SHARP LOCAL WELL-POSEDNESS RESULTS FOR
THE NONLINEAR WAVE EQUATION

HART SMITH AND DANIEL TATARU

ABSTRACT. This article is concerned with local well-posedness of
the Cauchy problem for second order quasilinear hyperbolic equa-
tions with rough initial data. The new results obtained here are
sharp in low dimension.

1. INTRODUCTION

1.1. The results. We consider in this paper second order, nonlinear
hyperbolic equations of the form

(1.1) 8" (u) %;0;u = ¢" (u) Oyu dju
on R x R™, with Cauchy data prescribed at time 0,
(1.2) u(0,2) = up(x), Oou(0, ) = uy(z) .

The indices ¢ and j run from 0 to n, with the index 0 correspond-
ing to the time variable. The symmetric matrix g(u) and its in-
verse g;;(u) are assumed to satisfy the hyperbolicity condition, that is,
have signature (n,1). The functions g¥ , g;; and ¢* are assumed to be
smooth, bounded, and have globally bounded derivatives as functions
of u. To insure that the level surfaces of ¢ are space-like we assume
that g = —1. We then consider the following question:

For which values of s is the problem (1.1) and (1.2) locally
well-posed in H® x HS™1 ?

In general, well-posedness involves existence, uniqueness and contin-
uous dependence on the initial data. Naively, one would hope to have
these properties hold for solutions in C(H*)NCY(H*™1), but it appears
that there is little chance to establish uniqueness under this condition
for the low values of s that we consider in this paper. Our definition of
well-posedness thus includes an additional assumption on the solution

Date: February 6, 2002.

Research partially supported by NSF grant DMS-9970407.

Research partially supported by NSF grant DMS-9970297.
1



u to insure uniqueness, while also providing useful information about
the solution.

Definition 1.1. We say that the Cauchy problem (1.1) and (1.2) is
locally well-posed in H*® x H5~' if, for each R > 0, there exist constants
T, M,C >0, so that the following properties are satisfied:

(WP1) For each initial data set (ug,u1) satisfying

H<u07 ul)HHSxHS—l < R,

there exists a unique solution w € C'([-T,T); H*)NC* ([T, T); H*™)
subject to the condition du € L*([-T,T]; L>).

(WP2) The solution u depends continuously on the initial data in the
above topologies.

(WP3) The solution u satisfies
ldull 220 + HduHLfonfl <M.

(WP4) For1 <r < s+1, and for each ty € [=T,T], the linear equation

g (u) 90,0 =0, (t,z) € [-T,T] x R",
(1.3)
U(to, ) = 1o € HT(RR) s 80’0@0, ) =1 € HT_I(Rn) s

admits a solution v € C’([—T, T];HT) N Cl([—T, T];H“l), and the
following estimates hold:

(1.4) [0l g1y + 1000 Lo prp—1 < C'll (w0, 1)l

Additionally, the following estimates hold, provided p < r—% if n=2,
and p<7“—"T_1 if n>3,

[ (D) v zaree < Cl(vo, vi)lrscrr—1, n=2,
(1.5)
| (D) v 2200 < C[(vo, v1) | -1, n >3,

and the same estimates hold with (D,)* replaced by (D,)*~'d.

We prove the result for a sufficiently small 7', depending on R. How-
ever, it is a simple matter to see that uniqueness, as well as condi-
tion (WP4), holds up to any time 7' for which there exists a solu-
tion w € C([-T,T); H*) N C*([-T,T]; H*™') which satisfies du €
L2([-T,T); L).

Observe that we do not ask for uniformly continuous dependence on
the initial data. This in general is not expected to hold for nonlinear

hyperbolic equations. Indeed, even a small perturbation of the solution
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suffices in order to change the Hamilton flow for the corresponding lin-
ear equation, which in turn modifies the propagation of high frequency
solutions.

As a consequence of the LZL%® bound for du it follows that if the
initial data is of higher regularity, then the solution u retains that
regularity up to time 7. Hence, one can naturally obtain solutions
for rough initial data as limits of smooth solutions. This switches the
emphasis to establishing a priori estimates for smooth solutions. One
can think of the L?L%° bound for du as a special case of (1.5), which
is a statement about Strichartz estimates for the linear wave equation.
Establishing this estimate plays a central role in this article.

Our main result is the following:

Theorem 1.2. The Cauchy problem (1.1) and (1.2) is locally well-
posed in H® x H*™' provided that
3
5> g + 1 for n=2,
n+1
2

5> for n=3,4,5.

Remark 1.3. There are precisely two places in this paper at which
our argument breaks down for n > 6, occurring in Lemmas 8.5 and
8.6. Both are related to the orthogonality argument for wave packets.
Presumably this could be remedied with a more precise analysis of the
geometry of the wave packets, but we do not pursue this question here.

As a byproduct of our result, it also follows that certain Strichartz
estimates hold for the corresponding linear equation (1.3). Interpola-
tion of (1.4) with (1.5), combined with Sobolev embedding estimates,
yields

2 1
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provided that

1
1<r<s+1, and r—p>ﬂ————.
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Note that in the usual Strichartz estimates (which hold for a smooth
metric g) one permits equality in the second condition on p. The esti-
mates we prove in this paper have a logarithmic loss in the frequency,
so we need the strict inequality above. Also, we do not get the full
range of LYL4 spaces for n > 4. This remains an open question for
NOW.

1.2. Comments. To gain some intuition into our result it is useful to
consider two aspects of the equation. The first aspect is scaling. We
note that the equation (1.1) is invariant with respect to the dimen-
sionless scaling u(t,x) — wu(rt,rz). This scaling preserves the Sobolev
space of exponent s. = 4, which is then, heuristically, a lower bound
for the range of permissible s.

The second aspect to be considered is that of blow-up. There are two
known mechanisms for blow-up; see Alinhac [1]. The simplest blowup
mechanism is a space-independent type blow-up, which can occur al-
ready in the case of semilinear equations. Roughly, the idea is that if
we eliminate the spatial derivatives from the equation, then one obtains
an ordinary differential equation, which can have solutions that blow-
up as a negative power of (¢ —T'). For a hyperbolic equation, this type
of blow-up is countered by the dispersive effect, but only provided that
s is sufficiently large. On the other hand, for the quasilinear equation
(1.1) one can also have blow-up caused by geometric focusing. This
occurs when a family of null geodesics come together tangentially at a
point. Both patterns were studied by Lindblad [13],[14]. Surprisingly,
they yield blow-up at the same exponent s, namely s = "T%. Together
with scaling, this leads to the restriction

n n+9o
27 4 } '

Comparing this with Theorem 1.2, we see that for n = 2 and n = 3 the
exponents match, therefore both our result and the counterexample are
sharp. However, if n > 4 then there is a gap, and it is not clear whether
one needs to improve the counterexamples or the positive result. For
comparison purposes one should consider the semilinear equation

Ou = |dul?.

S>max{

For this equation it is known (see Tataru [20]) that well-posedness holds
for s as above, so that the counterexamples are sharp. However, if one
restricts the allowed tools to energy and Strichartz estimates, which
are the tools used in this paper, then it is only possible to deduce the
more restrictive range in Theorem 1.2. Adapting the ideas in [20] to

quasilinear equations appears intractable for now.
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To describe the ideas used to establish Theorem 1.2, we recall a
classical result!:

Lemma 1.4. Let u be a smooth solution to (1.1) and (1.2) on [0,T].
Then, for each s > 0, the following estimate holds

(1.6) [ dw(t)|srom1 < [|deu(0)|| gomsecJo It llocdn

For integer values of s this result is due to Klainerman [9]. For non-
integer s, the argument of Klainerman needs to be combined with a
more recent commutator estimate of Kato-Ponce [8]. As an immediate
consequence, one obtains

Corollary 1.5. Let u be a smooth solution to (1.1) and (1.2) on [0,T)
which satisfies ||dul| iy < 00. Then u is smooth at time T, and can
therefore be extended as a smooth solution beyond time T

Thus, to establish existence of smooth solutions, one seeks to es-
tablish a priori bounds on ||dul|iz-. In case s > 5 + 1, one can
obtain such bounds from the Sobolev embedding H®* C L*>. A simple
iteration argument then leads to the classical result of Hughes-Kato-
Marsden [6] of well-posedness for s > % + 1. Note that in this case
one obtains L L% bounds on du instead of L{ L. The difference in
scaling between L} and L$° corresponds to the one derivative difference
between the classical existence result and the scaling exponent.

To improve upon the classical existence result one thus seeks to es-
tablish bounds on ||du||zr e, for p < oo. This leads naturally to consid-
ering the Strichartz estimates for the operator Og(,. For solutions u to
the constant coefficient wave equation Ou = 0, the following estimates

are known to hold:

ldullsrge S (w0, wi)llscrr—r,  s>%,  n=2,

||du||L?Lg° 54 ||<u07u1)HHS><H5*1 ) s > nT—Ha n>3.

To establish such estimates with O replaced by Og(,,), however, requires
dealing with operators with rough coefficients. Indeed, at first glance
one is faced with having only bounds on ||dg|| 2 eqpeeps-1- (Here and
below, for simplicity we discuss the case n > 3.)

The first Strichartz estimates for the wave equation with variable
coefficients were obtained in Kapitanskii [7] and Mockenhaupt-Seeger-
Sogge [15], in the case of smooth coefficients. The first result for rough
coefficients is due to Smith [17], who used wave packet techniques to

1See the footnote following Lemma 2.3
5



show that the Strichartz estimates hold under the condition g € C?,
for dimensions n = 2 and n = 3. At the same time, counterexamples
constructed in Smith-Sogge [18] showed that for all & < 2 there exist
g € (" for which the Strichartz estimates fail.

The first result on Strichartz estimates leading to an improvement
in the well-posedness problem for the nonlinear wave equation was ob-
tained in Tataru [21]; roughly it says that if dg € L?L%°, then the
Strichartz estimates hold with a 1/4 derivative loss. This gives well-
posedness for the nonlinear problem with s > ”TH + i; independently
the same result was also obtained by Bahouri-Chemin [3]. Shortly af-
terward, the Strichartz estimates were established in all dimensions
for g € C? in Tataru [22], a condition that was subsequently relaxed
in Tataru [23], where the full estimates are established provided that
the coefficients satisfy d?g € LIL%. As a byproduct, this last esti-
mates implies Strichartz estimates with a loss of % derivative in the case
dg € L}L2°, and hence well-posedness for (1.1) and (1.2) for Sobolev
indices s > 2= + 1. Around the same time, Bahouri-Chemin [2] im-
proved their earlier 1/4 result to slightly better than 1/5. This line of
attack for the nonlinear problem, however, reached a dead end when
Smith-Tataru [16] showed that the & loss is sharp for general metrics
of regularity C*.

Thus, to obtain an improvement over the 1/6 result, one needs to ex-
ploit the additional geometric information on the metric g that comes
from the fact that g itself is a solution an equation of type (1.1). The
first work to do so was that of Klainerman-Rodnianski [11], where for

n = 3 the well-posedness was established for s > "TH + # The
central idea is that for solutions u to Oy,u = 0, one has better estimates
on derivatives of v in directions tangent to null light cones. This in
turn leads to a better regularity of tangential components of the curva-
ture tensor than one would expect at first glance, and hence to better
regularity of the null cones themselves. A key role in improving the
regularity of the tangential curvature components is played by an ob-
servation of Klainerman [10] that the Ricci component Ric(l, ) admits
a decomposition which yields improved regularity upon integration over
a null geodesic.

The present work follows the same tack, in exploiting the improved
regularity of solutions on null surfaces. In this paper, we work with
foliations of space-time by null hypersurfaces corresponding to plane
waves rather than light cones, but the principle difference appears to
be in the machinery used to establish the Strichartz estimates. In this
work we are able to establish such estimates without making reference
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to the variation of the geodesic flow field as one moves from one null
surface to another (other than using estimates which follow immedi-
ately from the regularity of the individual surfaces themselves.) We
note that recently Klainerman and Rodnianski have announced the
conclusion of Theorem 1.2 in the case of the three dimensional vacuum
Einstein equations, where the condition Ric = 0 allows one to obtain
some control over normal derivatives of the geodesic flow field [ by
relating them to tangential derivatives of [.

Although all the results quoted above point in the same direction, the
methods used are quite different. The idea of Bahouri and Chemin in
[3] and [2] was to push the classical Hadamard parametrix construction
as far as possible, on small time intervals, and then to piece together
the results measuring the loss in terms of derivatives. The results in
Tataru [21],[22] and [23], are based on the use of the FBI transform as
a precise tool to localize both in space and in frequency. This leads to
parametrices which resemble Fourier integral operators with complex
phase, where both the phase and the symbol are smooth precisely on
the scale of the localization provided by the imaginary part of the phase.
The work of Klainerman-Rodnianski [11] is based on energy estimates
obtained after commuting the equation with well-chosen vector fields.
Strichartz estimates are then obtained following a vector field approach
developed in [10].

A common point of the three approaches above is a paradifferen-
tial localization of the solution at a given frequency A, followed by a
truncation of the coefficients at frequency A\* for some a < 1. Inter-
estingly enough, it is precisely this truncation of the coefficients which
is absent in the present paper. Our argument here relies instead on a
wave-packet parametrix construction for the nontruncated metric g(u).
This involves representing approximate solutions to the linear equation
as a square summable superposition of wave packets, which are special
approximate solutions to the linear equation, that are highly localized
in phase space. The use of wave packets of such localization to repre-
sent solutions to the linear equation is inspired by the work of Smith
[17], but the ansatz for the development of such packets, as well as the
orthogonality arguments for them, is considerably more delicate in this
paper due to the decreased regularity of the metric.

1.3. Overview of the paper. The next two sections of this paper are
concerned with reducing the proof of Theorem 1.2 to establishing an
existence result for smooth data of small norm. Precisely, in section 2
we use energy type estimates to obtain uniqueness and stability results,

and thus reduce Theorem 1.2 to an existence result for smooth initial
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data, namely Proposition 2.1. Section 3 contains scaling and localiza-
tion arguments which further reduce the problem to establishing time
T = 1 existence for the case of smooth, compactly supported data of
small norm, namely Proposition 3.1.

In Section 4 we present the proof of Proposition 3.1 by the continu-
ity method. At the heart of this proof is a recursive estimate on the
regularity of the solutions to the nonlinear equation, stated in Proposi-
tion 4.1. For the recursion argument to work, in addition to controlling
the norm of the solution u in the Sobolev and L?L2° norms, we also
need to control an appropriate norm of the characteristic foliations by
plane waves associated to g(u). This additional information is collected
in the nonlinear G functional.

The core of the paper is devoted to the proof of the estimates used
in Proposition 4.1. In Section 5 we study the geometry of the plane
wave surfaces; Proposition 5.2 contains the recursive estimate for the
G functional. A key role is played by a decomposition of the tangential
curvature components stated in Lemma 5.8, analogous to the decompo-
sition for Ric(l, 1) in [10]. It then remains to establish certain dispersive
type estimates for the linear equation with metric g(u).

In Section 6 we study the geometry of characteristic light cones,
which plays an essential role for the orthogonality and dispersive esti-
mates. Section 7 contains a paradifferential decomposition which allows
us to localize in frequency and reduce the dispersive estimates to their
dyadic counterparts.

Section 8 contains the construction of a parametrix for the linear
equation. We start by using the information we have for the charac-
teristic plane wave surfaces in order to construct a family of highly
localized approximate solutions to the linear equation, which we call
wave-packets. These are spatially concentrated in thin curved rectan-
gles, which we call slabs. We then produce approximate solutions as
square summable superpositions of wave packets. For this we need to
establish orthogonality of distinct wave packets, which depends on the
geometric information we have established for both the characteristic
light cones, as well as for the plane wave hypersurfaces.

Section 9 contains a bound on the number of distinct slabs which
pass through two given points in the spacetime. This bound is at the
heart of the dispersive estimates contained in Section 10, which com-
plete the circle of estimates behind the proof of Theorem 1.2. Finally,
the Appendix contains the proof of the two dimensional stability esti-
mate, which turns out to be considerably more delicate than its higher
dimensional counterpart.



1.4. Notations. In this paper, we use the notation X <Y to mean
that X < C'Y, with a constant C' which depends only on the dimension
n, and on global pointwise bounds for finitely many derivatives of g, g;;
and ¢“. Similarly, the notation X < Y means X < C7'Y, for a
sufficiently large constant C' as above.

We use four small parameters

3<ea<eg<legKl.

In order for all our estimates to fit together, we will actually need the
stronger condition

(1-7) KK KLeg.

Without any restriction in generality we assume that "T“ <s< g+l
for n > 3, respectively % < s < 2 for n = 2. Denote g = s — "T“ for

n > 3, respectively oy = s — % for n = 2, and let § denote a number
with 0 < 6 < do.
We denote by & the space Fourier variable, and let

€ =1 +|P)z.

Denote by (D,) the corresponding Bessel potential multiplier. We in-
troduce a Littlewood-Paley decomposition in the spatial frequency &,

1=S+ > Sy,

A dyadic

where the spherically symmetric symbols of Sy and Sy are supported
respectively in the sets { || < 1} and {|£] € [A\/2,2\] }. We set

Sax=>_ Sy

8u<A

We let du denote the full space time gradient, and d,u the space gra-
dient of u, so that

du = (Oou, ... ,0pu) , dyu = (Ou, ... ,0u).
Finally, let
Ogyv = g7 (u) 9,00 .
We may then symbolically write

Oguyv = —0gv + g(u) dydv .
9



2. UNIQUENESS AND STABILITY

In this section we reduce our main theorem to the case of smooth
initial data. Precisely, we show that Theorem 1.2 is a consequence of
the following existence result for smooth initial data.

Proposition 2.1. For each R > 0 there exist T, M,C' > 0 such that,
for each smooth initial data (ug,uy) which satisfies

(o, wi) [ e < R,
there exists a smooth solution u to (1.1) and (1.2) on [-T,T] x R,
which furthermore satisfies the conditions (WP3) and (WP4).

The uniqueness of such a smooth solution is well known.

2.1. Commutators and energy estimates. We begin with a slight
generalization of Lemma 1.4. The purpose of this is twofold, both to
make this article self contained, and to have a setup which is better
suited to our purposes. In the process we also record certain com-
mutator estimates which are independently used later on. We con-
sider spherically symmetric elliptic symbols a((£)), where the function
a:[0,00) — [1,00) satisfies

rad(x)

a(x)
for some positive rg,r;. This implies that
(&) <a((§)) < &)™,
and also that a is slowly varying on a dyadic scale. Thus,
(&)~ Y a(N)5(E)-
A dyadic

Then the following result holds:

(21) To S

<r, a(l) =1,

Lemma 2.2. Let a be as above, and A = a({D,)). Let u be a smooth
solution to (1.1) and (1.2) on [0,T] x R™. Set m = sup,, |u(t,z)|.
Then the following estimate holds:

(22)  [[dAu(®)]zz 5 |dAu(0)]]rz et fo @l = € [0, 7],

This yields Lemma 1.4 in the special case of a((£)) = (£)*~'. On the
other hand, it also allows for the use of weights which are almost but
not quite polynomial.

10



Proof. For the linear equation

(23) ng = f7
we have the associated energy functional
Bo) = 1 [ (~eMant+ Y whawop ) ar
2 Bt

ij=1
Then a standard computation leads to

d
@ Z@) 3 / (1£11000] + |dg| |dv]?*) dz

and hence to

(2.4) CB)} < 1705z + 40l Bw(0)?

Return now to (1.1) and set v = Au. Then v solves (2.3) with
f=(g—AgA™") dudv + A(q(u)(du)?) .
We claim that the two terms in f satisfy the estimate

(2.5)
(g — AgA™") dudvl|zz + | A(q(w)(du)®) |22 < lldullre | dAul| 2 ,

where the constant may depend on m. Given this, we can apply (2.4)
to obtain

d 1 1
S E@(t)z S c(m) || dull . E(v(?))2
which by Gronwall’s inequality implies (2.2).

It remains to prove (2.5). This is a consequence of the next lemma:

Lemma 2.3. Suppose that a satisfies (2.1). Then the following esti-
mates hold:

(2.6) [A(q(w)(du)®) |2 S e(m) [|dul| e[| A du| 2

(2.7) [Ada(g(u))llr2 S c(m) [[Adyul|Lz

(2.8) A Dz S N f e lAgllzz + llglleee | Af | 22

(2.9) IA(fdeg)llzz SNl lAdaglicz + (gl | A de f | 22

(2.10)  [[(8A — Ag)dow| Lz S ldogllLee [Awllzz + | A dagl| 2 lw]] e

11



The proof of Lemma 2.3 uses paraproduct type arguments. Estimate
(2.6) is of Moser type. Its proof involves writing the telescoping series

q(Sou)(dSou)® + > q(Scau)(dScyu)® — q(Scaott) (dS<xj2u)?

A dyadic

as a combination of three terms, each of which takes the form of an
operator of type Sﬂl acting on du, where any given seminorm of the
symbol is bounded by c(m)|dul|ze , with c(m) an appropriate power
of m.2 The result is thus reduced to showing that, if P is a pseudodif-
ferential operator of type S, then

[APul[z S [ Aul|z ,

which for the case A = (D,)® with s > 0 is due to Stein [19], and for
the case of A as above is a simple modification.

Estimates (2.7) through (2.9) are similarly reduced. To establish
(2.10), we first write

The first two terms are treated as above. The bound on the last term
is a simple variation on the commutator estimate of Kato-Ponce [§],
where the result is established for the case A = (D,)®. For further
details, we refer to Chapter 3 of Taylor [24]. O

2.2. Stability estimates. The next step in the proof is to obtain sta-
bility estimates for lower Sobolev norms. As an immediate consequence
of these we obtain the uniqueness result. Later on we also use them in
order to show the strong continuous dependence on the initial data.?

Lemma 2.4. Suppose that u is a solution to (1.1) and (1.2) which
satisfies the conditions (WP3) and (WP4). Let v be another solution
to the equation (1.1) with nitial data (vo,v1) € H® x H*™', such that
dv € LPH: YN L2L. Then, forn =2,

(211) Hd(u — U)HL?CH;1/4 S Cv ||(U0 — Vo, U1 — U1>||H3/4><H*1/4 s
and for n = 3,4, 5,
(212) ||d(u — U)”L?OL% S Cv ”('LLO — Vo, Uy — Ul)”HleQ ,

2This step requires that the coefficient ¢ (u) of (9pu)? be constant, since for
one term it involves transferring a factor of A from Scydu to Shu. We can avoid
this assumption by weakening Lemmas 1.4 and 2.2 to require L?2L> bounds on du
instead of L' L> bounds, which suffices for our application.

3For the case n = 2, which we handle in the Appendix, we strengthen condition
(WP4) to include additional estimates which play a crucial role in the n = 2 stability
of solutions. This has no effect on the rest of the paper.
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where C., depends on u, and on |[dv|| e =112 o -

We note that for the proof it does not suffice to only use the Sobolev
regularity of u and v; we also need the dispersive estimates in Propo-
sition 2.1. On the bright side, it suffices to know these only for u, and
therefore to have a less restrictive condition for v.

Proof. We prove the result here for the case n > 3. The case n = 2 is
considerably more delicate and is discussed in the Appendix. The first
step is to note that the function w = v — v satisfies the equation

(2.13) Ogyw = agdw + a; w ,
where the functions ag and a; are of the form
ap = q(v)d(u,v), a1 = a(u,v)d.dv+ b(u,v) (du)?,

with ¢, a,b smooth and bounded functions of u,v. By interpolation,
2(n—1)
dv € LH ' N 2L — dydveL,"° L',
for some € > 0. This yields
2(n—1)
ap € LZLY, ay € L,"% LM 1re.
On the other hand, the Strichartz estimates implied by (WP4) show
that, if Og(,yw = 0, then

||w||L" 2nl) S (wo, wi)|[ ez

_1L
for all e > 0, and consequently
|ao dw + ay wl| 22 S [[(wo, wi) || mxre -

By the Duhamel principle and a contraction argument, this is sufficient
to show that, for 7" small, solutions to (2.13) satisfy

ldwl| ez S Nl (wo, wi) a2 -
t x

The result may then be easily extended to any interval on which the
conditions of the Lemma hold. O

2.3. Existence, uniqueness and stability for rough data. Again
we argue in the case n > 3; obvious changes are required for n = 2.
Consider arbitrary initial data (ug,u;) € H® x H*~! such that

| (uo, ur) || oxms— < R.

Let (uf, uf) be a sequence of smooth data converging to (ug, u1), which

also satisfy the same bound. Then the conclusion of Proposition 2.1

applies uniformly to the corresponding solutions u*.
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In particular, it follows that the sequence du* is bounded in the
space C([=T,T); H*'). We can use compactness to improve upon
this. More precisely, since (uf, u}) converges to (ug,u;) in H® x H*™!,

it follows that there is a multiplier A satisfying (2.1), such that

I |

g=oo €]
while the sequence Adu”(0) is still bounded. By Theorem 2.2, it fol-
lows that Adu* is bounded in C'([—T,T]; L?). On the other hand, by
Lemma 2.4 the sequence du” is Cauchy in L°L2. Combining these two
properties, it follows that du® is Cauchy in C([-T,T]; H*~1), and we
let u denote its limit.

As a consequence of (2.5) applied to A = (D,)*"!, the right hand
sides q(u*)(du®)? of the equations for u* are uniformly bounded in the
space L?( [T, T]; H*~'). Then (WP4) combined with Duhamel’s for-
mula show that du” is uniformly bounded in L?( [T, T]; C?). Together
with the above this implies that du* converges to du in L?( [T, T]; L*®).

The above information is more that sufficient to allow passage to
the limit in the equation (1.1) and show that w is a solution in the
sense of distributions, yielding the existence part of (WP1). The con-
ditions (WP3) and (WP4) hold for u since they hold uniformly for u*.
The uniqueness part of (WP1) then follows by Lemma 2.4. Finally, if
(uk, ub) is any sequence of initial data converging to (ug,u1), it follows
as above that u* converges to u in both the Sobolev and L?L2° norms.

3. REDUCTION TO EXISTENCE FOR SMALL, SMOOTH, COMPACTLY
SUPPORTED DATA

In this section we take advantage of scaling and the finite speed of
propagation to further simplify the problem. Denote by ¢ the largest
speed of propagation corresponding to all possible values of g = g(u).
The intermediate result which will be established in subsequent sections
is the following;:

Proposition 3.1. Suppose (1.7) holds. Assume that the data (ug,u;)
is smooth, supported in B(0,c+ 2), and satisfies

[uoll s + lua]| a2 < €.
Then the equations (1.1) and (1.2) admit a smooth solution u defined
on R" x [=1,1], and the following properties hold:
(i) (energy estimate)
(3.1) Il e <

14



(ii) (dispersive estimate for u)

||du||L;lcg < e, n=2,
(3.2)
||du||L?C§ES S €2, n = 37 4a 57

(iii) (dispersive estimates for the linear equation) For 1 < r < s+ 1
the equation (1.3) with g = g(u) is well-posed in H" x H"™', and the
following estimate holds:

{Da)?vll e S (o, v)llrxr—, p<r—3%, n=2,
(3.3)
{D2)? vl 2ree S N (vo, v)lrscme—1, p <7 =15+, n=3,4,5,

and the same estimates hold with (D,)* replaced by (D,)*~'d.

In the remainder of this section we show that Proposition 3.1 implies
Proposition 2.1.

3.1. Scaling. Consider a smooth initial data set (ug, u;) which satisfies

Hs—1 S R

[[uoll s + [|ua ]

For this we seek a smooth solution u to (1.1), (1.2) in a time interval
[—T,T]. We rescale the problem to time scale 1 by setting

a(t,x) =u(Tt, Tx)

Then we ask that @ be a solution to the equation (1.1), and note that
its initial data satisfies

101 7= + e (0) [l s < RT*72,
and
@(0)[| g2 + | (0)]| 2 < RT™ 2.
Let €3 be as in Proposition 3.1, and choose 7" so that
RT* % < e;.

By doing this we have reduced the problem to the case where T = 1,
and where

HUOHHS + Hul”Hs—l < €3,
while
|ugllLe S R, ol g + |Jurl|e < M,

for some large M.
15



3.2. Localization. In the previous step there is seemingly a loss, be-
cause we had to replace homogeneous spaces by inhomogeneous ones.
This is remedied here by taking advantage of the finite speed of propa-
gation. Since c is the largest possible speed of propagation, the solution
in a unit cylinder B(y, 1) x [—1, 1] is uniquely determined by the initial
data in the ball B(y, 1+ ¢). Hence it is natural to truncate the initial
data in a slightly larger region. Some care is required, however, since
we need the truncated data to be small, which means we only want to
use the control of the homogeneous norms, which might not see con-
stants, or, more general, polynomials. In our case we are assuming that
s < 5 + 1, therefore it suffices to account for the constants in ug.

Let x be a smooth function supported in B(0,c + 2), and which
equals 1 in B(0,c¢ + 1). Given y € R" we define the localized initial
data near y,

ug(z) = x(x —y) (wo —uo(y)),  uj =x(z—y)ur.
Since s < § + 1, it is easy to see that
| (ug, U)o xms— S (w0, )] s e »

so that

(g, w) e scre—r < €5

Hence, by Proposition 3.1 we have a smooth solution v on [—1, 1] x R™
to the equation

Oe(uv+uo(y) = 47 (¥ + uo(y)) diu¥ dju?

u(0) = ug, u(0) =uf.

Then the function u? + ug(y) solves (1.1), and its initial data coincides
with (ug,u;) in B(y, c+1). We now consider the restrictions, for y € R™,

(W +uo(y))|gv, KY={(t,z):ct+|x—y|<c+1,]|t<1}.
The restrictions solve (1.1) and (1.2) on KY, therefore, by finite speed
of propagation, any two must coincide on their common domain. Hence
we obtain a smooth solution u in [—1, 1] x R™ by setting

u(t, ) = (t,7) + uoly), (7)€ KV

It remains to show that u satisfies (WP3) and (WP4). We consider

the cartesian grid n=27Z" in R™, and a corresponding smooth partition
of unity



such that the function v is supported in the unit ball.
For (WP3) we first obtain the corresponding estimates for u¥. Ap-
plying the energy estimates in Lemma 1.4 yields

| oo g1 S Nl (ugy ud) | oz -
On the other hand, (3.3) combined with Duhamel’s formula yields

ldu?|[ 2z S Il (ug, uy)

Hoxrs— + [lg7 (u¥ + UO(?/»@uyajuyHL}H;*l :

By (2.5) with A = (D,)*"! we can estimate the last term to conclude
that

(g, ui)|

(g, uy)|

Since €5 < 1, this implies

[ du?|[ L2 Hexas=t + [|du? || oo e[| du?|[ 2

S
S

Hsx Hs—1 + €9 HduyHL%Lgo .

ldu? |z g S M (ug, ud)]

HsxHs—1.

It remains to sum up the estimates for u¥ in order to obtain the esti-
mates for u. We have

u(w,t)y = Y U —y)(u(z,1) +uly)),

_1
yen 27
therefore
ldullZs prpms S D M@ —9) @ + w0 pens

yen_%zn

5 Z ”X(l‘_y)(uﬂaul)”%—[sxl_]s—l + |U0(y)|2
yen—%zn

S H(uoaul)‘stHsfl .

For (WP4) we consider the solutions v¥ for the localized linear equa-
tions

{ Ogtursupt? =0,
vY(0) = x(z —y)vo, 07 (0) = x(z —y)vr.

We again use the finite speed of propagation to conclude that v, = v
in K,. Then we can represent v as

U(mat): Z ¢(9€—y)vy($at)>

1
yeEN" 2Z"
17



and use (3.3) to estimate

(Da) dollferee S Y Il = y)o¥ (2, 1) 172 00

yen*%Z”

S/ Z HX(x_ZJ)(U(MUI)”%ITXHr—l
yEn_%Zn

S o, vi) 3t -

4. A RECURSIVE ARGUMENT

We will establish Proposition 3.1 via a continuity argument. More
precisely, we consider a one parameter family of smooth initial data
(hug, huy) with h € [0, 1]. Since the data (ug,u1) is smooth, for small
h the equation has a smooth solution u". We seek to extend the range
of h for which a solution exists to the value h = 1. We do this by
establishing uniform bounds on the u” in the norm of L?C¢; this in
turn implies uniform bounds on u" in the Sobolev norm.

Our proof of the bounds on the u" in L2C? relies on a parametrix
construction, which in turn depends on the regularity of certain null-
foliations of space time. Rather than attempt to obtain the regularity
of these foliations directly, we build their regularity into the continuity
argument. This works since we need only assume that the appropriate
norm G(u) of the foliations is small compared to 1 in order to deduce
that it is in fact bounded by a multiple of the norm of the initial data.
We set aside for the moment the definition of G(u) and outline the
general recursive argument.

Let n¥ be the standard Minkowski metric,

n=-1, =1, 1<j<n, 97=0 if i#j.

After making a linear change of coordinates which preserves dt we may
assume that g¥(0) = n.

For technical reasons it is convenient to replace the original metric
function g by a truncated one. Let x be a smooth cutoff function
supported in the region B(0,3 + 2¢) X [—%, %], which equals 1 in the
region B(0,2 4+ 2¢) x [—1,1]. Set

g(t,v,u) = x(t, ) (g(u) — 8(0)) +8(0), alt,z,u) = x(t,z)q(u),
and introduce the truncated equation

(4.1) Og(tz,u)t = q” (t,x,u)0u dju .
18



Because of the finite speed of propagation, any solution to (4.1) for
t € [—2,2] with initial data supported in B(0,2 + ¢) is also a solution
o (1.1) for t € [-1,1].

We denote by ‘H the family of smooth solutions u to the equation
(4.1) for t € [—2, 2], with initial data (ug,u;) supported in B(0,2 + ¢),
and for which

(4.2) ol

e+ w1 <es,

(4.3) Il o e + l1dull s < 2.

On H we use the induced C'*° topology. Then our bootstrap argument
can be stated as follows:

Proposition 4.1. Assume that (1.7) holds. Then there is a contin-
uous functional G : H — RT, satisfying G(0) = 0, so that for each
u € H satisfying G(u) < 2¢; the following hold:

(i) The function u satisfies G(u) < €.

(ii) The following estimate holds,
(4.4 Il g s + Il zzcs < €2

(iii) For 1 < r < s+ 1, the equation (1.3) with g = g(t,z,u) is
well-posed in H™ x H"™!, and the Strichartz estimates (3.3) hold.

Proposition 4.1 will follow as a result of Proposition 5.2 and Proposi-
tion 7.1. We provide the definition of G(u) shortly; here we show that
Proposition 4.1 implies Proposition 3.1. Thus, consider initial data
(uo, u1) which satisfies

lluollmrs + ||ur || grs—1 < €5.

We denote by A the subset of those h € [0,1] such that the equation
(4.1) admits a smooth solution u" having initial data

u(0) = huy, ul(0) = huy,

and such that G(u") < ¢ and (4.4) holds. We trivially have 0 € A,
since u® = 0. Proposition 3.1 would follow if we knew that 1 € A, and
so it suffices to show that A is both open and closed in [0, 1].

A is open. Let k € A. Since u* is smooth, a perturbation argument
shows that for h close to k the equation (4.1) has a smooth solution u”,
which depends continuously on h. By the continuity of G, it follows
that for h close to k we have G(u") < 2¢; and also (4.3). Then by
Proposition 4.1 we obtain G(u") < ¢, and (4.4), showing that h € A.

Ais closed. Let h; € A, h; — h. Then (4.4) implies that the sequence
du™ is bounded in L?C?. Lemma 1.4 then shows that the sequence u"

is in fact bounded in all Sobolev spaces. We thus can obtain a smooth
19



solution u” as the limit of some subsequence. The continuity of G then
shows that G(u) < ¢, and similarly (4.4) must also hold for u".

4.1. The Hamilton flow and the G functional. Let v € H, and

consider the corresponding metric g = g(t,z,u), which equals the
Minkowski metric for t € [~2,—2]. For each § € S" ! we consider
a foliation of the slice t = —2 by taking level sets of the function

ro(—2,2) = 0-x+2. Then 0-dx —dt is a null covector field over ¢t = —2
which is conormal to the level sets of 79(—2). We let Ay be the flowout
of this section under the Hamitonian flow of g.

A crucial step in the proof of the Strichartz estimates is to establish
that, for each @, the null Lagrangian manifold Ay is the graph of a null
covector field given by dry, where 1y is a smooth extension of 6 - x — ¢,
and that the level sets of ry are small perturbations of the level sets of
the function #-x—t in a certain norm captured by G(u). In establishing
Proposition 4.1 we will actually establish that u € H implies Ay is the
graph of an appropriate null covector field drg, so we only define G(u)
in this situation.

Thus, assume that Ay and 7y are as above, and let 3y, for r € R
denote the level sets of ry. The characteristic hypersurface g, is thus
the flowout of the set 6 - x = r — 2 along the null geodesic flow in the
direction 0 at t = —2.

We introduce an orthonormal sets of coordinates on R" by setting
xg = 0 -z, and letting xj, be given orthonormal coordinates on the
hyperplane perpendicular to 6, which then define coordinates on R™ by
projection along 6. Then (¢, zj) induce coordinates on Xy, and ¥y, is
given by

EG,T = {(t,l‘) T ¢9,r = O}

for a smooth function ¢p,(t,2;). We now introduce two norms for
functions defined on [—2,2] x R",

lullsoe = sup  sup [[Dfu(t, )|
—2<t<2 0<j<1

Hs—3(R") 5

2 ‘ 3
lleells 2 :(/ sup ||5§U(tw)|12rfsj(w>dt) :

-2 0<5<1

The same notation applies for functions in [—2,2] x R"~!. We denote

I sz, = 1 s,
20
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where the right hand side is the norm of the restriction of f to 2g,,
taken over the (¢, ) variables used to parametrise ¥y ,. Similarly,

1 llecss

denotes the H*(R"™™!') norm of f restricted to the time ¢ slice of Y,
using the xj, coordinates on X ..
We now set

(4.5) G(u) = sup [|dpg, — dt]ls2.s,, -

o,r

Note that G is nonlinear, as ¢y, depends in a nonlinear way on wu.
Since all functions in H are supported in a fixed compact set, it follows
that we can restrict ourselves to a compact set of values for r. Then
the continuity of G as a function of u with respect to the C'*° topology
easily follows.

5. REGULARITY OF NULL SURFACES

The goal of this section is to establish the following. The functional
G(u) is defined in (4.5).

Proposition 5.1. Let u € H so that G(u) < 2¢. Let g\ denote the
localization, in the x-variables, of g to frequencies less than or compa-
rable to \. Then

lg” — 17 lls 20, + 1M &7 — €Y), dgy, A Oudgy ls-12:5,, < 2.

Proposition 5.2. Let u € ‘H so that G(u) < 2¢;. Then G(u) < €.
Furthermore, for each t it holds that

(5.1) ldo.r(t,+) = dtl| o5 gy S €2+ sup [|dg? (¢, )l esn -

Z7J

Proposition 5.1 is essentially a variation on the theme of characteris-
tic energy estimates for the variable coefficient wave equation. Together
with the estimate (5.1) it is used later in the parametrix construction
for the linear equation.

The first part of Proposition 5.2 is a much deeper result which lies
at the heart of our paper. It gives the recursive estimate, namely part

(i) of Proposition 4.1.
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5.1. Setup. Since the proof of Propositions 5.1 and 5.2 is lengthy, it
is useful to summarize at this stage the information we have about the
function u and the metric g.

In this section, we deal more generally with equations of the form

(5.2) g’ (t,z,u) 0; 0;u = Q(t, z,u; du),
where () takes the form
Q(t7 T, U du) = Z qij (ta T, u)aluaju + Z qj (tu Z, u)a]u + QO(ta T, u)u )
(] J
and g¥, ¢¥, ¢*, and qo are smooth functions of the variables ¢, z, u.
By doing so, we note that we may also write such an equation as

0; gij(t, z,u) Oju = Q(t, z,u; du) ,

for a different ) of the same form, and by combining terms we may
assume that g% = 0 for j # 0. This means that the coefficients of the
Lorentzian form (-, -)g are given by 3 (g" + g’*), rather than by g% .
Furthermore, for each k,[, we may also write

(5.3) g (t, v, u) 0; 0; g™ (t, v, u) = Q(t, , u; du)
with @ of the same form. Recall also that g”(0) = n%, and that
gl=n7 if [t|>32 or |z]>3+2c.
The function u belongs to H, therefore it satisfies
(5.4) [dull 205 + llulls.co S €2

In particular u is pointwise small, |u| < eo. Thus |g(u) —n| < €2, which
in turn yields a similar bound for g,

(5:5) ldg” Il 205 + llg” — 17 lso0 S €2

For the proof of Propositions 5.1 and 5.2 it suffices to consider the
case where § = (0,...,0,1) and » = 0. We fix this choice, and suppress
@ and r in our notation. Instead of (xg, ) we use (x,,z’). Then X is

defined by
¥ ={x,—o(t,2')=0}.
The hypothesis G(u) < 2¢; implies that

(5.6) lde(t, ) — difls 2z < 26 .
Note that by Sobolev embedding, this implies that
67) () — dtl yas + 10d6(t )10, S

As a consequence of this it follows that ¢ — ¢ is small in C*.
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5.2. Characteristic energy estimates. We use a basic fact about
Sobolev norms, which is a simple paraproduct result.

Lemma 5.3. Suppose that 0 <r,7" < g andr+1" > 5. Then
(5.8) 191l g3 ny < Crar (11 @my 191 e ey
If =r <7r' <r andr > 3 then
(5.9) 19l g @y < Crar 1 i@y 91| 2 ey -
As a consequence we have the following facts about the triple norm.

Lemma 5.4. Forr > 1, we have

tes[ug)ﬂ HfHHT??(Rn a .
(5.10) B e e
If r > (n+1)/2, then
(5.11) I£9llr2 < Crll.fllv2 Ngllr.z2 -
Similarly, if r > n/2, then
(5.12) If9llr2x < Crll fllr2z gl -

Proof. The first result follows from the trace theorem:
AN - = (D)~ £ (Do) fllan 2,215 = [ fllrz-

The bound (5.10) follows similarly. To establish (5.11), we use (5.9)
and the preceding estimate to bound

17 gllr2 < 11fgll 2z + 19 L2 pr—

o S

Y (P Py R 5 e P
S Al gl
The inequality (5.12) follows similarly. O

We now show that the triple norm of u is preserved under the change
of coordinates which flattens X .

Lemma 5.5. Let w(t,x) = w(t, o', z, + ¢(t,2")). Then

5,00 9 HdeLng° N HdeLngo :
23
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Proof. The second inequality is immediate from the C* bounds on ¢.
For the first, recall that s = m + o, where 0 < o < 1. Since ¢ is C1,
we need to show that, for |a| < m, and with 0% involving at most one
derivative in ¢, we have

(0+ (8¢)9,)"w € L°HY .
The product may be expanded as a sum of terms
(9¢) (019¢) -+ (0™ 0¢) 0™w,
where ag + a1 + -+ + ap = «, and oy # 0, and each term involves at

most one derivative in . By (5.8) we may bound the H: *! norm of

the product by
1907 _, 0% 6]
Hy 2

o el

X0
*%*WH 7“12‘”8 wHHS*‘O‘O‘ .
x

1
s s—35
Hg Hy *?

O
Remark. A similar proof shows that, for 0 < s’ <'s, we have for all ¢
(5.13) [t e < llw(t, )|

We continue with the characteristic energy estimate:

!
Hs' -
x

Lemma 5.6. Assume that w satisfies the linear equation
o,(g" ) = F.
Then
ldwlls-125 S lldwll e g1 + ldwlizree + (1] 2z -
Proof. Let
ldwl[ oo grs—1 + l|dw| L2200 + | Fll 2z = €.

Under the change of coordinates x,, — z,, — ¢(t, 2’), the equation trans-

forms to
n

i,j=0
where - denotes the function expressed in the new coordinates. Re-
call that we have g% = —1, and g% = 0 for j # 0, and that ¢ is
independent of x,,. For i # 0 we now define
h' = g7 §™(0p0) 8" — g™ (0ud) 07"+ 67 67" (00) (D) "~ 6™ 67 (8 b),
and set h® = —1 and h% = 0 for j # 0. Then the above equation
takes the form

> 0 (07 05) = F — (95¢) 0th = G,
i,j=0
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We use the following bounds on h% .

14 h¥ h* <1
(5.14) Do+ 7,y S0

(5.15) ldb¥ | porge + 1007 g S

L¥H' 2(%)

The first term in (5.14) is bounded using (5.5), (5.6), and (5.11). The
second term in (5.14) is bounded using (5.9), (5.10), and the trace
theorem applied to g . The first term in (5.15) uses the uniform bounds
on g¥ and d¢, as well as the L? L% bounds on dg® and d?@, the latter a
consequence of (5.6) and the Sobolev embedding H*™' () C L*°(XY).
For the second term in (5.15), by the line above we need only consider
the case 0, replaced by 0,, , for which case we use the inequality

o aa~ij 3 <19 o] o ij 3 .
1067 G, 5., S 106y IR,

To continue write
9; (WY 0;(0,(Dy)**w)) = 0,(Dy)* G — [0:0:(Dy)* %, h"] 0;w
—i—(@ihij) Oy <Dx/)s_2(9jﬁ) .

By the Kato-Ponce commutator estimate, noting that ¢ # 0 in the
commutator term, we have for each fixed ¢ the bound

| (010 Dar)=2, 0] 5], S 117 i, 1]

e+ 07| g [l dw| e

where all norms are taken over an arbitrary slice ¢ = constant, and we
use (5.13) to bound norms of @ by the same norms of w. Also,

lde (Dar)** G|z SIF N 3= + 1105 50 10nw]

o1 1050 a1 10w oo
and

1(9:0") 0 (Dar)* 20|12 < [|dh”]| 1 | O]

H;71 .
Consequently,
19: (0 95(9u{Dar)* ™)) || 1y 0 S -

Recall that X is a null surface, defined in these coordinates by z, = 0.
By the energy inequality, we thus obtain

10:0: (Do )* 72| r2s) + |00 00 (Do) | 25y S €.

The trace theorem shows that ||dwl|z2(s) S €, and it therefore remains
to show that

107 {Dar)* 0]l 2(s) S €.



Since h = —1, we may write

Ofi = F — (950) 0pb + Y > 0i(h7 00 ).
i=1 j=0
To handle the contribution from the first two terms we apply the trace
theorem and the fact that s — 1 > ”T’l . to get

s—3
[(D2)* 2 Fllr2sy S 1Fll2ms— Se
and
s—2 ~ 5— s—2
(D )*~2(05¢ 000) || 22¢s) S (D) 050|125 [|{ Dar) 200w o2, (v)
S do sz, |Onwll oo s

<e,

~J

For the remaining terms we first note that, since 2s —3 > (n—1)/2,
we may apply (5.8) and (5.15) to bound
10:07) (050 | o asy2ey S NORII oy o (B0

L¥H’,

T

5 Haachw ||L§°H;7%(Z) HdeLfoHifl

Se.

Next, since ¥ is null and is defined by z, = 0, we get h™ = 0 on X.
Then,

¥ 8, 050 a2 () S ”hinLgoH;;% 5 {Dar)* "2 ;050 | L2(x)
Se,
where we use (5.14) and the fact that ¢ # 0 and (7, j) # (n,n). O

Corollary 5.7. Suppose that w satisfies the conditions of Lemma 5.6.
Then

I(Mw = w»), dws, A7 ddwi ) lls—r2.0 S ldwll e g1 20 + I1F ] 2
Proof. As before, let
Il st + Il gz + IF gz = e

Suppose that P is a standard multiplier of order 0 on R , such that P
is additionally bounded on L*(R?). Then

9;(g” 0, Pw) =G = (0;87) Pojw + [g”,0,P] d;w + PF .
The Kato-Ponce commutator estimate and the assumptions on g¥ im-
ply

Gl s S e
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and Lemma 5.6 then shows that
(5.16) JdPwl, 105 S €

~Y

To control the norm of A (w — w,), we write
)\(’LU—ZU)\) = Z@kPkw,
k=1

where Py satisfies the above conditions for P. Applying (5.16) yields
the desired bound.

Finally, applying (5.16) to P = S, and P = A710,.S_, shows that
ldwslls-125 + A7 ld pwalls—125 S €

~Y

O

5.3. Proof of Proposition 5.1. This is an immediate consequence of
Lemma 5.6 and Corollary 5.7, and (5.5), once we verify that, for each
k, 0,

1870 0; "\l p2psr S €2

To begin, suppose that f(t,x,u) is a smooth, compactly supported
function of its arguments. Then since s > &, we have the bound

Hf(t,l','LL)HLtOOH; S Ca

where C' depends on uniform bounds on a finite number of derivatives
of f. Consequently, by (5.4) we have the bound

1/t @, u) (u, aiu)HLgOH;*l + (¢t z,u) Opu ajUHLfH;*l S €2,
where the second term is bounded as a consequence of the inequality
[(du)?|

The result now follows as a consequence of (5.3). O

A1 S ||du||L;°||du‘ H:L-

5.4. The null frame and an elliptic estimate. We introduce a null
frame along ¥ as follows. First, we let

V = (dr)",

where r is the defining function of the foliation 3, and where * denotes
the identification of covectors and vectors induced by g. Then V is the
null geodesic flow field tangent to . Let

(5.17) o=dt(V), l=0"1V.
Thus [ is the g-normal field to ¥ normalized so dt(l) = 1, hence
(5.18) = (dt,dx, — do);" (dz, —do)",

27



so the coefficients I/ are smooth functions of u and d¢. Conversely,
(5.19) dan, —dp = (1,0,,)5 I,

so that d¢ is a smooth function of u and the coefficients of [.

Next we introduce vector fields e, : 1 < a < n — 1 tangent to the
fixed-time slices X! of ¥. We do this by applying Grahm-Schmidt
orthogonalization in the metric g;; : 1 < i,j < n to the X'-tangent
vector fields 0,, + (0, @) Ox,, -

Finally, we let

L =1+2(dt)*.
It follows that {l, [ ,e,} form a null frame in the sense that

<lv l)g = 27 <ea>€b>g = 5ab7

<l7l>g = <£7 l)g = <la€a>g = <L>€a>g =0.

The coefficients of each of the fields is a smooth function of u and do,
and by assumption it also follows that we have pointwise bounds

lea = Op |+ 1= (0 +00,) |+ 1L — (=0 + 00,) | S

Lemma 5.8. Suppose that g” 0;0;w = F. Let (t,2',¢(t,2")) denote
the projective parametrisation of 2, and for 0 < i,j < n —1, let @,
denote differentiation along ¥ in the induced coordinates. Then, for
0<7,7<n-—1, one may write

Pi 9 (wls) =1(f2) + f1,

where
1 fall sz sy + Al s s
5 ”deL;fOH;*l + HdeLELg’ + ||F||L§H;'*1 + ||F||LgH;71(2) )
and for each value of t,
12t s, ) S lldw(t, )l esmn) -
Proof. Let
HdeLgOH;—l + Hdw”Lngo + HFHLin_l + ”FHLtlHi,_l(Z) =¢€.

The conditions of Lemma 5.6 are satisfied since
1(0:ig")05wll 2z S ldg” |z poo lldwll poo g1+ A || oo gyl dwl g e

< €.

~Y
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Consequently ||dwl/s—12x < €. We make the change of coordinates

~Y

T, — x, — O(t,2') as before, which reduces ¥ to the set z, = 0. In
these coordinates the equation takes the form

h 0; 0,0 = F + g™ (0 009) 0,0 = F1
where now
h' = g" — 5" (0r0) 8" — & (90) 6" + 6 6" (90) (0up) &*° -
The metric h” satisfies the bounds (5.14) and (5.15) as before. Also,

||F1||Lt1H;71(E) Se.

To see this, we note that H;,_l(Zt) is an algebra, and that by the trace
theorem, (5.13), and (5.6), and by Lemma 5.6, we have
Hgk[“LfoH;,_l(E) + Haka@(b“L?H;fl(E) Sl ”aanLfH;,—l(z) Se.

We let 1!, 1, ¢! denote the coefficients of the null frame {I, [, e,} in
these coordinates. Thus, [ = 1, and I" = e" = 0. Each coefficient may
be written along ¥ as a smooth combination of the h”/ | and is equal
to its constant coefficient version for |z| large. Consequently, (5.6),
Proposition 5.1, and (5.12) together imply

(5:20) 11" = 6"som + [ 1"+ 6% = 26"l 25 + lleg = 6502 S @
In particular,

|’li’|Lt°°H;fl(E) S,
(5.21) | | |

H@ZZ“L%H;,_I(E) + ||@UHL§H;,—1(E) + H@dzHLEH;,—l(E) Ser
Since ||dw| 2 () < €, we may reduce matters to showing that we
can write

Ok Opw =1(f2) + f1, where 1<k {<n-—1.
We define

n—1

Aw = Z el el 9; 0w .

i.j,a=1

Since {l, [, e,} is a null frame, we have

Aw:—Zl’ U@iajw—l—Fl

i,j=0
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where G = [(17) 0;w + F} satisfies Gl L per1sy S € by (5.21). We thus
write ’

8kagw = (akagﬁil(lw)) + [8]6@5&71,1](!10) +8k84¢*1G,
where, with A, = 321" 9, we may expand

o . o k
o 87 = 0,0 85" D0 (07— ehed) 0,0,485")

k=0

which by (5.20) and the algebra property of H% *(X*) is for each t a
bounded operator on H? '(3) with norm independent of ¢. It follows
that

~1
|0k O¢ A (lw)HLfH;,_l(Z) SeE,

0% Oe A_lGHL%H;,*l(z) Se.
To handle the commutator term, it suffices to show that
H [(5” - ezei)aiaj al’l}fllL%H:fl(E) 5 ”f”LfH;fl(E) :
To do this, we bound the left hand side by
11(esel) @ajﬁglfﬂLgijl(z)JFH(5ij—636§)3iaj4§51((3klk)f) lzpersrres)
1167 — ehel) [0:00e0 " 1 ] Pl sy

where we have 1 < k < n — 1, since [ = 1. The first two terms have
the desired bound by the algebra property of H;,~ L' For the third term,
we use the Kato-Ponce estimate

-1
| [&@@4&0 >lk] fl HSTH (DY) S " — 5kOHLipx/(Ef) 1f] H7H (S
+ H lk o 5k0|

a0 [ e o)

S =0, 00y 1 f]

To conclude the proof, we need establish the C° bounds on f(t,-).
By (5.20), it follows that the coefficients of the null frame belong to
C?, (%), with uniform bounds over ¢. As above we may thus reduce con-
sideration to 0; 0w, in the projective coordinates on . Since (5.20)
shows that ||e’ el — 5ij||02l(2t) < €1, we have

1ot s, oo = 1885 A7 (Lw)(t, o,y S lldw(t, ) lesn -

HEH (S -

U
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Corollary 5.9. Let R be the Riemann curvature tensor for the metric
g, and let e = . Then for any collection 0 < a,b,c,d < n—1, We
may write

<R<€a7 eb) €c; €d>g ’E = l(fQ) + fl )

where
Hf2||L§H;71(2) + “leL%H:fl(E) S €,
and for each value of t,

||f2(t7')||02,(2t) < sup ldg™ (¢, - )l s @n) -
l?]
Proof. The curvature expression takes the form Ry el elefel | where

1 L
Rijie = 5 0; Ok gjo + 0 Oy Gir — 0 Ok Gie — 03 Oy gjk] +Q(g", dgij) ,

where Q is a sum of products of coefficients of g¥/ with quadratic forms
in dg;; . It follows by Proposition 5.1, which applies to g;; as well as
g" | that the term Q satisfies the bound required of f;. We therefore
look at the term e e*9; 9y g;¢, which is typical. By (5.20) and Propo-
sition 5.1, the term e,(e) dy.g;, satisfies the bound required of fi, so
we consider e,(e.gj¢) . Finally, since the coefficients of e, in the basis
@; have tangential derivatives bounded in LZ2H? (X)), we are reduced
by Lemma 5.8 to verifying that

17 0: 0; grell 2z + l18” 0: s grell Ly () S €2
The bound on the first term follows by the proof of Proposition 5.1.

The same proof, together with the bound [|O;ul| 2115, < €2, also
bounds the second term. O

5.5. Connection coefficients and the Raychaudhuri equation.
We will work with the following selected subset of the connection coef-
ficients for the null frame with respect to covariant differentiation along

%,

1
Xab = <Deal7 eb>g l(ln U) - §<Dllal>g Hoab = <Dl€a> 6b>g

For o set the initial data ¢ = 1 at time —2. The coefficients of [
and e, are combinations of coefficients of g and d¢, by (5.18) and
the orthogonalization process. Consequently by (5.12), together with
Proposition 5.1 and (5.6), it follows that

(5.22) ”XabHLij,—l(z) + [|I(In U)”L?H;,—I(z) + HNOabHLgH:,‘l(z) Ser.
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Similarly, if we expand [ = [*@), in the tangent frame 0y, d,» on ¥, then
(5.23) L1, s [l Se

1<a<n-—1

Lemma 5.10. Let x, be defined as above. Then, for1 < a,b<n-—1,

“XabHLQHS (2 ~ S €

Furthermore, for each value of t,

[ Xan(t, )Hcé,(zt S € +Sup\|dg”( 7')’|CQ(R")~

Proof. Tt follows from (5.23) and Sobolev embedding that the tangent
field I, expressed in the basis J;,d,» of tangent vector fields on ¥ in
(t,2') coordinates, differs from 0; by a field with coefficients of small
norm in LfC’;fs . Consequently, if we introduce coordinates (¢,’) on X,
such that I(y') = 0 and ¢y = 2/ at t = —2, then the 3y are a small C?
perturbation of x’.

We use the transport equation for y,

Z(Xab) = <R(l> 6a)ly eb)g — XacXeb — l( In U) Xab + Hoac Xcb + Hobe Xac -
By Corollary 5.9, we may write this in the form

ab)

l(Xab - - {lb — XacXch — l( In U) Xab + Hoac Xcb + Hobe Xac -

As before, let A*~! be the fractional derivative operator in the 2’ vari-
ables. Then, since H% '(X!) is an algebra, we may for each ¢ bound
the norm of the right hand side in H: (3¢ by

ha(t) + ha(t) SUP A (xap — f5°)( 7')||Li,(2t)a

where by (5.22) and Corollary 5.9 we have
[hllLr22) < €2, | hal 222 S €1
We next bound

A 00 = S57) (8 ) iz, ) < 1@el) Otas = J3°)(E e
AT e, 1 (ap — F5°) () M2, () 5

which by the Kato-Ponce commutator estimate and the Sobolev em-
bedding theorem is bounded by

sup [[I°(¢, )]

1<c<n—1

H2, () A (an — F30)( a')“H;fl(zt)'
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By (5.23) we thus have the bound
sup 1114 (xap = F5°)(0, 2, o

a,b
< ha(t) + ha(t) sup A" (xas — f5)(¢, ')||L§,(zt) ;

a,b
where hq(t) and hs(t) satisfy the bound above. Since the flow of [ is
C! as noted above, together with Gronwall’s Lemma this implies that

Slz‘p H(Xab - fgb)(ta )‘

The conclusion now follows by Corollary 5.9 and Sobolev embedding.
O

i S €2

5.6. Proof of Proposition 5.2. Recall that we have fixed r = 0 and
0 = (0,...,0,1). Note that since ¢(t,2") = ¢ for t < —3 , it follows by
(5.10) and Sobolev embedding that

[o(t,2") = tller S Ndo(t, o') —dt
so it suffices to dominate the latter quantity by es . By (5.19), together

with (5.12) and the bounds on [|g” — 7%||s2x from Proposition 5.1,
this in turn will follow as a consequence of the bound

1= (0 = Ou)lls.22 S

52,2 S €2
where it is understood that one takes the norm of the coefficients of
[ — (0; — 0,,) in the standard frame on R"!. The geodesic equation,
together with the bound for Christoffel symbols [|I'%; || 210 < €2, imply
that

8,29

1= (0 = On,)lLge, S €2

tx N

so it suffices to bound the tangential derivatives of the coefficients of
| — (0 — ,,) in the norm L?H?'(X). Finally, we claim that we can
now reduce matters to dominating the coefficients of D;l and D.,[ in
the tangent frame {e,,[}. To see this, we note that the coefficients of
e, and [ are small perturbations of their constant coefficient analogs in
the LZH:(3) norm. Also, by Proposition 5.1, we have the bounds for
the Christoffel symbols

Hré'k”L%H;,’l(E) S €,
so that, for instance,
||F;‘keglk||LfH;71(E) NESR

and in particular the covariant derivatives of 0, — 0,, are small in
L2HSY(Y).
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Thus, we need to establish the following bound,
[{(De. L, €b>g||L§H;71(Z)+||<DealaDgHLfH;fl(z)"‘H<Dll7£>g”L§H;71(z) < €.

The first term is x,, which is bounded by Lemma 5.10. For the second
we note that

<Deal7 L>g = <Deal7 2<dt)*>g == <D5a(dt)*7 l>g :
Since the coefficients of (dt)* are combinations of the g, bounds for

this term, as well as the last, follow from Proposition 5.1.
It remains to show that

|do(t, ) — dt”c;;é(w—l) Se+[ldg? (¢, ) lcsmn)
for which it suffices to show that
11) = (0 = 0u)lonsgeny S €2+ g (8, llogn -

The coefficients of e, are small C?,(X!) perturbations of their constant
coefficient analogs, so it suffices to show that

(De L en)g(t: llos, s+ 11 (Deo s gt s, 0y S €2t [1dg” (¢ ) lloaen)-

The first term is bounded by Lemma 5.10, and the second by noting
that

(De, ()", Dg(t, les, o) S Idg? (¢, Mles@ny - O

6. GEOMETRY OF CONES

The purpose of this section is to show that any two null foliations
Y, and Yy, as defined in section 5, intersect at each point at an angle
comparable to |w — 6].

Precisely, let [, be the g-normal field to the foliation ¥, normalized
as before so that dt(l,) = 1. We use o(r) to denote a quantity that
is bounded by cr, where ¢ is a small constant which can be made
arbitrarily close to 0 by taking es of (5.4) and (5.3) small.

Proposition 6.1. For all unit vectors w, 0 € S™ ', uniformly at all
points in space-time,

(6.1) lo—lpg=w—0+o0(lw—10]).

As an immediate consequence of this and the fact that [, and [, are
null in g, we have that, uniformly at all points in space-time,

1
(6.2) (lo, lo)g = —§|w—9|2+o(|w—9|2).
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We also establish the following fact about the geodesic flow from a
point. For a given point x1, we let vy denote the null geodesic curve,
reparametrised by ¢, such that v4(t;) = x1, and “y(¢1) lies along the
direction 6.

Proposition 6.2. Forall (t, 1), witht; € [—2,2], and allt € [-2,2],
(6.3) Yeo(t) = 0(t) = (8 = t1) (w—0) +o(|t = ta| [w = 0] ).

To establish (6.1) and (6.2) at a given point (¢1,z;), we study the
cone spanned by the null geodesics through that point.

For the rest of this section, we fix a point (1, 1), with t; € [-2,2].
Given w € S"1 let r(w) > 0 be defined so that the vector (1, 7(w)w) is
null at (¢1,21). Then r(w) = 1+0(1), and d,r(w) = o(1) . Let (¢, 7.(t))
for t € [—2,2] be the null geodesic curve such that

dry.,

Yolt) = 1, E(tl) =rw)w.

At t = —2, the metric g is the standard Minkowski metric, and hence
we may write

dry.,
T 9) = b(w),
which defines w — f(w) as a map S™ ! — S"!. Note that f(w) is
the vector such that =, is tangent to the foliation X« . Our proof
establishes that 6(w) is a small C! perturbation of the identity map,
which yields (6.1). Since §(w) is the normal map to the ¢t = —2 slice of
the light cone with vertex at (t1,x;), this in effect says that the map
Y (—2) is a small C? perturbation of multiplication by —(2+#;) w. We
prove this in turn by first establishing (6.3), which implies that ~,,(—2)
is a small C' perturbation of —(2 + ;) w, and then showing that the
second fundamental form of the cone is a small C° perturbation of that
of the tangent cone over (¢;,x;). We begin by establishing (6.3).

We start by noting that the bounds on the Christoffel symbols,

17512200 = o(1)

imply that
v 1
Tty = r(w)w+ ot — 1a]?)
dt
hence that
(6.4) Y(t) = a1 4 (t— ) r(w)w + o]t —11]2).

35



Given a tangent vector v to S"! at w, we let Z, denote the purely
spatial vector field along (t,,(t)),

Zv(t) =v- awvw(t) )
so that
DZ,
dt

As a variation of reparametrised geodesics, Z,(t) differs from a Jacobi
field along (¢,7.(t)) by a multiple of 4,,(¢). Hence, using £ to denote
covariant differentiation along ~,, , we have

Dz, dIn(o) DZ,
=R 'wa Zv .w -
a2 (o, Z0 )5, dt dt

Here, o denotes %, where s is any affine parametrisation of the geodesic
Yw- By taking s to be the parametrisation with o(—2) = 1, then
0 = 0g(w) Where oy is defined as in (5.17). In particular, we have that

Hdln(a) o).
dt || 2_g9)

Zv(tl) = 07

(t) =v-0u(Lr(w)w) = (0,0+0(v])).

mod (4,,) .

(6.5)

The above together imply that (Z,,4,)g = 0 for all t. We now fix a
set e, of purely spatial vector fields along (¢, 7,(t)), orthonormal under
g, which together with (1,4,) span the ortho-complement of (1,4,,)
under g. We may choose e, such that

De,
dt

for instance by parallel translating an orthonormal frame along ~,, and
subtracting a multiple of 4, to make them purely spatial. We set

zy(t) = (Zy(t), ea(t))g,
and derive the formula
d?z0 , , y dln(o) dz¢
dt2 = <R(7w7€b)7w?ea>g 2y — dt dt

By the parallel transport equations, the coefficients of e, relative to the
frame 0,, have derivative with small L? norm. Hence we may apply
Corollary 5.9 to rewrite this equation in the form (along ~,,)

d /dz® ~ dz®
L5 )= (S -

=0 mod (Y,),

where

188 k2 (-0.2) + 1 F80 | 2 (-o2) + [ F{2]l L1 (—22) = o(1).
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Since 2%(t1) = 0, and |29(t1)| < 2 |v|, this implies that
22(t) = (t — 1) 22(t2) + o[t — ta]2 [v]) .

Since eq(t) = eq(t1) +o(|t — t,]2) (relative to the frame ,,), this yields

Z(1) = (t — ) () + ol — 1] o],

again relative to the frame 0,, . Consequently,

(6:6) 2(t) = 0(t) = (t = 1) (r(w)e = r(6)0) + o( |t = ta| | = 6]).,
which in particular implies (6.3).

Together, (6.4) and (6.6) imply that the map w — 7,(—2) is an
embedding of S"! into R™, which is a small C* perturbation of the
mapping w — —(2 + t;)w. It remains to show that the function
0(w) = 4.,(—2), considered as a function on this manifold, is a small

C"! perturbation of the function w. To do this, we show that, uniformly
for each w,

—(2+1t1) (D¢, 0(w), €p)g = dap + 0(1) .
Together with (6.4) and (6.6), this implies (6.1).
We fix w, and along ~,(t) we set
Hap(t) = (Deyt) Yoo (1), €6(1))g -

Then H,(t) is well defined and smooth in ¢ for ¢ # ¢, since the above
argument and dilation show that w — ~,(¢) is a C* embedding for
t # ty, as gy is assumed to be C*°. A dilation argument shows that

Hap(t) = (t — 1) Gap + hap(t)
where

(6.7) sup |hap(t)| < oo.
t#t)

Furthermore, for ¢t # t;, we have

dHab -

. , dIn(o)
a <R(’Ywaea)’7waeb>g - T

dt

Hab - Hac ch .

Applying Corollary 5.9 as before, and setting fo = —dIn(o)/dt, we
obtain upon substitution for H,, the differential equation for hg, ,

dhey  dfs"

@ ar FiP 4+ (6= t1)" fabap + fohap — 2(t = 11) " hap — Paches,
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which we may rewrite in the form

d .
%((t—tl)Q (hav = 15°)) = =2 (t—t1) fs"+ (t—t1)* [{*+ (t —t1) fo Omp

+(t—11)? fohay — (t = t1)* hac hep
where as before

1£58 | 22(—2) + | Foll2—22) + [ F£2] 01 (~2.2) = 0(1).
Applying (6.7) leads to the inequality
t t
|hao ()| < | f5°() ]| + 2|t — t1|‘1/ (| £5°] + | f2 0ap] ) ds +/ | f1°| ds
t1 t1

t t
_'_/ |f~2hab‘d5+/ ‘hachcb|d57
t1 t1

with the order of integration reversed for ¢ < t;. We next note that
the first integral on the right hand side is dominated pointwise in ¢ by
M(f$%)+ M(fs), where M is the Hardy-Littlewood maximal function,
hence the second term has small norm in L?(dt). A continuity argument
in 7 applied to ||hap||L2(jt—t,|<r) Shows that

1a | £2(~22) = o(1) -
Furthermore, since f$b(t) =0 for t < —1, we have

|hap(=2)] = o(1) .

7. THE PARADIFFERENTIAL DECOMPOSITION

To conclude the proof of Proposition 4.1 we establish the following:

Proposition 7.1. Suppose that u € H, and that G(u) < 2¢;. Then
condition (WP4) is satisfied with g(u) replaced by g(t,x,u). That is,
the linear equation Og(; ;v = 0 is well-posed for data in H™ x H™™ if
1 <r < s+1, and the solutions satisfy the Strichartz estimates (3.3).

First we show that this yields Proposition 4.1. By Proposition 5.2,
we need to show that

ldull e razry S €s> Nldullzzes Ses-

The first of these is a consequence of Lemma 1.4, since by assumption

|dull2cs < 2€2. It remains to bound du in L2C?. The bound would

follow directly from Proposition 7.1 if the right hand side of (1.1) were
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zero. In our case, the result follows by the Duhamel variation of pa-
rameters formula, upon verifying that

la(t, z,v) (dU)QHL;(H;—I) Ses-
But this follows from the fixed time multiplicative estimate
la(t, 2, ) (du)?|| gz S lldullze lldul g1
which is in turn a consequence of (2.5) with a(§) = (£)*~*. O

We will establish Proposition 7.1 via an appropriate parametrix con-
struction for the equation Ogv = 0. The first step in the construction is
to make a paradifferential decomposition in order to localize the prob-
lem in the frequency variable dual to z. Given a frequency scale A > 1,
we consider the regularized coefficients

gy = 5,8,

which we use to study the localized problem at frequency A. We will
begin by showing that Proposition 7.1 is a result of the following

Proposition 7.2. Suppose that w € ‘H, and that G(u) < 2¢;. Then for
each (vg,v1) € H' x L? there exists a function vy in C*°([-2,2] x R"),
with

—

support vx(t,-)(€§) € {§ : A/8 <[] <8A},
such that
10 oxllzrz2) S €o (Nlvollr + llvallz2)
(7.1)
ua(—2) = Shwvg,  Gwa(—2) = Sy,
and such that the following Strichartz estimates hold, provided r > %
if n=2, andr>"7_1 ifn >3,

_1
loallacreey S €0 A (HUOHH1 + ||U1||L2) ) n=2,
(7.2)
_1
loallzeey S €02 A (Nlwollr + loalle),  n=3,4,5.

Roughly speaking, this says that we can find a “good” approximate
solution v, for the equation

(73) Dg/\’U,\ = O, U,\(—Q) = S,\Uo, 0751})\(—2) = S)\’Ul .

This result is almost trivial if egA < 1. Indeed, in this case we can let
vy = S\v, where v is the exact solution to Og, v = 0 with data (v, v1),
in which case

1T oallrzre S N 18Y, 99\ 0 20z + 11SA(0i85) (050) [ r212
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S gz ree 1000 o2

S o (llvolla + [lvallz2) -

The Strichartz estimates then follow from the Sobolev embedding and
the energy estimates. Hence, in the next section we will restrict our-
selves to establishing Proposition 7.2 in the case that

60)\>>17

in which case we will show that (7.2) holds without the factors of
€p on the right hand side. For the rest of this section we show that
Proposition 7.2 implies Proposition 7.1.

7.1. Replacing L;L? by L?L2. We prove here that vy can be chosen
so that a stronger version of (7.1) holds; namely so that

10g,vall 2222 < €0 (Nlvollar + llui]lz2) -
We fix a Littlewood-Paley cutoft Sy so that S)9y = Sy , and so that Sy
is supported in the range [¢] € [A\/8,8)].
Suppose we are given initial data (vg, v1) with frequencies supported
in the range [A\/8,8A]. Then Sy (vg, v1) vanishes except for a fixed num-
ber of dyadic values. Applying Proposition 7.2 to each of these pieces

and summing up the resulting approximate solutions we produce a
function v which is localized at frequency A\ and satisfies

10,0l iz S €o (llvollmr + llonllzz),  v(=2) =wo, wve(=2) = 1.

(We use the fact that one may replace g\ by gy with X € [A\/4,4)]
without changing the result of Proposition 7.2.) We set vy = S)v and
compute

DgAUA:S)\fl—'—fZ) flzl:‘g)\va f2:[Dg>\7S/\]U-
The commutator term can be estimated as above,
(7.4) 1[Bgys Sx] vllzzrz S lldgllzzree lldvlporz -
We thus obtain a smooth function v, with
vA(=2) = Sxwo, Or(—2) = Sxvy,
and such that Og, vy = S\f1 + f2, where
(7.5) Ifillzizz + 1fallzzre S o (ool + lvallz2) -

This is already an improvement over (7.1), since Og, vy is the sum of
a good term f5 and a bad term which has the special form S, f;. We
want to eliminate the bad term using an iterative argument based on

the Duhamel variation of parameters formula. To do so, we need to
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construct approximate solutions for Cauchy data specified at arbitrary
initial time ¢y € [—2,2], and not just tg = —2.

Precisely, given (wp,w;) € H' x L?, we seek w) so that
(7.6) Og,wy = Sxfi+ fo, w(to) = Shwwo, wi(ty) = Shwy,

and such that (7.5) and also the Strichartz estimates (7.2) are satisfied
with v replaced by w.

For this, we start with the exact solution w to

|:Ig,\,u} = 07 U)(to) = Wo , wt(tO) = Wi,

and let vy = Syv be the approximate solution constructed as above,
with vg = Syw(—2), v; = Shywi(—2). Then by energy estimates and
(7.5), vy satisfies the correct estimate,

Og,ox =S\ fi+ fo, Ifilloize + 1l follzz S €0 (lwollan + wn]lz2) .
as well as the Strichartz estimates (7.2), but it does not match exactly
the data at time t,. However, we have

S)\’UJO — U)\(tg) = waé, wé = g)\wo — U(tg) N

Sywy — Oy (to) = Sy, wy = Syw; — vy(to) -

We can use energy estimates and the commutator estimate (7.4) to
bound the size of the error,

lwollzr + llwy | 2 10, (Snw = )l rz

N
S 18evllzire + 15y S\lwll 21z
S eo (llwollar + llwn | 2) -

Since the norm of the error is much smaller than the initial size of
the data, we may repeat this process with data (w},w;), and sum the
resulting series to obtain a smooth function w, with data Sy(wp, w)

at time to, such that the Strichartz estimates (7.2) are satisfied, and
such that Ogw = S\ f1 + f2, with

1filleee + I fallzzee < o (llwollsr + flwilz2) -

An iteration argument now allows us to eliminate the bad term S, fi
in Og,vx. Note also that the above argument implies the result of
Proposition 7.2 with —2 replaced by arbitrary ¢, € [—2,2]. Combining
these results, we obtain the following strengthening of Proposition 7.2,

Corollary 7.3. Suppose that uw € 'H, and that G(u) < 2¢;. Then for
each (vg,v1) € H' x L?, and each ty € [—2,2], there exists a function
vy in C®([=2,2] x R"™), with

support v (t,)(€) € {€ : A/8 < |¢] <8A},
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such that

O oallrzre S €o (Nlvollmr + llvallzz)

ua(to) = Sxvo,  Owa(to) = Syvr,
and such that the Strichartz estimates (7.2) hold.

7.2. The case r = 1. Since dg, € L7L°, it follows that equation
(1.3) is well-posed in H' x L? and its solution satisfies the energy
estimates. It remains to show that its solution v also satisfies the
Strichartz estimates (3.3). Without loss of generality we take to = 0.

Given arbitrary initial data (vg,v1) € H' x L?, and general t, €
[—2,2], we take the Littlewood-Paley decomposition

UOZE Sxvo Ulzg Sy,

and for each A take the corresponding vy as in (7.1). Set

v = E Uy -

Then v matches the initial data (vg,v;) at time ¢y, and satisfies the
Strichartz estimates (3.3) (with a constant depending on €;). We claim
that v is also an approximate solution for Og, in that

[0gvllz2r2 S €0 (llvollr + llvrllz2) -
Indeed, we have
Ugv = Z Ug,vx + Z Ug g, Ux -
A dyadic A dyadic

The first sum is controlled by Corollary 7.3 since the terms have finite
overlap on the Fourier transform side. For the second, we first observe
that it contains no second order time derivatives, since g = 1. We
set wy = dvy € L°L? , and rewrite the second term as

Z (g - g/\) dxw)\ .
A dyadic
The bound on this term follows from the fixed time estimate
1
3
IS (=g dewn 2 S Idllos (D lwllz:)
A dyadic

which follows from the bound

lg — &l S AT llglles -
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Given F € L} L2, we now form the function

TF(t,x) = /t ve(t,x) ds,
0
where v® is the approximate solution formed above, with Cauchy con-
dition
v*(s) =0, (9w)(s) = F(s,-).
Then the above shows that
|BgTF — Fllp2rz S €o || Fllzze -

Hence the contraction principle implies that we may write the solution
v in the form

v=0+TF,

where ¥ is the approximate solution formed above for data (vg,v;)
specified at time t = 0, and

1F 222 < €0 (llvollar + llvillz2) -

The Strichartz estimates now follow since they hold for each v*.

7.3. The case r = 2. Again we consider t5 = 0. Given data (vg, v1) €
H?x H' , we seek a solution of the form v = (D,) 1w . Then we require
that w have Cauchy data (D,)(vg,v;) € H' x L?, and that w solve
Ogw = (Og — (D,)0g(Dy) Hw
= 87, (D) (D2) 005w,
where we may assume that ¢ # 0.
For F' € L2L?, we form TF as above, but with v® the exact solution
to Ogv® = 0, so that O,T'F = F', and T'F has vanishing Cauchy data
at t = 0. Let w be the solution for the homogeneous equation Ogw = 0,

with Cauchy data (D,)(vo,v1) € H' x L*, at time 0. Then we may
find a solution w of the form w = w + TF, provided that we show

18", (D)) {Da) 00T F 212 S o [1F 11122

This, however, follows from the fixed-time commutator estimate of
Coifman and Meyer [5]

187, (D)) fllzz < lldgllzee 1 flz2
and the bound

[dTF|peerz S IFrr2 -
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At this point, we note that the Duhamel principle implies that for v
solving the inhomogeneous problem
ng = Ga U(O) = Yo, Ut(o) =0

and for r = 1 and r = 2, we have the bounds

{Dz) vl sree < Mo, v) = + Gl gy 0= 2,

(7.7)
{Dz) vl 22200 < (w0, v1) | <=1 + |Gl prpr—1 s n=3,4,5,
: 3 _ n—1
provided r —p >3 forn =2, and r —p > *5= for n > 3. As an easy

consequence of (7.7), we will now show that the following bounds hold
forr=1and r =2,

(78) KDz)Pdvl iz S 110, v)lmrscrr— + |Gl gy, 7= 2,

H(Da:>deHL§Lgo S (vo, vl e -1 + ”G”L%Hffl , n=3,4,5,
providedr—p>£ for n = 2, 8Lr1d7"—p>”TJrl forn > 3.
To establish (7.8) for r = 2, we first consider the case G = 0. Then
Ogdv = (dg)9,0;v € LIL%,

and it is seen from the equation Ogv = 0 that the Cauchy data of
dv is of regularity H' x L? if the Cauchy data of v is of regularity
H? x H'. The estimate (7.8) with r = 2 then follows from (7.7) with
r = 1 applied to dv. To handle the case G # 0, we use the Duhamel
formula for v, and note that

(D,Y*d /0 () ds = /0 (Dodu(tx) ds

To establish (7.8) for r = 1, we note that, if v has Cauchy data of
regularity H'x L2, then (D,)'v has Cauchy data of regularity H*x H?,
and
18¢(D2) "0l = [(D2)Og(De) " vl Lz
S 1 UD2), 87 1D2) " 0050l 22 + |Gl prsa s

and the commutator term is bounded by the Coifman-Meyer estimate
together with energy estimates on v.

7.4. The general case 1 <r < s+ 1. To handle the general case, we
first show that the following estimate holds for 1 < r < s+ 1,

1 Pg, (De)" U Da) " wlls2rz S €0 (lldwlzgors + {De)™dwll 2ree)
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provided m > 1—s. To see this, we apply analytic interpolation to the
family

w— [Og, (D)D) w.

For Rez = 0, we let v = J;w, and use the fixed time commutator
estimate

Ig", (Do)*10sull 1z < lldg” |l llullzz

which follows by (3.6.35) of [24] , where we recall that i # 0.
For Re z = s, we use the fixed time commutator bound

118", (D2)*){Dy)*0su| 12
S lldg? e llullea + llg” =0l mg

(Dx) ™ 0ul| 1o ,

which is a consequence of the Kato-Ponce commutator estimate, see
(3.6.14) of [24]. The estimate now follows by analytic interpolation
and the fact that

ldg” | r2ree + 1187 = 0 || gemy S €o-

For Cauchy data (vg,v;) of regularity H"™ x H™™!, we seek a solution
of the form v = (D,)'""w , where w solves

Ogw = (Og — (D,)" '0g (D) " w.

We may obtain a solution of the form w = w® + TF, with F' € L?L2,
and where w solves Ogw = 0, with Cauchy data (D,)""!(v,v1) of
regularity H' x L? provided we show that

(g = (D2) ' Be(D) ") TFl 222 S €0 1 Fll 12 -

This, however, is a consequence of the above commutator estimate,
provided we show that, for some m > 1 — s, we have

[dTF||zzor2 + [[{D2)™dTF|| 2000 S 1 F Il L322 -

This in turn follows from the case r = 1 of (7.8), since we can take
1—5<m<1*T" ifn23,and1—s<m<—% ifn=2.

8. THE PARAMETRIX CONSTRUCTION
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8.1. The construction of wave packets. We introduce in this sec-
tion the notion of a wave packet, which is central to our parametrix
construction. Roughly, a wave packet is an approximate solution to
the equation Ogu = 0, which has a finer spatial localization than a
traveling (plane) wave solutions. More precisely, a frequency A wave
packet is localized within A\~! of a characteristic surface Y, but also
roughly within A~z of a bicharacteristic ray on X, ,. Thus, the support
of a wave packet is contained in a curved rectangle which is roughly of
size 1 x A= x (A"2)"1. In the sequel we shall call such a region a slab.

While the natural idea might be to start with initial data which is
spatially localized in a A7! x ()\’%)”_1 rectangle, as well as frequency
localized in the dual rectangle at frequency A, and transport it along
the geodesic flow of g, such a construction does not seem to work,
essentially because applying Og to such a wave packet yields an ex-
pression which involves (badly behaved) derivatives of the null frame
in the direction [ transversal to the characteristic surfaces.

To avoid having to deal with the behavior of the null foliations ¥,
in transversal directions, we construct wave packets by starting with a
flow-invariant measure on some X, (essentially surface measure mul-
tiplied by a A~2 bump function on Y.»), then mollifying it on the A~*
scale. The advantage of this approach is that derivative estimates for a
wave packet involve only the tangential behavior of restrictions of var-
ious functions to the characteristic surfaces X, ,, as opposed to their
regularity within the support of the wave packet.

Another aspect worth noting in our construction stems from the fact
that one cannot localize sharply in both space and frequency. For most
of our arguments a sharp spatial localization is more convenient, but
the sharp localization in frequency is exploited in order to gain the
orthogonality of the wave packets. Consequently, our definition of a
wave packet u involves a sharp spatial localization, but the approximate
solutions at frequency A to Ogu = 0 are constructed as superpositions
of Syu. At all instances where we need to take advantage of spatial
localization we are able to discard the harmless factor S).

We introduce a spatially localized mollifier T} by setting

Tf=vaxf,  daly) ="\ 'y),

where ¢ € C2°(R") is supported in the ball [z| < 55, and has integral
1. By choosing 1 appropriately, any function u with frequency support
contained in |§| < 4\ can be factored u = Ty, where [[i] ;2 ~ ||ul/z2 .

Finally, we note that our definition of a wave packet involves the

small parameter €y, which is introduced in order to assure that Ogu
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is of small norm, so that we may later obtain exact solutions by an
iteration argument.

Definition 8.1. Let v = () be a geodesic for g, and let ¥, be the
null surface introduced in section 4 that contains v, defined by

Ew,r = {(t,ZE) Xy — qbw,r(taxi;) = 0}7

where x, = (w,x), and z., € R™ are projective coordinates along w. A
normalized wave packet around v is a function u of the form

S
u= (—:54 )\nT7T>\(Uw) ,

where
(1) The function v is simple surface measure on 3, ,

U<t’ 1‘) = 5(xw - qbw,?"(tv l’;)) )
(ii) The function w has the form

1
w = wo((eo)2(xf, — 7,(1))) ,
where wo(x') is a smooth function, supported in the set |x'| < 1, with
uniform bounds on its derivatives

10%wo(2")| < ¢q -

As mentioned above, the small parameter ¢y will play an essential
role in insuring that Ogu not only belongs to L L2, but that it is also of
small norm in this space. It would be possible to replace this by relying
instead on a rescaling argument in (¢, ), but that moves the burden to
a different part of the proof. Given ¢y, the construction which follows
is of interest only if the frequency A is large enough, namely if

A>et.
This is assumed throughout the rest of the paper.

8.2. An estimate for single wave packets. Our first goal is to verify
that a normalized wave packet is an approximate solution to the wave
equation, normalized with respect to the H' x L? energy. For a single
wave packet u, this means establishing an L; L? estimate on Ogu, which
is fairly straightforward. However, we will later need similar estimates
for square summable superpositions of wave packets, so it is useful to
be more precise at this stage.

We introduce two notations. We use L(u,v) to denote a translation
invariant bilinear operator of the form

L(u, v)(z) = /K(y, Dulz +y) vz + 2) dydz
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where K (y, z) is a finite measure. The particular operator L that arises

in Proposition 8.2 below is fixed, and not dependent on either g or wu.
If X is a Sobolev or Holder space, then we use X, to denote the same

space but with the norm obtained by dimensionless rescaling by a,

lullx, = llula-)llx -

We note that, since 2(s — 1) > n — 1, then for a < 1 we have

||u| Hgfl(Rn_l) 5 ”ul Hsfl(Rnfl) .

Proposition 8.2. Let u = Ty(vw) be a normalized wave packet. Then
there is another normalized wave packet 4, and functions ¥ (t, z.,),
7 =0,1,2, so that

(8.1)
OgnSau = L(dg, dSyi) + €7 AT Ty S 1 00 (w1 — 6,).

m=0,1,2

where the functions v, = ¥, (t,x]) satisfy the scaled Sobolev estimates
(8.2) [Wmll o SeoA™, m=0,1,2, a=(e\)7.

As an immediate consequence, we obtain
Corollary 8.3. Let u be a normalized wave packet. Then

(8-3) [dS\ullpge(rzy S 1, [[BgySaullzers S €o-

Proof of Proposition 8.2. For the purpose of this proof we consider the

case w = (0,0, ... ,1), and dispense with the indices w and r. Then
T, = x,, and 2/, = 2’. We write

n—"7
(84) DgAS)\u =\ ( [ng, S)\T)\] + S)\T,\DgA)(UU)) .

For the first term, we use the fact that g, is supported at frequency
< A\/8 to conclude that only the frequency A part of vw is contributing,.
Then we can write

[ng SAT/\] = [ng SAT)\] S/\TA

for some multipliers Sy , Ty which have the same properties as Sy, Th.
Hence it remains to show that

[Og,, 3T u = L(dg, du) .

This, however, is a straightforward consequence of the kernel bounds
for S )\T)\.
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For the second term in (8.4), we use the Leibniz rule
(8.5) Og, (vw) = w Og,v + (g + &%) 9 0w + v Og,w.

We consider the three terms separately. In the following computations,
the greek indices take values 0 < o, 3 < n — 1. We let v denote the
conormal vector field along ¥, v = dx,, — do(t,2').

The first term in (8.5). We expand Og v as a sum of terms
80,00 = gl vividn_,— g 0005y,
= gt 2, 0) vy, 5&)_4) +2(0n.g)(t, 2, ) vi v 5SL)—¢
+(0%g)(t, 2, ¢) vi v 55(5(,)1—¢ - gf\"g(t, ', 9) 0,050 5;1)_(15
+(0u85") (1, ', 0) a0y,

Since ¥ is characteristic, it follows that g (¢, 2, ¢) v;v; = 0. We thus
take

Yo = wl(@g)) (.2 9) vivs + (9.83") (1,0, 6) 0]
V1 = w200.87)(t 7, 0) viv; — g3 (4, 6) Qa0
by = w(gy —g")(t, 2 ¢)viv;.
It remains to verify that the v, have the appropriate regularity. The

function w is a smooth bump on the (60)\)’% scale, and therefore harm-
less. Also

s 1
(gka v, /\_ldg)\) € L(t)on’ 2(2)7

so these factors can also be neglected. The conclusion then follows
from Proposition 5.1 and (5.6).

The second term in (8.5). Let g9 = Z(g¥ + g/') . We have
g? Oivdjw = v, giﬁ Opw 5;1)_(;5
i 1 _i 0
= v, 80,7, ) Opw ), — v (0,8) (¢, 2", 6) w3, .

Then we take

o = v; (0n8Y)(, 7', 8) 0w, 1 =v;8Y (¢, 7', ¢) Dpw .
For 1)y we argue as before; differentiating w yields an (60/\)% factor
which is less than the ey A we are allowed to lose. The analysis of 1
is more delicate; a rough argument yields the same (eo)\)% loss, but we
are not allowed to lose anything. The first useful observation is that
we can replace g, by g in ¢, as the error can be controlled as above.
The second is the fact that

(v 8"7)(t,7(t)) dpw = 0.
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This follows since (1,4(t)) is proportional to (v; 87)(¢,v(t)), by (5.18).
Consequently, we can write

S
—

v =) [(vig”)(t,2',¢) — (ng”)(t, (1)) |Opw.

®
Il

Again, the function dzw equals (eg)? times a unit bump on the (egA) 2
scale. Also, the function d(1;g%) has norm < ¢ in L2H?*7'(X). Then
within the support of w, the above difference has size (eo)\)_%el in

L2H?71(X), which suffices to obtain the desired bound.

The third term in (8.5). This is the easiest one. It only contributes
to 4o by

¢0 = g?\ﬁ(ta z, ¢) aaaﬁw .

1
The factor g5°(t, x, ¢(t,2')) belongs to L¥H, *(¥), and is therefore
negligible. Two spatial derivatives of w yield an eyA loss, which is
precisely what we are allowed to lose. When differentiating in time we
get smooth unit bumps multiplied by either eyA(§)?, or by (60)\)%"}.
Both are acceptable since |||z < €. O

8.3. Superpositions of wave packets. Given an arbitrary initial
data set (ug,u;) in H' x L? we will construct in the next section a
square summable superposition of wave packets,

. n—1 n—T . .
U= g Ay U7 =€yt AT T g Ay 0T W
7j 7j

such that the Cauchy data of Syu at t = —2 equals S)(ug,u1). The
purpose of this section is to obtain estimates on Syu and OgSyu, and
so we outline here the important details about the decomposition.
The index w, which stands for the initial orientation of the wave
packet at t = —2, varies over a maximal collection of approximately

_n—1

n=l g 1
€ A"z unit vectors separated by at least € A~2. For each w we have

the orthonormal coordinate system (z,,2/)) of R", where z,, = = - w,
and 2/, are projective along w.

Next, we decompose R" by a parallel tiling of rectangles, with length
(8A\)~! in the z,, direction, and (4oA)"2 in the remaining directions

x! . The index j corresponds to a counting of the rectangles in this

w
decomposition. We let R, ; denote the collection of the doubles of
these rectangles, and Y, ; will denote the element of the ¥, foliation
upon which R, ; is centered. Distinct Y, ; are thus separated by at

least (8\)~! at t = —2, and thus by (9A\)~! at all values of ¢, as shown
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in (8.6) below. Let 7, ; denote the null geodesic contained in ¥, ; which
passes through the center of R, ; at time ¢t = —2.
We let T, ; denote the (32)\)~! neighborhood of the set

g N {17, = Yy ()] < (e0X) 72}

For each w the slabs T, ; satisfy a finite-overlap condition; indeed, slabs
associated to different elements of 3, are disjoint, and those associated
to the same X, have finite overlap in the z/, variable, since the flow
restricted to any X, is C" close to translation. The fixed-time cross
sections T7, ; of a slab are thus C ! close to the translates of the rectangle
R, ;, but their C? regularity can be much worse. In particular, the time
sections T' fj,j are not, necessarily comparable to rectangles.

The wave packets ©“+ that arise in the superposition are normalized
wave packets associated to ¥, ; and 7, ; as in Definition 8.1, with u“J
supported in 7, ;.

We record here some useful facts about the geometry of slabs. We
first observe that the results of Section 5 imply a crucial result about
the separation of the surfaces ¥y, as r varies. Precisely, it follows as
a result of the estimates on the null field [ following (5.17), and the
estimate (5.22), that

|drg — (0 - dx — dt)| < ey,
pointwise uniformly over [—2, 2] x R™. This implies that
(8.6) \o.r(t, ) — o (t, ) — (r —1")| S ea|r — 7],

or that the surfaces Yy, in the foliation essentially maintain a constant
separation.

This in turn implies H('jlder—% bounds on the variation of d¢g, as r
varies. More precisely, from the estimate (8.6) above and the fact that,
for each fixed t,

"di;¢w,r(tv ) — di;(ﬁwm’ (t, J"Z.;)HL;? S e+ p(t),
where p(t) = [|dg(t, - )|/¢cs, we obtain
(87)  ldar, o (t,2L) = day oo (1 7)1 S (2 + p(£)2 [ 7 = 7']2.

Since dz,, — d¢,,, is null, and since dg < p(t), this also implies Holder-
% bounds on d¢,,,. To put these in the form we need, suppose that
(t,z) € S, and (t,y) € Sy, that |2/, — y/,| < 2(epA)"2, and that
|r —7'| <2A71. Then by (5.18), we have

N[

1 _1
lo(t,2) = Lo(t,y)| S @A72 + ¢ 2p(t)A~
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Since 4, = Lo, and ||p[| ;2 < €0, it follows that any geodesic in ¥, which
intersects a slab 7, ; must then be contained in the similar slab of half
the scale. Alternatively, if (t,x) € T, ;, where T, ; is of scale A, then
T, ; is contained in the slab of scale A/4 centered on the geodesic 7,
through (¢,x). This also shows that the slab T, ; is comparable to the
image of R, ; under the geodesic flow tangent to X,,, up to a change in
the scale \.

We now state the counterpart of Corollary 8.3 for superpositions of
wave packets.

Proposition 8.4. Assume that n <5. Let
u = Z anUW,j s
w7j
where u®? are normalized wave packets supported in T, ;. Then

(8.8) laSyullzrz S (D2, )"

w7j

1
(8.9) 1OgSxullzize S 60( ZGZJ) :

w?j

Proof. Instead of (8.8) we prove a weaker estimate, namely

1
(8.10) ldSsullzzee S (Do a2,)
w?j
This suffices, since (8.8) follows from (8.9) and (8.10) by energy esti-
mates.
The result will follow from certain fixed time orthogonality estimates
for expressions of the form

ne1 A
v=¢€" )\TgsA ZT/\(@DUJ’](SM*%J(K%) ) :
J

We do this in several steps. The size of p(t) = ||dg(t,-)|cs plays an
essential role in our arguments. We begin with “good” time sections,
namely for which p(t) is small.

Lemma 8.5. Let v be as above, and t such that p(t) = ||dg(t)|[cs < €.
Let 0 < < 9. Then

(8.11) lo@®)7: S II%D“’j(t)IIZn;lﬂ L a=(eN) 2,

. a
w7]
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Proof. We begin by noting that it suffices to prove the result for a col-
lection of wave packets whose time t sections intersect a fixed cube () of
size (egA)~2, since the following argument is easily modified to include
appropriate polynomial weights. Consider one such wave packet u“,
which is supported in the slab T}, ;. Since ||dg(t)||cs < €0, it follows that
the characteristic surface ¥, ; has the regularity ||¢, ;(t)[lc2+s S €o-

Y

Thus the time ¢ section 77, ; of T,, ; is contained within a rectangle Q. ;
of size A™! x [(egA\)~2]" L. Tt also follows that the conormal direction
to X[, ; varies at most by eé A~2 within 17 ;-

Within @, ; we will work with orthonormal coordinates y;, 4y’ so that
|dyy — (dz, — doy, )| S e§ A=z, and hence such that @, ; is contained
in a rectangle {|y; — 1] < AL |y — | < (eA)~2 }. The choice of

1
these coordinates admits the freedom of a O(e? >\_%) rotation, which we

shall exploit shortly. We claim that in such coordinates the following
estimate holds:

(812) T (drssusta)ll ,  mgtin SA2 7O nzrs,

lea,,jl a,zL,
for a = (60)\)_%. Assume for the moment that this is true, and let

us see how to conclude the argument. Because of Proposition 6.1 we
know that the angle between two intersecting rectangles @), ; and Q. j/
is comparable to the angle between w and w’. Actually, Proposition 6.1
applies to intersecting surfaces, however (8.7) shows that the conormals
to different elements of 3¢, intersecting the same @, ; are comparable.

Hence, for each @), ; the number of the @), ;;’s which intersect it and

1
whose conormal direction is at angle less than 10¢; A2 is bounded
from above by an absolute constant. We now relabel the rectangles

1
as follows. We choose a collection Q of directions which are eZ2A~2
separated on the unit sphere, and to each @, ; we associate a direction

1
0 € Q which is angle at most 2A"2 to da,, — do, ;. For a fixed § € Q
we label the associated @), ;’s intersecting ) based on their position
with respect to the 6 direction, in increments of A=! (the thickness of
our rectangles). Thus we may write

{Qu&j : Qw,ij%w}:{Qe,k; 0 e, 1§]€§€5%)\%}

This is somewhat imprecise in that more than one rectangle may have
the same label 0, k. However, the above argument shows that the num-
ber of such repetitions is bounded from above by an absolute constant,

so we shall neglect it.
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We also use the same association to relabel the functions as follows,
n—1 ., .
W =, )\TSTA(w“’](SmeJ) :
and set

= S)\ E ua’k.
k

For each # we fix orthonormal coordinates yg, y, with yg = 0 - x. By
combining (8.12) with the A\~! separation in k, we conclude that

e S eoN) Z“ . a=(eA\) 2.

To sum up the vy’s we use an orthogonality argument in the frequency
variable. We have, with a = (eg\) "2 ,

lol2; = 155(6) 3l

2
sl

Yo a,y(9

0eQ
e
5/(2!@(1+a|§él)n71+"]2) 20 S (1 +aly) " e
0eQ? e

However,

n—1
(1 + al&gl) ™15 = 0" flool WZH ,

yG ay
therefore we have
(n—1)—2
lollzs < Z 9541 o, 50 [5366) %@ +algl) ™).
5 (S

To conclude the argument it suffices to verify that the above supremum
is bounded by some absolute constant. This is true because each term
in the sum is essentially concentrated within an (60)\)% neighborhood of
the line with direction #. At frequency A these regions are disjoint due

1
to the € A~z angular separation between different directions. Precisely,
(n—1)—2 (n—1)—2
SO (1+alg) TS 3 (k) TS
It remains to prove (8.12) in the coordinates (y1,vy") = (yo,yp). We

begin by noting that it suffices to prove the bound using the coordinates

h=yp=0-z, y=2a,
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since these have the same level sets y5 = ¢. We let o/ be the vector
perpendicular to w such that w — o’ = |w—a/| . Then, since the angle

1
of w—dy¢,, ; to 0 is bounded by € A3 , and since both d,¢, ; and o/
are perpendicular to w, it follows that
1
o = daoy] SN2,
uniformly over @), ;. We now write

T = buy(t, 7)) = |w—a'lye— (du,(t, 7)) — o' - 7)
= Jw—d|(y—oty)),

to see that we are reduced to establishing the bound

HT)\(w< ) y1—9(y’) )HL Lip S )\ ||¢H a = (60/\)7%7

2 2
ylHy a

where within the support of 1 we have ¢ € C*™ | |d¢p| < 60% ~3. We
can also subtract a constant from ¢ to insure that |¢| < AL, which
implies that A\¢ € C?%9, with a as above.

The Fourier transform of 1 (y’) d,,—¢() in the y; direction equals
1 e™M? | therefore it suffices to show that

K% e””5|| i, S (LA )Y (NS
After rescaling n by A and y' by a, we are reduced to verifying that
™| s S (L4 ) 0l nzr ll6lloes ST
But
ing < 2+6
le™llczes S (1 + )
therefore the conclusion follows from the multlphcative estimate
Hoth.C2 cgetn . 0<pu<s.
Note that this requires n < 5. O

Our next step is to obtain a fixed time estimate for values of ¢ at
which dg is large. The following estimate is a simple variation of the
preceding argument, which unfortunately is useful only when ”T_l <2,
that is, for dimensions n < 5.

Lemma 8.6. Let v be as above, and t such that p(t) = ||dg(t)|[cs > €o.
Let 0 < pu < 9. Then

_n=1 n—1 Wi
(8.13) o)z Se = )T DO w0 = (@)

l\)\»—l
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Proof. If p(t) > A, then the above bound follows from the Schwartz
inequality by noting that, for each fixed w,

. 2 ,
EDICI ] =2 Bl P
i : i )

This estimate in turn is a simple consequence of the fact that wave
packets on the same ¥, ; have finite overlap, together with the fact
that the ¥, ; are small C' perturbations of flat surfaces, with uniform
separation of order A™!. We thus subsequently assume that p(t) < \.

By Proposition 5.2, we have |[dZ¢,;llcs < p(t). It follows that,
within a cube of size r, the conormal direction to ¥ ; varies by at
most p(t)r. At frequency scale A this leads to a frequency spread of
Ap(t)r, which is consistent with a decomposition into cubes of size r

provided that

r= p(t)_%)\_% .
We thus take a partition of unity on each Zfd’j over cubes of sidelength
rin z!, to split

ﬂ)w’j = Z qubw’j .

Then each term T)(Xmt*?0z,—¢, ) is supported in a rectangle Q. jm
of dimensions A\~ x r"~1.
The analogue of (8.12) is the estimate, for a = (eg))
above,
w,] L w,J
B1) IOt ), rtn S A s,

2
Yo r,yp

1
2 and r as

where 6 is such that, uniformly over the support of x,,,
10— (doy — deth) | S p(t)r = (M)~

The proof of (8.14) is similar to that of (8.12). Indeed, on the one
hand

||Xm¢W7j||H"§1+u 5 ||¢W7]‘HH%+# )
a

since r < a. On the other hand, we may work in the coordinates
Y1 =Y,y = 2, in which case we may assume that |d, @, ;| < (Ar)~!
within the r cube @, which contains the support of x,,%*7, and after
subtracting a constant that |¢, ;| < A~!. Combined with the relation
|G jlezrs S p(t) = r~2A71 this implies

)‘||¢||03+5(QT) S,

and the proof of (8.14) proceeds as before.
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At this point we repeat the argument in the proof of Lemma 8.5 to
obtain a square summability result within a cube @), of size r. For
the most part this requires simply replacing ¢y by p(¢) in the previous
argument. We take the collection €, of directions to be p(t)%)\_%
separated, and consider the collection

{Qor = 0w, 1<k<p(t)2A7}

of rectangles of size A™* x 7"~! contained in ), and with dimension A~*
in the direction 0. To each (Qp , we want to associate the truncated wave
packet sections which are supported within it. However, the angles of
the Qg r’s are separated on the p(t)%)\’% scale, while the angles of wave

1
packets are only separated on the €; A~z. The estimate (8.7) shows that
if two truncated wave packet sections are associated to the same Qg ,
then their initial angles w and w’ must satisfy

lw—w| S p(t)7 A3,
n—1

which implies that each (g, supports approximately p(t)%ea Z trun-
cated wave packet sections. Hence, we can relabel
n—1

(e AT Th(xmt™6r o)+ Qujm NQr #0} =
'™ 9 eQ,(), 1<k < p()IM, 1<1<p()F e * ).

Denote
b= E utt o vg = Sy E ut v, = E Vg .
! k 9

By (8.14) we have

|~

™1 Se HW’JH ;o a=(eA)2.

+u ~
y0 ryg

Summing over [ and using the Cauchy—Schwartz inequality yields

0,k (12 0.,k,1112
T I Sl Lol I

Yo r,y'g yg 'rye

The A\~! separation in the g4 direction yields
TUANED DT
y@ ry yg rye

Finally, repeating the orthogonality argument in frequency with respect
to @ in the proof of Lemma 8.5 yields

lvg. Iz S p(6) "7 AT Z ||ve||2
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We now combine the last four relations to obtain

HerH%g S Z wa’jH;ﬁ_lﬂ, a = (€A)”

w’j
Qw,ijT7é®

N

The above bound also holds with appropriate polynomially growing
weights, so that the vg, may be considered orthogonal for different @),.
When summing over the different ()., each wave packet gets counted

_ _n—1
P(t)Tleo

lo@2; S o) ey ZIW”H2 ,a=(eA)”

times, therefore we obtain

l\JI»—A

O

We can now conclude the proof of Proposition 8.4. We begin by
establishing (8.10). If we apply (8.11) and (8.13) with Sy replaced by
A1, Sy, and Y7 = a, ;wd | we get

_n=1
ldoSxu®)|3s S (1+p0) T ey 7 )Y a?;.

w?j

Since ||pl|zz < €0 and n < 5, this gives (8.10) for d replaced by d, . To
handle the time derivative of u, we note that we may write

Brw = A(t) (N2 @, 810(x0 — duj) = 100N (2 — Puy) -

The first term is handled as above since 4(t) € L and (eA)2 < .
The second term will be handled below, noting that the term vy is
harmless.

To prove (8.8) we use the representation in (8.1). On the one hand,
by (8.10) we have

HL(dgadS/\ﬁ)HLtng S HdgHLfL;oHdSAﬁHLng Sern-

On the other hand, we can apply (8.11) and (8.13) for the remaining
three right hand side terms in (8.1). If we set

f_€02 /\ 7 S/\T)\Zawj Z ¢wg m)
m=0,1,2
then

1F O3 S (1+p1) 6 7 Z%] S A O -

m=0,1,2
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which yields

n—1 _n—1
112322 < </1+p(t) 2 dt)

([Tt X O ).
w,] @

m=0,1,2

By hypothesis, |[p(t)||,2 < €o. Combining this with (8.2) we obtain

1
2
1fllize S 60( E Cbig) ,

whj

which concludes the proof of (8.9). O

8.4. Matching the initial data. In order to complete the construc-
tion of an approximate solution for the initial value problem, it remains
to verify that the approximate solutions which are superpositions of
wave packets can be chosen so that they match the initial data at time
t = —2. Since the metric g equals the Minkowski metric for times ¢ in
a neighborhood of —2, it actually suffices to work with wave packets
near t = —2 for the Minkowski wave operator, since the definition of a
wave packet, together with the regularity of the ¥, ,, show that these
may be continued to wave packets for g up to time t = 2.

Proposition 8.7. Given any initial data (ug,uy) € H' x L?, there
exists a function of the form

u= E Ay ju
w’j

where the functions u, ; are normalized wave packets, such that
Syu(—2) = Syug, OpShHu(—2) = Shug .
Furthermore
> al; < (ldauoll7s + w7z ) -
w,j
Proof. We consider a maximal collection of unit vectors 2 in R™ with

1 _n-1

spacing €; A~2. Then Q contains about € ° A"z elements. Without
loss of generality, we may assume that (ug,u1) have Fourier transform
supported in the range A/4 < [¢| < 4\. Via a partition of unity, we

may decompose
w w
UOZE Ug Ulzg Uy,

we weN
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1
where the Fourier transform of u¢ is supported in a (4X) x (4¢; Az)nl
rectangle, with the long direction parallel to w. The approximate so-
lution to the Minkowski equation with Cauchy data (u&,uy) is the
function

u’ = % [ug (@ + tw) + uf (v — tw) +
((w-Dz) ! “’)(I—i-tw) ((w-Da;) lu‘f)(x—tw)],

which involves wave packets in both the w and —w directions. We will
show that we may write the function u§(x — tw) as an appropriate
sum of normalized wave packets in the w direction, which implies the
desired result. .

Because of the support condition on wu§, we may write ug = Thug,
where @ is of comparable L? norm. We extend the Fourier transform
of u§ as a periodic function of period 167\ w, which we also denote by
ug, so that Syuy = S\Thug. Then @ has the form
dy =) w () 6,k

keZ
where the functions w**(z/)) have Fourier transform supported in the
region |¢€ | < 4(eoA\)? , and satisfy the Plancherel identity

> w12, ~ A gz -
k

We now take a partition of unity on the (e)) 2 scale with respect to

the transversal variables x/ ,
1= wla))
!

and set

w M (@) = w2, wi(x],)

Then
D w0, S
I w Tw

As a result of the support property of the Fourier transform of w®*
we also obtain

ZHa w2 <Ca(60k)'a'||w””“|\%z,

Tw
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Consolidating the indices k, [ into a single index j, we obtain the desired
decomposition

S,\Ufg = SAT)\ Zw“’j(x;) ) k() -

Tw—BX
J

9. OVERLAP ESTIMATES

An essential role in the proof of Proposition 10.1 is played by an
upper bound estimate on the number of A-slabs that contain two given
points in space-time. Given two points Pj, P, we denote by Ny(P;, P)
the number of A slabs containing both P, and P,. In order to obtain
sharp bounds on N, (Py, P») we introduce some additional notation.

We set P; = (t1, 1), Po» = (t2,x2). Without any restriction in gener-
ality we assume that ¢; < t5. We denote by Kp, the forward light cone
starting at P;. The analysis in Section 6 shows that Kp, is smooth;
in addition, by Proposition 6.2, its time ¢, section Kg is o(|ty — t1|)-
close in the C! topology to the sphere of radius t, — t; centered at
x1. Changing notation slightly from Section 6, for each 6 we let vy
be the null geodesic contained in ¥y such that 7y(t;) = z1, and set
Qo =0(t2) € K3

Let d denote the distance of x5 to the t; slice of the light cone Kp,
centered at P,

d= welgfil |x2 %(tg)‘ )

We use the functions ry(¢, z) defined in Section 4.1, whose level sets

yield the >y foliation,

Yo, =4{(t,x) : ro(t,z)=r}.
If we work in the null frame {lg, L4, e, 0} associated to Xy, , then lyrg =

€a,0T9 = 0, while

lo(Lgro) = [lo, Lylre = 5([59, Lol,lo) Loro = (lgInoyg) Ly,

where the connection coefficient oy, introduced in Section 5.5, measures
the infinitesimal separation between neighboring surfaces in the >3
foliation. As the functions [,ry and oy agree at time —2, it follows
that

(9.1) dro(t,x) - v =og(t,x) (lg(t,x), v)g
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where d denotes the differential in the (¢,2) variables. By (6.5), we
have

(9.2) op(t,z) =14 0(1).
We next introduce the parameter m defined by

m = max r,(P) —r.(P),
wesn—1

and fix some wy at which the maximum occurs. As we prove next, m
plays the role of a signed distance to the cone. Since K}?l is suitably
close to a sphere, its interior and exterior are well defined.

Lemma 9.1. The parameter m is negative if Py is inside the light cone
Kp, , and positive if Py is exterior to Kp,. Furthermore, |m| ~ d.

Proof. (a.) If P is on the cone Kp, , then zo = Qy for some 0 € S" !,
which shows that ry(P) = r9(P;). For any other w € S !, we use
(9.1) to write

Tw<P2) - Tw(Pl) = / ’ O'UJ(S,’}@(S)) <lw, l9>g ds S 0.

t1

This shows that m = 0. In addition, the functions ry are Lipschitz
continuous in x with Lipschitz norm 1 + o(1). This implies that in
general

m| < (1+0(1))d.

(b.) Suppose that P, is outside Kp,. Choose # which minimizes the
-
euclidean distance |Qgz5| of x5 to points on Kfﬁl. The outer normal di-

rection to K3 at Qg is o(1)-close to 8, therefore Qpzs = (6+0(1))|Qoz2|-
Set

p(s) = sx2+ (L= s)y(t2) -
Since r9(Py) = r9(t2, Qp), by (9.1) we compute

ro(Py) = ro(Py) = / 0tz 1(3)) (), lo)ds
— (1+0(1) | Qo ~d.

This implies the missing inequality m = d.
(c.) Suppose that P, is inside Kp,. Then d < (to —t1) + oty — t1). We

choose 6 as before, but now we have Qprs = —(0 + 0(1)) |Qpz2|. Given
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w € S" ! and u as before, we write

ro(Py) — 1u(P) = / 2%<sm@<s>><zwze>gds

t1

- ( )(tg — )0 —wl —d(8-w+o(1))
< —d+o(d)
where we estimated the first 1ntegral using (6.1). O

We are now ready to state our main result:

Proposition 9.2. For all points P, = (t1,x21) and Py = (tg,z3) in
space-time, and egA > 1, the number Nx(Py, Py) of slabs of scale \ that
contain both P, and P satisfies the bound

—1

6 Z AT (14+Md) 7 (L4 Alta—t]) "7 ,mel

NA(PLP) S4 e T A (14 Ad)L, m e I
0, m¢ LU

where
I, = {—4)\_1 <m < min (2|ty — t], C’eal)\_1|t2 —t1|_1)},

1

_1
L = {2[t—t| <m<Ce2X 2},
and C' is a large constant.

Proof. The above result coincides with the estimate that holds in the
constant coefficient case. The challenge in the proof is that the surfaces
we work with are not C? close to their constant coefficient analogues,
so we need to work only with the aspects of the geometry which we
control.

By the comments following (8.7), if a slab in direction w contains
both P, and P,, then the slab centered on =, of scale A/4 must also

contain P,. Thus we seek to bound the number of €2 A~z balls needed
to cover the set Ay C S"! defined by

A= {0 ¢ Il ) = (e A7 Plte) = 2] < () 1)

For each 6 € Ay, we may choose @y € R™ with |Qy — 23] < 27! such
that r¢(t2, Q2) — re(t1, 1) = 0, and observe that

Ay C {W : |7"w(t27Q2) - Tw(tlax1)| < 3! ) |’yw(t2) Q2| < 3(60)\)_%}
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Continuing, we let 114(s) denote the C! path for s € [0, 1] contained in
Y 7 = To(t1, 1), which goes from Qy = 74(t2) to Q2, and which is

obtained by projecting the straight line segment )92 onto the surface
j, along the direction 6. We note that

93)  jio— QoQs=0(1Qs — Qs),  6-QuQs=0(|Qs— Q).

We now write

Tw(t2> Q2) - Tw(tb Il) =
1

/2 0. (5,70(s)) <lwl0>gd3+/ 0wt 11o(5)) (Lo, flo)g ds -

t1 0

By (6.2) and (9.2) applied to the first integral, and by (6.1),(9.3), and
(lg, f19)g = 0 applied to the second integral, we then have
1 —

(94) ’I“w(tz, Qg) — ’f‘w(tl, 1'1) = —§(t2 — tl) |UJ — 9|2 + (w — 9) . QQQQ

+0(!t2—t1|\w—9\2) —|—0(|w—«9\ |Q9—Q2]).
We consider several cases with respect to the values of m and t5 — 4.
Case 1: |m| < —4\7'. In this case Ny(Py, P») = 0.
Case 2: |m| < 4\71, (ty —t1) < 2A7'. Here we use the trivial bound

1

NA(PLP) <€, 2 N5

Case 3: |m| <4X7!, (ty —t;) > 2X\7'. Then by (9.4) it follows that
AyC{w: lw—wo| < CAz (tg—tl)*%},

(NI

which is covered by ~ C’”_leg%(tg — )"z balls of radius €2 A"z .
Case 4: 4\ < m < 2(ty —t;). Then for 6 € Ay, if Q5 is chosen as
above depending on 6, it follows that
max 1, (t, Q2) — ru(ty, 1) = m,
which by (9.4) implies that
ma|Qp— Qa* (ta—t) ' Seg' At — )7,
where we are assuming Ny (P, P2) # 0 to conclude that |Qy — Qo] <

_1
2¢p°? A~z . Since the maximum, up to A7!, occurs at w = wy, it follows
that, for all 6 € A,,

1
0 — wol ~ |Q2 — Qo (ta —t1) ' = m2 (tg —t,) 2.
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We can thus cover Ay by ~ ¢! of balls of radius p = cm2 (t,—t,)"2 .
Consequently, we are reduced to showing that the intersection of Ay
with a ball B,(6) of radius p, centered on 6 € A,, can be covered by

the indicated number of balls of radius €2 )\’%, for sufficiently small c.
If now ¢ is any point in B,(#) such that r¢:(t1,21) — re(t2, Q2) = 0,
then applying (9.4) to § = @' yields that, for w € B,(6),

To(te, Q2) — 1ot 21) = (w — 6,) Qo Q2 + 0( w — 9/‘ |Qor — Q2|)
= (w =10 QoQ2 + 0w —0'|Qs — Q) ,
where we use (6.3) in the second step. By the second part of (9.3), it

follows that the set of §' € B,(6) for which r¢/(t1,21) — r¢/(t2,Q2) = 0

forms a graph in the direction QTQ;, with small Lipschitz constant, and
that the set Ay N B,(0) is contained in a neighborhood of this graph of
thickness 4 \71 |Qp — Q2| L.

We have [Qy — Q2| < 4 (60/\)_%, since 0y and x5 are in the same slab,

and hence the thickness is bounded below by €2 A"z, We may therefore
control the number of 2 A2 balls needed to cover Ay N B,(0) by

S _nol
(9.5) €, 2 AT 2 Qo — Q2] P =g 2 AT pt i (to — tl)_% .
The result follows since d ~m > A\7!, and p < m3 (ta — tl)_%

Case 5: 2(ty —t1) < m, 4\t < m. In this case, |Qg — Q2| =~ m for all
6, which by (9.4) and the second part of (9.3) implies that, for § € A,
we have |§ —wg| & 1. We may thus bound Ay by & ¢'~" balls of radius
¢, and the proof proceeds as above. O

For the proof of the dispersive estimates in the next section we do
not need the full strength of Proposition 9.2. Instead, it suffices to
consider the worst case for fixed t;,%,. This happens if |m| < 4\~!
for n = 2, if —AX" < m < 2(ty — t1) < (eoA\) "2 for n = 3, and if

m =2ty —t1) < (€\)"2 for n > 4. We obtain

Corollary 9.3. For all points P, = (t1,x1) and Py = (t3, x5) in space-
time, and eg\ > 1, the number Ny(Pi, Py) of slabs of scale \ that
contain both Py and P satisfies the bound

_n=-1
NA(PLP) Seg 2 A2 |t — o] 7L, n>3,

_1
NA(PL Py) Seg? [t — o] 72, n=2.

Another variation on the same theme is required for the proof of the

two dimensional stability estimates in the Appendix.
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Corollary 9.4. Setn = 2. Let P, = (t1,21), and let Q2 be a square
at time to, of sidelength R, with R < (eg\)"2. Then

_1
NA(PL,Q2) < eg? |ty — to] 2 (1 + AR)? .

Proof. The result is trivial if |[t; — to] < A7, orif |t; — ¢ < R. Hence
assume that R+ A7 < [t; — to].

Case 1. If the distance d between Qﬁ% and K%l is at least R, then we
consider a set of points PJ spaced by (4)\)~! on the boundary of R. The
slabs have thickness A, so each slab intersecting Q'}% must also contain
at least one of the points PZj . Since there are &~ AR such points, using
Proposition 9.2 we obtain

N[

_1
2

NA(PL, Q) <Y NP PY) SARe A (1+Md) ™2 S *AZ(AR),
J
which is stronger than we need.

Case 2. If the distance between Q% and Kﬁ is at most R then 4Q%
and K]tjz1 intersect. Fix (Jy in the intersection. Then any slab through
Py which intersects Q%2 must have direction w with |w — 6] < ¢, for
some small c. We take the line L through @)y and of direction 6, and a
(4)\) ! spaced set {Pg}|j|§32AR on L extending 8 R on both sides of Q.
If a slab through P; intersects Qg, then the slab with ¢y replaced by
€0/2 must contain at least one of the points PJ. Since PJ is at distance
d ~ jA\~! from the cone section K}?l, we can again use Proposition 9.2
to compute

NA(PLQR) < > Na(PLP))

7| <32AR

S ) QAN — b)) TE(A )
lj|<32AR
_1 4 1 1

< e PAR(L+ Aty — o)) 2 (1 4+ AR)Z .

10. DISPERSIVE ESTIMATES

Our proof of the dispersive estimates for the parametrix (7.2) uses
only pointwise bounds on the wave packets, not their oscillation. Since

n—1
normalized wave packets have size at most O( ¢, " AT ), the estimate

(7.2) is a consequence of the following result.
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Proposition 10.1. Let

UZZGTXTa

TeT
where Y . a% < 1. Then
1
Jullpa(ree) S € *(InA)?, n=2,
nol
lullp2rey S €0 )\Tg(ln 2P n>3.

Proof. Case 1: n = 2. We consider X points P; = (t;,x;), where the
t; are separated by A1, but with z; arbitrarily chosen. Then we need
to show that

> lultyz)' S 6" Alog A)?.
j

We may assume that |ap| > €2\, since each point lies in at most
~ e 2z slabs. We then decompose the sum u = > arxr dyadically
with respect to the size of ar. It thus suffices to prove the result, with

(log A\)? replaced by log A, in the case that we have a sum over exactly
1

N slabs T € Ty for which |ar| ~ N~ =.

We next decompose the sum over j via a dyadic decomposition in
the number of slabs containing (¢;,z;). We may assume that we are
summing over M points (¢;,x;), each of which is contained in approx-

imately L slabs. Then |u(t;, z;)| < N—2L and
> lulty, )t S L*MN 2.
J

Hence, to conclude, we need to prove that
(10.1) L*M < eg'AN?.

This is a counting problem, which we will solve by evaluating in two
different ways the number K of pairs (i,7) for which P, and P; are
contained in a common slab, counted with multiplicity. For T' € Ty,
we denote by ny the number of points P; contained in 7". Then

2
K = Zn%ZN_1<ZnT> .
ny>2 np>2
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Note that » . nr ~ ML. We consider two cases. If

ZnTS ZHT,

np>2 nr=1

1
then N ~ ML. Combined with the trivial bound L < ¢, 2 \2, this
directly gives (10.1). Otherwise, we have the following lower bound,
(10.2) K> N 'M*L*.

On the other hand, by Corollary 9.3, the number of slabs which contain
both (t;,z;) and (t;,z;) is dominated by €, *|t; — t;|~2. Hence
KSE(;E Z ’tl—t]‘ié
1<i,j<M
i£]
The sum is maximized in case the ¢; are as close as possible, that is, if
the ¢; are consecutive multiples of A™!. Thus,

_1 _1
(10.3) K< Y Ji—j77 Seg?ATM:.
1<, j<M
i#]

Combining (10.2) and (10.3) yields (10.1).

Case 2: n > 3. We proceed in a similar way, with the same notation.
We need to prove that

_n=1 n—1
D lultyz) Sep T AT (log M)
J

We make similar decompositions of the sums as for n = 2. Then, since
Z |u(tja "L‘j)|2 ~ L*MN™! )
J

it remains to prove that
(10.4) I2M <e 7 AT Nlogh.

As above, there are two cases to consider: either N ~ ML, or the
estimate (10.2) holds. In the first case, (10.4) follows from the trivial

S
bound L < ¢, 2 A"z . In the second case, we have the following

~

substitute for (10.3),
P G nl
K<e N7 Y [t S Me; 7 AT log .

1<ij<M
i#]

Together with (10.2) this yields (10.4). O
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APPENDIX A. THE STABILITY ESTIMATES IN 2 + 1 DIMENSIONS

The aim of this section is to establish the n = 2 part of Lemma 2.4,
namely the estimate (2.11). This turns out to be considerably more
difficult than the higher dimensional estimate. On the positive side,
the proof uses a type of estimate which has not previously played a
role in the study of quasi-linear hyperbolic equations.

The crux of the problem is the need for improved low frequency
estimates for the product of two high frequency waves. Such estimates
are known to be true in the constant coefficient case, see [12]. In our
case, the line of argument in [12] appears hopeless. Furthermore, we
need such estimates in a context where the two factors solve different
wave equations. This motivates us to think of the bilinear estimates as
a byproduct of certain multiscale linear estimates.

To describe our results, we first introduce the appropriate function
spaces. Given p > 1, we decompose the space-time into cubes of
sidelength 1!, and introduce the notation

PI(LT L) = BI(LE LG )

where the LL$ norm is evaluated within each p~! cube, and the 1714
norm is then taken with respect to the collection of such cubes. Our
main estimate has roughly the form

1 _1
KD2) 201138 o 11012y, S 172 (1d0(0) 12z + [1Bevllyzz ) -

The indices can be improved in the constant coefficient case, but the
above suffices for our purposes. Similar estimates also hold in higher
dimensions, and are in fact easier to prove. The 24 1 dimensional case
has certain unique features which make it more delicate.

The plan of this appendix is as follows. In A.1 we obtain localized
energy estimates on intermediate scales between A\~! and A=z, This
is combined in section A.2 with the modified overlap result in Corol-
lary 9.4 to show that our frequency localized parametrix satisfies the
new estimates. These are then extended to the exact solutions in A.3,
which also contains the crucial Hi x H~1 well-posedness result for
the linear equation. Finally, in A.4, we use these estimates to prove
the stability result (2.11). To keep the notation simple we neglect the
parameter €y, which is irrelevant for the arguments here.

A.1. Localized energy estimates. In this section we prove an en-
ergy estimate for superpositions of wave packets restricted to smaller
cubes. Let A™' < R < A~2. We seck an L? estimate for a superposi-
tion of A-wave packets in a cube Qg of size R. We denote by 7, the

family of A-slabs introduced in section 8.4, and by 7,(Qg) the subset
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of A-slabs which intersect Qg. By Proposition 6.1, if two characteristic
surfaces 3, », and X, ., pass within distance A™! at some point in Q,
then their respective intersections with @ remain within distance A=1
of each other, provided that |w; —ws| < (AR)™!. Consequently, two -
slabs which intersect within (g have essentially the same intersection
with Qg provided that their initial angles differ by less then (AR)™!.
This motivates a decomposition

T\(Qr) = UjesTY (Qr)

where for each j € J, 7] (Qg) contains a family of slabs which inter-
sect within Qx and which have initial angle less than (AR)™! from each
other. The number of distinct groups needed is |J| ~ A2R?, and each
T7(Qr) contains about A2 R~! slabs. Furthermore, for any given an-
gle, the subcollection of 77 (Qg) with that initial angle has the finite
overlap property.

Lemma A.1. Let xq, be a smooth cutoff to Qr, and let ur be a family
of normalized wave packets associated to T € Ty. Then

(A1) 145y Y xanarurll S o0 A (S larl)

ren I TeT{ (@Qn)
where
p(t) = max{ ||dg(t)|| L , RT>A7"}.

Proof. We use the same computation as in the proof of Lemma 8.6 but
with p(t) chosen as above. This guarantees that the decomposition
scale r satisfies

r= p(t)_%)\_% <R.
Within a sub-cube @), of size r, the argument in the proof of Lemma 8.6

shows that we have almost orthogonality for angles which are at least
(Ar)™L = p(t)2A~2 separated. More precisely, we have

lasy 3 xa.arur 3, ST A (S arl)

Tl I TeT{(Qr)

where the factor r\z represents the square L2 norm of the gradient of
a normalized wave packet in an r cube. Each set ’T)\j (@) has elements
T in common with at most Rr~! sets ’TA" (Qr). Hence, an application
of the Schwarz inequality yields

lasy 3 xo.arur 3y SRAFS (3 larl)

TeTy I TeT!(Qr)
TNQr#0
70



To conclude, we sum over a grid of r-cubes in Qg. Each T € T (Qg)
intersects at most Rr~! cubes @Q,, hence

ld5y 3" xaparurlfs S B MY (X Jarl)

T, I TeT{(@r)
The conclusion follows now since
R*r YAz = p(t)2 R2\.
O

A.2. Dispersive estimates. The dispersive/energy estimate we es-
tablish here is

Lemma A.2. ForT € T, we consider a family ur of normalized wave
packets. Then

1
(AQ) H dS)\ Z aTuTHl_ISQZOO(LmLQ)H Sx (log )\)3>\§M7§<Z ‘CLT‘2) :
TeT)y TeTy

Proof. The result is a straightforward consequence of the energy esti-
mates if p < )\%, and of the dispersive estimates in Proposition 10.1 if
A < u. Hence in what follows we assume that A2 <pu< A

We select a family of =" space-time cubes {Q;}4—1,, which are !
equidistant in time but arbitrarily chosen spatially. We denote by I the
corresponding time sections. Within each QZ we choose an arbitrary
time section Qﬁtk at time ¢;. We claim that the following estimate

holds:

N

wo [SEC S )] s (S )

k i TET; (Qﬁvtk) TeT,

We postpone for now the proof of (A.3) and instead show that,
together with (A.1), it implies (A.2).
Within each section Qﬁ’t we apply (A.1) with R = pu~! to obtain

2
1
ldsh > xagarur (@)l S p@2 232 (0 arl )
Teh 7 TR
where

p(t) = max{ ||dg(t)|| =, u*A7" }.
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Integrating over t, this yields

| dSx Z XQ,’iaTuTHLthL% N

TeTy
i —1,414 2\ 2
loll g ™ 23 (sup D2 (30 farl))"
k

I TeTi QY

We sum over k and apply Holder’s inequality to yield

16 5
(Z || dS) Z XQﬁGTUTH[ilGL% ) <
k

TeTy

||p||igu-u%[z(sup2( > aT|)2)2r.

x )

observe that we may bound the quantity

Since dg € L{Ly, it follows that ||p(t)[|.s < #*A~". To conclude, we

sup | dSx ) arurllpers o,
Q” TET

taken over cubes (), belonging to the same time slice I, by an expres-
sion of the form

sup || dSy Y xquarur||por: ,
QM TeTy

taken over the same cubes, since inserting an appropriate polynomially
growing weight leaves such an expression unchanged. Thus, the last
inequality combined with (A.3) implies (A.2).

It remains to prove (A.3). We begin by partitioning the initial angles
into sectors of size A™'j1, and take a corresponding partition of 7y,

=7

For each j, k,t the set ’TAJ(Qﬁt) consists of packets with initial angles

within A7 of each other, therefore it is contained in finitely many
72



7y’s. Then

S S| 2 [SES( 5 ey

ke 0 reriQp't) TeTNTI (Q'F) .

|

N

SER(E( S )y

ke J rerentiQy't) .
which implies that (A.3) can be reduced to the case where all slabs
are contained in a single 73’. The advantage of this reduction is that
the intersections of such slabs with the sections Qﬁ’tk are easier to
describe. To describe their intersections, we use a A~! spaced subset of
the foliation >, to decompose each set Qﬁ’t’“ into approximately p=t\
curved rectangles, which we call leafs. Any slab in 7, can intersect
at most a bounded number of leafs, and so there is essentially a 1-1
correspondence between the sets 73 N Tj\j(QZt’f) which are nonempty,
and the leafs of Q’ffk.

We are now in a position to use an argument similar to that in the
proof of Proposition 10.1. By taking successive decompositions of the
index sets for T, j, and k, with at most (log\)? terms in all, we may
reduce to the case that in the sum there are

- N slabs in 7¥, for which ar =1,

- each leaf in the sum is intersected by about L slabs,
- each section Qﬁ’tk contains roughly P leafs,

- there are a total of M sections Qﬁ’tk.

Then (A.3) reduces to the estimate
(A.4) MP?*L* < ANZ.

We index the chosen slabs by s, the chosen leafs by ¢, and set
X(s,¢) = 1if s intersects ¢, and x(s,[) = 0 otherwise. Set

K@) =) x(s0)) x(s.t), K=} K(0).
s e l

Thus, K(¢) is the number of leafs, including ¢, which can be reached
from ¢ by the selected slabs, counted with multiplicity.

Since there are M P indices ¢ and N indices s, an application of the
Schwarz inequality yields the lower bound

K> N Y(MPL)*.
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Hence it remains to establish the upper bound

K < M2P)z,
for which it suffices to show that, for each ¢,

K(6) < M2z,

Given a leaf ¢, we fix a point Py = (tg, zo) € . Then if a chosen slab

s intersects £, since we are restricting ourselves to slabs within angle
puX~! of w, it follows that the slab of half the frequency must contain
Py. Thus, we need show that

K(Py) S M2)2,
where K (P,) has the obvious definition. At this point, we recall Corol-

lary 9.4, which says that the number of slabs which intersect both F,
and the ! square time section Q/’j’tk at time ¢; is at most

1 1
1
K(Py, Q") < min A7 Lzl ‘
(to — tr)?
Since each slab passes through at most a fixed number of leafs in any
given Qﬁ’tk, and since the time slices are spaced by p~1, it follows that

Y

KBy < ST A < S ko AIM

A.3. Linear local well-posedness. Here we improve the Sobolev
well-posedness range in Proposition 7.1 for the linear equation
O,0=0 in [-T,7] x R?
(A.5)
U(to) = o, (?tv(tg) =71,
and complement it with the new dispersive/energy estimates.
We assume that u is the smooth solution on [—7,7T] x R? to the
equation
Oguyu = ¢ (u) diudju

produced in the proof of Proposition 2.1. We first show that for this
solution we may strengthen the condition (WP4) to the following result.

Lemma A.3. For 2 <r <s+ 1, the equation (A.5) with g = g(u) is
well-posed in H™ x H™™1, and the following estimates hold:

[0ll g by + 0| e gz S Nl (W0, vl rmsrr—
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Dol + D dbllggize S (w0, 00) i, p <7 =
3

HrxHr—1, p<T—§

_1
D03t e 01, S 1% (00,00

Proof. We will prove the result for 7' = 1 with g replaced by g. The
arguments of section 3 then yield the result as stated.

By (A.2), we know that the desired estimates hold for our frequency
localized parametrix, so it remains to show that they hold for the actual
solution v. In the range 1 < r < s+ 1, the arguments in the proof of
Proposition 7.1 apply with virtually no change. Hence we only need to
3

consider the case % <r <1, which we illustrate in the case r = .

We set w = (D,)~iv. Then w must solve
(A.6) Tgw = (g~ (Da) " g(Da) ] docdu.

We solve this equation with Cauchy data (D,)7(vg, v1) by using the
r = 1 local well-posedness result combined with a fixed point argument.
Given F € L; L2, we let w; denote the unique solution to the equation

Dng =F
with Cauchy data (D)~ (v, v1), and we set
LF = B(g,dwr) = [g — (Dx) 1g(Da) 1] ducduy

If F'is a fixed point for L, then wpg solves (A.6). We find F' using the
contraction principle. For this it suffices to prove the estimate

(A7) ILF 22 S €o (Nl (o, 1) I F Lz ) -

H % xH %
To prove (A.7), we use the bounds for w which follow from the r = 1

case of Lemma A.3 combined with Duhamel’s formula, namely that the
quantity

_3_ 1 1
ez + 1(D2) P dwllggie + (D)5 ol s v
for any § > 0 is bounded by the quantity
0, 00) et + 1P g
For g, on the other hand, we use the bounds for A > 1,
Hdg|’L§cgmL§°H;—1 Seo,  [19n8llier@er), S0

The second bound is a consequence of energy estimates and finite prop-

agation velocity arguments applied to S)g.
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We take a paradifferential decomposition of LF,

LF = B(Sx8, Sxdwr) + B(S\g, Scaxdwr) + B(S)g, Sxdwp) .
A

The first term is localized at frequency A, and we can bound the sum
in L2L? using orthogonality over A together with the fixed time com-
mutator estimate,

I1B(S<xg, Sxdwr)(t)l|z S [1dg(#)l| s | Sadwr (t)] 2 -

The second term is also localized at frequency A, but this time there is
no gain from the commutation. Instead, the two components of B are
estimated separately at fixed time, to obtain

|B(Sxg, Scxdwr)()llzz S [1Sxdg(®)]m [[(Da) ™3~ wp(t)]1ge

For the third term, one handles the case A\ = 1 as for the first term.
For A > 1, there is again no gain from the commutation, and we handle
the two components of B separately. The first component is easy to
estimate,

> 1(5r8)(Sadedwr) (Dl < lldg(t)llos lldwr(t)]]zz

The second component, (D,)~1(Sxg)(D,)1d,Sxdwp, is the term which
causes the most difficulties. Because the product of two frequency A
functions contributes to all lower frequencies, we need a better estimate
due to the (D,)~% operator. We first bound

(D,) =1 (S\g)(D.) Tdy Sxdwp || 1212

< S 1l IS, [(Sag) (D) duSaduw] | 212

RS

~ 3 |ul 7T 1S, [(Sa8) (Da) T e Sadwp] er2r), -

BSA

Since S, is mollification on the p!

Holder inequalities to bound this by

scale, we may use the Young and

S Il I(SAR) D2 S dSadtor i

BSA
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The Holder inequality is now used to bound this by

1 5
D 1l [1Sag e, At 153w ll 18 1 1629,

HSA
7 1 _1_
< SN Sagllwizera, [0l {De) 3 dwr g 1o
B
The desired bound now follows. O

A.4. Stability estimates. Here we prove the two dimensional sta-
bility estimate in Lemma 2.4 which for convenience we restate be-
low. We prove stability under stronger conditions than those stated
in Lemma 2.4, but the existence of the stronger solution shows that
Lemma 2.4 can be used as stated.

Lemma A.4. Let u be a solution to (1.1) and (1.2) on [-T,T] x R?
which satisfies the conditions (WP3) and (WP4), as well as the con-
clusion of Lemma A.3. Let v be another solution to the equation (1.1)
with initial data (ve,v1) € H® x H*™' such that dv € L{°H: ' L2L®.
Then

(A-8) ld(u =)l 3 < Cull(uo = v, ur = v1)|

_ 3 _1,
L H, * HixH %

where C, depends on w and on ||dv|| oo ys=1112 oo -
Proof. The function w = u — v solves the equation
(A.9) Ogwyw = apdw + a; w,
where the functions ag and a; are of the form
ap = q(v)d(u,v), a1 = a(u,v)d.dv + blu,v) (du)?.

To show that (A.9) is well-posed in H 1 x H™1, we use the conclusion
of Lemma A.3, together with a fixed point argument based on the
1

Duhamel principle. Given F' € L} H, *, we denote by wp the unique
solution to the equation

Dewwr = I,
with Cauchy data (wp,w;), and we set
LF = Qo dwp + awg .

If F'is a fixed point for L then wg solves (A.9). The uniqueness of this
fixed point, together with the easily verified condition that, for v and
v as given, we have

1
apd(u —v) +a; (u—v) € LH, * |
7



will show that w must coincide with wg.

_1
To show that L is a contraction on L; H, *, it suffices to show that

(A.10) ILEN 1 < (w0, wy)

2act ”H*%xH*i - ”FHL}Hfl*( '
We denote
M = ||(wo;w1)HH—%XH—zlx + ”FHLgH;Zlf )

By the conditions of Lemma A.3 and the Duhamel principle, we have

ldwell g+ D) dwppree S M,

t x

<M,

16
l‘g—';lcx;(LlGLZ)H ~

sup 2 |(D,) 1% dwp|
12

for each 0’ > 0. On the other hand, for ag and a; we have the estimates
2100 00 %"‘5 00 _%4‘5 2700
ap € LyL° N L HY a; € L°H, Nd,LyLY .
In addition, we have the localized energy bounds
3 1
/\4+5||S)\a0||loolz(LooL2)u + )\ 4+6||S)\a1||lool2(LooL2)u S CU

as a consequence of the Sobolev bounds for u and v and finite propa-
gation velocity.

We estimate LF' using a paraproduct decomposition on each fixed
time slices. We consider the term ag dwp; the estimate for the second
term is similar. Taking the paraproduct decomposition (see Bony [4],
or also Taylor [24], chapter 3), we write

Qo dwF = Taodwp + waFU,O + R(a,(), dwp) .
The first two terms are easy to estimate:

[ Taodwr®)]],,-1 S lldwp (@), -1 llao(t)]| = ,
respectively

| Tawrao@)l -y < lao@®)ll,, 415 l1{De) ™ " duwp (t)]| 2 -

It is more difficult to estimate the remainder

R(ag, dwp) = > _(Sxao)(Sxdwp) .

A
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As in the proof of Lemma A.3, we used the improved bound on u-cubes
for p < A. We first bound

1(D,) =1 (Sxao) (Sadwe) | p212

SO ul T 180 [(Saao) (Sadwp)] || 222

1A

~ 3 1l 77 1S, [(Saao) (Sadwp)] [z zer), -

HSA

Since S,, is mollification on the p~! scale, we may as before use the
Young and Holder inequalities to bound this by

1
Z |lu| 2 || (S/\a(])(s)\dwF)||l-15@l2(L16L1)u

BSA
1
DIk 1Sxaollioerzzoo 22, 1 S3dwr |l 18 1 16,
HSA '
3 st 1 _3_g
S Z)\4+6 HS)\aOHloolQ(LOOL2)M |lu‘2 H<D$> 1 b dwF||l-156-loo(L16L2)M
BSA

<A (log \) M .
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