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Abstract

In this paper we formulate and prove a gauge equivalence for connections and Higgs
fields of suitable regularity that are mapped to the same function under the non-abelian
X-ray transform on nontrapping asymptotically hyperbolic (AH) spaces with negative
curvature and no nontrivial twisted conformal Killing tensor fields of suitable decay.
If one furthermore fixes such a connection with zero curvature, a corollary provides an
injectivity result for the non-abelian X-ray transform over Higgs fields.
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1 Conventions/notations

In this paper we employ the following conventions/notations:

1. We employ the Einstein summation convention.

2. The dimension of our manifold will be n+ 1, and we’ll denote all indices related to its
dimension by 0, 1, . . . , n. When using the Einstein summation convention on indices
related to the manifold’s dimension, we employ the convention that Latin indices can
sum from 0 to n while Greek indices can only sum from 1 to n.

3. Whenever we say “smooth,” we mean “C∞.” All diffeomorphisms are smooth.

4. If π : E → N is a vector bundle over a manifold N and S ⊆ N is a subset of N , then
we let E|S denote the restriction of E to the fibers over S (i.e. more precise notation
would be E|π−1(S)).

5. Continuing off of point 4), we write C∞(N ;E) for smooth sections of E (i.e. not simply
smooth maps from N to E).

6. We denote the geodesic vector field over the tangent and cotangent bundles (i.e. in-
finitesimal generator of the geodesic flow) by X. We will also let X denote its restric-
tion to the unit tangent and cotangent bundles SM and S∗M (described below), which
makes sense because X is tangent to it.

2 Introduction

2.1 Motivation

In this section we provide motivation for the non-abelian X-ray transform - the object of our
interest, delaying precise definitions for a later section. This transform is a generalization of
the so-called “scalar X-ray transform,” the latter of which is used in reconstructing images
of the internals of patients after irradiating them with X-rays at various angles. The typical
mathematical problem for the scalar X-ray transform is the following: suppose that we have a
bounded subset D ⊆ Rn with smooth boundary and a smooth function ϕ : D → (0,∞) over
it. In our analogy, D represents the shape of our patient and ϕ the body’s X-ray absorption
coefficient at various points. Suppose we have a parametrized line l(t) that enters D at t = 0
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and leaves at t = texit, which represents the motion of an X-ray moving through the body.
The ray’s intensity I(t) along this path decays according to the law

dI

dt
= −ϕI, I(0) = I0, (2.1)

where I0 represents the initial intensity of the ray. We record I(texit) (i.e. the intensity
of the ray when it exits) and then repeat this procedure for all possible lines l that pass
through D, using the same value for I0 every time. The inverse problem is then to recover
the coefficient ϕ from knowing such data, which is equivalent to recovering a gray-scale image
of the patient’s internals. Immediately we may note that a necessary condition for this to
be possible to do is that two different ϕ’s cannot generate the same observation data. If
this is the case, we say that the scalar X-ray transform that takes ϕ to the observed data is
“injective.”

The non-abelian X-ray transform is defined similarly, except that we turn (2.1) into a
system of equations by letting I by a column vector and ϕ a square matrix. The question
then is whether or not it’s possible to recover ϕ from the collected data in this case as well, or
in other words if the operator involved is injective. One application of this is in the recently
introduced polarimetric neutron tomography which attempts to reconstruct the structure of
magnetic fields inside materials after sending neutron beams through them - see for instance
[18] and [7]. We will mention a few more applications of this problem with references in
Section 2.5 below.

We will actually be interested in a more sophisticated generalization of the transform, for
instance by allowing the paths “l” to be geodesics with respect to some Riemannian metric
g on D where D is now a smooth manifold. Furthermore, we will formulate I and ϕ to be
endomorphism fields over a smooth vector bundle over M and formulate the time derivative
to be a connection (which may also be unknown) in the direction of the curve’s velocity.

2.2 Asymptotically Hyperbolic Spaces

We begin by introducing the geometry on which our transform will be defined. In this paper
we let M be a compact connected smooth manifold with smooth boundary of dimension
n + 1 with n ≥ 1, whose interior we denote by M . We fix a boundary defining function
ρ : M → [0,∞) (i.e. ρ is smooth, ρ = 0 only on ∂M , and dρ|∂M ̸= 0). We also fix an
asymptotically hyperbolic (AH) Riemannian metric g on M , which is defined as a
metric such that the tensor g = ρ2g extends to a smooth Riemannian metric on all of M
with |dρ|2ρ2g ≡ 1 along ∂M . The boundary of ∂M is thought of as the “infinity” where the
metric g blows up. Hence recalling that hyperbolic space has constant sectional curvature
−1, the known fact that the sectional curvatures of g tend to −1 as one approaches ∂M
explains why such metrics are given the name “AH.1”

In fact, the Poincaré ball model of hyperbolic space is the archetypical example of an AH

1More generally, the sectional curvatures approaches −|dρ|2 restricted to the boundary - see [9] for a
precise statement.
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space. It is given by M = {|x| ≤ 1} ⊆ Rn+1, where |x| denotes the Euclidean length, and

g = 4
(dx1)

2
+ . . .+ (dxn+1)

2(
1− |x|2

)2 .

Indeed if one takes the boundary defining function ρ = 1− |x|2, then an elementary exercise
shows that |dρ|2ρ2g ≡ 1 along {|x| = 1}.

Taking our general AH space, we note that we can always construct boundary coordinates
of M of the form (ρ, y1, . . . , yn) in which the metric g takes the following convenient form.
Let ε > 0 be such that the flowout of the gradient of ρ with respect to the (smooth) metric
g = ρ2g is a diffeomorphism from (0, ε)× ∂M onto a collar neighborhood Cε of ∂M . Then,
fixing coordinates (y1, . . . , yn) of ∂M , this flowout provides us boundary coordinates (ρ, yµ)
of M in which the metric takes the form

g =
dρ2 + hµνdy

µdyν

ρ2
. (2.2)

We call such boundary coordinates (ρ, yµ) asymptotic boundary normal coordinates.
By Proposition 1.8 in [27], AH spaces are complete. Furthermore, in some cases we

will assume that g is also nontrapping which means that for any complete g-geodesic
γ : (−∞,∞) → M , lim inft→±∞ ρ(γ(t)) = 0. Intuitively speaking, this condition requires
that γ eventually “escapes to infinity.”

2.3 Results

We now state our results. As mentioned in Section 2.2 above we assume in this paper that(
M ⊆ M, g

)
is a connected AH space and that ρ is a boundary defining function. Throughout

this paper we also assume that we have a smooth complex d-dimensional vector bundle E
over M equipped with a smooth Hermitian inner product ⟨·, ·⟩E . Moreover, we assume that
we have a smooth section of the endomorphism bundle Φ : M → End (E) that is skew-
Hermitian with respect to ⟨·, ·⟩E (i.e. ⟨Φu, v⟩E = −⟨u,Φv⟩E). Lastly, we assume that we have
a unitary smooth connection ∇E in E with respect to ⟨·, ·⟩E - meaning that

V ⟨u, v⟩E = ⟨∇E
V u, v⟩E + ⟨u,∇E

V v⟩E ,

when V is any smooth vector field over M and u, v are any smooth sections of E .
The analog of the (2.1) that we will be considering is the following. Take any unit-speed

complete geodesic γ : (−∞,∞) → M such that lim inft→±∞ ρ(γ(t)) = 0. It follows from
Lemma 2.3 in [12] that the limit of γ(t) in M exists as t → ±∞. Let u : (−∞,∞) → E be
a smooth section along γ solving the following initial value problem:

∇E
γ̇(t)u(t) + Φ(γ(t))u(t) = 0, lim

t→−∞
u(t) = e, (2.3)

where e is any element in Ex0 where x0 is the limit of γ(t) in M as t → −∞. The data point
that we “record” is

lim
t→∞

u(t). (2.4)
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The question that we are interested then becomes whether we can recover Φ and ∇E from
the data recorded for all such possible pairs γ and e.

A bit of vocabulary: (2.3) is a type of differential equation called a transport equation,
and Φ is called a Higgs field. Going from the pair

(
∇E ,Φ

)
to the map that takes every

(γ, e) as above to its associated data (2.4) is called the non-abelian X-ray transform, of
which we give a more precise definition in Section 2.4 below.

To make rigorous sense of our problem however, we need to establish the well-definedness
of the solution to (2.3) and the data (2.4). Considering that we’re making use of the values
of the solution to (2.3) at plus or minus infinities, we accomplish this by imposing decay
conditions on both Φ and the connection symbols of ∇E :

Lemma 2.5. Suppose that2 Φ ∈ ρ∞C∞(M ; EndSkE
)
and that the connection symbols of ∇E

are in ρ∞C∞(M ;R
)
in any boundary coordinates and frame (for E). Then for any complete

geodesic γ : (−∞,∞) → M and any e ∈ Ex0 where x0 = limt→−∞ γ(t) in M , the solution to
(2.3) exists and so does the limit (2.4).

Intuitively speaking, in the above lemma we require that Φ and ∇E ’s connection symbols
vanish to infinite order at “infinity” (i.e. {ρ = 0} = ∂M). For future use, we remark that
the above lemma and its proof work equally well if one changes “t → ±∞” to “t → ∓∞” in
its statement and in (2.3) and (2.4).

The following is our main result. To state it, we use the notion of twisted conformal
Killing tensor fields (CKTs for short) that decay to order (n+ 1)/2 or faster at infinity. We
define these at the end of Section 5.2 below and is a technical assumption on g and ∇E that
we need to make the vertical Fourier analysis in its proof to work.

Theorem 2.6. Assume that (M, g) is nontrapping and that the sectional curvatures of g
are negative. Suppose that Φ ∈ ρ∞C∞(M ; EndSkE

)
and that the connection symbols of ∇E

are in ρ∞C∞(M ;R
)
in any boundary coordinates and frame. Suppose also that there are

no nontrivial twisted CKTs that decay to order (n+ 1)/2 or faster at infinity. Now, suppose

that we have another pair Φ̃ and ∇̃E satisfying the same conditions as Φ and ∇E . Lastly,
suppose that the data (2.4) for all possible γ and e as above are the same for (2.3), and

(2.3) with Φ and ∇E replaced by Φ̃ and ∇̃E respectively. Then there exists an invertible
Q ∈ C∞(M ; End E

)
such that Q|∂M = id with (Q− id) ∈ ρ∞C∞(M), and over M satisfies

∇̃E = Q−1∇EQ, Φ̃ = Q−1ΦQ. (2.7)

Note: The notation ∇̃E = Q−1∇EQ means

∇̃E
ve = Q−1∇E

v (Qe)

for any tangent vector v ∈ TM and any section e ∈ C∞(M ; E
)
.

2The notation ρ∞C∞(. . .) means
⋂

N∈R ρNC∞(. . .).
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In other words, the theorem states that we cannot recover the connection and Higgs field
from simply knowing the data (2.4) for all possible (γ, e) as above because such data can

come from two distinct
(
∇E ,Φ

)
and

(
∇̃E , Φ̃

)
. However if that is the case, then there is an

endomorphism field Q that relates the two in the gauge relation (2.7).
The relation (2.7) may look mysterious at first, so let us provide intuition for it. The proof

of Theorem 2.6 essentially begins with taking (2.3) and rewriting it in terms of endomorphism
fields U : R → End E in a way that it encodes the same data:

∇En
γ̇(t)U(t) + Φ(γ(t))U(t) = 0, lim

t→−∞
U(t) = id,

where “∇En” is a natural connection on the space of endomorphism fields generated by ∇E .
Then we ask the following question. Suppose that we have a connection ∇E , Higgs field Φ,
and the data (2.4) that it generates as above. How can we “come up” with another pair ∇̃E

and Φ̃ that generates the same data set? To do this, we take an arbitrary endomorphism
field Q and manipulate the above equality as follows:

∇En
γ̇

(
QQ−1U

)
+ Φ

(
QQ−1U

)
= 0, since QQ−1 = id,

∇En
γ̇ (Q)Q−1U +Q∇En

γ̇

(
Q−1U

)
+ Φ

(
QQ−1U

)
= 0, product rule,

Q−1∇En
γ̇ (Q)Ũ +∇En

γ̇ Ũ +
(
Q−1ΦQ

)
Ũ = 0, multiply by Q−1 and set Ũ = Q−1U,

∇̃En
v Ũ + Φ̃Ũ = 0,

where we set ∇̃En
v Ũ := ∇En

v Ũ + Q−1∇En
v (Q)Ũ and Φ̃ := Q−1ΦQ. It’s quick to see that ∇̃En

v

and Φ̃ will generate the same data set (2.4) if Q|∂M = id and that this Q satisfies (2.7). The
main of point of Theorem 2.6 is that this is the only way that we can produce another pair
∇̃E and Φ̃ with the same data set when the Higgs fields are skew symmetric. This example
is illustrative in the sense that from the above we see that the gauge Q is given by

Q = UŨ−1. (2.8)

This equation will in fact be the idea of how we will come up with the gauge in the proof of
Theorem 2.6.

To elaborate more on the outline of the proof, we will show that Q− id satisfies a specific
transport equation of the form

∇π∗En
X W +ΨW = f

on the 0-cosphere bundle where X is the geodesic vector field (c.f. (5.52) below). The right-
hand side f will turn out to have rapid decay at infinity and Fourier modes of order no bigger
than one with respect to the vertical Laplacian. In Section 5.3 we will prove a regularity
theorem for transport equations that will imply that W also has rapid decay at infinity. In
Section 5.2 we conduct a Fourier study of transport equations that, combined with the just
mentioned result, will imply that W , and hence Q, have Fourier degree zero (i.e. are of the
form C∞(M ; End E

)
). From there it will quickly follow that Q satisfies the conclusions in

Theorem 2.6.
We end this subsection by pointing out that in the special case of when the connection

is known and has zero curvature (see Section 4.6 below for the latter), then it is possible to
recover the Higgs field. Here is the precise statement:
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Corollary 2.9. Assume that (M, g) is nontrapping, the sectional curvatures of g are nega-
tive, and that the curvature of ∇E is zero everywhere. Suppose that Φ ∈ ρ∞C∞(M ; EndSkE

)
and that the connection symbols of ∇E are in ρ∞C∞(M ;R

)
in any boundary coordinates and

frame. Suppose also that there are no nontrivial twisted CKTs that decay to order (n+ 1)/2 or

faster at infinity. Now, suppose that we have another Φ̃ satisfying the same decay condition
as Φ. Lastly, suppose that the data (2.4) for all possible γ and e as above are the same for

(2.3), and (2.3) with Φ replaced by Φ̃. Then Φ = Φ̃.

A simple example of when the corollary applies is if M is a subset of Rn+1, E = M ×Cd

is the trivial bundle whose sections we write as column vectors, and the connection ∇E is
simply given by ∇E

vu =
[
v(u1), . . . , v

(
ud
)]
.

2.4 Non-Abelian X-Ray Transform

We mention a way to formalize the operator that takes (∇,Φ) to the map taking pairs (γ, e)
as above to (2.4) using concepts that we introduce in Sections 4.1, 4.2, and 4.5 below. We will
not make use of this formulation, and only the material up to (2.9) and the two sentences
afterwards here will be used later in the paper. Throughout this section we assume that
(M, g) is nontrapping, Φ ∈ ρ∞C∞(M ; End E

)
, and that the connection symbols of ∇E are

in ρ∞C∞(M ;R
)
in any boundary coordinates and frame.

Consider the cotangent and b-cotangent bundles T ∗M and bT ∗M respectively, and their
unit cosphere bundles S∗M and bS∗M respectively. Suppose (ρ, y1, . . . , yn) are boundary
coordinates of M and consider the frame (dρ/ρ, dy1, . . . , dyn) spanning covectors in T ∗M . On
page 2865 of [12] the authors remind the reader that this extends to the boundary to become
a smooth frame of bT ∗M and that furthermore if ζ = η0dρ/ρ + ηµdy

µ ∈ bT ∗M
∣∣
∂M

is over the
boundary, then the map

η0
dρ

ρ
+ ηµdy

µ 7−→ η0

is well defined (i.e. independent of the coordinates (ρ, yµ) that we choose). The boundary
of the unit cosphere bundle bS∗M ⊆ bT ∗M turns out to have the following two components:

∂−
bS∗M =

{
ζ ∈ bT ∗M

∣∣
∂M

: η0 = 1
}

called the “incoming boundary, ”

∂+
bS∗M =

{
ζ ∈ bT ∗M

∣∣
∂M

: η0 = −1
}

called the “outgoing boundary.”

Let π : S∗M → M and πb : bS∗M → M denote the natural projection maps. Recall
that any unit-speed geodesic γ : (−∞,∞) → M is the image under π of an integral curve
σ : (−∞,∞) → S∗M of the geodesic vector field X. Letting Xb denote the pushforward of
this field onto bS∗M

∣∣
M

via the canonical identification between T ∗M and bT ∗M
∣∣
M
, we have

that γ is the image under πb of an integral curve σb : (−∞,∞) → bS∗M
∣∣
M

of Xb. It follows

from the proof of Lemma 2.1 in [12] that the limit of any such curve exists in bS∗M :

limt→−∞ σb = ∂−
bS∗M,

limt→∞ σb = ∂+
bS∗M.

(2.10)

Intuitively, the first limit here can be thought of as the “initial velocity” of the geodesic as it
“enters” the AH space, while the second its “exit velocity” as it “leaves.” Conversely, every
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ζ ∈ ∂−
bS∗M (resp. ζ ∈ ∂+

bS∗M) is the limit in bS∗M of a unique (up to reparameterization)
such curve σb as t → −∞ (resp. t → ∞).

Hence we may define the map

T (∇
E ,Φ) : π∗E|∂−bS∗M → π∗E|∂+bS∗M

as follows. Take any e ∈ π∗E|∂−bS∗M whose based point we denote by ζ ∈ ∂−
bS∗M . Let σb

be an integral curve of Xb with ζ = limt→−∞ σb and let ζexit = limt→∞ σb. Take the geodesic
γ = πb ◦ σb and let u be the solution to (2.3) where we let e also denote the element in Eπb(ζ)

that’s canonically identified to e ∈ (π∗E)ζ . Then we set

T (∇
E ,Φ)(ζexit) = lim

t→∞
u(t)

making a similar canonical identification. We point out that this limit exists by Lemma 2.5
and that “T” stands for “transport equation.”

Definition 2.11. Over the set of all
(
∇E ,Φ

)
that satisfy the decay conditions in Lemma 2.5

above, the operator (
∇E ,Φ

)
7−→ T (∇

E ,Φ)

is called the non-abelian X-ray transform.

For example, another way to formulate Corollary 2.8 above is that for any g and ∇E

as stated there, the non-abelian X-ray transform is injective over the set of all Higgs field
satisfying the decay condition described therein.

2.5 Prior Research Discussion and Applications

A standard approach for studying injectivity properties of X-ray transforms is via energy
identities that was first introduced in [31]. The type of energy estimate that’s used in this
approach is called the Pestov identity (or Muhometov-Pestov identity) which over the
years has taken many forms as authors apply them in various contexts - see for instance [10],
[36], [39], and [40]. The mentioned paper [10] furthermore explains the connection between
X-ray transform over connections and inverse problems related to the wave equation. Of
recent works, in dimension two the authors of [35] used a Pestov identity to prove solenoidal
injectivity of the X-ray transform over tensors, and in their earlier work [34] they proved a
“Pestov type identity” to study the attenuated ray transform with a connection and Higgs
field.

The paper [37] proceeded to generalize these methods to manifolds of dimensions greater
than two, but it didn’t cover the case of connections. In [14] the authors generalized the setup
in [37] where they studied the X-ray transform for connections and Higgs fields together.
For instance, Theorem 2.6 above was proved in [14] in the case of when (M, g) is a compact
Riemannian manifold, has strictly convex boundary, has negative sectional curvature, the
boundary condition in (2.3) is changed to u(γ(a)) where γ : [a, b] → M is a unit-speed
geodesic traveling between boundary points, and (2.4) is changed to “recording” u(γ(b)). In
this paper we also generalize the Pestov identity proved in [14] to AH spaces, of which a
similar formula also appears in [41].
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We mention the early work [1] that studied the injectivity of the X-ray transform for one-
forms. The work of [43] studied injectivity on tensor fields of rank m ≤ 2 for analytic simple
metrics and a generic class of two-dimensional simple metrics, and proved a stability estimate
for the normal operator. Later [42] proved injectivity on two-tensors for all two-dimensional
simple metrics which was then extended to tensors of all rank in [35]. The papers [48] and
[46] proved injectivity for functions and two-tensors respectively on Riemannian manifolds
that admit convex foliations. The paper [13] proved injectivity on tensors of all rank over
Riemannian manifolds with negative curvature and strictly convex boundary. We mention
that the work [4] characterized the range of the non-abelian X-ray transform on simple
surfaces in terms of boundary quantities and that [3] and [29] proved stability estimates for
it over Higgs fields. Microlocal techniques have also been applied to the study of the X-ray
transform in the presence of conjugate points - we refer the reader to the works [19], [30],
[44], and [45].

In the noncompact realm, injectivity for the scalar X-ray transform over hyperbolic spaces
was proved in [17], and inversion formulas are given in [2] and [16]. In [23] the authors proved
analogous injectivity over Cartan-Hadamard manifolds and in [24] their results were extended
to higher dimensions and tensor fields. The paper [33] proved a gauge equivalence for the
X-ray transform for connections on Euclidean space assuming a bound on the size of the
connection in dimension two.

AH manifolds have gained interest in the past two decades partly due to their role in
physics such as the AdS/CFT conjecture made in [25]. The work [6] for instance describes
the role of integral geometry in the AdS/CFT correspondence. In this setting, the paper [12]
proved injectivity of the X-ray transform for tensor of all orders on asymptotically hyperbolic
spaces. On simple AH manifolds, the work [8] generalized their result for the scalar X-ray
transform by proving a stability estimate for the normal operator. Analogous to the local
problem studied in [48], [9] proved a local injectivity result for the scalar X-ray transform
on AH spaces.

Regarding applications of the non-abelian X-ray transform, we also mention its appear-
ance in the theory of solitons when studying the Bogomolny equations in dimensions 2 + 1
- see [26] and [49] for details. The paper [20] describes its applications to coherent quantum
tomography. For a survey of the non-Abelian X-ray transform and to read more about its
applications, we refer the reader to [32].
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3 Well-Definedness of the Non-Abelian X-Ray Trans-

form

In this section we prove Lemma 2.5. Take any complete geodesic γ : (−∞,∞) → M and
any e ∈ Ex0 where x0 is the limit of γ(t) in M as t → −∞. Our plan is to

1. prove the existence and uniqueness of the solution to the initial value problem (2.3),
on an interval of the form (−∞, t0] for some t0 ∈ R,

2. argue the existence and uniqueness on the rest of the interval [t0,∞) (and hence ev-
erywhere),

3. and finally prove that the limit (2.4) exists.

We begin with 1), which we prove by mapping the infinite interval to a bounded one and
then applying standard existence and uniqueness results of ordinary differential equations
(ODEs). Let (ρ, y1, . . . , yn) be asymptotic boundary normal coordinates of M containing
x0 in its domain and let (bj) be a frame for E over the same domain. Let EΓk

ij denote the
connection symbols of ∇E with respect to these coordinates and frame (for E). Let t0 ∈ R be
a time such that the image of γ is contained in these coordinates for all times t ∈ (−∞, t0].
Then, writing u = ukbk, in these coordinates for t ∈ (−∞, t0] we have that (2.3) becomes
the following system of ODEs

duk

dt
+ EΓk

ij γ̇
iuj + Φk

i u
i = 0, lim

t→−∞
uk = ek, k ∈ {1, . . . , d}, (3.1)

Let’s look at the growth rate of the γ̇i’s. By definition, g = g/ρ2 for some smooth metric g
on M . Since γ has a constant speed one, we have that

gij γ̇
iγ̇j = ρ2.

Clearly the image γ(−∞, t0] is a compact subset of our coordinates’ domain, and so the
matrix in the bilinear form v 7→ gijv

ivj has a minimum positive eigenvalue along this set.
Hence from the above we get that there exists a C > 0 such that each |γ̇i| ≤ Cρ.

Now, take the diffeomorphism h : (−π/2, s0] → (−∞, t0] given by h(s) = tan s. Making
the change of variables t = h(s) in (3.1) gives for each k ∈ {1, . . . , d}

duk

ds
+ EΓk

ij γ̇
idh

ds
uj + Φk

i

dh

ds
ui = 0 on s ∈ (−π/2, 0), uk(−π/2) = ek.

In other words, the existence and uniqueness of a continuous solution u to these ODEs will
prove 1). This in turn will follow from standard results on linear ODEs (see for instance [5])
if we show that the above coefficients EΓk

ij γ̇
ih′ and Φk

i h
′ extend continuously to s = −π/2.

10



It follows from Lemma 2.3 in [12] (specifically (2.11) there) that there exists a constant
C ′ > 0 such that for t ∈ (−∞, t0],

ρ ◦ γ(t) < C ′et. (3.2)

Since by assumption the EΓk
ij and Φk

i are in ρ∞C∞(M ;C
)
, we have that there exists a

constant C ′′ > 0 such that for s ∈ (−π/2, s0] both
∣∣EΓk

ij γ̇
ih′
∣∣ and ∣∣Φk

i h
′
∣∣ are bounded above

by
C ′′(ρ ◦ γ(s))h′(s) ≤ C ′′C ′etan (s) sec2 (s) → 0 as s → −π/2+

Hence indeed EΓk
ij γ̇

ih′ and Φk
i h

′ extend continuously to s = −π/2.
Item 2) follows by applying standard existence and uniqueness theory of ODEs in coor-

dinates and frames of E as one travels along the geodesic. Item 3) is proved similarly to 1)
except one uses Lemma 2.3 in [12] in forward time (for instance, the et in (3.2) will change
to e−t).

■

4 Geometric Preliminaries

4.1 The b and 0 (Co)Tangent Bundles

Lowering and raising an indices with respect to g provides a bundle isomorphism between
the tangent and cotangent bundles over the interior:

♭ : TM −→ T ∗M, ♯ : T ∗M −→ TM.

We introduce two more smooth bundles over M of rank n + 1 that will be of use to us.
The first is the b-tangent bundle “bTM ,” which comes with a canonical smooth map
F : bTM → TM that has the following two properties:

1. F is a bijection between smooth sections of bTM and smooth sections of TM that are
tangent to the boundary ∂M .

2. For any fixed point x ∈ M , F restricts to a linear homomorphism Fx : bTxM → TxM
that is also an isomorphism when x is in the interior M .

The second is the 0-tangent bundle “0TM ,” which is defined similarly as coming with
a smooth map H : 0TM → TM that has the following two properties:

1. H is a bijection between smooth sections of 0TM and smooth sections of TM that
vanish at the boundary ∂M .

2. For any fixed point x ∈ M , H restricts to a linear homomorphism Hx : 0TxM → TxM
that is also an isomorphism when x is in the interior M .

11



Of more importance to us will be the dual bundles bT ∗M and 0T ∗M , which are called
the b and 0 cotangent bundles respectively. They naturally generate pullback maps
F ∗ : T ∗M → bT ∗M and H∗ : T ∗M → 0T ∗M between the dual bundles respectively that are
also bundle isomorphisms over the interior M .

Remark 4.1. Considering that ♭, ♯, F,H, F ∗, H∗ are all isomorphisms over the interior M ,
we will often identify two points in TM , T ∗M , bTM

∣∣
M
, bT ∗M

∣∣
M
, 0TM

∣∣
M
, and 0T ∗M

∣∣
M

as
being the same if it’s possible to go from one to the other by a composition of the “canonical
identification” maps mentioned above.

We mention important bases for the b and 0 cotangent bundles near the boundary. Sup-
pose (ρ, y1, . . . , yn) are boundary coordinates of M . Then it turns out that

F ∗
(
dρ

ρ

)
, F ∗(dy1), . . . , F ∗(dyn)

H∗
(
dρ

ρ

)
, H∗

(
dy1

ρ

)
, . . . , H∗

(
dyn

ρ

)
extend smoothly to the boundary ∂M to be frames of bT ∗M and 0T ∗M . It’s standard to
abuse notation by simply writing that dρ/ρ, dy1, . . . , dyn and dρ/ρ, dy1/ρ, . . . , dyn/ρ are frames for
bT ∗M and 0T ∗M respectively.

4.2 The b and 0 Cosphere Bundles

Suppose (ρ, y1, . . . , yn) are asymptotic boundary normal coordinates of M as described in
Section 2.2 above. We know that T ∗M has a fiber metric g. Thus the maps F ∗ : T ∗M →
bT ∗M and H∗ : T ∗M → 0T ∗M push g to become fiber metrics on bT ∗M

∣∣
M

and 0T ∗M
∣∣
M
,

which we denote by gb and g0 respectively. If we consider the boundary frames for bT ∗M and
0T ∗M introduced in Section 4.1 above, we have that these metrics are given by (c.f. (2.2))∣∣∣η0 dρρ + ηµdy

µ
∣∣∣2
gb
= η20 + ρ2hµνηµην ,∣∣∣η0 dρρ + ηµ

dyµ

ρ

∣∣∣2
g0

= η20 + hµνηµην ,
(4.2)

where (hµν) denotes the inverse matrix of (hµν). From here we see that both gb and g0 extend
smoothly to all of bT ∗M and 0T ∗M respectively. This allows us to define the unit cosphere
bundles in bT ∗M and 0T ∗M :

bS∗M =
{
ζ ∈ bT ∗M : |ζ|bg = 1

}
,

0S∗M =
{
ζ ∈ bT ∗M :

∣∣ζ∣∣0g = 1
}
.

We note that in [12], they use the notation “S∗M” instead of “bS∗M .” We let πb :
bS∗M → M

and π0 :
0S∗M → M denote the natural projection maps.

12



Remark 4.3. Similarly to the remark made in Remark 4.1, we will often identify two points
in SM , bS∗M , and 0S∗M to be the same if it’s possible to go from one to the other by a
composition of the maps mentioned there.

As a last note, we point out that it’s easy to see that both bS∗M and 0S∗M are smooth
embedded submanifolds with boundary of bT ∗M and 0T ∗M . We also note that by (4.2), gb
degenerates over ∂M (i.e. stops being positive definite) while g0 does not. In particular this
implies that bS∗M is not compact while 0S∗M is compact.

4.3 Splitting the Tangent Bundle

Next we define a natural Riemannian metric on the tangent space TM , called the Sasaki
metric, generated by g. We recommend that when checking many of the claims below,
to check them above the center of normal coordinates since in many cases the expressions
simplify considerably due to the vanishing of the Christoffel symbols and the first order
partials of g. Consider the tangent bundle’s projection map π : TM → M and its differential
dπ : TTM → TM . There is another natural map between the corresponding tangent spaces
called the connection map: K : TTM → TM , which is defined as follows. Take any
ω ∈ TTM and let α : (a, b) → M be a smooth curve and V : (a, b) → TM a smooth vector
field along α such that (α, V )′(0) = ω. Then we set K(ω) to be the covariant derivative

K(ω) :=
DV

dt
(0).

To check that this is independent of the α and V that we choose, a quick computation shows
that taking coordinates (xi) of M and the coordinates vi∂/∂xi 7→ (xi, vi) of TM , K is given
by

K

(
αi ∂

∂xi

∣∣∣∣
vi∂/∂xi

+ βi ∂

∂vi

∣∣∣∣
vi∂/∂xi

)
=
(
βk + Γk

ijα
ivj
) ∂

∂xk
,

where Γk
ij are the Christoffel symbols of g. Next, an easy exercise shows that the kernels of

these two maps partition the tangent bundle’s tangent space at any v ∈ TxM :

TvTM = H̃v ⊕ Ṽv (4.4)

where
H̃v = ker K|TvTM and Ṽv = ker dπ|TvTM .

The “Ṽ” stands for “vertical” because it can be imagined as being a tangent subspace at v
standing vertically above x, while the “H̃” stands for “horizontal.” As one can check, both
spaces are canonically identified (i.e. isomorphically mapped to) with TxM by the restricted
maps

dπ : H̃v −→ TxM,

K : Ṽv −→ TxM.

With this splitting in hand, the Sasaki metric G on TM is defined as follows: for any
ω, ς ∈ TvTM ,

⟨ω, ς⟩G = ⟨dπ(ω), dπ(ς)⟩g + ⟨K(ω),K(ς)⟩g.
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It follows immediately that (4.4) is an orthogonal decomposition with respect to G.
We will only work with unit speed geodesics and hence most of our work will be done on

the unit sphere bundle

SM =
{
v ∈ TM : |v|g = 1

}
.

With a choice of unit normal, the Sasaki metric on TM induces a metric on SM , which we’ll
also call the Sasaki metric and denote by G, relying on context to differentiate the two. It’s
not hard to see that at any v ∈ SM the tangent space of SM splits into the form

TvSM = H̃v ⊕ Vv

where Vv is the subspace of Ṽv that’s G-perpendicular to the unit normals to the “sphere”
SxM above x. Now, let X denote the geodesic vector field over SM . It’s easy to check that
X always lies in Hv for all v ∈ SM and hence we obtain the standard splitting

TvSM = (RXv)⊕Hv ⊕ Vv (4.5)

where Hv denotes the orthogonal complement of RXv in H̃v. For future use, we point out
that restrictions of dπ and K map

dπ : Hv −→
{
v⊥
}
⊆ TxM,

K : Vv −→
{
v⊥
}
⊆ TxM.

(4.6)

4.4 Integration on the (Co)Sphere Bundle

Since SM has a Riemannian metric G, it has a Riemannian density and hence the Lebesgue
measure generated by it (latter two are independent of orientation). Hence we may perform
Lebesgue integration on SM with respect to G. If (xi) are local coordinates of M and we
take the coordinates vi∂/∂xi 7→ (xi, vi) of TM , then it turns out that the integral of any
function f ∈ L1(SM) supported over our coordinates is given by the iterated integral∫

f =

∫
f
(
x1, . . . , xn, v1, . . . , vn

)
dSx

(
v1, . . . , vn

)√
det gdx1 . . . dxn,

where (v1, . . . , vn) are on the sphere gijv
ivj = 1 and dSx is the Lebesgue measure on SxM

induced by TxM with inner product gx. We refer the reader to Section 3.6.2 in [38] for a
proof. We point out that the (total) measure of SxM is the Euclidean surface area of the
Euclidean n-sphere for all x ∈ M .

As an example of the usefulness of this observation, we point out that since
√
det g is

ρ−(n+1) times “something smooth” on M we immediately get that any function of the form
ρn+1L∞(SM) is integrable.

4.5 Splitting the Connection Over the Unit Tangent Bundle

Let us take the natural projection map π : SM → M . The pullback (vector) bundle π∗E
over SM is defined as the set obtained by taking any point x ∈ M and attaching a copy of
Ex to every point of the sphere SxM above it. Formally,

π∗E :=
{
(v, e) : v ∈ SM, e ∈ Eπ(v)

}
.
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We often canonically identify (v, e) with e ∈ Eπ(v) when v is fixed. To every fiber (π∗E)v we
impose the inner product space structure of (Ex, ⟨·, ·⟩Ex). If (bi) is a smooth frame for E , then
we turn π∗E into a smooth vector bundle over SM (with smooth inner product) by declaring
frames for π∗E of the form3 (π∗bi) to be smooth. The pullback connection ∇π∗E = π∗∇E in
π∗E is defined to be the unique connection so that if Ω : TM → TTM and u : M → E are
smooth, then

∇π∗E
Ω (π∗u) = π∗(∇E

dπ(Ω)u
)
.

Having defined the splitting of the unit tangent bundle in (4.5), we now define a natural
splitting of the connection of any section u : SM → π∗E in the following form:

∇π∗Eu =
X

∇π∗Eu+
h

∇π∗Eu+
v

∇π∗Eu. (4.7)

Let’s start by defining
h

∇π∗Eu. We have that the full connection ∇π∗Eu is a tensor of the
form C∞(SM ;T ∗SM ⊗ π∗E). Now, consider the same tensor but with the first index raised

with respect to G:
[
∇π∗Eu

]♯ ∈ C∞(SM ;TSM ⊗ π∗E). Next, it’s an easy exercise to check
that there exists a unique map

PH : C∞(SM ;TSM ⊗ π∗E) −→ C∞(SM ;TSM ⊗ π∗E) (4.8)

that satisfies
PH(ω ⊗ e) = (projHω)⊗ e

where projH : TvTM → H ⊆ TvTM is the orthogonal projection map onto H. We then
define

h

∇π∗Eu := PH

([
∇π∗Eu

]♯ )
.

We define
X

∇π∗Eu and
v

∇π∗Eu the same way but instead use analogous map PRX , projRX and

PV , projV respectively. However instead of using
X

∇π∗Eu, it’s more common to use the related
quantity

Xu := ∇π∗E
X u. (4.9)

We note that one can be computed from the other and so we often record the decomposition
(4.7) instead as

∇π∗Eu =

(
Xu,

h

∇π∗Eu,
v

∇π∗Eu

)
. (4.10)

The second two components are called the horizontal and vertical derivatives of u
respectively. It’s convenient to change the interpretation of the latter two derivatives as
follows.

We define the bundle N over SM obtained by attaching to every v ∈ SxM a copy of{
v⊥
}
⊆ TxM . Formally,

N =
{
(v, w) : v ∈ SxM where x ∈ M and w ∈

{
v⊥
}}

.

3Applying π∗ to bi means “bi ◦ π.”
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To every fiber Nv we impose the inner product space structure of
({

v⊥
}
, gx
)
which we denote

by “⟨·, ·⟩Nv .” It’s an easy exercise to show that this is a smooth subbundle of π∗TM . By
(4.6) we can think of dπ and K as mapping

dπ : Hv −→ Nv,
K : Vv −→ Nv.

(4.11)

Above every v ∈ TM , the maps PH and PV above map into Hv ⊗ (π∗E)v and Vv ⊗ (π∗E)v
respectively. Hence using the identification (4.11) we can think of the horizontal and vertical
derivatives as both being N ⊗ E-valued:

h

∇π∗Eu ∈ C∞(SM ;N ⊗ π∗E) and
v

∇π∗Eu ∈ C∞(SM ;N ⊗ π∗E).

The reason this is useful is that it becomes natural to apply well-known adjoint formulas for
the horizontal and vertical derivatives over this space. In particular, it turns out that there
are differential operators

h

divπ
∗E : C∞(SM ;N ⊗ π∗E) −→ C∞(SM ; π∗E),

v

divπ
∗E : C∞(SM ;N ⊗ π∗E) −→ C∞(SM ; π∗E),

(4.12)

with the property that if u ∈ C∞(SM ; π∗E) and v ∈ C∞(SM ;N ⊗ π∗E) are such that at
least one of them is of compact support, then

⟨
h

∇π∗Eu, v⟩L2(N⊗π∗E) = −⟨u,
h

divπ
∗Ev⟩L2(π∗E) and ⟨

v

∇π∗Eu, v⟩L2(N⊗π∗E) = −⟨u,
v

divπ
∗Ev⟩L2(π∗E).

We discuss this in more detail in Section 5.1 below. The operators in (4.12) are naturally
called the horizontal and vertical divergences respectively.

For future reference, we end this subsection with two more definitions. First, we define
the differential operator

X : C∞(SM ;N ⊗ π∗E) → C∞(SM ;N ⊗ π∗E),

differentiated from the X introduced in (4.9) by context, to be the unique operator satisfying
that for any Z ⊗ b ∈ C∞(SM ;N ⊗ π∗E),

X(Z ⊗ b) = X(Z)⊗ b+ Z ⊗ X(b), (4.13)

where X(Z) at any point v ∈ TM denotes (utilizing proper identifications) the covariant
derivative of Z along the geodesic γ with initial velocity v at time t = 0:

X(Z)|v =
DγZ

dt
(0).

We point out that v = dπv(X), which motivates the notation “X(Z).” Since Z⊥γ̇ implies
that DγZ/dt ⊥γ̇, we see that X indeed maps into smooth sections of N ⊗ π∗E (i.e. not simply
into π∗TM ⊗ π∗E).

Second, we define the analogous bundle 0N over 0SM given by

0N =
{(

ζ, ϑ
)
: ζ ∈ 0S∗

xM where x ∈ M and ϑ ∈
{
ζ
⊥
}
⊆ 0TxM

}
,

where {ϑ⊥} is computed using g0. We impose to every fiber 0Nξ the vector space structure
of ({ξ⊥}, (g0)ξ). This is also a smooth subbundle of π∗

0
0T ∗M .
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Remark 4.14. Similarly to Remark 4.1, we will often identify two points in the pullback
bundles π∗TM , π∗

b
bT ∗M

∣∣
M
, and π∗

0
0T ∗M

∣∣
M

to be the same if it’s possible to go from one to
the other by first moving to the associated bundle fiber over M via identification, then by
compositions of the maps described in that remark, and then lifting to the associated bundle
fiber on the (co)sphere. For example, we often identify (v, w) ∈ π∗TM to be the same as(
H∗(v♭ ), H∗(w♭

))
. It’s not hard to see that this identification restricts to N → 0N .

4.6 Curvatures

We now cover the curvature operators of E , π∗E , and simply the metric g. We start with
the first one. The operator ∇E maps between the following spaces of sections:

∇E : C∞(M ; E
)
−→ C∞(M ;T ∗M ⊗ E

)
Let Λk

(
T ∗M

)
denote the bundle of covariant alternating k-tensors and let

C∞(M ; Λk
(
T ∗M

)
⊗ E

)
denote the space of smooth sections of T ∗M ⊗ . . . ⊗ T ∗M ⊗ E that are alternating in their
first k arguments. The operators

∇E : C∞(M ; Λk(T ∗M)⊗ E
)
−→ C∞(M ; Λk+1

(
T ∗M

)
⊗ E

)
are defined to be the unique operators that satisfy that for any θ ∈ C∞(M ; Λk

(
T ∗M

))
and

any u ∈ C∞(M ; E)
∇E(θ ⊗ u) = dθ ⊗ u+ (−1)kθ ∧∇Eu,

where θ ∧∇Eu denotes the wedge-like product:

θ ∧∇Eu(v1, . . . , vk+1, l) =
1

k!1!

∑
σ∈Sk+1

θ
(
vσ(1), . . . , vσ(k)

)
∇Eu

(
vσ(k+1), l

)
,

where Sk+1 denotes the set of permutations of k + 1 elements.
The curvature of ∇E is defined to be

fE := ∇E ◦ ∇E : C∞(M ; E
)
−→ C∞(M ; Λ2

(
T ∗M

)
⊗ E

)
.

A straightforward computation shows that in any coordinates (xi) of M and any frame (bi)
of E , the curvature fE applied to any smooth section u ∈ C∞(M ; E

)
is given by

fEu = ul

(
∂EΓk

jl

∂xi
− EΓm

il
EΓk

jm − ∂EΓk
il

∂xj
+ EΓm

jl
EΓk

im

)
dxi ⊗ dxj ⊗ bk. (4.15)

where EΓk
ij are the connection symbols of ∇E with respect to these coordinates and frames.

The resemblance of this tensor to the Riemann curvature tensor is the motivation for the
name of fE .
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Next we define a curvature operator associated to fE which acts over SM . Notice that fE

can be viewed as a C∞(M ; Λ2
(
T ∗M

)
⊗ E ⊗ E∗) tensor field where u is placed in the fourth

argument in (4.15) (i.e. the argument of E∗). Hence it can also be canonically identified
with a smooth map, denoted by the same letter, of the form

fE : C∞(M ;TM
)
× C∞(M ; E

)
−→ C∞(M ;T ∗M ⊗ E

)
.

In our coordinates and frames it is given by the following: if fij
k
l denotes the tensor com-

ponent written out in the “(. . .)” in (4.15), then for any x ∈ M , v ∈ TxM , and e ∈ Ex,

fE
x (v, e) = elfij

k
lv

idxj ⊗ bk. (4.16)

We define the curvature operator associated to fE to be the map

F E : C∞(SM ; π∗E) −→ C∞(SM ;N ⊗ π∗E)

given by the following. For any x ∈ M , v ∈ SxM , and e ∈ (π∗E)v,

F E
v (e) := PN⊗π∗E

([
fE
x (v, e)

]♯ )
. (4.17)

where ♯ raises the first index of fE
x (v, e) and PN⊗π∗E : TM ⊗ π∗E → N ⊗ π∗E denotes

projecting the first component of a tensor product perpendicularly onto the normal bundle
(i.e. TM onto N - c.f. (4.8)).

The last curvature quantity that we want to establish notation for is the ordinary curva-
ture of g. Let

R : C∞(M ;TM)× C∞(M ;TM)× C∞(M ;TM) −→ C∞(M ;TM)

denote the Riemann curvature endomorphism given by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,

where ∇ is the Levi-Civita connection and [·, ·] is the Lie bracket. Recall that R is multi-
linear over C∞(M) and thus has well-defined restrictions to (TxM)3 → TxM for any fixed
x ∈ M . We define operators, denoted by the same letter,

R : C∞(SM ;N) −→ C∞(SM ;N)

R : C∞(SM ;N ⊗ π∗E) −→ C∞(SM ;N ⊗ π∗E)

given by the following, for any x ∈ M , v ∈ SxM , w ∈ Nv, and e ∈ (π∗E)v,

Rv(w) := Rx(w, v)v and Rv(w ⊗ e) := [Rx(w, v)v]⊗ e.

5 Gauge Equivalence of Connections and Higgs fields

In this section we build the necessary tools to prove Theorem 2.6, and then prove it at the
end.
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5.1 Pestov Identity

In this section we prove the following version of the Pestov Identity with a connection on
asymptotically hyperbolic (AH) spaces.

Theorem 5.1. Suppose that u ∈ ραC∞(0S∗M ; π∗
0E
)
for some α > (n+ 1)/2. Then4

∥
v

∇π∗EXu∥2L2 = ∥X
v

∇π∗Eu∥2L2 − ⟨R
v

∇π∗Eu,
v

∇π∗Eu⟩L2 − ⟨F Eu,
v

∇π∗Eu⟩L2 + n∥Xu∥L2

where L2 stands for L2(SM ;N ⊗ π∗E) in the first four quantities and L2(SM ; π∗E) in the
last one.

Intuitively speaking it studies how the “energy” (i.e. L2-norm squared) changes when

one switches the order of
v

∇π∗E and X. The theorem is proved by simply starting with

∥
v

∇π∗EXu∥2L2 and then applying L2-adjoint relations and commutator formulas until one

arrives at ∥X
v

∇π∗Eu∥2L2 . The factor ρα for α > (n+ 1)/2 is included to provide sufficient decay
at infinity to make all of the functions in question L2-integrable. We multiply this factor
by C∞(0S∗M ; π∗

0E
)
because, as we will show below, all of the differential operators involved

extend smoothly to 0S∗M and hence preserve this decay rate.
The following lemma provides us with the set of adjoint relations mentioned above that

we need.

Lemma 5.2. The following are true, where α, β ∈ R are real numbers and all L2 stand for
appropriate L2(SM ; . . .) spaces.

1. If u ∈ ραC∞(0S∗M ; π∗
0E
)
, then Xu ∈ ραC∞(0S∗M ; π∗

0E
)
as well. Furthermore, if

w ∈ ρβC∞(0S∗M ; π∗
0E
)
is such that α + β ≥ n+ 1, then

⟨Xu,w⟩L2 = −⟨u,Xw⟩L2 .

2. If u ∈ ραC∞(0S∗M ; 0N ⊗ π∗
0E
)
, then Xu ∈ ραC∞(0S∗M ; 0N ⊗ π∗

0E
)
as well. Further-

more, if w ∈ ρβC∞(0S∗M ; 0N ⊗ π∗
0E
)
is such that α + β ≥ n+ 1, then

⟨Xu,w⟩L2 = −⟨u,Xw⟩L2 .

3. If u ∈ ραC∞(0S∗M ; π∗
0E
)
and w ∈ ρβC∞(0S∗M ; 0N ⊗ π∗

0E
)
, then

v

∇π∗Eu ∈ ραC∞(0S∗M ; 0N ⊗ π∗
0E
)
and

v

divπ
∗Ew ∈ ρβC∞(0S∗M ; π∗

0E
)
. If furthermore

α + β ≥ n+ 1, then

⟨
v

∇π∗Eu, v⟩L2 = −⟨u,
v

divπ
∗Ev⟩L2 .

In other words, the operators X,
v

∇π∗E , and
v

divπ
∗E don’t affect decay rates at “infinity”

(i.e. ∂M) and their well-known adjoint relations still hold on AH spaces. To prove this
lemma, we use the following compactly supported version of it:

4Here we’re implicitly restricting to the interior so that we may apply the differential operators involved
and integrate.
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Lemma 5.3. The following are true.

1. If u,w ∈ C∞(SM ; π∗E) are such that at least one of them is of compact support, then

⟨Xu,w⟩L2 = −⟨u,Xw⟩L2 .

2. If u,w ∈ C∞(SM ;N ⊗ π∗E) are such that at least one of them is of compact support,
then

⟨Xu,w⟩L2 = −⟨u,Xw⟩L2 .

3. If u ∈ C∞(SM ; π∗E) and w ∈ C∞(SM ;N ⊗ π∗E) are such that at least one of them is
of compact support, then

⟨
v

∇π∗Eu,w⟩L2 = −⟨u,
v

divπ
∗Ew⟩L2 .

As mentioned before, point 3) in Lemma 5.3 here is stated in [14] and points 1) and 2) are
implicitly used by the authors in the same paper.5 So we do not provide a proof of Lemma
5.3.
Proof of Lemma 5.2 part 1):

Let u be as described in part 1). Let (ρ, yµ) be asymptotic boundary normal coordinates of
M contained in a collar neighborhood Cε of ∂M as described in Section 2.2. For simplicity of
notation, we also write these coordinates as (xi). Consider the coordinates vi∂/∂xi 7→ (xi, vi)
of TM . Next, let (bi) be a frame for E over these coordinates (of M). We write u component-
wise as

u = uiπ∗bi and u = 0uiπ∗
0bi, (5.4)

where the first u here is the element in C∞(SM ; π∗E) canonically identified with u ∈
ραC∞(0S∗M ; π∗

0E
)
. We have that

Xu over SM =
[
X
(
uk
)
+ EΓk

ijv
iuj
]
π∗bk.

where EΓk
ij denote the connection symbols of ∇E with respect to (xi) and (bi), and v ∈ SM

denotes the position on SM . We will now pull this quantity back to π∗
0E .

Let X0 denote the pushforward of X under the canonical identification H∗ ◦ ♭ : TM →
0T ∗M

∣∣
M

(i.e. X0 = d(H∗ ◦ ♭ )(X)). Consider the frame (dxi/ρ) of 0T ∗M whose points we
will typically write as ηidx

i/ρ. It’s easy to see that π∗bk and π∗
0bk are canonically identified,

and hence uk = 0uk when evaluated at identified points. Similarly it’s easy to see that if
vi∂/∂xi and ηidx

i/ρ are identified points, then vi = ρ−1gii
′
ηi′ . Hence

Xu over 0S∗M
∣∣
M

=
[
X0

(
0uk
)
+ EΓk

ijρ
−1gii

′
ηi′

0uj
]
π∗
0bk. (5.5)

Observe that gii
′
is ρ2 times something smooth on M . Consider the coordinates ξidx

i 7→
(xi, ξi) of T

∗M . In (2.3) of [12] the authors write out an explicit equation for X over T ∗M

5Actually, the authors in the mentioned work are working over compact manifolds with boundary and
not AH spaces, but that doesn’t matter due to the compact support assumptions here.
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in asymptotic boundary normal coordinates (recall the convention about Greek and Latin
indices):

X = ρ2ξ0
∂

∂ρ
+ ρ2hµνξµ

∂

∂yν
−
[
ρ
(
ξ20 + |ξ|2h

)
+

1

2
ρ2∂ρ|ξ|2h

]
∂

∂ξ0
− 1

2
ρ2∂yk |ξ|2h

∂

∂ξk

where |ξ|2h = hµνξµξν . Since ηi = ρξi, it’s a quick calculation to show that

X0 = ρη0
∂

∂ρ
+ ρhµνηµ

∂

∂yν
−
[
|η|2h +

1

2
ρ∂ρ|η|2h

]
∂

∂η0
+

[
η0ηµ −

1

2
ρ∂yµ|η|2h

]
∂

∂ηµ
.

We only need the fact that X0 extends smoothly to the boundary and that the coefficient
of ∂/∂ρ is ρ times something smooth on 0T ∗M (and hence on 0S∗M), because from this we
quickly get that (5.5) is indeed in ραC∞(0S∗M ; π∗

0E
)
.

Now suppose that w is as in 1). We will prove the equality in 1) by multiplying w by
a compactly supported (smooth) bump function, use Lemma 5.3 above, and then let the
support of the bump function go out to infinity. To construct the suitable family of bump
functions, let f1 : [0,∞) → [0,∞) be a smooth function that is identically zero on [0, 1/2],
increasing on [1/2, 1], and then identically one on [1,∞) (see Lemma 2.21 in [21] for an explicit
construction). For any δ > 0, let fδ : [0,∞) → [0,∞) denote the function fδ(x) = f(x/δ).
Finally, for δ < ε let ϕδ : M → [0,∞) denote the one parameter family of bump functions
given by

ϕδ(x) =

{
fδ ◦ ρ(x) ρ(x) < δ

1 otherwise
.

By Lemma 5.3 we have that

⟨Xu, ϕδw⟩L2 = −⟨u,X(ϕδw)⟩L2

since ϕδw is compactly supported. Applying the product rule on the right-hand side gives

⟨Xu, ϕδw⟩L2 = −⟨u, ϕδXw⟩L2 − ⟨u,X(ϕδ)w⟩L2 . (5.6)

We now let δ → 0+ and show that this equation tends to the equality in 1). By what we
proved above, we have that ⟨Xu,w⟩π∗E and ⟨u,Xw⟩E are in ρα+βC∞(0S∗M ; π∗

0E
)
and hence

in ρn+1L∞(SM ; π∗E). Next, differentiating in δ demonstrates that ϕδ monotonely increases
to the identically one function as δ → 0+. Hence by the dominated convergence theorem,
we get that the first two terms in the above equation tend to ⟨Xu,w⟩L2 and −⟨u,Xw⟩L2

respectively as δ → 0+.
Hence we will have proved 1) if we can show that the third term in the above equation

tends to zero as δ → 0+. This will follow if we show that for any compact set K ⊆ M
contained in the domain of some interior coordinates (zi) of M or boundary coordinates
(ρ, yµ) = (xi) as above, then∫

π−1[K]

⟨u,X(ϕδ)w⟩π∗E −→ 0 as δ → 0+.
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If K is contained in the domain of interior coordinates, then this follows immediately since
ϕδ ≡ 1 on K for sufficiently small δ > 0. So suppose that K is contained in the domain of
our boundary coordinates (ρ, yµ) = (xi). Writing the above integral in these coordinates as
in Section 4.4 gives∣∣∣∣∫

K

⟨u,X(ϕδ)w⟩π∗EdSx(v)
√
det gdx

∣∣∣∣ ≤ sup
∣∣∣⟨u,w⟩π∗E

√
det g

∣∣∣ωn

∫
K

|X(ϕδ)|dx.

where the sup . . . is finite due to the decay of u and w and ωn denotes the surface area
of the Euclidean n-sphere. The explicit equation for X in coordinates of TM (e.g. see
page 104 in [22]) gives that X(ϕδ) = v0f ′

δ(ρ), which we note is supported in {ρ ≤ δ}. Since
g =

(
dρ2 + hµνdyµdyν

)
/ρ2 and |v|g = 1, we have that |v0| ≤ ρ. Hence the integrand∫

K

|X(ϕδ)|dx ≤
∫
dom (yµ)

∫ ε

0

δf ′
δ(ρ)dρdy = δ

∫
dom (yµ)

dy −→ 0 as δ → 0+.

■

Proof of Lemma 5.2 parts 2), 3):
Let’s begin with proving 2). Let u be as described there. Let (ρ, yµ) = (xi) be boundary

coordinates of M , consider the coordinates vi∂/∂xi 7→ (xi, vi) of TM , and let (bi) be a frame
for E over these coordinates. We write u component-wise as

u = uijπ∗ ∂

∂xi
⊗ π∗bj and u = 0uj

iπ
∗
0

dxi

ρ
⊗ π∗

0bj. (5.7)

We have that uij = ρ−1gii
′(0uj

i′

)
when evaluated at identified points. By (4.13) we have that

Xu over SM =
(
X
(
ukj
)
+ Γk

i′iv
i′uij

)
π∗ ∂

∂xk
⊗ π∗bj + uijπ∗ ∂

∂xi
⊗
(
EΓk

i′jv
i′π∗bk

)
where Γk

ij and
EΓk

ij denote the Christoffel symbols and connection symbols of ∇E respectively.
Hence, pulling the above to 0N ⊗ π∗

0E gives

Xu over 0S∗M
∣∣
M

=
(
X0

(
ρ−1gkk

′(0uj
k′

))
+ Γk

i′iρ
−1gi

′i′′ηi′′ρ
−1gii

′′′(0uj
i′′′

))(
ρgkk′π

∗
0

dxk′

ρ

)
⊗ π∗

0bj

+ρ−1gii
′(0uj

i′

)(
ρgii′′π

∗
0

dxi′′

ρ

)
⊗
(
EΓk

i′jρ
−1gi

′i′′′ηi′′′π
∗
0bk

)
.

Now, letting Γ
k

ij denote the smooth Christoffel symbols of the smooth metric g = ρ2g, the
conformal transformation law of Christoffel symbols (e.g. see Proposition 7.29 in [22]) gives
that Γk

ij are ρ
−1 times something smooth on M . Hence recalling the form of X0 from earlier,

we get that the above is in indeed ραC∞(0S∗M ; 0N ⊗ π∗
0E
)
as well. The equality in 2) follows

the same way that we proved the equality in 1).
Finally, let’s prove 3). Let u and w be as described there. First let’s look at u whose

components we write in our boundary coordinates and frame just as we did in (5.4). In the
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proof of Lemma 3.2 in [14] the authors give an equation for the vertical derivative6 of u in

terms of an operator “
v

∇” for which an explicit equation is given on page 350 of [37]. As the
authors do in [14], we assume that (bi) is orthonormal so that may use their formula to get
that

v

∇π∗Eu over SM = ∂iujπ∗ ∂

∂xi
⊗ π∗bj, (5.8)

where for any f ∈ C∞(SM)
∂if := [∂vi(f ◦ p)]|SM ,

∂if := gii
′
∂if,

where p : TM \ {0} → SM is the radial projection map v 7→ v/|v|g over the tangent bundle
minus the zero section. Consider the coordinates ηidx

i/ρ 7→ (xi, ηi) of 0T ∗M and observe
that the canonical identification H∗ ◦ ♭ : TM → 0T ∗M

∣∣
M

is given by ηi = ρgii′v
i′ , whose

differential takes
∂

∂vi
7−→ ρgii′

∂

∂ηi′
.

Hence pulling the vertical derivative of u back to 0N ⊗ π∗
0E gives

v

∇π∗Eu over 0S∗M
∣∣
M

= gii
′
ρgi′i′′

[
∂ηi′′

(
0uj ◦ p0

)]∣∣
0S∗M

(
ρgii′′′π

∗
0

dxi′′′

ρ

)
⊗ π∗

0bj,

where p0 :
0T ∗M \ {0} → 0S∗M is the analogous map ζ 7→ ζ/

∣∣ζ∣∣
g0
. As before, we see that this

is in ραC∞(0S∗M ; 0N ⊗ π∗
0E
)
.

Next let’s take a look at w, whose components we write in our boundary coordinates
and frames as in (5.7) but with “u” replaced with “w.” Using (5.8) above, a straightforward

generalization of the derivation of the equation for “
v

div Z” given on page 352 of [37] gives

v

divπ
∗Ew over SM = ∂iw

ijπ∗bj. (5.9)

Hence, pulling this back to π∗
0E gives

v

divπ
∗Ew over 0S∗M

∣∣
M

= ρgii′
[
∂ηi′

([
ρ−1gii

′′(0wj
i′′

)]
◦ p0

)]∣∣∣
0S∗M

π∗
0bj.

This is indeed in ρβC∞(0S∗M ; π∗
0E
)
.

The equality in 3) follow essentially the same way we proved the analogous fact in 1).
An example of a minor change that’s needed is that the analog of (5.6) will be

⟨
v

∇π∗Eu, ϕδw⟩L2 = −⟨u, ϕδ

v

divπ
∗Ew⟩L2 ,

which we note doesn’t have an analogous “third term” as in (5.6) because ϕδ only depends
on position and thus isn’t affected by the vertical divergence. From there you proceed as
before.

6We remark that in their work they write “
v

∇E” for what we denote by “
v

∇π∗E .”
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For use in Section 5.2 below, we record the decay preserving property of the horizontal
derivative:

Lemma 5.10. If u ∈ ραC∞(0S∗M ; π∗
0E
)
, then

h

∇π∗Eu ∈ ραC∞(0S∗M ; π∗
0E
)
as well.

Proof: Take any such u. Let (ρ, yµ) = (xi) be boundary coordinates of M , consider the
coordinates vi∂/∂xi 7→ (xi, vi) of TM , and let (bi) be an orthonormal frame for E over these
coordinates. Let EΓk

ij denote the connection symbols of ∇E with respect to these coordinates
and frame. We write u component-wise as in (5.4). By the equations for the horizontal and
vertical derivatives given in the proof of Lemma 3.2 in [14] and on page 350 of [37],

h

∇π∗Eu over SM =
(
δiuj −

(
vkδku

j
)
vi
)
π∗ ∂

∂xi
⊗ π∗bj + ul

v

∇π∗E(EΓj
klv

kπ∗bj
)
. (5.11)

where for any f ∈ C∞(SM)

δif :=
[(
∂xi − Γk

ijv
j∂vk

)
(f ◦ p)

]∣∣
SM

,

δif := gii
′
δi′f,

where p : TM \ {0} → SM is the radial projection map v 7→ v/|v|g. Considering that we

already know that
v

∇π∗E preserves decay rates at infinity, the lemma follows by pulling (5.11)
back to 0N ⊗ π∗

0E as before - details are left to the reader.

■

Next we need the following lemma that tells us that the curvature operators also don’t
decrease decay rates at infinity.

Lemma 5.12. Suppose that u ∈ ραC∞(0S∗M ; 0N ⊗ π∗
0E
)
and w ∈ ρβC∞(0S∗M ; π∗

0E
)
for

some real numbers α, β ∈ R. Then Ru ∈ ραC∞(0S∗M ; 0N ⊗ π∗
0E
)
and

F Ew ∈ ρβ+2C∞(0S∗M ; 0N ⊗ π∗
0E
)
.

Proof: Let (ρ, y1, . . . , yn) = (xi) be boundary coordinates of M and let (bi) be a frame for
E over these coordinates. We write u component-wise as in (5.7) and w as in (5.4) but with
“u” replaced with “w.” We have that

Ru over SM =
(
∂xiΓl

j′k − ∂xj′Γl
ik + Γm

j′kΓ
l
im − Γm

ikΓ
l
j′m

)
uijvj

′
vkπ∗ ∂

∂xl
⊗ π∗bj.

Letting Rij′k
l denote the quantity in (. . .) and pulling this back to 0N ⊗ π∗

0E gives

Ru over 0S∗M
∣∣
M

= Rij′k
lρ−1gii

′(0uj
i′

)
ρ−1gj

′j′′ηj′′ρ
−1gkk

′
ηk′

(
ρgll′π

∗
0

dxl′

ρ

)
⊗ π∗

0bj.

Since Γk
ij are ρ

−1 times something smooth on M , it’s easy to see that each Rij′k
l is ρ−2 times

something smooth on M . From this we see that this is indeed in ραC∞(0S∗M ; 0N ⊗ π∗
0E
)
.
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Next, looking at (4.16) and (4.17) we have that

F Ew over SM = PN⊗π∗E

(
wlgjj

′
fij

k
lv

iπ∗ ∂

∂xj′
⊗ π∗bk

)
,

and so

F Ew over 0S∗M
∣∣
M

= P0N⊗π∗
0E

(
0wlgjj

′
fij

k
lρ

−1gii
′
ηi′

(
ρgj′j′′π

∗
0

dxj′′

ρ

)
⊗ π∗

0bk

)
,

where P0N⊗π∗
0E is an analogous map that projects the first component of a tensor product

onto 0N . From here we see that is in ρβC∞(0S∗M ; 0N ⊗ π∗
0E
)
.

■

We need one final lemma that provides the needed commutator formulas to prove Theo-
rem 5.1. The following lemma is Lemma 3.2 in [14], where one can also find a proof.

Lemma 5.13. The following are true, where [. . . , . . .] denotes the commutator bracket.[
X,

v

∇π∗E
]
= −

h

∇π∗E , (5.14)[
X,

h

∇π∗E
]
= R

v

∇π∗E + F E , (5.15)

h

divπ
∗E

v

∇π∗E −
v

divπ
∗E

h

∇π∗E = nX, (5.16)[
X,

v

divπ
∗E
]
= −

h

divπ
∗E . (5.17)

Proof of Theorem 5.1:
Let u be as described in the theorem. By Lemma 5.2 we have that

⟨
v

∇π∗EXu,
v

∇π∗EXu⟩L2 = ⟨X
v

divπ
∗E

v

∇π∗EXu, u⟩L2 .

We get that this is equal to (see right after for justifications)

⟨−
h

divπ
∗E

v

∇π∗EXu+
v

divπ
∗EX

v

∇π∗EXu⟩L2 ,

= ⟨−
h

divπ
∗E

v

∇π∗EXu+
v

divπ
∗EX

h

∇π∗Eu+
v

divπ
∗EXX

v

∇π∗Eu, u⟩L2 ,

= ⟨−
h

divπ
∗E

v

∇π∗EXu+
v

divπ
∗E
(
R

v

∇π∗E + F E
)
u+

v

divπ
∗E

h

∇π∗EXu+
v

divπ
∗EXX

v

∇π∗Eu, u⟩L2 ,

= ⟨−nXXu+
v

divπ
∗E
(
R

v

∇π∗E + F E
)
u+

v

divπ
∗EXX

v

∇π∗Eu, u⟩L2 ,

where in the above four lines we used respectively (5.17), (5.14), (5.15), and (5.16). Applying
Lemma 5.2 again gives that this is equal to

n⟨Xu,Xu⟩L2 + ⟨
v

divπ
∗ER

v

∇π∗Eu+
v

divπ
∗EF Eu, u⟩L2 + ⟨X

v

∇π∗Eu,X
v

∇π∗Eu⟩L2 .

We can split the second inner product over the “+” sign since by Lemma 5.12, R and F E

don’t affect decay rates at the boundary “∂M .” Doing this and then applying Lemma 5.2 to
the resultant middle two terms proves the theorem.

■
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5.2 Finite Degree of Solutions to Transport Equations

In the proof of Theorem 2.6 we will end up showing that the gauge satisfies an equation of
the form

Xu+ Φu = f,

which is also called a “transport equation.” It turns out that this equation has good behavior
with respect to vertical Fourier analysis, which we now introduce. Consider the vertical
Laplacian:

∆π∗E = −
v

divπ
∗E

v

∇π∗E : C∞(SM ; π∗E) −→ C∞(SM ; π∗E).
Let’s see what this looks like in coordinates. Let (xi) be coordinates of M , let (ri) be an
orthonormal frame of TM over their domain, let (bj) denote a frame of E over their domain,
and consider the coordinates

viri 7−→
(
xi, vi

)
(5.18)

of TM . Then we claim that for any smooth section u = ujπ∗bj,

∆π∗Eu =
(
−∆Snuj

)
π∗bj

where “−∆Sn” is the negative Laplacian on the n-sphere in the variables vi. This is most
easily seen as follows. Pick an arbitrary point x0 ∈ M in the domain of our coordinates,
choose normal coordinates (x̂i) of M centered at x0, and consider the coordinates v̂i∂/∂x̂i 7→
(x̂i, v̂i) of TM . Then observe that (5.8) and (5.9) tell us that on the sphere Sx0M , the
operator ∆π∗E applied to u = ûjπ∗∂/∂xj is given by

(
−∆Snûj

)
π∗∂/∂xj. The claim then follows

by pushing this expression through the change of variables (x̂i, v̂i) 7→ (xi, vi).
From this observation and the theory of spherical harmonics (c.f. Section 2.H in [11] for

the latter), we get several important implications. First, we get that the eigenvalues of ∆π∗E

match that of −∆Sn :

λm = m(m+ n− 1) for integers m ≥ 0.

Furthermore, letting Ωm denote the set of smooth eigenfunctions of ∆π∗E with eigenvalue λm,
any u ∈ C∞(SM ; π∗E) can be decomposed as (the pointwise converging) “Fourier series”

u =
∞∑

m=0

um, u ∈ Ωm.

The um’s are called u’s Fourier modes. The maximum index m for which um ̸= 0 is called
the degree of u and is denoted by “deg u” (which could be infinity). Naturally, we say that
u is of finite degree if its degree is finite. We can write an explicit equation for the Fourier
modes as follows. For each m ∈ Z+ we let

{Y m
k : k = 1, . . . , lm}

denote a real-valued basis of eigenfunctions of −∆Sn with eigenvalue λm. Then in the coor-
dinates (5.18) and frame (bi) there,

uj
m

(
xi, vi

)
=

lm∑
k=1

[∫
Sn

uj
(
xi, wi

)
Y m
k

(
wi
)
dwSn

]
Y m
k

(
vi
)
. (5.19)
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Lemma 5.20. Suppose that u ∈ ραC∞(0S∗M ; π∗
0E
)
. Then each um ∈ ραC∞(0S∗M ; π∗

0E
)
as

well.

Proof: Consider the coordinates (5.18) and frame (bi) there. Suppose furthermore that the

frame (ri) there was obtained by mapping a local orthonormal frame
(
ζ
i
)
of 0T ∗M via the

canonical identification ♯ ◦H : 0T ∗M
∣∣
M

→ TM . Considering the coordinates ηiζ
i 7→ (xi, ηi)

of 0T ∗M , we get that

uj
m over 0S∗M

∣∣
M

= uj
m

(
xi, ηi

)
=

lm∑
k=1

[∫
Sn

uj
(
xi, wi

)
Y m
k

(
wi
)
dwSn

]
Y m
k (ηi).

From here the lemma follows right away if one chooses (xi) to be the interior of boundary
coordinates of M .

■

Lemma 5.21. The spaces Ωm ∩ L2(SM ; π∗E) and Ωm′ ∩ L2(SM ; π∗E) are orthogonal with
respect to L2 when m ̸= m′.

The above lemma follows from the theory of spherical harmonics and the fact that inte-
grals over SM can be partitioned as described in Section 4.4 above.

One of the nice properties of X is that it maps

X : Ωm −→ Ωm−1 ⊕ Ωm+1. (5.22)

This is proven in Section 3.4 of [14]. Similarly, multiplication on the left by Φ maps Ωm → Ωm

since Φ has no dependence on the vertical variable “v.” In particular, we see that the operator
in the transport equation “X+Φ” maps sections of finite degree to sections of finite degree.
The converse is also true (recall our standing assumption that Φ is skew-Hermitian):

Theorem 5.23. Assume that the sectional curvatures of g are negative. If u ∈ ραC∞(0S∗M ; π∗E
)
,

where α ≥ (n+ 1)/2, solves
Xu+ Φu = f (5.24)

for some f ∈ C∞(0S∗M ; π∗E
)
of finite degree, then u is also of finite degree.

To prove this, we need several preliminary results.

Lemma 5.25. It holds that [
X,∆π∗E] = 2

v

divπ
∗E

h

∇π∗E + nX.

The above lemma is stated as Lemma 3.4 of [14], whose proof is essentially identical to
that of Lemma 3.5 in [37]. To state the next preliminary result we observe that because of
(5.22), over each Ωm we can decompose X = X− + X+ where

X± : Ωm −→ Ωm±1.
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We point out that the maps X± are distinct for different Ωm even though we use the same
notation to denote them. Furthermore, X± have the same decay rate preserving properties
as X described in Lemma 5.2 because of Lemma 5.20 above. We mention that the idea of
splitting the action of the geodesic vector field as above was first introduced by Guillemin
and Kazhdan - see [15]. The following preliminary result is a special case of the Pestov
identity with a connection (Theorem 5.1).

Proposition 5.26. Suppose that u ∈ Ωm ∩ ραC∞(0S∗M ; π∗
0E
)
for some α ≥ (n+ 1)/2. Then

(2m+ n)∥X+u∥2L2

= ∥
h

∇π∗Eu∥2L2 + (2m+ n− 2)∥X−u∥2L2 − ⟨R
v

∇π∗Eu,
v

∇π∗Eu⟩L2 − ⟨F Eu,
v

∇π∗Eu⟩L2 .

Proof: We have that u satisfies the equation in Theorem 5.1. Let’s take a look at the term

∥X
v

∇π∗Eu∥2L2 = ⟨−
h

∇π∗Eu+
v

∇π∗EXu,−
h

∇π∗Eu+
v

∇π∗EXu⟩L2 by (5.14),

= ∥
h

∇π∗Eu∥2L2 + 2⟨Xu,
v

divπ
∗E

h

∇π∗Eu⟩L2 + ∥
v

∇π∗EXu∥2L2 Lemma 5.2 3) and Lemma 5.10.

Applying Lemma 5.25, we see that the middle term in the last quantity is equal to

⟨Xu,X∆π∗Eu−∆π∗EXu− nXu⟩L2 .

Splitting Xu = X−u+ X+u ∈ Ωm−1 ⊕ Ωm+1, using that

∆π∗Eu = λmu, ∆π∗EX−u = λm−1X−u, ∆π∗EX+u = λm+1u,

using Lemma 5.21, and then plugging the result into the equation in Theorem 5.1 proves the
proposition after several cancellations.

■

The following lemma provides the contraction property that’s needed in the proof of
Theorem 5.23.

Lemma 5.27. Suppose that the sectional curvatures of g are negative. Then for any α ≥
(n+ 1)/2 there exist real constants cm → ∞ such that for sufficiently large m,{

∥X−u∥2L2 + cm∥u∥2L2 ≤ ∥X+u∥2L2 if n ̸= 2,

∥X−u∥2L2 + cm∥u∥2L2 ≤ dm∥X+u∥2L2 if n = 2,
(5.28)

for all u ∈ Ωm ∩ ραC∞(SM ; π∗E) where dm = 1 + 1/
[
(2m− 1)(m+ 1)2

]
.

Proof: We begin by using the fact that the sectional curvatures of g tend to −1 at ∂M .
Precisely, by the remark after Proposition 1.10 in [27] there exists an ε > 0 so the sectional
curvatures of g are less than −κ′ for some κ′ > 0 over the region {ρ < ε}. Hence this, the
compactness of {ρ ≥ ε}, and the negative curvature assumption imply that there exists a
κ > 0 such that the sectional curvatures of g are bounded above by −κ on all of M .
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Now, take any α and u as in the statement of the lemma. We have that u satisfies the

equation in Proposition 5.26 above. We begin by estimating the L2 norm of the term
h

∇π∗Eu
by utilizing the trick of looking at its vertical divergence. By Lemma 5.25 we have that

v

divπ
∗E

h

∇π∗Eu =
1

2
X∆π∗Eu− 1

2
∆π∗EXu− n

2
Xu,

=
1

2
(X+λmu+ X−λmu)−

1

2
(λm+1X+u+ λm−1X−u)−

n

2
(X+u+ X−u),

= −(m+ n)X+u+ (m− 1)X−u,

= −
v

divπ
∗E
(
−m+ n

λm+1

v

∇π∗EX+u+
m− 1

λm−1

v

∇π∗EX−u

)
.

Plugging the expression for the λk’s into this, we conclude that

h

∇π∗Eu =
1

m+ 1

v

∇π∗EX+u− 1

m+ n− 2

v

∇π∗EX−u+ Z

where Z ∈ C∞(SM ;N ⊗ π∗E) is such that
v

divπ
∗EZ = 0 and hence perpendicular to the

other two terms on the right-hand side with respect to L2. Using Lemma 5.21 and Lemma
5.2 3), this quickly gives us the L2 estimate

∥
h

∇π∗Eu∥2L2 ≥
m+ n

m+ 1
∥X+u∥2L2 +

m− 1

m+ n− 2
∥X−u∥2L2 .

Now, plugging this into the equation in Proposition 5.26 gives(
2m+ n− m+ n

m+ 1

)
∥X+u∥2L2 (5.29)

≥
(
2m+ n− 2 +

m− 1

m+ n− 2

)
∥X−u∥2L2 − ⟨R

v

∇π∗Eu,
v

∇π∗Eu⟩L2 − ⟨F Eu,
v

∇π∗Eu⟩L2 .

We have that the term

−⟨R
v

∇π∗Eu,
v

∇π∗Eu⟩L2 ≥ κ∥
v

∇π∗Eu∥2L2 = κλm∥u∥2L2 .

Furthermore,

−⟨F Eu,
v

∇π∗Eu⟩L2 ≥ −∥F E∥L∞∥u∥L2∥
v

∇π∗Eu∥ = −∥F E∥L∞λ
1/2
m ∥u∥2L2 .

Hence, letting am,n and bm,n denote the coefficients of ∥X+u∥2L2 and ∥X−u∥2L2 in (5.29) above
respectively we get that

am,n

bm,n

∥X+u∥2L2 ≥ ∥X−u∥2L2 +
κλm − ∥F E∥L∞λ

1/2
m

bm,n

∥u∥2L2 .

Elementary algebra shows that am,n/bm,n is less than or equal to 1 if n ̸= 2 and m > 1, and is
equal to dm if n = 2. Since λm = O(m2), the lemma follows.
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We need one last technical lemma:

Lemma 5.30. If u ∈ ραC∞(0S∗M ; π∗
0E
)
for α ≥ (n+ 1)/2, then ∥X+um∥L2 → 0 as m → ∞.

Proof: Let (W, (xi)) be coordinates of M (W denotes the domain), let (bj) denote an
orthonormal frame of E over W , let (ri) be an orthonormal frame of TM over W ∩M , and
consider the coordinates viri 7→ (xi, vi) of TM . We will show that ∥X+um∥L2(π−1[W ]) → 0,

from which the lemma will follow by covering M by a finite number of such sets W . Letting
EΓk

ij denote the connection symbols of ∇E with respect to (ri) and (bj), we have that

∥X+um∥L2(π−1[W ]) ≤ ∥Xum∥L2(π−1[W ])

=
rank E∑
k=1

∫
W 0

∫
Sn

∣∣Xuk
m

(
xi, vi

)
+ EΓk

ij

(
xi
)
viuj

m

(
xi, vi

)∣∣2dvSndx
where W 0 = W ∩M . Recall that by the Cauchy-Schwarz inequality

|a1 + . . .+ ak|2 ≤ k
(
|a1|2 + . . .+ |ak|2

)
, (5.31)

where the ai’s are complex numbers. Then, using that
∣∣EΓk

ijv
i
∣∣ < C on W for some C > 0

independent of u, we get that the previous quantity is bounded by

C ′
rank E∑
k=1

[∫
W 0

∫
Sn

∣∣Xuk
m

∣∣2dvSndx+

∫
W 0

∫
Sn

∣∣uk
m

∣∣2dvSndx]
for some C ′ > 0 also independent of u. We complete the proof by showing that as m → ∞,

1.
∫
W 0

∫
Sn
∣∣Xuk

m

∣∣2dvSndx → 0,

2.
∫
W 0

∫
Sn
∣∣uk

m

∣∣2dvSndx → 0.

Let’s start by proving 2). Taking (5.19), writing Y m
k = (1/λm)

µ(−∆Sn
)µ
Y m
k inside the

integral there for some integer µ to be determined later, then integrating by parts gives

∣∣uk
m

(
xi, vi

)∣∣ = ∣∣∣∣∣
(

1

λm

)µ lm∑
k=1

[∫
Sn

(
−∆Snuk

m

)(
xi, wi

)
Y m
k

(
wi
)
dwSn

]
Y m
k

(
vi
)∣∣∣∣∣

≤
supSxM

∣∣[∆π∗E]µum

∣∣
λµ
m

lm∑
k=1

sup |Y m
k |2.

By Lemma 5.2,
[
∆π∗E]µum ∈ ραC∞(0S∗M ; π∗E). From the theory of spherical harmonics,

we have that the sum “
∑

. . .” on the right-hand side is bounded by a polynomial in m (e.g.
see Corollary 2.56 and Theorem 2.57 (a) and (f) in [11] and consider Zx

k (x) there). Hence 2)
follows by choosing µ big enough.
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Finally, let’s prove 1). We have that

Xuk
m = vi

′
ri′u

k
m − vi

′
vj

′
Γk′

i′j′
∂

∂vk′
uk
m (5.32)

where Γk
ij are the Christoffel symbols of g with respect to (ri). Since SM = (v1)

2
+ . . .+ (vn)2

in our coordinates, Γk′

i′j′
∂/∂vk′ is tangent to SxM over all x ∈ U0. Hence by the Cauchy-

Schwarz inequality the term∣∣∣∣Γk′

i′j′
∂

∂vk′
uk
m

∣∣∣∣ ≤√(Γ1
ij

)2
+ . . .+

(
Γn+1
ij

)2∣∣gradSnu
k
m

∣∣
where gradSn is Euclidean spherical gradient in terms of ∂/∂vj and |. . .| is the Euclidean
length. Thus plugging (5.19) into the first uk

m on the right-hand side of (5.32) and using the
above estimate gives that for some C ′′ > 0 independent of u,

1

C ′′

∣∣Xuk
m

∣∣2 ≤ ∣∣∣∣∣
lm∑
k=1

[
vi

′
∫
Sn

ri′u
k
m

(
xi, wi

)
Y m
k

(
wi
)
dwSn

]
Y m
k

(
vi
)∣∣∣∣∣

+

∣∣∣∣∣
lm∑
k=1

[∫
Sn

uk
m

(
xi, wi

)
Y m
k

(
wi
)
dwSn

]
gradSnY

m
k

(
vi
)∣∣∣∣∣

If (xi) = (ρ, yµ) were boundary coordinates, suppose we required them to be asymptotic
boundary normal coordinates as in Section 2.2 and that we constructed the orthonormal
frame (ri) to be of the specific form

r0 = ρ
∂

∂ρ
, rµ = ρr̃µ,

where (rµ) is an orthonormal frame spanned by (∂/∂yµ). This way, we see that the terms
ri′u

k
m ∈ ραC∞(0S∗M ; π∗

0E
)
in the above inequality. Then using the inequality (5.31) again

and the fact that ∥gradSnY
m
k ∥2L2(Sn) = ⟨−∆SnY m

k , Y m
k ⟩L2(Sn) = λm, doing a similar thing as

above we get that for some C ′′′ > 0 independent of u,∫
Sn

∣∣Xuk
m

∣∣2dvSn ≤ C ′′′

(
n+1∑
i′=1

(
supSxM

∣∣[∆π∗E]µri′um

∣∣
λµ
m

)
+

supSxM

∣∣[∆π∗E]µum

∣∣
λµ−1
m

)
lm∑
k=1

sup |Y m
k |2

where ri′um = ri′u
jπ∗bj. Hence the lemma follows again by choosing µ big enough.

■

Proof of Theorem 5.23:
We start by assuming that n ̸= 2 since the proof of the case n = 2 requires a slight

modification. Comparing Fourier modes of order m > deg f in (5.24) gives that

X+um−1 + X−um+1 + Φum = 0, (5.33)
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where we note that comparing Fourier modes is justified by the theory of spherical harmonics.
Using this relation and plugging um+1 into u in (5.28) gives that

∥X+um+1∥2L2 ≥ ∥X+um−1∥2L2 + ∥Φum∥2L2 + cm+1∥um+1∥2L2 + 2Re⟨Φum,X+um−1⟩L2 . (5.34)

The idea of the proof is the following. One can plug the relation (5.33) with “m + 1”
replaced by “m − 1” into ∥X+um−1∥2L2 here, use (5.28) again, and then proceed recursively
in the same way. One will get a long expression on the right which one needs to cleverly
manipulate to bound ∥um0∥2L2 for some fixed index m0. Then using that ∥X+um+1∥2L2 goes
to zero as m → ∞ will force ∥um0∥2L2 = 0. The first obstacle to accomplishing this is the
inner product term 2Re⟨Φum,X+um−1⟩L2 . The following claim helps resolve this.

To state the claim, we introduce the following notation. For any U ∈ C∞(SM ; Endπ∗E)
(such as Φ up to identification), we let XU ∈ C∞(SM ; Endπ∗E) denote the unique endo-
morphism field satisfying (XU)h = [X, U ]h for any h ∈ C∞(SM ; π∗E). We leave it to the
reader to show that XU is well-defined (or see Section 5.4 below) and that this operator X
preserves decay rates at infinity as in Lemma 5.2 using the ideas from its proof.
Claim: The following identity is true (because Φ is skew-Hermitian):

⟨X+um−1,Φum⟩L2 + ⟨X+um−2,Φum−1⟩L2 = −⟨um−1, (XΦ)um⟩L2 − ∥Φum−1∥2L2 .

Proof of claim: This is simply a computation:

⟨X+um−1,Φum⟩L2 = ⟨Xum−1,Φum⟩L2 use X = X− + X+ and Lemma 5.21,

= −⟨um−1,X(Φum)⟩L2 Lemma 5.2,

= −⟨um−1, (XΦ)um + ΦXum⟩L2 definition of XΦ,
= −⟨um−1, (XΦ)um⟩L2 − ⟨um−1,ΦX−um⟩L2 X = X− + X+ and Lemma 5.21,

−⟨um−1, (XΦ)um⟩L2 + ⟨um−1,Φ[Φum−1 + X+um−2]⟩L2 used (5.33).

From here the claim follows by rearranging and using that Φ is skew-Hermitian.

End of proof of claim.

We return to proving the theorem. The above claim tells us that to get rid of the last
term in (5.34), we can add (5.34) and (5.34) with “m” replaced by “m− 1”:

∥X+um+1∥2L2 + ∥X+um∥2L2 ≥ ∥X+um−1∥2L2 + ∥X+um−2∥2L2 + ∥Φum∥2L2 + ∥Φum−1∥2L2

+cm+1∥um+1∥2L2 + cm∥um∥2L2 + 2Re⟨Φum,X+um−1⟩L2 + 2Re⟨Φum−1,X+um−2⟩L2 ,

and then apply the equation in the claim to get the following inequality, where for brevity
am = ∥X+um∥2L2 + ∥X+um−1∥2L2 :

am+1 ≥ am−1 + ∥Φum∥2L2 + ∥Φum−1∥2L2 + cm+1∥um+1∥2L2 + cm∥um∥2L2

−2Re⟨um−1, (XΦ)um⟩L2 − 2∥Φum−1∥2L2

≥ am−1 + cm+1∥um+1∥2L2 + cm∥um∥2L2 − ∥um−1∥2L2 − ∥(XΦ)um∥2L2 − ∥Φum−1∥2L2 .
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By the continuity of XΦ and Φ over the compact manifold 0S∗M , there exist constants
B,C > 0 such that

∥Φh∥2L2 ≤ B∥h∥2L2 ,

∥(XΦ)h∥2L2 ≤ C∥h∥2L2 ,

for any h ∈ C∞(SM ; π∗E) ∩ L2(SM ; π∗E). Hence

am+1 ≥ am−1 + rm (5.35)

where
rm := cm+1∥um+1∥2L2 + (cm − C)∥um∥2L2 − (1 +B)∥um−1∥2L2 .

Applying (5.35) recursively gives

am+1 = am0−1 + rm0 + rm0+2 + . . .+ rm

for any pair of indices m,m0 > deg f such that m = m0 + 2k for some integer k ≥ 0. We
seek to bound the resultant tail of ri’s. To do so, choose m0 big enough so that for m ≥ m0,
cm is bigger than both C and B + 1. Hence if m = m0 + 2k,

rm0 + rm0+2 + . . .+ rm = cm+1∥um+1∥2L2 +
k−1∑
i=0

(cm0+1+2i − (B + 1))∥um0+1+2i∥2L2

+
k∑

i=0

(cm0+2i − C)∥um0+2i∥2L2 − (B + 1)∥um0−1∥

≥ cm+1∥um+1∥2L2 − (B + 1)∥um0−1∥2L2 .

Hence for any such m = m0 + 2k we get that

am+1 ≥ am0−1 − (B + 1)∥um0−1∥2L2 .

By the definition of am0−1 and (5.28) we have that am0−1 ≥ cm0−1∥um0−1∥2L2 , and hence we
finally arrive at

am+1 ≥ (cm0−1 − (B + 1))∥um0−1∥2L2 .

Assume we defined m0 before so that cm0−1 ≥ B + 1 as well. Observe that am+1 → 0 as
m → ∞ by Lemma 5.30. Hence we get that ∥um0−1∥2L2 = 0 and thus um0−1 = 0 for all such
large enough m0. This proves the theorem in the case n ̸= 2.

Finally, let’s discuss the modification needed in the case n = 2. In this case we instead
use the second equality in (5.28) and hence proceeding as above arrive at that for sufficiently
large m

dmam+1 ≥ am−1 + rm,

where we’ve used that dm ≥ dm+1 and that all di ≥ 1 for i ≥ 1. Multiplying through by
dm−2, applying the same inequality with “m” replaced by “m − 2” on the right-hand side,
and then repeating recursively gives

(dm · . . . · dm0+2)am+1 = am0−1 + rm0 + (dm0+2)rm0+2 + . . .+ (dm−2 · . . . · dm0+2)rm
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for any pair of m,m0 > deg f such that m = m0 + 2k for some integer k. Since the di ≥ 1,
we get the inequality(

k−1∏
i=0

dm−2i

)
am+1 ≥ am0−1 + rm0 + rm0+2 + . . .+ rm.

Again by the definition of am0−1 and (5.28) we have that am0 ≥ (cm0−1/dm0−1)∥um0−1∥2L2 and
so (

k−1∏
i=0

dm−2i

)
am+1 ≥

(
cm0−1

dm0−1

− (B + 1)

)
∥um0−1∥2L2 .

Since the dm → 1 as m → ∞, we can assume that we defined m0 before so that cm0−1/dm0−1 ≥
B + 1 as well. Furthermore,

∏∞
m=1 dm converges by the infinite product criteria since∑∞

m=1(dm − 1) < ∞ and so the coefficient on the left-hand side is bounded by some fixed
constant. Hence the theorem follows again from the fact that am+1 → 0 as m → ∞.

■

Theorem 5.23 has one disadvantage. Though it tells us that f being of finite degree
implies that the solution u is also of finite degree, it gives no information about the degree
of u itself. This can remedied if we assume an additional condition on the metric g and
connection ∇E . For any index m ≥ 0, we call elements of ker X+|Ωm

twisted conformal
Killing tensors (CKT’s) of degreem. We say that there are no nontrivial CKTs that decay
to order (n+ 1)/2 or faster at infinity if all CKTs of order m ≥ 1 that are in ραC∞(0S∗M ; π∗E

)
for α ≥ (n+ 1)/2 are identically zero.

Theorem 5.36. Assume that the sectional curvatures of g are negative. Suppose also
that there are no nontrivial CKTs that decay to order (n+ 1)/2 or faster at infinity. If
u ∈ ραC∞(0S∗M ; π∗E

)
, where α ≥ (n+ 1)/2, solves

Xu+ Φu = f

for some f ∈ C∞(0S∗M ; π∗E
)
of finite degree m, then u is of degree max {m− 1, 0}.

Proof: We prove this by contradiction: suppose not! Suppose that l = deg u ≥ m. Then
comparing the Fourier modes of order l + 1 of both sides of the above equation gives

X+ul = 0.

Since we assumed that there are no nontrivial CKTs that decay to order (n+ 1)/2 or faster at
infinity, this implies that ul ≡ 0 and hence contradicts the assumption that the degree of u
is l.

■
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5.3 Regularity of Solutions to the Transport Equation

Before we prove the main result of our paper, we need to establish the regularity of solutions
to the transport equation. We’re interested in solutions to the transport equation that extend
smoothly to bS∗M and 0S∗M . Here we use the material that we introduced in Section 2.4
up to (2.9) there and the two sentences after.

Proposition 5.37. Assume that (M, g) is nontrapping. Suppose that Φ ∈ ρ∞C∞(M ; EndSkE
)

and that the connection symbols of ∇E are in ρ∞C∞(M ;R
)
in any boundary coordinates and

frame. Suppose also that we have ϕ ∈ ρ∞C∞(M ; E
)
and A ∈ ρ∞C∞(bTM ; E

)
such that for

every fixed x ∈ M , Ax : bTxM → Ex is a linear map.
Then there exists a unique solution u ∈ C∞(bS∗M ; π∗

bE
)
to

Xu+ Φu = ϕ+ A on SM, (5.38)

with u|∂−bS∗M = h for any given boundary data h ∈ C∞
(
∂−

bS∗M ; π∗
bE|∂−bS∗M

)
. If h ≡ 0

and u|∂+S∗M ≡ 0, then u|SM extends smoothly to be an element of ρ∞C∞(0S∗M ; π∗
0E
)
.

Proof: Recall that d = rank E . From Lemma 2.1 in [12] we have that X = ρX for some
smooth vector fieldX over bS∗M that is transverse to ∂bS∗M . Let (ρ, yµ) = (xi) be boundary
coordinates ofM , (bk) a frame for E over their domain, and consider the coordinates vi∂/∂xi 7→
(xi, vi) of TM . Let EΓk

ij denote the connection symbols of ∇E in these coordinates and frame.
Then observe that the components of (5.38) with respect to (π∗bk) are given by

Xuk + EΓk
ijv

iuj + Φk
ju

j = ϕk + Ak
i v

i (5.39)

where k = 1, . . . , d. Hence over SM

Xuk + ρ−1EΓk
ijv

iuj + ρ−1Φk
ju

j = ρ−1ϕk + ρ−1Ak
i v

i. (5.40)

Take the coordinates η0dρ/ρ + ηλdy
λ 7→ (xi, ηi) of bT ∗M and observe that the canonical

identification ♯ ◦ (F ∗)−1 : bT ∗M
∣∣
M

→ TM is given by

vi = gii
′

{
η0/ρ if i′ = 0

ηi′ if i′ > 0
.

We denote the right-hand side by gii
′{ηi′}. Pulling the above equation (5.40) to bS∗M gives

that the components of (5.38) with respect to (π∗
b bk) satisfy

Xuk + ρ−1EΓk
ijg

ii′{ηi′}uj + ρ−1Φk
ju

j = ρ−1ϕk + ρ−1Ak
i g

ii′{ηi′}. (5.41)

We remind the reader that each gij is ρ2 times something smooth on M . Since we assumed
that g is nontrapping, it follows from Lemma 2.3 in [12] that any maximal integral curve7

σ of X is of the form σ : [a, b] → bS∗M where a and b are finite and σ(a) ∈ ∂−S
∗M ,

σ(b) ∈ ∂+S
∗M . Hence, (5.41) can be viewed as ordinary differential equation (ODEs) along

7i.e. integral curve whose interval domain cannot be extended.
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such curves σ. Hence, noting that X is nonvanishing on bS∗M , using the theory of flows and
the existence, uniqueness, and smooth dependence on initial condition of linear ODEs (see
[5] and [21]), it’s not hard to see from here that indeed a unique smooth solution u exists to
(5.38) satisfying the given boundary data.

Next suppose that h ≡ 0 and that u|∂+S∗M ≡ 0. Pick any point x0 ∈ ∂M contained

in our coordinates (xi). We will show that for some neighborhood W of x0 in M , u|π−1[W ]

extends to an element in ρ∞C∞(π−1
0 [W ]; π∗

0E
)
(by setting u ≡ 0 on ∂0S∗M) from which the

theorem will follow. It’s not hard to see that this claim will follow if we show that for any
finite collection V1, . . . , Vm ∈ C∞(0S∗M ;T 0S∗M

)
of smooth vector fields over 0S∗M ,

each V1 . . . Vmu
k over SM is in ρ∞L∞(π−1[W ]; π−1E

)
. (5.42)

We will do this by induction on m, where our approach will be to study the growth of the
solution to (5.39) and its derivatives by writing that equation as an ODE along integral
curves of X.

We begin by recalling a geometric fact about AH spaces. Let φ : SM ×R → SM denote
the flow of X. For any point ζ = η0dρ/ρ+ ηλdy

λ ∈ bS∗M we write its identified point on SM
as z ∈ SM . By Lemma 2.3 in [12] and its proof there exists a constant C > 0 independent
of ζ ∼= z such that if we write ρ(t) = ρ ◦ φz(t),

1. if η0 ≥ 0 then limt→−∞ φz(t) ∈ ∂−
bS∗M (in bS∗M), ρ(t) ≤ Cet, ρ(t) is increasing, and

the image φz(−∞, 0] is contained in a compact subset of bS∗M ,

2. if η0 < 0 then limt→+∞ φz(t) ∈ ∂+
bS∗M (in bS∗M), ρ(t) ≤ Ce−t, ρ(t) is decreasing,

and the image φz[0,∞) is contained in a compact subset of bS∗M .

By the same lemma it follows that there exist neighborhoods W and K of x0 in M in our
coordinates such that W ⊆ K and that for any z ∈ π−1[W ], φz will always be contained in
π−1[K] for t > 0 if η0 ≥ 0 or t < 0 if η0 < 0. For convenience, we assume that K is compact
in M .

We begin with the case m = 0 (i.e. there are no Vi’s). Fix any N ∈ R. Fix a point
ζ ′ = η′0dρ/ρ + η′λdy

λ ∈ π−1
b [W ] identified with z′ ∈ SM . Suppose that η′0 ≥ 0 since the

proof below is essentially the same for the case η′0 < 0. Hence we have that φz′(−∞, 0]
is contained π−1[K] and limt→−∞ φz′(t) ∈ ∂−

bS∗M . Because we’re working on the sphere
bundle and g = ρ−2g for a smooth metric g, there exists a constant C ′ > 0 such that the
magnitude of vi in (5.39) are less than C ′ on π−1[K]. This way, setting B and b to be the
smooth d× d matrix and d× 1 column vector respectively given by

Bk
i =

(EΓk
ijv

i + Φk
j

)
and bk = ϕk + Ak

i v
i, (5.43)

we have by (5.39) that uk ◦ φz′ satisfies the ODE

duk

dt
+
(
Bk

i ◦ φz′
)
ui = bk ◦ φz′ . (5.44)

For any matrix M or column vector w, let |M | and |w| denote the norms
∑

ik

∣∣Mk
i

∣∣ and∑
i|wi|. Observe that both |B|, |b| ≤ C ′′ρN on π−1[K] for some constant C ′′ > 0. Our
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boundary conditions imply that uk(t) → 0 as t → −∞, and so by the fundamental theorem
of calculus and the triangle inequality

|u(t)| ≤
∫ t

−∞
|B(s)||u(s)|ds+

∫ t

−∞
|b(s)|ds (5.45)

where u denotes the column vector whose components are ui. We note that these integrals
converge because both |B|, |b| ≤ C ′ρN , ρ(t) ≤ Cet, and |u| is bounded on the precompact
φζ(−∞, 0]. Next, we employ the standard trick in ODEs of defining R : R → R to be the
first integral on the right-hand side. Whenever |B(t)| ≠ 0,

1

|B(t)|
R′(t) ≤ R(t) +

∫ t

−∞
|b(s)|ds

and so

R′(t) ≤ |B(t)|R(t) + |B(t)|
∫ t

−∞
|b(s)|ds.

Observe that this inequality also holds when |B(t)| = 0 and hence for all t. This is a separable
equation. In particular, if we take |B(t)|R(t) to the left-hand side, multiply through by

exp
[
−
∫ t

−∞|B(s)|ds
]
, integrate from t = −∞ to t = τ (using that R(−∞) = 0), and finally

divide through by exp
[
−
∫ τ

−∞|B(s)|ds
]
we get that

R(τ) ≤ e
∫ τ
−∞|B(s)|ds

∫ τ

−∞
e−

∫ t
a |B(s)|ds|B(t)|

∫ t

−∞
|b(s)|dsdt.

We’re interested in τ = 0 since that’s when φz′ reaches our point of interest z′. We now

perform estimates. Trivially exp
[
−
∫ t

a
|B(s)|ds

]
≤ 1. Next,

∫ 0

−∞
|B(s)|ds ≤ C ′′CN

∫ 0

−∞
eNtdt ≤ C ′′CN .

We also have that |B(t)| ≤ C ′′CNρN−1(0)ρ(t) and |b(s)| ≤ C ′′CNρN−1(0)ρ(s) since ρ is

increasing along φz′ . Hence making a similar estimate for
∫ 0

−∞ |B(t)|
∫ t

−∞|b(s)|dsdt gives us
that

R(0) ≤ eC
′′CN(

C ′′CN
)2
ρ2N−2(z′).

Assume for convenience that N ≥ 1. Then plugging this inequality and the estimate∫ t

−∞|b(s)|ds ≤ C ′′CNρN−1(t) into (5.45) finally gives us that

|u(z′)| ≤ C ′′′ρ2N−2(z′) (5.46)

for all z′ ∈ π−1[W ] for some constant C ′′′ > 0 independent of u and z′. Since N can be made
arbitrary large, this proves the case m = 0.

Next we do the case m = 1, after which it should be clear how the induction works
for higher m. Fix some V ∈ C∞(0S∗M ;T 0S∗M

)
. Let’s see what this vector field looks
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like when pushed to SM over the interior. Take the coordinates ηidx
i/ρ 7→ (xi, ηi) of

0T ∗M
(note the bars to distinguish these from our coordinates of bT ∗M above). Writing V =
V i∂/∂xi+Vi

∂/∂ηi and observing the canonical identification vi = ρ−1gijηj, a quick computation
gives that

V over SM = V i ∂

∂xi
+
(
−ρ−1viV 0 + ∂xk

(
gij
)
gjj′v

j′V k
) ∂

∂vi
+

n+1∑
i=1

ρ−1giiVi
∂

∂vi
. (5.47)

We point out that the V i and Vi here are bounded over π−1[K] due the compactness of
π−1
0 [K].
Starting similarly as we did in the proof of the “m = 0” case above, by (5.44) we have

that (here V uk = V
(
uk ◦ φ

)
)

d
(
V uk

)
dt

+ V
(
Bk

i ◦ φ
)
(z′, t)ui +

(
Bk

i ◦ φz′
)
V ui = V

(
bk ◦ φ

)
(z′, t). (5.48)

Let’s study the growth rate of z-partials of the terms Bk
i ◦ φ and bk ◦ φ near the boundary.

As we discussed in the proof of Lemma 5.2 above, X over SM extends to a smooth vector
field “X0” over 0S∗M and hence has a smooth flow φ0 over 0S∗M . Similarly to what is
mentioned at the end of the proof of Lemma 3.13 in [12], the compactness of 0S∗M and
Grönwall’s inequality imply that for any V1, . . . , Vj ∈ C∞(0S∗M ;T 0S∗M

)
,∣∣∣V1 . . . Vj(φ0)

k
t

∣∣∣ ≤ C0e
k0|t|

for
(
ζ, t
)
such that both

(
ζ, t
)
, φ0

(
ζ, t
)
∈ π−1

0 [K] where C0 > 0 and k0 > 0 are constants

dependent on V1, . . . , Vj and the (φ0)
k
t ’s are the components of (φ0)t with respect to our

coordinates (xi, ηi) of
0T ∗M . Trivially φ = (φ0) over SM (up to identification) and so, it’s

not hard to see by (5.43) and (5.47) that

both
∣∣V1 . . . Vj

(
Bk

i ◦ φ
)
(z, t)

∣∣ and ∣∣V1 . . . Vj

(
bk ◦ φ

)
(z, t)

∣∣ are ≤ C̃ρN(z)ek̃0|t|

for (z, t) such that both (z, t), φ(z, t) ∈ π−1[K] where C̃, k̃0 > 0 are constants dependent on
V1, . . . , Vj. By similar reasoning, (5.46) and the inequality ρ(t) ≤ Cet show that

V
(
uk ◦ φ

)
(z′, t) → 0 as t → −∞.

Applying this to (5.48), knowing (5.46) one can proceed similarly as before to come to the

conclusion that |V u| ≤ C̃ ′ρ2N−2 on π−1[W ] for some constant C̃ ′ > 0 dependent on V where
V u is the column vector with entries V ui. The induction process proceeds similarly for
higher m.

■
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5.4 Proof of Theorem 2.6

The first step is to provide a formulation of (2.3) as a single transport equation of an endomor-
phism field over SM . To begin, we define a natural connection “∇π∗En” on endomorphism
fields as follows. For any U ∈ C∞(SM ; Endπ∗E) and any ω ∈ TvSM , we define ∇π∗En

ω U to
be the unique element of End π∗Ex satisfying that(

∇π∗En
ω U

)
h :=

[
∇π∗E

ω , U
]
h,

for any h ∈ C∞(SM ; Endπ∗E). To see what this looks like in coordinates, take coordinates
(xi) of M , a frame (bi) for E over their domain, and consider the coordinates vi∂/∂xi 7→ (xi, vi)
of TM . Let EΓk

ij denote the connection symbols of ∇E in these coordinates and frame. A
quick computation shows that

∇π∗En
ω U = ωU +

(EΓ)U − U
(EΓ), (5.49)

where on the right-hand side U is thought of as a matrix in the basis (π∗bi), ωU denotes
applying ω to the entries of U , and EΓ represents the matrix with entry EΓk

ijv
i in the kth

row and jth column (recall that “v” is where ω is based at). We point out that this is
considered a natural connection on endomorphism fields because it satisfies the product rule
∇π∗E

ω (Uh) =
(
∇π∗En

ω U
)
h + U∇π∗E

ω h. We define the operator X = ∇π∗En
X , using context to

differentiate it from our other operators also denote by “X.”
By looking in local coordinates it’s easy to see that ∇̃E = ∇E + A (and hence ∇̃π∗E =

∇π∗E + A up to identification) where A ∈ C∞(TM ; End E
)
is a skew-Hermitian connection

1-form. It’s also easy to see that in any boundary coordinates and frame the entries of A are
in ρ∞C∞(M ;R

)
. Consider solutions U and Ũ to the following transport equations on SM :XU + ΦU = 0, U |∂−bS∗M = id,

XŨ + AŨ + Φ̃Ũ = 0, Ũ
∣∣∣
∂−bS∗M

= id,
(5.50)

which exist by Proposition 5.37 (using a different connection and Higgs field), where we note

that in the second equation “X̃Ũ − ŨA” can be thought of as “∇XŨ” for some connection
“∇.”

We demonstrate the usefulness of U and Ũ . Suppose that γ : (−∞,∞) → M is a
complete unit-speed geodesic and that u : (−∞,∞) → E is the smooth solution along γ to
the initial value problem

∇E
γ̇(t)u(t) = 0, lim

t→−∞
u(γ(t)) = e, (5.51)

where e is an element in Ex0 where x0 is the limit of γ(t) in M as t → −∞. We point out
that such a u exists by Lemma 2.5 with Φ = 0. Let σ : (−∞,∞) → SM be the integral
curve of X satisfying γ = π ◦ σ and let û denote u lifted to σ via canonical identifications of
E and π∗E . It’s easy to see that ∇π∗E

σ̇ û = 0. Then

∇E
γ̇((U ◦ σ)u) + Φ((U ◦ σ)u) ∼= ∇π∗E

σ̇ (Uû) + Φ(Uû) =
(
∇π∗En

X U
)
û+ U∇π∗E

σ̇ û+ Φ(Uû) = 0,
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with lim
t→−∞

(U ◦ σ)u(t) = e,

and similarly

∇̃E
γ̇

((
Ũ ◦ σ

)
û
)
+ Φ̃

((
Ũ ◦ σ

)
û
)
∼= ∇̃π∗E

σ̇

(
Ũ û
)
+ Φ̃

(
Ũ û
)
= ∇π∗E

σ̇

(
Ũ û
)
+ A

(
Ũ û
)
+ Φ̃

(
Ũ û
)

=
(
∇π∗En

X Ũ
)
û+ Ũ∇π∗E

σ̇ û+ A
(
Ũ û
)
+ Φ̃(Uû) = 0,

with lim
t→−∞

(
Ũ ◦ σ

)
u(t) = e.

Hence (U ◦ σ)u(t) and
(
Ũ ◦ σ

)
u(t) are solutions to (2.3) and (2.3) with Φ and ∇E replaced

by Φ̃ and ∇̃E respectively. By our assumption the data (2.4) is the same for both and so

lim
t→∞

(U ◦ σ)u(t) = lim
t→∞

(
Ũ ◦ σ

)
u(t).

Since parallel transport such as (5.51) above is an isomorphism between fibers, this implies

that U = Ũ on ∂bS∗M .
Intuitively speaking, we’ve demonstrated that knowing the parallel transport (5.51), the

endomorphism fields U and Ũ encode the transform that takes all possible (γ, e) to the data

(2.4) for ∇E ,Φ and ∇̃E , Φ̃ respectively. Furthermore, the assumption that the two transforms

are equal gives us that U and Ũ are equal on the boundary. Hence we’ve reformulated our
problem to showing that U = Ũ on ∂bS∗M implies the gauge equivalence stated in the
theorem.

Guided by the observation (2.8) in the introduction, we next study the behavior of UŨ−1

over the interior SM . We note that both U and Ũ are invertible because (5.50) can be seen
as ordinary differential equations along integral curves of X (c.f. (1.8) in Chapter 3 of [5]).
A quick computation using (5.49) shows that X(W1W2) = X(W1)W2 +W1X(W2) and that
X(id) = 0. Hence by (5.50),

X
(
Ũ−1

)
= −Ũ−1X̃

(
Ũ
)
Ũ−1 = Ũ−1

(
AŨ + Φ̃Ũ

)
Ũ−1 = Ũ−1A+ Ũ−1Φ̃.

Next, we have that

X
(
UŨ−1

)
= (−ΦU)Ũ−1 + U

(
Ũ−1A+ Ũ−1Φ̃

)
,

and so we finally arrive at that Q = UŨ−1 satisfies

XQ+ ΦQ−QA−QΦ̃ = 0. (5.52)

To apply our finite degree theorems from Section 5.2 above, we need our solution to vanish
at “infinity.” Hence we instead consider W = Q− id which satisfies

XW + ΦW −WA−W Φ̃ = −Φ + A+ Φ̃.

As before, XW −WA can be thought of as ∇XW for some connection “∇,” and ΦW −W Φ̃
can be thought of an element of ρ∞C∞(M ; EndEnd E

)
applied to W . Hence, by Proposition
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5.37 we have that W and hence Q are in ρ∞C∞(0S∗M,π∗
0E
)
. In the coordinates and frame

used in (5.49), above any fixed point x ∈ M the entries of the right-hand side with respect
to the basis (π∗bi) are restrictions of homogeneous polynomials of order zero and one in the
variable v. By the theory of spherical harmonics these are elements of (Fourier) degree zero
and one respectively. Hence by Theorem 5.36 we have that W and hence Q are of degree
zero. In other words, we get that Q ∈ C∞(M ; End E

)
(i.e. up to identification).

As the final step, let’s show that this Q is the gauge that we wanted. Adopting the
coordinates and frames in (5.49), we have that

XQ = v(Q) +
(EΓ)Q−Q

(EΓ).
Hence, using the theory of spherical harmonics, equating the zeroth and first Fourier modes
in (5.52) gives

ΦQ−QΦ̃ = 0 and XQ−QA = 0.

The first equation gives Φ̃ = Q−1ΦQ over M and hence over M . The second equation gives

A = Q−1XQ = Q−1
[
v(Q) +

(EΓ)Q−Q
(EΓ)],

=⇒ A+
(EΓ) = Q−1v(Q) +Q−1

(EΓ)Q,

Now, take any section u ∈ C∞(M ; E|M) and write it as a column vector with respect to the
basis (bi). We have that (here v(u) denotes applying v to every entry of u)

∇̃E
vu = v(u) +

[
A+

(EΓ)]u eq. for ∇̃E
v ,

= v
(
Q−1Qu

)
+Q−1v(Q)u+Q−1

(EΓ)Qu QQ−1 = id and plug in eq. above,

= v
(
Q−1Qu

)
− v
(
Q−1

)
Qu+Q−1

(EΓ)Qu Q−1v(Q) = −v
(
Q−1

)
Q (prod. rule),

= Q−1v(Qu) +Q−1
(EΓ)Qu prod. rule,

= Q−1∇E
v (Qu) eq. for ∇E

v .

Again this relation extends to ∂M by continuity and hence the theorem is proved.

■

6 Injectivity over Higgs Fields

In this section we prove Corollary 2.8. Recall that d = rank E . By Theorem 2.6 we know
that there exists a Q ∈ C∞(M ; End E

)
such that Q|∂M = id and satisfies (2.7) with ∇̃ = ∇.

Hence, we simply need to show that Q ≡ id everywhere. Take coordinates (xi) of M , a frame
(bi) for E over their domain, and consider the coordinates vi∂/∂xi 7→ (xi, vi) of TM . Let EΓk

ij

denote the connection symbols of ∇E in these coordinates and frame. Since the curvature
of ∇E is zero, by Proposition 1.2 of Appendix C in Volume II of [47], we may suppose that
the (bi) were chosen so that all of the EΓk

ij ≡ 0. Let us represent Q as a d× d matrix in the

basis (bi). Similarly we represent any section u ∈ C∞(M ; E
)
as a d × 1 column vector in
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this basis. Then for any section u = ujbj ∼=
[
u1, . . . , ud

]
whose component functions uj are

constant, we have that for any v ∈ TM in our coordinates

∇E
vu = 0,

∇̃E
vu = Q−1∇E

v (Qu) = Q−1v(Q)u.

where v(Q) denotes applying v to the entries of Q. Since ∇̃E
vu = ∇E

vu by assumption and
the above is true for all such u, we get that v(Q) ≡ 0. Hence Q is locally constant, and thus
indeed equal to “id” everywhere.

■
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