zero on the boundary ∂0S∗M .

Remark 5.6. We make a remark regarding integrability. In Definition 5.1 we have that each
|π∗∂/∂xi|N = |∂/∂xi|g is ρ−1 times something smooth on M (since g is ρ−2 times something

smooth on M). Furthermore, each |π∗bj|π∗E = |bj|E is bounded over K since E is a smooth
bundle over M by our standing assumption. Hence, it follows that both |u|π∗E , |w|N⊗π∗E ∈
ρ(n + 1)/2L∞[K]. Since M is compact and hence can be covered by a finite collection of such
sets K, it follows that R0 ⊆ L2 by the comment made at the end of Section 4.4 above.
Furthermore, it follows straight from the definition that Rk ⊆ Rk′ if k ≥ k′. Hence, Rk ⊆ L2

for all k ≥ 0.

All of the differential operator that we will be using below will have the mapping prop-
erties Rk → Rk−1. Because of this and the properties described in the above remark, the
spaces Rk will play the analogous role in our paper as Sobolev spaces in PDE theory.

5.2 Pestov Identity

In this section we prove the following version of the Pestov Identity with a connection
on asymptotically hyperbolic (AH) spaces. It will be used in the Fourier analysis study of
transport equations.

Theorem 5.7. Suppose that u ∈ R2(SM ; π∗E). Then3∥∥∥∥ v

∇π∗EXu
∥∥∥∥2
L2

=

∥∥∥∥X v

∇π∗Eu

∥∥∥∥2
L2

− ⟨R
v

∇π∗Eu,
v

∇π∗Eu⟩L2 − ⟨F Eu,
v

∇π∗Eu⟩L2 + n∥Xu∥2L2

where L2 stands for L2(SM ;N ⊗ π∗E) in the first four quantities and L2(SM ; π∗E) in the
last one.

3Here we’re implicitly restricting to the interior so that we may apply the differential operators involved
and integrate.
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Intuitively speaking, the above Pestov identity studies how the “energy” (i.e. L2-norm

squared) changes when one switches the order of
v

∇π∗E and X. We require that u is in
R2(SM ; π∗E) to ensure that all of the L2 norms and inner products in the above equation
make sense. The order of the space R2 is chosen to be “2” because both in the statement of
the theorem and its proof we won’t be applying more than two smooth vector fields over the
0-cosphere bundle to the components of u at any one time. The theorem is proved by simply

starting with ∥
v

∇π∗EXu∥2L2 and then applying L2-adjoint relations and commutator formulas

until one arrives at ∥X
v

∇π∗Eu∥2L2 . The following lemma provides us with the required set of
adjoint relations.

Lemma 5.8. The following are true, where m,m′ ≥ 0 are integers and all L2 stand for
appropriate L2(SM ; . . .) spaces.

1. If u ∈ Rm(SM ; π∗E) with m ≥ 1, then Xu ∈ Rm−1(SM ; π∗E). Furthermore, if w ∈
Rm′

(SM ; π∗E), then

⟨Xu,w⟩L2 = −⟨u,Xw⟩L2 .

2. If u ∈ Rm(SM ;N ⊗ π∗E) with m ≥ 1, then Xu ∈ Rm−1(SM ;N ⊗ π∗E). Furthermore,
if w ∈ Rm′

(SM ;N ⊗ π∗E), then

⟨Xu,w⟩L2 = −⟨u,Xw⟩L2 .

3. If u ∈ Rm(SM ; π∗E) and w ∈ Rm′
(SM ;N ⊗ π∗E) with m,m′ ≥ 1, then

v

∇π∗Eu ∈
Rm−1(SM ;N ⊗ π∗E) and

v

divπ
∗Ew ∈ Rm′−1(SM ; π∗E). Furthermore,

⟨
v

∇π∗Eu, v⟩L2 = −⟨u,
v

divπ
∗Ev⟩L2 .

In other words, X,
v

∇π∗E , and
v

divπ
∗E map Rm → Rm−1 and their well-known adjoint

relations are also satisfied on AH spaces as well. To prove the above lemma, we will use the
following compactly supported version of it:

Lemma 5.9. The following are true.

1. If u,w ∈ C∞(SM ; π∗E) are such that at least one of them is compactly supported in
the interior M , then

⟨Xu,w⟩L2 = −⟨u,Xw⟩L2 .

2. If u,w ∈ C∞(SM ;N ⊗ π∗E) are such that at least one of them is compactly supported
in the interior M , then

⟨Xu,w⟩L2 = −⟨u,Xw⟩L2 .
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3. If u ∈ C∞(SM ; π∗E) and w ∈ C∞(SM ;N ⊗ π∗E) are such that at least one of them is
compactly supported in the interior M , then

⟨
v

∇π∗Eu,w⟩L2 = −⟨u,
v

divπ
∗Ew⟩L2 .

Proof: The authors of [16] define
v

divπ
∗E as the L2 adjoint of

v

∇π∗E in their Section 3.2 and
then prove its existence in their Lemma 3.2, which proves our point 3).4 To prove point 1),
let (xi) be coordinates of M , let (bi) be a frame for E over these coordinates’ domain, and
consider the coordinates vi∂/∂xi 7→ (xi, vi) of TM . Let EΓk

ij denote the connection symbols of
∇E with respect to (∂/∂xi) and (bk). Now, suppose first that u or w is compactly supported
over our coordinates’ domain and write u = ukπ∗bk and w = wkπ∗bk. Then

Xu =
[
X
(
uk
)
+ EΓk

ijv
iuj
]
π∗bk.

For convenience, assume that (bi) is orthonormal so that we may write

⟨Xu,w⟩L2 =
d∑

k=1

∫
SM

[
X
(
uk
)
wk + EΓk

ijv
iujwk

]
dvSM .

In Appendix A of [39] the authors prove that the L2 adjoint of X : C∞(SM) → C∞(SM)
is −X. Furthermore, since ∇E is unitary it follows that the connection symbols are anti-
symmetric: EΓk

ij = −EΓj
ik. Applying these identities to the right-hand side above gives

−⟨u,Xw⟩L2 . Point 1) then follows by a partition of unity argument. Point 3) is proved simi-
larly where instead one uses the fact that the L2 adjoint of the operator X : C∞(SM ;N) →
C∞(SM ;N) defined in (4.18) is also −X, which is proved in Appendix A of [39].

■

Proof of Lemma 5.8 part 1):
Let u be as described in part 1). Let (ρ, yµ) = (xi) be asymptotic boundary normal

coordinates of M as described in Section 2.2, let (bi) be a frame for E over these coordinates’
domain, and consider the coordinates vi∂/∂xi 7→ (xi, vi) of TM . Let EΓk

ij denote the connec-
tion symbols of ∇E with respect to (∂/∂xi) and (bk) and let Γk

ij denote the Christoffel symbols

with respect to (∂/∂xi). Consider also the coordinates ηidx
i/ρ → (xi, ηi) of

0T ∗M and observe
that the canonical identification H∗ ◦ ♭ : TM → 0T ∗M

∣∣
M

is given by vi = ρ−1gii
′
ηi′ . Recall

that gij and gij are respectively ρ−2 and ρ2 times something smooth on M .
Writing u = ukπ∗bk, we have that

Xu =
[
X
(
uk
)
+ EΓk

ijv
iuj
]
π∗bk. (5.10)

Pulling vi to 0S∗M via the canonical identification gives ρ−1gii
′
ηi′ , which is smooth over

0S∗M . The terms EΓk
ij are smooth over M by our standing assumption and hence on 0S∗M

4Actually, the authors in the mentioned work are working over compact manifolds with boundary. But
we can still apply their results by applying them to the compact manifold with boundary Mδ = {ρ ≥ δ} for
δ > 0 small enough so that Mδ contains the (compact) intersection of the supports of u and w.
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when lifted. Hence it quickly follows that the term EΓk
ijv

iujπ∗bk on the right-hand side of

the above equation is in Rm ⊆ Rm−1. So, let’s take a look at the other term: X
(
uk
)
π∗bk.

Consider the coordinates ξidx
i 7→ (xi, ξi) of T

∗M . In (2.3) of [14] the authors write out
an explicit equation for X over T ∗M in asymptotic boundary normal coordinates (recall the
convention about Greek and Latin indices):

X = ρ2ξ0
∂

∂ρ
+ ρ2hµνξµ

∂

∂yν
−
[
ρ
(
ξ20 + |ξ|2h

)
+

1

2
ρ2∂ρ|ξ|2h

]
∂

∂ξ0
− 1

2
ρ2∂yk |ξ|2h

∂

∂ξk

where |ξ|2h = hµνξµξν . Since canonical identification is given by ηi = ρξi, it’s a quick calcu-
lation to show that pushing X to 0S∗M gives

X = ρη0
∂

∂ρ
+ ρhµνηµ

∂

∂yν
−
[
|η|2h +

1

2
ρ∂ρ|η|2h

]
∂

∂η0
+

[
η0ηµ −

1

2
ρ∂yµ|η|2h

]
∂

∂ηµ
. (5.11)

In particular, X extends to be a smooth vector on all of 0S∗M and hence X
(
uk
)
π∗bk is in

Rm−1. Thus by (5.10) we have that indeed Xu ∈ Rm−1.
Now suppose that w is as in 1). We will prove the equality in 1) by multiplying w by

a compactly supported (smooth) bump function, use Lemma 5.9 above, and then let the
support of the bump function go out to infinity. To construct the suitable family of bump
functions, let f1 : [0,∞) → [0,∞) be a smooth function that is identically zero on [0, 1/2],
increasing on [1/2, 1], and then identically one on [1,∞) (see Lemma 2.21 in [23] for an explicit
construction). For any δ > 0, let fδ : [0,∞) → [0,∞) denote the function fδ(x) = f(x/δ).
Finally, for δ < ε let ϕδ : M → [0,∞) denote the one parameter family of bump functions
given by

ϕδ(x) =

{
fδ ◦ ρ(x) ρ(x) < δ

1 otherwise
.

By Lemma 5.9 we have that

⟨Xu, ϕδw⟩L2 = −⟨u,X(ϕδw)⟩L2

since ϕδw is compactly supported. Applying the product rule on the right-hand side gives

⟨Xu, ϕδw⟩L2 = −⟨u, ϕδXw⟩L2 − ⟨u,X(ϕδ)w⟩L2 . (5.12)

We now let δ → 0+ and show that this equation tends to the equality in 1). By what we
proved above, we have that ⟨Xu,w⟩π∗E and ⟨u,Xw⟩E are the product of two L2(SM) func-
tions and hence also in L2(SM). Next, differentiating in δ demonstrates that ϕδ monotonely
increases to the identically one function as δ → 0+. Hence by the dominated convergence the-
orem, we get that the first two terms in (5.12) tend to ⟨Xu,w⟩L2 and −⟨u,Xw⟩L2 respectively
as δ → 0+.

Hence we will have proved 1) if we can show that the third term in (5.12) tends to zero
as δ → 0+. This will follow if we show that for any compact set K ⊆ M contained in the
domain of some interior coordinates (xi) of M or boundary coordinates (ρ, yµ) = (xi) as
above, ∫

π−1[K]

⟨u,X(ϕδ)w⟩π∗E −→ 0 as δ → 0+.
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If K is contained in the domain of interior coordinates, then this follows immediately since
ϕδ ≡ 1 on K for sufficiently small δ > 0. So suppose that K is contained in the domain of
our boundary coordinates (ρ, yµ) = (xi). Writing the above integral in these coordinates as
in Section 4.4 gives (here dx̂ = dx0 . . . dxn)∣∣∣∣∫

K

⟨u,X(ϕδ)w⟩π∗EdSx(v)
√
det gdx̂

∣∣∣∣ ≤ sup
K

∣∣∣⟨u,w⟩π∗E
√

det g
∣∣∣ωn

∫
K

|X(ϕδ)|dx̂.

where ωn denotes the surface area of the Euclidean n-sphere. The sup . . . is finite because
|u|π∗E , |w|π∗E ∈ ρ(n + 1)/2L∞[K] and

√
det g ∈ ρ−(n+1)C∞(M). Now, the explicit equation

for X in coordinates of TM (e.g. see page 104 in [24]) gives that X(ϕδ) = v0f ′
δ(ρ), which

we note is supported in {ρ ≤ δ}. Since g =
(
dρ2 + hµνdyµdyν

)
/ρ2 and |v|g = 1, we have that

|v0| ≤ ρ. Letting Ky denote the (compact) ordinary projection of K onto the set {(0, yµ)}
in our coordinates, we can bound∫

K

|X(ϕδ)|dx̂ ≤
∫
Ky

∫ δ

0

δf ′
δ(ρ)dρdy = δ

∫
Ky

dy −→ 0 as δ → 0+.

Hence the third term in (5.12) indeed tends to zero as δ → 0+.

■

Proof of Lemma 5.8 parts 2), 3):
Let’s begin with proving 2). Let u be as described there. We keep working in the same

coordinates that we used in part 1) above. Writing u = ρuijπ∗∂/∂xi ⊗ π∗bj, we have that

Xu

= X
(
ρukj

)
π∗ ∂

∂xk
⊗ π∗bj (5.13)

+Γk
i′iv

i′ρuijπ∗ ∂

∂xk
⊗ π∗bj (5.14)

+EΓk
i′jv

i′ρuijπ∗ ∂

∂xi
⊗ π∗bk. (5.15)

In part 1) we observed that vi
′
is ρ times something smooth on 0S∗M and hence it follows

that the term (5.15) is in Rm(SM ;N ⊗ π∗E) ⊆ Rm−1(SM ;N ⊗ π∗E). Next, we have that
since g is ρ−2 times a smooth metric on M , the conformal transformation law of Christoffel
symbols (e.g. see Proposition 7.29 in [24]) give that Γk

ij are ρ−1 times something smooth on

M . Thus the term (5.14) is also in Rm ⊆ Rm−1. Finally, from (5.11) we have that X(ρ) is
ρ times something smooth on 0S∗M and thus it follows from the product rule that the term
(5.13) is in Rm−1. Hence indeed Xu ∈ Rm−1. The equality in 2) follows the same way that
we proved the equality in 1).

Finally, let’s prove 3). Let u = ujπ∗bj and w = ρwijπ∗∂/∂xi ⊗ π∗bj be as described there.
In the proof of Lemma 3.2 in [16] the authors give an equation for the vertical derivative5

5We remark that in their work they write “
v

∇E” for what we denote by “
v

∇π∗E .”
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of u in terms of an operator “
v

∇” for which an explicit equation is given on page 350 of [39].
As the authors do in [16], we assume that (bi) is orthonormal so that may use their formula
to write that

v

∇π∗Eu over SM = ∂iujπ∗ ∂

∂xi
⊗ π∗bj, (5.16)

where for any f ∈ C∞(SM)

∂if :=

[
∂

∂vi
(f ◦ p)

]∣∣∣∣
SM

,

∂if := gii
′
∂i′f,

where p : TM \ {0} → SM is the radial projection map v 7→ v/|v|g over the tangent bundle
minus the zero section. Since the canonical identification 0S∗M ∼= SM is given by ηi =
ρgii′v

i′ , pushing ∂/∂vi to 0S∗M gives

∂

∂vi
7−→ ρgii′

∂

∂ηi′
.

Thus ∂/∂vi extends to ρ−1 times a smooth vector field over 0S∗M and hence so does ∂i.
Hence ∂i is ρ times a smooth vector field over 0S∗M . Thus by (5.16) we have that the
vertical derivative of u is indeed in Rm−1(SM ;N ⊗ π∗E).

Next let’s take a look at w. Using (5.16) above, a straightforward generalization of the

derivation of the equation for “
v

div Z” given on page 352 of [39] gives

v

divπ
∗Ew = ∂i

(
ρwij

)
π∗bj. (5.17)

Since ∂i only involves derivatives in vi, we can pull ρ out of the derivative on the right-hand
side. Since ∂i is ρ

−1 times a smooth vector field over 0S∗M , it follows that this is indeed in
Rm′−1(SM ; π∗E).

The equality in 3) follow essentially the same way we proved the equality in 1). An
example of a minor change that’s needed is that the analog of (5.12) will be

⟨
v

∇π∗Eu, ϕδw⟩L2 = −⟨u, ϕδ

v

divπ
∗Ew⟩L2 ,

which we note doesn’t have an analogous “third term” as in (5.12) because ϕδ only depends
on position and thus isn’t affected by the vertical divergence. From here one proceeds as
before.

■

For use in Section 5.3 below, we record the Rm-mapping property of the horizontal
derivative as well.

Lemma 5.18. If u ∈ Rm(SM ; π∗E) with m ≥ 1, then
h

∇π∗Eu ∈ Rm−1(SM ;N ⊗ π∗ E).
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Proof: Take any such u. Let (ρ, yµ) = (xi), (bi),
EΓk

ij, and Γk
ij be as in the beginning of

the proof of Lemma 5.8 part 1) and consider the coordinates vi∂/∂xi 7→ (xi, vi) of TM and
ηidx

i/ρ → (xi, ηi) of
0T ∗M described there as well.

We write u = ujπ∗bj. By the equations for the horizontal and vertical derivatives given
in the proof of Lemma 3.2 in [16] and on page 350 of [39],

h

∇π∗Eu

=
(
δiuj −

(
vkδku

j
)
vi
)
π∗ ∂

∂xi
⊗ π∗bj (5.19)

+ul
v

∇π∗E(EΓj
klv

kπ∗bj
)

(5.20)

where for any f ∈ C∞(SM)

δif :=

[(
∂

∂xi
− Γk

ijv
j ∂

∂vk

)
(f ◦ p)

]∣∣∣∣
SM

, (5.21)

δif := gii
′
δi′f, (5.22)

where p : TM \ {0} → SM is the radial projection map v 7→ v/|v|g.
Let’s start by taking a look at the term (5.20). Recall our standing assumption that

each EΓj
kl is smooth on M . Next, we observed in the proof of Lemma 5.8 part 1) that each

vk is ρ times something smooth over 0S∗M . By (5.16) the vertical derivative only involves
derivatives in vi and so we can pull the just mentioned factor of ρ out of the vertical derivative
in (5.20). Thus the term (5.20) is equal to ρul times ∂i of something smooth on 0S∗M times
π∗∂/∂xi ⊗ π∗bj. We observed in the proof of Lemma 5.8 parts 2) and 3) that ∂i is a smooth
vector field over 0S∗M and thus ∂i of something smooth on 0S∗M is again smooth on 0S∗M .
From here it follows that the term (5.20) is in Rm ⊆ Rm−1. Finally let’s take a look at the
term (5.19).

Recall that gij and gij are respectively ρ−2 and ρ2 times something smooth on M . We
observed in the proof of Lemma 5.8 parts 2) and 3) that each Γk

ijv
j is smooth on 0S∗M .

Next, canonical identification is given by ηi = ρgijv
j, from which it’s a quick computation

to show that the differential of this canonical identification takes (recall that x0 = ρ)

∂

∂x0
7−→ ∂

∂x0
+

(
ρ−1ηi +

∂gij
∂ρ

gjj
′
ηj′

)
∂

∂ηi

∂

∂xλ
7−→ ∂

∂xλ
+

(
∂gij
∂xλ

gjj
′
ηj′

)
∂

∂ηi
for λ = 1, . . . , n,

∂

∂vi
7−→ ρgii′

∂

∂ηi′
.

The important observation is that these are all ρ−1 times vector fields that are smooth over
0S∗M . Thus by (5.21) and (5.22), the δi and δi are respectively ρ−1 and ρ times vector fields
that are smooth over 0S∗M . Plugging all of these observation into (5.19) finally gives that
indeed the horizontal derivatives of u is in Rm−1.
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Next we need the following lemma that tells us that the curvature operators have the
mapping property Rm → Rm.

Lemma 5.23. Suppose that u ∈ Rm(SM ;N ⊗ π∗E) and w ∈ Rm(SM ; π∗E) for integers
m ≥ 0. Then Ru ∈ Rm(SM ;N ⊗ π∗E) and F Ew ∈ Rm(SM ;N ⊗ π∗E).

Proof: Let (ρ, yµ) = (xi), (bi),
EΓk

ij, and Γk
ij be as in the beginning of the proof of Lemma

5.8 part 1) and consider the coordinates vi∂/∂xi 7→ (xi, vi) of TM and ηidx
i/ρ → (xi, ηi) of

0T ∗M described there as well.
We write u = ρuijπ∗∂/∂xi ⊗ π∗bj and w = wjπ∗bj. We have that

Ru =

(
∂Γl

j′k

∂xi
− ∂Γl

ik

∂xj′
+ Γm

j′kΓ
l
im − Γm

ikΓ
l
j′m

)
ρuijvj

′
vkπ∗ ∂

∂xl
⊗ π∗bj.

In the proof of Lemma 5.8 part 1) we observed that each vi is ρ times something smooth on
0S∗M . In the proof of Lemma 5.8 parts 2) and 3) we observed that each Γk

ij is ρ−1 times

something smooth on M and hence its first partials ∂Γk
ij/∂xl are ρ−2 times something smooth

on M . From this it follows that indeed Ru ∈ Rm.
Next, looking at (4.20) and (4.21) we have that

F Ew = PN⊗π∗E

(
wlgjj

′
fij

k
lv

iπ∗ ∂

∂xj′
⊗ π∗bk

)
.

By (4.19), we have that each fij
k
l is smooth on M , and recall that each gij is ρ2 times

something smooth on M . The projection map here is given by

PN⊗π∗E

(
π∗ ∂

∂xj′
⊗ π∗bk

)
= π∗

(
∂

∂xj′
− ⟨v, ∂

∂xj′
⟩v
)
⊗ π∗bk

= π∗
(

∂

∂xj′
− gi′j′v

i′vi
′′ ∂

∂xi′′

)
⊗ π∗bk

From here it follows that indeed F Ew ∈ Rm.

■

We need one final lemma that provides the needed commutator formulas to prove Theo-
rem 5.7. The following lemma is Lemma 3.2 in [16], where one can also find a proof.

Lemma 5.24. The following are true, where [. . . , . . .] denotes the commutator bracket.[
X,

v

∇π∗E
]
= −

h

∇π∗E , (5.25)[
X,

h

∇π∗E
]
= R

v

∇π∗E + F E , (5.26)

h

divπ
∗E

v

∇π∗E −
v

divπ
∗E

h

∇π∗E = nX, (5.27)[
X,

v

divπ
∗E
]
= −

h

divπ
∗E . (5.28)
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Proof of Theorem 5.7:
Let u be as described in the theorem. By Lemma 5.8 we have that

⟨
v

∇π∗EXu,
v

∇π∗EXu⟩L2 = ⟨X
v

divπ
∗E

v

∇π∗EXu, u⟩L2 .

We get that this is equal to (see right after for justifications)

⟨−
h

divπ
∗E

v

∇π∗EXu+
v

divπ
∗EX

v

∇π∗EXu⟩L2 ,

= ⟨−
h

divπ
∗E

v

∇π∗EXu+
v

divπ
∗EX

h

∇π∗Eu+
v

divπ
∗EXX

v

∇π∗Eu, u⟩L2 ,

= ⟨−
h

divπ
∗E

v

∇π∗EXu+
v

divπ
∗E
(
R

v

∇π∗E + F E
)
u+

v

divπ
∗E

h

∇π∗EXu+
v

divπ
∗EXX

v

∇π∗Eu, u⟩L2 ,

= ⟨−nXXu+
v

divπ
∗E
(
R

v

∇π∗E + F E
)
u+

v

divπ
∗EXX

v

∇π∗Eu, u⟩L2 ,

where in the above four lines we used respectively (5.28), (5.25), (5.26), and (5.27). Applying
Lemma 5.8 again gives that this is equal to

n⟨Xu,Xu⟩L2 + ⟨
v

divπ
∗ER

v

∇π∗Eu+
v

divπ
∗EF Eu, u⟩L2 + ⟨X

v

∇π∗Eu,X
v

∇π∗Eu⟩L2 .

Splitting the second inner product over the “+” sign and then applying Lemma 5.8 to the
resultant middle two terms proves the theorem.

■

5.3 Finite Degree of Solutions to Transport Equations

In the proof of Theorem 2.7 we will end up showing that Q − id satisfies an equation of a
form similar to

Xu+ Φu = f

over SM , which is called a “transport equation.” It turns out that this equation has good
behavior with respect to vertical Fourier analysis, which we now introduce. Consider the
vertical Laplacian:

∆π∗E = −
v

divπ
∗E

v

∇π∗E : C∞(SM ; π∗E) −→ C∞(SM ; π∗E).

By Lemma 5.8 3) this operator has theRl-mapping propertyRl(SM ; π∗E) → Rl−2(SM ; π∗E)
for l ≥ 2. Let’s see what this operator looks like in coordinates. Let (xi) be coordinates of
M , let (ri) be an orthonormal frame of TM over their domain, let (bj) denote a frame of E
over their domain, and consider the coordinates

viri 7−→
(
xi, vi

)
(5.29)

of TM . Then we claim that for any smooth section u = ujπ∗bj,

∆π∗Eu =
(
−∆Snuj

)
π∗bj (5.30)
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where “−∆Sn” is the negative Laplacian on the n-sphere in the variables vi. This is most
easily seen as follows. Pick an arbitrary point x0 ∈ M in the domain of our coordinates,
choose normal coordinates (x̂i) of M centered at x0, and consider the coordinates v̂i∂/∂x̂i 7→
(x̂i, v̂i) of TM . Then observe that (5.16) and (5.17) tell us that on the sphere Sx0M , the
operator ∆π∗E applied to u = ûjπ∗bj is given by

(
−∆Snûj

)
π∗bj. The claim then follows by

pushing this expression through the change of variables (x̂i, v̂i) 7→ (xi, vi).
From this observation and the theory of spherical harmonics (c.f. Section 2.H in [12] for

the latter), we obtain several important implications regarding the vertical Laplacian. First,
we get that the eigenvalues of ∆π∗E match that of −∆Sn :

λm = m(m+ n− 1) for integers m ≥ 0.

Furthermore, letting Ωm denote the set of smooth eigenfunctions of ∆π∗E with eigenvalue λm,
any u ∈ C∞(SM ; π∗E) can be uniquely decomposed as the (pointwise converging) “Fourier
series”

u =
∞∑

m=0

um, u ∈ Ωm.

Furthermore, for any fixed x ∈ M this convergence also holds in L2(SxM ; (π∗E)x). The
um’s are called u’s Fourier modes. The maximum index m for which um ̸= 0 is called the
degree of u and is denoted by “deg u” (which could be infinity). Naturally, we say that u
is of finite degree if its degree is finite. We can write an explicit equation for the Fourier
modes as follows. For each m ∈ Z+ we let

{Y m
k : k = 1, . . . , lm}

denote a real-valued orthonormal basis of eigenfunctions of −∆Sn with eigenvalue λm. Then
in the coordinates (5.29) and frame (bi) there

uj
m

(
xi, vi

)
=

lm∑
k=1

[∫
Sn

uj
(
xi, wi

)
Y m
k

(
wi
)
dwSn

]
Y m
k

(
vi
)

(5.31)

(no implicit summation meant in m here). An important property of the vertical Laplacian
eigenspaces is that they are orthogonal:

Proposition 5.32. The spaces Ωm ∩ L2(SM ; π∗E) and Ωm′ ∩ L2(SM ; π∗E) are orthogonal
with respect to L2 when m ̸= m′.

The above proposition follows directly from the theory of spherical harmonics and the
fact that integrals over SM can be partitioned as described in Section 4.4 above. Another
important property is that the vertical Laplacian commutes with taking the mth Fourier
mode:

Proposition 5.33. If u ∈ C∞(SM ; π∗E), then ∆π∗E(um) =
(
∆π∗Eu

)
m
.

Proof: Using the coordinate expression for the vertical Laplacian (5.30), this follows by
taking (5.31) and integrating by parts:

[
∆π∗E(um)

]j
= λmu

j
m =

lm∑
k=1

[∫
Sn

ujλmY
m
k dwSn

]
Y m
k =

lm∑
k=1

[∫
Sn

uj
(
−∆Sn)Y m

k dwSn

]
Y m
k

31



=
lm∑
k=1

[∫
Sn

((
−∆Sn)uj

)
Y m
k dwSn

]
Y m
k =

(
∆π∗Eu

)j
m
.

■

Next we’ll need the fact that Fourier modes have the same regularity as their original
section:

Proposition 5.34. If u ∈ Rl(SM ; π∗E) for l ≥ 0, then each Fourier mode um ∈ Rl(SM ; π∗E)
as well.

Proof: Take any u ∈ Rl(SM ; π∗E) with l ≥ 0 and fix m ≥ 0. Let (xi) be coordinates of
M , let (ri) be an orthonormal frame of TM over dom (xi), and consider the coordinates
viri 7→ (xi, vi) of TM . Let (bj) denote a frame of E over dom (xi). We write u = ujπ∗bj.
Furthermore, let K ⊆ dom (xi) ⊆ M be any compact subset.

First suppose that l = 0. Since uj ∈ ρ(n + 1)/2L∞[K], (5.31) tells us that each uj
m ∈

ρ(n + 1)/2L∞[K] as well and so indeed um ∈ Rl.
Next suppose that l = 1. Suppose that the frame (ri) was obtained by mapping a local

orthonormal frame (ζ
i
) of 0T ∗M via the canonical identification ♯◦H : 0T ∗M

∣∣
M

→ TM , and

consider the coordinates ηiζ
i 7→ (xi, ηi) of 0T ∗M . Observe that this identification is given

by ηi = vi. Now, take any smooth vector field V1 ∈ C∞(0S∗M ;T 0S∗M
)
which we write as

V = (V1)
r∂/∂xr +(V1)r

∂/∂ηr. Pushing V to SM gives6 V = (V1)
r∂/∂xr +

∑n
r=0 (V1)r

∂/∂vr. Thus
by (5.31)

V1

(
uj
m

)
= (V1)

r
lm∑
k=1

[∫
Sn

∂uj

∂xr
Y m
k dwSn

]
Y m
k +

lm∑
k=1

[∫
Sn

ujY m
k dwSn

] n∑
r=0

(V1)r
∂Y m

k

∂vr
.

Now, the components (V1)
i, (V1)i are bounded above K because they are smooth over the

compact 0S∗M ∩π−1
0 [K]. For future use, we point out that this also holds for their ∂/∂xi, ∂/∂vi

first and higher order partials as well. Furthermore, since ∂/∂xr is a smooth vector field over
the 0-cosphere bundle, we have that each ∂uj/∂xr in the above expression is in ρ(n + 1)/2L∞ by
assumption. Hence the above expression tells us that V1(u

j
m) ∈ ρ(n + 1)/2L∞[K] and so indeed

um ∈ Rl. The cases l ≥ 2 are handled similarly.

■

One of the central properties of X is that it maps

X : Ωm −→ Ωm−1 ⊕ Ωm+1. (5.35)

This is proven in Section 3.4 of [16]. Similarly, multiplication on the left by Φ maps Ωm → Ωm

since Φ has no dependence on the vertical variable “v.” In particular, we see that the operator
in the transport equation “X+Φ” maps sections of finite degree to sections of finite degree.
The converse is also true, which is the main result of this section:

6We can’t use the Einstein summation convention on (V1)r
∂/∂vr because it has two lower indices.
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Theorem 5.36. Assume that the sectional curvatures of g are negative.7 If u ∈ R3(SM ; π∗E)
solves

Xu+ Φu = f (5.37)

for some f ∈ C∞(SM ; π∗E) of finite degree, then u is also of finite degree.

To prove this, we need several preliminary results.

Lemma 5.38. It holds that [
X,∆π∗E] = 2

v

divπ
∗E

h

∇π∗E + nX.

The above lemma is stated as Lemma 3.4 of [16], whose proof is essentially identical to
that of Lemma 3.5 in [39].

To state the next preliminary result we observe that because of (5.35), over each Ωm we
can decompose X = X− + X+ where

X± : Ωm −→ Ωm±1.

We point out that the maps X± are distinct for different Ωm even though we use the same
notation to denote them.

Remark 5.39. Like X, the operators X± map Rl → Rl−1 for l ≥ 1 by Lemma 5.8 and
Proposition 5.34 above.

We mention that the idea of splitting the action of the geodesic vector field as above was
first introduced by Guillemin and Kazhdan - see [17]. The following preliminary result is a
special case of the Pestov identity with a connection (Theorem 5.7):

Proposition 5.40. Suppose that u ∈ Ωm ∩R2(SM ; π∗E). Then

(2m+ n)∥X+u∥2L2

=

∥∥∥∥ h

∇π∗Eu

∥∥∥∥2
L2

+ (2m+ n− 2)∥X−u∥2L2 − ⟨R
v

∇π∗Eu,
v

∇π∗Eu⟩L2 − ⟨F Eu,
v

∇π∗Eu⟩L2 .

Proof: We have that u satisfies the equation in Theorem 5.7. Let’s take a look at the term∥∥∥∥X v

∇π∗Eu

∥∥∥∥2
L2

= ⟨−
h

∇π∗Eu+
v

∇π∗EXu,−
h

∇π∗Eu+
v

∇π∗EXu⟩L2 by (5.25),

=

∥∥∥∥ h

∇π∗Eu

∥∥∥∥2
L2

+ 2⟨Xu,
v

divπ
∗E

h

∇π∗Eu⟩L2 +

∥∥∥∥ v

∇π∗EXu
∥∥∥∥2
L2

Lemma 5.8 3) and Lemma 5.18.

Applying Lemma 5.38, we see that the middle term in the last quantity is equal to

⟨Xu,X∆π∗Eu−∆π∗EXu− nXu⟩L2 .

Splitting Xu = X−u+ X+u ∈ Ωm−1 ⊕ Ωm+1, using that

∆π∗Eu = λmu, ∆π∗EX−u = λm−1X−u, ∆π∗EX+u = λm+1X+u,

using the orthogonality of the vertical Laplacian eigenspaces, and then plugging the result
into the equation in Theorem 5.7 proves the proposition after several cancellations.

7Recall our standing assumption that Φ is skew-Hermitian.
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The following lemma provides the contraction property that’s needed in the proof of
Theorem 5.36.

Lemma 5.41. Suppose that the sectional curvatures of g are negative. Then there exist real
constants cm → ∞ such that for sufficiently large m,{

∥X−u∥2L2 + cm∥u∥2L2 ≤ ∥X+u∥2L2 if n ̸= 2,

∥X−u∥2L2 + cm∥u∥2L2 ≤ dm∥X+u∥2L2 if n = 2,
(5.42)

for all u ∈ Ωm ∩R2(SM ; π∗E) where dm = 1 + 1/
[
(2m− 1)(m+ 1)2

]
.

Proof: We begin by using the fact that the sectional curvatures of g tend to −1 at ∂M .
Precisely, by the remark after Proposition 1.10 in [29] there exists an ε > 0 so that the
sectional curvatures of g are less than −κ′ for some κ′ > 0 over the region {ρ < ε}. Hence
this, the compactness of {ρ ≥ ε}, and the negative curvature assumption imply that there
exists a κ > 0 such that the sectional curvatures of g are bounded above by −κ on all of M .

Now, take any u as in the statement of the lemma. We have that u satisfies the equation

in Proposition 5.40 above. We begin by estimating the L2 norm of the term
h

∇π∗Eu by
utilizing the trick of looking at its vertical divergence. By Lemma 5.38 we have that

v

divπ
∗E

h

∇π∗Eu =
1

2
X∆π∗Eu− 1

2
∆π∗EXu− n

2
Xu,

=
1

2
(X+λmu+ X−λmu)−

1

2
(λm+1X+u+ λm−1X−u)−

n

2
(X+u+ X−u),

= −(m+ n)X+u+ (m− 1)X−u,

= −
v

divπ
∗E
(
−m+ n

λm+1

v

∇π∗EX+u+
m− 1

λm−1

v

∇π∗EX−u

)
.

Plugging the expression for the λk’s into this, we conclude that

h

∇π∗Eu =
1

m+ 1

v

∇π∗EX+u− 1

m+ n− 2

v

∇π∗EX−u+ Z

where Z ∈ C∞(SM ;N ⊗ π∗E) is such that
v

divπ
∗EZ = 0 and hence perpendicular to the

other two terms on the right-hand side with respect to L2. Using the orthogonality of the
vertical Laplacian eigenspaces and Lemma 5.8 3), this gives us the L2 estimate∥∥∥∥ h

∇π∗Eu

∥∥∥∥2
L2

≥ m+ n

m+ 1
∥X+u∥2L2 +

m− 1

m+ n− 2
∥X−u∥2L2 .

Now, plugging this into the equation in Proposition 5.40 gives(
2m+ n− m+ n

m+ 1

)
∥X+u∥2L2 (5.43)
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≥
(
2m+ n− 2 +

m− 1

m+ n− 2

)
∥X−u∥2L2 − ⟨R

v

∇π∗Eu,
v

∇π∗Eu⟩L2 − ⟨F Eu,
v

∇π∗Eu⟩L2 .

We have that the term

−⟨R
v

∇π∗Eu,
v

∇π∗Eu⟩L2 ≥ κ

∥∥∥∥ v

∇π∗Eu

∥∥∥∥2
L2

= κλm∥u∥2L2 . (5.44)

Furthermore,

−⟨F Eu,
v

∇π∗Eu⟩L2 ≥ −
∥∥F E∥∥

L∞∥u∥L2

∥∥∥∥ v

∇π∗Eu

∥∥∥∥
L2

= −
∥∥F E∥∥

L∞λ
1/2
m ∥u∥2L2 . (5.45)

Hence, letting am,n and bm,n denote the coefficients of ∥X+u∥2L2 and ∥X−u∥2L2 in (5.43) above
respectively we get that

am,n

bm,n

∥X+u∥2L2 ≥ ∥X−u∥2L2 +
κλm −

∥∥F E
∥∥
L∞λ

1/2
m

bm,n

∥u∥2L2 .

Elementary algebra shows that am,n/bm,n is less than or equal to 1 if n ̸= 2 and m > 1, and is
equal to dm if n = 2. Since λm = O(m2), the lemma follows.

■

We need one last technical lemma:

Lemma 5.46. If u ∈ R3(SM ; π∗E), then ∥X+um∥L2 → 0 as m → ∞.

Proof: Take any u ∈ R3(SM ; π∗E). Let (xi) be coordinates of M , let (bj) denote a frame of
E over dom (xi), and consider the coordinates vi∂/∂xi 7→ (xi, vi) of TM . Take any compact
subset K ⊆ dom (xi) ⊆ M and suppose for convenience that (bj) is orthonormal. We will
show that ∥X+um∥L2(π−1[K]) → 0 as m → ∞, from which the lemma will follow by covering

the compact M by a finite number of such sets K.
We have that (we omit writing π−1[K] for the rest of the proof)

∥X+um∥L2 =
∥∥[X(uk

m

)
+ EΓk

ijv
iuj

m

]
π∗bk

∥∥
L2 (5.47)

≤
d∑

k=1

∥∥X(uk
m

)∥∥
L2 + sup

v∈π−1[K]

∣∣EΓk
ijv

i
∣∣∥∥uj

m

∥∥
L2 .

Since gijv
ivj ≡ 1 and gij blows up like ρ−2 at the boundary, we have that each vi is bounded

over the compact K and hence the sup . . . above is finite. From Proposition 5.33 it follows
that the last L2-norm satisfies∥∥uj

m

∥∥
L2 ≤ ∥um∥L2 =

1

λm

∥∥(∆π∗Eu
)
m

∥∥
L2 ≤

1

λm

∥∥∆π∗Eu
∥∥
L2 → 0 as m → ∞,

where we’ve used that ∆π∗Eu ∈ R3−2(SM ; π∗E) ⊆ L2(SM ; π∗E) and so the last L2-norm
is finite. Thus by (5.47), the lemma will be proved if we show that

∥∥X(uk
m

)∥∥
L2 → 0 as

m → ∞.
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Let (ri) be an orthonormal frame of TM over dom (xi) and now consider the coordinates
viri 7→ (xi, vi) of TM . Suppose furthermore that the frame (ri) was obtained by mapping a

local orthonormal frame (ζ
i
) of 0T ∗M via the canonical identification ♯◦H : 0T ∗M

∣∣
M

→ TM ,

and consider the coordinates ηiζ
i 7→ (xi, ηi) of

0T ∗M . Recall that this identification is given
by ηi = vi. In (5.11) we pointed out that X extends to a smooth vector field X0 over
0S∗M . Let us write X0 = (X0)

i∂/∂xi + (X0)i
∂/∂ηi over

0S∗M , which if we push to SM we get
X = (X0)

i∂/∂xi +
∑n

r=0 (X0)i
∂/∂vi. Thus

Xuk
m = (X0)

i∂u
k
m

∂xi
+

n∑
i=0

(X0)i
∂uk

m

∂vi
.

where ∂uk
m/∂vi denotes ∂/∂vi applied to any smooth extension of uk

m from SM . For definitive-
ness, let us say that we extend uk

m to TM minus the zero section by making uk
m constant along

the radial lines t 7→ tv for t ∈ (0,∞) and v ∈ SM . Now, the components (X0)
i, (X0)i are

bounded above K because they are smooth over the compact 0S∗M ∩ π−1
0 [K]. Hence by the

above equation, the lemma will be proved if we show that both ∥∂uk
m/∂xi∥L2 , ∥∂uk

m/∂vi∥L2 → 0
as m → ∞.

First let’s take a look at ∥∂uk
m/∂xi∥L2 . By tucking ∂/∂xi under the integral sign in (5.31),

it follows that
∂uk

m

∂xi
=

(
∂

∂xi
u

)k

m

.

where ∂u/∂xi denotes (∂uk/∂xi)π∗bk. Thus∥∥∥∥∂uk
m

∂xi

∥∥∥∥2
L2

=

∥∥∥∥∥
(

∂

∂xi
u

)k

m

∥∥∥∥∥
2

L2

≤
∥∥∥∥ ∂

∂xi
u

∥∥∥∥2
L2

=
1

λ2
m

∥∥∥∥ ∂

∂xi
∆π∗Eu

∥∥∥∥2
L2

→ 0 as m → ∞,

where we’ve used the fact that ∂/∂xi is a smooth vector field over the 0-cosphere bundle and
hence ∂/∂xi

(
∆π∗Eu

)
∈ R3−3 ⊆ L2.

Finally, let’s take a look at ∥∂uk
m/∂vi∥L2 . Since we extended uk

m to be constant radially,
for any fixed x ∈ M we have that∫

SxM

∣∣∣∣∂uk
m

∂vi

∣∣∣∣2dSxM =

∫
Sn

∣∣∣∣∂uk
m

∂vi
(
xi, vi

)∣∣∣∣2dvSn ≤
∫
Sn

∣∣gradv∈Snu
k
m

∣∣2dvSn
where gradv∈Sn means the gradient in (vi) over the Euclidean sphere

{
(v1)

2
+ . . . (vn)2 = 1

}
with respect to usual spherical metric. Looking at the last integral, integrating by parts
gives ∫

Sn

∣∣gradv∈Snu
k
m

∣∣2dvSn =

∫
Sn

uk
m

(
−∆Snuk

m

)
dvSn = λm

∫
SxM

∣∣uk
m

∣∣2dSxM.

Integrating in x then gives that∥∥∥∥∂uk
m

∂vi

∥∥∥∥2
L2

≤ λm

∥∥uk
m

∥∥2
L2 ≤

1

λm

∥∥∆π∗Eu
∥∥2
L2 → 0 as m → ∞.

As discussed above, this proves the lemma.
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■

Proof of Theorem 5.36:
We start by assuming that n ̸= 2 since the proof of the case n = 2 requires a slight

modification. Comparing Fourier modes of order m > deg f in (5.37) gives that

X+um−1 + X−um+1 + Φum = 0, (5.48)

Using this relation and plugging um+1 into u in (5.42) gives that

∥X+um+1∥2L2 ≥ ∥X+um−1∥2L2 + ∥Φum∥2L2 + cm+1∥um+1∥2L2 + 2Re⟨Φum,X+um−1⟩L2 . (5.49)

The idea of the proof is the following. One can plug the relation (5.48) with “m+1” replaced
by “m− 1” into ∥X+um−1∥2L2 in (5.49), use (5.42) again, and then proceed recursively. One
will get a long expression on the right which one needs to cleverly manipulated to bound
∥um0∥

2
L2 for some fixed index m0. Then using that ∥X+um+1∥2L2 goes to zero as m → ∞ by

Lemma 5.46 will force ∥um0∥
2
L2 = 0. We will show that this holds for large enough m0, from

which the theorem will follow. The first obstacle to accomplishing this is the inner product
term 2Re⟨Φum,X+um−1⟩L2 above. The following claim helps resolve this.

To state the claim, we introduce the following notation. For any U ∈ C∞(SM ; Endπ∗E)
(such as Φ up to identification), we let XU ∈ C∞(SM ; Endπ∗E) denote the unique endomor-
phism field satisfying (XU)h = [X, U ]h for any h ∈ C∞(SM ; π∗E). We will show in Section
5.5 below that this new operator X comes from a connection on endomorphism fields applied
to U . In particular, since Φ is smooth on M and hence on 0S∗M (when lifted), it will follow
from (5.10) and (5.11) that the quantity XΦ that we use below extends smoothly to 0S∗M .
Claim: The following identity is true (because Φ is skew-Hermitian):

⟨X+um−1,Φum⟩L2 + ⟨X+um−2,Φum−1⟩L2 = −⟨um−1, (XΦ)um⟩L2 − ∥Φum−1∥2L2 .

Proof of claim: This is simply a computation:

⟨X+um−1,Φum⟩L2 = ⟨Xum−1,Φum⟩L2 use X = X− + X+ and Proposition 5.32,

= −⟨um−1,X(Φum)⟩L2 Lemma 5.8,

= −⟨um−1, (XΦ)um + ΦXum⟩L2 definition of XΦ,
= −⟨um−1, (XΦ)um⟩L2 − ⟨um−1,ΦX−um⟩L2 X = X− + X+ and Proposition 5.32,

−⟨um−1, (XΦ)um⟩L2 + ⟨um−1,Φ[Φum−1 + X+um−2]⟩L2 used (5.48).

From here the claim follows by rearranging and using that Φ is skew-Hermitian.

End of proof of claim.

We return to proving the theorem. The above claim tells us that to get rid of the last
term in (5.49), we can add (5.49) and (5.49) with “m” replaced by “m− 1”:

∥X+um+1∥2L2 + ∥X+um∥2L2 ≥ ∥X+um−1∥2L2 + ∥X+um−2∥2L2 + ∥Φum∥2L2 + ∥Φum−1∥2L2

+cm+1∥um+1∥2L2 + cm∥um∥2L2 + 2Re⟨Φum,X+um−1⟩L2 + 2Re⟨Φum−1,X+um−2⟩L2 ,
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and then apply the equation in the claim to get the following inequality, where for brevity
am = ∥X+um∥2L2 + ∥X+um−1∥2L2 :

am+1 ≥ am−1 + ∥Φum∥2L2 + ∥Φum−1∥2L2 + cm+1∥um+1∥2L2 + cm∥um∥2L2

−2Re⟨um−1, (XΦ)um⟩L2 − 2∥Φum−1∥2L2

≥ am−1 + cm+1∥um+1∥2L2 + cm∥um∥2L2 − ∥um−1∥2L2 − ∥(XΦ)um∥2L2 − ∥Φum−1∥2L2 .

Since Φ and XΦ are smooth (and hence continuous) on the compact manifold 0S∗M , there
exist constants B,C > 0 such that

∥Φh∥2L2 ≤ B∥h∥2L2 ,

∥(XΦ)h∥2L2 ≤ C∥h∥2L2 ,

for any h ∈ C∞(SM ; π∗E) ∩ L2(SM ; π∗E). Hence

am+1 ≥ am−1 + rm (5.50)

where
rm := cm+1∥um+1∥2L2 + (cm − C)∥um∥2L2 − (1 +B)∥um−1∥2L2 .

Applying (5.50) recursively gives

am+1 = am0−1 + rm0 + rm0+2 + . . .+ rm

for any pair of indices m,m0 > deg f such that m = m0 + 2k for some integer k ≥ 0. We
seek to bound the resultant tail of ri’s. To do so, choose m0 big enough so that for m ≥ m0,
cm is bigger than both C and B + 1. Hence if m = m0 + 2k,

rm0 + rm0+2 + . . .+ rm = cm+1∥um+1∥2L2 +
k−1∑
i=0

(cm0+1+2i − (1 +B))∥um0+1+2i∥2L2

+
k∑

i=0

(cm0+2i − C)∥um0+2i∥2L2 − (1 +B)∥um0−1∥

≥ cm+1∥um+1∥2L2 − (1 +B)∥um0−1∥2L2 .

Hence for any such m = m0 + 2k we get that

am+1 ≥ am0−1 − (1 +B)∥um0−1∥2L2 .

By the definition of am0−1 and (5.42) we have that am0−1 ≥ cm0−1∥um0−1∥2L2 , and hence we
finally arrive at

am+1 ≥ (cm0−1 − (1 +B))∥um0−1∥2L2 .

Assume we defined m0 before so that cm0−1 ≥ 1 + B as well. Observe that am+1 → 0 as
m → ∞ by Lemma 5.46. Hence we get that ∥um0−1∥2L2 = 0 and thus um0−1 = 0 for all such
large enough m0. This proves the theorem in the case n ̸= 2.
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Finally, let’s discuss the modification needed in the case n = 2. In this case we instead
use the second equality in (5.42) and hence proceeding as above arrive at that for sufficiently
large m

dmam+1 ≥ am−1 + rm,

where we’ve used that dm ≥ dm+1 and that all di ≥ 1 for i ≥ 1. Multiplying through by
dm−2, applying the same inequality with “m” replaced by “m − 2” on the right-hand side,
and then repeating recursively gives

(dm · . . . · dm0)am+1 = am0−1 + rm0 + (dm0)rm0+2 + . . .+ (dm−2 · . . . · dm0)rm

for any pair of m,m0 > deg f such that m = m0 + 2k for some integer k. Since the di ≥ 1,
we get the inequality(

k∏
i=0

dm−2i

)
am+1 ≥ am0−1 + rm0 + rm0+2 + . . .+ rm.

Again by the definition of am0−1 and (5.42) we have that am0 ≥ (cm0−1/dm0−1)∥um0−1∥2L2 and
so (

k∏
i=0

dm−2i

)
am+1 ≥

(
cm0−1

dm0−1

− (1 +B)

)
∥um0−1∥2L2 .

Since the dm → 1 as m → ∞, we can assume that we defined m0 before so that cm0−1/dm0−1 ≥
B + 1 as well. Furthermore,

∏∞
m=1 dm converges by the infinite product criteria since∑∞

m=1(dm − 1) < ∞ and so the coefficient on the left-hand side is bounded by some fixed
constant. Hence, as before, the theorem follows from the fact that am+1 → 0 as m → ∞.

■

Theorem 5.36 has one disadvantage. Though it tells us that f being of finite degree
implies that the solution u is also of finite degree, it gives no information about the degree
of u itself. The following proposition remedies this by assuming an additional condition on
the metric g and connection ∇E .

Definition 5.51. For any index m ≥ 0, we call elements of ker X+|Ωm
twisted conformal

Killing tensors (CKTs) of degree m. A nontrivial twisted CKT is a twisted CKT of
degree m ≥ 1 that is not identically zero.

Proposition 5.52. Assume that the sectional curvatures of g are negative. Suppose also
that there are no nontrivial twisted CKTs in R3(SM ; π∗E). If u ∈ R3(SM ; π∗E) solves

Xu+ Φu = f

for some f ∈ C∞(SM ; π∗E) of finite degree m, then u is of degree max {m− 1, 0}.

Proof: We know by Theorem 5.36 that u has finite degree, call it m′ ≥ 0. If m′ = 0, then
we’re done. So suppose that m′ ≥ 1. We will prove this theorem by contradiction: suppose
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that m′ ≥ m. Then comparing the Fourier modes of order m′ + 1 of both sides of the above
equation gives

X+um′ = 0.

Hence, um′ is a twisted CKT that is in R3(SM ; π∗E) by Proposition 5.34. Since we assumed
that there are no such nontrivial CKTs, we conclude that um is identically zero. But this
contradicts that the degree of u is m′, and hence proves the proposition.

■

5.4 Regularity of Solutions to the Transport Equation

Before we prove the main result of our paper, we need to establish the regularity of solutions
to the transport equation of a specific form. Here we use the material that we introduced
in Section 2.5 up to (2.15) there and the two sentences after. We remind the reader that a
map A : TM → E is called a bundle homomorphism if for all x ∈ M , A restricts to a linear
map A : TxM → Ex. For such bundle homomorphisms A, we often let A also denote its
restriction A : SM → E|SM .

Definition 5.53. If N ≥ 0 is an integer, we say that a “bundle homomorphism A : TM → E
is such that its entries are in ρNC∞(M) in any boundary coordinates (of M) and frame (for

E)” if the following holds. If one takes any boundary coordinates (xi) of M and any frame
(bk) of E over these coordinates’ domain, locally Av = Ak

i v
ibk with each Ak

ij ∈ ρNC∞(M)
where the vi are v’s components with respect to (∂/∂xi).

The following is our regularity theorem:

Proposition 5.54. Assume that (M, g) is nontrapping and that N ≥ 0 is an integer. Sup-
pose that Φ ∈ ρN+1C∞(M ; EndSkE

)
and that we have a ϕ ∈ ρN+1C∞(M ; E

)
and a bundle

homomorphism A : TM → E such that its entries are in ρNC∞(M) in any boundary coordi-
nates and frame (in the sense of Definition 5.53). Suppose also that the connection symbols
of ∇E are in ρNC∞(M ;R

)
in any boundary coordinates and frame (in the sense of Defini-

tion 2.6). Then for any given boundary data h ∈ C∞
(
∂−

bS∗M ; π∗
bE|∂−bS∗M

)
, there exists a

unique solution u ∈ C∞(bS∗M ; π∗
bE
)
to

Xu+ Φu = ϕ+ A on SM, (5.55)

with u|∂−bS∗M = h.
Furthermore, for any l ≥ 0 there exists an N0 ≥ 0 dependent only on (M, g) and l such

that the following holds. If N ≥ N0, then for all solutions u as above that also satisfy h ≡ 0
and u|∂+S∗M ≡ 0, it holds that u ∈ Rl(SM ; π∗E).

Proof: Recall that d = rank E . From Lemma 2.1 in [14] we have that X = ρX for some
smooth vector fieldX over bS∗M that is nonvanishing and transverse to ∂bS∗M . Let (ρ, yµ) =
(xi) be asymptotic boundary normal coordinates of M , (bk) a frame for E over their domain,
and consider the coordinates vi∂/∂xi 7→ (xi, vi) of TM . Let EΓk

ij denote the connection
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symbols of ∇E with respect to (∂/∂xi) and (bk). Then observe that the components of (5.55)
with respect to (π∗bk) and (∂/∂xi) are given by

Xuk + EΓk
ijv

iuj + Φk
ju

j = ϕk + Ak
i v

i (5.56)

where k = 1, . . . , d. Dividing through by ρ gives

Xuk +
(
ρ−1
)EΓk

ijv
iuj + ρ−1Φk

ju
j = ρ−1ϕk + ρ−1Ak

i v
i. (5.57)

Take the coordinates η0dρ/ρ + ηλdy
λ 7→ (xi, ηi) of bT ∗M and observe that the canonical

identification ♯ ◦ (F ∗)−1 : bT ∗M
∣∣
M

→ TM is given by

vi = gii
′

{
η0/ρ if i′ = 0

ηi′ if i′ ≥ 1
. (5.58)

We denote the right-hand side by gii
′{ηi′}. Pulling the above equation (5.57) to bS∗M (in

the sense of Remark 4.10) gives

Xuk + ρ−1EΓk
ijg

ii′{ηi′}uj + ρ−1Φk
ju

j = ρ−1ϕk + ρ−1Ak
i g

ii′{ηi′}. (5.59)

We remind the reader that each gij is ρ2 times something smooth on M . Hence it follows
from our assumptions that all of the terms in this differential equation are smooth on bS∗M .

Since we assumed that g is nontrapping, it follows from the proof of Corollary 2.5 in
[14] that any maximal integral curve8 σ of X is of the form σ : [a, b] → bS∗M where a
and b are finite with σ(a) ∈ ∂−

bS∗M and σ(b) ∈ ∂+
bS∗M . Hence, (5.59) can be viewed as

ordinary differential equations (ODEs) along such curves σ. Hence, since X is nonvanishing
and transverse to ∂bS∗M , it follows from the theory of flows and the existence, uniqueness,
and smooth dependence on initial condition of linear ODEs (see [5] and [23]) that indeed
a unique smooth solution u exists to (5.59) and hence (5.55) satisfying the given boundary
data.

Next suppose that h ≡ 0 and u|∂+S∗M ≡ 0. If l ≥ 1, suppose that we also have smooth

vector fields V1, ..., Vl ∈ C∞(0S∗M ;T 0S∗M
)
over the 0-cosphere bundle. Pick any point

x0 ∈ ∂M contained in our coordinates (xi). We will show that (5.2) holds for some compact
neighborhood K of x0 (i.e. K has nonempty interior), from which it will quickly follow that
u ∈ Rl. Throughout the proof we will make N ≥ 0 is as big as we need whenever we need
it. At the end of the proof, we will discuss why there exists a maximum upper bound on the
size of N that we need that is dependent only on (M, g) and l, and hence demonstrate the
existence of N0.

We begin by establishing a few facts about the flow of X. Let φ : SM ×R → SM denote
the flow of X. For any point ζ = η0dρ/ρ + ηλdy

λ ∈ bS∗M we write its identified point on
SM as z ∈ SM . In [14] the authors explain that close enough to the boundary, the flow φ
moves away from the boundary when η0 > 0 and towards the boundary when η0 < 0. More
precisely, by Lemma 2.3 in [14] and its proof there exists constants C, ε > 0 such that if we
take any z ∈ SM ∩ {ρ < ε} and write ρ(t) = ρ ◦ φz(t),

8i.e. integral curve whose interval domain cannot be extended.
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1. if η0 ≥ 0 then limt→−∞ φz(t) ∈ ∂−
bS∗M , ρ(t) ≤ Cet, and ρ(t) is increasing,

2. if η0 < 0 then limt→+∞ φz(t) ∈ ∂+
bS∗M , ρ(t) ≤ Ce−t, and ρ(t) is decreasing.

By the same lemma and its proof, it follows that there exist compact neighborhoods
K,K ′ ⊆ {ρ < ε} of x0 in M satisfying K ⊆ K ′ ⊆ dom (xi) such that for any z ∈ π−1[K], φz

will always be contained in π−1[K ′] for t ≥ 0 if η0 ≥ 0 or t ≤ 0 if η0 < 0.
Our first goal is to show that each uk ∈ ρ(n + 1)/2L∞[K] where our approach will be to

study the growth of the solution to (5.56) by writing that equation as an ODE along integral
curves of X. Fix any ζ ∼= z ∈ π−1[K]. Suppose that η0 ≥ 0 since the proof below is
essentially the same for the case η0 < 0. We set B and b to be the d × d matrix and d × 1
column vector respectively given by

Bk
i =

(EΓk
ijv

i + Φk
j

)
and bk = ϕk + Ak

i v
i, (5.60)

and we denote B(t) = B ◦φz(t), b(t) = b◦φz(t), and u(t) = u◦φz(t). This way, (5.56) along
φz is given by the ODE

duk

dt
+Bk

i u
i = bk. (5.61)

Since u|∂bS∗M ≡ 0 and limt→−∞ φz(t) ∈ ∂−
bS∗M , we have that our solution u satisfies the

“initial condition” limt→−∞ u(t) = 0. Now, for any matrix M or column vector w, let |M |
and |w| denote the norms

∑
ik

∣∣Mk
i

∣∣ and∑i|wi|. Fixing any time t0 < 0, we get from (5.61),
the fundamental theorem of calculus, and the triangle inequality that

|u(t)| ≤ |u(t0)|+
∫ t

t0

|B(s)||u(s)|ds+
∫ t

t0

|b(s)|ds. (5.62)

We will use this to bound |u(0)| = |u(z)| in terms of a power of ρ. We employ the standard
technique in ODEs of defining the function R : (−∞, 0] → R given by the first integral on
the right-hand side. Whenever |B(t)| ≠ 0,

1

|B(t)|
R′(t) ≤ |u(t0)|+R(t) +

∫ t

t0

|b(s)|ds

and so

R′(t) ≤ |B(t)|R(t) + |B(t)|
(
|u(t0)|+

∫ t

t0

|b(s)|ds
)
.

Observe that this inequality also holds when |B(t)| = 0 and hence for all t ≤ 0. This is
a separable equation. In particular, if we take |B(t)|R(t) to the left-hand side, multiply

through by exp
[
−
∫ t

t0
|B(s)|ds

]
, integrate from t = t0 to t = 0 (using that R(t0) = 0), and

finally divide through by exp
[
−
∫ 0

t0
|B(s)|ds

]
, we will get

R(0) =

∫ 0

t0

|B(s)||u(s)|ds (5.63)
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≤ e
∫ 0
t0
|B(s)|ds

∫ 0

t0

e
−

∫ t
t0
|B(s)|ds|B(t)|

(
|u(t0)|+

∫ t

t0

|b(s)|ds
)
dt.

Before we let t0 → −∞, let us discuss integrability. Because we’re working on the sphere
bundle and g = ρ−2g for a smooth metric g, there exists a constant C2 > 0 such that
the magnitude of vi in the expressions for B and b in (5.60) are less than C2ρ on π−1[K ′].
Hence by (5.60) we have that there exists constants C3, CN > 0 such that |B| ≤ C3ρ and
|b| ≤ CNρ

N+1 on π−1[K ′] where N ≥ 0 is an integer whose size is to be determined later (i.e.
CN depends on N). In particular, since ρ(t) ≤ Cet for t ≤ 0 we have that all of the integrals
on the right-hand side of (5.63) converge. Hence letting t0 → −∞ in (5.63) gives that∫ 0

−∞
|B(s)||u(s)|ds ≤ e

∫ 0
−∞|B(s)|ds

∫ 0

−∞
|B(t)|

∫ t

−∞
|b(s)|dsdt (5.64)

where we’ve used that limt→−∞ u(t) = 0 and that exp
[
−
∫ t

t0
|B(s)|ds

]
≤ 1. To estimate

the right-hand side further, observe that since ρ(t) is increasing on t ≤ 0 we have that
|b(t)| ≤ CNρ(t)ρ

N(0) ≤ CNCetρN(0) and so∫ 0

−∞
|b(s)|ds ≤ CNCρN(0). (5.65)

Doing a similar sort of thing for |B(t)|, we get from (5.64) that∫ 0

−∞
|B(s)||u(s)|ds ≤ eC3CC3CCNCρN(0). (5.66)

Finally, letting t0 → −∞ in (5.62) and plugging (5.65) and (5.66) into there finally gives us
that for some constant C ′

N > 0,
|u(z)| ≤ C ′

Nρ
N(z) (5.67)

for all z ∈ π−1[K], where we’ve used that u(0) = u(z). If we require N ≥ (n+ 1)/2, then
indeed we have that each uk ∈ ρ(n + 1)/2L∞[K].

Next, if l ≥ 1 we show that V1u
k ∈ ρ(n + 1)/2L∞[K], after which it should be clear how

the cases of the higher order derivatives follow (i.e. V2V1u
k, ...) if l ≥ 2. We do this by

applying V1 to the ODE (5.61) and study the growth of the solution. Applying V1 to (5.61)
and rearranging, we obtain

d
[
V1

(
uk ◦ φ

)]
dt

+
(
Bk

i ◦ φ
)
V1

(
uk ◦ φ

)
= V1

(
bk ◦ φ

)
− V1

(
Bk

i ◦ φ
)(
ui ◦ φ

)
. (5.68)

Considering that in form this is a similar ODE for V1

(
uk ◦ φ

)
as (5.61) is for uk, up to a few

details we describe below, a similar proof as for (5.67) shows that for some constants C ′′
N > 0

|V1(u ◦ φ)(z, 0)| = |V1u(z)| ≤ C ′′
Nρ

N(z)

for all z ∈ π−1[K] and hence indeed each V1u
k ∈ ρ(n + 1)/2L∞[K] if we require thatN ≥ (n+ 1)/2.

The only analogous steps that we’re missing and need to show is that V1

(
uk ◦ φ

)
satisfies

the “initial condition”
lim

t→−∞
V1

(
uk ◦ φ

)
= 0 (5.69)
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and that for any integer N ′ ≥ 0 whose size is to be determined later there exists a constant
CN ′ > 0 such that the right-hand side of (5.68) satisfies∣∣V1

(
bk ◦ φ

)
− V1

(
Bk

i ◦ φ
)(
ui ◦ φ

)∣∣ ≤ CN ′ρN
′+1 ◦ φ (5.70)

for all z ∈ π−1[K ′].
By shrinking everything if needed, we assume that there is another compact subset K ′′ of

our coordinates’ domain such that K ′ ⊆ K ′′ ⊆ dom (xi) and such that for any z ∈ π−1[K ′],
φz will always be contained in π−1[K ′′] for t ≥ 0 if η0 ≥ 0 or t ≤ 0 if η0 < 0. Throughout the
rest of the proof, we again assume that we’re working with points such that η0 ≥ 0 because
the proof is similar for the case η0 < 0. We begin with showing the “initial condition” (5.69).
Let (φi, φi) denote the components of φ in the coordinates (xi, ηi) of

bT ∗M . Then over the
interior of bS∗M , we have by the chain rule that

V1

(
uk ◦ φ

)
=

(
∂uk

∂xi
◦ φ
)
V1φ

i +

(
∂uk

∂ηi
◦ φ
)
V1φi. (5.71)

Since u|∂bS∗M ≡ 0, and by (5.67) u vanishes like ρN at the boundary ∂bS∗M where we can
require N ≥ 2, all of uk’s partials vanish at the boundary like ρN−1. In particular, for fixed
z ∈ π−1[K], (

∂uk

∂xi
◦ φ
)
,

(
∂uk

∂ηi
◦ φ
)

∈ O
(
e(N−1)t

)
as t → −∞. (5.72)

So let us take a look at size of the terms V1φ
i and V1φi in (5.71). Consider the coordinates

ηidx
i/ρ 7→ (xi, ηi) of

0T ∗M (note the bars to distinguish these from our coordinates of bT ∗M
above) and let (φ̃i, φ̃i) denote the components of φ with respect to these coordinates. Since
canonical identification is given by xi = xi, η0 = η0 and ηλ = ρ−1ηλ for λ = 1, . . . , n, we have
that by identification φi = φ̃i, φ0 = φ̃0, and φλ = (φ̃0)

−1
φ̃λ for λ = 1, . . . , n where we point

out that φ̃0 = ρ ◦ φ̃. Hence

V1φ
i = V1φ̃

i, V1φ0 = V1φ̃0, (5.73)

V1φλ = −(ρ ◦ φ)−2V1

(
φ̃0
)
φ̃λ + (ρ ◦ φ)−1V1φ̃λ for λ = 1, . . . , n. (5.74)

We point out that φ̃λ are bounded over π−1[K ′′] because they are smooth over the compact
π−1
0 [K ′′]. Now, we showed in (5.11) that X extends as a smooth vector field on 0S∗M .

Hence, as is noted at the end of the proof of Lemma 3.13 in [14], X has a Lipschitz constant
uniformly bounded on the compact 0S∗M . Since φ̃ is the flow ofX over 0S∗M , as the authors
explain there it follows by Grönwall’s inequality that there exist constants C4, c4 > 0 such
that all of the partials ∣∣∣∣∂φ̃i

∂xi

∣∣∣∣, ∣∣∣∣∂φ̃i

∂ηi

∣∣∣∣, ∣∣∣∣∂φ̃i

∂xi

∣∣∣∣, ∣∣∣∣∂φ̃i

∂ηi

∣∣∣∣ ≤ C4e
−c4t (5.75)

on (z, t) for all z ∈ π−1[K ′] : η0 ≥ 0 and t ≤ 0. Next, if we write in coordinates V1 =
(V1)

i∂/∂xi + (V1)i
∂/∂ηi over 0S∗M , we have that the components (V1)

i and (V1)i are also
bounded over π−1[K ′] because they are smooth over the compact π−1

0 [K ′]. Hence there
exists a constant C5 ≥ 0 such that∣∣V1φ̃

i
∣∣ ≤ C5e

−c4t and |V1φ̃i| ≤ C5e
−c4t (5.76)

44



on (z, t) for all z ∈ π−1[K ′] : η0 ≥ 0 and t ≤ 0. Plugging this into (5.73) and (5.74), and
then into (5.71), we see that choosing N ≥ 0 big enough in (5.72) will make the “initial
conditions” (5.69) hold (in particular, any N > c4 + 1 will work).

Finally, let’s show that (5.70) holds. By (5.67), we already have that |(ui ◦ φ)| ≤ C ′
Nρ

N◦φ
for any N ≥ 0. Next, the canonical identification TM ∼= 0T ∗M is given by vi = ρ−1gii

′
ηi′

and so by (5.60) we have that over 0S∗M

Bk
i =

(
EΓk

ijρ
−1gii

′
ηi′ + Φk

j

)
and bk = ϕk + Ak

i ρ
−1gii

′
ηi′ .

In particular, we see that these are ρN+1 times something smooth on 0S∗M . Hence, the
partials ∂Bk

i/∂xl, ∂Bk
i/∂ηl, ∂bk/∂xl, and ∂bk/∂ηl are all ρN times something smooth on 0S∗M . In

particular, ∣∣∣∣∂Bk
i

∂xl
◦ φ
∣∣∣∣, ∣∣∣∣∂Bk

i

∂ηl
◦ φ
∣∣∣∣, ∣∣∣∣∂bk∂xl

◦ φ
∣∣∣∣, ∣∣∣∣∂bk∂ηl

◦ φ
∣∣∣∣ ≤ C6ρ

N ◦ φ (5.77)

on (z, t) for all z ∈ π−1[K ′] : η0 ≥ 0 and t ≤ 0. Now, over 0S∗M we have that

V1

(
Bk

i ◦ φ
)
=
(

∂Bk
i

∂xl ◦ φ
)
V1φ̃

l +
(

∂Bk
i

∂ηl
◦ φ
)
V1φ̃l,

V1

(
bk ◦ φ

)
=
(

∂bk

∂xl ◦ φ
)
V1φ̃

l +
(

∂bk

∂ηl
◦ φ
)
V1φ̃l.

(5.78)

Hence if in (5.77) we write ρN ◦ φ ≤ Cec4t
(
ρN−c4 ◦ φ

)
it follows from (5.76) and (5.78) that

requiring N ≥ c4 + N ′ + 1 will make (5.70) holds. As discussed above, this completes the
proof that V1u

k ∈ ρ(n + 1)/2L∞[K].
As we mentioned above, if l ≥ 2 the proof that V2V1u

k ∈ ρ(n + 1)/2L∞[K] and similarly for
the higher derivatives follows similarly, starting with applying V2 to (5.68). We end the proof
with a discussion of how we can ensure that the N ≥ 0 that we used has an upper bound
dependent only on (M, g) and l. Throughout the proof we required that N is bigger than
fixed numbers (e.g. 2), numbers dependent on the dimension (e.g. (n+ 1)/2), the constant
c4 in (5.75), and the analogs of c4 in (5.75) when carrying out the proof for higher order
derivatives (i.e. V2V1u

k, ...). We explain why the latter two can be bounded. Due to the
compactness of the boundary ∂M , we can cover ∂M with a finite collection of neighborhoods
of the form K, K ′, and K ′′ as described above which in turn determine their own c4’s in
(5.75) and their higher derivative analogs using only the geometry of the geodesic flow φ.
Hence, taking the maximum of all such c4’s and their higher derivative analogs will provide
us with an upper bound for N that works throughout the whole proof. In particular, this
upper bound for N will be dependent only on (M, g) and l, and hence proves the existence
of the claimed N0 stated in the theorem.

■

5.5 Proof of Theorem 2.7

In our proof, we will assume that the N0 ≥ 0 in the statement of the theorem is as big as we
need. It will be clear that the size of N0 that we will need is dependent only on (M, g). The
first step is to provide a formulation of (2.3) as a single transport equation of endomorphism
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fields over SM . To begin, we define a natural connection “∇En” on endomorphism fields
End E as follows. For any U ∈ C∞(M ; End E

)
and any v ∈ TxM , we define ∇En

v U to be the
unique element of End Ex satisfying(

∇En
v U

)
h =

[
∇E

v , U
]
h,

for any h ∈ C∞(M ; End E
)
. To see what this looks like in coordinates, take coordinates (xi)

of M , a frame (bi) for E over their domain, and let EΓk
ij denote the connection symbols of

∇E with respect to (∂/∂xi) and (bk). A quick computation shows that

∇En
v U = vU +

(EΓ)U − U
(EΓ), (5.79)

where on the right-hand side U is thought of as a matrix in the basis (bi), vU denotes
applying v to every entry of U , and EΓ represents the matrix with entry EΓk

ijv
i in the kth

row and jth column. This is considered a natural connection on End E because it satisfies
the product rule ∇E

v (Uh) =
(
∇En

v U
)
h+ U∇E

vh.
Of more importance to us is the pullback bundle π∗ End E on SM and its connection

which we denote by ∇π∗En := π∗∇En. We analogously define the operator X = ∇π∗En
X , using

context to differentiate it from our other operators also denoted by “X.” We remark that
this new X satisfies all of the same properties that we proved earlier about X because we’re
simply considering a different vector bundle here that’s also smooth over M (i.e. End E).

By looking in local coordinates, it’s easy to see that ∇̃E = ∇E+A whereA ∈ C∞(TM ; EndskE
)

is a bundle homomorphism whose entries are in ρN0C∞(M) in any boundary coordinates

and frame (in the sense of Definition 5.53). Consider solutions U and Ũ to the following
transport equations on SM :XU + ΦU = 0, U |∂−bS∗M = id,

XŨ + AŨ + Φ̃Ũ = 0, Ũ
∣∣∣
∂−bS∗M

= id,
(5.80)

which exist by Proposition 5.54 (using a different connection and Higgs field) which we can

apply to the second equation because “XŨ +AŨ” can be thought of as “(π∗∇)XŨ” for the
connection ∇ = ∇En + A.

We demonstrate the usefulness of U and Ũ . Suppose that γ : (−∞,∞) → M is a
complete unit-speed geodesic and that u : (−∞,∞) → E is the smooth solution along γ to
the initial value problem

∇E
γ̇(t)u(t) = 0, lim

t→−∞
u(γ(t)) = e, (5.81)

where e is an element in Ex0 where x0 ∈ ∂M is the limit of γ(t) as t → −∞. We point out

that such a u exists by Lemma 2.5 with Φ = 0. We claim that (U ◦ σ)u(t) and
(
Ũ ◦ σ

)
u(t)

are solutions to (2.3) and (2.3) with Φ and ∇E replaced by Φ̃ and ∇̃E respectively.
Let σ : (−∞,∞) → SM be the integral curve of X satisfying γ = π ◦ σ and let û

denote u lifted to σ via the canonical identification of E and π∗E . It follows from (4.8) that
∇π∗E

σ̇ û ∼= ∇E
γ̇u = 0. Thus

∇E
γ̇((U ◦ σ)u) + Φ((U ◦ σ)u) =

[
∇En

γ̇ (U ◦ σ)
]
u+ (U ◦ σ)∇E

γ̇u+ Φ((U ◦ σ)u)
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∼=
[
∇π∗En

X U
]
û+ U∇π∗E

σ̇ û+ Φ(Uû) = 0, with lim
t→−∞

(U ◦ σ)u(t) = e,

where∇En
γ̇ (U ◦ σ) ∼= ∇π∗En

X U follows from a local coordinate calculation using (4.9). Similarly

∇̃E
γ̇

((
Ũ ◦ σ

)
u
)
+ Φ̃

((
Ũ ◦ σ

)
u
)
= ∇E

γ̇

((
Ũ ◦ σ

)
u
)
+ (A ◦ σ)

(
Ũ ◦ σ

)
u+ Φ̃

((
Ũ ◦ σ

)
u
)

=
[
∇En

γ̇

(
Ũ ◦ σ

)]
u+

(
Ũ ◦ σ

)
∇E

γ̇u+ (A ◦ σ)
(
Ũ ◦ σ

)
u+ Φ̃

((
Ũ ◦ σ

)
u
)

∼=
(
∇π∗En

X Ũ
)
û+ Ũ∇π∗E

σ̇ û+ A
(
Ũ û
)
+ Φ̃(Uû) = 0, with lim

t→−∞

(
Ũ ◦ σ

)
u(t) = e.

Hence our claim above is indeed true. By our assumption the data (2.4) is the same for(
∇E ,Φ

)
and (∇̃E , Φ̃) and so

lim
t→∞

(U ◦ σ)u(t) = lim
t→∞

(
Ũ ◦ σ

)
u(t).

Since parallel transport such as (5.81) above is an isomorphism between fibers, varying the

“e” in (5.81) implies here that U = Ũ on ∂bS∗M .
Intuitively speaking, we’ve demonstrated that knowing the parallel transport (5.81), the

endomorphism fields U and Ũ encode the transform that takes all possible (γ, e) to the data

(2.4) of ∇E ,Φ and ∇̃E , Φ̃ respectively. Furthermore, the assumption that the two transforms

are equal gives us that U and Ũ are equal on the boundary. Hence we’ve reformulated our
task to showing that U = Ũ on ∂bS∗M implies the gauge equivalence stated in the theorem.

Guided by the observation (2.12) in the introduction, we next study the behavior of UŨ−1

over the interior SM . We note that both U and Ũ are invertible because (5.80) can be seen
as ordinary differential equations along integral curves of X (c.f. (1.8) in Chapter 3 of [5]).
A quick computation using (5.79) and (4.9) shows that X(W1W2) = X(W1)W2 +W1X(W2)
and that X(id) = 0. Hence by (5.80),

X
(
Ũ−1

)
= −Ũ−1X

(
Ũ
)
Ũ−1 = Ũ−1

(
AŨ + Φ̃Ũ

)
Ũ−1 = Ũ−1A+ Ũ−1Φ̃.

Next, we have that

X
(
UŨ−1

)
= (−ΦU)Ũ−1 + U

(
Ũ−1A+ Ũ−1Φ̃

)
,

and so we finally arrive at that Q = UŨ−1 satisfies

XQ+ ΦQ−QA−QΦ̃ = 0. (5.82)

To apply our finite degree theorems from Section 5.3 above, we need our solution to vanish
at “infinity.” Hence we instead consider W = Q− id which satisfies

XW + ΦW −WA−W Φ̃ = −Φ + A+ Φ̃, (5.83)

and vanishes on the boundary ∂bS∗M . As before, XW −WA can be thought of as (π∗∇)XW
for some connection “∇” whose connection symbols are in ρN0C∞(M) in any boundary
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coordinates and frame (in the sense of Definition 2.6), and ΦW −W Φ̃ can be thought of an
element of ρN0+1C∞(M ; EndEnd E

)
applied to W . Hence assuming that N0 is large enough,

by Proposition 5.54 we have that W is in R3(SM ; π∗ End E). Furthermore, by Remark 5.5
we have that W extends continuously to 0S∗M and vanishes on the boundary ∂0S∗M .

Now, if we look at the equation (5.83) in coordinates and frame, above any fixed point
x ∈ M the entries of the right-hand side of (5.83) are restrictions of homogeneous polynomials
of order zero and one in the variable v. By the theory of spherical harmonics these are
elements of (Fourier) degree zero and one respectively (see Section 2.H in [12]). Hence
by Proposition 5.52 we have that W and hence Q are of degree zero. Thus, we get that
Q ∈ C∞(M ; End E) ∩ C0

(
M ; End E

)
(i.e. up to identification) such that Q|∂M = id and

(Q− id) ∈ R3(SM ; π∗E).
As the final step, let’s show that this Q is the gauge that we wanted. Adopting the

coordinates and frames in (5.79), we have that

XQ = v(Q) +
(EΓ)Q−Q

(EΓ).
Plugging this into (5.82) and equating the zeroth and first Fourier modes gives

ΦQ−QΦ̃ = 0 and XQ−QA = 0.

The first equation gives Φ̃ = Q−1ΦQ over M and hence over M by continuity. The second
equation gives

A = Q−1XQ = Q−1
[
v(Q) +

(EΓ)Q−Q
(EΓ)],

=⇒ A+
(EΓ) = Q−1v(Q) +Q−1

(EΓ)Q,

Now, take any section u ∈ C∞(M ; E|M) and write it as a column vector with respect to the
basis (bi). We have that (here v(u) denotes applying v to every entry of u)

∇̃E
vu = v(u) +

[
A+

(EΓ)]u eq. for ∇̃E
v ,

= v
(
Q−1Qu

)
+Q−1v(Q)u+Q−1

(EΓ)Qu QQ−1 = id and plug in eq. above,

= v
(
Q−1Qu

)
− v
(
Q−1

)
Qu+Q−1

(EΓ)Qu Q−1v(Q) = −v
(
Q−1

)
Q (prod. rule),

= Q−1v(Qu) +Q−1
(EΓ)Qu prod. rule,

= Q−1∇E
v (Qu) eq. for ∇E

v .

Again this relation extends to ∂M by continuity and hence the theorem is proved.

■

6 Proof of Theorem 2.14

Suppose that u is a twisted CKT of order m ≥ 1 that is in R3(SM ; π∗E). We will show that
it is identically zero everywhere. We already proved the existence of a κ as in the statement
of the lemma in the proof of Lemma 5.41 above. Recalling that X+u = 0 by definition,
the idea here is to use to use our curvature bounds and Proposition 5.40 to conclude that
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X−u = 0 as well. To do this, observe that plugging (5.44) and (5.45) into the equation in
Proposition 5.40 gives

(2m+ n)∥X+u∥2L2 ≥
∥∥∥∥ h

∇π∗Eu

∥∥∥∥2
L2

+ (2m+ n− 2)∥X−u∥2L2 +
(
κλm −

∥∥F E∥∥
L∞λ

1/2
m

)
∥u∥2L2 .

Recalling the definition of λm, our assumption
∥∥F E

∥∥
L∞ ≤ κ

√
n implies that the coefficient

of ∥u∥2L2 on the right-hand side is nonnegative. Hence both sides of the inequality are
nonnegative, and thus the left-hand side being zero implies that X−u = 0. Hence Xu =
X+u+ X−u = 0 as well.

Now, consider any g-geodesic γ : (−∞,∞) → M and its lift σ : (−∞,∞) → SM to SM
(i.e. latter is an integral curve of X). As we explained in Section 2.3 above, since (M, g) is
nontrapping the limit limt→−∞ γ(t) ∈ ∂M exists. We have that u vanishes on the compact
boundary ∂0S∗M by Remark 5.5 and hence it follows that that u ◦ σ(t) → 0 as t → −∞.
This combined with the fact that Xu ≡ 0 imply that u ◦ σ(t) ≡ 0. Thus indeed u vanishes
everywhere.

We point out that the conclusion of the theorem follows even faster if one assumes∥∥F E
∥∥
L∞ < κ

√
n since then the coefficient of ∥u∥2L2 in the above inequality is positive, and

hence ∥u∥2L2 = 0 giving u ≡ 0.

■

7 Injectivity over Higgs Fields

In this section we prove Corollary 2.10. Recall that d = rank E . Since the curvature
of ∇E is zero, by Theorem 2.14 we have that there are no nontrivial twisted CKTs in
R3(SM ; π∗E). Hence, by Theorem 2.7, if N0 ≥ 0 is big enough there exists a Q ∈
C0
(
M ; End E

)
∩ C∞(M ; End E) such that Q|∂M = id and satisfies (2.8) with ∇̃E = ∇E .

Hence, we’ll be done if we show that Q ≡ id everywhere. Take coordinates (xi) of M , a
frame (bi) for E over these coordinates’ domain, and consider the coordinates vi∂/∂xi 7→ (xi, vi)
of TM . Let EΓk

ij denote the connection symbols of ∇E with respect to (∂/∂xi) and (bk). Since
the curvature of ∇E is zero, by Proposition 1.2 of Appendix C in Volume II of [49], we may
suppose that the (bi) were chosen so that all of the EΓk

ij ≡ 0. Let us represent Q as a d× d

matrix in the basis (bi). Similarly we represent any section u ∈ C∞(M ; E
)
as a d×1 column

vector in this basis. Then for any section u = ujbj ∼=
[
u1, . . . , ud

]
whose component functions

uj are constant, we have that for any v ∈ TM in our coordinates

∇E
vu = 0,

∇̃E
vu = Q−1∇E

v (Qu) = Q−1v(Q)u.

where v(Q) denotes applying v to the entries of Q. Since ∇̃E
vu = ∇E

vu by assumption and
the above is true for all such u, we get that v(Q) ≡ 0. Hence Q is locally constant, and thus
indeed equal to “id” everywhere.

■
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