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SUBCRITICAL Lp BOUNDS ON SPECTRAL CLUSTERS
FOR LIPSCHITZ METRICS

Herbert Koch, Hart F. Smith, and Daniel Tataru

Abstract. We establish asymptotic bounds on the Lp norms of spectrally localized

functions in the case of two-dimensional Dirichlet forms with coefficients of Lipschitz
regularity. These bounds are new for the range 6 < p < ∞. A key step in the proof

is bounding the rate at which energy spreads for solutions to hyperbolic equations with

Lipschitz coefficients.

1. Introduction

The purpose of this paper is to establish Lp bounds on eigenfunctions, or more
generally spectrally localized functions, associated to Dirichlet forms on a compact
manifold. The question of interest is the dependance of the bounds on the Hölder
regularity of the coefficients of the form. We consider here the case of Dirichlet forms
with Lipschitz coefficients for simplicity, but the proofs can be adapted to the case of
Cs coefficients, where 0 < s < 2. Our work is restricted to the case of two-dimensional
manifolds, however.

Consider the eigenvalue problem for a Dirichlet form, where we work on a compact
manifold M without boundary,

d∗(a dφ) + λ2ρ φ = 0 .

Here, a is a section of real, symmetric quadratic forms on T ∗(M), with associated
linear transforms ax : T ∗x (M) → Tx(M), and ρ is a real valued function on M . Here,
d∗ denotes the adjoint of d relative to a fixed volume form dx. We assume both a
and ρ are strictly positive, with uniform bounds above and below. We note that
this setting includes the Laplace-Beltrami operator on a Riemannian manifold. The
parameter λ ≥ 0 is referred to as the frequency of the eigenfunction φ.

A spectral cluster of frequency λ is a linear combination of eigenfunctions with
frequencies in the range [λ − 1, λ]. In the case that a and ρ are smooth, Sogge [9]
established the following best possible Lp bounds on spectral clusters,

(1)
∥∥f∥∥

Lp(M)
.

{
λ

n−1
2 ( 1

2−
1
p ) ‖f‖L2(M) , 2 ≤ p ≤ pn

λn( 1
2−

1
p )− 1

2 ‖f‖L2(M) , pn ≤ p ≤ ∞

The critical index is pn = 2(n+1)
n−1 . Semiclassical generalizations were obtained by

Koch-Tataru-Zworksi [4]. The bounds (1) hold in case a and ρ are of regularity C1,1

by [5], but based on an observation of Grieser [2], and examples of Smith-Sogge [7]
and the authors [3], they fail for coefficients of Cs regularity if s < 2.

The authors were supported in part by NSF grants DMS-0140499, DMS-0354668, DMS-0301122,
and DMS-0354539.

10001



10002 Herbert Koch, Hart F. Smith, and Daniel Tataru

For metrics of regularity Cs with s < 2 (or Lipschitz in case s = 1) best possible
Lp bounds on spectral clusters have been established on the range 2 ≤ p ≤ pn, as well
as for p = ∞; see [6] for the case 1 ≤ s < 2, and [3] for the case s < 1. This leaves
open the subcritical case pn < p <∞, where the upper bounds on the exponent of λ
that can be obtained from [3] and [6] by interpolation do not match the lower bounds
that follow from the examples of [3] and [7].

In this paper we obtain bounds for pn < p < ∞, for Lipschitz coefficients and
n = 2, which improve upon the results of [6]. They do not match the exponent
displayed by the Rayleigh whispering mode example noted in [2], but the difference
is exponentially small as p → ∞. Our results are restricted to n = 2, but all steps
adapt to Cs coefficients for 0 < s < 2, and improve upon the results of [3] and [6] for
this range of p.

Thus, consider a Dirichlet form on a two-dimensional compact manifold without
boundary, with a and ρ of Lipschitz regularity. Let

γ(p) = 2
(

1
2 −

1
p

)
− 1

2

be the exponent occuring in the subcritical estimates (1). By Theorem 2 of [6], in
this case the following no-loss estimates hold on cubes Q of sidelength λ−

1
3 ,

(2) ‖f‖Lp(Q) . λγ(p)‖f‖L2(M) , 6 ≤ p ≤ ∞ .

This estimate was in fact proved under a weaker quasimode condition (6) on f , which
is preserved under smooth cutoffs in x, as well as dyadic and conic localization in
frequency.

The Rayleigh whispering mode examples show that if p = 6 the size of Q cannot
be increased without increasing the exponent in (2). On the other hand, for p ≥ 8,
the Rayleigh mode examples satisfy no-loss estimates on cubes Q of sidelength 1.

The main result of this paper is to establish log-loss estimates on cubes of larger
sidelength for larger p. Precisely, for cubes Q of sidelength λ−

1
3 2(6−p)/2

, we establish

(3) ‖f‖Lp(Q) . (log λ)p−6λγ(p)‖f‖L2(M) , p = 6, 8, 10, 12, . . .

If f is conically microlocalized in frequency, then (see [6, (14)-(15)]) Q can be replaced
by a thin slab of size 1 × λ−

1
3 2(6−p)/2

. Summing over such slabs in local coordinate
charts, one obtains the following, for spectral clusters f of frequency λ.

Theorem 1. Suppose that a and ρ are of Lipschitz regularity, on a two-dimensional
compact manifold without boundary. Then, for p = 6, 8, 10, 12, . . .

(4) ‖f‖Lp(M) . (log λ)p−6λσ(p)‖f‖L2(M) , σ(p) = γ(p) + 1
3p 2

6−p
2 .

To place this result in context, the Rayleigh whispering mode eigenfunctions on
the disc, together with a reflection argument, show that, for Lipschitz coefficients and
n = 2, one cannot establish better estimates than the following

(5)
∥∥f∥∥

Lp(M)
.

{
λ

2
3 ( 1

2−
1
p ) ‖f‖L2(M) , 2 ≤ p ≤ 8

λγ(p) ‖f‖L2(M) , 8 ≤ p ≤ ∞

The estimate (5) for 2 ≤ p ≤ 6 and p = ∞ was established in [6]; interpolation then
establishes (4) with σ(p) = γ(p) + 1

3p for 6 < p < ∞. Thus, Theorem 1 improves
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upon [6] in the subcritical range, but misses the conjectured result (5) for 6 < p <∞
by a factor which decays exponentially as p→∞.

In a related direction, the bounds (5) were established in [8] for smooth Dirichlet
forms on two-dimensional manifolds with boundary, with either Dirichlet or Neumann
conditions at the boundary. A smooth Dirichlet form on a manifold with boundary
can be thought of as a special case of a form with Lipschitz coefficients on a manifold
without boundary, by extending coefficients evenly across the boundary in the geo-
desic normal coordinates determined by a. The examples of [7] for Lipschitz metrics
and n = 2 are generated by reflecting a Rayleigh whispering mode from the unit disc,
and currently no examples are known which exhibit larger growth in Lp norm for
p > 6 than these ones.

The proof of (3) is inductive. The estimate for p+ 2 is derived from the estimate
for p, together with an almost orthogonal decomposition of f into tubular pieces.
Essentially, one can localize f in frequency to a cone of angle δ, and in space to a
characteristic tube of diameter δ2, and control the energy flow over distance δ. For this
reason, the diameter of the log-loss cubes for p+ 2 is the square root of the diameter
of the log-loss cubes for p. The argument that allows summation over different tubes
with a (log λ)2 loss works only for n = 2, however. Improving Theorem 1 appears
then to hinge on controlling energy flow over longer distances, and improving the
summation argument to allow n ≥ 3.

The bounds we obtain are proved for functions satisfying a quasimode condition

(6) d∗(a df) + λ2ρ f = d∗g1 + g2 .

Here, g2 and the components of g1 are L2 functions, and the norm of f as a quasimode
is taken as ‖f‖L2 +‖g1‖L2 +λ−1‖g2‖L2 . If f is a spectral cluster, then (6) holds on M
with g1 = 0 and ‖g2‖L2 . λ‖f‖L2 . Allowing the term g1 makes localization arguments
simpler. In particular, (6) holds, with ‖g1‖L2 . ‖f‖L2 and ‖g2‖L2 . λ‖f‖L2 , for the
product of a spectral cluster f with a unit size bump function, so we may smoothly
localize the function and the equation to a coordinate patch. After a linear change of
coordinates and extending the coefficients, we may assume that a and ρ are defined
on R2 and globally close to the flat metric, in that for a constant c0 which can be
taken sufficiently small as needed

(7) ‖aij − δij‖Lip(R2) + ‖ρ− 1‖Lip(R2) ≤ c0 .

We establish the estimate (3) by an induction argument, for which the starting point
is Corollary 7 of [6], which states that Hypotheses 2 holds for p = 6 and `(Q) = λ−

1
3 .

At each step of the induction p increases by 2, and we establish estimates on cubes
of square-root the sidelength of the previous step. A loss of (log λ)2 is incurred at
each step, however. The hypothesis and induction step follow, and apply generally
to functions satisfying equation (6) on R2; futhermore, constants are uniform over a
and ρ given (7).
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Hypothesis 2. Suppose that f satisfies (6) on Q∗, where Q∗ is the double of the
cube Q. Then the following inequality holds, where `(Q) denotes the sidelength of Q

‖f‖Lp(Q) ≤ Cp (log λ)p−6λγ(p)
(
`(Q)−

1
2 ‖f‖L2(Q∗) + λ−1`(Q)−

1
2 ‖df‖L2(Q∗)

+ `(Q)
1
2 ‖g1‖L2(Q∗) + λ−1`(Q)

1
2 ‖g2‖L2(Q∗)

)
.

Theorem 3. Assume that Hypothesis 2 holds for a given p ∈ [6,∞), uniformly over
cubes Q of a given sidelength `(Q) = δ2, where 1 ≥ δ ≥ λ−

1
6 . Then Hypothesis 2

holds with p replaced by p+ 2, uniformly over cubes Q of sidelength `(Q) = δ.

We remark that the norm on the right hand side in Hypothesis 2 should be thought
of as the L2-energy of f on Q∗. If the functions involved are localized to frequencies
ξ of magnitude λ, and ξ in a small cone about the ξ1 axis, then the right hand side is
a replacement for ‖f‖L∞x1

L2
x2

+ ‖Pf‖L1
x1

L∞x2
, where Pf = d∗(adf) + λ2ρf .

The outline of this paper is as follows. In Section 2, we establish the key decompo-
sition of f as a sum of terms, each supported in a thin tube of dimensions δ×δ2. This
decomposition at multiple scales is inspired by work of Geba-Tataru [1]. In Section 3
we establish `q bounds on the overlaps of collections of such tubes, which is applied
in Section 4 to complete the proof.

For the remainder of this section we carry out some simple initial reductions. Let
the function f satisfy (6) on R2. We first observe that, for Theorem 3, it suffices to
establish Hypotheses 2 for cubes with `(Q) = δ with the norm on the right hand side
taken over R2 instead of Q∗. This is because the conclusion is unchanged if we replace
f by ψf , where ψ is a scaled bump function, supported in Q∗ and equal to 1 on Q.
In subsequent steps we do not assume that f is compactly supported, however.

Next, we split f into components f = f<λ + fλ + f>λ, by localizing respectively
to frequencies smaller than c2λ, comparable to λ, and larger than c−2λ, where c is
a fixed small constant (assuming only that c0 in (7) is sufficiently small.) By the
arguments of [6, Corollary 5],

λ ‖f<λ‖L2 + ‖df>λ‖L2 . ‖f‖L2 + λ−1‖df‖L2 + ‖g1‖L2 + λ−1‖g2‖L2 .

Since λ2( 1
2−

1
p )−1 ≤ λγ(p)`(Q0)

1
2 , where we use that `(Q) ≥ λ−

1
6 , Sobolev embedding

yields that Hypothesis 2 holds with ‖f<λ‖Lp and ‖f>λ‖Lp on the left hand side. Thus
we restrict attention to the case that f is frequency localized to |ξ| ≈ λ. By further
decomposing f as a finite sum of terms, we may also assume that f is frequency
localized to |ξ2| ≤ cλ.

Define the operator
Pλδ = d∗aλδ d+ λ2ρλδ ,

where the coefficients aλδ and ρλδ are smoothly truncated in frequency to |ξ| ≤ cλδ.
Provided `(Q) ≤ δ, then Hypothesis 2 is unchanged if we replace the defining

equation by Pλδf = d∗g1 + g2, since the difference (P − Pλδ)f can be absorbed into
g1 and g2, leaving the right hand side of the inequality unchanged up to a constant.
To see this one uses the bound

‖a− aλδ‖L∞ + ‖ρ− ρλδ‖L∞ . (λδ)−1 .
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Given a cube Q and parameters λ, δ, we now set

|||f |||λ,δ,Q = δ−
1
2 ‖f‖L2(Q) + λ−1δ−

1
2 ‖df‖L2(Q) + λ−1δ

1
2 ‖Pλδf‖L2(Q) .

We use |||f |||λ,δ to denote the norm where Q is replaced by R2.
Since f is frequency localized to |ξ| ≈ λ, as is Pλδf , we may absorb the term d∗g1

into g2. Thus, by the preceeding comments, we are reduced to the following.

Theorem 4. Suppose that f ∈ L2(R2) is frequency localized to |ξ| ≈ λ and |ξ2| ≤ cλ.
Then the following holds, uniformly on cubes Q of sidelength δ,

‖f‖Lp+2(Q) . (log λ)p−4λγ(p+2)|||f |||λ,δ

under the assumption that the following holds, uniformly on cubes Q of sidelength δ2,

‖f‖Lp(Q) . (log λ)p−6λγ(p)|||f |||λ,δ2,Q∗

2. The tube decomposition

Let f be as in Theorem 4, and fix a cubeQ0 of sidelength δ and center x0. As above,
let ψ = 1 on Q0 and vanish outside Q∗0. In this section we produce a decomposition

(8) ψf =
∑
T∈T

fT + f0 ,

where f0 is an error term whose Lp norms can be appropriately bounded by Sobolev
embedding. Each fT will be compactly supported in a tube T . The index T varies
over a collection T of tubes of diameter δ2 and length δ, each oriented along one of
a set of bicharacteristic directions of Pλδ with angular separation δ. Each f̂T will be
concentrated (in a weighted L2 sense) in a ball of diameter λδ. We further have the
bounds,

(9)

(∑
T

|||fT |||2λ,δ

) 1
2

≤ C |||f |||λ,δ .

Let Γ be the characteristic set of Pλδ which lies near Q∗0 × support(f̂),

Γ =
{
(x, ξ) : 〈aλδ(x) ξ, ξ〉 = λ2ρλδ(x)

}
∩ Q∗0 × {|ξ2| ≤ 2cλ} .

Since aλδ and ρλδ are pointwise close to the flat metric, the set Γ can be realized as the
union of two graphs ξ1 = γ±(x, ξ2). Since aλδ and ρλδ are Lipschitz and |x− x0| ≤ δ,
the characteristic set Γ is contained in a λδ neighborhood of ξ1 = γ±(x0, ξ2). Let qj(ξ)
be a finite-overlap collection of ≈ δ−1 smooth bump functions, each supported in a
ball of diameter ≈ λδ centered on ξ1 = γ±(x0, ξ2), so that φ(ξ) = 1−

∑
j qj(ξ) vanishes

on a λδ size neighborhood of the ξ-projection of Γ. Thus, φ(ξ)Pλδ(x, ξ)−1 . (λ2δ)−1

near Q∗0 × support(f̂). Set

ψf =
∑

j

ψ(x)qj(D)f + ψ(x)φ(D)f .

Let q(x, ξ) = ψ(x)φ(ξ)Pλδ(x, ξ)−1 smoothly cutoff in ξ to {|ξ1| ≈ λ , |ξ2| ≤ 2cλ} .
Then

ψ(x)φ(D)f = q(x,D)Pλδf + r(x,D)f ,
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where r is of size λ−1δ−2. Precisely, q and r are supported where |ξ| ≈ λ, and

λ2δ q(λ−1δ−1x, λ δ ξ) , λ δ2r(λ−1δ−1x, λ δ ξ) ∈ S0
0,0 .

It follows that

‖ψ(x)φ(D)f‖H1 . δ−
3
2 |||f |||λ,δ . λ

1
4 |||f |||λ,δ , δ ≥ λ−

1
6 .

Since p ≥ 6 we have γ(p+ 2) ≥ 1
4 , and Sobolev embedding yields

‖ψ(x)φ(D)f‖Lp+2 . λγ(p+2)|||f |||λ,δ ,

hence we may take ψ(x)φ(D)f as the term f0.
For each fixed j, now consider the term ψ(x)qj(D)f , and let ξj be the center of

the support of qj(ξ). We can assume that the angular separation of the ξj satisfies
∠(ξi, ξj) & δ |i− j| . Let Vj denote the vector

Vj = aλδ(x0) ξj .

Observe that Vj lies within a small angle of the x1 axis.
We take a partition of unity {h}h∈F on R2, such that for each h we have Vj ·dh = 0,

and the intersection of supp(h) with the x2 axis is contained in an interval of length
δ2. Multiplying by ψ(x), we obtain a decomposition ψ =

∑
T∈Tj

ψT , where ψT

is supported in a tube T of dimension δ × δ2, and T varies over a collection of
approximately δ−1 tubes pointing in direction Vj . We let T = ∪jTj , so that there are
δ−2 tubes in the collection T . With fT = ψT (x)qj(D)f , we have the decomposition
expressed in (8).

We also have derivative bounds on ψT , for T ∈ Tj :

(10) |(Vj · d)kψT | . λkδ−k , |∂α
xψT | . δ−2|α| ≤ δ−2(λδ)|α|−1 if |α| ≥ 1 ,

where we use δ ≥ λ−
1
6 . We then expand Pλδ(ψT qj(D)f) as

(11) (d∗aλδdψT ) qj(D)f + 2〈aλδdψT , d(qj(D)f)〉+ψT [Pλδ, qj(D)]f +ψT qj(D)Pλδf ,

and seek to show that∑
j

∑
T∈Tj

λ−2δ ‖Pλδ(ψT qj(D)f)‖2L2 . |||f |||2λ,δ .

For the first term in (11), this follows by the finite overlap of the ψT for T ∈ Tj and
the finite overlap of the qj(ξ), together with the pointwise bounds (10). The fourth
term is similary handled by the finite overlap properties.

For the third term in (11), we have the simple commutator bounds

‖[Pλδ, qj(D)]‖L2→L2 ≤ λ2(λδ)−1 = λδ−1 .

Additionally, by the frequency localization of aλδ and ρλδ, the commutators have
finite overlap as j varies, yielding square summability over j.

We expand the brackets in the second term in (11) as

〈 (aλδ(x)− aλδ(x0))dψT , dqj(D)f〉+ i〈Vj , dψT 〉 qj(D)f

+ 〈aλδ(x0)dψT , (d− iξj)(qj(D)f)〉 .

Each term has L2 norm bounded by λδ−1‖f‖L2 , and finite overlap properties yield
square summability as above.
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The finite overlap properties similarly yield that∑
T∈T

‖fT ‖2L2 + λ−2‖dfT ‖2L2 . ‖f‖2L2 + λ−2‖df‖2L2 ,

completing the verification of (9). �

We also need a stronger inequality. For T ∈ T , let ξT equal ξj if T ∈ Tj , so |ξT | ≈ λ
and fT = ψT qj(D)f , with qj(ξ) centered on ξT . The following lemma expresses the
fact that the frequencies of fT are concentrated in the λδ-ball about ξT .

Lemma 5. The following bounds hold, for each α, β,

(12)

(∑
T

λ−2|α|(λδ)−2|β|‖Dα(D − ξT )βfT ‖2L∞x1
L2

x2

) 1
2

≤ Cα,β |||f |||δ,λ .

Proof. Observe that we can write

λ−|α|(λδ)−|β|Dα(D − ξT )βψT (x) qj(D) = ψ̃T (x) q̃j(D)

where ψ̃T (x) and q̃j(ξ) satisfy similar support and derivative bounds as ψT and qj .
Hence, the proof we present for the case α = β = 0 applies to the general case.

Let q′j(ξ) be a smooth cutoff to the δλ-neighborhood of support(qj). Then

‖(1− q′j(D))ψT qj(D)f‖L2 . λ−N‖f‖L2 , ∀N .

Since the number of tubes is bounded by δ−2 � λ, Sobolev embedding establishes the
desired bounds on these terms. We set f ′T = q′j(D)fT . By commutator arguments as
above we have |||f ′T |||δ,λ . |||fT |||δ,λ. The proof will then follow from (9) by showing
that

(13) ‖f ′T ‖L∞x1
L2

x2
. |||f ′T |||λ,δ .

We establish (13) by energy inequality arguments. Let V denote the vector field

V = 2(∂1f
′
T ) aλδ df

′
T +

(
λ2ρλδ f

′
T

2 − 〈aλδ df
′
T , df

′
T 〉
)−→e1

Then
d∗V = 2(∂1f

′
T )Pλδf

′
T + λ2(∂1ρλδ)f ′T

2 − 〈(∂1aλδ)df ′T , df
′
T 〉

Applying the divergence theorem on the set x1 ≤ r yields∫
x1=r

V1 dx
′ . λ2‖f ′T ‖2L2 + δ−1‖df ′T ‖2L2 + δ ‖Pλδf

′
T ‖2L2 ≤ λ2|||f ′T |||2λ,δ

Since aλδ and ρλδ are pointwise close to the flat metric, we have pointwise that

V1 ≥ 3
4 |∂1f

′
T |2 + 3

4λ
2|f ′T |2 − 3

2 |∂2f
′
T |2

The frequency localization of f̂ ′T to |ξ2| ≤ cλ yields

2
∫

x1=r

V1 dx
′ ≥

∫
x1=r

|df ′T |2 + λ2|f ′T |2 dx′ . �



10008 Herbert Koch, Hart F. Smith, and Daniel Tataru

3. Overlap estimates

In this section we establish simple bounds on the overlap of tubes, and resulting
`q bounds on the overlap-counting function.

Lemma 6. Let x and y be two points in Q0. Then the number of distinct tubes T ∈ T
which pass within distance 4δ2 of both x and y is bounded by Cmin

(
δ−1, δ

|x1−y1|
)
.

Proof. For each j, there is a fixed bound on the number of tubes T ∈ Tj which pass
within distance 4δ2 of x. It thus suffices to bound the number of distinct j such that
the line through x in direction Vj passes within distant ∼ δ2 of y. The above bound
is then a simple consequence of the fact that ∠(Vi, Vj) & δ| i− j|. �

Now consider a collection N ⊂ T containing N distinct tubes. We make a decom-
position of the cube Q0 into a δ−1 × δ−1 grid Q of cubes Q of sidelength δ2. Let nQ

denote the number of tubes in N which intersect Q∗,

nQ = #{T ∈ N : T ∩Q∗ 6= ∅} .

Let ‖nQ‖`q(Q) =
(∑

Q∈Q |nQ|q
)1/q denote the `q norm of the counting function nQ.

By ‖nQ‖`p`q we understand the mixed `px1
`qx2

(Q) norm of nQ, taken over the grid Q.

Corollary 7. The following bounds hold,

‖nQ‖`∞`1 . N , ‖nQ‖`2`∞ . | log δ| 12 δ− 1
2N

1
2 .

Furthermore, for q ≥ 3

(14) ‖nQ‖`q(Q) . | log δ|
1
q δ−

1
qN1− 1

q .

Proof. The first bound is an immediate consequence of the fact that, for each T and
r, there is a fixed upper bound on the number of cubes Q centered on the line x1 = r
such that Q∗ intersect T . For the second bound, we consider the map

W{cT } =
∑
T

cTχT (Q) where

{
χT (Q) = 1 , T ∩Q∗ 6= ∅
χT (Q) = 0 , T ∩Q∗ = ∅

It suffices to show that W : `2(T ) → `2`∞(Q) with bound | log δ| 12 δ− 1
2 . The map

WW ∗ takes the form

WW ∗{cQ}(Q′) =
∑
Q

n(Q′, Q)cQ , n(Q′, Q) = #{T : T ∩Q∗ 6= ∅ , T ∩Q′∗ 6= ∅ } .

We need to show that WW ∗ : `2`1(Q) → `2`∞(Q) with norm | log δ| δ−1. This is an
easy consequence of the bound from Lemma 6,

n(Q′, Q) . min
(
δ−1, δ |x1(Q′)− x1(Q)|−1

)
.

Applying interpolation now yields the bounds

‖nQ‖`q`r . | log δ|
1
q δ−

1
qN1− 1

q , 2
q + 1

r = 1 .

Note that if q ≥ 3 then r ≤ q, yielding (14). �
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4. Proof of Theorem 4

Given f and the cube Q0, we decompose ψf =
∑

T∈T fT + f0 as in Section 2,
and control ‖f0‖Lp+2 by Sobolev embedding. We make a further decomposition by
collecting together tubes for which fT is of comparable energy. Precisely, decompose
T = ∪k≥−k0 Nk where T ∈ Nk if

2−k−1|||f |||λ,δ < |||fT |||λ,δ +
∑

|α|+|β|≤3

λ−|α|(λδ)−|β|‖Dα(D − ξT )βfT ‖L∞x1
L2

x2

≤ 2−k|||f |||λ,δ .

We handle the tubes for k ≥ 2 log2λ by the Sobolev bound ‖fT ‖L∞ ≤ ‖DfT ‖L∞x1
L2

x2
,

since there are at most δ−2 ≤ λ
1
3 tubes in all. This leaves at most ≈ log λ values of k,

which we handle individually. We thus fix some N = Nk, and let N be the number
of tubes in N . We multiply f by a constant so that |||f |||λ,δ = 2k, which by (9) and
(12) implies N

1
2 . |||f |||λ,δ. We then need to establish the following.

Theorem 8. Suppose that f =
∑

T∈N fT , where each fT is supported in Q0, and

|||fT |||δ,λ +
∑

|α|+|β|≤3

λ−|α|(λδ)−|β|‖Dα(D − ξT )βfT ‖L∞x1
L2

x2
≤ 1 .

Let N denote the cardinality of N . Then, under the conditions of Hypothesis 2,

‖f‖Lp+2 . (log λ)p−5λγ(p+2)N
1
2 .

Proof. As above we decompose Q0 into cubes Q of size δ2, Q0 = ∪QQ. By hypothesis,
for each Q we have

‖f‖Lp(Q) . (log λ)p−6λγ(p)
∣∣∣∣∣∣ ∑

T∩Q∗ 6=∅

fT

∣∣∣∣∣∣
δ2,λ,Q∗

.

We first show that

(15)
∣∣∣∣∣∣ ∑

T∩Q∗ 6=∅

fT

∣∣∣∣∣∣
δ2,λ,Q∗

. n
1
2
Q .

For this, note that |aλδ − aλδ2 | ≤ (λδ2)−1, hence∣∣∣∣∣∣ ∑
T∩Q∗ 6=∅

fT

∣∣∣∣∣∣
δ2,λ,Q∗

≤
∑
|α|≤2

λ−|α|
∥∥ ∑

T∩Q∗ 6=∅

DαfT

∥∥
L∞x1

L2
x2

+λ−1δ
∥∥ ∑

T∩Q∗ 6=∅

PλδfT

∥∥
L2 .

For each j, there are a bounded number of tubes T with ξT = ξj for which T ∩Q∗ 6= ∅ ,
hence we can assume the different ξT in the above sum are spaced by distance λδ in
the ξ2 variable. Thus,

λ−|α|
∥∥ ∑
T∩Q∗ 6=∅

DαfT

∥∥
L∞x1

L2
x2

.

∑
|β|≤1

∑
T∩Q∗ 6=∅

λ−2|α|(λδ)−2|β|‖(D − ξT )βDαfT ‖2L∞x1
L2

x2

 1
2

. n
1
2
Q .
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To complete the proof of (15), we use that nQ ≤ δ−1 to bound

λ−1δ
∑

T∩Q∗ 6=∅

‖PλδfT ‖L2 ≤ δ
1
2

∑
T∩Q∗ 6=∅

|||fT |||δ,λ ≤ δ
1
2nQ ≤ n

1
2
Q .

By (15) and Hypothesis 2, we thus have

(16) ||f ||Lp(Q) . (log λ)p−6λγ(p)n
1
2
Q .

We next note the bound

‖fT ‖L∞ ≤ 2‖(D − ξT )fT ‖
1
2
L∞x1

L2
x2
‖fT ‖

1
2
L∞x1

L2
x2

≤ λ
1
2 δ

1
2

∑
|β|≤1

(λδ)−|β|‖(D − ξT )βfT ‖L∞x1
L2

x2

≤ λ
1
2 δ

1
2 .

Consequently,

(17) ‖f‖L∞(Q) ≤ λ
1
2 δ

1
2nQ .

Combining (16)–(17) with (14) for q = 1
2p and q = ∞ respectively, we obtain

‖f‖Lp . (log λ)p−6+ 1
pλγ(p)δ−

1
pN

1
2−

1
p

‖f‖L∞ . λ
1
2 δ

1
2N

Interpolation yields

‖f‖Lp+2 . (log λ)
p(p−6)+1

p+2 λγ(p+2)N
1
2

Observing that if p ≥ 6 we have p(p− 6)+1 ≤ (p+2)(p− 5) concludes the proof. �

References

[1] D. Geba and D. Tataru, Dispersive estimates for wave equations, Comm. Partial Differential

Equations 30 (2005), no 4-6, 849–880.
[2] D. Grieser, Lp bounds for eigenfunctions and spectral projections of the Laplacian near concave

boundaries, Thesis, UCLA, 1992.

[3] H. Koch, H. Smith and D. Tataru, Sharp Lq bounds on spectral clusters for Holder metrics,
Math. Res. Lett. 14 (2007), no. 1, 77–85.

[4] H. Koch, D. Tataru and M. Zworski, Semiclassical Lp estimates, Ann. Henri Poincaré 8 (2007),
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