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HART F. SMITH

Abstract. We demonstrate a parametrix construction, together with associated pseudodifferen-
tial operator calculus, for an operator of sum-of-squares type with semiclassical parameter. The
form of operator we consider includes the generator of kinetic Brownian motion on the cosphere
bundle of a Riemannian manifold. Regularity estimates in semiclassical Sobolev spaces are proven
by establishing mapping properties for the parametrix.

1. introduction

We deal in this paper with a class of second order, subelliptic partial differential operators of
the following sum-of-squares form

(1.1) Ph = X0 − h
d∑
j=1

X2
j − h

d∑
j=1

cjXj , h ∈ (0, 1],

where the Xj for 0 ≤ j ≤ d are smooth vector fields, the cj are smooth functions, and h > 0
is considered as a semiclassical parameter. We work in 2d + 1 dimensions, either on a compact
manifold or an open subset of R2d+1, and make the following assumptions throughout this paper.

Assumption 1.

• The collection of 2d+ 1 vectors {X0, X1, . . . Xd, [X0, X1], . . . , [X0, Xd]} spans the tangent
space at each base point.

• The collection {X1, . . . , Xd} is involutive (closed under commutation of vector fields).

For each h > 0 the operator Ph is subelliptic by a result of Hörmander [Hör67], and by the work
of Rothschild-Stein [RS76] the operator Ph controls 2/3-derivatives in the Sobolev space sense.
In the semiclassical setting it is natural to work with a semiclassical notion of Sobolev spaces;
we refer to the text of Zworski [Zwo12] for a treatment of semiclassical analysis. The question of
interest in this paper is the dependence on h of the various constants in a priori inequalities for
Ph, both in L2 and semiclassical Sobolev spaces.

Our work is motivated by the paper [Dro17] of Alexis Drouot, which studied such an operator
on the cosphere bundle S∗(M) of a d+1 dimensional Riemannian manifold M . The paper [Dro17]
considers the operator Ph = H + h∆S, with H the generator of the Hamiltonian/geodesic flow,
and ∆S the non-negative Laplace-Beltrami operator along the fibers of the cosphere bundle. In
local coordinate charts this operator can be represented in the form (1.1), where the Xj are any
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local orthonormal frame for the tangent space of the fibers of S∗(M). In [Dro17] it is shown that,
if M is negatively curved, then as h→ 0 the eigenvalues of −iPh converge to the Pollicott-Ruelle
resonances of M . The analogous result was proven by Dyatlov-Zworski [DZ15] for Ph = H + h∆,
where ∆ is the Laplacian on S∗(M). The interest in taking Ph = H + h∆S is that this operator
generates what is known as kinetic Brownian motion on M . For a treatment of this process we
refer to Franchi-Le Jan [FLJ07], Grothaus-Stilgenbauer [GS13], Angst-Bailleul-Tardif [ABT15],
and Li [Li16].

A key step in the proof of convergence in [Dro17] was controlling the subelliptic estimates for
Ph as h → 0. This was done through commutator methods, analogous to the work of [Hör67].
Our approach is more similar to that of [RS76], in that we use an approximation to the operator
at each point by a model nilpotent group, and construct a parametrix from the inverse of the
model operator on that group. Estimates are then obtained from mapping properties for the
parametrix. We emphasize that the estimates we prove are the same as in [Dro17], with an
occasional improvement in the remainder terms. The aim here is to obtain a finer microlocal
understanding of the parametrix. We obtain a parametrix valid on the region h∆ ≥ 1, strictly
larger than the semiclassical region h2∆ ≥ 1. The restriction h∆ ≥ 1 arises from the largest
region of phase space on which the uncertainty principle holds for the parametrix.

We now mention a few of the features encountered in the parametrix construction for an oper-
ator Ph of the form (1.1). The quantization of symbols is naturally carried out using exponential
coordinates with respect to an extension of {Xj}dj=0 to a frame {Xj}2d+1

j=0 . We will require that

Assumption 2.

• If 1 ≤ i ≤ d, then [X0, Xi]− 2Xi+d ∈ span(X0, . . . , Xd),

This can of course be arranged by setting Xi+d = 2[X0, Xi]. In the model nilpotent Lie group
setting where all other commutators vanish, there is a natural nonisotropic dilation structure
using powers (2, 1, 3). Precisely, we split η ∈ R2d+1 = R× Rd × Rd into (η0, η

′, η′′), and similarly
use X ′ as abbreviation for the collection (X1, . . . , Xd), and X ′′ = (Xd+1, . . . , X2d). Then the
dilation that respects the fundamental solution for the model of P0 is

δr(η) = (r2η0, rη
′, r3η′′).

From the semiclassical point of view it is more natural to consider hPh = hX0 +
∑d
j=1(hXj)2,

and quantize symbols in terms of hη. This leads to placing an extra factor of h in the variable η′′
dual to Xj for d+ 1 ≤ j ≤ 2d, since [hX0, hXj ] ∼ h2Xj+d.

We now summarize the main result of this paper, leaving details to be expanded upon in later
sections. For simplicity consider an open set U ⊂ R2d+1. For a multi-index α ∈ N2d+1, let

order(α) = 2α0 + |α′|+ 3|α′′|.

We use expx(y) to denote the time 1 flow of x along
∑2d
j=0 yjXj .

Proposition 1.1. Given ρ(x) ∈ C∞c (U), there is χ0 ∈ C∞c (R2d+1), and an h-dependent family
of symbols a(x, η) satisfying∣∣∂βx∂αη a(x, η)

∣∣ ≤ Cα,β h(h 1
2 + |η0|

1
2 + |η′|+ |η′′|

1
3
)−2−order(α)
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with Cα,β independent of h ∈ (0, 1], so that the operator ah(x, hD) defined by

ah(x, hD) = 1
(2π)2d+1

∫
e−i〈y,η〉 a(x, hη0, hη

′, h2η′′) f(expx(y))χ0(y) dy dη

satisfies
ah(x, hD) ◦ Ph = ρ(x) + rh(x, hD),

where rh(x, hD) is an operator that satisifies the following with Cp1,p2 independent of h ∈ (0, 1],
for any polynomials pj(η) on R2d+1,

(1.2)
∥∥p1(X0, h

1
2X ′, h

1
2X ′′) ◦ rh(x, hD) ◦ p2(X0, h

1
2X ′, h

1
2X ′′)f

∥∥
L2≤ Cp1,p2‖f‖L2 .

For example, one can take p1 or p2 to yield the operator (1 +X∗0X0)N1(1 + h∆)N2 , where ∆ is
the Laplacian on R2d+1. These bounds roughly say that the parametrix inverts Ph on the region
{∆ ≥ h−1} ∪ {|X0| ≥ 1}. In particular the remainder term rh will be of order h∞ if the solution
is localized to a region where ∆ ≥ h−1−ε for some ε > 0.

We remark that in the calculus developed here Ph is of order 2, in distinction with the standard
semiclassical calculus where hPh is order 2. This is related to our working on the region |η| ≥ h

1
2 ,

and the subelliptic nature of Ph. Symbols of order j are weighted by a factor h−j/2, so that
symbols of negative order (but not necessarily their derivatives) remain bounded as h→ 0. With
this accounting X0 is an operator of order 2, h

1
2Xj is of order 1 for 1 ≤ j ≤ d, and h

1
2Xj is of

order 3 for d+ 1 ≤ j ≤ 2d.
Together with the composition calculus, pseudolocality arguments, and L2 mapping bounds

for operators, we deduce the regularity results on S∗(M) for Ph that were established in [Dro17].
These are stated in Theorems 6.3 and 6.4.

The outline of this paper is as follows. In Section 2 we introduce a model operator of P0
and Ph on a step-2 nilpotent group, and discuss composition of symbols in this setting. In
Section 3 we discuss the degree to which the model operator, attached to M by exponential
coordinates, approximates Ph. Careful estimates of the Taylor expansion of vector fields and
exponential coordinates are needed to obtain uniform estimates as h→ 0. In Section 4 we prove
that operators of the form ah(x, hD) form an algebra under composition, and that the symbol
of the composition of two operators agree at a point x, modulo an operator of one lower order,
with composition on the attached model domain above x. This allows for iteration of symbols
and construction of parametrices from a suitable inverse for the model operator on the nilpotent
Lie group. In Section 5 we establish L2 boundedness of order 0 operators in local coordinates,
using a nonisotropic Littlewood-Paley decomposition of the operator and the Cotlar-Stein lemma.
Finally, in Section 6 we establish the main regularity estimates for Ph in h-Sobolev spaces, leading
to the proof of the bounds in [Dro17].

2. Operators on model domains

In this section we work with translation invariant operators associated to a nilpotent Lie group
structure on R2d+1. We use notation y = (y0, y

′, y′′) ∈ R × Rd × Rd, and dual variables η =
(η0, η

′, η′′). The dilation structure is given by

δr(η) =
(
r2η0, rη

′, r3η′′
)
, δr−1(y) =

(
r−2y0, r

−1y′, r−3y′′
)
.
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We introduce a corresponding non-isotropic homogeneous weight m ∈ C∞
(
R2d+1\{0}

)
,

m(η) =
(
|η0|6 + |η′|12 + |η′′|4

) 1
12
,

so that m(δr(η)) = rm(η), and 3−
12
5 ≤ m(η) ≤ 1 when |η| = 1.

The order of a multi-index α is defined to be

order(α) = 2α0 + α1 + · · ·+ αd + 3αd+1 + · · ·+ 3α2d = 2α0 + |α′|+ 3|α′′|,

and we define the order of a monomial differential operator by

(2.1) order
(
yβ∂αy

)
= order(α)− order(β).

We work with the following frame of vector fields on R2d+1:

• Y0 = ∂0 −
∑d
j=1 yj∂j+d

• Yj = ∂j + y0∂j+d for 1 ≤ j ≤ d,

• Yj = ∂j for j ≥ d+ 1.

Observe that order(Yj) = order(∂j), and that

[Y0, Yj ] = 2Yj+d if 1 ≤ j ≤ d,

and all other commutators are equal to 0. The Yj form a nilpotent (step 2) Lie algebra, which is
associated to the nilpotent Lie group structure on R2d+1 with product

y × w = (y0 + w0, y
′ + w′, y′′ + w′′ + y0w

′ − w0y
′).

We consider in this section left invariant pseudodifferential operators on R2d+1 associated to
the model vector fields Yj , which we quantize using the exponential map associated to the Yj .
This map, and the corresponding exponential coordinates at base point y, are given by

¯expy(w) = (y0 + w0, y
′ + w′, y′′ + w′′ + y0w

′ − w0y
′),

Θ̄y(z) = (z0 − y0, z
′ − y′, z′′ − y′′ − y0z

′ + z0y
′).

(2.2)

A multiplier a(η) ∈ C∞c (R2d+1) is then associated to the Schwartz kernel

Ka(y, z) = 1
(2π)2d+1

∫
R2d+1

e−i〈Θ̄y(z),η〉 a(η) dη,

and hence a(ξ) =
∫
K(0, z)ei〈z,ξ〉 dz. The composition rule for multipliers is given by

(a]b)(ξ) = 1
(2π)4d+2

∫
e−i〈y,η−ζ〉+i〈y0z′−z0y′,ζ′′〉+i〈z,ξ−ζ〉 a(η) b(ζ) dz dζ dy dη.

The integral over dz′′ dζ ′′ dy′′ dη′′ fixes η′′ = ζ ′′ = ξ′′, and we get

1
(2π)2d+2

∫
eiy0(η0−ξ0)+i〈y′,η′−ξ′〉+iz0(ζ0−η0)+i〈z′,ζ′−η′〉+i〈y0z′−z0y′,ξ′′〉a(η0, η

′, ξ′′)b(ζ0, ζ
′, ξ′′)

dη0 dη
′ dζ0 dζ

′ dy0 dy
′ dz0 dz

′,
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which simplifies to give

(a]b)(ξ) = 1
(2π)d+1

∫
eiz0ζ0+i〈z′,ζ′〉a(ξ0 − 〈z′, ξ′′〉, ξ′ + z0ξ

′′, ξ′′)b(ξ0 + ζ0, ξ
′ + ζ ′, ξ′′) dζ0 dζ

′ dz0 dz
′.

Observe that model composition commutes with the dilations δr,h, in that
(2.3) (a]b) ◦ δr,h = (a ◦ δr,h)](b ◦ δr,h).

Theorem 2.1. Suppose that, for some r0 > 0, the symbols a and b satisfy∣∣∂αξ a(ξ)
∣∣ ≤ Cα(r0 +m(ξ)

)n−order(α)
,∣∣∂αξ b(ξ)∣∣ ≤ Cα(r0 +m(ξ)

)n′−order(α)
.

Then a]b is well defined as an oscillatory integral, and for all α,∣∣∂αξ (a]b)(ξ)
∣∣ ≤ C ′α(r0 +m(ξ)

)n+n′−order(α)
,

where each C ′α depends on n, n′ and a finite number of the Cα, but is independent of r0.

Proof. By composing with δr0,1 we may assume r0 = 1, which shows the independence of the C ′α
from r0. Applying ∂αξ to the expression for a]b decreases the combined order of the symbols in the
integrand by order(α), so it is sufficient to show |(a]b)(ξ)| ≤ C

(
1 + m(ξ)

)n+n′ , for C depending
on a finite number of the Cα. We use the following inequality,

(2.4) 1 +m(ζ0, ζ
′, ξ′′)

1 +m(η0, η′, ξ′′)
≤ C

(
1 + |ζ0 − η0|

〈ξ′′〉
1
3

+ |ζ
′ − η′|
〈ξ′′〉

2
3

)
which follows by writing the ratio on the left as comparable to(

1 + |ζ0|
〈ξ′′〉

1
3

+
( |ζ ′|
〈ξ′′〉

2
3

) 1
2
)/(

1 + |η0|
〈ξ′′〉

1
3

+
( |η′|
〈ξ′′〉

2
3

) 1
2
)

and applying Peetre’s inequality. Integration by parts with respect to the operators

L1 =
1− 〈ξ′′〉

2
3∂2

ζ0
− 〈ξ′′〉

4
3∂2

ζ′

1 + 〈ξ′′〉
2
3 |z0|2 + 〈ξ′′〉

4
3 |z′|2

, L2 =
1− 〈ξ′′〉−

2
3∂2

z0 − 〈ξ
′′〉−

4
3∂2

z′

1 + 〈ξ′′〉−
2
3 |ζ0|2 + 〈ξ′′〉−

4
3 |ζ ′|2

produces an integral dominated by a constant C ′ as in the lemma multiplied by

(2.5)
∫ (

1 +m(ξ0 − 〈z′, ξ′′〉, ξ′ + z0ξ
′′, ξ′′)

)n (
1 +m(ξ0 + ζ0, ξ

′ + ζ ′, ξ′′)
)n′

(
1 + 〈ξ′′〉

2
3 |z0|2 + 〈ξ′′〉

4
3 |z′|2 + 〈ξ′′〉−

2
3 |ζ0|2 + 〈ξ′′〉−

4
3 |ζ ′|2

)|n|+|n′|+d+1 dζ0 dζ
′ dz0 dz

′.

By (2.4) this integral is bounded by Cn,n′
(
1 +m(ξ)

)n+n′ . �

Suppose now that a and b satisfy the conditions of Theorem 2.1 with r0 = 0. For each
r0 > 0 the truncated symbol

(
1− χ(r−1

0 m(ξ))
)
a(ξ) satisfies the conditions of the lemma for r0, if

χ ∈ C∞c ((−2, 2)) with χ(r) = 1 for r ≤ 1. Since m(ξ) ≥ |ξ′′|
1
3 , for ξ′′ 6= 0 the integral defining a]b

is the same if we replace a and b by their truncations to m(ξ) ≥ r0 for r0 suitably small depending
on ξ′′. We thus obtain for ξ′′ 6= 0 that∣∣∂αξ (a]b)(ξ)

∣∣ ≤ C ′αm(ξ)n+n′−order(α).
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Using scaling and dominated convergence, one can show that if (ξ0, ξ
′) 6= 0 then as ξ′′ → 0 we

have (a]b)(ξ)→ a(ξ0, ξ
′, 0)b(ξ0, ξ

′, 0). Together with differentiation under the integral this shows
that a]b ∈ C∞(R2d+1\{0}). We conclude, recalling also (2.3),

Corollary 2.2. Suppose that the symbols a and b belong to C∞(R2d+1\{0}) and satisfy∣∣∂αξ a(ξ)
∣∣ ≤ Cαm(ξ)n−order(α),∣∣∂αξ b(ξ)∣∣ ≤ Cαm(ξ)n′−order(α).

Then a]b, defined as the limit as r → 0 of truncation to m(ξ) > r, satisfies for all α∣∣∂αξ (a]b)(ξ)
∣∣ ≤ C ′αm(ξ)n+n′−order(α),

where each C ′α depends on n, n′ and a finite number of the Cα. Furthermore, if a and b are
homogeneous under δr of degree n and n′, then a]b is homogeneous of degree n+ n′.

We also observe here the following result.

Lemma 2.3. If a and b satisfy the conditions of Corollary 2.2, then((
1− χ(r−1m(·))

)
a
)
]
((

1− χ(r−1m(·))
)
b
)
(ξ) =

(
1− χ(r−1m(ξ))

)
(a]b)(ξ) + rn+n′c(r, δr−1(ξ)),

where c(r, ·) is a family of Schwartz functions with seminorms uniformly bounded over r > 0.

Proof. We dilate ξ by δr, and note that r−na(δr(ξ)) satisfies the estimates of Corollary 2.2, with
constants Cα independent of r, similarly for r−n′b(δr(ξ)). Thus it suffices to prove the result for
r = 1, together with showing that the Schwartz norm of c(1, ξ) depends only on the constants
Cα for a and b. Since the terms involved have bounded C∞ norm over |ξ| ≤ 8, it suffices to show
that, with χ(ξ) = χ(m(ξ)) ∈ C∞c (|ξ| ≤ 8),

a]b−
(
(1− χ)a

)
]
(
(1− χ)b

)
= (χa)]

(
(1− χ)b

)
+ a](χb)

satisfies Schwartz bounds on the set |ξ| > 24. Consider a](χb). Since χb is supported where
m(ξ) ≤ 2, and its derivatives agree with derivatives of b for m(ξ) ≤ 1, it satisfies∣∣∂αξ (χ(ξ)b(ξ)

)∣∣ ≤ Cα,N m(ξ)−N−order(α) for all N ≥ −n′.

Thus Corollary 2.2 yields Schwartz bounds on a](χb) for |ξ| bounded away from 0. �

The left invariant differential operator Y0−
∑d
j=1 Y

2
j is subelliptic, and by Folland [Fol75] admits

a unique homogeneous fundamental solution K(y) ∈ C∞(R2d+1),(
Y0 −

d∑
j=1

Y 2
j

)
K(y) = δ(y), K(δr−1(y)) = r(2+4d)−2K(y).

We let q(η) = K̂. Then the operator

Tqf(y) = 1
(2π)2d+1

∫
R2d+1

e−i〈Θ̄y(z),η〉 q(η) f(z) dz dη

is a left and right inverse for Y0 −
∑d
j=1 Y

2
j on the space of Schwartz functions.
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We next consider the semiclassical subelliptic operator hY0 −
∑d
j=1 h

2Y 2
j . This is naturally

associated to dilating y0 and y′ by h, and y′′ by h2, in that(
Y0 −

d∑
j=1

Y 2
j

)(
f(hy0, hy

′, h2y′′)
)

=
(
hY0f −

d∑
j=1

h2Y 2
j f
)
(hy0, hy

′, h2y′′).

Consequently, if we introduce the operation on symbols

(2.6) ah(η) = a(η0, η
′, hη′′),

then the inverse for hY0 −
∑d
j=1 h

2Y 2
j is given by the semiclassical quantization of qh,

qh(hD)f(y) ≡ 1
(2πh)2d+1

∫
R4d+2

e−i〈Θ̄y(z),ζ〉/h qh(η) f(z) dz dζ

= 1
(2π)2d+1

∫
R4d+2

e−i〈z,ζ〉 qh(η) f( ¯expy(hz)) dz dζ

3. Approximation by the model domain

Recall that we consider a spanning collection {X0, X1, . . . , X2d} of vector fields on an open
subset U of R2d+1, satisfying the following conditions:

• The collection {X1, . . . , Xd} is involutive (closed under commutation of vector fields).

• If 1 ≤ i ≤ d, then [X0, Xi]− 2Xi+d ∈ span(X0, . . . , Xd).

We will use x, x̃ to denote variables in U , and y, z denote variables in R2d+1.
Let expx(y) be exponential coordinates with base point x in the frame {X0, . . . , X2d}. That

is, expx(y) = γ(1) where γ(0) = x and γ′(t) =
∑2d
j=0 yjXj(γ(t)). Define exponential coordinates

Θx(x̃) as the local inverse for x̃ in a neighborhood of x:

Θx
(
expx(y)

)
= y, expx

(
Θx(x̃)

)
= x̃.

Lemma 3.1. For 0 ≤ j ≤ 2d, we can write

(Xjf)(expx(y)) = Yj
(
f(expx(y))

)
+Rj(x, y, ∂y)f(expx(y)),

where order(Rj) < order(Yj), in the sense that the Taylor expansion

Rj(x, y, ∂y) =
∑
α,k

cj,α,k(x)yα∂k

includes only terms with order
(
yα∂k

)
< order(Yj).

Additionally, c0,α,k(x) ≡ 0 unless there is at least one factor of yj with j ≥ 1 occuring in yα.

Proof. Any term yα∂βy with |α| > 2 is of order ≤ 0, so we need examine the Taylor expansion of
Xj in exponential coordinates only to second power in y. Additionally, order(yiyj∂k) ≤ 1, and
equals 1 only if 1 ≤ i, j ≤ d and k ≥ d+ 1. To see that such a term cannot arise in the expansion
of Xj for 1 ≤ j ≤ d, which are the only Xj of order 1, we use involutivity of {X1, . . . , Xd} to see
we can write Xj =

∑d
j=1 cj(x, y)∂j at all points in the subspace y0 = y′′ = 0.
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Thus, we need show that in the expansion of Rj about y = 0 the terms linear in y are of order
strictly less than order(Yj). For j ≥ d + 1 this is immediate, since Xj = ∂j = Yj at y = 0, and
any vector field that vanishes at 0 is of order at most 2. For 0 ≤ j ≤ d we expand

Xj = ∂j +
∑
i,k

cjik(x) yi∂k +O(y2)∂y.

From the relation
∑
yjXj =

∑
yj∂j , we deduce

cijk = −cjik,

and from [X0, Xj ]− 2Xj+d ∈ span(X0, . . . , Xd), we deduce for j = 1, . . . d that

cj0k =
{

1, k = j + d,

0, k > d and k 6= j + d.

Since order(yi∂k) < 2 unless k > d, we deduce order
(
R0(x, y, ∂y)

)
< 2.

By the involutivity assumption, if 1 ≤ i, j ≤ d then cjik = 0 unless also 1 ≤ k ≤ d, in which
case order(yi∂k) = 0. And if i > d then order(yi∂k) ≤ 0 for all k. So if 1 ≤ j ≤ d then all terms
cjik yi∂k for i 6= 0 have order ≤ 0, and since cj0k = δk,j+d we conclude order

(
Rj(x, y, ∂y)

)
≤ 0 if

1 ≤ j ≤ d.
To conclude the lemma, we note that if y′ = y′′ = 0 then X0 = ∂y0 , hence R0 = 0. �

For x ∈ U , and y, z in a neighborhood of 0 in R2d+1, we introduce the functions

(3.1) Θ(x, y, z) = Θexpx(y)
(
expx(z)

)
, Θ̃(x, y, w) = Θx

(
expexpx(y)(w)

)
.

where we recall Θx(x̃) denotes exponential coordinates in Xj centered at x. For fixed x and y
these are inverse functions of each other on their domains,

z = Θ̃(x, y, w) ⇔ w = Θ(x, y, z).

To invert in the y variable we note that v = Θ̃(x, y, w) implies y = Θ̃(x, v,−w).
Observe that Θ(x, y, z) = −Θ(x, z, y), and Θ(x, y, z) = z − y + O(y, z)2. For more precise

estimates on Θ and Θ̃ we consider their Taylor expansions in exponential coordinates at x. We
first assign a notion of order to a smooth function f(x, y, z). Consistent with (2.1), we make the
following definition.

Definition 3.1. For a smooth function f(x, y, z) defined on an open subset of U ×R2d+1×R2d+1

containing U × {0, 0}, we say that order(f) < −j if for all x ∈ U

∂αy ∂
β
z f(x, 0, 0) = 0 for all α, β : order(α+ β) ≤ j.

Equivalently, the Taylor expansion of f in y, z about y = z = 0 contains only monomials yαzβ
with order(α+ β) > j.

Recalling the definition (2.2) of Θ̄y(z), we have the following.

Lemma 3.2. We have Θ(x, y, z) = Θ̄y(z) + R(x, y, z), where order(Rj) < order(yj) for each j.
Similarly, Θ̃(x, y, z) = Θ̄−y(w) + R̃(x, y, z), where order(R̃j) < order(yj) for each j.
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Proof. We work in exponential coordinates centered at x, and use Lemma 3.1 to consider Xj as
a vector field in y. Then for a given y the Taylor expansion of z = Θ̃(x, y, w) in terms of w is

(3.2) zj = yj + (w ·X)j(y) +
∞∑
k=1

1
(k + 1)!(w ·X)k(w ·X)j(y),

where w · X =
∑2d
i=0wiXi is a vector field acting on the y variable, and (w · X)j(y) is its ∂j

coefficient as a function of y. It is seen from Lemma 3.1 that w ·X does not increase the order
of a function f(x, y, w), and w ·X −w · Y decreases the order of f(x, y, w) by at least 1. Also, as
functions of (y, w)

order
(
(w · Y )j(y)

)
= order(yj), order

(
(w ·X)j(y)− (w · Y )j(y)

)
< order(yj).

Thus, if we replace w ·X by w · Y in the expansion (3.2) then the right hand side is changed by
terms of strictly lower order than y. It follows that we can write
(3.3) (z0, z

′, z′′) = (y0 + w0, y
′ + w′, y′′ + w′′ + y0w

′ − w0y
′) + (R̃0, R̃

′, R̃′′),

where order(R̃0) < −2, order(R̃′) < −1, and order(R̃′′) < −3 as functions of (y, w).
We now express w = w(y, z) and use (3.3) to write

(3.4) w = Θ̄y(z)−
(
R̃0, R̃

′,−y0R̃
′ + y′R̃0 + R̃′′

)
where R̃ = R̃(y, w(y, z)). Since w = z − y plus quadratic terms in (y, z), we see that R(x, y, z)
has no linear terms in y or z, and also that order(w0) ≤ −2 and order(w′) ≤ −1, since quadratic
terms are of order at most −2.

It suffices now to show that order(w′′(y, z)) ≤ −3, since together with the preceding we have
order(wj(y, z)) ≤ order(yj) for all j, from which it follows that order(R̃j(y, w(y, z))) < order(yj).
We know order(w′′(y, z)) ≤ −2 since quadratic terms are order ≤ −2. On the other hand, since
order(R̃′′) ≤ −4 as a function of (y, w), and order(wj(y, z)) ≤ order(yj) for j ≤ d, it is easy to see
by examining possible terms in R̃′′ that order(R̃′′) ≤ −3 as a function of (y, z), concluding the
proof. �

We make a few important additional observations about the terms that can occur in the Taylor
expansion of Θ and Θ̃ about y = z = 0, respectively y = w = 0. First, we have

Θ(x, y, z) = z0 − y0 if y′ = z′ = y′′ = z′′ = 0,
Θ̃(x, y, w) = y0 + w0 if y′ = w′ = y′′ = w′′ = 0.

Consequently, every nonvanishing term in the Taylor expansion of R(x, y, z) must include a factor
of either y′, z′, y′′, or z′′. Similarly, every nonvanishing term in the Taylor expansion of R̃(x, y, z)
must include factor of either y′, w′, y′′, or w′′.

Additionally, since the collection {Xj}dj=1 is involutive it follows that R0 and R′′ vanish if
y0 = z0 = y′′ = z′′ = 0, and hence every nonvanishing term in the Taylor expansions of R0 and
R′′ must contain a factor other than (y′, z′), similarly for R̃0 and R̃′′. Putting this together with
the fact that R(x, y, z) = 0 if z = y, we can write

(3.5) Rj(x, y, z) =
∑

|α|+|β|=2
|β|≥1

cj,α,β(x) yα(z − y)β +
∑

|α|+|β|=3
|β|≥1

cj,α,β(x, y, z) yα(z − y)β,
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for smooth functions cj,α,β, where cj,α,β ≡ 0 unless order(yαzβ) < order(yj), and also unless one
of α′, β′, α′′, or β′′ is nonzero. Additionally, if j = 0 or j ≥ d+ 1 then cj,α,β ≡ 0 unless one of α0,
β0, α′′, or β′′ is nonzero.

The same conditions also hold on c̃j,α,β in the following expansion of R̃(x, y, w),

R̃j(x, y, w) =
∑

|α|+|β|=2
|β|≥1

c̃j,α,β(x) yαwβ +
∑

|α|+|β|=3
|β|≥1

c̃j,α,β(x, y, z) yαwβ.

4. The semiclassical calculus on U

Recall that

m(η) =
(
|η0|6 + |η′|12 + |η′′|4

) 1
12 ≈ |η0|

1
2 + |η′|+ |η′′|

1
3 ,

which is smooth for η 6= 0 and homogeneous of degree 1, in that m(δr(η)) = rm(η).
We assume given a compact subset K b U , and choose r1 so that the exponential map y →

expx(y) is a diffeomorphism on the ball {|y| ≤ r1} for all x ∈ K, and fix r0 < r1 such that⋃
x̃∈expx(Br0 )

expx̃(Br0) ⊂ expx(Br1).

We fix functions χj ∈ C∞c (Brj ) with χ0(y) = 1 for |y| ≤ 1
2r0 and

χ1(Θx(·)) = 1 on a neighborhood of
⋃
x̃

supp
(
χ0(Θx(x̃))χ0(Θx̃(·))

)
.

Given a symbol a(x, η) ∈ C∞(U × R2d+1) supported where x ∈ K, we define

ah(x, η) = a(x, η0, η
′, hη′′),

and define a nonisotropic semiclassical quantization of a by the rule

ah(x, hD)f(x) = 1
(2πh)2d+1

∫
R4d+2

e−i〈y,η〉/h ah(x, η)χ0(y) f(expx(y)) dy dη

= 1
(2π)2d+1

∫
R2d+1

e−i〈y,η〉 ah(x, η)χ0(hy) f(expx(hy)) dy dη.
(4.1)

Thus the Schwartz kernel of ah(x, hD) is supported in K×Kr0 , where Kr0 is the image of K×Br0
under (x, y)→ expx(y).

If p(x, η) =
∑
|α|≤n cα(x) ηα is a polynomial in η, then(

ph(x, hD)f
)
(x) = ph

(
x, (−i∂y)

)
f(expx(hy))

∣∣
y=0 .

In particular, we have the following correspondence of symbols to operators:

(4.2) iηj : hXj , 0 ≤ j ≤ d, iηj : h2Xj , d+ 1 ≤ j ≤ 2d.

Suppose that the symbol a satisfies homogeneous order-0 type estimates of the form

|∂βx∂αη a(x, η)| ≤ Cα,βm(η)− order(α).
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The uncertainty principal, used for example for proving L2 continuity of ah(x, hD), requires
uniform bounds on ∂αx (h∂η)αah(x, η). On the other hand,

|∂αx (h∂η)αah(x, η)| = h|α0|+|α′|+2|α′′||(∂αx ∂αη a)h(x, η)|

≤ Cα h|α0|+|α′|+2|α′′|mh(η)−2|α0|−|α′|−3|α′′|.

To have uniform bounds as h → 0 would require truncating a(x, η) to where m(η) ≥ h
1
2 . It is

convenient to work with bounded symbols, hence for symbols of order n we will multiply by a
factor of h−

n
2 to make symbols of any order be of size . 1 when m(η) = h

1
2 .

Definition 4.1. Let m(h, η) =
(
h

1
2 +m(η)

)
. A h-dependent family of symbols a(x, η) belongs to

Sn(m) if, for all α, β, there is Cα,β independent of h such that, for 0 < h ≤ 1,

|∂βx∂αη a(x, η)| ≤ Cα,β h−
n
2m(h, η)n−order(α).

We use Snh (m) to denote symbols of the form ah(x, η) with a(x, η) ∈ Sn(m), and Ψn
h(m) to denote

operators ah(x, hD) arising from symbols a ∈ Sn(m).

We will show that the symbol of an operator is uniquely determined. For polynomial symbols
we note the following result,

h−
1
2 order(α)ηα ∈ Sorder(α)(m).

By (4.2) we then have the following examples.

X0 ∈ Ψ2
h(m),

h
1
2Xj ∈ Ψ1

h(m), 1 ≤ j ≤ d,

h
1
2Xj ∈ Ψ3

h(m), d+ 1 ≤ j ≤ 2d.

A more general example of a symbol in Sn(m) is h−
n
2 a(η)

(
1−φ

(
h−

1
2m(η)

))
where a(δrη) = rna(η).

It is easy to verify the following properties:

Sn(m) · Sn′(m) ⊂ Sn+n′(m).

Sn(m) ⊃ Sn′(m) if n′ < n.

a ∈ Sn(m) ⇒ h
1
2 order(α)∂αη ∂

β
xa ∈ Sn−order(α).

Definition 4.2. Given a sequence of symbols aj ∈ Sn−j(m) we say that a ∼
∑
j aj if for all N

a−
N−1∑
j=0

aj ∈ Sn−N (m).

Consequently, a is uniquely determined up to a symbol in S−∞(m) =
⋂
N

S−N (m).

We note the following simple result as an example of a S−∞(m).

(4.3) If φ ∈ S(R) and φ(s) = 1 when |s| ≤ 1 then φ
(
h−

1
2 m(η)

)
∈ S−∞(m).

Lemma 4.1. Suppose that aj ∈ Sn−j(m), j ∈ N. Then there exists a ∈ Sn(m) with a ∼
∑
j aj.
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Proof. We will construct a sequence of positive real numbers Rj →∞ such that for all N ,

(4.4)
∞∑
j=N

(
1− φ

(
R−1
j h−

1
2m(η)

))
aj(x, η) converges in Sn−N (m).

Defining a to be this sum where N = 0 gives the result, we see by (4.3) that

φ
(
R−1
j h−

1
2m(η)

)
∈ S−N (m) for all N.

Additionally, the S0(m) seminorms of φ
(
R−1
j h−

1
2m(η)

)
are uniformly bounded independent of R.

The result (4.4) follows if we choose Rj so that for all |α|+ |β| ≤ j,∣∣∣∂βx∂αη (1− φ
(
R−1
j h−

1
2m(η)

))
aj(x, η)

∣∣∣ ≤ 2−jh−
n+1−j

2 m(h, η)n+1−j−order(α).

Such Rj can be chosen by observing that on the support of 1− φ
(
R−1
j h−

1
2m(η)

)
we have

h
1
2m(h, η)−1 ≤ (1 +Rj)−1.

�

Let φ and ψ generate a smooth Littlewood-Paley decomposition of [0,∞):

1 = φ(s) +
∞∑
j=1

ψ(2−js) , supp(φ) ⊂ [0, 2), supp(ψ) ⊂ (1
2 , 2).

Given a symbol a ∈ Sn(m), we make the following decomposition,

a(x, η) = φ(h−
1
2m(η))a(x, η) +

∞∑
j=1

ψ(h−
1
2 2−jm(η))a(x, η)

=
∞∑
j=0

aj(x, η).
(4.5)

Then aj is supported where (h
1
2 +m(η)) ≈ 2jh

1
2 , and thus∣∣∂βx∂αη aj(x, η)

∣∣ ≤ Cα,β 2jn
(
2jh

1
2
)− order(α)

.

It follows that a0(x, δh1/2(η)) ∈ C∞c (K × {|η| < 8}) with bounds uniform over h, and for j ≥ 1
that 2−njaj

(
x, δ2jh1/2(η)

)
is uniformly bounded in C∞c (K × {1

8 < |η| < 8}) over h and j.

Theorem 4.2. Suppose that a ∈ Sn(m) and b ∈ Sn′(m). Then there is c ∈ Sn+n′(m) so that

ah(x, hD) ◦ bh(x, hD) = ch(x, hD) +Rh,

where Rh is a smoothing operator with kernel Rh(x, x̃) supported in K×Kr0 satisfying, for all N ,

|∂αx ∂
β
x̃Rh(x, x̃)| ≤ CN,α,β hN .

Furthermore, c− a]b ∈ Sn+n′−1(m), where (a]b)(x, ξ) =
(
a(x, ·)]b(x, ·)

)
(ξ).
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Proof. We start with the first part of the result. For x ∈ K and h > 0 we can write

χ1(Θx(x̃))f(x̃) = 1
(2πh)2d+1

∫
ei〈Θx(x̃),ξ〉/h−i〈y,ξ〉/h χ1(y) f(expx(y)) dy dξ.

Since ah(x, hD)bh(x, hD)f(x) = ah(x, hD)bh(x, hD)
(
χ1(Θx(·))f

)
(x), we can write

ah(x, hD) ◦ bh(x, hD)f(x) = 1
(2πh)2d+1

∫
e−i〈y,ξ〉/h ch(x, ξ)χ1(y) f(expx(y)) dy dξ

where
ch(x, ξ) =

(
ah(x, hD) bh(x, hD)ei〈Θx(·),ξ〉/h

)
(x).

We will show that ch(x, η) ∈ Sn+n′
h (m). To estimate the term Rh coming from replacing χ1 by χ0

we write χ1(y) − χ0(y) = |y|2NβN (y), where βN ∈ C∞c . Then Rhf(x) =
∫
K(x, expx(y))f(y) dy

where

K(x, expx(y)) = βN (y)
(2πh)2d+1

∫
e−i〈y,ξ〉/h (h2∆η)Nch(x, ξ) dξ.

It is simple to verify that (h2∆η)Nch(x, ξ) ∈ Sn+n′−2N
h (m), thus Rh corresponds to the restriction

to 2|y| ≥ r0 of an integral kernel with S−∞(m) symbol. The kernel satisfies (5.3), and the result
then follows after changing variables y = Θx(x̃).

Let ai and bj be the nonisotropic Littlewood-Paley decomposition of a and b as in (4.5), and
define cij by

(cij)h(x, ξ) =
(
(ai)h(x, hD) (bj)h(x, hD)ei〈Θx(·),ξ〉/h

)
(x),

so that c =
∑
ij cij . From (4.1) we can write (cij)h(x, ξ) as

1
(2π)4d+2

∫
e−i〈y,η〉−i〈w,ζ〉+ih

−1〈Θ̃(x,hy,hw),ξ〉 (ai)h(x, η) (bj)h(expx(hy), ζ)

× χ0(hy)χ0(hw) dw dζ dy dη.

Consider first the case that i ≥ j. Substitute the quantity h−1Θ(x, hy, hz) for w to write this as

1
(2π)4d+2

∫
e−i〈y,η〉−ih

−1〈Θ(x,hy,hz),ζ〉+i〈z,ξ〉 ai(x, η0, η
′, hη′′) bj(expx(hy), ζ0, ζ

′, hζ ′′)

× χ0(hy)χ0(Θ(x, hy, hz)) |DzΘ|(x, hy, hz) dz dζ dy dη.

By the comments following (4.5), we write

bj(expx(hy), ζ0, ζ
′, hζ ′′)χ0(hy)χ0(Θ(x, hy, hz)) |DzΘ|(x, hy, hz)

= 2jn′ b̃j
(
x, hy, hz, (2−2jh−1ζ0, 2−jh−

1
2 ζ ′, 2−3jh−

1
2 ζ ′′)

)
where b̃j ∈ C∞c (K×Br0×Br1×B8), with bounds uniform over h and j, and a similar representation
holds for ai with 2j replaced by 2i. We make a nonisotropic dilation of ζ and η by the factors
(2−2jh−1, 2−jh−

1
2 , 2−3jh−

1
2 ), and of z and y by the reciprocal factors, to write

cij(x, ξ) = 2j(n+n′)c̃ij(x, δ2−jh−1/2(ξ)),
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where c̃ij(x, ξ) is given by

(4.6) 1
(2π)4d+2

∫
e−i〈y,η〉−i〈Θ̄y(z)+R(h,x,y,z),ζ〉+i〈z,ξ〉 ãi(x, 4j−iη0, 2j−iη′, 8j−iη′′)

× b̃j(x, 2−2jy0, 2−jh
1
2 y′, 2−3jh

1
2 y′′, 2−2jz0, 2−jh

1
2 z′, 2−3jh

1
2 z′′, ζ) dz dζ dy dη,

with
〈R(h, x, y, z), ζ〉 = 22j R0(x, 2−2jy0, 2−jh

1
2 y′, 2−3jh

1
2 y′′, 2−2jz0, 2−jh

1
2 z′, 2−3jh

1
2 z′′) ζ0

+ 2jh−
1
2R′(x, 2−2jy0, 2−jh

1
2 y′, 2−3jh

1
2 y′′, 2−2jz0, 2−jh

1
2 z′, 2−3jh

1
2 z′′) · ζ ′

+ 23jh−
1
2R′′(x, 2−2jy0, 2−jh

1
2 y′, 2−3jh

1
2 y′′, 2−2jz0, 2−jh

1
2 z′, 2−3jh

1
2 z′′) · ζ ′′.

By the support condition on b̃ we have |ζ| ≤ 8. Also, if i ≥ 1 then ã(x, η) = 0 when |η| ≤ 1
8 .

We next apply the expansion (3.5). The condition on order(yαzβ) insures that we bring out
strictly more powers of 2−j than needed to cancel the powers of 2j in front, and since there is at
least one factor of (y′, z′, y′′, z′′) we also bring out a factor h

1
2 to cancel off the h−

1
2 in front. We

conclude that, on the support of the integrand,

|R(h, x, y, z)| ≤ C 2−j |z − y|
(
|y|+ |z − y|+ |y|2 + |z − y|2

)
,

and also
(4.7) |∂γx∂αy ∂βzR(h, x, y, z)| ≤ Cγ,α,β 2−j

(
1 + |y|3 + |z − y|3

)
.

Additionally, if we let w = Θ̄(x, y, z) + R(h, x, y, z), then with analogous notation we see from
(3.1) and Lemma 3.2 that z = Θ̄−y(w) + R̃(h, x, y, w), where

|R̃(h, x, y, w)| ≤ C 2−j |w|
(
|y|+ |w|+ |y|2 + |w|2

)
.

Consequently, since Θ̃ is the inverse function to Θ for fixed y, uniformly over j we have∣∣Θ̄y(z) +R(h, x, y, z)
∣∣ ≤ C |z − y| (1 + |y|2 + |z − y|2

)
,

|z − y| ≤ C
∣∣Θ̄y(z) +R(h, x, y, z)

∣∣ (1 + |y|2 +
∣∣Θ̄y(z) +R(h, x, y, z)

∣∣2)
and hence

(1 + |y|2)−1|z − y| ≤ C
∣∣Θ̄y(z) +R(h, x, y, z)

∣∣ (1 +
∣∣Θ̄y(z) +R(h, x, y, z)

∣∣2).
Considering the function

gij(x, y) = 1
(2π)4d+2

∫
e−i〈y,η〉 ãi(x, 4j−iη0, 2j−iη′, 8j−iη′′) dη,

simple estimates show that

(4.8) |∂αx ∂βy gij(x, y)| ≤ CN,α,β2(4d+2)(i−j)(1 + 22(i−j)|y0|+ 2i−j |y′|+ 23(i−j)|y′′|
)−N

.

Additionally, if i > j, hence i ≥ 1, then ãi(x, η) vanishes for |η| ≤ 1
8 , hence can be assumed to be

of the form |η|2ãi(x, η) for similar ãi(x, η), and so we can write

gij(x, y) =
∑
|γ|=2

2(j−i) order(γ)∂γy gij,γ(x, y),
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where gij,γ(x, y) satisfies the same estimates (4.8) as gij(x, y). Similarly, if we let fj(x, y, z) equal∫
e−i〈Θ̄y(z)+R(h,x,y,z),ζ〉 b̃j(x, 2−2jy0, 2−jh

1
2 y′, 2−3jh

1
2 y′′, 2−2jz0, 2−jh

1
2 z′, 2−3jh

1
2 z′′, ζ) dζ,

then

(4.9) |∂αx ∂βy ∂θzfj(x, y, z)| ≤ CN,α,β,θ
(
1 + |y|+ |y − z|

)3(|α|+|β|+|θ|)(
1 + (1 + |y|2)−1|y − z|

)−N
.

This leads to the bound, for all N,α, β,

(4.10)
∣∣∣∣ ∂αx ∂βz ∫ gij(x, y) fj(x, y, z) dy

∣∣∣∣ ≤ CN,α,β 2−2(j−i)(1 + |z|
)−N

,

which leads to uniform (over i and j) Schwartz bounds on 22(i−j)c̃ij(x, ξ).
In the case i ≥ 1, hence j ≥ 1 as well, we can harmlessly divide b̃j by |ζ|2`. Since((

∂z0 − y′ · ∂z′′ , ∂z′ + y0∂z′′ , ∂z′′)− ζ
)
e−i〈Θ̄y(z),ζ〉 = 0,

and ∂z acting on any other factor of z in the integrand for fj leads to a gain of 2−j , we can then
write, for each ` ∈ N and k ∈ N,

(4.11) c̃ij(x, ξ) =
∑
|γ|≤2l

2−2(i−j)2−j(2`−|γ|)ξγ c̃ij,`,γ(x, ξ),

for Schwartz functions cij,`,γ which are uniformly bounded over i, j.
In case j ≥ i, we can similarly write cij(x, ξ) = 2i(n+n′)c̃ij(x, δ2−ih−1/2(ξ)), where

c̃ij(x, ξ) =
∑
|γ|≤2l

2−2(j−i)2−i(2`−|γ|)ξγ c̃ij,`,γ(x, ξ),

for Schwartz functions cij,`,γ which are uniformly bounded over i, j. The analysis is similar to the
case i ≥ j, using instead the following representation for cij(x, ξ),

1
(2π)4d+2

∫
e−ih

−1〈Θ̃(x,hv,−hw),η〉−i〈w,ζ〉+i〈v,ξ〉 ai(x, η0, η
′, hη′′) bj(expexpx(hv)(−hw), ζ0, ζ

′, hζ ′′)

× χ0(Θ̃(x, hv,−hw))χ0(hw) |DvΘ̃|(x, hv,−hw) dw dζ dv dη.

It thus suffices to show that
∑
i≥j 2j(n+n′)c̃ij(x, δ2−jh−1/2(ξ)) ∈ Sn+n′(m). We prove that∣∣∣ ∑

i≥j
2j(n+n′)c̃ij(x, δ2−jh−1/2(ξ))

∣∣∣ ≤ C (1 + h−
1
2m(ξ)

)n+n′
,

and estimates on derivatives will follow similarly. We use (4.11) to bound the sum by

CN,`
∑
i≥j≥0

∑
|γ|≤2`

2j(n+n′)2−2(i−j)2−j(2`−|γ|)(2−jh−
1
2m(ξ))order(γ)(1 + 2−jh−

1
2m(ξ)

)−N
.

Fix 2` > n + n′. If h−
1
2m(ξ) ≤ 1 the sum is easily bounded by a constant. If h−

1
2m(ξ) ≥ 1, we

bound this by

CN,`

∞∑
j=0

2j(n+n′)(2−jh−
1
2m(ξ))2`(1 + 2−jh−

1
2m(ξ)

)−N
,
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where we use that order(γ) ≥ |γ|. This leads to the desired bound by separating into the cases
2j ≥ h−

1
2m(ξ) and 2j ≤ h−

1
2m(ξ).

We now turn to the proof that c−a]b ∈ Sn+n′−1. The proof shows that there is a full asymptotic
expansion for c in terms of functions of x and h times the ] composition of derivatives of a and b,
but the leading term is the important result.

To start, we note that by (4.8), the integral in (4.10) over the region |y| ≥ 2jε, for any fixed
ε > 0, leads to a gain of 2−jN in the form (4.11) for c̃ij . Similarly, if |y| ≤ 2jε, then (4.9) shows
that the integral over the region |z| ≥ 23jε has a similar gain.

Thus, up to changing c by a term in S−∞(m), we can insert a factor φ(2−jεy)φ(2−3jεz) in the
formula (4.6) defining c̃ij . We now fix ε = 1

9 . By (4.7), on the support of this cutoff we have

(4.12) |∂γx∂αy ∂βzR(h, x, y, z)| ≤ Cγ,α,β.

We next take a Taylor expansion in (y, z) of the b̃j term in (4.6) about y = z = 0, to write it as∑
|α|+|β|≤N

h
1
2 (|α′+β′|+|α′′+β′′|)2−j order(α+β)yαzβ∂αy ∂

β
z b̃j(x, 0, 0, ζ)

+
∑

|α|+|β|=N
h

1
2 (N−α0−β0)2−j order(α+β)yαzβ

× bj,α,β(x, 2−2jy0, 2−jh
1
2 y′, 2−3jh

1
2 y′′, 2−2jz0, 2−jh

1
2 z′, 2−3jh

1
2 z′′, ζ)

where we recall that b̃j ∈ C∞c (K ×Br0 ×Br1 ×B8), with bounds uniform over h and j. The term
α = β = 0 is just 2−jnbj(x, ζ), since |DzΘ(x, 0, 0)| = 1. The α, β term will lead to a symbol of
order n + n′ − order(α + β), so up to terms in Sn+n′−1(m) we have that (2π)4d+2c̃ij is given by
the integral∫
e−i〈y,η〉−i〈Θ̄y(z)+R(h,x,y,z),ζ〉+i〈z,ξ〉ãi(x, 4j−iη0, 2j−iη′, 8j−iη′′)b̃j(x, ζ)φ(2−jεy)φ(2−3jεz)dz dζ dy dη.

This expression with R ≡ 0 leads, modulo a term in S−∞(m), to the symbol
(
a(x, ·)]b(x, ·)

)
(ξ).

Thus we need show the difference leads to a symbol in Sn+n′−1. To estimate the difference, we
expand

e−i〈R(h,x,y,z),ζ〉 =
N∑
k=0

(−i)k〈R(h, x, y, z), ζ〉k

k! + 〈R(h, x, y, z), ζ〉N eN
(
〈R(h, x, y, z), ζ〉

)
with eN

(
〈R(h, x, y, z), ζ〉

)
having bounded derivatives of all order on the support of the integrand

by (4.12), recalling that |ζ| ≤ 1 on the support of the integrand. Inserting eN into (4.10) preserves
that estimate, so it suffices to observe that, if we set

c̃ij,k(x, ξ) =
∫
e−i〈y,η〉−i〈Θ̄y(z),ζ〉+i〈z,ξ〉ãi(x, 4j−iη0, 2j−iη′, 8j−iη′′)b̃j(x, ζ)

× 〈R(h, x, y, z), ζ〉kφ(2−jεy)φ(2−3jεz)dz dζ dy dη

then we have uniform Schwartz bounds on 2jk 2|i−j|c̃ij,k(x, ξ), which follows from the above proof
and (4.7). �
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Corollary 4.3. Suppose Ph is as in (1.1). Given ρ ∈ C∞c (Ko), there is a symbol q(x, ξ) ∈ S−2(m),
with principal symbol hρ(x)

(
1− χ(h−

1
2m(ξ))

)
q(ξ), so that

qh(x, hD) ◦ Ph = ρ(x) mod Ψ−∞(m).

Proof. Fix ρ̃(x) ∈ C∞c (K) with ρ̃ = 1 on a neighborhood of supp(ρ). Define

q̃(ξ) = h
(
1− χ(h−

1
2m(ξ))

)
q(ξ)

where q(ξ) is the Fourier transform of the fundamental solution for Y0 −
∑d
j=1 Y

2
j . We observe

that ρ̃(x)q̃(ξ) ∈ S−2(m), and that

ρ̃(x)qh(hD) ◦ Ph = ρ̃(x)− ah(x, hD), a ∈ S−1(m).

To see this, note that h
∑d
j=1 cj(x)Xj ∈ S1(m), the symbol of h

1
2Xj is iηj for 1 ≤ j ≤ d, and the

symbol of X0 is η0. We use Theorem 4.2 and Lemma 2.3 to see that the left hand side equals,
modulo an operator in Ψ−1

h (m), the operator with symbol

ρ̃(x)
(
1− χ(

(
h−

1
2m(ξ))

)(
iq̃]η0 −

d∑
j=1

q̃]ηj]ηj
)

= ρ̃(x)
(
1− χ(

(
h−

1
2m(ξ))

)
= ρ̃(x) mod S−∞(m).

Next let bh(x, hD) ∈ Ψ0
h(m) be an asymptotic sum bh(x, hD) ∼ I +

∞∑
n=1

ah(x, hD)n. Then

ρ(x)bh(x, hD) ◦ ρ̃(x)qh(hD) ◦ Ph = ρ(x)bh(x, hD) ◦
(
ρ̃(x)− ah(x, hD)

)
.

By pseudo-locality of bh(x, hD) this differs by a term in Ψ−∞h (m) from

ρ(x)bh(x, hD) ◦
(
I − ah(x, hD)

)
= ρ(x) mod Ψ−∞h (m).

The principal symbol of qh(x, hD) = ρ(x)bh(x, hD) ◦ ρ̃(x)q̃h(hD) is then ρ(x)q̃(ξ). �

5. L2 boundedness for order 0 operators

Let φ and ψ generate a smooth Littlewood-Paley decomposition of [0,∞):

1 = φ(s) +
∞∑
j=1

ψ(2−js) , supp(φ) ⊂ [0, 2], supp(ψ) ⊂ [1
2 , 2].

Given a symbol a ∈ Sn(m), we make the following decomposition,

a(h, x, η) = φ(h−
1
2m(η))a(h, x, η) +

∞∑
j=1

ψ(h−
1
2 2−jm(η))a(h, x, η)

=
∞∑
j=0

aj(h, x, η).

Then aj is supported where (h
1
2 +m(η)) ≈ 2jh

1
2 , and∣∣∂βx∂αη aj(x, η)

∣∣ ≤ Cα,β 2jn
(
2jh

1
2
)− order(α)

.
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The operator aj,h(x, hD) is given by the following integral kernel on U × U with respect to the
measure dm(x̃), where w(x, x̃)dm(x̃) = exp∗x(dy),

Kj(x, x̃) = w(x, x̃)χ0(Θx(x̃))
∫
e−i〈Θx(x̃),η〉aj,h(x, hη) dη.

The symbol aj,h(x, hη) is supported in the rectangle |η0| ≤ 22j , |η′| ≤ 2jh−
1
2 , |η′′| ≤ 23jh−

1
2 ,

with derivative estimates in each variable inversely proportional to the respective sidelengths.
Consequently, there are Schwartz functions ρj(x, y), supported for x ∈ supp(a) with Schwartz
norms independent of j, so that

(5.1) (w−1Kj)(x, expx(y)) = 2jn 2j(2+4d)h−dρj
(
x, 22jy0, 2jh−

1
2 y′, 23jh−

1
2 y′′

)
χ0(y),

and in particular, for all N

(5.2) |Kj(x, x̃)| ≤ 2jn 2j(2+4d)h−dCN
(
1 + 22j |Θx(x̃)0|+ 2jh−

1
2 |Θx(x̃)′|+ 23jh−

1
2 |Θx(x̃)′′|

)−N
.

If a ∈ S−∞ then (5.1) holds for all n ∈ Z, and we obtain the following.
Corollary 5.1. If a ∈ S−∞(m), then ah(x, hD) is given by a smooth integral kernel Kh(x, x̃) in
the measure dm(x̃), so that for some Schwartz function ρ(x, y), supported for x ∈ supp(a),

(5.3) (w−1K)(x, expx(y)) = h−dρ
(
x, y0, h

− 1
2 y′, h−

1
2 y′′

)
χ0(y).

We next observe that the vector fields 2−2jY0, 2−jh
1
2Y ′, and 2−3jh

1
2Y ′′ acting as differential

operators in y all preserve the form of w−1Kj ; that is, they give an expression of the same form
with ρj uniformly bounded over j in each Schwartz seminorm.

The same holds for the operators 2−2jX0, 2−jh
1
2X ′, and 2−3jh

1
2X ′′, acting on Kj(x, x̃) as

differential operators in either the x or x̃ variables. For action in the x̃ variable this follows by
Lemma 3.1, where we use that there is at least one factor of y′ or y′′ in the expansion of R0(x, y, ∂y)
to compensate for the factor of h−

1
2 coming from ∂y′ and ∂y′′ terms in the expansion of X0. For

action in the x variable we work in coordinates x = expx̃(y), hence x̃ = expx(−y), to write

(5.4) (w−1Kj)(expx̃(y), x̃) = 2jn 2j(2+4d)h−dρj
(
expx̃(y),−22jy0,−2jh−

1
2 y′,−23jh−

1
2 y′′

)
χ0(−y).

To summarize, for a ∈ Sn(m), we can write

(5.5)
(
2−2jX0

)α0(2−jh 1
2X ′

)α′(2−3jh
1
2X ′′

)α′′
Kj(x, x̃)

= 2jn 2j(2+4d)h−dρj,α
(
x, 22jΘx(x̃)0, 2jh−

1
2 Θx(x̃)′, 23jh−

1
2 Θx(x̃)′′

)
χα(x, x̃)

where the functions ρj,α and χα satisfy seminorm bounds that depend on α, but are uniform over
j and h. This holds whether any given vector X in the product acts on x or x̃.

Conversely, suppose that j ≥ 1, so that aj
(
x, δ2−jh−1/2(η)

)
∈ C∞c (K × {1

8 ≤ |η| ≤ 8}
)
. Then,

for any `, dividing aj,h by the appropriate nonisotropic dilation of |η|2` and taking the Fourier
transform shows that we can write

(w−1Kj)(x, expx(y)) = 2jn 2j(2+4d)h−d×∑
|α|=2`

χα(x, y)
(
2−2j∂y0

)α0(2−jh 1
2∂y′

)α′(2−3jh
1
2∂y′′

)α′′
ρj,α

(
x, 22jy0, 2jh−

1
2 y′, 23jh−

1
2 y′′

)
,
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for Schwartz functions ρj,k,α,β that are uniformly bounded over j, and χα ∈ C∞c (K ×Br0).
Using Lemma 3.1, we write

∂y0 = X0 + y′ ·X ′′ −R0(x, y, ∂y)− y′ ·R′′(x, y, ∂y),
∂y′ = X ′ − y0X

′′ −R′(x, y, ∂y) + y0R
′′(x, y, ∂y),

∂y′′ = X ′′ −R′′(x, y, ∂y).

where the Xj act in y. Substituting this into R(x, y, ∂y), and using that the Xj form a smooth
frame, we can expand each ∂yj as a finite sum over 2 ≤ |α| ≤ 3,

∂y0 = X0 + y′ ·X ′′ +
∑
α,k

c0,α,k(x, y) yαXk, order(yk)− order(α) < 2,

∂yj = Xj − y0Xj+d +
∑
α,k

cj,α,k(x, y) yαXk, 1 ≤ j ≤ d, order(yk)− order(α) < 1,

∂yj = Xj +
∑
α,k

cj,α,k(x, y) yαXk, d+ 1 ≤ j ≤ 2d, order(yk)− order(α) < 3.

Additionally, c0,α,k ≡ 0 unless either α′ 6= 0 or α′′ 6= 0.
Letting X̄j denote the transpose of the differential operator Xj with respect to dy, it follows

that, with the Xj acting on y, we can write

(w−1Kj)(x, expx(y)) = 2jn 2j(2+4d)h−d×∑
|α|=2`

χα(x, y)
(
2−2jX̄0

)α0(2−jh 1
2 X̄ ′

)α′(2−3jh
1
2 X̄ ′′

)α′′
ρj,α

(
x, 22jy0, 2jh−

1
2 y′, 23jh−

1
2 y′′

)
,

where the ρj,α may depend on h, but with uniform Schwartz bounds over 0 ≤ h ≤ 1 and j ∈ N.
Expressing the action of X̄ in terms of x̃, this leads to the following expansion

(5.6) Kj(x, x̃) =
∑
|α|=2`

∑
β≤α

2−j order(α)(X̄0
)β0(h 1

2 X̄ ′
)β′(

h
1
2 X̄ ′′

)β′′
Kj,α,β(x, x̃),

for kernels Kj,α,β satisfying (5.2) with CN depending on ` but uniform over j, α, β. Here we can
take X̄ to be the transpose with respect to dm(x̃), since that differs from the transpose with
respect to dy by a smooth function.

Theorem 5.2. If a ∈ S0(m), then ah(x, hD) is a bounded linear operator on L2(U), with operator
norm depending only on a finite number of seminorm bounds for a. In particular, the operator
norm is uniformly bounded over 0 < h ≤ 1.

Proof. We decompose ah(x, hD) =
∑∞
j=0 aj,h(x, hD). Using (5.1) and (5.4) it is easily verified

that the kernel Kj(x, x̃) of aj,h(x, hD) satisfies the Schur test,

sup
x

∫
Kj(x, x̃) dm(x̃) ≤ C , sup

x̃

∫
Kj(x, x̃) dm(x) ≤ C.

We deduce L2 boundedness from the Cotlar-Stein lemma (see [KS71] or [Ste93]), by showing that,
for any N ∈ N,

(5.7) ‖ai,h(x, hD)∗aj,h(x, hD)‖L2→L2 + ‖ai,h(x, hD)aj,h(x, hD)∗‖L2→L2 ≤ C 2−N |i−j|,
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for C uniform over h and j. If i = j this follows from L2 boundedness of each term, so without
loss of generality we consider j > i ≥ 0, and in particular j ≥ 1. Given ` ∈ N we then write the
integral kernel of ai,h(x, hD)aj,h(x, hD)∗ as∫

Ki(x,w)Kj(x̃, w) dm(w)

=
∫
Ki(x,w)

∑
|α|=2`

∑
β≤α

2−j order(α)(X̄0
)β0(h 1

2 X̄ ′
)β′(

h
1
2 X̄ ′′

)β′′
Kj,α,β(x,w) dm(w)

=
∑
|α|=2`

∑
β≤α

2i order(β)−j order(α)
∫
Ki,β(x,w)Kj,α,β(x,w) dm(w)

where Ki,β(x,w) =
(
2−2iX0

)β0(2−ih 1
2X ′

)β′(2−3ih
1
2X ′′

)β′′
Ki(x,w), and in all cases X acts on w.

Since i order(β) − j order(α) < 2`(i − j), using (5.5) and the Schur test on the composition, as
well as symmetry of the estimates in x and x̃, we obtain (5.7) with N = 2`. �

We note the following result for a ∈ Sn(m), which holds since 2−jnaj(x, η) ∈ S0(m),

(5.8) sup
j≥0

2−jn‖aj(x, hD)f‖L2(U) ≤ C ‖f‖L2(U), a ∈ Sn(m).

6. Estimates on S∗(M)

Let (M, g) be a compact Riemannian manifold of dimension d+1, and S∗(M) ⊂ T ∗(M) its unit
cosphere bundle. We consider the Hamiltonian function 1

2 |ζ|
2
g(z) =

∑d+1
i,j=1 gij(z)ζiζj , and recall

that S∗(M) is the level set |ζ|g(z) = 1. We use X0 = H to denote the Hamiltonian field for 1
2 |ζ|

2
g,

X0 =
d+1∑
j=1

gij(z)ζi∂zj −
1
2

d∑
k=1

∂zkgij(z)ζiζj∂ζk ,

which is tangent to S∗(M).
We cover S∗(M) by a finite collection of open coordinate charts as follows. Let {Vα} form a

finite covering of M by coordinate charts, over which we can identity T ∗(M) with Vα × Rd+1

and S∗(M) with Vα × Sd. We cover Sd by two coordinate charts W± over each of which there
is a section of the frame bundle. We thus obtain a cover of S∗(M) by open sets {Vα ×W±},
which by counting each Vα twice we can label as Uα, such that on Uα there is an orthonormal
collection {Xj}dj=1 of vector fields that are tangent to S∗z (Vα) for each z ∈ Vα. The Xj then form
an orthonormal frame on the tangent space of S∗z (Vα). The collection {Xj}dj=1 is involutive, since
they span the tangent space of the leaves of a foliation.

There is a natural isometric identification Tζ(T ∗x (M)) ∼ Tz(M), which identifies {Xj}z,ζ with
an orthonormal collection of vectors {X̃j}z,ζ ∈ Tz(Vα), which are also orthogonal to (X0)z,ζ . One
then verifies that

[Xj , X0] =
d+1∑
j=1

gij(z)Xj(ζi)∂zj mod (T (S∗z (M)) = X̃j mod (T (S∗z (M)).

Setting Xj+d = −1
2X̃j , we have [X0, Xj ] − 2Xj+d ∈ span{Xj}dj=1, so the assumptions of the

introduction are satisfied on {Xj}2dj=0.
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Let ∆S be the induced non-negative Laplacian acting on the fibers S∗z (M) of the bundle, and
let ∆ be the non-negative Laplacian on S∗(M). See for example [Dro17, Section 2.1] for details,
where it is shown that ∆ and ∆S commute. One verifies that, over each Uα, one has

∆S = −
d∑
j=1

X2
j +

d∑
j=1

cj(z, ζ)Xj .

We now use x = (z, ζ) ∈ R2d+1 to denote the variables on S∗(Uα), and define

Ph = H + h∆S = X0 −
d∑
j=1

hX2
j +

d∑
j=1

cj(x)hXj .

Thus on each Uα, the operator Ph differs from the sum of squares considered previously by an
operator in h

1
2 Ψ1

h(m), and the pseudodifferential calculus shows that, given χα ∈ C∞c (Uα), there
exists a symbol aα ∈ S−2(m), the quantization of which depends on χα through the choice of χ0
in (4.1), so that on Uα we have

aα,h(x, hD) ◦ Phu = χα(x)u+ rα,h(x, hD)u, rh ∈ Ψ−∞h (m).

Note that both aα,h(x, hD) and rα,h(x, hD) are properly supported in Uα. We now take a partition
of unity χα subordinate to the cover Uα, and define

Ahv =
∑
α

aα,h(x, hD)v, Rhv =
∑
α

rα,h(x, hD)v.

Then Ah ◦ Ph = I +Rh, and for all N1, N2 we have

(6.1) ‖(h∆)N1Rh (h∆)N2u‖L2(S∗(M)) ≤ CN1,N2‖u‖L2(S∗(M)).

This follows from Theorem 5.2 and the fact that h∆ ∈ Ψ6
h(Uα) for each α.

More generally, we define Ψσ
h(m) on S∗(M) as sums

∑
α aα,h(x, hD) with aα ∈ Sσ(m) on Uα.

The function χ0 in the quantization (4.1) depends on the x support of aα(x, η), which is always
assumed to be a compact subset of Uα.

The semiclassical Sobolev spaces are defined on S∗(M) using the spectral decomposition of ∆,
with norm

‖f‖Hσ
h

= ‖(1 + h2∆)σ/2f‖L2 .

We will consider cutoffs ρ(s) satisfying, for some c′ > c > 0

(6.2) ρ(s) ∈ C∞(R), ρ(s) = 0 if s ≤ c, ρ(s) = 1 if s ≥ c′.

The operator ρ(h2∆) is then defined as a spectral multiplier. We observe the following simple
result for Rh ∈ Ψ−∞h (m) on S∗(M). For all N and σ we have

(6.3) ‖ρ(h2∆)Rh(x, hD)u‖Hσ
h

+ ‖Rh(x, hD)ρ(h2∆)u‖Hσ
h
≤ CN,σhN‖u‖L2 .

This follows by writing ρ(h2∆)(1 + h2∆)σ = f(h2∆) ◦ (h2∆)N for a bounded function f(s),
provided N > σ, and using (6.1).

Theorem 6.1. Suppose that σ ≤ 0, that Ah ∈ Ψσ
h(m), and ρ satisfies (6.2). Then

‖ρ(h2∆)ah(x, hD)u‖
H
−σ/3
h

+ ‖ah(x, hD)ρ(h2∆)u‖
H
−σ/3
h

≤ C h−σ/6‖u‖L2 .
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Proof. Choose k so 6k + σ > 0. For each h ∈ (0, 1], we show that ah = ah,0 + ah,1 where

‖(h2∆)kah,0(x, hD)u‖L2 + ‖ah,0(x, hD)(h2∆)ku‖L2 + ‖ah,1(x, hD)u‖
H
σ/3
h

≤ C h−σ/6‖u‖L2 .

The result follows since ρ(s) ≤ min(sk, 1). Using the Littlewood-Paley decomposition as in the
proof of Theorem 5.2, applied to each aα in the sum defining a, we let

ah,0(x, η) =
∑

2j≤h−
1
6

ah,j(x, η), ah,1(x, η) =
∑

2j>h−
1
6

ah,j(x, η).

Recalling the form (5.5), we see that applying h2∆ to ah,j(x, hD) is equivalent to multiplying it
by at most 26jh. As in the proof of (5.7) we conclude that

‖(1 + h2∆)kah,j(x, hD)ah,i(x, hD)∗(1 + h2∆)k‖L2→L2 ≤ (1 + 26ih)k(1 + 26jh)k 2σ(i+j)−N |i−j| .

For 2j , 2i ≥ h−
1
6 , we interpolate with the L2 bounds (5.8) to obtain

‖(1 + h2∆)−σ/6ah,j(x, hD)ah,i(x, hD)∗(1 + h2∆)−σ/6‖L2→L2 ≤ C h−σ/3 2−N |i−j| .

This estimate also holds for the transposed operators. The Cotlar-Stein lemma then implies the
bounds for ah,1(x, hD).

Similarly, we have

‖(h2∆)kah,j(x, hD)‖L2→L2 + ‖ah,j(x, hD)(h2∆)k‖L2→L2 ≤ C (26jh)k 2σj ,

which we may sum over 2j ≤ h−
1
6 to conclude the bounds involving ah,0(x, hD). �

Corollary 6.2. Suppose that σ ≤ 0, and Ah ∈ Ψσ
h(m). Then

‖(1 + h∆)−σ/6Ahu‖L2 ≤ C ‖u‖L2 .

Proof. As in the proof of Theorem 6.1 we observe that, for k = 0, 1, 2, . . . ,

‖(1 + h∆)kah,j(x, hD)ah,i(x, hD)∗(1 + h∆)k‖L2→L2 ≤ 26k(i+j)2σ(i+j)−N |i−j| .

We interpolate between k = 0 and k > −6σ to obtain

‖(1 + h∆)−σ/6ah,j(x, hD)ah,i(x, hD)∗(1 + h∆)−σ/6‖L2→L2 ≤ C 2−N |i−j| .

This estimate also holds for the transposed operators. The Cotlar-Stein lemma then implies the
result. �

Theorem 6.3. The following bound holds for h ∈ (0, 1], with Rh satisfying (6.1).

‖Hu‖L2 + h‖∆Su‖L2 + ‖(1 + h∆)
1
3u‖L2 ≤ C ‖Phu‖L2 + CN‖(1 + h∆)−Nu‖L2 .

Proof. Write u = AhPhu + Rhu, and observe that HAh, h∆SAh ∈ Ψ0
h(m). We also observe that

HRh, h∆SRh ∈ Ψ−∞h (m), hence satisfy the same bounds (6.1) as Rh. Since h∆ commutes with
(1 + h∆)

1
3 , we see that (1 + h∆)

1
3Rh also satisfies the bounds (6.1). The result then follows by

Corollary 6.2. �
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Theorem 6.4. Suppose that ρ1 and ρ2 satisfy (6.2), and ρ2 = 1 on a neighborhood of supp(ρ1).
Given R > 0, the following holds for all N , and all |λ| ≤ R and h ∈ (0, 1],

h−
1
3 ‖ρ1(h2∆)u‖

H
2/3
h

+ h
1
3

d∑
j=1
‖Xjρ1(h2∆)u‖

H
1/3
h

+ ‖X0ρ1(h2∆)u‖L2 + ‖h∆Sρ1(h2∆)u‖L2

≤ CN,R
(
‖ρ2(h2∆)(Ph − λ)u‖L2 + hN‖u‖L2

)
.

Proof. We follow the scheme of the proof of Theorem 2 of [Dro17], using the parametrix Ah of Ph
to replace the positive commutator arguments. Write

ρ1(h2∆)u = Ahρ1(h2∆)(Ph − λ)u+Ah[Ph, ρ1(h2∆)]u+ λAhρ1(h2∆)u+Rhρ1(h2∆)u.

To handle the commutator term on the right, we use that [∆S, ρ1(h2∆)] = 0, so [Ph, ρ1(h2∆)] =
[X0, ρ1(h2∆)]. Now let ρ̃1(s) be any function satisfying (6.2) which equals 1 on a neighborhood of
supp(ρ1). Then following [Dro17], we use that the essential support of [X0, ρ1(h2∆)] is contained
within the elliptic set of ρ̃(h2∆), and we can thus bound

‖[Ph, ρ1(h2∆)]u‖L2 ≤ C ‖ρ̃1(h2∆)]u‖L2 + CNh
N‖u‖L2 .

Applying Theorem 6.1 and (6.3) we obtain

h−
1
3 ‖ρ1(h2∆)u‖

H
2/3
h

+ h−
1
6

d∑
j=1
‖h

1
2Xjρ1(h2∆)u‖

H
1/3
h

+ ‖X0ρ1(h2∆)u‖L2 + ‖h∆Sρ1(h2∆)u‖L2

≤ C
(
‖ρ1(h2∆)(Ph − λ)u‖L2 + ‖ρ̃1(h2∆)u‖L2 + |λ|‖ρ1(h2∆)u‖L2

)
+ CN h

N‖u‖L2 .

For h bounded away from 0 we can absorb the term |λ|‖ρ1(h2∆)u‖L2 into CN hN‖u‖L2 , and for
h small we can subtract it from both sides.

From this we deduce the following bound, for any such ρ̃1,

‖ρ1(h2∆)u‖L2 ≤ CN,R
(
h

1
3 ‖ρ2(h2∆)(Ph − λ)u‖L2 + h

1
3 ‖ρ̃1(h2∆)u‖L2 + hN‖u‖L2

)
.

We now choose a sequence of cutoffs ρ̃j for 1 ≤ j ≤ 3N , satisfying (6.2), such that for all j we
have ρ̃j+1 = 1 on a neighborhood of supp(ρ̃j), and ρ2 = 1 on a neighborhood of supp(ρ̃j). Then
replacing ρ1 by ρ̃j , the preceding estimate shows that

‖ρ̃j(h2∆)u‖L2 ≤ CN,R
(
h

1
3 ‖ρ2(h2∆)(Ph − λ)u‖L2 + h

1
3 ‖ρ̃j+1(h2∆)u‖L2 + hN‖u‖L2

)
.

We conclude by iteration that

‖ρ̃1(h2∆)u‖L2 ≤ CN,R
(
h

1
3 ‖ρ2(h2∆)(Ph − λ)u‖L2 + hN‖ρ2(h2∆)u‖L2 + hN‖u‖L2

)
≤ CN,R

(
h

1
3 ‖ρ2(h2∆)(Ph − λ)u‖L2 + hN‖u‖L2

)
.

Together with the above this yields the statement of the theorem. �
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