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Abstract. This article is concerned with local well-posedness of
the Cauchy problem for second order quasilinear hyperbolic equa-
tions with rough initial data. The new results obtained here are
sharp in low dimension.

1. Introduction

1.1. The results. We consider in this paper second order, nonlinear
hyperbolic equations of the form

gij(u) ∂i∂ju = qij(u) ∂iu ∂ju(1.1)

on R× Rn, with Cauchy data prescribed at time 0,

u(0, x) = u0(x) , ∂0u(0, x) = u1(x) .(1.2)

The indices i and j run from 0 to n, with the index 0 correspond-
ing to the time variable. The symmetric matrix gij(u) and its in-
verse gij(u) are assumed to satisfy the hyperbolicity condition, that is,
have signature (n, 1). The functions gij , gij and qij are assumed to be
smooth, bounded, and have globally bounded derivatives as functions
of u. To insure that the level surfaces of t are space-like we assume
that g00 = −1. We then consider the following question:

For which values of s is the problem (1.1) and (1.2) locally
well-posed in Hs ×Hs−1 ?

In general, well-posedness involves existence, uniqueness and contin-
uous dependence on the initial data. Naively, one would hope to have
these properties hold for solutions in C(Hs)∩C1(Hs−1), but it appears
that there is little chance to establish uniqueness under this condition
for the low values of s that we consider in this paper. Our definition of
well-posedness thus includes an additional assumption on the solution
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u to insure uniqueness, while also providing useful information about
the solution.

Definition 1.1. We say that the Cauchy problem (1.1) and (1.2) is
locally well-posed in Hs×Hs−1 if, for each R > 0, there exist constants
T,M,C > 0, so that the following properties are satisfied:

(WP1) For each initial data set (u0, u1) satisfying

‖(u0, u1)‖Hs×Hs−1 ≤ R ,

there exists a unique solution u ∈ C
(

[−T, T ];Hs
)
∩C1

(
[−T, T ];Hs−1

)
subject to the condition du ∈ L2

(
[−T, T ];L∞

)
.

(WP2) The solution u depends continuously on the initial data in the
above topologies.

(WP3) The solution u satisfies

‖du‖L2
tL
∞
x

+ ‖du‖L∞t Hs−1
x
≤M .

(WP4) For 1 ≤ r ≤ s+1, and for each t0 ∈ [−T, T ], the linear equation gij(u) ∂i∂jv = 0 , (t, x) ∈ [−T, T ]× Rn ,

v(t0, ·) = v0 ∈ Hr(Rn) , ∂0v(t0, ·) = v1 ∈ Hr−1(Rn) ,
(1.3)

admits a solution v ∈ C
(

[−T, T ];Hr
)
∩ C1

(
[−T, T ];Hr−1

)
, and the

following estimates hold:

‖v‖L∞t Hr
x

+ ‖∂0v‖L∞t Hr−1
x
≤ C ‖(v0, v1)‖Hr×Hr−1 .(1.4)

Additionally, the following estimates hold, provided ρ < r− 3
4

if n = 2,

and ρ < r − n−1
2

if n ≥ 3,

‖ 〈Dx〉ρv‖L4
tL
∞
x
≤ C ‖(v0, v1)‖Hr×Hr−1 , n = 2 ,

‖ 〈Dx〉ρv‖L2
tL
∞
x
≤ C ‖(v0, v1)‖Hr×Hr−1 , n ≥ 3 ,

(1.5)

and the same estimates hold with 〈Dx〉ρ replaced by 〈Dx〉ρ−1d .

We prove the result for a sufficiently small T , depending on R. How-
ever, it is a simple matter to see that uniqueness, as well as condi-
tion (WP4), holds up to any time T for which there exists a solu-
tion u ∈ C

(
[−T, T ];Hs

)
∩ C1

(
[−T, T ];Hs−1

)
which satisfies du ∈

L2
(

[−T, T ];L∞
)
.

Observe that we do not ask for uniformly continuous dependence on
the initial data. This in general is not expected to hold for nonlinear
hyperbolic equations. Indeed, even a small perturbation of the solution
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suffices in order to change the Hamilton flow for the corresponding lin-
ear equation, which in turn modifies the propagation of high frequency
solutions.

As a consequence of the L2
tL
∞
x bound for du it follows that if the

initial data is of higher regularity, then the solution u retains that
regularity up to time T . Hence, one can naturally obtain solutions
for rough initial data as limits of smooth solutions. This switches the
emphasis to establishing a priori estimates for smooth solutions. One
can think of the L2

tL
∞
x bound for du as a special case of (1.5), which

is a statement about Strichartz estimates for the linear wave equation.
Establishing this estimate plays a central role in this article.

Our main result is the following:

Theorem 1.2. The Cauchy problem (1.1) and (1.2) is locally well-
posed in Hs ×Hs−1 provided that

s >
n

2
+

3

4
for n = 2 ,

s >
n+ 1

2
for n = 3, 4, 5 .

Remark 1.3. There are precisely two places in this paper at which
our argument breaks down for n ≥ 6, occurring in Lemmas 8.5 and
8.6. Both are related to the orthogonality argument for wave packets.
Presumably this could be remedied with a more precise analysis of the
geometry of the wave packets, but we do not pursue this question here.

As a byproduct of our result, it also follows that certain Strichartz
estimates hold for the corresponding linear equation (1.3). Interpola-
tion of (1.4) with (1.5), combined with Sobolev embedding estimates,
yields

‖〈Dx〉ρv‖LptLqx ≤ C ‖(v0, v1)‖Hr×Hr−1 ,
2

p
+

1

q
≤ 1

2
, n = 2,

‖〈Dx〉ρv‖LptLqx ≤ C ‖(v0, v1)‖Hr×Hr−1 ,
1

p
+

1

q
≤ 1

2
, n = 3, 4, 5,

provided that

1 ≤ r ≤ s+ 1 , and r − ρ > n

2
− 1

p
− n

q
.
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Note that in the usual Strichartz estimates (which hold for a smooth
metric g) one permits equality in the second condition on ρ. The esti-
mates we prove in this paper have a logarithmic loss in the frequency,
so we need the strict inequality above. Also, we do not get the full
range of LptL

q
x spaces for n ≥ 4. This remains an open question for

now.

1.2. Comments. To gain some intuition into our result it is useful to
consider two aspects of the equation. The first aspect is scaling. We
note that the equation (1.1) is invariant with respect to the dimen-
sionless scaling u(t, x)→ u(rt, rx). This scaling preserves the Sobolev
space of exponent sc = n

2
, which is then, heuristically, a lower bound

for the range of permissible s.
The second aspect to be considered is that of blow-up. There are two

known mechanisms for blow-up; see Alinhac [1]. The simplest blowup
mechanism is a space-independent type blow-up, which can occur al-
ready in the case of semilinear equations. Roughly, the idea is that if
we eliminate the spatial derivatives from the equation, then one obtains
an ordinary differential equation, which can have solutions that blow-
up as a negative power of (t−T ). For a hyperbolic equation, this type
of blow-up is countered by the dispersive effect, but only provided that
s is sufficiently large. On the other hand, for the quasilinear equation
(1.1) one can also have blow-up caused by geometric focusing. This
occurs when a family of null geodesics come together tangentially at a
point. Both patterns were studied by Lindblad [13],[14]. Surprisingly,
they yield blow-up at the same exponent s, namely s = n+5

4
. Together

with scaling, this leads to the restriction

s > max

{
n

2
,
n+ 5

4

}
.

Comparing this with Theorem 1.2, we see that for n = 2 and n = 3 the
exponents match, therefore both our result and the counterexample are
sharp. However, if n ≥ 4 then there is a gap, and it is not clear whether
one needs to improve the counterexamples or the positive result. For
comparison purposes one should consider the semilinear equation

2u = |du|2 .
For this equation it is known (see Tataru [20]) that well-posedness holds
for s as above, so that the counterexamples are sharp. However, if one
restricts the allowed tools to energy and Strichartz estimates, which
are the tools used in this paper, then it is only possible to deduce the
more restrictive range in Theorem 1.2. Adapting the ideas in [20] to
quasilinear equations appears intractable for now.
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To describe the ideas used to establish Theorem 1.2, we recall a
classical result1:

Lemma 1.4. Let u be a smooth solution to (1.1) and (1.2) on [0, T ].
Then, for each s ≥ 0, the following estimate holds

‖du(t)‖Hs−1 . ‖du(0)‖Hs−1ec
∫ t
0 ‖du(h)‖∞dh .(1.6)

For integer values of s this result is due to Klainerman [9]. For non-
integer s, the argument of Klainerman needs to be combined with a
more recent commutator estimate of Kato-Ponce [8]. As an immediate
consequence, one obtains

Corollary 1.5. Let u be a smooth solution to (1.1) and (1.2) on [0, T )
which satisfies ‖du‖L1

tL
∞
x
< ∞. Then u is smooth at time T , and can

therefore be extended as a smooth solution beyond time T .

Thus, to establish existence of smooth solutions, one seeks to es-
tablish a priori bounds on ‖du‖L1

tL
∞
x

. In case s > n
2

+ 1, one can
obtain such bounds from the Sobolev embedding Hs ⊂ L∞. A simple
iteration argument then leads to the classical result of Hughes-Kato-
Marsden [6] of well-posedness for s > n

2
+ 1 . Note that in this case

one obtains L∞t L
∞
x bounds on du instead of L1

tL
∞
x . The difference in

scaling between L1
t and L∞t corresponds to the one derivative difference

between the classical existence result and the scaling exponent.
To improve upon the classical existence result one thus seeks to es-

tablish bounds on ‖du‖LptL∞x , for p <∞. This leads naturally to consid-
ering the Strichartz estimates for the operator 2g(u). For solutions u to
the constant coefficient wave equation 2u = 0, the following estimates
are known to hold:

‖du‖L4
tL
∞
x
. ‖(u0, u1)‖Hs×Hs−1 , s > 7

4
, n = 2 ,

‖du‖L2
tL
∞
x
. ‖(u0, u1)‖Hs×Hs−1 , s > n+1

2
, n ≥ 3 .

To establish such estimates with 2 replaced by 2g(u), however, requires
dealing with operators with rough coefficients. Indeed, at first glance
one is faced with having only bounds on ‖dg‖L2

tL
∞
x ∩L∞t H

s−1
x

. (Here and

below, for simplicity we discuss the case n ≥ 3.)
The first Strichartz estimates for the wave equation with variable

coefficients were obtained in Kapitanskii [7] and Mockenhaupt-Seeger-
Sogge [15], in the case of smooth coefficients. The first result for rough
coefficients is due to Smith [17], who used wave packet techniques to

1See the footnote following Lemma 2.3
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show that the Strichartz estimates hold under the condition g ∈ C2,
for dimensions n = 2 and n = 3. At the same time, counterexamples
constructed in Smith-Sogge [18] showed that for all α < 2 there exist
g ∈ Cα for which the Strichartz estimates fail.

The first result on Strichartz estimates leading to an improvement
in the well-posedness problem for the nonlinear wave equation was ob-
tained in Tataru [21]; roughly it says that if dg ∈ L2

tL
∞
x , then the

Strichartz estimates hold with a 1/4 derivative loss. This gives well-
posedness for the nonlinear problem with s > n+1

2
+ 1

4
; independently

the same result was also obtained by Bahouri-Chemin [3]. Shortly af-
terward, the Strichartz estimates were established in all dimensions
for g ∈ C2 in Tataru [22], a condition that was subsequently relaxed
in Tataru [23], where the full estimates are established provided that
the coefficients satisfy d2g ∈ L1

tL
∞
x . As a byproduct, this last esti-

mates implies Strichartz estimates with a loss of 1
6

derivative in the case
dg ∈ L1

tL
∞
x , and hence well-posedness for (1.1) and (1.2) for Sobolev

indices s > n+1
2

+ 1
6
. Around the same time, Bahouri-Chemin [2] im-

proved their earlier 1/4 result to slightly better than 1/5. This line of
attack for the nonlinear problem, however, reached a dead end when
Smith-Tataru [16] showed that the 1

6
loss is sharp for general metrics

of regularity C1.
Thus, to obtain an improvement over the 1/6 result, one needs to ex-

ploit the additional geometric information on the metric g that comes
from the fact that g itself is a solution an equation of type (1.1). The
first work to do so was that of Klainerman-Rodnianski [11], where for

n = 3 the well-posedness was established for s > n+1
2

+ 2−
√

3
2

. The
central idea is that for solutions u to 2gu = 0, one has better estimates
on derivatives of u in directions tangent to null light cones. This in
turn leads to a better regularity of tangential components of the curva-
ture tensor than one would expect at first glance, and hence to better
regularity of the null cones themselves. A key role in improving the
regularity of the tangential curvature components is played by an ob-
servation of Klainerman [10] that the Ricci component Ric(l, l) admits
a decomposition which yields improved regularity upon integration over
a null geodesic.

The present work follows the same tack, in exploiting the improved
regularity of solutions on null surfaces. In this paper, we work with
foliations of space-time by null hypersurfaces corresponding to plane
waves rather than light cones, but the principle difference appears to
be in the machinery used to establish the Strichartz estimates. In this
work we are able to establish such estimates without making reference
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to the variation of the geodesic flow field as one moves from one null
surface to another (other than using estimates which follow immedi-
ately from the regularity of the individual surfaces themselves.) We
note that recently Klainerman and Rodnianski have announced the
conclusion of Theorem 1.2 in the case of the three dimensional vacuum
Einstein equations, where the condition Ric = 0 allows one to obtain
some control over normal derivatives of the geodesic flow field l by
relating them to tangential derivatives of l.

Although all the results quoted above point in the same direction, the
methods used are quite different. The idea of Bahouri and Chemin in
[3] and [2] was to push the classical Hadamard parametrix construction
as far as possible, on small time intervals, and then to piece together
the results measuring the loss in terms of derivatives. The results in
Tataru [21],[22] and [23], are based on the use of the FBI transform as
a precise tool to localize both in space and in frequency. This leads to
parametrices which resemble Fourier integral operators with complex
phase, where both the phase and the symbol are smooth precisely on
the scale of the localization provided by the imaginary part of the phase.
The work of Klainerman-Rodnianski [11] is based on energy estimates
obtained after commuting the equation with well-chosen vector fields.
Strichartz estimates are then obtained following a vector field approach
developed in [10].

A common point of the three approaches above is a paradifferen-
tial localization of the solution at a given frequency λ, followed by a
truncation of the coefficients at frequency λa for some a < 1. Inter-
estingly enough, it is precisely this truncation of the coefficients which
is absent in the present paper. Our argument here relies instead on a
wave-packet parametrix construction for the nontruncated metric g(u).
This involves representing approximate solutions to the linear equation
as a square summable superposition of wave packets, which are special
approximate solutions to the linear equation, that are highly localized
in phase space. The use of wave packets of such localization to repre-
sent solutions to the linear equation is inspired by the work of Smith
[17], but the ansatz for the development of such packets, as well as the
orthogonality arguments for them, is considerably more delicate in this
paper due to the decreased regularity of the metric.

1.3. Overview of the paper. The next two sections of this paper are
concerned with reducing the proof of Theorem 1.2 to establishing an
existence result for smooth data of small norm. Precisely, in section 2
we use energy type estimates to obtain uniqueness and stability results,
and thus reduce Theorem 1.2 to an existence result for smooth initial
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data, namely Proposition 2.1. Section 3 contains scaling and localiza-
tion arguments which further reduce the problem to establishing time
T = 1 existence for the case of smooth, compactly supported data of
small norm, namely Proposition 3.1.

In Section 4 we present the proof of Proposition 3.1 by the continu-
ity method. At the heart of this proof is a recursive estimate on the
regularity of the solutions to the nonlinear equation, stated in Proposi-
tion 4.1. For the recursion argument to work, in addition to controlling
the norm of the solution u in the Sobolev and L2

tL
∞
x norms, we also

need to control an appropriate norm of the characteristic foliations by
plane waves associated to g(u). This additional information is collected
in the nonlinear G functional.

The core of the paper is devoted to the proof of the estimates used
in Proposition 4.1. In Section 5 we study the geometry of the plane
wave surfaces; Proposition 5.2 contains the recursive estimate for the
G functional. A key role is played by a decomposition of the tangential
curvature components stated in Lemma 5.8, analogous to the decompo-
sition for Ric(l, l) in [10]. It then remains to establish certain dispersive
type estimates for the linear equation with metric g(u).

In Section 6 we study the geometry of characteristic light cones,
which plays an essential role for the orthogonality and dispersive esti-
mates. Section 7 contains a paradifferential decomposition which allows
us to localize in frequency and reduce the dispersive estimates to their
dyadic counterparts.

Section 8 contains the construction of a parametrix for the linear
equation. We start by using the information we have for the charac-
teristic plane wave surfaces in order to construct a family of highly
localized approximate solutions to the linear equation, which we call
wave-packets. These are spatially concentrated in thin curved rectan-
gles, which we call slabs. We then produce approximate solutions as
square summable superpositions of wave packets. For this we need to
establish orthogonality of distinct wave packets, which depends on the
geometric information we have established for both the characteristic
light cones, as well as for the plane wave hypersurfaces.

Section 9 contains a bound on the number of distinct slabs which
pass through two given points in the spacetime. This bound is at the
heart of the dispersive estimates contained in Section 10, which com-
plete the circle of estimates behind the proof of Theorem 1.2. Finally,
the Appendix contains the proof of the two dimensional stability esti-
mate, which turns out to be considerably more delicate than its higher
dimensional counterpart.
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1.4. Notations. In this paper, we use the notation X . Y to mean
that X ≤ C Y , with a constant C which depends only on the dimension
n, and on global pointwise bounds for finitely many derivatives of gij, gij
and qij. Similarly, the notation X � Y means X ≤ C−1 Y , for a
sufficiently large constant C as above.

We use four small parameters

ε3 ≤ ε2 ≤ ε1 ≤ ε0 � 1 .

In order for all our estimates to fit together, we will actually need the
stronger condition

ε3 � ε2 � ε1 � ε0 .(1.7)

Without any restriction in generality we assume that n+1
2
< s < n

2
+1

for n ≥ 3, respectively 7
4
< s < 2 for n = 2. Denote δ0 = s − n+1

2
for

n ≥ 3, respectively δ0 = s − 7
4

for n = 2, and let δ denote a number
with 0 < δ < δ0.

We denote by ξ the space Fourier variable, and let

〈ξ〉 = (1 + |ξ|2)
1
2 .

Denote by 〈Dx〉 the corresponding Bessel potential multiplier. We in-
troduce a Littlewood-Paley decomposition in the spatial frequency ξ,

1 = S0 +
∑

λ dyadic

Sλ ,

where the spherically symmetric symbols of S0 and Sλ are supported
respectively in the sets { |ξ| ≤ 1 } and { |ξ| ∈ [λ/2, 2λ] }. We set

S<λ =
∑
8µ<λ

Sµ .

We let du denote the full space time gradient, and dxu the space gra-
dient of u, so that

du = (∂0u, . . . , ∂nu) , dxu = (∂1u, . . . , ∂nu) .

Finally, let

2g(u)v = gij(u) ∂i∂jv .

We may then symbolically write

2g(u)v = −∂2
0v + g(u) dxdv .
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2. Uniqueness and stability

In this section we reduce our main theorem to the case of smooth
initial data. Precisely, we show that Theorem 1.2 is a consequence of
the following existence result for smooth initial data.

Proposition 2.1. For each R > 0 there exist T,M,C > 0 such that,
for each smooth initial data (u0, u1) which satisfies

‖(u0, u1)‖Hs×Hs−1 ≤ R ,

there exists a smooth solution u to (1.1) and (1.2) on [−T, T ] × Rn,
which furthermore satisfies the conditions (WP3) and (WP4).

The uniqueness of such a smooth solution is well known.

2.1. Commutators and energy estimates. We begin with a slight
generalization of Lemma 1.4. The purpose of this is twofold, both to
make this article self contained, and to have a setup which is better
suited to our purposes. In the process we also record certain com-
mutator estimates which are independently used later on. We con-
sider spherically symmetric elliptic symbols a(〈ξ〉), where the function
a : [0,∞)→ [1,∞) satisfies

r0 ≤
x a′(x)

a(x)
≤ r1, a(1) = 1 ,(2.1)

for some positive r0, r1. This implies that

〈ξ〉r0 ≤ a(〈ξ〉) ≤ 〈ξ〉r1 ,

and also that a is slowly varying on a dyadic scale. Thus,

a(〈ξ〉) ≈
∑

λ dyadic

a(λ)Sλ(ξ) .

Then the following result holds:

Lemma 2.2. Let a be as above, and A = a(〈Dx〉). Let u be a smooth
solution to (1.1) and (1.2) on [0, T ] × Rn. Set m = supt,x |u(t, x)| .
Then the following estimate holds:

‖dAu(t)‖L2
x
. ‖dAu(0)‖L2

x
ec(m)

∫ t
0 ‖du(h)‖∞dh , t ∈ [0, T ] .(2.2)

This yields Lemma 1.4 in the special case of a(〈ξ〉) = 〈ξ〉s−1. On the
other hand, it also allows for the use of weights which are almost but
not quite polynomial.
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Proof. For the linear equation

2gv = f ,(2.3)

we have the associated energy functional

E(v(t)) =
1

2

∫ (
−g00|∂0v|2 +

n∑
i,j=1

gij ∂iv ∂jv
)
dx .

Then a standard computation leads to

d

dt
E(v(t)) .

∫ (
|f | |∂0v|+ |dg| |dv|2

)
dx ,

and hence to

d

dt
E(v(t))

1
2 . ‖f(t)‖L2

x
+ ‖dg(t)‖L∞x E(v(t))

1
2 .(2.4)

Return now to (1.1) and set v = Au. Then v solves (2.3) with

f = ( g − AgA−1 ) dxdv + A
(
q(u)(du)2

)
.

We claim that the two terms in f satisfy the estimate

‖( g − AgA−1 ) dxdv‖L2
x

+ ‖A
(
q(u)(du)2

)
‖L2

x
. ‖du‖L∞x ‖dAu‖L2

x
,

(2.5)

where the constant may depend on m. Given this, we can apply (2.4)
to obtain

d

dt
E(v(t))

1
2 . c(m) ‖du‖L∞x E(v(t))

1
2 ,

which by Gronwall’s inequality implies (2.2).
It remains to prove (2.5). This is a consequence of the next lemma:

Lemma 2.3. Suppose that a satisfies (2.1). Then the following esti-
mates hold:

‖A
(
q(u)(du)2

)
‖L2

x
. c(m) ‖du‖L∞‖Adu‖L2

x
(2.6)

‖Adx(g(u))‖L2
x
. c(m) ‖Adxu‖L2

x
(2.7)

‖A(fg)‖L2
x
. ‖f‖L∞x ‖Ag‖L2

x
+ ‖g‖L∞x ‖Af‖L2

x
(2.8)

‖A(fdxg)‖L2
x
. ‖f‖L∞x ‖Adxg‖L2

x
+ ‖g‖L∞x ‖Adxf‖L2

x
(2.9)

‖(gA− Ag)dxw‖L2
x
. ‖dxg‖L∞x ‖Aw‖L2

x
+ ‖Adxg‖L2

x
‖w‖L∞x(2.10)
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The proof of Lemma 2.3 uses paraproduct type arguments. Estimate
(2.6) is of Moser type. Its proof involves writing the telescoping series

q(S0u)(dS0u)2 +
∑

λ dyadic

q(S<λu)(dS<λu)2 − q(S<λ/2u)(dS<λ/2u)2

as a combination of three terms, each of which takes the form of an
operator of type S0

1,1 acting on du, where any given seminorm of the
symbol is bounded by c(m)‖du‖L∞x , with c(m) an appropriate power
of m.2 The result is thus reduced to showing that, if P is a pseudodif-
ferential operator of type S0

1,1, then

‖APu‖L2
x
. ‖Au‖L2

x
,

which for the case A = 〈Dx〉s with s > 0 is due to Stein [19], and for
the case of A as above is a simple modification.

Estimates (2.7) through (2.9) are similarly reduced. To establish
(2.10), we first write

(gA− Ag) dxw = −(dxg)Aw + A(dxg)w + dx(gA− Ag)w .

The first two terms are treated as above. The bound on the last term
is a simple variation on the commutator estimate of Kato-Ponce [8],
where the result is established for the case A = 〈Dx〉s . For further
details, we refer to Chapter 3 of Taylor [24].

2.2. Stability estimates. The next step in the proof is to obtain sta-
bility estimates for lower Sobolev norms. As an immediate consequence
of these we obtain the uniqueness result. Later on we also use them in
order to show the strong continuous dependence on the initial data.3

Lemma 2.4. Suppose that u is a solution to (1.1) and (1.2) which
satisfies the conditions (WP3) and (WP4). Let v be another solution
to the equation (1.1) with initial data (v0, v1) ∈ Hs ×Hs−1, such that
dv ∈ L∞t Hs−1

x ∩ L2
tL
∞
x . Then, for n = 2,

‖d(u− v)‖
L∞t H

−1/4
x
≤ Cv ‖(u0 − v0, u1 − v1)‖H3/4×H−1/4 ,(2.11)

and for n = 3, 4, 5,

‖d(u− v)‖L∞t L2
x
≤ Cv ‖(u0 − v0, u1 − v1)‖H1×L2 ,(2.12)

2This step requires that the coefficient q00(u) of (∂0u)2 be constant, since for
one term it involves transferring a factor of λ from S<λdu to Sλu. We can avoid
this assumption by weakening Lemmas 1.4 and 2.2 to require L2L∞ bounds on du
instead of L1L∞ bounds, which suffices for our application.

3For the case n = 2, which we handle in the Appendix, we strengthen condition
(WP4) to include additional estimates which play a crucial role in the n = 2 stability
of solutions. This has no effect on the rest of the paper.
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where Cv depends on u, and on ‖dv‖L∞t Hs−1
x ∩L2

tL
∞
x

.

We note that for the proof it does not suffice to only use the Sobolev
regularity of u and v; we also need the dispersive estimates in Propo-
sition 2.1. On the bright side, it suffices to know these only for u, and
therefore to have a less restrictive condition for v.

Proof. We prove the result here for the case n ≥ 3. The case n = 2 is
considerably more delicate and is discussed in the Appendix. The first
step is to note that the function w = u− v satisfies the equation

2g(u)w = a0 dw + a1 w ,(2.13)

where the functions a0 and a1 are of the form

a0 = q(v) d(u, v) , a1 = a(u, v) dxdv + b(u, v) (du)2 ,

with q, a, b smooth and bounded functions of u, v. By interpolation,

dv ∈ L∞t Hs−1
x ∩ L2

tL
∞
x −→ dxdv ∈ L

2(n−1)
n−3

t Ln−1+ε
x ,

for some ε > 0 . This yields

a0 ∈ L2
tL
∞
x , a1 ∈ L

2(n−1)
n−3

t Ln−1+ε
x .

On the other hand, the Strichartz estimates implied by (WP4) show
that, if 2g(u)w = 0, then

‖w‖
Ln−1
t L

2(n−1)
n−3+ε
x

. ‖(w0, w1)‖H1×L2 ,

for all ε > 0 , and consequently

‖a0 dw + a1 w‖L2
tL

2
x
. ‖(w0, w1)‖H1×L2 .

By the Duhamel principle and a contraction argument, this is sufficient
to show that, for T small, solutions to (2.13) satisfy

‖dw‖L∞t L2
x
. ‖(w0, w1)‖H1×L2 .

The result may then be easily extended to any interval on which the
conditions of the Lemma hold.

2.3. Existence, uniqueness and stability for rough data. Again
we argue in the case n ≥ 3; obvious changes are required for n = 2.
Consider arbitrary initial data (u0, u1) ∈ Hs ×Hs−1 such that

‖(u0, u1)‖Hs×Hs−1 ≤ R .

Let (uk0, u
k
1) be a sequence of smooth data converging to (u0, u1), which

also satisfy the same bound. Then the conclusion of Proposition 2.1
applies uniformly to the corresponding solutions uk.

13



In particular, it follows that the sequence duk is bounded in the
space C( [−T, T ];Hs−1). We can use compactness to improve upon
this. More precisely, since (uk0, u

k
1) converges to (u0, u1) in Hs ×Hs−1,

it follows that there is a multiplier A satisfying (2.1), such that

lim
ξ→∞

a(ξ)

|ξ|s−1
=∞ ,

while the sequence Aduk(0) is still bounded. By Theorem 2.2, it fol-
lows that Aduk is bounded in C( [−T, T ];L2). On the other hand, by
Lemma 2.4 the sequence duk is Cauchy in L∞t L

2
x. Combining these two

properties, it follows that duk is Cauchy in C( [−T, T ];Hs−1), and we
let u denote its limit.

As a consequence of (2.5) applied to A = 〈Dx〉s−1, the right hand
sides q(uk)(duk)2 of the equations for uk are uniformly bounded in the
space L2( [−T, T ];Hs−1). Then (WP4) combined with Duhamel’s for-
mula show that duk is uniformly bounded in L2( [−T, T ];Cδ). Together
with the above this implies that duk converges to du in L2( [−T, T ];L∞).

The above information is more that sufficient to allow passage to
the limit in the equation (1.1) and show that u is a solution in the
sense of distributions, yielding the existence part of (WP1). The con-
ditions (WP3) and (WP4) hold for u since they hold uniformly for uk.
The uniqueness part of (WP1) then follows by Lemma 2.4. Finally, if
(uk0, u

k
1) is any sequence of initial data converging to (u0, u1), it follows

as above that uk converges to u in both the Sobolev and L2
tL
∞
x norms.

3. Reduction to existence for small, smooth, compactly

supported data

In this section we take advantage of scaling and the finite speed of
propagation to further simplify the problem. Denote by c the largest
speed of propagation corresponding to all possible values of g = g(u).
The intermediate result which will be established in subsequent sections
is the following:

Proposition 3.1. Suppose (1.7) holds. Assume that the data (u0, u1)
is smooth, supported in B(0, c+ 2), and satisfies

‖u0‖Hs + ‖u1‖Hs−1 ≤ ε3 .

Then the equations (1.1) and (1.2) admit a smooth solution u defined
on Rn × [−1, 1], and the following properties hold:

(i) (energy estimate)

‖du‖L∞t Hs−1
x
≤ ε2 ,(3.1)
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(ii) (dispersive estimate for u)

‖du‖L4
tC

δ
x
≤ ε2 , n = 2,

‖du‖L2
tC

δ
x
≤ ε2 , n = 3, 4, 5,

(3.2)

(iii) (dispersive estimates for the linear equation) For 1 ≤ r ≤ s + 1
the equation (1.3) with g = g(u) is well-posed in Hr × Hr−1, and the
following estimate holds:

‖〈Dx〉ρv‖L4
tL
∞
x
. ‖(v0, v1)‖Hr×Hr−1 , ρ < r − 3

4
, n = 2 ,

‖〈Dx〉ρv‖L2
tL
∞
x
. ‖(v0, v1)‖Hr×Hr−1 , ρ < r − n−1

2
, n = 3, 4, 5 ,

(3.3)

and the same estimates hold with 〈Dx〉ρ replaced by 〈Dx〉ρ−1d .

In the remainder of this section we show that Proposition 3.1 implies
Proposition 2.1.

3.1. Scaling. Consider a smooth initial data set (u0, u1) which satisfies

‖u0‖Hs + ‖u1‖Hs−1 ≤ R .

For this we seek a smooth solution u to (1.1), (1.2) in a time interval
[−T, T ]. We rescale the problem to time scale 1 by setting

ũ(t, x) = u(Tt, Tx)

Then we ask that ũ be a solution to the equation (1.1), and note that
its initial data satisfies

‖ũ(0)‖Ḣs + ‖ũt(0)‖Ḣs−1 ≤ RT s−
n
2 ,

and

‖ũ(0)‖H1 + ‖ũt(0)‖L2 ≤ RT−
n
2 .

Let ε3 be as in Proposition 3.1, and choose T so that

RT s−
n
2 � ε3 .

By doing this we have reduced the problem to the case where T = 1,
and where

‖u0‖Ḣs + ‖u1‖Ḣs−1 � ε3 ,

while

‖u0‖L∞ . R , ‖u0‖H1 + ‖u1‖L2 ≤M ,

for some large M .
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3.2. Localization. In the previous step there is seemingly a loss, be-
cause we had to replace homogeneous spaces by inhomogeneous ones.
This is remedied here by taking advantage of the finite speed of propa-
gation. Since c is the largest possible speed of propagation, the solution
in a unit cylinder B(y, 1)× [−1, 1] is uniquely determined by the initial
data in the ball B(y, 1 + c). Hence it is natural to truncate the initial
data in a slightly larger region. Some care is required, however, since
we need the truncated data to be small, which means we only want to
use the control of the homogeneous norms, which might not see con-
stants, or, more general, polynomials. In our case we are assuming that
s < n

2
+ 1, therefore it suffices to account for the constants in u0.

Let χ be a smooth function supported in B(0, c + 2), and which
equals 1 in B(0, c + 1). Given y ∈ Rn we define the localized initial
data near y,

uy0(x) = χ(x− y) (u0 − u0(y)) , uy1 = χ(x− y)u1 .

Since s < n
2

+ 1, it is easy to see that

‖(uy0, u
y
1)‖Hs×Hs−1 . ‖(u0, u1)‖Ḣs×Ḣs−1 ,

so that

‖(uy0, u
y
1)‖Hs×Hs−1 ≤ ε3 .

Hence, by Proposition 3.1 we have a smooth solution uy on [−1, 1]×Rn
to the equation 2g(uy+u0(y)) = qij(uy + u0(y)) ∂iu

y ∂ju
y ,

uy(0) = uy0 , uyt (0) = uy1 .

Then the function uy + u0(y) solves (1.1), and its initial data coincides
with (u0, u1) inB(y, c+1). We now consider the restrictions, for y ∈ Rn,

(uy + u0(y))|Ky , Ky = {(t, x) : ct+ |x− y| ≤ c+ 1 , |t| < 1} .
The restrictions solve (1.1) and (1.2) on Ky, therefore, by finite speed
of propagation, any two must coincide on their common domain. Hence
we obtain a smooth solution u in [−1, 1]× Rn by setting

u(t, x) = uy(t, x) + u0(y), (t, x) ∈ Ky .

It remains to show that u satisfies (WP3) and (WP4). We consider

the cartesian grid n−
1
2Z

n in Rn, and a corresponding smooth partition
of unity

1 =
∑

y∈n−
1
2 Zn

ψ(x− y) ,
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such that the function ψ is supported in the unit ball.
For (WP3) we first obtain the corresponding estimates for uy. Ap-

plying the energy estimates in Lemma 1.4 yields

‖duy‖L∞t Hs−1
x
. ‖(uy0, u

y
1)‖Hs×Hs−1 .

On the other hand, (3.3) combined with Duhamel’s formula yields

‖duy‖L2
tL
∞
x
. ‖(uy0, u

y
1)‖Hs×Hs−1 + ‖qij(uy + u0(y))∂iu

y∂ju
y‖L1

tH
s−1
x

.

By (2.5) with A = 〈Dx〉s−1 we can estimate the last term to conclude
that

‖duy‖L2
tL
∞
x
. ‖(uy0, u

y
1)‖Hs×Hs−1 + ‖duy‖L∞t Hs−1

x
‖duy‖L2

tL
∞
x

. ‖(uy0, u
y
1)‖Hs×Hs−1 + ε2 ‖duy‖L2

tL
∞
x
.

Since ε2 � 1, this implies

‖duy‖L2
tL
∞
x
. ‖(uy0, u

y
1)‖Hs×Hs−1 .

It remains to sum up the estimates for uy in order to obtain the esti-
mates for u. We have

u(x, t) =
∑

y∈n−
1
2 Zn

ψ(x− y)(uy(x, t) + u0(y)) ,

therefore

‖du‖2
L2
tL
∞
x ∩L∞t H

s−1
x

.
∑

y∈n−
1
2 Zn

‖d(ψ(x− y)(uy + u0(y))‖2
L2
tL
∞
x ∩L∞t H

s−1
x

.
∑

y∈n−
1
2 Zn

‖χ(x− y)(u0, u1)‖2
Hs×Hs−1 + |u0(y)|2

. ‖(u0, u1)‖Hs×Hs−1 .

For (WP4) we consider the solutions vy for the localized linear equa-
tions {

2g(uy+u0(y))v
y = 0 ,

vy(0) = χ(x− y)v0 , vyt (0) = χ(x− y)v1 .

We again use the finite speed of propagation to conclude that vy = v
in Ky. Then we can represent v as

v(x, t) =
∑

y∈n−
1
2 Zn

ψ(x− y)vy(x, t) ,
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and use (3.3) to estimate

‖〈Dx〉ρdv‖2
L2
tL
∞
x
.

∑
y∈n−

1
2 Zn

‖ψ(x− y)vy(x, t)‖2
L2
tL
∞
x

.
∑

y∈n−
1
2 Zn

‖χ(x− y)(v0, v1)‖2
Hr×Hr−1

. ‖(v0, v1)‖2
Hr×Hr−1 .

4. A recursive argument

We will establish Proposition 3.1 via a continuity argument. More
precisely, we consider a one parameter family of smooth initial data
(hu0, hu1) with h ∈ [0, 1]. Since the data (u0, u1) is smooth, for small
h the equation has a smooth solution uh. We seek to extend the range
of h for which a solution exists to the value h = 1. We do this by
establishing uniform bounds on the uh in the norm of L2

tC
δ
x ; this in

turn implies uniform bounds on uh in the Sobolev norm.
Our proof of the bounds on the uh in L2

tC
δ
x relies on a parametrix

construction, which in turn depends on the regularity of certain null-
foliations of space time. Rather than attempt to obtain the regularity
of these foliations directly, we build their regularity into the continuity
argument. This works since we need only assume that the appropriate
norm G(u) of the foliations is small compared to 1 in order to deduce
that it is in fact bounded by a multiple of the norm of the initial data.
We set aside for the moment the definition of G(u) and outline the
general recursive argument.

Let ηij be the standard Minkowski metric,

η00 = −1 , ηjj = 1 , 1 ≤ j ≤ n , ηij = 0 if i 6= j .

After making a linear change of coordinates which preserves dt we may
assume that gij(0) = ηij.

For technical reasons it is convenient to replace the original metric
function g by a truncated one. Let χ be a smooth cutoff function
supported in the region B(0, 3 + 2c) × [−3

2
, 3

2
], which equals 1 in the

region B(0, 2 + 2c)× [−1, 1]. Set

g(t, x, u) = χ(t, x)
(

g(u)− g(0)
)

+ g(0) , q(t, x, u) = χ(t, x) q(u) ,

and introduce the truncated equation

2g(t,x,u)u = qij(t, x, u)∂iu ∂ju .(4.1)
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Because of the finite speed of propagation, any solution to (4.1) for
t ∈ [−2, 2] with initial data supported in B(0, 2 + c) is also a solution
to (1.1) for t ∈ [−1, 1].

We denote by H the family of smooth solutions u to the equation
(4.1) for t ∈ [−2, 2], with initial data (u0, u1) supported in B(0, 2 + c),
and for which

‖u0‖Hs + ‖u1‖Hs−1 ≤ ε3 ,(4.2)

‖du‖L∞t Hs−1
x

+ ‖du‖L2
tC

δ
x
≤ 2ε2 .(4.3)

On H we use the induced C∞ topology. Then our bootstrap argument
can be stated as follows:

Proposition 4.1. Assume that (1.7) holds. Then there is a contin-
uous functional G : H → R

+, satisfying G(0) = 0, so that for each
u ∈ H satisfying G(u) ≤ 2ε1 the following hold:

(i) The function u satisfies G(u) ≤ ε1.

(ii) The following estimate holds,

‖du‖L∞t Hs−1
x

+ ‖du‖L2
tC

δ
x
≤ ε2 .(4.4)

(iii) For 1 ≤ r ≤ s + 1, the equation (1.3) with g = g(t, x, u) is
well-posed in Hr ×Hr−1, and the Strichartz estimates (3.3) hold.

Proposition 4.1 will follow as a result of Proposition 5.2 and Proposi-
tion 7.1. We provide the definition of G(u) shortly; here we show that
Proposition 4.1 implies Proposition 3.1. Thus, consider initial data
(u0, u1) which satisfies

‖u0‖Hs + ‖u1‖Hs−1 ≤ ε3 .

We denote by A the subset of those h ∈ [0, 1] such that the equation
(4.1) admits a smooth solution uh having initial data

uh(0) = hu0 , uht (0) = hu1 ,

and such that G(uh) ≤ ε1 and (4.4) holds. We trivially have 0 ∈ A,
since u0 = 0. Proposition 3.1 would follow if we knew that 1 ∈ A, and
so it suffices to show that A is both open and closed in [0, 1].
A is open. Let k ∈ A. Since uk is smooth, a perturbation argument

shows that for h close to k the equation (4.1) has a smooth solution uh,
which depends continuously on h. By the continuity of G, it follows
that for h close to k we have G(uh) ≤ 2ε1 and also (4.3). Then by
Proposition 4.1 we obtain G(uh) ≤ ε1 and (4.4), showing that h ∈ A.
A is closed. Let hi ∈ A, hi → h. Then (4.4) implies that the sequence

duhi is bounded in L2
tC

δ
x. Lemma 1.4 then shows that the sequence uhi

is in fact bounded in all Sobolev spaces. We thus can obtain a smooth
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solution uh as the limit of some subsequence. The continuity of G then
shows that G(u) ≤ ε1, and similarly (4.4) must also hold for uh.

4.1. The Hamilton flow and the G functional. Let u ∈ H, and
consider the corresponding metric g = g(t, x, u), which equals the
Minkowski metric for t ∈ [−2,−3

2
]. For each θ ∈ Sn−1 we consider

a foliation of the slice t = −2 by taking level sets of the function
rθ(−2, x) = θ ·x+2. Then θ ·dx−dt is a null covector field over t = −2
which is conormal to the level sets of rθ(−2). We let Λθ be the flowout
of this section under the Hamitonian flow of g.

A crucial step in the proof of the Strichartz estimates is to establish
that, for each θ , the null Lagrangian manifold Λθ is the graph of a null
covector field given by drθ, where rθ is a smooth extension of θ · x− t,
and that the level sets of rθ are small perturbations of the level sets of
the function θ ·x−t in a certain norm captured by G(u). In establishing
Proposition 4.1 we will actually establish that u ∈ H implies Λθ is the
graph of an appropriate null covector field drθ, so we only define G(u)
in this situation.

Thus, assume that Λθ and rθ are as above, and let Σθ,r for r ∈ R
denote the level sets of rθ. The characteristic hypersurface Σθ,r is thus
the flowout of the set θ · x = r − 2 along the null geodesic flow in the
direction θ at t = −2.

We introduce an orthonormal sets of coordinates on Rn by setting
xθ = θ · x, and letting x′θ be given orthonormal coordinates on the
hyperplane perpendicular to θ, which then define coordinates on Rn by
projection along θ. Then (t, x′θ) induce coordinates on Σθ,r, and Σθ,r is
given by

Σθ,r = { (t, x) : xθ − φθ,r = 0}

for a smooth function φθ,r(t, x
′
θ). We now introduce two norms for

functions defined on [−2, 2]× Rn,

|||u|||s,∞ = sup
−2≤t≤2

sup
0≤j≤1

‖∂jtu(t, ·)‖Hs−j(Rn) ,

|||u|||s,2 =

(∫ 2

−2

sup
0≤j≤1

‖∂jtu(t, ·)‖2
Hs−j(Rn) dt

) 1
2

.

The same notation applies for functions in [−2, 2]× Rn−1. We denote

||| f |||s,2,Σθ,r = ||| f |Σθ,r |||s,2 ,
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where the right hand side is the norm of the restriction of f to Σθ,r,
taken over the (t, x′θ) variables used to parametrise Σθ,r. Similarly,

‖f‖Hs(Σtθ,r)

denotes the Hs(Rn−1) norm of f restricted to the time t slice of Σθ,r

using the x′θ coordinates on Σt
θ,r .

We now set

G(u) = sup
θ,r
|||dφθ,r − dt|||s,2,Σθ,r .(4.5)

Note that G is nonlinear, as φθ,r depends in a nonlinear way on u.
Since all functions in H are supported in a fixed compact set, it follows
that we can restrict ourselves to a compact set of values for r. Then
the continuity of G as a function of u with respect to the C∞ topology
easily follows.

5. Regularity of null surfaces

The goal of this section is to establish the following. The functional
G(u) is defined in (4.5).

Proposition 5.1. Let u ∈ H so that G(u) ≤ 2ε1. Let gλ denote the
localization, in the x-variables, of g to frequencies less than or compa-
rable to λ. Then

|||gij − ηij|||s,2,Σθ,r + |||(λ(gij − gijλ ), dgijλ , λ
−1∂xdg

ij
λ )|||s−1,2,Σθ,r . ε2 .

Proposition 5.2. Let u ∈ H so that G(u) ≤ 2ε1. Then G(u) . ε2.
Furthermore, for each t it holds that

‖dφθ,r(t, ·)− dt‖C1,δ

x′ (Rn−1) . ε2 + sup
i,j
‖dgij(t, ·)‖Cδx(Rn) .(5.1)

Proposition 5.1 is essentially a variation on the theme of characteris-
tic energy estimates for the variable coefficient wave equation. Together
with the estimate (5.1) it is used later in the parametrix construction
for the linear equation.

The first part of Proposition 5.2 is a much deeper result which lies
at the heart of our paper. It gives the recursive estimate, namely part
(i) of Proposition 4.1.
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5.1. Setup. Since the proof of Propositions 5.1 and 5.2 is lengthy, it
is useful to summarize at this stage the information we have about the
function u and the metric g.

In this section, we deal more generally with equations of the form

gij(t, x, u) ∂i ∂ju = Q(t, x, u; du) ,(5.2)

where Q takes the form

Q(t, x, u; du) =
∑
ij

qij(t, x, u)∂iu∂ju+
∑
j

qj(t, x, u)∂ju+ q0(t, x, u)u ,

and gij, qij, qi, and q0 are smooth functions of the variables t, x, u.
By doing so, we note that we may also write such an equation as

∂i g
ij(t, x, u) ∂ju = Q(t, x, u; du) ,

for a different Q of the same form, and by combining terms we may
assume that g0j = 0 for j 6= 0 . This means that the coefficients of the
Lorentzian form 〈 · , · 〉g are given by 1

2

(
gij + gji

)
, rather than by gij .

Furthermore, for each k, l, we may also write

gij(t, x, u) ∂i ∂j gkl(t, x, u) = Q(t, x, u; du) ,(5.3)

with Q of the same form. Recall also that gij(0) = ηij, and that

gij = ηij if |t| ≥ 3
2

or |x| ≥ 3 + 2c .

The function u belongs to H, therefore it satisfies

‖du‖L2
tC

δ
x

+ |||u|||s,∞ . ε2 .(5.4)

In particular u is pointwise small, |u| . ε2. Thus |g(u)−η| . ε2, which
in turn yields a similar bound for g,

‖dgij‖L2
tC

δ
x

+ |||gij − ηij|||s,∞ . ε2 .(5.5)

For the proof of Propositions 5.1 and 5.2 it suffices to consider the
case where θ = (0, . . . , 0, 1) and r = 0. We fix this choice, and suppress
θ and r in our notation. Instead of (xθ, x

′
θ) we use (xn, x

′). Then Σ is
defined by

Σ = {xn − φ(t, x′) = 0 } .
The hypothesis G(u) < 2ε1 implies that

|||dφ(t, x′)− dt|||s,2,Σ ≤ 2ε1 .(5.6)

Note that by Sobolev embedding, this implies that

‖dφ(t, x′)− dt‖L2
tC

1,δ

x′
+ ‖∂tdφ(t, x′)‖L2

tC
δ
x′
. ε1 .(5.7)

As a consequence of this it follows that φ− t is small in C1.
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5.2. Characteristic energy estimates. We use a basic fact about
Sobolev norms, which is a simple paraproduct result.

Lemma 5.3. Suppose that 0 ≤ r, r′ < n
2

and r + r′ > n
2
. Then

‖fg‖
Hr+r′−n2 (Rn)

≤ Cr,r′ ‖f‖Hr(Rn) ‖g‖Hr′ (Rn) .(5.8)

If −r ≤ r′ ≤ r and r > n
2

then

‖fg‖Hr′ (Rn) ≤ Cr,r′ ‖f‖Hr(Rn) ‖g‖Hr′ (Rn) .(5.9)

As a consequence we have the following facts about the triple norm.

Lemma 5.4. For r ≥ 1, we have

sup
t∈[−2,2]

‖f‖
Hr− 1

2 (Rn)
≤ Cr |||f |||r,2 ,

sup
t∈[−2,2]

‖f‖
Hr− 1

2 (Σt)
≤ Cr |||f |||r,2,Σ .(5.10)

If r > (n+ 1)/2, then

|||fg|||r,2 ≤ Cr |||f |||r,2 |||g|||r,2 .(5.11)

Similarly, if r > n/2, then

|||fg|||r,2,Σ ≤ Cr |||f |||r,2,Σ |||g|||r,2,Σ .(5.12)

Proof. The first result follows from the trace theorem:

‖f‖
L∞t H

r− 1
2

x

= ‖〈Dx〉r−1f‖
L∞t H

1
2
x

. ‖〈Dx〉r−1f‖H1([−2,2]×Rn) = ‖f‖r,2 .

The bound (5.10) follows similarly. To establish (5.11), we use (5.9)
and the preceding estimate to bound

|||fg|||r,2 ≤ ‖fg‖L2
tH

r−1
x

+ ‖d(fg)‖L2
tH

r−1
x

. ‖f‖
L∞t H

r− 1
2

x

(
‖g‖L2

tH
r
x
+ ‖dg‖L2

tH
r−1
x

)
+ ‖df‖L2

tH
r−1
x
‖g‖

L∞t H
r− 1

2
x

. |||f |||r,2 |||g|||r,2 .

The inequality (5.12) follows similarly.

We now show that the triple norm of u is preserved under the change
of coordinates which flattens Σ .

Lemma 5.5. Let w̃(t, x) = w(t, x′, xn + φ(t, x′)) . Then

|||w̃|||s,∞ . |||w|||s,∞ , ‖dw̃‖L2
tL
∞
x
. ‖dw‖L2

tL
∞
x
.
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Proof. The second inequality is immediate from the C1 bounds on φ.
For the first, recall that s = m + σ, where 0 < σ < 1 . Since φ is C1,
we need to show that, for |α| ≤ m, and with ∂α involving at most one
derivative in t, we have(

∂ + (∂φ)∂n
)α
w ∈ L∞t Hσ

x .

The product may be expanded as a sum of terms

(∂φ)j (∂α1∂φ) · · · (∂αk∂φ) ∂α0w ,

where α0 + α1 + · · ·+ αk = α , and α0 6= 0 , and each term involves at

most one derivative in t. By (5.8) we may bound the H
s−|α|
x norm of

the product by

‖∂φ‖j
H
s− 1

2
x

‖∂α1∂φ‖
H
s− 1

2−|α1|
x

· · · ‖∂αk∂φ‖
H
s− 1

2−|α2|
x

‖∂α0w‖
H
s−|α0|
x

.

Remark. A similar proof shows that, for 0 ≤ s′ ≤ s, we have for all t

‖w̃(t, · )‖Hs′
x
. ‖w(t, · )‖Hs′

x
.(5.13)

We continue with the characteristic energy estimate:

Lemma 5.6. Assume that w satisfies the linear equation

∂i
(
gij ∂jw

)
= F .

Then

|||dw|||s−1,2,Σ . ‖dw‖L∞t Hs−1
x

+ ‖dw‖L2
tL
∞
x

+ ‖F‖L2
tH

s−1
x

.

Proof. Let

‖dw‖L∞t Hs−1
x

+ ‖dw‖L2
tL
∞
x

+ ‖F‖L2
tH

s−1
x

= ε .

Under the change of coordinates xn → xn−φ(t, x′), the equation trans-
forms to

n∑
i,j=0

(∂i − (∂iφ)∂n)
(
g̃ij (∂j − (∂jφ)∂n)w̃

)
= F̃ ,

where ·̃ denotes the function expressed in the new coordinates. Re-
call that we have g00 = −1 , and g0j = 0 for j 6= 0, and that φ is
independent of xn. For i 6= 0 we now define

hij = g̃ij− δin(∂kφ)g̃kj− g̃ik(∂kφ)δjn+ δinδjn(∂kφ)(∂`φ)g̃k`− δinδj0(∂0φ),

and set h00 = −1 and h0j = 0 for j 6= 0 . Then the above equation
takes the form

n∑
i,j=0

∂i
(
hij ∂jw̃

)
= F̃ − (∂2

0φ) ∂nw̃ = G .
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We use the following bounds on hij .

|||hij|||s,2 + ‖hij‖
L∞t H

s− 1
2

x′ (Σ)
. 1 ,(5.14)

‖dhij‖L2
tL
∞
x

+ ‖∂xhij‖
L∞t H

s− 3
2

x′ (Σ)
. 1 .(5.15)

The first term in (5.14) is bounded using (5.5), (5.6), and (5.11). The
second term in (5.14) is bounded using (5.9), (5.10), and the trace
theorem applied to gij . The first term in (5.15) uses the uniform bounds
on gij and dφ, as well as the L2

tL
∞
x bounds on dgij and d2φ, the latter a

consequence of (5.6) and the Sobolev embedding Hs−1(Σt) ⊂ L∞(Σt) .
For the second term in (5.15), by the line above we need only consider
the case ∂x replaced by ∂xn , for which case we use the inequality

‖(∂φ)α(∂g̃ij)‖
L∞t H

s− 3
2

x′ (Σ)
. ‖∂φ‖|α|

L∞t H
s− 1

2
x′ (Σ)

‖∂gij‖
L∞t H

s− 3
2

x′ (Σ)
.

To continue write

∂i
(
hij ∂j(∂x〈Dx′〉s−2w̃)

)
= ∂x〈Dx′〉s−2G−

[
∂i∂x〈Dx′〉s−2,hij

]
∂jw̃

+
(
∂ih

ij
)
∂x 〈Dx′〉s−2∂jw̃ .

By the Kato-Ponce commutator estimate, noting that i 6= 0 in the
commutator term, we have for each fixed t the bound∥∥[∂i∂x〈Dx′〉s−2,hij

]
∂jw̃

∥∥
L2
x
. ‖hij‖Lipx ‖dw‖Hs−1

x
+ ‖hij‖Hs

x
‖dw‖L∞x ,

where all norms are taken over an arbitrary slice t = constant, and we
use (5.13) to bound norms of w̃ by the same norms of w. Also,

‖dx〈Dx′〉s−2G‖L2
x
.‖F‖Hs−1

x
+‖∂2

0φ‖L∞x ‖∂nw‖Hs−1
x

+‖∂2
0φ‖Hs−1

x
‖∂nw‖L∞x

and

‖
(
∂ih

ij
)
∂x 〈Dx′〉s−2∂jw̃‖L2

x
. ‖dhij‖L∞x ‖∂jw‖Hs−1

x
.

Consequently, ∥∥∂i (hij ∂j(∂x〈Dx′〉s−2w̃)
)∥∥

L1
tL

2
x
. ε .

Recall that Σ is a null surface, defined in these coordinates by xn = 0.
By the energy inequality, we thus obtain

‖∂t∂x〈Dx′〉s−2w̃‖L2(Σ) + ‖∂x′∂x〈Dx′〉s−2w̃‖L2(Σ) . ε .

The trace theorem shows that ‖dw‖L2(Σ) . ε , and it therefore remains
to show that

‖∂2
t 〈Dx′〉s−2w̃‖L2(Σ) . ε .
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Since h00 = −1 , we may write

∂2
t w̃ = F̃ − (∂2

0φ) ∂nw̃ +
n∑
i=1

n∑
j=0

∂i
(
hij ∂jw̃

)
.

To handle the contribution from the first two terms we apply the trace
theorem and the fact that s− 1 > n−1

2
. to get

‖〈Dx′〉s−
3
2 F̃‖L2(Σ) . ‖F‖L2Hs−1 . ε

and

‖〈Dx′〉s−
3
2 (∂2

0φ ∂nw̃)‖L2(Σ) . ‖〈Dx′〉s−1∂2
0φ‖L2(Σ)‖〈Dx′〉s−

3
2∂nw‖L∞t L2

x′ (Σ)

. ‖dφ‖s,2,Σ ‖∂nw‖L∞t Hs−1
x

. ε ,

For the remaining terms we first note that, since 2s− 3 > (n− 1)/2,
we may apply (5.8) and (5.15) to bound

‖(∂ihij) (∂jw̃)‖L∞t Hs−2
x′ (Σ) . ‖(∂ih

ij)‖
L∞t H

s− 3
2

x′ (Σ)
(∂jw̃)‖

L∞t H
s− 3

2
x′ (Σ)

. ‖∂xhij‖
L∞t H

s− 3
2

x′ (Σ)
‖dw‖L∞t Hs−1

x

. ε .

Next, since Σ is null and is defined by xn = 0, we get hnn = 0 on Σ.
Then,

‖hij ∂i ∂jw̃‖L2
tH

s−2
x′ (Σ) . ‖h

ij‖
L∞t H

s− 1
2

x′ (Σ)
‖〈Dx′〉s−2 ∂i ∂jw̃‖L2(Σ)

. ε ,

where we use (5.14) and the fact that i 6= 0 and (i, j) 6= (n, n) .

Corollary 5.7. Suppose that w satisfies the conditions of Lemma 5.6.
Then

|||
(
λ(w − wλ), dwλ, λ−1d∂xwλ

)
|||s−1,2,Σ . ‖dw‖L∞t Hs−1

x ∩L2
tL
∞
x

+ ‖F‖L2
tH

s−1
x

Proof. As before, let

‖dw‖L∞t Hs−1
x

+ ‖dw‖L2
tL
∞
x

+ ‖F‖L2
tH

s−1
x

= ε .

Suppose that P is a standard multiplier of order 0 on Rnx , such that P
is additionally bounded on L∞(Rnx) . Then

∂i
(
gij ∂j Pw

)
= G = (∂i g

ij)P ∂jw +
[
gij, ∂iP

]
∂jw + PF .

The Kato-Ponce commutator estimate and the assumptions on gij im-
ply

‖G‖L2
tH

s−1
x
. ε ,
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and Lemma 5.6 then shows that

|||dPw|||s−1,2,Σ . ε .(5.16)

To control the norm of λ (w − wλ) , we write

λ (w − wλ) =
n∑
k=1

∂k Pkw ,

where Pk satisfies the above conditions for P . Applying (5.16) yields
the desired bound.

Finally, applying (5.16) to P = S<λ and P = λ−1∂xS<λ shows that

|||dwλ|||s−1,2,Σ + λ−1 |||d ∂xwλ|||s−1,2,Σ . ε .

5.3. Proof of Proposition 5.1. This is an immediate consequence of
Lemma 5.6 and Corollary 5.7, and (5.5), once we verify that, for each
k, ` ,

‖gij∂i ∂j gk`‖L2
tH

s−1
x
. ε2 .

To begin, suppose that f(t, x, u) is a smooth, compactly supported
function of its arguments. Then since s > n

2
, we have the bound

‖f(t, x, u)‖L∞t Hs
x
≤ C ,

where C depends on uniform bounds on a finite number of derivatives
of f . Consequently, by (5.4) we have the bound

‖f(t, x, u) (u, ∂iu)‖L∞t Hs−1
x

+ ‖f(t, x, u) ∂iu ∂ju‖L2
tH

s−1
x
. ε2 ,

where the second term is bounded as a consequence of the inequality

‖(du)2‖Hs−1
x
. ‖du‖L∞x ‖du‖Hs−1

x
.

The result now follows as a consequence of (5.3).

5.4. The null frame and an elliptic estimate. We introduce a null
frame along Σ as follows. First, we let

V = (dr)∗ ,

where r is the defining function of the foliation Σ, and where ∗ denotes
the identification of covectors and vectors induced by g. Then V is the
null geodesic flow field tangent to Σ. Let

σ = dt(V ) , l = σ−1 V .(5.17)

Thus l is the g-normal field to Σ normalized so dt(l) = 1 , hence

l = 〈dt, dxn − dφ〉−1
g

(
dxn − dφ

)∗
,(5.18)
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so the coefficients lj are smooth functions of u and dφ. Conversely,

dxn − dφ = 〈l, ∂xn〉−1
g l∗ ,(5.19)

so that dφ is a smooth function of u and the coefficients of l.
Next we introduce vector fields ea : 1 ≤ a ≤ n − 1 tangent to the

fixed-time slices Σt of Σ. We do this by applying Grahm-Schmidt
orthogonalization in the metric gij : 1 ≤ i, j ≤ n to the Σt-tangent
vector fields ∂xa + (∂xaφ) ∂xn .

Finally, we let

l = l + 2(dt)∗ .

It follows that {l , l , ea} form a null frame in the sense that

〈l, l 〉g = 2 , 〈ea, eb〉g = δab ,

〈l, l〉g = 〈 l , l 〉g = 〈l, ea〉g = 〈 l , ea〉g = 0 .

The coefficients of each of the fields is a smooth function of u and dφ,
and by assumption it also follows that we have pointwise bounds

| ea − ∂xa |+ | l − (∂t + ∂xn) |+ | l − (−∂t + ∂xn) | . ε1 .

Lemma 5.8. Suppose that gij ∂i ∂jw = F . Let (t, x′, φ(t, x′)) denote
the projective parametrisation of Σ, and for 0 ≤ i, j ≤ n − 1, let ∂/i
denote differentiation along Σ in the induced coordinates. Then, for
0 ≤ i, j ≤ n− 1, one may write

∂/i ∂/j (w|Σ) = l(f2) + f1 ,

where

‖f2‖L2
tH

s−1
x′ (Σ) + ‖f1‖L1

tH
s−1
x′ (Σ)

. ‖dw‖L∞t Hs−1
x

+ ‖dw‖L2
tL
∞
x

+ ‖F‖L2
tH

s−1
x

+ ‖F‖L1
tH

s−1
x′ (Σ) ,

and for each value of t,

‖f2(t , · )‖Cδ
x′ (Σ

t) . ‖dw(t, · )‖Cδx(Rn) .

Proof. Let

‖dw‖L∞t Hs−1
x

+ ‖dw‖L2
tL
∞
x

+ ‖F‖L2
tH

s−1
x

+ ‖F‖L1
tH

s−1
x′ (Σ) = ε .

The conditions of Lemma 5.6 are satisfied since

‖(∂igij)∂jw‖L2
tH

s−1
x
. ‖dgij‖L2

tL
∞
x
‖dw‖L∞t Hs−1

x
+ ‖dgij‖L∞t Hs−1

x
‖dw‖L2

tL
∞
x

. ε .
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Consequently ‖dw‖s−1,2,Σ . ε . We make the change of coordinates
xn → xn − φ(t, x′) as before, which reduces Σ to the set xn = 0 . In
these coordinates the equation takes the form

hij ∂i ∂jw̃ = F̃ + g̃k` (∂k ∂`φ) ∂nw̃ = F1 ,

where now

hij = g̃ij − δin (∂kφ) g̃kj − g̃ik (∂kφ) δjn + δin δjn (∂kφ) (∂`φ) g̃k` .

The metric hij satisfies the bounds (5.14) and (5.15) as before. Also,

‖F1‖L1
tH

s−1
x′ (Σ) . ε .

To see this, we note that Hs−1
x′ (Σt) is an algebra, and that by the trace

theorem, (5.13), and (5.6), and by Lemma 5.6, we have

‖g̃k`‖L∞t Hs−1
x′ (Σ) + ‖∂k∂`φ‖L2

tH
s−1
x′ (Σ) . 1 , ‖∂nw‖L2

tH
s−1
x′ (Σ) . ε .

We let li , l i , eia denote the coefficients of the null frame {l, l , ea} in
these coordinates. Thus, l0 = 1 , and ln = ena = 0 . Each coefficient may
be written along Σ as a smooth combination of the hij , and is equal
to its constant coefficient version for |x| large. Consequently, (5.6),
Proposition 5.1, and (5.12) together imply

‖li − δi0‖s,2,Σ + ‖ l i + δi0 − 2δin‖s,2,Σ + ‖eia − δia‖s,2,Σ . ε1 .(5.20)

In particular,

‖li‖L∞t Hs−1
x′ (Σ) . 1 ,

‖∂/ li‖L2
tH

s−1
x′ (Σ) + ‖∂/ l i‖L2

tH
s−1
x′ (Σ) + ‖∂/eia‖L2

tH
s−1
x′ (Σ) . ε1 .

(5.21)

Since ‖dw‖L2
tH

s−1
x′ (Σ) . ε , we may reduce matters to showing that we

can write

∂k ∂`w = l(f2) + f1 , where 1 ≤ k, ` ≤ n− 1 .

We define

∆/ w =
n−1∑
i,j,a=1

eia e
j
a ∂i ∂jw .

Since {l , l , ea} is a null frame, we have

∆/ w = −
n∑

i,j=0

li l j∂i ∂j w + F1

= −l( l w) +G ,
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where G = l( l j) ∂jw+F1 satisfies ‖G‖L1
tH

s−1
x′ (Σ) . ε by (5.21). We thus

write

∂k ∂`w = l
(
∂k ∂` ∆/ −1( l w)

)
+
[
∂k ∂` ∆/ −1, l

]
( l w) + ∂k ∂` ∆/ −1G ,

where, with ∆/ 0 =
∑n−1

i=1 ∂
2
i , we may expand

∂k ∂` ∆/ −1 = ∂k ∂` ∆/ −1
0

∞∑
k=0

(
(δij − eiaeja) ∂i ∂j∆/

−1
0

)k
,

which by (5.20) and the algebra property of Hs−1
x′ (Σt) is for each t a

bounded operator on Hs−1
x′ (Σt) with norm independent of t. It follows

that

‖∂k ∂` ∆/ −1( l w)‖L2
tH

s−1
x′ (Σ) . ε ,

‖∂k ∂` ∆/ −1G‖L1
tH

s−1
x′ (Σ) . ε .

To handle the commutator term, it suffices to show that∥∥ [(δij − eiaeja)∂i∂j∆/ −1
0 , l

]
f
∥∥
L1
tH

s−1
x′ (Σ)

. ‖f‖L2
tH

s−1
x′ (Σ) .

To do this, we bound the left hand side by

‖l(eiaeja) ∂i∂j∆/
−1
0 f‖L1

tH
s−1
x′ (Σ)+‖(δ

ij−eiaeja)∂i∂j∆/
−1
0

(
(∂kl

k)f
)
‖L1

tH
s−1
x′ (Σ)

+ ‖(δij − eiaeja)
[
∂i∂j∂k∆/

−1
0 , lk

]
f‖L1

tH
s−1
x′ (Σ) ,

where we have 1 ≤ k ≤ n − 1, since l0 = 1 . The first two terms have
the desired bound by the algebra property of Hs−1

x′ . For the third term,
we use the Kato-Ponce estimate

‖ [∂i∂j∂k∆/
−1
0 , lk ] f ‖Hs−1

x′ (Σt) . ‖ l
k − δk0‖Lipx′ (Σ

t) ‖f‖Hs−1
x′ (Σt)

+ ‖ lk − δk0‖Hs
x′ (Σ

t) ‖f‖L∞
x′ (Σ

t)

. ‖ lk − δk0‖Hs
x′ (Σ

t) ‖f‖Hs−1
x′ (Σt) .

To conclude the proof, we need establish the Cδ
x′ bounds on f2(t, · ) .

By (5.20), it follows that the coefficients of the null frame belong to
Cδ
x′(Σ

t), with uniform bounds over t. As above we may thus reduce con-
sideration to ∂i ∂j w , in the projective coordinates on Σ . Since (5.20)
shows that ‖eia eja − δij‖Cδ

x′ (Σ
t) . ε1 , we have

‖f2(t, · )‖Cδ
x′ (Σ

t) = ‖∂i ∂j ∆/ −1( l w)(t, · )‖Cδ
x′ (Σ

t) . ‖dw(t, · )‖Cδx(Rn) .
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Corollary 5.9. Let R be the Riemann curvature tensor for the metric
g , and let e0 = l . Then for any collection 0 ≤ a, b, c, d ≤ n − 1 , We
may write

〈R(ea, eb) ec, ed〉g |Σ = l(f2) + f1 ,

where

‖f2‖L2
tH

s−1
x′ (Σ) + ‖f1‖L1

tH
s−1
x′ (Σ) . ε2 ,

and for each value of t,

‖f2(t, · )‖Cδ
x′ (Σ

t) . sup
i,j
‖dgij(t, · )‖Cδx(Rn) .

Proof. The curvature expression takes the form Rijk` e
i
ae
j
be
k
ce
`
d , where

Rijk` =
1

2

[
∂i ∂k gj` + ∂j ∂` gik − ∂j ∂k gi` − ∂i ∂` gjk

]
+Q

(
gij, dgij

)
,

where Q is a sum of products of coefficients of gij with quadratic forms
in dgij . It follows by Proposition 5.1, which applies to gij as well as
gij , that the term Q satisfies the bound required of f1 . We therefore
look at the term eiae

k
c∂i ∂k gj` , which is typical. By (5.20) and Propo-

sition 5.1, the term ea(e
k
c ) ∂kgj` satisfies the bound required of f1, so

we consider ea(ec gj`) . Finally, since the coefficients of ec in the basis
∂/i have tangential derivatives bounded in L2

tH
s−1
x′ (Σ), we are reduced

by Lemma 5.8 to verifying that

‖gij ∂i ∂j gk`‖L2
tH

s−1
x

+ ‖gij ∂i ∂j gk`‖L1
tH

s−1
x′ (Σ) . ε2 .

The bound on the first term follows by the proof of Proposition 5.1.
The same proof, together with the bound ‖∂iu‖L2

tH
s−1
x′ (Σ) . ε2 , also

bounds the second term.

5.5. Connection coefficients and the Raychaudhuri equation.
We will work with the following selected subset of the connection coef-
ficients for the null frame with respect to covariant differentiation along
Σ,

χab = 〈Deal, eb〉g l( ln σ) =
1

2
〈Dl l , l 〉g µ0ab = 〈Dlea, eb〉g

For σ set the initial data σ = 1 at time −2. The coefficients of l
and ea are combinations of coefficients of g and dφ, by (5.18) and
the orthogonalization process. Consequently by (5.12), together with
Proposition 5.1 and (5.6), it follows that

‖χab‖L2
tH

s−1
x′ (Σ) + ‖l(lnσ)‖L2

tH
s−1
x′ (Σ) + ‖µ0ab‖L2

tH
s−1
x′ (Σ) . ε1 .(5.22)
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Similarly, if we expand l = la∂/a in the tangent frame ∂t, ∂x′ on Σ, then

l0 = 1 , sup
1≤a≤n−1

|||la|||s,2,Σ . ε1 .(5.23)

Lemma 5.10. Let χab be defined as above. Then, for 1 ≤ a, b ≤ n−1 ,

‖χab‖L2
tH

s−1
x′ (Σ) . ε2 .

Furthermore, for each value of t,

‖χab(t, ·)‖Cδ
x′ (Σ

t) . ε2 + sup
i,j
‖dgij(t, ·)‖Cδx(Rn) .

Proof. It follows from (5.23) and Sobolev embedding that the tangent
field l, expressed in the basis ∂t, ∂x′ of tangent vector fields on Σ in
(t, x′) coordinates, differs from ∂t by a field with coefficients of small

norm in L2
tC

1,δ
x′ . Consequently, if we introduce coordinates (t, y′) on Σ,

such that l(y′) = 0 and y′ = x′ at t = −2, then the y′ are a small C1

perturbation of x′.
We use the transport equation for χab ,

l(χab) = 〈R(l, ea)l, eb〉g − χacχcb − l( lnσ)χab + µ0ac χcb + µ0bc χac .

By Corollary 5.9, we may write this in the form

l(χab − fab2 ) = fab1 − χacχcb − l( ln σ)χab + µ0ac χcb + µ0bc χac .

As before, let Λs−1 be the fractional derivative operator in the x′ vari-
ables. Then, since Hs−1

x′ (Σt) is an algebra, we may for each t bound
the norm of the right hand side in Hs−1

x′ (Σt) by

h1(t) + h2(t) sup
a,b
‖Λs−1(χab − fab2 )(t, ·)‖L2

x′ (Σ
t) ,

where by (5.22) and Corollary 5.9 we have

‖h1‖L1([−2,2]) . ε2 , ‖h2‖L2([−2,2]) . ε1 .

We next bound

‖ [Λs−1, l](χab − fab2 )(t, ·) ‖L2
x′ (Σ

t) ≤ ‖(∂/clc)(χab − fab2 )(t, ·)‖Hs−1
x′ (Σt)

+ ‖ [Λs−1∂/c, l
c](χab − fab2 )(t, ·) ‖L2

x′ (Σ
t) ,

which by the Kato-Ponce commutator estimate and the Sobolev em-
bedding theorem is bounded by

sup
1≤c≤n−1

‖lc(t, ·)‖Hs
x′ (Σ

t) ‖Λs−1(χab − fab2 )(t, ·)‖Hs−1
x′ (Σt) .
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By (5.23) we thus have the bound

sup
a,b
‖ lΛs−1(χab − fab2 )(t, ·)‖L2

x′ (Σ
t)

≤ h1(t) + h2(t) sup
a,b
‖Λs−1(χab − fab2 )(t, ·)‖L2

x′ (Σ
t) ,

where h1(t) and h2(t) satisfy the bound above. Since the flow of l is
C1 as noted above, together with Gronwall’s Lemma this implies that

sup
t
‖(χab − fab2 )(t, ·)‖Hs−1

x′ (Σt) . ε2 .

The conclusion now follows by Corollary 5.9 and Sobolev embedding.

5.6. Proof of Proposition 5.2. Recall that we have fixed r = 0 and
θ = (0, . . . , 0, 1) . Note that since φ(t, x′) = t for t ≤ −3

2
, it follows by

(5.10) and Sobolev embedding that

‖φ(t, x′)− t‖C1 . |||dφ(t, x′)− dt|||s,2 ,
so it suffices to dominate the latter quantity by ε2 . By (5.19), together
with (5.12) and the bounds on |||gij − ηij|||s,2,Σ from Proposition 5.1,
this in turn will follow as a consequence of the bound

||| l − (∂t − ∂xn)|||s,2,Σ . ε2 ,

where it is understood that one takes the norm of the coefficients of
l − (∂t − ∂xn) in the standard frame on Rn+1 . The geodesic equation,
together with the bound for Christoffel symbols ‖Γijk‖L2

tL
∞
x
. ε2 , imply

that

‖ l − (∂t − ∂xn)‖L∞t,x . ε2 ,

so it suffices to bound the tangential derivatives of the coefficients of
l − (∂t − ∂xn) in the norm L2

tH
s−1
x′ (Σ) . Finally, we claim that we can

now reduce matters to dominating the coefficients of Dll and Deal in
the tangent frame {ea, l}. To see this, we note that the coefficients of
ea and l are small perturbations of their constant coefficient analogs in
the L2

tH
s
x(Σ) norm. Also, by Proposition 5.1, we have the bounds for

the Christoffel symbols

‖Γijk‖L2
tH

s−1
x′ (Σ) . ε2 ,

so that, for instance,

‖Γijkejalk‖L2
tH

s−1
x′ (Σ) . ε2 ,

and in particular the covariant derivatives of ∂t − ∂xn are small in
L2
tH

s−1
x′ (Σ) .
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Thus, we need to establish the following bound,

‖〈Deal, eb〉g‖L2
tH

s−1
x′ (Σ)+‖〈Deal, l 〉g‖L2

tH
s−1
x′ (Σ)+‖〈Dll, l 〉g‖L2

tH
s−1
x′ (Σ) . ε2.

The first term is χab which is bounded by Lemma 5.10. For the second
we note that

〈Deal, l 〉g = 〈Deal, 2(dt)∗〉g = −2 〈Dea(dt)
∗, l〉g .

Since the coefficients of (dt)∗ are combinations of the gij, bounds for
this term, as well as the last, follow from Proposition 5.1.

It remains to show that

‖dφ(t, ·)− dt‖C1,δ

x′ (Rn−1) . ε2 + ‖dgij(t, ·)‖Cδx(Rn) ,

for which it suffices to show that

‖ l(t, ·)− (∂t − ∂xn)‖C1,δ

x′ (Σt) . ε2 + ‖dgij(t, ·)‖Cδx(Rn) .

The coefficients of ea are small Cδ
x′(Σ

t) perturbations of their constant
coefficient analogs, so it suffices to show that

‖〈Deal, eb〉g(t, ·)‖Cδ
x′ (Σ

t)+‖〈Deal, l 〉g(t, ·)‖Cδ
x′ (Σ

t). ε2+‖dgij(t, ·)‖Cδx(Rn).

The first term is bounded by Lemma 5.10, and the second by noting
that

‖〈Dea(dt)
∗, l〉g(t, ·)‖Cδ

x′ (Σ
t) . ‖dgij(t, ·)‖Cδx(Rn) .

6. Geometry of cones

The purpose of this section is to show that any two null foliations
Σω and Σθ, as defined in section 5, intersect at each point at an angle
comparable to |ω − θ| .

Precisely, let lω be the g-normal field to the foliation Σω, normalized
as before so that dt(lω) = 1 . We use o(r) to denote a quantity that
is bounded by c r , where c is a small constant which can be made
arbitrarily close to 0 by taking ε2 of (5.4) and (5.3) small.

Proposition 6.1. For all unit vectors ω , θ ∈ Sn−1, uniformly at all
points in space-time,

lω − lθ = ω − θ + o( |ω − θ| ) .(6.1)

As an immediate consequence of this and the fact that lω and lθ are
null in g, we have that, uniformly at all points in space-time,

〈lω , lθ〉g = −1

2
|ω − θ|2 + o( |ω − θ|2 ) .(6.2)
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We also establish the following fact about the geodesic flow from a
point. For a given point x1, we let γθ denote the null geodesic curve,
reparametrised by t, such that γθ(t1) = x1, and γ̇θ(t1) lies along the
direction θ.

Proposition 6.2. For all (t1, x1), with t1 ∈ [−2, 2], and all t ∈ [−2, 2] ,

γω(t)− γθ(t) = (t− t1) (ω − θ) + o( |t− t1| |ω − θ| ) .(6.3)

To establish (6.1) and (6.2) at a given point (t1, x1), we study the
cone spanned by the null geodesics through that point.

For the rest of this section, we fix a point (t1, x1) , with t1 ∈ [−2, 2].
Given ω ∈ Sn−1, let r(ω) > 0 be defined so that the vector (1, r(ω)ω) is
null at (t1, x1) . Then r(ω) = 1+o(1) , and ∂ωr(ω) = o(1) . Let

(
t, γω(t)

)
for t ∈ [−2, 2] be the null geodesic curve such that

γω(t1) = x1 ,
dγω
dt

(t1) = r(ω)ω .

At t = −2, the metric g is the standard Minkowski metric, and hence
we may write

dγω
dt

(−2) = θ(ω) ,

which defines ω → θ(ω) as a map Sn−1 → Sn−1 . Note that θ(ω) is
the vector such that γω is tangent to the foliation Σθ(ω) . Our proof
establishes that θ(ω) is a small C1 perturbation of the identity map,
which yields (6.1). Since θ(ω) is the normal map to the t = −2 slice of
the light cone with vertex at (t1, x1), this in effect says that the map
γω(−2) is a small C2 perturbation of multiplication by −(2+ t1)ω. We
prove this in turn by first establishing (6.3), which implies that γω(−2)
is a small C1 perturbation of −(2 + t1)ω , and then showing that the
second fundamental form of the cone is a small C0 perturbation of that
of the tangent cone over (t1, x1) . We begin by establishing (6.3).

We start by noting that the bounds on the Christoffel symbols,

‖Γkij‖L2
tL
∞
x

= o(1)

imply that

dγω
dt

(t) = r(ω)ω + o(|t− t1|
1
2 ) ,

hence that

γω(t) = x1 + (t− t1) r(ω)ω + o( |t− t1|
3
2 ) .(6.4)
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Given a tangent vector v to Sn−1 at ω, we let Zv denote the purely
spatial vector field along (t, γω(t)) ,

Zv(t) = v · ∂ωγω(t) ,

so that

Zv(t1) = 0 ,
DZv
dt

(t1) = v · ∂ω
(

1, r(ω)ω
)

=
(

0, v + o(|v|)
)
.

As a variation of reparametrised geodesics, Zv(t) differs from a Jacobi
field along (t, γω(t)) by a multiple of γ̇ω(t). Hence, using D

dt
to denote

covariant differentiation along γω , we have

D2Zv
dt2

= R( γ̇ω, Zv ) γ̇ω −
d ln(σ)

dt

DZv
dt

mod (γ̇ω) .

Here, σ denotes dt
ds

, where s is any affine parametrisation of the geodesic
γω. By taking s to be the parametrisation with σ(−2) = 1, then
σ = σθ(ω) where σθ is defined as in (5.17). In particular, we have that∥∥∥∥d ln(σ)

dt

∥∥∥∥
L2(−2,2)

= o(1) .(6.5)

The above together imply that 〈Zv, γ̇ω〉g = 0 for all t. We now fix a
set ea of purely spatial vector fields along (t, γω(t)), orthonormal under
g, which together with (1, γ̇ω) span the ortho-complement of (1, γ̇ω)
under g. We may choose ea such that

Dea
dt

= 0 mod (γ̇ω) ,

for instance by parallel translating an orthonormal frame along γω and
subtracting a multiple of γ̇ω to make them purely spatial. We set

zav (t) = 〈Zv(t), ea(t)〉g ,

and derive the formula

d2zav
dt2

= 〈R( γ̇ω, eb ) γ̇ω, ea〉g zbv −
d ln(σ)

dt

dzav
dt

.

By the parallel transport equations, the coefficients of ea relative to the
frame ∂xi have derivative with small L2 norm. Hence we may apply
Corollary 5.9 to rewrite this equation in the form (along γω)

d

dt

( dzav
dt
− fab2 zbv

)
= f̃ab2

( dzav
dt
− fab2 zbv

)
+ fab1 zbv ,

where

‖fab2 ‖L2(−2,2) + ‖f̃ab2 ‖L2(−2,2) + ‖fab1 ‖L1(−2,2) = o(1) .
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Since zav (t1) = 0 , and |żav (t1)| ≤ 2 |v|, this implies that

zav (t) = (t− t1) żav (t1) + o( |t− t1|
3
2 |v| ) .

Since ea(t) = ea(t1) + o(|t− t1|
3
2 ) (relative to the frame ∂xi), this yields

Zv(t) = (t− t1)
DZv
dt

(t1) + o( |t− t1|
3
2 |v| ) ,

again relative to the frame ∂xi . Consequently,

γω(t)− γθ(t) = (t− t1) ( r(ω)ω − r(θ)θ ) + o( |t− t1|
3
2 |ω − θ| ) ,(6.6)

which in particular implies (6.3).
Together, (6.4) and (6.6) imply that the map ω → γω(−2) is an

embedding of Sn−1 into Rn, which is a small C1 perturbation of the
mapping ω → −(2 + t1)ω . It remains to show that the function
θ(ω) = γ̇ω(−2), considered as a function on this manifold, is a small
C1 perturbation of the function ω. To do this, we show that, uniformly
for each ω,

−(2 + t1) 〈Deaθ(ω), eb〉g = δab + o(1) .

Together with (6.4) and (6.6), this implies (6.1) .
We fix ω, and along γω(t) we set

Hab(t) = 〈Dea(t) γ̇ω(t), eb(t)〉g .

Then Hab(t) is well defined and smooth in t for t 6= t1, since the above
argument and dilation show that ω → γω(t) is a C∞ embedding for
t 6= t1, as gab is assumed to be C∞. A dilation argument shows that

Hab(t) = (t− t1)−1 δab + hab(t) ,

where

sup
t6=t1
|hab(t)| <∞ .(6.7)

Furthermore, for t 6= t1, we have

dHab

dt
= 〈R( γ̇ω, ea ) γ̇ω, eb 〉g −

d ln(σ)

dt
Hab −HacHcb .

Applying Corollary 5.9 as before, and setting f̃2 = −d ln(σ)/dt, we
obtain upon substitution for Hab the differential equation for hab ,

dhab
dt

=
dfab2

dt
+ fab1 + (t− t1)−1 f̃2δab + f̃2hab − 2(t− t1)−1 hab − hachcb ,
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which we may rewrite in the form

d

dt

(
(t− t1)2 (hab−fab2 )

)
= −2 (t− t1)fab2 +(t− t1)2 fab1 +(t− t1) f̃2 δab

+ (t− t1)2 f̃2 hab − (t− t1)2 hac hcb ,

where as before

‖fab2 ‖L2(−2,2) + ‖f̃2‖L2(−2,2) + ‖fab1 ‖L1(−2,2) = o(1) .

Applying (6.7) leads to the inequality

∣∣hab(t)∣∣ ≤ ∣∣fab2 (t)
∣∣+ 2 |t− t1|−1

∫ t

t1

( ∣∣fab2

∣∣+
∣∣f̃2 δab

∣∣ ) ds+

∫ t

t1

∣∣fab1

∣∣ ds
+

∫ t

t1

∣∣f̃2 hab
∣∣ ds+

∫ t

t1

∣∣hac hcb∣∣ ds ,
with the order of integration reversed for t < t1 . We next note that
the first integral on the right hand side is dominated pointwise in t by
M(fab2 ) +M(f̃2) , where M is the Hardy-Littlewood maximal function,
hence the second term has small norm in L2(dt). A continuity argument
in r applied to ‖hab‖L2(|t−t1|<r) shows that

‖hab‖L2(−2,2) = o(1) .

Furthermore, since fab2 (t) = 0 for t < −1, we have

|hab(−2)| = o(1) .

7. The paradifferential decomposition

To conclude the proof of Proposition 4.1 we establish the following:

Proposition 7.1. Suppose that u ∈ H, and that G(u) ≤ 2ε1. Then
condition (WP4) is satisfied with g(u) replaced by g(t, x, u). That is,
the linear equation 2g(t,x,u)v = 0 is well-posed for data in Hr×Hr−1 if
1 ≤ r ≤ s+ 1, and the solutions satisfy the Strichartz estimates (3.3).

First we show that this yields Proposition 4.1. By Proposition 5.2,
we need to show that

‖du‖L∞t (Hs−1
x ) . ε3 , ‖du‖L2

tC
δ
x
. ε3 .

The first of these is a consequence of Lemma 1.4, since by assumption
‖du‖L2

tC
δ
x
≤ 2ε2 . It remains to bound du in L2

tC
δ
x. The bound would

follow directly from Proposition 7.1 if the right hand side of (1.1) were
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zero. In our case, the result follows by the Duhamel variation of pa-
rameters formula, upon verifying that

‖q(t, x, u) (du)2‖L1
t (H

s−1
x ) . ε3 .

But this follows from the fixed time multiplicative estimate

‖q(t, x, u) (du)2‖Hs−1
x
. ‖du‖L∞x ‖du‖Hs−1

x
,

which is in turn a consequence of (2.5) with a(ξ) = 〈ξ〉s−1.

We will establish Proposition 7.1 via an appropriate parametrix con-
struction for the equation 2gv = 0 . The first step in the construction is
to make a paradifferential decomposition in order to localize the prob-
lem in the frequency variable dual to x. Given a frequency scale λ ≥ 1,
we consider the regularized coefficients

gλ = S<λg ,

which we use to study the localized problem at frequency λ. We will
begin by showing that Proposition 7.1 is a result of the following

Proposition 7.2. Suppose that u ∈ H, and that G(u) ≤ 2ε1. Then for
each (v0, v1) ∈ H1×L2 there exists a function vλ in C∞([−2, 2]×Rn),
with

support ̂vλ(t, ·)(ξ) ⊆ { ξ : λ/8 ≤ |ξ| ≤ 8λ } ,
such that  ‖2gλvλ‖L1

t (L
2
x) . ε0

(
‖v0‖H1 + ‖v1‖L2

)
,

vλ(−2) = Sλv0 , ∂tvλ(−2) = Sλv1 ,
(7.1)

and such that the following Strichartz estimates hold, provided r > 3
4

if n = 2 , and r > n−1
2

if n ≥ 3 ,

‖vλ‖L4
t (L
∞
x ) . ε

− 1
4

0 λr−1
(
‖v0‖H1 + ‖v1‖L2

)
, n = 2 ,

‖vλ‖L2
t (L
∞
x ) . ε

− 1
2

0 λr−1
(
‖v0‖H1 + ‖v1‖L2

)
, n = 3, 4, 5 .

(7.2)

Roughly speaking, this says that we can find a “good” approximate
solution vλ for the equation

2gλvλ = 0, vλ(−2) = Sλv0, ∂tvλ(−2) = Sλv1 .(7.3)

This result is almost trivial if ε0λ . 1. Indeed, in this case we can let
vλ = Sλv, where v is the exact solution to 2gλv = 0 with data (v0, v1),
in which case

‖2gλvλ‖L2
tL

2
x
. ‖ [gijλ , ∂iSλ] ∂jv ‖L2

tL
2
x

+ ‖Sλ(∂igijλ )(∂jv)‖L2
tL

2
x
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. ‖dgijλ ‖L2
tL
∞
x
‖∂iv‖L∞t L2

x

. ε0
(
‖v0‖H1 + ‖v1‖L2

)
.

The Strichartz estimates then follow from the Sobolev embedding and
the energy estimates. Hence, in the next section we will restrict our-
selves to establishing Proposition 7.2 in the case that

ε0λ� 1 ,

in which case we will show that (7.2) holds without the factors of
ε0 on the right hand side. For the rest of this section we show that
Proposition 7.2 implies Proposition 7.1.

7.1. Replacing L1
tL

2
x by L2

tL
2
x. We prove here that vλ can be chosen

so that a stronger version of (7.1) holds; namely so that

‖2gλvλ‖L2
tL

2
x
. ε0

(
‖v0‖H1 + ‖v1‖L2

)
.

We fix a Littlewood-Paley cutoff S̃λ so that S̃λSλ = Sλ , and so that S̃λ
is supported in the range |ξ| ∈ [λ/8, 8λ] .

Suppose we are given initial data (v0, v1) with frequencies supported
in the range [λ/8, 8λ] . Then Sλ(v0, v1) vanishes except for a fixed num-
ber of dyadic values. Applying Proposition 7.2 to each of these pieces
and summing up the resulting approximate solutions we produce a
function v which is localized at frequency λ and satisfies

‖2gλv‖L1
tL

2
x
. ε0

(
‖v0‖H1 + ‖v1‖L2

)
, v(−2) = v0 , vt(−2) = v1 .

(We use the fact that one may replace gλ by gλ′ with λ′ ∈ [λ/4, 4λ]
without changing the result of Proposition 7.2.) We set vλ = Sλv and
compute

2gλvλ = Sλf1 + f2 , f1 = 2gλv , f2 = [2gλ , Sλ] v .

The commutator term can be estimated as above,

‖[2gλ , Sλ] v‖L2
tL

2
x
. ‖dg‖L2

tL
∞
x
‖dv‖L∞t L2

x
.(7.4)

We thus obtain a smooth function vλ with

vλ(−2) = Sλv0 , ∂tvλ(−2) = Sλv1 ,

and such that 2gλvλ = Sλf1 + f2 , where

‖f1‖L1
tL

2
x

+ ‖f2‖L2
tL

2
x
. ε0

(
‖v0‖H1 + ‖v1‖L2

)
.(7.5)

This is already an improvement over (7.1), since 2gλvλ is the sum of
a good term f2 and a bad term which has the special form Sλf1 . We
want to eliminate the bad term using an iterative argument based on
the Duhamel variation of parameters formula. To do so, we need to
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construct approximate solutions for Cauchy data specified at arbitrary
initial time t0 ∈ [−2, 2] , and not just t0 = −2 .

Precisely, given (w0, w1) ∈ H1 × L2, we seek wλ so that

2gλwλ = Sλf1 + f2 , w(t0) = Sλw0 , wt(t0) = Sλw1 ,(7.6)

and such that (7.5) and also the Strichartz estimates (7.2) are satisfied
with v replaced by w.

For this, we start with the exact solution w to

2gλw = 0 , w(t0) = w0 , wt(t0) = w1 ,

and let vλ = Sλv be the approximate solution constructed as above,
with v0 = S̃λw(−2), v1 = S̃λwt(−2). Then by energy estimates and
(7.5), vλ satisfies the correct estimate,

2gλvλ = Sλf1 + f2, ‖f1‖L1L2 + ‖f2‖L2 . ε0
(
‖w0‖H1 + ‖w1‖L2

)
,

as well as the Strichartz estimates (7.2), but it does not match exactly
the data at time t0. However, we have

Sλw0 − vλ(t0) = Sλw
1
0, w1

0 = S̃λw0 − v(t0) ,

Sλw1 − ∂tvλ(t0) = Sλw
1
1, w1

1 = S̃λw1 − vt(t0) .

We can use energy estimates and the commutator estimate (7.4) to
bound the size of the error,

‖w1
0‖H1 + ‖w1

1‖L2 . ‖2gλ(S̃λw − v)‖L1
tL

2
x

. ‖2gλv‖L1
tL

2
x

+ ‖[2gλ , S̃λ]w‖L2
tL

2
x

. ε0
(
‖w0‖H1 + ‖w1‖L2

)
.

Since the norm of the error is much smaller than the initial size of
the data, we may repeat this process with data (w1

0, w
1
1), and sum the

resulting series to obtain a smooth function wλ with data Sλ(w0, w1)
at time t0, such that the Strichartz estimates (7.2) are satisfied, and
such that 2gw = Sλf1 + f2 , with

‖f1‖L1
tL

2
x

+ ‖f2‖L2
tL

2
x
. ε0

(
‖w0‖H1 + ‖w1‖L2

)
.

An iteration argument now allows us to eliminate the bad term Sλf1

in 2gλvλ. Note also that the above argument implies the result of
Proposition 7.2 with −2 replaced by arbitrary t0 ∈ [−2, 2] . Combining
these results, we obtain the following strengthening of Proposition 7.2,

Corollary 7.3. Suppose that u ∈ H, and that G(u) ≤ 2ε1. Then for
each (v0, v1) ∈ H1 × L2, and each t0 ∈ [−2, 2] , there exists a function
vλ in C∞([−2, 2]× Rn), with

support ̂vλ(t, ·)(ξ) ⊆ { ξ : λ/8 ≤ |ξ| ≤ 8λ } ,
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such that  ‖2gλvλ‖L2
tL

2
x
. ε0

(
‖v0‖H1 + ‖v1‖L2

)
,

vλ(t0) = Sλv0 , ∂tvλ(t0) = Sλv1 ,

and such that the Strichartz estimates (7.2) hold.

7.2. The case r = 1. Since dgλ ∈ L2
tL
∞
x , it follows that equation

(1.3) is well-posed in H1 × L2, and its solution satisfies the energy
estimates. It remains to show that its solution v also satisfies the
Strichartz estimates (3.3). Without loss of generality we take t0 = 0 .

Given arbitrary initial data (v0, v1) ∈ H1 × L2 , and general t0 ∈
[−2, 2] , we take the Littlewood-Paley decomposition

v0 =
∑

Sλv0 , v1 =
∑

Sλv1 ,

and for each λ take the corresponding vλ as in (7.1). Set

v =
∑

vλ .

Then v matches the initial data (v0, v1) at time t0, and satisfies the
Strichartz estimates (3.3) (with a constant depending on ε0). We claim
that v is also an approximate solution for 2g, in that

‖2gv‖L2
tL

2
x
. ε0

(
‖v0‖H1 + ‖v1‖L2

)
.

Indeed, we have

2gv =
∑

λ dyadic

2gλvλ +
∑

λ dyadic

2g−gλvλ .

The first sum is controlled by Corollary 7.3 since the terms have finite
overlap on the Fourier transform side. For the second, we first observe
that it contains no second order time derivatives, since g00 = 1. We
set wλ = dvλ ∈ L∞t L2

x , and rewrite the second term as∑
λ dyadic

(g − gλ) dxwλ .

The bound on this term follows from the fixed time estimate

‖
∑

λ dyadic

(g − gλ) dxwλ ‖L2
x
. ‖dg‖Cδx

(∑
‖wλ‖2

L2
x

) 1
2
,

which follows from the bound

‖g − gλ‖L∞x . λ−1−δ ‖g‖Cδx .
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Given F ∈ L1
tL

2
x , we now form the function

TF (t, x) =

∫ t

0

vs(t, x) ds ,

where vs is the approximate solution formed above, with Cauchy con-
dition

vs(s) = 0 , (∂tv
s)(s) = F (s, ·) .

Then the above shows that

‖2gTF − F ‖L2
tL

2
x
. ε0 ‖F‖L1

tL
2
x
.

Hence the contraction principle implies that we may write the solution
v in the form

v = ṽ + TF ,

where ṽ is the approximate solution formed above for data (v0, v1)
specified at time t = 0 , and

‖F‖L2
tL

2
x
. ε0

(
‖v0‖H1 + ‖v1‖L2

)
.

The Strichartz estimates now follow since they hold for each vs .

7.3. The case r = 2. Again we consider t0 = 0 . Given data (v0, v1) ∈
H2×H1 , we seek a solution of the form v = 〈Dx〉−1w . Then we require
that w have Cauchy data 〈Dx〉(v0, v1) ∈ H1 × L2 , and that w solve

2gw =
(
2g − 〈Dx〉2g〈Dx〉−1

)
w

= [gij, 〈Dx〉] 〈Dx〉−1∂i∂jw ,

where we may assume that i 6= 0 .
For F ∈ L2

tL
2
x, we form TF as above, but with vs the exact solution

to 2gv
s = 0 , so that 2gTF = F , and TF has vanishing Cauchy data

at t = 0 . Let w̃ be the solution for the homogeneous equation 2gw̃ = 0 ,
with Cauchy data 〈Dx〉(v0, v1) ∈ H1 × L2 , at time 0. Then we may
find a solution w of the form w = w̃ + TF , provided that we show

‖ [gij, 〈Dx〉] 〈Dx〉−1∂i∂jTF‖L2
tL

2
x
. ε0 ‖F‖L2

tL
2
x
.

This, however, follows from the fixed-time commutator estimate of
Coifman and Meyer [5]

‖ [gij, 〈Dx〉] f‖L2
x
. ‖dg‖L∞x ‖f‖L2

x
,

and the bound

‖dTF‖L∞t L2
x
. ‖F‖L1

tL
2
x
.
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At this point, we note that the Duhamel principle implies that for v
solving the inhomogeneous problem

2gv = G, v(0) = v0, vt(0) = v1

and for r = 1 and r = 2, we have the bounds

‖〈Dx〉ρv‖L4
tL
∞
x
. ‖(v0, v1)‖Hr×Hr−1 + ‖G‖L1

tH
r−1
x

, n = 2 ,

‖〈Dx〉ρv‖L2
tL
∞
x
. ‖(v0, v1)‖Hr×Hr−1 + ‖G‖L1

tH
r−1
x

, n = 3, 4, 5 ,

(7.7)

provided r − ρ > 3
4

for n = 2, and r − ρ > n−1
2

for n ≥ 3 . As an easy
consequence of (7.7), we will now show that the following bounds hold
for r = 1 and r = 2,

‖〈Dx〉ρdv‖L4
tL
∞
x
. ‖(v0, v1)‖Hr×Hr−1 + ‖G‖L1

tH
r−1
x

, n = 2 ,

‖〈Dx〉ρdv‖L2
tL
∞
x
. ‖(v0, v1)‖Hr×Hr−1 + ‖G‖L1

tH
r−1
x

, n = 3, 4, 5 ,

(7.8)

provided r − ρ > 7
4

for n = 2, and r − ρ > n+1
2

for n ≥ 3 .
To establish (7.8) for r = 2, we first consider the case G = 0 . Then

2gdv = (dgij)∂i∂jv ∈ L2
tL

2
x ,

and it is seen from the equation 2gv = 0 that the Cauchy data of
dv is of regularity H1 × L2 if the Cauchy data of v is of regularity
H2 ×H1 . The estimate (7.8) with r = 2 then follows from (7.7) with
r = 1 applied to dv. To handle the case G 6= 0, we use the Duhamel
formula for v, and note that

〈Dx〉ρd
∫ t

0

vs(t, x) ds =

∫ t

0

〈Dx〉ρdvs(t, x) ds .

To establish (7.8) for r = 1, we note that, if v has Cauchy data of
regularityH1×L2, then 〈Dx〉−1v has Cauchy data of regularityH2×H1,
and

‖2g〈Dx〉−1v‖L1
tH

1
x

= ‖〈Dx〉2g〈Dx〉−1v‖L1
tL

2
x

. ‖ [〈Dx〉,gij]〈Dx〉−1∂i∂jv‖L2
tL

2
x

+ ‖G‖L1
tL

2
x
,

and the commutator term is bounded by the Coifman-Meyer estimate
together with energy estimates on v.

7.4. The general case 1 ≤ r ≤ s+ 1. To handle the general case, we
first show that the following estimate holds for 1 ≤ r ≤ s+ 1,

‖ [2g, 〈Dx〉r−1]〈Dx〉1−rw‖L2
tL

2
x
. ε0

(
‖dw‖L∞t L2

x
+ ‖〈Dx〉mdw‖L2

tL
∞
x

)
,
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provided m > 1−s . To see this, we apply analytic interpolation to the
family

w → [2g, 〈Dx〉z]〈Dx〉−zw .

For Re z = 0 , we let u = ∂jw, and use the fixed time commutator
estimate

‖ [gij, 〈Dx〉z]∂iu‖L2
x
. ‖dgij‖L∞x ‖u‖L2

x
,

which follows by (3.6.35) of [24] , where we recall that i 6= 0 .
For Re z = s , we use the fixed time commutator bound

‖ [gij, 〈Dx〉z]〈Dx〉−z∂iu‖L2
x

. ‖dgij‖L∞x ‖u‖L2
x

+ ‖gij − ηij‖Hs
x
‖〈Dx〉−z∂iu‖L∞ ,

which is a consequence of the Kato-Ponce commutator estimate, see
(3.6.14) of [24]. The estimate now follows by analytic interpolation
and the fact that

‖dgij‖L2
tL
∞
x

+ ‖gij − ηij‖L∞t Hs
x
. ε0 .

For Cauchy data (v0, v1) of regularity Hr ×Hr−1, we seek a solution
of the form v = 〈Dx〉1−rw , where w solves

2gw =
(
2g − 〈Dx〉r−12g〈Dx〉1−r

)
w .

We may obtain a solution of the form w = w0 + TF , with F ∈ L2
tL

2
x,

and where w solves 2gw = 0, with Cauchy data 〈Dx〉r−1(v0, v1) of
regularity H1 × L2, provided we show that

‖
(
2g − 〈Dx〉r−12g〈Dx〉1−r

)
TF‖L2

tL
2
x
. ε0 ‖F‖L2

tL
2
x
.

This, however, is a consequence of the above commutator estimate,
provided we show that, for some m > 1− s, we have

‖dTF‖L∞t L2
x

+ ‖〈Dx〉mdTF‖L2
tL
∞
x
. ‖F‖L1

tL
2
x
.

This in turn follows from the case r = 1 of (7.8), since we can take
1− s < m < 1−n

2
if n ≥ 3 , and 1− s < m < −3

4
if n = 2.

8. The parametrix construction
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8.1. The construction of wave packets. We introduce in this sec-
tion the notion of a wave packet, which is central to our parametrix
construction. Roughly, a wave packet is an approximate solution to
the equation 2gu = 0 , which has a finer spatial localization than a
traveling (plane) wave solutions. More precisely, a frequency λ wave
packet is localized within λ−1 of a characteristic surface Σω,r, but also

roughly within λ−
1
2 of a bicharacteristic ray on Σω,r. Thus, the support

of a wave packet is contained in a curved rectangle which is roughly of
size 1×λ−1× (λ−

1
2 )n−1. In the sequel we shall call such a region a slab.

While the natural idea might be to start with initial data which is
spatially localized in a λ−1 × (λ−

1
2 )n−1 rectangle, as well as frequency

localized in the dual rectangle at frequency λ, and transport it along
the geodesic flow of g, such a construction does not seem to work,
essentially because applying 2g to such a wave packet yields an ex-
pression which involves (badly behaved) derivatives of the null frame
in the direction l transversal to the characteristic surfaces.

To avoid having to deal with the behavior of the null foliations Σω

in transversal directions, we construct wave packets by starting with a
flow-invariant measure on some Σω,r (essentially surface measure mul-

tiplied by a λ−
1
2 bump function on Σω,r), then mollifying it on the λ−1

scale. The advantage of this approach is that derivative estimates for a
wave packet involve only the tangential behavior of restrictions of var-
ious functions to the characteristic surfaces Σω,r, as opposed to their
regularity within the support of the wave packet.

Another aspect worth noting in our construction stems from the fact
that one cannot localize sharply in both space and frequency. For most
of our arguments a sharp spatial localization is more convenient, but
the sharp localization in frequency is exploited in order to gain the
orthogonality of the wave packets. Consequently, our definition of a
wave packet u involves a sharp spatial localization, but the approximate
solutions at frequency λ to 2gu = 0 are constructed as superpositions
of Sλu. At all instances where we need to take advantage of spatial
localization we are able to discard the harmless factor Sλ.

We introduce a spatially localized mollifier Tλ by setting

Tλf = ψλ ∗ f , ψλ(y) = λn ψ(λ−1y) ,

where ψ ∈ C∞c (Rn) is supported in the ball |x| ≤ 1
32

, and has integral
1. By choosing ψ appropriately, any function u with frequency support
contained in |ξ| ≤ 4λ can be factored u = Tλũ, where ‖ũ‖L2

x
≈ ‖u‖L2

x
.

Finally, we note that our definition of a wave packet involves the
small parameter ε0 , which is introduced in order to assure that 2gu
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is of small norm, so that we may later obtain exact solutions by an
iteration argument.

Definition 8.1. Let γ = γ(t) be a geodesic for g, and let Σω,r be the
null surface introduced in section 4 that contains γ, defined by

Σω,r = {(t, x) : xω − φω,r(t, x′ω) = 0 } ,
where xω = 〈ω, x〉, and x′ω ∈ Rn are projective coordinates along ω. A
normalized wave packet around γ is a function u of the form

u = ε
n−1

4
0 λ

n−7
4 Tλ(vw) ,

where
(i) The function v is simple surface measure on Σω,r ,

v(t, x) = δ(xω − φω,r(t, x′ω)) ,

(ii) The function w has the form

w = w0

(
(ε0λ)

1
2 (x′ω − γ′ω(t))

)
,

where w0(x′) is a smooth function, supported in the set |x′| ≤ 1 , with
uniform bounds on its derivatives

|∂αx′w0(x′)| ≤ cα .

As mentioned above, the small parameter ε0 will play an essential
role in insuring that 2gu not only belongs to L1

tL
2
x, but that it is also of

small norm in this space. It would be possible to replace this by relying
instead on a rescaling argument in (t, x), but that moves the burden to
a different part of the proof. Given ε0, the construction which follows
is of interest only if the frequency λ is large enough, namely if

λ ≥ ε−1
0 .

This is assumed throughout the rest of the paper.

8.2. An estimate for single wave packets. Our first goal is to verify
that a normalized wave packet is an approximate solution to the wave
equation, normalized with respect to the H1 × L2 energy. For a single
wave packet u, this means establishing an L1

tL
2
x estimate on 2gu, which

is fairly straightforward. However, we will later need similar estimates
for square summable superpositions of wave packets, so it is useful to
be more precise at this stage.

We introduce two notations. We use L(u, v) to denote a translation
invariant bilinear operator of the form

L(u, v)(x) =

∫
K(y, z)u(x+ y) v(x+ z) dy dz ,
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where K(y, z) is a finite measure. The particular operator L that arises
in Proposition 8.2 below is fixed, and not dependent on either g or u.

If X is a Sobolev or Hölder space, then we use Xa to denote the same
space but with the norm obtained by dimensionless rescaling by a,

‖u‖Xa = ‖u(a ·)‖X .
We note that, since 2(s− 1) > n− 1 , then for a < 1 we have

‖u‖Hs−1
a (Rn−1) . ‖u‖Hs−1(Rn−1) .

Proposition 8.2. Let u = Tλ(vw) be a normalized wave packet. Then
there is another normalized wave packet ũ, and functions ψm(t, x′ω),
j = 0, 1, 2, so that

2gλSλu = L(dg, dS̃λũ) + ε
n−1

4
0 λ

n−7
4 SλTλ

∑
m=0,1,2

ψm δ
(m)(xω − φω,r) ,

(8.1)

where the functions ψm = ψm(t, x′ω) satisfy the scaled Sobolev estimates

‖ψm‖L2
tH

s−1

a,x′ω
. ε0 λ

1−m , m = 0, 1, 2, a = (ε0λ)−
1
2 .(8.2)

As an immediate consequence, we obtain

Corollary 8.3. Let u be a normalized wave packet. Then

‖dSλu‖L∞t (L2
x) . 1, ‖2gλSλu‖L2

tL
2
x
. ε0 .(8.3)

Proof of Proposition 8.2. For the purpose of this proof we consider the
case ω = (0, 0, . . . , 1), and dispense with the indices ω and r. Then
xω = xn , and x′ω = x′. We write

2gλSλu = λ
n−7

4

(
[2gλ , SλTλ] + SλTλ2gλ

)
(vw) .(8.4)

For the first term, we use the fact that gλ is supported at frequency
≤ λ/8 to conclude that only the frequency λ part of vw is contributing.
Then we can write

[2gλ , SλTλ] = [2gλ , SλTλ] S̃λT̃λ

for some multipliers S̃λ , T̃λ which have the same properties as Sλ , Tλ.
Hence it remains to show that

[2gλ , SλTλ]u = L(dg, du) .

This, however, is a straightforward consequence of the kernel bounds
for SλTλ.
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For the second term in (8.4), we use the Leibniz rule

2gλ(vw) = w2gλv + (gijλ + gjiλ ) ∂iv ∂jw + v2gλw .(8.5)

We consider the three terms separately. In the following computations,
the greek indices take values 0 ≤ α, β ≤ n − 1. We let ν denote the
conormal vector field along Σ , ν = dxn − dφ(t, x′) .

The first term in (8.5). We expand 2glv as a sum of terms

gijλ ∂i∂jv = gijλ νi νj δ
(2)
xn−φ − gαβλ ∂α∂βφ δ

(1)
xn−φ

= gijλ (t, x′, φ) νi νj δ
(2)
xn−φ + 2 (∂ng

ij
λ )(t, x′, φ) νi νj δ

(1)
xn−φ

+ (∂2
ng

ij
λ )(t, x′, φ) νi νj δ

(0)
xn−φ − gαβλ (t, x′, φ) ∂α∂βφ δ

(1)
xn−φ

+(∂ng
αβ
λ )(t, x′, φ) ∂α∂βφ δ

(0)
xn−φ .

Since Σ is characteristic, it follows that gij(t, x′, φ) νi νj = 0. We thus
take

ψ0 = w [(∂2
ng

ij
λ )(t, x′, φ) νi νj + (∂ng

αβ
λ )(t, x′, φ) ∂α∂βφ ] ,

ψ1 = w [2(∂ng
ij
λ )(t, x′, φ) νi νj − gαβλ (t, x′, φ) ∂α∂βφ ] ,

ψ2 = w (gijλ − gij)(t, x′, φ) νi νj .

It remains to verify that the ψm have the appropriate regularity. The
function w is a smooth bump on the (ε0λ)−

1
2 scale, and therefore harm-

less. Also

( gλ , ν , λ
−1dgλ ) ∈ L∞t H

s− 1
2

x′ (Σ) ,

so these factors can also be neglected. The conclusion then follows
from Proposition 5.1 and (5.6).

The second term in (8.5). Let ḡij = 1
2
(gij + gji) . We have

ḡijλ ∂iv ∂jw = νi ḡ
iβ
λ ∂βw δ

(1)
xn−φ

= νi ḡ
iβ
λ (t, x′, φ) ∂βw δ

(1)
xn−φ − νi (∂nḡ

iβ
λ )(t, x′, φ) ∂βw δ

(0)
xn−φ .

Then we take

ψ0 = νi (∂nḡ
iβ
λ )(t, x′, φ) ∂βw , ψ1 = νi ḡ

iβ
λ (t, x′, φ) ∂βw .

For ψ0 we argue as before; differentiating w yields an (ε0λ)
1
2 factor

which is less than the ε0λ we are allowed to lose. The analysis of ψ1

is more delicate; a rough argument yields the same (ε0λ)
1
2 loss, but we

are not allowed to lose anything. The first useful observation is that
we can replace ḡλ by ḡ in ψ1, as the error can be controlled as above.
The second is the fact that

(νi ḡ
iβ)(t, γ(t)) ∂βw = 0 .
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This follows since (1, γ̇(t)) is proportional to (νi ḡ
ij)(t, γ(t)) , by (5.18).

Consequently, we can write

ψ1 =
n−1∑
β=0

[
(νiḡ

iβ)(t, x′, φ)− (νiḡ
iβ)(t, γ(t))

]
∂βw .

Again, the function ∂βw equals (ε0λ)
1
2 times a unit bump on the (ε0λ)−

1
2

scale. Also, the function d(νiḡ
iβ) has norm . ε1 in L2

tH
s−1
x′ (Σ). Then

within the support of w, the above difference has size (ε0λ)−
1
2 ε1 in

L2
tH

s−1
x′ (Σ), which suffices to obtain the desired bound.

The third term in (8.5). This is the easiest one. It only contributes
to ψ0 by

ψ0 = gαβλ (t, x, φ) ∂α∂βw .

The factor gαβλ (t, x, φ(t, x′)) belongs to L∞t H
s− 1

2

x′ (Σ), and is therefore
negligible. Two spatial derivatives of w yield an ε0λ loss, which is
precisely what we are allowed to lose. When differentiating in time we
get smooth unit bumps multiplied by either ε0λ(γ̇)2 , or by (ε0λ)

1
2 γ̈.

Both are acceptable since ‖γ̈‖L2
t
. ε1.

8.3. Superpositions of wave packets. Given an arbitrary initial
data set (u0, u1) in H1 × L2, we will construct in the next section a
square summable superposition of wave packets,

u =
∑
ω,j

aω,ju
ω,j = ε

n−1
4

0 λ
n−7

4 Tλ
∑
ω,j

aω,jv
ω,jwω,j ,

such that the Cauchy data of Sλu at t = −2 equals Sλ(u0, u1) . The
purpose of this section is to obtain estimates on Sλu and 2gSλu, and
so we outline here the important details about the decomposition.

The index ω, which stands for the initial orientation of the wave
packet at t = −2, varies over a maximal collection of approximately

ε
−n−1

2
0 λ

n−1
2 unit vectors separated by at least ε

1
2
0 λ
− 1

2 . For each ω we have
the orthonormal coordinate system (xω, x

′
ω) of Rn, where xω = x · ω,

and x′ω are projective along ω.
Next, we decompose Rn by a parallel tiling of rectangles, with length

(8λ)−1 in the xω direction, and (4ε0λ)−
1
2 in the remaining directions

x′ω. The index j corresponds to a counting of the rectangles in this
decomposition. We let Rω,j denote the collection of the doubles of
these rectangles, and Σω,j will denote the element of the Σω foliation
upon which Rω,j is centered. Distinct Σω,j are thus separated by at
least (8λ)−1 at t = −2, and thus by (9λ)−1 at all values of t, as shown
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in (8.6) below. Let γω,j denote the null geodesic contained in Σω,j which
passes through the center of Rω,j at time t = −2.

We let Tω,j denote the (32λ)−1 neighborhood of the set

Σω,j ∩ { |x′ω − γω,j(t)| ≤ (ε0λ)−
1
2 } .

For each ω the slabs Tω,j satisfy a finite-overlap condition; indeed, slabs
associated to different elements of Σω are disjoint, and those associated
to the same Σω have finite overlap in the x′ω variable, since the flow
restricted to any Σω,r is C1 close to translation. The fixed-time cross
sections T tω,j of a slab are thus C1 close to the translates of the rectangle

Rω,j, but their C2 regularity can be much worse. In particular, the time
sections T tω,j are not necessarily comparable to rectangles.

The wave packets uω,j that arise in the superposition are normalized
wave packets associated to Σω,j and γω,j as in Definition 8.1, with uω,j

supported in Tω,j.
We record here some useful facts about the geometry of slabs. We

first observe that the results of Section 5 imply a crucial result about
the separation of the surfaces Σθ,r as r varies. Precisely, it follows as
a result of the estimates on the null field l following (5.17), and the
estimate (5.22), that

|drθ − (θ · dx− dt)| . ε1 ,

pointwise uniformly over [−2, 2]× Rn . This implies that

|φθ,r(t, x′θ)− φθ,r′(t, x′θ)− (r − r′)| . ε1| r − r′| ,(8.6)

or that the surfaces Σθ,r in the foliation essentially maintain a constant
separation.

This in turn implies Hölder-1
2

bounds on the variation of dφθ,r as r
varies. More precisely, from the estimate (8.6) above and the fact that,
for each fixed t,

‖d2
x′ω
φω,r(t, x

′
ω)− d2

x′ω
φω,r′(t, x

′
ω)‖L∞

x′ω
. ε2 + ρ(t) ,

where ρ(t) = ‖dg(t, · )‖Cδx , we obtain

‖dx′ωφω,r(t, x
′
ω)− dx′ωφω,r′(t, x

′
ω)‖L∞

x′ω
. (ε2 + ρ(t))

1
2 | r − r′|

1
2 .(8.7)

Since dxω − dφω,r is null, and since dg ≤ ρ(t), this also implies Hölder-
1
2

bounds on dφω,r. To put these in the form we need, suppose that

(t, x) ∈ Σω,r and (t, y) ∈ Σω,r′ , that |x′ω − y′ω| ≤ 2 (ε0λ)−
1
2 , and that

| r − r′| ≤ 2λ−1 . Then by (5.18), we have

|lω(t, x)− lω(t, y)| . ε
1
2
0 λ
− 1

2 + ε
− 1

2
0 ρ(t)λ−

1
2 .
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Since γ̇ω = lω , and ‖ρ‖L2
t
. ε0 , it follows that any geodesic in Σω which

intersects a slab Tω,j must then be contained in the similar slab of half
the scale. Alternatively, if (t, x) ∈ Tω,j, where Tω,j is of scale λ, then
Tω,j is contained in the slab of scale λ/4 centered on the geodesic γω
through (t, x). This also shows that the slab Tω,j is comparable to the
image of Rω,j under the geodesic flow tangent to Σω, up to a change in
the scale λ.

We now state the counterpart of Corollary 8.3 for superpositions of
wave packets.

Proposition 8.4. Assume that n ≤ 5. Let

u =
∑
ω,j

aω,ju
ω,j ,

where uω,j are normalized wave packets supported in Tω,j. Then

‖dSλu‖L∞t L2
x
.
(∑

ω,j

a2
ω,j

) 1
2
,(8.8)

‖2gλSλu‖L1
tL

2
x
. ε0

(∑
ω,j

a2
ω,j

) 1
2
.(8.9)

Proof. Instead of (8.8) we prove a weaker estimate, namely

‖dSλu‖L2
tL

2
x
.
(∑

ω,j

a2
ω,j

) 1
2
.(8.10)

This suffices, since (8.8) follows from (8.9) and (8.10) by energy esti-
mates.

The result will follow from certain fixed time orthogonality estimates
for expressions of the form

v = ε
n−1

4
0 λ

n−3
4 Sλ

∑
ω,j

Tλ
(
ψω,jδxω−φω,j(t,x′ω)

)
.

We do this in several steps. The size of ρ(t) = ‖dg(t, · )‖Cδx plays an
essential role in our arguments. We begin with “good” time sections,
namely for which ρ(t) is small.

Lemma 8.5. Let v be as above, and t such that ρ(t) = ‖dg(t)‖Cδx ≤ ε0.
Let 0 < µ < δ. Then

‖v(t)‖2
L2
x
.
∑
ω,j

‖ψω,j(t)‖2

H
n−1

2 +µ
a

, a = (ε0λ)−
1
2 .(8.11)
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Proof. We begin by noting that it suffices to prove the result for a col-
lection of wave packets whose time t sections intersect a fixed cube Q of
size (ε0λ)−

1
2 , since the following argument is easily modified to include

appropriate polynomial weights. Consider one such wave packet uω,j,
which is supported in the slab Tω,j. Since ‖dg(t)‖Cδx ≤ ε0 , it follows that
the characteristic surface Σt

ω,j has the regularity ‖φω,j(t)‖C2+δ
x
. ε0.

Thus the time t section T tω,j of Tω,j is contained within a rectangle Qω,j

of size λ−1 × [(ε0λ)−
1
2 ]n−1. It also follows that the conormal direction

to Σt
ω,j varies at most by ε

1
2
0 λ
− 1

2 within T tω,j.
Within Qω,j we will work with orthonormal coordinates y1, y

′ so that

|dy1 − (dxω − dφω,j)| . ε
1
2
0 λ
− 1

2 , and hence such that Qω,j is contained

in a rectangle { |y1 − c1| . λ−1, |y′ − c′| . (ε0λ)−
1
2 }. The choice of

these coordinates admits the freedom of a O(ε
1
2
0 λ
− 1

2 ) rotation, which we
shall exploit shortly. We claim that in such coordinates the following
estimate holds:

‖Tλ(ψω,j(t)δxω−φω,j(t,x′ω))‖
L2
y1
H
n−1

2 +µ

a,y′
. λ

1
2 ‖ψω,j(t)‖

H
n−1

2 +µ

a,x′ω

(8.12)

for a = (ε0λ)−
1
2 . Assume for the moment that this is true, and let

us see how to conclude the argument. Because of Proposition 6.1 we
know that the angle between two intersecting rectangles Qω,j and Qω′,j′

is comparable to the angle between ω and ω′. Actually, Proposition 6.1
applies to intersecting surfaces, however (8.7) shows that the conormals
to different elements of Σt

ω intersecting the same Qω,j are comparable.
Hence, for each Qω,j the number of the Qω′,j′ ’s which intersect it and

whose conormal direction is at angle less than 10 ε
1
2
0 λ
− 1

2 is bounded
from above by an absolute constant. We now relabel the rectangles

as follows. We choose a collection Ω of directions which are ε
1
2
0 λ
− 1

2

separated on the unit sphere, and to each Qω,j we associate a direction

θ ∈ Ω which is angle at most ε
1
2
0 λ
− 1

2 to dxω − dφω,j . For a fixed θ ∈ Ω
we label the associated Qω,j’s intersecting Q based on their position
with respect to the θ direction, in increments of λ−1 (the thickness of
our rectangles). Thus we may write

{Qω,j : Qω,j ∩Q 6= ∅ } = {Qθ,k; θ ∈ Ω , 1 ≤ k ≤ ε
− 1

2
0 λ

1
2 } .

This is somewhat imprecise in that more than one rectangle may have
the same label θ, k. However, the above argument shows that the num-
ber of such repetitions is bounded from above by an absolute constant,
so we shall neglect it.
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We also use the same association to relabel the functions as follows,

uθ,k = ε
n−1

4
0 λ

n−3
4 Tλ(ψ

ω,jδxω−φω,j) ,

and set

vθ = Sλ
∑
k

uθ,k .

For each θ we fix orthonormal coordinates yθ , y
′
θ with yθ = θ · x . By

combining (8.12) with the λ−1 separation in k, we conclude that

‖vθ‖2

L2
yθ
H
n−1

2 +µ

a,y′
θ

. (ε0λ)
n−1

2

∑
k

‖ψθ,k‖2

H
n−1

2 +µ
a

, a = (ε0λ)−
1
2 .

To sum up the vθ’s we use an orthogonality argument in the frequency
variable. We have, with a = (ε0λ)−

1
2 ,

‖v‖2
L2
x

= ‖Sλ(ξ)
∑
θ∈Ω

v̂θ‖2
L2
ξ

=

∫
S2
λ(ξ)

∣∣∣∑
θ∈Ω

v̂θ
(
1 + a|ξ′θ|

)n−1
2

+µ(
1 + a|ξ′θ|

)−n−1
2
−µ
∣∣∣2dξ

.
∫ (∑

θ∈Ω

∣∣v̂θ(1 + a|ξ′θ|
)n−1

2
+µ∣∣2)S2

λ(ξ)
∑
θ∈Ω

(
1 + a|ξ′θ|

)−(n−1)−2µ
dξ .

However,∥∥v̂θ(1 + a|ξ′θ|
)n−1

2
+µ‖2

L2
ξ

= a
n−1

2 ‖vθ‖2

L2
yθ
H
n−1

2 +µ

a,y′
θ

.
∑
k

‖ψθ,k‖2

H
n−1

2 +µ
a

,

therefore we have

‖v‖2
L2
x
.
∑
θ,k

‖ψθ,k‖2

H
n−1

2 +µ
a

sup
ξ

[
S2
λ(ξ)

∑
θ∈Ω

(
1 + a|ξ′θ|

)−(n−1)−2µ
]
.

To conclude the argument it suffices to verify that the above supremum
is bounded by some absolute constant. This is true because each term
in the sum is essentially concentrated within an (ε0λ)

1
2 neighborhood of

the line with direction θ. At frequency λ these regions are disjoint due

to the ε
1
2
0 λ
− 1

2 angular separation between different directions. Precisely,

S2
λ(ξ)

∑
θ∈Ω

(
1 + a|ξ′θ|

)−(n−1)−2µ
.

∑
k∈Zn−1

(
1 + |k|

)−(n−1)−2µ
. 1 .

It remains to prove (8.12) in the coordinates (y1, y
′) = (yθ, y

′
θ). We

begin by noting that it suffices to prove the bound using the coordinates

y1 = yθ = θ · x , y′ = x′ω ,
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since these have the same level sets yθ = c . We let α′ be the vector
perpendicular to ω such that ω−α′ = |ω−α′| θ . Then, since the angle

of ω − dxφω,j to θ is bounded by ε
1
2
0 λ
− 1

2 , and since both dxφω,j and α′

are perpendicular to ω , it follows that

|α′ − dxφω,j| . ε
1
2
0 λ
− 1

2 ,

uniformly over Qω,j . We now write

xω − φω,j(t, x′ω) = |ω − α′| yθ −
(
φω,j(t, x

′
ω)− α′ · x

)
≡ |ω − α′|

(
y1 − φ(t, y′)

)
,

to see that we are reduced to establishing the bound

‖Tλ(ψ(y′)δy1−φ(y′) )‖
L2
y1
H
n−1

2 +µ

y′,a

. λ
1
2‖ψ‖

H
n−1

2 +µ
a

, a = (ε0λ)−
1
2 ,

where within the support of ψ we have φ ∈ C2+δ , |dφ| . ε
1
2
0 λ
− 1

2 . We
can also subtract a constant from φ to insure that |φ| . λ−1, which
implies that λφ ∈ C2+δ

a , with a as above.
The Fourier transform of ψ(y′) δy1−φ(y′) in the y1 direction equals

ψ eiηφ , therefore it suffices to show that

‖ψ eiηφ‖
H
n−1

2 +µ

y′,a

.
(
1 + λ−1|η|

)N ‖ψ‖
H
n−1

2 +µ
a

.

After rescaling η by λ and y′ by a, we are reduced to verifying that

‖ψeiηφ‖
H
n−1

2 +µ .
(
1 + |η|

)N ‖ψ‖
H
n−1

2 +µ , ‖φ‖C2+δ . 1 .

But

‖eiηφ‖C2+δ .
(
1 + |η|

)2+δ
,

therefore the conclusion follows from the multiplicative estimate

H
n−1

2
+µ · C2+δ ⊂ H

n−1
2

+µ , 0 < µ < δ .

Note that this requires n ≤ 5.

Our next step is to obtain a fixed time estimate for values of t at
which dg is large. The following estimate is a simple variation of the
preceding argument, which unfortunately is useful only when n−1

2
≤ 2,

that is, for dimensions n ≤ 5.

Lemma 8.6. Let v be as above, and t such that ρ(t) = ‖dg(t)‖Cδx ≥ ε0.
Let 0 < µ < δ. Then

‖v(t)‖2
L2
x
. ε

−n−1
2

0 ρ(t)
n−1

2

∑
ω,j

‖ψω,j(t)‖2

H
n−1

2 +µ
a

, a = (ε0λ)−
1
2 .(8.13)
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Proof. If ρ(t) ≥ λ, then the above bound follows from the Schwartz
inequality by noting that, for each fixed ω,∥∥∥Sλ ∑

j

Tλ(ψ
ω,jδxω−φω,j )

∥∥∥2

L2
x

≤ λ
∑
j

‖ψω,j‖2
L2
x′ω
.

This estimate in turn is a simple consequence of the fact that wave
packets on the same Σω,j have finite overlap, together with the fact
that the Σω,j are small C1 perturbations of flat surfaces, with uniform
separation of order λ−1 . We thus subsequently assume that ρ(t) ≤ λ .

By Proposition 5.2, we have ‖d2
xφω,j‖Cδx . ρ(t) . It follows that,

within a cube of size r, the conormal direction to Σt
ω,j varies by at

most ρ(t)r . At frequency scale λ this leads to a frequency spread of
λρ(t)r , which is consistent with a decomposition into cubes of size r
provided that

r = ρ(t)−
1
2λ−

1
2 .

We thus take a partition of unity on each Σt
ω,j over cubes of sidelength

r in x′ω to split

ψω,j =
∑
m

χmψ
ω,j .

Then each term Tλ(χmψ
ω,jδxω−φω,j) is supported in a rectangle Qω,j,m

of dimensions λ−1 × rn−1.
The analogue of (8.12) is the estimate, for a = (ε0λ)−

1
2 and r as

above,

‖Tλ(χmψω,jδxω−φω,j)‖
L2
yθ
H
n−1

2 +µ

r,y′
θ

. λ
1
2‖ψω,j‖

H
n−1

2 +µ
a

,(8.14)

where θ is such that, uniformly over the support of χm,

| θ − (dxω − dxφω,j) | . ρ(t)r = (λr)−1 .

The proof of (8.14) is similar to that of (8.12). Indeed, on the one
hand

‖χmψω,j‖
H
n−1

2 +µ
r

. ‖ψω,j‖
H
n−1

2 +µ
a

,

since r ≤ a . On the other hand, we may work in the coordinates
y1 = yθ , y

′ = x′ω, in which case we may assume that |dxφω,j| . (λr)−1

within the r cube Qr which contains the support of χmψ
ω,j, and after

subtracting a constant that |φω,j| . λ−1. Combined with the relation
|φω,j|C2+δ

x
. ρ(t) = r−2λ−1 this implies

λ‖φ‖C2+δ
r (Qr)

. 1 ,

and the proof of (8.14) proceeds as before.
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At this point we repeat the argument in the proof of Lemma 8.5 to
obtain a square summability result within a cube Qr of size r. For
the most part this requires simply replacing ε0 by ρ(t) in the previous

argument. We take the collection Ωρ(t) of directions to be ρ(t)
1
2λ−

1
2

separated, and consider the collection

{Qθ,k : θ ∈ Ωρ(t) , 1 ≤ k ≤ ρ(t)−
1
2λ

1
2}

of rectangles of size λ−1×rn−1 contained in Qr and with dimension λ−1

in the direction θ. To each Qθ,k we want to associate the truncated wave
packet sections which are supported within it. However, the angles of
the Qθ,k’s are separated on the ρ(t)

1
2λ−

1
2 scale, while the angles of wave

packets are only separated on the ε
1
2
0 λ
− 1

2 . The estimate (8.7) shows that
if two truncated wave packet sections are associated to the same Qθ,k,
then their initial angles ω and ω′ must satisfy

|ω − ω′| . ρ(t)
1
2 λ−

1
2 ,

which implies that eachQθ,k supports approximately ρ(t)
n−1

2 ε
−n−1

2
0 trun-

cated wave packet sections. Hence, we can relabel

{ ε
n−1

4
0 λ

n−3
4 Tλ(χmψ

ω,jδxω−φω,j) : Qω,j,m ∩Qr 6= ∅ } =

{uθ,k,l : θ ∈ Ωρ(t) , 1 ≤ k ≤ ρ(t)−
1
2λ

1
2 , 1 ≤ l ≤ ρ(t)

n−1
2 ε
−n−1

2
0 } .

Denote

uθ,k =
∑
l

uθ,k,l , vθ = Sλ
∑
k

uθ,k , vQr =
∑
θ

vθ .

By (8.14) we have

‖uθ,k,l‖
L2
yθ
H
n−1

2 +µ

r,y′
θ

. ε
n−1

4
0 λ

n−1
4 ‖ψω,j‖

H
n−1

2 +µ
a

, a = (ε0λ)−
1
2 .

Summing over l and using the Cauchy-Schwartz inequality yields

‖uθ,k‖2

L2
yθ
H
n−1

2 +µ

r,y′
θ

. ρ(t)
n−1

2 ε
−n−1

2
0

∑
l

‖uθ,k,l‖2

L2
yθ
H
n−1

2 +µ

r,y′
θ

.

The λ−1 separation in the yθ direction yields

‖vθ‖2

L2
yθ
H
n−1

2 +µ

r,y′
θ

.
∑
k

‖uθ,k‖2

L2
yθ
H
n−1

2 +µ

r,y′
θ

.

Finally, repeating the orthogonality argument in frequency with respect
to θ in the proof of Lemma 8.5 yields

‖vQr‖2
L2
x
. ρ(t)−

n−1
2 λ−

n−1
2

∑
θ

‖vθ‖2

L2
yθ
H
n−1

2 +µ

r,y′
θ

.
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We now combine the last four relations to obtain

‖vQr‖2
L2
x
.

∑
ω,j

Qω,j∩Qr 6=∅

‖ψω,j‖2

H
n−1

2 +µ
a

, a = (ε0λ)−
1
2 .

The above bound also holds with appropriate polynomially growing
weights, so that the vQr may be considered orthogonal for different Qr.
When summing over the different Qr, each wave packet gets counted

ρ(t)
n−1

2 ε
−n−1

2
0 times, therefore we obtain

‖v(t)‖2
L2
x
. ρ(t)

n−1
2 ε
−n−1

2
0

∑
ω,j

‖ψω,j‖2

H
n−1

2 +µ
a

, a = (ε0λ)−
1
2 .

We can now conclude the proof of Proposition 8.4. We begin by
establishing (8.10). If we apply (8.11) and (8.13) with Sλ replaced by
λ−1dxSλ, and ψω,j = aω,jw

ω,j, we get

‖dxSλu(t)‖2
L2
x
.
(

1 + ρ(t)
n−1

2 ε
−n−1

2
0

)∑
ω,j

a2
ω,j .

Since ‖ρ‖L2
t
. ε0 and n ≤ 5, this gives (8.10) for d replaced by dx . To

handle the time derivative of u, we note that we may write

∂tw = γ̇(t) (e0λ)
1
2 w̃ , ∂tδ(xω − φω,j) = ν0 δ

(1)(xω − φω,j) .

The first term is handled as above since γ̇(t) ∈ L∞t and (ε0λ)
1
2 ≤ λ .

The second term will be handled below, noting that the term ν0 is
harmless.

To prove (8.8) we use the representation in (8.1). On the one hand,
by (8.10) we have

‖L(dg, dS̃λũ)‖L1
tL

2
x
. ‖dg‖L2

tL
∞
x
‖dS̃λũ‖L2

tL
2
x
. ε1 .

On the other hand, we can apply (8.11) and (8.13) for the remaining
three right hand side terms in (8.1). If we set

f = ε
n−1

2
0 λ

n−7
4 SλTλ

∑
ω,j

aω,j
∑

m=0,1,2

ψω,jm δ
(m)
xω−φω,j

then

‖f(t)‖2
L2
x
.
(

1 + ρ(t)
n−1

2 ε
−n−1

2
0

)∑
ω,j

a2
ω,j

∑
m=0,1,2

λm−1‖ψω,jm (t)‖2

H
n−1

2 +µ
a

,
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which yields

‖f‖2
L1
tL

2
x
.

(∫
1 + ρ(t)

n−1
2 ε
−n−1

2
0 dt

)

×

(∫ ∑
ω,j

a2
ω,j

∑
m=0,1,2

λ2(m−1)‖ψω,jm (t)‖2

H
n−1

2 +µ
a

dt

)
.

By hypothesis, ‖ρ(t)‖L2
t
. ε0. Combining this with (8.2) we obtain

‖f‖L1
tL

2
x
. ε0

(∑
ω,j

a2
ω,j

) 1
2
,

which concludes the proof of (8.9).

8.4. Matching the initial data. In order to complete the construc-
tion of an approximate solution for the initial value problem, it remains
to verify that the approximate solutions which are superpositions of
wave packets can be chosen so that they match the initial data at time
t = −2. Since the metric g equals the Minkowski metric for times t in
a neighborhood of −2, it actually suffices to work with wave packets
near t = −2 for the Minkowski wave operator, since the definition of a
wave packet, together with the regularity of the Σω,r, show that these
may be continued to wave packets for g up to time t = 2 .

Proposition 8.7. Given any initial data (u0, u1) ∈ H1 × L2, there
exists a function of the form

u =
∑
ω,j

aω,ju
ω,j ,

where the functions uω,j are normalized wave packets, such that

Sλu(−2) = Sλu0 , ∂tSλu(−2) = Sλu1 .

Furthermore ∑
ω,j

a2
ω,j .

(
‖dxu0‖2

L2
x

+ ‖u1‖2
L2
x

)
.

Proof. We consider a maximal collection of unit vectors Ω in Rn with

spacing ε
1
2
0 λ
− 1

2 . Then Ω contains about ε
−n−1

2
0 λ

n−1
2 elements. Without

loss of generality, we may assume that (u0, u1) have Fourier transform
supported in the range λ/4 ≤ |ξ| ≤ 4λ . Via a partition of unity, we
may decompose

u0 =
∑
ω∈Ω

uω0 , u1 =
∑
ω∈Ω

uω1 ,
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where the Fourier transform of uωj is supported in a (4λ)× (4ε
1
2
0 λ

1
2 )n−1

rectangle, with the long direction parallel to ω. The approximate so-
lution to the Minkowski equation with Cauchy data (uω0 , u

ω
1 ) is the

function

uω =
1

2

[
uω0 (x+ tω) + uω0 (x− tω) +(

(ω ·Dx)
−1uω1

)
(x+ tω)−

(
(ω ·Dx)

−1uω1
)
(x− tω)

]
,

which involves wave packets in both the ω and −ω directions. We will
show that we may write the function uω0 (x − tω) as an appropriate
sum of normalized wave packets in the ω direction, which implies the
desired result.

Because of the support condition on ûω0 , we may write uω0 = Tλũ
ω
0 ,

where ũω0 is of comparable L2 norm. We extend the Fourier transform
of ũω0 as a periodic function of period 16πλω, which we also denote by
ũω0 , so that Sλu

ω
0 = SλTλũ

ω
0 . Then ũω0 has the form

ũω0 =
∑
k∈Z

wω,k(x′ω) δxω− k
8λ
,

where the functions wω,k(x′ω) have Fourier transform supported in the

region |ξ′ω| ≤ 4(ε0λ)
1
2 , and satisfy the Plancherel identity∑

k

‖wω,k‖2
L2
x′ω
≈ λ−1‖uω0 ‖2

L2
x
.

We now take a partition of unity on the (ε0λ)−
1
2 scale with respect to

the transversal variables x′ω,

1 =
∑
l

wl(x
′
ω) ,

and set

wω,k,l(x′ω) = wω,k(x′ω)wl(x
′
ω) .

Then ∑
l

‖wω,k,l‖2
L2
x′ω
. ‖wω,k‖2

L2
x′ω
.

As a result of the support property of the Fourier transform of wω,k,
we also obtain∑

l

‖∂αx′ωw
ω,k,l‖2

L2
x′ω
≤ cα(ε0λ)|α|‖wω,k‖2

L2
x′ω
.
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Consolidating the indices k, l into a single index j, we obtain the desired
decomposition

Sλu
ω
0 = SλTλ

∑
j

wω,j(x′ω) δ
xω− k(j)

8λ

.

9. Overlap estimates

An essential role in the proof of Proposition 10.1 is played by an
upper bound estimate on the number of λ-slabs that contain two given
points in space-time. Given two points P1, P2 we denote by Nλ(P1, P2)
the number of λ slabs containing both P1 and P2. In order to obtain
sharp bounds on Nλ(P1, P2) we introduce some additional notation.

We set P1 = (t1, x1), P2 = (t2, x2). Without any restriction in gener-
ality we assume that t1 < t2. We denote by KP1 the forward light cone
starting at P1. The analysis in Section 6 shows that KP1 is smooth;
in addition, by Proposition 6.2, its time t2 section Kt2

P1
is o(|t2 − t1|)-

close in the C1 topology to the sphere of radius t2 − t1 centered at
x1. Changing notation slightly from Section 6, for each θ we let γθ
be the null geodesic contained in Σθ such that γθ(t1) = x1 , and set
Qθ = γθ(t2) ∈ Kt2

P1
.

Let d denote the distance of x2 to the t2 slice of the light cone KP1

centered at P1,

d = inf
ω∈Sn−1

∣∣x2 − γω(t2)
∣∣ .

We use the functions rθ(t, x) defined in Section 4.1, whose level sets
yield the Σθ foliation,

Σθ,r = { (t, x) : rθ(t, x) = r } .

If we work in the null frame {lθ, l θ, ea,θ} associated to Σθ,r , then lθrθ =
ea,θrθ = 0, while

lθ( l θrθ) = [lθ, l θ]rθ =
1

2
〈[lθ, l θ], lθ〉 l θrθ = (lθ lnσθ) l θrθ ,

where the connection coefficient σθ, introduced in Section 5.5, measures
the infinitesimal separation between neighboring surfaces in the Σθ

foliation. As the functions l θrθ and σθ agree at time −2, it follows
that

drθ(t, x) · v = σθ(t, x) 〈lθ(t, x), v〉g(9.1)
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where d denotes the differential in the (t, x) variables. By (6.5), we
have

σθ(t, x) = 1 + o(1) .(9.2)

We next introduce the parameter m defined by

m = max
ω∈Sn−1

rω(P2)− rω(P1) ,

and fix some ω0 at which the maximum occurs. As we prove next, m
plays the role of a signed distance to the cone. Since Kt2

P1
is suitably

close to a sphere, its interior and exterior are well defined.

Lemma 9.1. The parameter m is negative if P2 is inside the light cone
KP1 , and positive if P2 is exterior to KP1. Furthermore, |m| ≈ d.

Proof. (a.) If P2 is on the cone KP1 , then x2 = Qθ for some θ ∈ Sn−1,
which shows that rθ(P2) = rθ(P1). For any other ω ∈ Sn−1, we use
(9.1) to write

rω(P2)− rω(P1) =

∫ t2

t1

σω(s, γθ(s)) 〈lω, lθ〉g ds ≤ 0 .

This shows that m = 0. In addition, the functions rθ are Lipschitz
continuous in x with Lipschitz norm 1 + o(1). This implies that in
general

|m| ≤ (1 + o(1)) d .

(b.) Suppose that P2 is outside KP1 . Choose θ which minimizes the

euclidean distance |−−→Qθx2| of x2 to points on Kt2
P1

. The outer normal di-

rection toKt2
P1

atQθ is o(1)-close to θ, therefore
−−→
Qθx2 = (θ+o(1))|−−→Qθx2|.

Set

µ(s) = s x2 + (1− s)γθ(t2) .

Since rθ(P1) = rθ(t2, Qθ), by (9.1) we compute

rθ(P2)− rθ(P1) =

∫ 1

0

σω(t2, µ(s)) 〈µ̇(s), lθ〉ds

= (1 + o(1)) |−−→Qθx2| ≈ d .

This implies the missing inequality m & d .
(c.) Suppose that P2 is inside KP1 . Then d ≤ (t2− t1) + o(t2− t1). We

choose θ as before, but now we have
−−→
Qθx2 = −(θ+ o(1)) |Qθx2|. Given
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ω ∈ Sn−1 , and µ as before, we write

rω(P2)− rω(P1) =

∫ t2

t1

σω(s, γθ(s)) 〈lω, lθ〉g ds

+

∫ 1

0

σω(t2, µ(s)) 〈µ̇(s), lω〉 ds

= −
(1

2
+ o(1)

)
(t2 − t1)|θ − ω|2 − d (θ · ω + o(1))

≤ −d+ o(d) ,

where we estimated the first integral using (6.1).

We are now ready to state our main result:

Proposition 9.2. For all points P1 = (t1, x1) and P2 = (t2, x2) in
space-time, and ε0λ ≥ 1, the number Nλ(P1, P2) of slabs of scale λ that
contain both P1 and P2 satisfies the bound

Nλ(P1, P2) .


ε
−n−1

2
0 λ

n−1
2 ( 1 + λd )

n−3
2 (1 + λ |t2 − t1| )−

n−1
2 , m ∈ I1

ε
−n−1

2
0 λ

n−1
2 ( 1 + λd )−1 , m ∈ I2

0 , m /∈ I1 ∪ I2

where

I1 =
{
−4λ−1 ≤ m ≤ min ( 2 |t2 − t1| , C ε−1

0 λ−1|t2 − t1|−1 )
}
,

I2 =
{

2 |t2 − t1| ≤ m ≤ C ε
− 1

2
0 λ−

1
2

}
,

and C is a large constant.

Proof. The above result coincides with the estimate that holds in the
constant coefficient case. The challenge in the proof is that the surfaces
we work with are not C2 close to their constant coefficient analogues,
so we need to work only with the aspects of the geometry which we
control.

By the comments following (8.7), if a slab in direction ω contains
both P1 and P2, then the slab centered on γω of scale λ/4 must also

contain P2. Thus we seek to bound the number of ε
1
2
0 λ
− 1

2 balls needed
to cover the set Aλ ⊆ Sn−1 defined by

Aλ =
{
ω : |rω(t2, x2)− rω(t1, x1)| ≤ λ−1, |γω(t2)− x2| ≤ (ε0λ)−

1
2

}
.

For each θ ∈ Aλ, we may choose Q2 ∈ Rn with |Q2 − x2| ≤ 2λ−1, such
that rθ(t2, Q2)− rθ(t1, x1) = 0 , and observe that

Aλ ⊂
{
ω : |rω(t2, Q2)− rω(t1, x1)| ≤ 3λ−1 , |γω(t2)−Q2| ≤ 3(ε0λ)−

1
2

}
.

63



Continuing, we let µθ(s) denote the C1 path for s ∈ [0, 1] contained in
Σt
θ,r, r = rθ(t1, x1), which goes from Qθ = γθ(t2) to Q2, and which is

obtained by projecting the straight line segment
−−−→
QθQ2 onto the surface

Σt
θ,r along the direction θ . We note that

µ̇θ −
−−−→
QθQ2 = o

(
|Qθ −Q2|

)
, θ · −−−→QθQ2 = o

(
|Qθ −Q2|

)
.(9.3)

We now write

rω(t2, Q2)− rω(t1, x1) =∫ t2

t1

σω(s, γθ(s)) 〈lω, lθ〉g ds+

∫ 1

0

σω(t2, µθ(s)) 〈lω, µ̇θ〉g ds .

By (6.2) and (9.2) applied to the first integral, and by (6.1),(9.3), and
〈lθ, µ̇θ〉g = 0 applied to the second integral, we then have

(9.4) rω(t2, Q2)− rω(t1, x1) = −1

2
(t2 − t1) |ω − θ|2 + (ω − θ) · −−−→QθQ2

+ o
(
|t2 − t1| |ω − θ|2

)
+ o
(
|ω − θ| |Qθ −Q2|

)
.

We consider several cases with respect to the values of m and t2 − t1.

Case 1: |m| < −4λ−1. In this case Nλ(P1, P2) = 0.

Case 2: |m| < 4λ−1, (t2 − t1) < 2λ−1. Here we use the trivial bound

Nλ(P1, P2) . ε
−n−1

2
0 λ

n−1
2 .

Case 3: |m| < 4λ−1, (t2 − t1) ≥ 2λ−1. Then by (9.4) it follows that

Aλ ⊂
{
ω : |ω − ω0| ≤ C λ−

1
2 (t2 − t1)−

1
2

}
,

which is covered by ≈ Cn−1ε
−n−1

2
0 (t2 − t1)−

n−1
2 balls of radius ε

1
2
0 λ
− 1

2 .

Case 4: 4λ−1 ≤ m ≤ 2 (t2 − t1) . Then for θ ∈ Aλ, if Q2 is chosen as
above depending on θ, it follows that

max
ω

rω(t2, Q2)− rω(t1, x1) ≈ m,

which by (9.4) implies that

m ≈ |Qθ −Q2|2 (t2 − t1)−1 . ε−1
0 λ−1(t2 − t1)−1 ,

where we are assuming Nλ(P1, P2) 6= 0 to conclude that |Qθ − Q2| ≤
2 ε
− 1

2
0 λ−

1
2 . Since the maximum, up to λ−1, occurs at ω = ω0, it follows

that, for all θ ∈ Aλ,

|θ − ω0| ≈ |Q2 −Qθ| (t2 − t1)−1 ≈ m
1
2 (t2 − t1)−

1
2 .
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We can thus cover Aλ by ≈ c1−n of balls of radius ρ = cm
1
2 (t2− t1)−

1
2 .

Consequently, we are reduced to showing that the intersection of Aλ
with a ball Bρ(θ) of radius ρ, centered on θ ∈ Aλ, can be covered by

the indicated number of balls of radius ε
1
2
0 λ
− 1

2 , for sufficiently small c.
If now θ′ is any point in Bρ(θ) such that rθ′(t1, x1)− rθ′(t2, Q2) = 0,

then applying (9.4) to θ = θ′ yields that, for ω ∈ Bρ(θ),

rω(t2, Q2)− rω(t1, x1) = (ω − θ′) · −−−→Qθ′Q2 + o
(
|ω − θ′| |Qθ′ −Q2|

)
= (ω − θ′) · −−−→QθQ2 + o

(
|ω − θ′| |Qθ −Q2|

)
,

where we use (6.3) in the second step. By the second part of (9.3), it
follows that the set of θ′ ∈ Bρ(θ) for which rθ′(t1, x1)− rθ′(t2, Q2) = 0

forms a graph in the direction
−−−→
QθQ2, with small Lipschitz constant, and

that the set Aλ ∩Bρ(θ) is contained in a neighborhood of this graph of
thickness 4λ−1 |Qθ −Q2|−1 .

We have |Qθ−Q2| ≤ 4 (ε0λ)−
1
2 , since Qθ and x2 are in the same slab,

and hence the thickness is bounded below by ε
1
2
0 λ
− 1

2 . We may therefore

control the number of ε
1
2
0 λ
− 1

2 balls needed to cover Aλ ∩Bρ(θ) by

ε
−n−1

2
0 λ

n−3
2 ρn−2 |Qθ −Q2|−1 ≈ ε

−n−1
2

0 λ
n−3

2 ρn−2 m−
1
2 (t2 − t1)−

1
2 .(9.5)

The result follows since d ≈ m ≥ λ−1, and ρ . m
1
2 (t2 − t1)−

1
2 .

Case 5: 2 (t2− t1) ≤ m, 4λ−1 ≤ m. In this case, |Qθ−Q2| ≈ m for all
θ, which by (9.4) and the second part of (9.3) implies that, for θ ∈ Aλ,
we have |θ−ω0| ≈ 1 . We may thus bound Aλ by ≈ c1−n balls of radius
c, and the proof proceeds as above.

For the proof of the dispersive estimates in the next section we do
not need the full strength of Proposition 9.2. Instead, it suffices to
consider the worst case for fixed t1, t2. This happens if |m| ≤ 4λ−1

for n = 2, if −4λ−1 ≤ m ≤ 2(t2 − t1) . (ε0λ)−
1
2 for n = 3, and if

m ≈ 2(t2 − t1) . (ε0λ)−
1
2 for n ≥ 4. We obtain

Corollary 9.3. For all points P1 = (t1, x1) and P2 = (t2, x2) in space-
time, and ε0λ ≥ 1, the number Nλ(P1, P2) of slabs of scale λ that
contain both P1 and P2 satisfies the bound

Nλ(P1, P2) . ε
−n−1

2
0 λ

n−3
2 |t1 − t2|−1 , n ≥ 3 ,

Nλ(P1, P2) . ε
− 1

2
0 |t1 − t2|−

1
2 , n = 2 .

Another variation on the same theme is required for the proof of the
two dimensional stability estimates in the Appendix.
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Corollary 9.4. Set n = 2. Let P1 = (t1, x1), and let Qt2
R be a square

at time t2, of sidelength R, with R� (ε0λ)−
1
2 . Then

Nλ(P1, Q
t2
R) . ε

− 1
2

0 |t1 − t2|−
1
2 (1 + λR)

1
2 .

Proof. The result is trivial if |t1 − t2| . λ−1, or if |t1 − t2| . R. Hence
assume that R + λ−1 � |t1 − t2|.

Case 1. If the distance d between Qt2
R and Kt2

P1
is at least R, then we

consider a set of points P j
2 spaced by (4λ)−1 on the boundary of R. The

slabs have thickness λ, so each slab intersecting Qt2
R must also contain

at least one of the points P j
2 . Since there are ≈ λR such points, using

Proposition 9.2 we obtain

Nλ(P1, Q
t2
R) ≤

∑
j

Nλ(P1, P
j
2 ) . λR ε

− 1
2

0 λ
1
2 (1 + λd)−

1
2 . ε

− 1
2

0 λ
1
2 (λR)

1
2 ,

which is stronger than we need.

Case 2. If the distance between Qt2
R and Kt2

P1
is at most R then 4Qt2

R

and Kt2
P1

intersect. Fix Qθ in the intersection. Then any slab through

P1 which intersects Qt2
R must have direction ω with |ω − θ| ≤ c , for

some small c. We take the line L through Qθ and of direction θ, and a
(4λ)−1 spaced set {P j

2}|j|≤32λR on L extending 8R on both sides of Qθ.

If a slab through P1 intersects Qt2
R , then the slab with ε0 replaced by

ε0/2 must contain at least one of the points P j
2 . Since P j

2 is at distance
d ≈ jλ−1 from the cone section Kt2

P1
, we can again use Proposition 9.2

to compute

Nλ(P1, Q
t2
R) ≤

∑
|j|≤32λR

Nλ(P1, P
j
2 )

.
∑

|j|≤32λR

ε
− 1

2
0 λ

1
2 (1 + λ|t1 − t2|)−

1
2 (1 + j)−

1
2

. ε
− 1

2
0 λ

1
2 (1 + λ|t1 − t2|)−

1
2 (1 + λR)

1
2 .

10. Dispersive estimates

Our proof of the dispersive estimates for the parametrix (7.2) uses
only pointwise bounds on the wave packets, not their oscillation. Since

normalized wave packets have size at most O
(
ε
n−1

4
0 λ

n−3
4

)
, the estimate

(7.2) is a consequence of the following result.
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Proposition 10.1. Let

u =
∑
T∈T

aTχT ,

where
∑

T a
2
T ≤ 1. Then

‖u‖L4
t (L
∞
x ) . ε

− 1
4

0 (lnλ)2 , n = 2 ,

‖u‖L2
t (L
∞
x ) . ε

−n−1
4

0 λ
n−3

4 (lnλ)3 , n ≥ 3 .

Proof. Case 1: n = 2. We consider λ points Pj = (tj, xj), where the
tj are separated by λ−1, but with xj arbitrarily chosen. Then we need
to show that ∑

j

|u(tj, xj)|4 . ε−1
0 λ(log λ)2 .

We may assume that |aT | ≥ ε
1
2λ−

1
2 , since each point lies in at most

≈ ε−
1
2λ

1
2 slabs. We then decompose the sum u =

∑
aTχT dyadically

with respect to the size of aT . It thus suffices to prove the result, with
(log λ)2 replaced by log λ, in the case that we have a sum over exactly

N slabs T ∈ TN for which |aT | ≈ N−
1
2 .

We next decompose the sum over j via a dyadic decomposition in
the number of slabs containing (tj, xj). We may assume that we are
summing over M points (tj, xj), each of which is contained in approx-

imately L slabs. Then |u(tj, xj)| . N−
1
2L and∑

j

|u(tj, xj)|4 . L4MN−2 .

Hence, to conclude, we need to prove that

L4M . ε−1
0 λN2 .(10.1)

This is a counting problem, which we will solve by evaluating in two
different ways the number K of pairs (i, j) for which Pi and Pj are
contained in a common slab, counted with multiplicity. For T ∈ TN ,
we denote by nT the number of points Pj contained in T . Then

K ≈
∑
nT≥2

n2
T & N−1

( ∑
nT≥2

nT

)2

.
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Note that
∑

T∈TN nT ≈ML. We consider two cases. If∑
nT≥2

nT ≤
∑
nT=1

nT ,

then N ≈ ML. Combined with the trivial bound L . ε
− 1

2
0 λ

1
2 , this

directly gives (10.1). Otherwise, we have the following lower bound,

K & N−1M2L2 .(10.2)

On the other hand, by Corollary 9.3, the number of slabs which contain

both (ti, xi) and (tj, xj) is dominated by ε
− 1

2
0 |ti − tj|−

1
2 . Hence

K . ε
− 1

2
0

∑
1≤i,j≤M

i6=j

|ti − tj|−
1
2 .

The sum is maximized in case the tj are as close as possible, that is, if
the tj are consecutive multiples of λ−1. Thus,

K . ε
− 1

2
0 λ

1
2

∑
1≤i,j≤M

i6=j

|i− j|−
1
2 . ε

− 1
2

0 λ
1
2M

3
2 .(10.3)

Combining (10.2) and (10.3) yields (10.1).

Case 2: n ≥ 3. We proceed in a similar way, with the same notation.
We need to prove that∑

j

|u(tj, xj)|2 . ε
−n−1

2
0 λ

n−1
2 (log λ)3 .

We make similar decompositions of the sums as for n = 2. Then, since∑
j

|u(tj, xj)|2 ≈ L2MN−1 ,

it remains to prove that

L2M . ε
−n−1

2
0 λ

n−1
2 N log λ .(10.4)

As above, there are two cases to consider: either N ≈ ML, or the
estimate (10.2) holds. In the first case, (10.4) follows from the trivial

bound L . ε
−n−1

2
0 λ

n−1
2 . In the second case, we have the following

substitute for (10.3),

K . ε
−n−1

2
0 λ

n−1
2

∑
1≤i,j≤M

i6=j

|ti − tj|−1 .Mε
−n−1

2
0 λ

n−1
2 log λ .

Together with (10.2) this yields (10.4).
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Appendix A. The stability estimates in 2 + 1 dimensions

The aim of this section is to establish the n = 2 part of Lemma 2.4,
namely the estimate (2.11). This turns out to be considerably more
difficult than the higher dimensional estimate. On the positive side,
the proof uses a type of estimate which has not previously played a
role in the study of quasi-linear hyperbolic equations.

The crux of the problem is the need for improved low frequency
estimates for the product of two high frequency waves. Such estimates
are known to be true in the constant coefficient case, see [12]. In our
case, the line of argument in [12] appears hopeless. Furthermore, we
need such estimates in a context where the two factors solve different
wave equations. This motivates us to think of the bilinear estimates as
a byproduct of certain multiscale linear estimates.

To describe our results, we first introduce the appropriate function
spaces. Given µ ≥ 1, we decompose the space-time into cubes of
sidelength µ−1, and introduce the notation

lplq(LrLs)µ = lpt l
q
x(L

r
tL

s
x)µ ,

where the LrtL
s
x norm is evaluated within each µ−1 cube, and the lpt l

q
x

norm is then taken with respect to the collection of such cubes. Our
main estimate has roughly the form

‖〈Dx〉
1
2v‖

l
16
5 l∞(L16L2)µ

. µ−
1
2

(
‖dv(0)‖L2

x
+ ‖2gv‖L1

tL
2
x

)
.

The indices can be improved in the constant coefficient case, but the
above suffices for our purposes. Similar estimates also hold in higher
dimensions, and are in fact easier to prove. The 2 + 1 dimensional case
has certain unique features which make it more delicate.

The plan of this appendix is as follows. In A.1 we obtain localized
energy estimates on intermediate scales between λ−1 and λ−

1
2 . This

is combined in section A.2 with the modified overlap result in Corol-
lary 9.4 to show that our frequency localized parametrix satisfies the
new estimates. These are then extended to the exact solutions in A.3,
which also contains the crucial H

3
4 × H−

1
4 well-posedness result for

the linear equation. Finally, in A.4, we use these estimates to prove
the stability result (2.11). To keep the notation simple we neglect the
parameter ε0, which is irrelevant for the arguments here.

A.1. Localized energy estimates. In this section we prove an en-
ergy estimate for superpositions of wave packets restricted to smaller
cubes. Let λ−1 ≤ R ≤ λ−

1
2 . We seek an L2

x estimate for a superposi-
tion of λ-wave packets in a cube QR of size R. We denote by Tλ the
family of λ-slabs introduced in section 8.4, and by Tλ(QR) the subset
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of λ-slabs which intersect QR. By Proposition 6.1, if two characteristic
surfaces Σω1,r1 and Σω2,r2 pass within distance λ−1 at some point in QR,
then their respective intersections with QR remain within distance λ−1

of each other, provided that |ω1− ω2| ≤ (λR)−1 . Consequently, two λ-
slabs which intersect within QR have essentially the same intersection
with QR provided that their initial angles differ by less then (λR)−1.
This motivates a decomposition

Tλ(QR) = ∪j∈JT jλ (QR)

where for each j ∈ J , T jλ (QR) contains a family of slabs which inter-
sect within QR and which have initial angle less than (λR)−1 from each
other. The number of distinct groups needed is |J | ≈ λ2R2, and each

T jλ (QR) contains about λ−
1
2R−1 slabs. Furthermore, for any given an-

gle, the subcollection of T jλ (QR) with that initial angle has the finite
overlap property.

Lemma A.1. Let χQR be a smooth cutoff to QR, and let uT be a family
of normalized wave packets associated to T ∈ Tλ. Then

‖ dSλ
∑
T∈Tλ

χQRaTuT ‖2
L2
x
. ρ(t)

1
2 R2 λ

∑
j

( ∑
T∈T jλ (QR)

|aT |
)2

,(A.1)

where

ρ(t) = max{ ‖dg(t)‖L∞x , R
−2λ−1 } .

Proof. We use the same computation as in the proof of Lemma 8.6 but
with ρ(t) chosen as above. This guarantees that the decomposition
scale r satisfies

r = ρ(t)−
1
2λ−

1
2 . R .

Within a sub-cube Qr of size r, the argument in the proof of Lemma 8.6
shows that we have almost orthogonality for angles which are at least
(λr)−1 = ρ(t)

1
2λ−

1
2 separated. More precisely, we have

‖ dSλ
∑
T∈Tλ

χQraTuT ‖2
L2
x
. r λ

1
2

∑
j

( ∑
T∈T jλ (Qr)

|aT |
)2

,

where the factor rλ
1
2 represents the square L2

x norm of the gradient of
a normalized wave packet in an r cube. Each set T jλ (Qr) has elements

T in common with at most Rr−1 sets T jλ (QR). Hence, an application
of the Schwarz inequality yields

‖ dSλ
∑
T∈Tλ

χQraTuT ‖2
L2
x
. Rλ

1
2

∑
j

( ∑
T∈T jλ (QR)
T∩Qr 6=∅

|aT |
)2

.

70



To conclude, we sum over a grid of r-cubes in QR. Each T ∈ T jλ (QR)
intersects at most Rr−1 cubes Qr, hence

‖ dSλ
∑
T∈Tλ

χQRaTuT ‖2
L2
x
. R2 r−1 λ

1
2

∑
j

( ∑
T∈T jλ (QR)

|aT |
)2

.

The conclusion follows now since

R2 r−1 λ
1
2 = ρ(t)

1
2 R2 λ .

A.2. Dispersive estimates. The dispersive/energy estimate we es-
tablish here is

Lemma A.2. For T ∈ Tλ we consider a family uT of normalized wave
packets. Then

‖ dSλ
∑
T∈Tλ

aTuT‖l 16
5 l∞(L16L2)µ

. (log λ)3λ
1
2µ−

1
2

(∑
T∈Tλ

|aT |2
) 1

2
.(A.2)

Proof. The result is a straightforward consequence of the energy esti-
mates if µ ≤ λ

1
2 , and of the dispersive estimates in Proposition 10.1 if

λ ≤ µ. Hence in what follows we assume that λ
1
2 ≤ µ ≤ λ.

We select a family of µ−1 space-time cubes {Qk
µ}k=1,µ which are µ−1

equidistant in time but arbitrarily chosen spatially. We denote by Ik the
corresponding time sections. Within each Qk

µ we choose an arbitrary

time section Qk,tk
µ at time tk. We claim that the following estimate

holds:

[∑
k

(∑
j

( ∑
T∈T jλ (Q

k,tk
µ )

|aT |
)2 )2

] 1
4

. (log λ)3 λ
1
4

( ∑
T∈Tλ

|aT |2
) 1

2
.(A.3)

We postpone for now the proof of (A.3) and instead show that,
together with (A.1), it implies (A.2).

Within each section Qk,t
µ we apply (A.1) with R = µ−1 to obtain

‖ dSλ
∑
T ∈Tλ

χQkµaTuT (t)‖2
L2
x
. ρ(t)

1
2µ−2λ

∑
j

( ∑
T∈T jλ (Qk,tµ )

|aT |
)2

,

where

ρ(t) = max{ ‖dg(t)‖L∞ , µ2λ−1 } .
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Integrating over t, this yields

‖ dSλ
∑
T∈Tλ

χQkµaTuT‖L16
t L

2
x
.

‖ρ‖
1
4

L4
t (Ik)

µ−1 λ
1
2

(
sup
t∈Ik

∑
j

( ∑
T∈T jλ (Qk,tµ )

|aT |
)2 ) 1

2
.

We sum over k and apply Hölder’s inequality to yield

(∑
k

‖ dSλ
∑
T∈Tλ

χQkµaTuT‖
16
5

L16
t L

2
x

) 5
16
.

‖ρ‖
1
4

L4
t
µ−1 λ

1
2

[∑
k

(
sup
t∈Ik

∑
j

( ∑
T∈T jλ (Qk,tµ )

|aT |
)2 )2

] 1
4

.

Since dg ∈ L4
tL
∞
x , it follows that ‖ρ(t)‖L4

t
. µ2λ−1. To conclude, we

observe that we may bound the quantity

sup
Qµ

‖ dSλ
∑
T∈Tλ

aTuT‖L16
t L

2
x(Qµ)

taken over cubes Qµ belonging to the same time slice Ik, by an expres-
sion of the form

sup
Qµ

‖ dSλ
∑
T∈Tλ

χQµaTuT‖L16
t L

2
x
,

taken over the same cubes, since inserting an appropriate polynomially
growing weight leaves such an expression unchanged. Thus, the last
inequality combined with (A.3) implies (A.2).

It remains to prove (A.3). We begin by partitioning the initial angles
into sectors of size λ−1µ, and take a corresponding partition of Tλ,

Tλ =
⋃
ω

T ωλ .

For each j, k, t the set T jλ (Qk,t
µ ) consists of packets with initial angles

within λ−1µ of each other, therefore it is contained in finitely many
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T ωλ ’s. Then[∑
k

(∑
j

( ∑
T∈T jλ (Q

k,tk
µ )

|aT |
)2)2

] 1
2

.

[∑
k

(∑
ω

∑
j

( ∑
T∈T ωλ ∩T

j
λ (Q

k,tk
µ )

|aT |
)2)2

] 1
2

.
∑
ω

[∑
k

(∑
j

( ∑
T∈T ωλ ∩T

j
λ (Q

k,tk
µ )

|aT |
)2)2

] 1
2

which implies that (A.3) can be reduced to the case where all slabs
are contained in a single T ωλ . The advantage of this reduction is that
the intersections of such slabs with the sections Qk,tk

µ are easier to

describe. To describe their intersections, we use a λ−1 spaced subset of
the foliation Σω to decompose each set Qk,tk

µ into approximately µ−1λ
curved rectangles, which we call leafs. Any slab in T ωλ can intersect
at most a bounded number of leafs, and so there is essentially a 1-1
correspondence between the sets T ωλ ∩ T

j
λ (Qk,tk

µ ) which are nonempty,

and the leafs of Qk,tk
µ .

We are now in a position to use an argument similar to that in the
proof of Proposition 10.1. By taking successive decompositions of the
index sets for T , j, and k, with at most (log λ)3 terms in all, we may
reduce to the case that in the sum there are

- N slabs in T ωλ , for which aT = 1,

- each leaf in the sum is intersected by about L slabs,

- each section Qk,tk
µ contains roughly P leafs,

- there are a total of M sections Qk,tk
µ .

Then (A.3) reduces to the estimate

MP 2L4 . λN2 .(A.4)

We index the chosen slabs by s, the chosen leafs by `, and set
χ(s, `) = 1 if s intersects `, and χ(s, l) = 0 otherwise. Set

K(`) =
∑
s

χ(s, l)
∑
`′

χ(s, `′) , K =
∑
`

K(`) .

Thus, K(`) is the number of leafs, including `, which can be reached
from ` by the selected slabs, counted with multiplicity.

Since there are MP indices ` and N indices s, an application of the
Schwarz inequality yields the lower bound

K & N−1(MPL)2 .
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Hence it remains to establish the upper bound

K .M
3
2Pλ

1
2 ,

for which it suffices to show that, for each `,

K(`) .M
1
2λ

1
2 .

Given a leaf `, we fix a point P0 = (t0, x0) ∈ `. Then if a chosen slab
s intersects `, since we are restricting ourselves to slabs within angle
µλ−1 of ω, it follows that the slab of half the frequency must contain
P0. Thus, we need show that

K(P0) .M
1
2λ

1
2 ,

where K(P0) has the obvious definition. At this point, we recall Corol-
lary 9.4, which says that the number of slabs which intersect both P0

and the µ−1 square time section Qk,tk
µ at time tk is at most

K(P0, Q
k,tk
µ ) . min

[
λ

1
2 ,

µ
1
2λ

1
2

(t0 − tk)
1
2

]
.

Since each slab passes through at most a fixed number of leafs in any
given Qk,tk

µ , and since the time slices are spaced by µ−1, it follows that

K(P0) .
M∑
k=1

µ
1
2λ

1
2

(t0 − tk)
1
2

. λ
1
2

M∑
k=1

k−
1
2 ≈ λ

1
2M

1
2 .

A.3. Linear local well-posedness. Here we improve the Sobolev
well-posedness range in Proposition 7.1 for the linear equation 2gv = 0 in [−T, T ]× R2

v(t0) = v0, ∂tv(t0) = v1 ,
(A.5)

and complement it with the new dispersive/energy estimates.
We assume that u is the smooth solution on [−T, T ] × R2 to the

equation

2g(u)u = qij(u) ∂iu ∂ju

produced in the proof of Proposition 2.1. We first show that for this
solution we may strengthen the condition (WP4) to the following result.

Lemma A.3. For 3
4
≤ r ≤ s + 1, the equation (A.5) with g = g(u) is

well-posed in Hr ×Hr−1, and the following estimates hold:

‖v‖L∞t Hr
x

+ ‖∂tv‖L∞t Hr−1
x
. ‖(v0, v1)‖Hr×Hr−1 ,
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‖〈Dx〉ρv‖L4
tL
∞
x

+ ‖〈Dx〉ρ−1dv‖L4
tL
∞
x
. ‖(v0, v1)‖Hr×Hr−1 , ρ < r − 3

4
,

‖〈Dx〉ρdv‖l 16
5 l∞(L16L2)µ

. µ−
1
2 ‖(v0, v1)‖Hr×Hr−1 , ρ < r − 3

2
.

Proof. We will prove the result for T = 1 with g replaced by g. The
arguments of section 3 then yield the result as stated.

By (A.2), we know that the desired estimates hold for our frequency
localized parametrix, so it remains to show that they hold for the actual
solution v. In the range 1 ≤ r ≤ s + 1, the arguments in the proof of
Proposition 7.1 apply with virtually no change. Hence we only need to
consider the case 3

4
≤ r < 1, which we illustrate in the case r = 3

4
.

We set w = 〈Dx〉−
1
4v. Then w must solve

2gw = [ g − 〈Dx〉−
1
4 g〈Dx〉

1
4 ] dxdw .(A.6)

We solve this equation with Cauchy data 〈Dx〉−
1
4 (v0, v1) by using the

r = 1 local well-posedness result combined with a fixed point argument.
Given F ∈ L1

tL
2
x, we let wf denote the unique solution to the equation

2gwF = F

with Cauchy data 〈Dx〉−
1
4 (v0, v1) , and we set

LF = B(g, dwF ) = [ g − 〈Dx〉−
1
4 g〈Dx〉

1
4 ] dxdwF .

If F is a fixed point for L, then wF solves (A.6). We find F using the
contraction principle. For this it suffices to prove the estimate

‖LF‖L2
tL

2
x
. ε0

(
‖(v0, v1)‖

H
3
4×H

1
4

+ ‖F‖L1
tL

2
x

)
.(A.7)

To prove (A.7), we use the bounds for w which follow from the r = 1
case of Lemma A.3 combined with Duhamel’s formula, namely that the
quantity

‖dw‖L∞t L2
x

+ ‖〈Dx〉−
3
4
−δdw‖L4

tL
∞
x

+ µ
1
2‖〈Dx〉−

1
2
−δdw‖

l
16
5 l∞(L16L2)µ

for any δ > 0 is bounded by the quantity

‖(v0, v1)‖
H

3
4×H−

1
4

+ ‖F‖L1
tL

2
x
.

For g, on the other hand, we use the bounds for λ > 1,

‖dg‖L4
tC

δ
x∩L∞t H

s−1
x
. ε0 , ‖Sλg‖l∞l2(L∞L2)µ . ε0 λ

−s .

The second bound is a consequence of energy estimates and finite prop-
agation velocity arguments applied to Sλg.
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We take a paradifferential decomposition of LF ,

LF =
∑
λ

B(S<λg, SλdwF ) +B(Sλg, S<λdwF ) +B(Sλg, SλdwF ) .

The first term is localized at frequency λ, and we can bound the sum
in L2

tL
2
x using orthogonality over λ together with the fixed time com-

mutator estimate,

‖B(S<λg, SλdwF )(t)‖L2
x
. ‖dg(t)‖L∞x ‖SλdwF (t)‖L2

x
.

The second term is also localized at frequency λ, but this time there is
no gain from the commutation. Instead, the two components of B are
estimated separately at fixed time, to obtain

‖B(Sλg, S<λdwF )(t)‖L2
x
. ‖Sλdg(t)‖Hs−1‖〈Dx〉−

3
4
−δwF (t)‖L∞x .

For the third term, one handles the case λ = 1 as for the first term.
For λ > 1, there is again no gain from the commutation, and we handle
the two components of B separately. The first component is easy to
estimate,∑

λ

‖(Sλg)(SλdxdwF )(t)‖L2
x
. ‖dg(t)‖Cδx ‖dwF (t)‖L2

x
.

The second component, 〈Dx〉−
1
4 (Sλg)〈Dx〉

1
4dxSλdwF , is the term which

causes the most difficulties. Because the product of two frequency λ
functions contributes to all lower frequencies, we need a better estimate
due to the 〈Dx〉−

1
4 operator. We first bound

‖〈Dx〉−
1
4 (Sλg)〈Dx〉

1
4dxSλdwF‖L2

tL
2
x

.
∑
µ.λ

|µ|−
1
4 ‖Sµ [(Sλg)〈Dx〉

1
4dxSλdwF ]‖L2

tL
2
x

≈
∑
µ.λ

|µ|−
1
4 ‖Sµ [(Sλg)〈Dx〉

1
4dxSλdwF ]‖l2l2(L2L2)µ .

Since Sµ is mollification on the µ−1 scale, we may use the Young and
Hölder inequalities to bound this by∑

µ.λ

|µ|
1
2‖(Sλg)〈Dx〉

1
4dxSλdwF‖l 16

5 l2(L16L1)µ
.
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The Hölder inequality is now used to bound this by∑
µ.λ

|µ|
1
2‖Sλg‖l∞l2(L∞L2)µλ

5
4‖SλdwF‖l 16

5 l∞(L16L2)µ

.
∑
µ.λ

λ
7
4

+δ‖Sλg‖l∞l2(L∞L2)µ |µ|
1
2 ‖〈Dx〉−

1
2
−δdwF‖l 16

5 l∞(L16L2)µ
.

The desired bound now follows.

A.4. Stability estimates. Here we prove the two dimensional sta-
bility estimate in Lemma 2.4 which for convenience we restate be-
low. We prove stability under stronger conditions than those stated
in Lemma 2.4, but the existence of the stronger solution shows that
Lemma 2.4 can be used as stated.

Lemma A.4. Let u be a solution to (1.1) and (1.2) on [−T, T ] × R2

which satisfies the conditions (WP3) and (WP4), as well as the con-
clusion of Lemma A.3. Let v be another solution to the equation (1.1)
with initial data (v0, v1) ∈ Hs×Hs−1, such that dv ∈ L∞t Hs−1

x ∩L2
tL
∞
x .

Then

‖d(u− v)‖
L∞t H

− 1
4

x

≤ Cv ‖(u0 − v0, u1 − v1)‖
H

3
4×H−

1
4
,(A.8)

where Cv depends on u and on ‖dv‖L∞t Hs−1
x ∩L2

tL
∞
x

.

Proof. The function w = u− v solves the equation

2g(u)w = a0 dw + a1 w ,(A.9)

where the functions a0 and a1 are of the form

a0 = q(v) d(u, v) , a1 = a(u, v) dxdv + b(u, v) (du)2 .

To show that (A.9) is well-posed in H
3
4 ×H− 1

4 , we use the conclusion
of Lemma A.3, together with a fixed point argument based on the

Duhamel principle. Given F ∈ L1
tH
− 1

4
x , we denote by wF the unique

solution to the equation

2g(u)wF = F ,

with Cauchy data (w0, w1), and we set

LF = a0 dwF + a1wF .

If F is a fixed point for L then wF solves (A.9). The uniqueness of this
fixed point, together with the easily verified condition that, for u and
v as given, we have

a0 d(u− v) + a1 (u− v) ∈ L∞t H
− 1

4
x ,
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will show that w must coincide with wF .

To show that L is a contraction on L1
tH
− 1

4
x , it suffices to show that

‖LF‖
L2
tH
− 1

4
x

. ‖(w0, w1)‖
H−

3
4×H−

1
4

+ ‖F‖
L1
tH
− 1

4
x

.(A.10)

We denote

M = ‖(w0, w1)‖
H−

3
4×H−

1
4

+ ‖F‖
L1
tH
− 1

4
x

.

By the conditions of Lemma A.3 and the Duhamel principle, we have

‖dwF‖
L∞t H

− 1
4

x

+ ‖〈Dx〉−1−δ′dwF‖L4
tL
∞
x
.M ,

sup
µ

µ
1
2‖〈Dx〉−

3
4
−δ′dwF‖l 16

5 l∞(L16L2)µ
.M ,

for each δ′ > 0. On the other hand, for a0 and a1 we have the estimates

a0 ∈ L2
tL
∞
x ∩ L∞t H

3
4

+δ
x , a1 ∈ L∞t H

− 1
4

+δ
x ∩ dxL2

tL
∞
x .

In addition, we have the localized energy bounds

λ
3
4

+δ‖Sλa0‖l∞l2(L∞L2)µ + λ−
1
4

+δ‖Sλa1‖l∞l2(L∞L2)µ . Cv

as a consequence of the Sobolev bounds for u and v and finite propa-
gation velocity.

We estimate LF using a paraproduct decomposition on each fixed
time slices. We consider the term a0 dwF ; the estimate for the second
term is similar. Taking the paraproduct decomposition (see Bony [4],
or also Taylor [24], chapter 3), we write

a0 dwF = Ta0dwF + TdwF a0 +R(a0, dwF ) .

The first two terms are easy to estimate:

‖Ta0dwF (t)‖
H−

1
4
. ‖dwF (t)‖

H−
1
4
‖a0(t)‖L∞ ,

respectively

‖TdwF a0(t)‖
H−

1
4
. ‖a0(t)‖

H
3
4 +δ‖〈Dx〉−1−δdwF (t)‖L∞ .

It is more difficult to estimate the remainder

R(a0, dwF ) ≈
∑
λ

(Sλa0)(SλdwF ) .
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As in the proof of Lemma A.3, we used the improved bound on µ-cubes
for µ . λ . We first bound

‖〈Dx〉−
1
4 (Sλa0)(SλdwF )‖L2

tL
2
x

.
∑
µ.λ

|µ|−
1
4 ‖Sµ [(Sλa0)(SλdwF )]‖L2

tL
2
x

≈
∑
µ.λ

|µ|−
1
4 ‖Sµ [(Sλa0)(SλdwF )]‖l2l2(L2L2)µ .

Since Sµ is mollification on the µ−1 scale, we may as before use the
Young and Hölder inequalities to bound this by∑
µ.λ

|µ| 12 ‖(Sλa0)(SλdwF )‖
l
16
5 l2(L16L1)µ

.
∑
µ.λ

|µ|
1
2 ‖Sλa0‖l∞l2(L∞L2)µ‖SλdwF‖l 16

5 l∞(L16L2)µ

.
∑
µ.λ

λ
3
4

+δ′‖Sλa0‖l∞l2(L∞L2)µ |µ|
1
2 ‖〈Dx〉−

3
4
−δ′dwF‖l 16

5 l∞(L16L2)µ

. λδ
′−δ (log λ)M .
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