SHARP $L^{2} \rightarrow L^{q}$ BOUNDS ON SPECTRAL PROJECTORS FOR LOW REGULARITY METRICS

Hart F. Smith

Abstract

We establish $L^{2} \rightarrow L^{q}$ mapping bounds for unit-width spectral projectors associated to elliptic operators with C^{s} coefficients, in the case $1 \leq s \leq 2$. Examples of Smith-Sogge [6] show that these bounds are best possible for q less than the critical index. We also show that L^{∞} bounds hold with the same exponent as in the case of smooth coefficients.

1. Introduction

The goal of this paper is to study the L^{p} norms of eigenfunctions, and approximate eigenfunctions, of elliptic second order differential operators with low regularity coefficients, on compact manifolds without boundary. We consider the eigenvalues $-\lambda^{2}$ and eigenfunctions ϕ for an equation

$$
\begin{equation*}
d^{*}(a d \phi)+\lambda^{2} \rho \phi=0 \tag{1}
\end{equation*}
$$

Here we assume $\rho>0$ is a real, positive measurable function, and $a_{x}: T_{x}^{*}(M) \rightarrow$ $T_{x}(M)$ is the transformation associated to a real symmetric form on $T_{x}^{*}(M)$, also strictly positive and measurable in x. The manifold M and volume form $d x$ are assumed smooth, and d^{*} is the transpose of the differential d with respect to $d x$. This setting includes the most general elliptic second order operator on M, assumed selfadjoint with respect to some measurable volume form $\rho d x$, and assumed to annihilate constants, and hence of the form $\rho^{-1} d^{*} a d$. For limited regularity a and ρ we pose the problem as above to avoid domain considerations.

If we consider the real quadratic forms

$$
Q_{0}(f, g)=\int_{M} f g \rho d x, \quad Q_{1}(f, g)=Q_{0}(f, g)+\int_{M} a(d f, d g) d x
$$

then

$$
Q_{0}(f, f)=\|f\|_{L^{2}(M, \rho d x)}^{2}, \quad Q_{1}(f, f) \approx\|f\|_{H^{1}(M)}^{2}
$$

hence Q_{0} is compact relative to Q_{1} by Rellich's lemma. By the standard argument of simultaneously diagonalizing Q_{0} and Q_{1}, there exists a complete orthonormal basis ϕ_{j} for $L^{2}(M, \rho d x)$ consisting of eigenfunctions for (1), with $\lambda_{j} \rightarrow \infty$.

The object of this paper is to establish bounds on the $L^{2} \rightarrow L^{q}$ operator norm of the unit-width spectral projectors for (1). Let Π_{λ} be the projection of $L^{2}(M, \rho d x)$ onto the subspace spanned by the eigenfunctions of (1) for which $\lambda_{j} \in[\lambda, \lambda+1]$. In

[^0]the case that the coefficients ρ and a are C^{∞}, the following estimates hold, and are best possible in terms of the exponent of λ,
\[

$$
\begin{align*}
\left\|\Pi_{\lambda} f\right\|_{L^{q}(M)} \leq C \lambda^{\frac{n-1}{2}\left(\frac{1}{2}-\frac{1}{q}\right)}\|f\|_{L^{2}(M)}, & 2 \leq q \leq q_{n} \tag{2}\\
\left\|\Pi_{\lambda} f\right\|_{L^{q}(M)} \leq C \lambda^{n\left(\frac{1}{2}-\frac{1}{q}\right)-\frac{1}{2}}\|f\|_{L^{2}(M)}, & q_{n} \leq q \leq \infty \tag{3}
\end{align*}
$$
\]

where

$$
q_{n}=\frac{2(n+1)}{n-1}
$$

For C^{∞} metrics the estimates at $q=q_{n}$ are due to Sogge [8]. The estimate for $q=\infty$ is related to the spectral counting remainder estimates of Avakumović-LevitanHörmander; it can also be obtained from Sogge's estimate by Sobolev embedding. The case $q=2$ is of course trivial, and all other values of q follow from these endpoints by interpolation.

In [5], both estimates (2) and (3) were established on the full range of q for the case that both a and ρ are of class $C^{1,1}$.

On the other hand, Smith-Sogge [6] and Smith-Tataru [7] constructed examples, for each $0<s<2$, of functions a and ρ with coefficients of class C^{s} (Lipschitz in case $s=1$) for which there exist eigenfunctions ϕ_{λ} such that for all $q \geq 2$

$$
\left\|\phi_{\lambda}\right\|_{L^{q}(M)} \geq C \lambda^{\frac{n-1}{2}\left(\frac{1}{2}-\frac{1}{q}\right)(1+\sigma)}\left\|\phi_{\lambda}\right\|_{L^{2}(M)}
$$

where $C>0$ is independent of λ, and where

$$
\sigma=\frac{2-s}{2+s}
$$

For $2<q<\frac{2\left(n+2 s^{-1}\right)}{n-1}$, this shows that the spectral projection estimates for C^{s} metrics with $s<2$ can be strictly worse than in the C^{2} case.

In this paper, we consider the case of coefficients a and ρ of class C^{s} for $1 \leq s<2$ (Lipschitz in case $s=1$.) We start by establishing the following bound, which by the examples of [6] is best possible on the indicated range of q.

Theorem 1. Assume that the coefficients a and ρ are either of class C^{s} for some $1<s<2$, or Lipschitz class if $s=1$. Let Π_{λ} denote the L^{2}-projection onto the subspace spanned by eigenfunctions of (1) with $\lambda_{j} \in[\lambda, \lambda+1]$. Then

$$
\left\|\Pi_{\lambda} f\right\|_{L^{q}(M)} \leq C \lambda^{\frac{n-1}{2}\left(\frac{1}{2}-\frac{1}{q}\right)(1+\sigma)}\|f\|_{L^{2}(M)}, \quad 2 \leq q \leq q_{n}
$$

Applying Sobolev embedding to the estimate at $q=q_{n}$ would not yield the correct bound for $q=\infty$. However, the proof of Theorem 1 also yields no-loss estimates on small sets. Precisely, we will establish the following local estimate, with constant uniform over the balls B.

Theorem 2. Let $B_{R} \subset M$ be a ball of radius $R=\lambda^{-\sigma}$. Then under the same conditions as Theorem 1

$$
\begin{equation*}
\left\|\Pi_{\lambda} f\right\|_{L^{q}\left(B_{R}\right)} \leq C \lambda^{n\left(\frac{1}{2}-\frac{1}{q}\right)-\frac{1}{2}}\|f\|_{L^{2}(M)}, \quad q_{n} \leq q \leq \infty \tag{4}
\end{equation*}
$$

Interpolating with the trivial L^{2} estimate establishes the estimate (2) on such balls B_{R}. Since the constant C in (4) is uniform for all balls B_{R}, we obtain the same global $L^{2} \rightarrow L^{\infty}$ mapping properties in the case of Lipschitz coefficients as in the case of smooth coefficients,

$$
\begin{equation*}
\left\|\Pi_{\lambda} f\right\|_{L^{\infty}(M)} \leq C \lambda^{\frac{n-1}{2}}\|f\|_{L^{2}(M)} \tag{5}
\end{equation*}
$$

A corollary of this result is the Hörmander multiplier theorem on compact manifolds for functions of elliptic operators with Lipschitz coefficients, as shown by results of Duong-Ouhabaz-Sikora [1], section 7.2. We note that, in related work, Ivrii [2] has obtained the sharp spectral counting remainder estimate for operators with coefficients of regularity slightly stronger than Lipschitz.

The proof of Theorem 2 that we will present requires that q be not too large, but in all dimensions works for $q=q_{n}$. We therefore show here how heat kernel estimates permit us to deduce (4) for all $q \geq q_{n}$ from the case $q=q_{n}$. For this, let H_{λ} denote the heat kernel at time $\lambda^{-2} \leq 1$ for the diffusion system associated to (1). By Theorem 6.3 of Saloff-Coste [4], the integral kernel h_{λ} of H_{λ} satisfies

$$
\left|h_{\lambda}(x, y)\right| \leq C \lambda^{n} \exp \left(-c \lambda^{2} d(x, y)^{2}\right)
$$

By Young's inequality, then for $q_{n} \leq q \leq \infty$

$$
\begin{aligned}
\left\|\Pi_{\lambda} f\right\|_{L^{q}\left(B_{R}\right)} & \leq C \lambda^{n\left(\frac{1}{q_{n}}-\frac{1}{q}\right)}\left\|H_{\lambda}^{-1} \Pi_{\lambda} f\right\|_{L^{q_{n}}\left(B_{R}^{*}\right)}+C_{N} \lambda^{-N}\left\|H_{\lambda}^{-1} \Pi_{\lambda} f\right\|_{L^{2}\left(M \backslash B_{R}^{*}\right)} \\
& \leq C \lambda^{n\left(\frac{1}{2}-\frac{1}{q}\right)-\frac{1}{2}}\|f\|_{L^{2}(M)}
\end{aligned}
$$

where we use (4) at $q=q_{n}$ with B_{R} replaced by its double B_{R}^{*}, and the fact that $\left\|H_{\lambda}^{-1} \Pi_{\lambda} f\right\|_{L^{2}} \approx\left\|\Pi_{\lambda} f\right\|_{L^{2}}$ since $\exp \left(\lambda_{j}^{2} / \lambda^{2}\right) \approx 1$ for $\lambda_{j} \in[\lambda, \lambda+1]$.

If we interpolate the estimate of Theorem 1 at $q=q_{n}$ with the estimate (5), then we obtain the following.

Corollary 3. Under the same conditions as Theorem 1

$$
\left\|\Pi_{\lambda} f\right\|_{L^{q}(M)} \leq C \lambda^{n\left(\frac{1}{2}-\frac{1}{q}\right)-\frac{1}{2}+\frac{\sigma}{q}}\|f\|_{L^{2}(M)}, \quad q_{n} \leq q \leq \infty
$$

For $q_{n}<q<\infty$, however, the exponent is strictly larger than that predicted by the examples of [6]. It is not currently known what the sharp exponent is for this range.

The key idea in our proof is that a C^{s} function is well approximated on sets of diameter $R=\lambda^{-\sigma}$ by a C^{2} function, up to an error which is suitably bounded when dealing with eigenfunctions localized to frequency λ. In effect, rescaling by R reduces matters to a C^{2} situation, where no-loss estimates hold. The loss of $\lambda^{\frac{\sigma}{q}}$ comes from adding up the bounds over $\approx R^{-1}$ disjoint sets.

This scaling parameter R occurs in the examples of Smith-Sogge [6] and SmithTataru [7]. The idea of scaling by R to prove L^{p} estimates was first used by Tataru in [9], to establish Strichartz-type estimates for time-dependent wave equations with C^{s} coefficients, yielding improved existence theorems for a class of quasilinear hyperbolic equations.
Notation. By a C^{s} function on \mathbb{R}^{n}, for $1<s \leq 2$ we understand a continuously differentiable function f such that

$$
\|f\|_{C^{s}}=\|f\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}+\|d f\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}+\sup _{h \in \mathbb{R}^{n}}|h|^{1-s}\|d f(\cdot+h)-d f(\cdot)\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}<\infty .
$$

Thus, C^{s} coincides with $C^{1, s-1}$ for $s \in(1,2]$. For $s=1$, we use C^{1} to mean Lipschitz. For $0<s<1$ we take C^{s} to be the standard Holder class.

We use d to denote the differential taking functions to covector fields, and d^{*} its adjoint with respect to $d x$. When working on $\mathbb{R}^{n}, d=\left(\partial_{1}, \ldots, \partial_{n}\right)$, and d^{*} is the standard divergence operator.

The notation $A \lesssim B$ means $A \leq C B$, where C is a constant that depends only on the C^{s} norm of a and ρ, as well as on universally fixed quantities, such as the manifold M and the non-degeneracy of a and ρ. In particular, C can be taken to depend continuously on a and ρ in the C^{s} norm, so our estimates are uniform under small C^{s} perturbations of a and ρ.

2. Scaling Arguments

Our starting point is the following square-function estimate for solutions to the Cauchy problem. For C^{∞} coefficients this was established by Mockenhaupt-SeegerSogge [3]. The version we need for $C^{1,1}$ metrics is Theorem 1.3 of [5]. That theorem was stated under the condition $F=0$ and for coefficients which are constant for large x, but these conditions are easily dropped by the Duhamel principle and a partition of unity argument.

Theorem 4. Suppose that a and ρ are defined globally on \mathbb{R}^{n}, and that

$$
\left\|a^{i j}-\delta^{i j}\right\|_{C^{1,1}\left(\mathbb{R}^{n}\right)}+\|\rho-1\|_{C^{1,1}\left(\mathbb{R}^{n}\right)} \leq c_{0}
$$

where c_{0} is a small constant depending only on n. Let u solve the Cauchy problem

$$
\rho(x) \partial_{t}^{2} u(t, x)-d^{*}(a(x) d u(t, x))=F(t, x), \quad u(0, x)=u_{0}(x), \quad \partial_{t} u(0, x)=u_{1}(x) .
$$

Then

$$
\begin{equation*}
\|u\|_{L_{x}^{q_{n}} L_{t}^{2}\left(\mathbb{R}^{n} \times[-1,1]\right)} \lesssim\left\|u_{0}\right\|_{H^{\frac{1}{q_{n}}}}+\left\|u_{1}\right\|_{H^{\frac{1}{q_{n}}-1}}+\|F\|_{L_{t}^{1} H^{\frac{1}{q_{n}}-1}} \tag{6}
\end{equation*}
$$

We first deduce the following corollary which is more useful for our purposes.
Corollary 5. Suppose that f satisfies an equation on \mathbb{R}^{n} of the form

$$
d^{*}(a d f)+\mu^{2} \rho f=d^{*} g_{1}+g_{2} .
$$

If a and ρ satisfy the condition of Theorem 4, then

$$
\begin{equation*}
\|f\|_{L^{q_{n}}} \lesssim \mu^{\frac{1}{q_{n}}}\left(\|f\|_{L^{2}}+\mu^{-1}\|d f\|_{L^{2}}+\left\|g_{1}\right\|_{L^{2}}+\mu^{-1}\left\|g_{2}\right\|_{L^{2}}\right) \tag{7}
\end{equation*}
$$

Proof. Let $S_{r}=S_{r}(D)$ denote a smooth cutoff on the Fourier transform side to frequencies of size $|\xi| \leq r$. Let $a_{\mu}=S_{c^{2} \mu} a$, for c to be chosen suitably small. Then

$$
\left\|\left(a-a_{\mu}\right) d f\right\|_{L^{2}} \lesssim c^{-2} \mu^{-1}\|d f\|_{L^{2}}, \quad \mu^{2}\left\|\left(\rho-\rho_{\mu}\right) f\right\|_{L^{2}} \lesssim c^{-2} \mu\|f\|_{L^{2}}
$$

and thus we may replace a and ρ by a_{μ} and ρ_{μ} at the expense of absorbing the above two terms into g_{1} and g_{2}, which does not change the size of the right hand side of (7).

Next, let $f_{<\mu}=S_{c \mu} f$. Since

$$
\left\|\left[S_{c \mu}, a_{\mu}\right]\right\|_{L^{2} \rightarrow L^{2}} \lesssim(c \mu)^{-1}
$$

and similarly for $\left[S_{c \mu}, \rho_{\mu}\right]$, we can absorb the commutator terms into g_{1} and g_{2}, and since all terms are localized to frequencies less than μ we can write

$$
\begin{equation*}
d^{*}\left(a_{\mu} d f_{<\mu}\right)+\mu^{2} \rho_{\mu} f_{<\mu}=g_{<\mu} \tag{8}
\end{equation*}
$$

where

$$
\left\|g_{<\mu}\right\|_{L^{2}} \lesssim \mu\|f\|_{L^{2}}+\|d f\|_{L^{2}}+\mu\left\|g_{1}\right\|_{L^{2}}+\left\|g_{2}\right\|_{L^{2}}
$$

Since $\left\|d^{*}\left(a_{\mu} d f_{<\mu}\right)\right\|_{L^{2}} \lesssim(c \mu)^{2}\left\|f_{<\mu}\right\|_{L^{2}}$, for c suitably small the L^{2} norm of the left hand side of (8) is comparable to $\mu^{2}\left\|f_{<\mu}\right\|_{L^{2}}$, hence we have

$$
\left\|f_{<\mu}\right\|_{L^{2}} \lesssim \mu^{-1}\left(\|f\|_{L^{2}}+\mu^{-1}\|d f\|_{L^{2}}+\left\|g_{1}\right\|_{L^{2}}+\mu^{-1}\left\|g_{2}\right\|_{L^{2}}\right)
$$

Sobolev embedding now implies (7) if f is replaced on the left hand side by $f_{<\mu}$. In fact there is a gain of $\mu^{-\frac{1}{2}}$, since $\frac{1}{q_{n}}=n\left(\frac{1}{2}-\frac{1}{q_{n}}\right)-\frac{1}{2}$.

If we let $f_{>\mu}=f-S_{c^{-1} \mu} f$, then similar arguments let us write

$$
\begin{equation*}
d^{*}\left(a_{\mu} d f_{>\mu}\right)+\mu^{2} \rho_{\mu} f_{>\mu}=d^{*} g_{>\mu} \tag{9}
\end{equation*}
$$

where now $g_{>\mu}$, like $f_{>\mu}$, is frequency localized to frequencies larger than $c^{-1} \mu$, and

$$
\left\|g_{>\mu}\right\|_{L^{2}} \lesssim\|f\|_{L^{2}}+\mu^{-1}\|d f\|_{L^{2}}+\left\|g_{1}\right\|_{L^{2}}+\mu^{-1}\left\|g_{2}\right\|_{L^{2}}
$$

Taking the inner product of both sides of (9) against $f_{>\mu}$ yields

$$
\left\|d f_{>\mu}\right\|_{L^{2}}^{2}-4 \mu^{2}\left\|f_{>\mu}\right\|_{L^{2}}^{2} \lesssim\left\|g_{>\mu}\right\|_{L^{2}}\left\|d f_{>\mu}\right\|_{L^{2}}
$$

and by the frequency localization of $f_{>\mu}$ we obtain

$$
\left\|f_{>\mu}\right\|_{H^{1}} \lesssim\|f\|_{L^{2}}+\mu^{-1}\|d f\|_{L^{2}}+\left\|g_{1}\right\|_{L^{2}}+\mu^{-1}\left\|g_{2}\right\|_{L^{2}}
$$

Since $n\left(\frac{1}{2}-\frac{1}{q_{n}}\right)=\frac{1}{q_{n}}+\frac{1}{2} \leq 1$, Sobolev embedding yields (7) if f is replaced on the left hand side by $f_{>\mu}$. As above, there is in fact a gain of $\mu^{-\frac{1}{2}}$ for this term.

We now let $f_{\mu}=S_{c^{-1} \mu} f-S_{c \mu} f$, and as above write

$$
d^{*}\left(a_{\mu} d f_{\mu}\right)+\mu^{2} \rho_{\mu} f_{\mu}=g_{\mu}
$$

where now f_{μ} and g_{μ} are localized to frequencies comparable to μ, and

$$
\left\|g_{\mu}\right\|_{L^{2}} \lesssim \mu\|f\|_{L^{2}}+\|d f\|_{L^{2}}+\mu\left\|g_{1}\right\|_{L^{2}}+\left\|g_{2}\right\|_{L^{2}}
$$

Setting $u(t, x)=\cos (\mu t) f_{\mu}(x)$, we apply (6) to deduce

$$
\left\|f_{\mu}\right\|_{L^{q}} \lesssim \mu^{\frac{1}{q_{n}}}\left(\left\|f_{\mu}\right\|_{L^{2}}+\mu^{-1}\left\|g_{\mu}\right\|_{L^{2}}\right)
$$

which yields (7) for this term.
Remark. For future use, we note that in the proof of Corollary 5 the assumption that $a \in C^{1,1}$ was used only at the last step, in order to deduce that (6) holds. The commutator and approximation bounds require only that a and ρ be Lipschitz. In particular, the bounds on $f_{<\mu}$ and $f_{>\mu}$ hold for Lipschitz a and ρ.

Corollary 6. Let Q be a unit cube and Q^{*} its double. Suppose that a and ρ are bounded and measurable, and that there exist $C^{1,1}$ functions \tilde{a} and $\tilde{\rho}$ satisfying the conditions of Theorem 4 such that

$$
\|a-\tilde{a}\|_{L^{\infty}\left(Q^{*}\right)}+\|\rho-\tilde{\rho}\|_{L^{\infty}\left(Q^{*}\right)} \leq \mu^{-1}
$$

Suppose that on Q^{*} we have

$$
d^{*}(a d f)+\mu^{2} \rho f=d^{*} g_{1}+g_{2}
$$

Then

$$
\|f\|_{L^{q_{n}}(Q)} \lesssim \mu^{\frac{1}{q_{n}}}\left(\|f\|_{L^{2}\left(Q^{*}\right)}+\mu^{-1}\|d f\|_{L^{2}\left(Q^{*}\right)}+\left\|g_{1}\right\|_{L^{2}\left(Q^{*}\right)}+\mu^{-1}\left\|g_{2}\right\|_{L^{2}\left(Q^{*}\right)}\right)
$$

The constant in the inequality is uniform for $\mu \geq 1$.
Proof. Let ϕ be a smooth function, equal to 1 on Q and supported in Q^{*}. Then

$$
\begin{aligned}
d^{*}(a d(\phi f))+\mu^{2} \rho(\phi f) & =d^{*}\left[(a d \phi) f+\phi g_{1}\right]+\left[(a d \phi) \cdot d f-(d \phi) \cdot g_{1}+\phi g_{2}\right] \\
& =d^{*} \tilde{g}_{1}+\tilde{g}_{2}
\end{aligned}
$$

where for $\mu \geq 1$

$$
\left\|\tilde{g}_{1}\right\|_{L^{2}}+\mu^{-1}\left\|\tilde{g}_{2}\right\|_{L^{2}} \lesssim\|f\|_{L^{2}\left(Q^{*}\right)}+\mu^{-1}\|d f\|_{L^{2}\left(Q^{*}\right)}+\left\|g_{1}\right\|_{L^{2}\left(Q^{*}\right)}+\mu^{-1}\left\|g_{2}\right\|_{L^{2}\left(Q^{*}\right)}
$$

One may similarly absorb $(a-\tilde{a}) d(\phi f)$ into \tilde{g}_{1}, and $\mu^{2}(\rho-\tilde{\rho})(\phi f)$ into \tilde{g}_{2}. The result now follows from (7).

Corollary 7. Suppose that a and ρ are of class C^{s}, with $0 \leq s \leq 2$, and that

$$
\left\|a^{i j}-\delta^{i j}\right\|_{C^{s}\left(\mathbb{R}^{n}\right)}+\|\rho-1\|_{C^{s}\left(\mathbb{R}^{n}\right)} \leq c_{0}
$$

where c_{0} is a small constant depending only on n.
Suppose that $R=\lambda^{-\sigma}$, where $\sigma=\frac{2-s}{2+s}$ and $\lambda \geq 1$. Assume Q_{R} is a cube of sidelength R, Q_{R}^{*} is its double, and on Q_{R}^{*} the following equation holds

$$
d^{*}(a d f)+\lambda^{2} \rho f=d^{*} g_{1}+g_{2}
$$

Then

$$
\begin{aligned}
&\|f\|_{L^{q_{n}}\left(Q_{R}\right)} \lesssim R^{-\frac{1}{2}} \lambda^{\frac{1}{q_{n}}}\left(\|f\|_{L^{2}\left(Q_{R}^{*}\right)}+\lambda^{-1}\|d f\|_{L^{2}\left(Q_{R}^{*}\right)}\right. \\
&\left.+R\left\|g_{1}\right\|_{L^{2}\left(Q_{R}^{*}\right)}+R \lambda^{-1}\left\|g_{2}\right\|_{L^{2}\left(Q_{R}^{*}\right)}\right)
\end{aligned}
$$

Proof. We use the notation $f_{R}(x)=f(R x)$. Then, for $\mu=R \lambda=\lambda^{1-\sigma}$,

$$
d^{*}\left(a_{R} d f_{R}\right)+\mu^{2} \rho_{R} f_{R}=R d^{*} g_{1, R}+R^{2} g_{2, R}
$$

holds on Q^{*}, with Q a unit cube. If $\tilde{a}=S_{\mu^{1 / 2}} a_{R}$, then

$$
\left\|\tilde{a}-a_{R}\right\|_{L^{\infty}} \lesssim \mu^{-\frac{1}{2} s} R^{s}\|a-I\|_{C^{s}}=c_{0} \mu^{-1}
$$

By the frequency localization, \tilde{a} satisfies the conditions of Theorem 4. We may thus apply Corollary 6 to yield

$$
\begin{aligned}
&\left\|f_{R}\right\|_{L^{q_{n}}(Q)} \lesssim(R \lambda)^{\frac{1}{q_{n}}}\left(\left\|f_{R}\right\|_{L^{2}\left(Q^{*}\right)}+\lambda^{-1}\left\|(d f)_{R}\right\|_{L^{2}\left(Q^{*}\right)}\right. \\
&\left.+R\left\|g_{1, R}\right\|_{L^{2}\left(Q^{*}\right)}+R \lambda^{-1}\left\|g_{2, R}\right\|_{L^{2}\left(Q^{*}\right)}\right)
\end{aligned}
$$

Recalling that $\frac{1}{q_{n}}=n\left(\frac{1}{2}-\frac{1}{q_{n}}\right)-\frac{1}{2}$, this yields the corollary after rescaling.

3. Proof of Theorem 1

The proof of Corollary 7 works for all $s \in[0,2]$, but the energy estimates of this section require that a and ρ be Lipschitz, hence we assume $s \geq 1$ for the remainder.

The projection $\Pi_{\lambda} f$ satisfies

$$
\begin{aligned}
\left\|d^{*}\left(\operatorname{ad}\left(\Pi_{\lambda} f\right)\right)+\lambda^{2} \rho \Pi_{\lambda} f\right\|_{L^{2}(M, \rho d x)} & \leq(2 \lambda+1)\left\|\Pi_{\lambda} f\right\|_{L^{2}(M, \rho d x)} \\
\left\|d \Pi_{\lambda} f\right\|_{L^{2}(M, \rho d x)} & \lesssim(\lambda+1)\left\|\Pi_{\lambda} f\right\|_{L^{2}(M, \rho d x)}
\end{aligned}
$$

hence Theorem 1 follows from showing that, if the following holds on M

$$
\begin{equation*}
d^{*}(a d f)+\lambda^{2} \rho f=g \tag{10}
\end{equation*}
$$

then uniformly for $\lambda \geq 1$

$$
\begin{equation*}
\|f\|_{L^{q_{n}}(M)} \lesssim \lambda^{\frac{1+\sigma}{q_{n}}}\left(\|f\|_{L^{2}(M)}+\lambda^{-1}\|d f\|_{L^{2}(M)}+\lambda^{-1}\|g\|_{L^{2}(M)}\right) \tag{11}
\end{equation*}
$$

Assume that (10) holds, and let ϕ be a C^{2} bump function on M. Then

$$
d^{*}(a d(\phi f))+\lambda^{2} \rho \phi f=f d^{*}(a d \phi)+\langle a d \phi, d f\rangle+\phi g
$$

Absorbing the terms on the right into g leaves the right hand side of (11) unchanged, hence by a partition of unity argument we may assume that f is supported in a suitably small coordinate neighborhood on M.

We choose coordinate patches so that, in local coordinates, the conditions of Corollary 7 are satisfied after extending a and ρ to all of \mathbb{R}^{n}. Thus, we have an equation of the form (10) on \mathbb{R}^{n}, with f and g supported in a unit cube.

We next decompose $f=f_{<\lambda}+f_{>\lambda}+f_{\lambda}$ as in the proof of Corollary 5. As remarked following that proof, the bounds on $f_{<\lambda}$ and $f_{>\lambda}$ hold for a and ρ Lipschitz, hence we are reduced to considering f_{λ}, for which we have an equation

$$
d^{*}\left(a_{\lambda} d f_{\lambda}\right)+\lambda^{2} \rho_{\lambda} f_{\lambda}=g_{\lambda}
$$

where a_{λ} and ρ_{λ} are localized to frequencies smaller than $c^{2} \lambda$, and both f_{λ} and g_{λ} are localized to frequencies of size comparable to λ.

We then decompose $f_{\lambda}=\sum_{j=1}^{N} \Gamma_{j} f_{\lambda}$, where each $\Gamma_{j}=\Gamma_{j}(D)$ is an order 0 multiplier, with symbol $\Gamma_{j}(\xi)$ supported where $|\xi| \approx \lambda$ and in a cone of suitably small angle. It then suffices to bound each $\left\|\Gamma_{j} f_{\lambda}\right\|_{L^{q_{n}}(Q)}$ by the right hand side of (11). Without loss of generality we consider a term with $\Gamma(\xi)$ localized to a small cone about the ξ_{1} axis.

We write

$$
d^{*}\left(a_{\lambda} d \Gamma f_{\lambda}\right)+\lambda^{2} \rho_{\lambda} \Gamma f_{\lambda}=\Gamma g_{\lambda}+d^{*}\left[a_{\lambda}, \Gamma\right] d f_{\lambda}+\lambda^{2}\left[\rho_{\lambda}, \Gamma\right] f_{\lambda}
$$

Simple commutator estimates show that the right hand side has L^{2} norm bounded by $\lambda\|f\|_{L^{2}}+\|g\|_{L^{2}}$, hence we are reduced to establishing

$$
\begin{equation*}
\|f\|_{L^{q_{n}}(Q)} \lesssim \lambda^{\frac{1+\sigma}{q_{n}}}\left(\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}+\lambda^{-1}\|d f\|_{L^{2}\left(\mathbb{R}^{n}\right)}+\lambda^{-1}\|g\|_{L^{2}\left(\mathbb{R}^{n}\right)}\right) \tag{12}
\end{equation*}
$$

for f satisfying the equation

$$
d^{*}\left(a_{\lambda} d f\right)+\lambda^{2} \rho_{\lambda} f=g
$$

where $\widehat{f}(\xi)$ and $\widehat{g}(\xi)$ are localized to $|\xi| \approx \lambda$ and ξ in a small cone about the ξ_{1} axis.
By Corollary 7, for any cube Q_{R} of sidelength $R=\lambda^{-\sigma}$, we have
(13) $\|f\|_{L^{q_{n}}\left(Q_{R}\right)} \lesssim \lambda^{\frac{1}{q_{n}}}\left(R^{-\frac{1}{2}}\|f\|_{L^{2}\left(Q_{R}^{*}\right)}+R^{-\frac{1}{2}} \lambda^{-1}\|d f\|_{L^{2}\left(Q_{R}^{*}\right)}+R^{\frac{1}{2}} \lambda^{-1}\|g\|_{L^{2}\left(Q_{R}^{*}\right)}\right)$.

Let S_{R} denote a slab of the form $\left\{x \in \mathbb{R}^{n}:\left|x_{1}-c\right| \leq R\right\}$. By summing over cubes Q_{R} contained in S_{R}, and noting $R \leq 1$, we obtain

$$
\begin{equation*}
\|f\|_{L^{q_{n}}\left(S_{R}\right)} \lesssim \lambda^{\frac{1}{q_{n}}}\left(R^{-\frac{1}{2}}\|f\|_{L^{2}\left(S_{R}^{*}\right)}+R^{-\frac{1}{2}} \lambda^{-1}\|d f\|_{L^{2}\left(S_{R}^{*}\right)}+\lambda^{-1}\|g\|_{L^{2}\left(S_{R}^{*}\right)}\right) \tag{14}
\end{equation*}
$$

We will show that
(15) $R^{-\frac{1}{2}}\left(\|f\|_{L^{2}\left(S_{R}^{*}\right)}+\lambda^{-1}\|d f\|_{L^{2}\left(S_{R}^{*}\right)}\right) \lesssim\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}+\lambda^{-1}\|d f\|_{L^{2}\left(\mathbb{R}^{n}\right)}+\lambda^{-1}\|g\|_{L^{2}\left(\mathbb{R}^{n}\right)}$

Given this, inequality (12) follows from (14) by adding over the $R^{-1}=\lambda^{\sigma}$ disjoint slabs that intersect Q. Also, the bound (13) implies the conclusion of Theorem 2 for $q=q_{n}$ (hence for all q by the heat kernel arguments following that theorem.)

We establish (15) by energy inequality arguments. Let V denote the vector field

$$
V=2\left(\partial_{1} f\right) a_{\lambda} d f+\left(\lambda^{2} \rho_{\lambda} f^{2}-\left\langle a_{\lambda} d f, d f\right\rangle\right) \overrightarrow{e_{1}}
$$

Then

$$
d^{*} V=2\left(\partial_{1} f\right) g+\lambda^{2}\left(\partial_{1} \rho_{\lambda}\right) f^{2}-\left\langle\left(\partial_{1} a_{\lambda}\right) d f, d f\right\rangle
$$

Applying the divergence theorem on the set $x_{1} \leq r$ yields

$$
\int_{x_{1}=r} V_{1} d x^{\prime} \lesssim \lambda^{2}\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}+\|d f\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}+\|g\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}
$$

Since a_{λ} and ρ are pointwise close to the flat metric, we have pointwise that

$$
V_{1} \geq \frac{3}{4}\left|\partial_{1} f\right|^{2}+\frac{3}{4} \lambda^{2}|f|^{2}-\left|\partial_{x^{\prime}} f\right|^{2}
$$

The frequency localization of \widehat{f} to $\left|\xi^{\prime}\right| \leq c \lambda$ yields

$$
\int_{x_{1}=r} V_{1} d x^{\prime} \geq \frac{1}{2} \int_{x_{1}=r}|d f|^{2}+\lambda^{2}|f|^{2} d x^{\prime}
$$

Integrating this over r in an interval of size R yields (15).

References

[1] X.T. Duong, E.M. Ouhabaz and A. Sikora, Plancherel-type estimates and sharp spectral multipliers, J. Funct. Anal. 196 (2002), 443-485.
[2] V. Ivrii, Sharp spectral asymptotics for operators with irregular coefficients, Internat. Math. Res. Notices 2000 no. 22, 1155-1166.
[3] G. Mockenhaupt, A. Seeger and C. Sogge, Local smoothing of Fourier integrals and CarlesonSjölin estimates, J. Amer. Math. Soc. 6 (1993), 65-130.
[4] L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Differential Geom. 36 (1992), 417-450.
[5] H. Smith, Spectral cluster estimates for $C^{1,1}$ metrics, Amer. Jour. Math., to appear.
[6] H. Smith and C. Sogge, On Strichartz and eigenfunction estimates for low regularity metrics, Math. Res. Lett. 1 (1994), 729-737.
[7] H. Smith and D. Tataru, Sharp counterexamples for Strichartz estimates for low regularity metrics, Math. Res. Lett. 9 (2002), 199-204.
[8] C. Sogge, Concerning the L^{p} norm of spectral clusters for second order elliptic operators on compact manifolds, J. Funct. Anal. 77 (1988), 123-134.
[9] D. Tataru, Strichartz estimates for operators with nonsmooth coefficients III, J. Amer. Math. Soc. 15 (2002), 419-442.

Department of Mathematics, University of Washington, Seattle, WA 98195
E-mail address: hart@math.washington.edu

[^0]: The author was supported in part by NSF grants DMS-0140499 and DMS-0354668.

