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SHARP L2 → Lq BOUNDS ON SPECTRAL PROJECTORS FOR
LOW REGULARITY METRICS

Hart F. Smith

Abstract. We establish L2 → Lq mapping bounds for unit-width spectral projectors

associated to elliptic operators with Cs coefficients, in the case 1 ≤ s ≤ 2. Examples
of Smith-Sogge [6] show that these bounds are best possible for q less than the critical

index. We also show that L∞ bounds hold with the same exponent as in the case of

smooth coefficients.

1. Introduction

The goal of this paper is to study the Lp norms of eigenfunctions, and approximate
eigenfunctions, of elliptic second order differential operators with low regularity coef-
ficients, on compact manifolds without boundary. We consider the eigenvalues −λ2

and eigenfunctions φ for an equation

(1) d∗(a dφ) + λ2ρ φ = 0 .

Here we assume ρ > 0 is a real, positive measurable function, and ax : T ∗x (M) →
Tx(M) is the transformation associated to a real symmetric form on T ∗x (M), also
strictly positive and measurable in x. The manifold M and volume form dx are
assumed smooth, and d∗ is the transpose of the differential d with respect to dx. This
setting includes the most general elliptic second order operator on M , assumed self-
adjoint with respect to some measurable volume form ρ dx, and assumed to annihilate
constants, and hence of the form ρ−1d∗ad. For limited regularity a and ρ we pose the
problem as above to avoid domain considerations.

If we consider the real quadratic forms

Q0(f, g) =
∫

M

f g ρ dx , Q1(f, g) = Q0(f, g) +
∫

M

a(df, dg) dx ,

then
Q0(f, f) = ‖f‖2

L2(M,ρdx) , Q1(f, f) ≈ ‖f‖2
H1(M) ,

hence Q0 is compact relative to Q1 by Rellich’s lemma. By the standard argument of
simultaneously diagonalizing Q0 and Q1, there exists a complete orthonormal basis
φj for L2(M,ρ dx) consisting of eigenfunctions for (1), with λj →∞.

The object of this paper is to establish bounds on the L2 → Lq operator norm of
the unit-width spectral projectors for (1). Let Πλ be the projection of L2(M,ρ dx)
onto the subspace spanned by the eigenfunctions of (1) for which λj ∈ [λ, λ + 1]. In

The author was supported in part by NSF grants DMS-0140499 and DMS-0354668.

965



966 Hart F. Smith

the case that the coefficients ρ and a are C∞, the following estimates hold, and are
best possible in terms of the exponent of λ,

(2)
∥∥Πλf

∥∥
Lq(M)

≤ C λ
n−1

2 ( 1
2−

1
q ) ‖f‖L2(M) , 2 ≤ q ≤ qn ,

(3)
∥∥Πλf

∥∥
Lq(M)

≤ C λn( 1
2−

1
q )− 1

2 ‖f‖L2(M) , qn ≤ q ≤ ∞ ,

where

qn =
2(n + 1)
n− 1

For C∞ metrics the estimates at q = qn are due to Sogge [8]. The estimate for
q = ∞ is related to the spectral counting remainder estimates of Avakumović-Levitan-
Hörmander; it can also be obtained from Sogge’s estimate by Sobolev embedding. The
case q = 2 is of course trivial, and all other values of q follow from these endpoints
by interpolation.

In [5], both estimates (2) and (3) were established on the full range of q for the
case that both a and ρ are of class C1,1.

On the other hand, Smith-Sogge [6] and Smith-Tataru [7] constructed examples,
for each 0 < s < 2, of functions a and ρ with coefficients of class Cs (Lipschitz in case
s = 1) for which there exist eigenfunctions φλ such that for all q ≥ 2

‖φλ‖Lq(M) ≥ C λ
n−1

2 ( 1
2−

1
q )(1+σ)‖φλ‖L2(M) ,

where C > 0 is independent of λ, and where

σ =
2− s

2 + s

For 2 < q < 2(n+2s−1)
n−1 , this shows that the spectral projection estimates for Cs metrics

with s < 2 can be strictly worse than in the C2 case.
In this paper, we consider the case of coefficients a and ρ of class Cs for 1 ≤ s < 2

(Lipschitz in case s = 1.) We start by establishing the following bound, which by the
examples of [6] is best possible on the indicated range of q.

Theorem 1. Assume that the coefficients a and ρ are either of class Cs for some
1 < s < 2, or Lipschitz class if s = 1. Let Πλ denote the L2-projection onto the
subspace spanned by eigenfunctions of (1) with λj ∈ [λ, λ + 1]. Then∥∥Πλf

∥∥
Lq(M)

≤ C λ
n−1

2 ( 1
2−

1
q )(1+σ) ‖f‖L2(M) , 2 ≤ q ≤ qn .

Applying Sobolev embedding to the estimate at q = qn would not yield the correct
bound for q = ∞. However, the proof of Theorem 1 also yields no-loss estimates
on small sets. Precisely, we will establish the following local estimate, with constant
uniform over the balls B.

Theorem 2. Let BR ⊂ M be a ball of radius R = λ−σ. Then under the same
conditions as Theorem 1

(4)
∥∥Πλf

∥∥
Lq(BR)

≤ C λn( 1
2−

1
q )− 1

2 ‖f‖L2(M) , qn ≤ q ≤ ∞ .
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Interpolating with the trivial L2 estimate establishes the estimate (2) on such balls
BR. Since the constant C in (4) is uniform for all balls BR, we obtain the same global
L2 → L∞ mapping properties in the case of Lipschitz coefficients as in the case of
smooth coefficients,

(5) ‖Πλf‖L∞(M) ≤ C λ
n−1

2 ‖f‖L2(M) .

A corollary of this result is the Hörmander multiplier theorem on compact manifolds
for functions of elliptic operators with Lipschitz coefficients, as shown by results of
Duong-Ouhabaz-Sikora [1], section 7.2. We note that, in related work, Ivrii [2] has ob-
tained the sharp spectral counting remainder estimate for operators with coefficients
of regularity slightly stronger than Lipschitz.

The proof of Theorem 2 that we will present requires that q be not too large, but
in all dimensions works for q = qn. We therefore show here how heat kernel estimates
permit us to deduce (4) for all q ≥ qn from the case q = qn. For this, let Hλ denote the
heat kernel at time λ−2 ≤ 1 for the diffusion system associated to (1). By Theorem
6.3 of Saloff-Coste [4], the integral kernel hλ of Hλ satisfies

|hλ(x, y)| ≤ C λn exp(−c λ2d(x, y)2) .

By Young’s inequality, then for qn ≤ q ≤ ∞

‖Πλf‖Lq(BR) ≤ C λn( 1
qn
− 1

q )‖H−1
λ Πλf‖Lqn (B∗

R) + CN λ−N‖H−1
λ Πλf‖L2(M\B∗

R)

≤ C λn( 1
2−

1
q )− 1

2 ‖f‖L2(M)

where we use (4) at q = qn with BR replaced by its double B∗
R, and the fact that

‖H−1
λ Πλf‖L2 ≈ ‖Πλf‖L2 since exp(λ2

j/λ2) ≈ 1 for λj ∈ [λ, λ + 1].
If we interpolate the estimate of Theorem 1 at q = qn with the estimate (5), then

we obtain the following.

Corollary 3. Under the same conditions as Theorem 1∥∥Πλf
∥∥

Lq(M)
≤ C λn( 1

2−
1
q )− 1

2+ σ
q ‖f‖L2(M) , qn ≤ q ≤ ∞ .

For qn < q < ∞, however, the exponent is strictly larger than that predicted by the
examples of [6]. It is not currently known what the sharp exponent is for this range.

The key idea in our proof is that a Cs function is well approximated on sets of
diameter R = λ−σ by a C2 function, up to an error which is suitably bounded when
dealing with eigenfunctions localized to frequency λ. In effect, rescaling by R reduces
matters to a C2 situation, where no-loss estimates hold. The loss of λ

σ
q comes from

adding up the bounds over ≈ R−1 disjoint sets.
This scaling parameter R occurs in the examples of Smith-Sogge [6] and Smith-

Tataru [7]. The idea of scaling by R to prove Lp estimates was first used by Tataru in
[9], to establish Strichartz-type estimates for time-dependent wave equations with Cs

coefficients, yielding improved existence theorems for a class of quasilinear hyperbolic
equations.
Notation. By a Cs function on Rn, for 1 < s ≤ 2 we understand a continuously
differentiable function f such that

‖f‖Cs = ‖f‖L∞(Rn) + ‖df‖L∞(Rn) + sup
h∈Rn

|h|1−s ‖df(·+ h)− df(·)‖L∞(Rn) < ∞ .
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Thus, Cs coincides with C1,s−1 for s ∈ (1, 2]. For s = 1, we use C1 to mean Lipschitz.
For 0 < s < 1 we take Cs to be the standard Holder class.

We use d to denote the differential taking functions to covector fields, and d∗ its
adjoint with respect to dx. When working on Rn, d = (∂1, . . . , ∂n), and d∗ is the
standard divergence operator.

The notation A . B means A ≤ C B, where C is a constant that depends only
on the Cs norm of a and ρ, as well as on universally fixed quantities, such as the
manifold M and the non-degeneracy of a and ρ. In particular, C can be taken to
depend continuously on a and ρ in the Cs norm, so our estimates are uniform under
small Cs perturbations of a and ρ.

2. Scaling Arguments

Our starting point is the following square-function estimate for solutions to the
Cauchy problem. For C∞ coefficients this was established by Mockenhaupt-Seeger-
Sogge [3]. The version we need for C1,1 metrics is Theorem 1.3 of [5]. That theorem
was stated under the condition F = 0 and for coefficients which are constant for large
x, but these conditions are easily dropped by the Duhamel principle and a partition
of unity argument.

Theorem 4. Suppose that a and ρ are defined globally on Rn, and that

‖aij − δij‖C1,1(Rn) + ‖ρ− 1‖C1,1(Rn) ≤ c0 ,

where c0 is a small constant depending only on n. Let u solve the Cauchy problem

ρ(x) ∂2
t u(t, x)− d∗

(
a(x) du(t, x)

)
= F (t, x) , u(0, x) = u0(x) , ∂tu(0, x) = u1(x) .

Then

(6) ‖u‖Lqn
x L2

t (Rn×[−1,1]) . ‖u0‖
H

1
qn

+ ‖u1‖
H

1
qn

−1 + ‖F‖
L1

t H
1

qn
−1

We first deduce the following corollary which is more useful for our purposes.

Corollary 5. Suppose that f satisfies an equation on Rn of the form

d∗(a df) + µ2ρ f = d∗g1 + g2 .

If a and ρ satisfy the condition of Theorem 4, then

(7) ‖f‖Lqn . µ
1

qn

(
‖f‖L2 + µ−1‖df‖L2 + ‖g1‖L2 + µ−1‖g2‖L2

)
.

Proof. Let Sr = Sr(D) denote a smooth cutoff on the Fourier transform side to
frequencies of size |ξ| ≤ r. Let aµ = Sc2µa, for c to be chosen suitably small. Then

‖(a− aµ)df‖L2 . c−2µ−1‖df‖L2 , µ2‖(ρ− ρµ)f‖L2 . c−2µ ‖f‖L2 ,

and thus we may replace a and ρ by aµ and ρµ at the expense of absorbing the above
two terms into g1 and g2, which does not change the size of the right hand side of (7).

Next, let f<µ = Scµf . Since∥∥[Scµ, aµ]
∥∥

L2→L2 . (cµ)−1 ,

and similarly for [Scµ, ρµ], we can absorb the commutator terms into g1 and g2, and
since all terms are localized to frequencies less than µ we can write

(8) d∗(aµ df<µ) + µ2ρµ f<µ = g<µ ,
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where
‖g<µ‖L2 . µ ‖f‖L2 + ‖df‖L2 + µ ‖g1‖L2 + ‖g2‖L2

Since ‖d∗(aµdf<µ)‖L2 . (cµ)2‖f<µ‖L2 , for c suitably small the L2 norm of the left
hand side of (8) is comparable to µ2‖f<µ‖L2 , hence we have

‖f<µ‖L2 . µ−1
(
‖f‖L2 + µ−1‖df‖L2 + ‖g1‖L2 + µ−1‖g2‖L2

)
Sobolev embedding now implies (7) if f is replaced on the left hand side by f<µ. In
fact there is a gain of µ−

1
2 , since 1

qn
= n( 1

2 −
1
qn

)− 1
2 .

If we let f>µ = f − Sc−1µf , then similar arguments let us write

(9) d∗(aµ df>µ) + µ2ρµ f>µ = d∗g>µ

where now g>µ, like f>µ, is frequency localized to frequencies larger than c−1µ, and

‖g>µ‖L2 . ‖f‖L2 + µ−1‖df‖L2 + ‖g1‖L2 + µ−1‖g2‖L2

Taking the inner product of both sides of (9) against f>µ yields

‖df>µ‖2
L2 − 4µ2‖f>µ‖2

L2 . ‖g>µ‖L2‖df>µ‖L2

and by the frequency localization of f>µ we obtain

‖f>µ‖H1 . ‖f‖L2 + µ−1‖df‖L2 + ‖g1‖L2 + µ−1‖g2‖L2

Since n( 1
2 −

1
qn

) = 1
qn

+ 1
2 ≤ 1, Sobolev embedding yields (7) if f is replaced on the

left hand side by f>µ. As above, there is in fact a gain of µ−
1
2 for this term.

We now let fµ = Sc−1µf − Scµf , and as above write

d∗(aµ dfµ) + µ2ρµ fµ = gµ

where now fµ and gµ are localized to frequencies comparable to µ, and

‖gµ‖L2 . µ ‖f‖L2 + ‖df‖L2 + µ ‖g1‖L2 + ‖g2‖L2

Setting u(t, x) = cos(µt)fµ(x), we apply (6) to deduce

‖fµ‖Lq . µ
1

qn

(
‖fµ‖L2 + µ−1‖gµ‖L2

)
which yields (7) for this term. �

Remark. For future use, we note that in the proof of Corollary 5 the assumption
that a ∈ C1,1 was used only at the last step, in order to deduce that (6) holds. The
commutator and approximation bounds require only that a and ρ be Lipschitz. In
particular, the bounds on f<µ and f>µ hold for Lipschitz a and ρ.

Corollary 6. Let Q be a unit cube and Q∗ its double. Suppose that a and ρ are
bounded and measurable, and that there exist C1,1 functions ã and ρ̃ satisfying the
conditions of Theorem 4 such that

‖a− ã‖L∞(Q∗) + ‖ρ− ρ̃‖L∞(Q∗) ≤ µ−1

Suppose that on Q∗ we have

d∗(a df) + µ2ρ f = d∗g1 + g2

Then

‖f‖Lqn (Q) . µ
1

qn

(
‖f‖L2(Q∗) + µ−1‖df‖L2(Q∗) + ‖g1‖L2(Q∗) + µ−1‖g2‖L2(Q∗)

)
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The constant in the inequality is uniform for µ ≥ 1.

Proof. Let φ be a smooth function, equal to 1 on Q and supported in Q∗. Then

d∗(a d(φf)) + µ2ρ (φf) = d∗
[
(a dφ)f + φg1

]
+

[
(a dφ) · df − (dφ) · g1 + φg2

]
= d∗g̃1 + g̃2

where for µ ≥ 1

‖g̃1‖L2 + µ−1‖g̃2‖L2 . ‖f‖L2(Q∗) + µ−1‖df‖L2(Q∗) + ‖g1‖L2(Q∗) + µ−1‖g2‖L2(Q∗)

One may similarly absorb (a− ã)d(φf) into g̃1, and µ2(ρ− ρ̃)(φf) into g̃2. The result
now follows from (7). �

Corollary 7. Suppose that a and ρ are of class Cs, with 0 ≤ s ≤ 2, and that

‖aij − δij‖Cs(Rn) + ‖ρ− 1‖Cs(Rn) ≤ c0 ,

where c0 is a small constant depending only on n.
Suppose that R = λ−σ, where σ = 2−s

2+s and λ ≥ 1. Assume QR is a cube of
sidelength R, Q∗

R is its double, and on Q∗
R the following equation holds

d∗(a df) + λ2ρ f = d∗g1 + g2

Then

‖f‖Lqn (QR) . R−
1
2 λ

1
qn

(
‖f‖L2(Q∗

R) + λ−1‖df‖L2(Q∗
R)

+ R ‖g1‖L2(Q∗
R) + Rλ−1‖g2‖L2(Q∗

R)

)
.

Proof. We use the notation fR(x) = f(Rx). Then, for µ = Rλ = λ1−σ,

d∗(aR dfR) + µ2ρR fR = R d∗g1,R + R2g2,R

holds on Q∗, with Q a unit cube. If ã = Sµ1/2aR, then

‖ã− aR‖L∞ . µ−
1
2 sRs‖a− I‖Cs = c0µ

−1

By the frequency localization, ã satisfies the conditions of Theorem 4. We may thus
apply Corollary 6 to yield

‖fR‖Lqn (Q) . (Rλ)
1

qn

(
‖fR‖L2(Q∗) + λ−1‖(df)R‖L2(Q∗)

+ R ‖g1,R‖L2(Q∗) + Rλ−1‖g2,R‖L2(Q∗)

)
Recalling that 1

qn
= n( 1

2 −
1
qn

)− 1
2 , this yields the corollary after rescaling. �

3. Proof of Theorem 1

The proof of Corollary 7 works for all s ∈ [0, 2], but the energy estimates of this
section require that a and ρ be Lipschitz, hence we assume s ≥ 1 for the remainder.

The projection Πλf satisfies

‖d∗
(
a d (Πλf)

)
+ λ2ρ Πλf‖L2(M,ρdx) ≤ (2λ + 1) ‖Πλf‖L2(M,ρdx)

‖d Πλf‖L2(M,ρdx) . (λ + 1) ‖Πλf‖L2(M,ρdx)

hence Theorem 1 follows from showing that, if the following holds on M

(10) d∗(a df) + λ2ρ f = g
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then uniformly for λ ≥ 1

(11) ‖f‖Lqn (M) . λ
1+σ
qn

(
‖f‖L2(M) + λ−1 ‖df‖L2(M) + λ−1‖g‖L2(M)

)
Assume that (10) holds, and let φ be a C2 bump function on M . Then

d∗(a d(φf)) + λ2ρ φf = f d∗(a dφ) + 〈a dφ, df〉+ φg

Absorbing the terms on the right into g leaves the right hand side of (11) unchanged,
hence by a partition of unity argument we may assume that f is supported in a
suitably small coordinate neighborhood on M .

We choose coordinate patches so that, in local coordinates, the conditions of Corol-
lary 7 are satisfied after extending a and ρ to all of Rn. Thus, we have an equation
of the form (10) on Rn, with f and g supported in a unit cube.

We next decompose f = f<λ+f>λ+fλ as in the proof of Corollary 5. As remarked
following that proof, the bounds on f<λ and f>λ hold for a and ρ Lipschitz, hence
we are reduced to considering fλ, for which we have an equation

d∗(aλ dfλ) + λ2ρλ fλ = gλ

where aλ and ρλ are localized to frequencies smaller than c2λ, and both fλ and gλ

are localized to frequencies of size comparable to λ.
We then decompose fλ =

∑N
j=1 Γjfλ, where each Γj = Γj(D) is an order 0 mul-

tiplier, with symbol Γj(ξ) supported where |ξ| ≈ λ and in a cone of suitably small
angle. It then suffices to bound each ‖Γjfλ‖Lqn (Q) by the right hand side of (11).
Without loss of generality we consider a term with Γ(ξ) localized to a small cone
about the ξ1 axis.

We write

d∗(aλ d Γfλ) + λ2ρλ Γfλ = Γgλ + d∗[aλ,Γ] dfλ + λ2[ρλ,Γ] fλ

Simple commutator estimates show that the right hand side has L2 norm bounded
by λ‖f‖L2 + ‖g‖L2 , hence we are reduced to establishing

(12) ‖f‖Lqn (Q) . λ
1+σ
qn

(
‖f‖L2(Rn) + λ−1 ‖df‖L2(Rn) + λ−1‖g‖L2(Rn)

)
for f satisfying the equation

d∗(aλ df) + λ2ρλ f = g

where f̂(ξ) and ĝ(ξ) are localized to |ξ| ≈ λ and ξ in a small cone about the ξ1 axis.
By Corollary 7, for any cube QR of sidelength R = λ−σ, we have

(13) ‖f‖Lqn (QR) . λ
1

qn

(
R−

1
2 ‖f‖L2(Q∗

R) + R−
1
2 λ−1‖df‖L2(Q∗

R) + R
1
2 λ−1‖g‖L2(Q∗

R)

)
.

Let SR denote a slab of the form {x ∈ Rn : |x1 − c| ≤ R}. By summing over cubes
QR contained in SR, and noting R ≤ 1, we obtain

(14) ‖f‖Lqn (SR) . λ
1

qn

(
R−

1
2 ‖f‖L2(S∗R) + R−

1
2 λ−1‖df‖L2(S∗R) + λ−1‖g‖L2(S∗R)

)
We will show that

(15) R−
1
2
(
‖f‖L2(S∗R)+λ−1‖df‖L2(S∗R)

)
. ‖f‖L2(Rn)+λ−1 ‖df‖L2(Rn)+λ−1‖g‖L2(Rn)

Given this, inequality (12) follows from (14) by adding over the R−1 = λσ disjoint
slabs that intersect Q. Also, the bound (13) implies the conclusion of Theorem 2 for
q = qn (hence for all q by the heat kernel arguments following that theorem.)
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We establish (15) by energy inequality arguments. Let V denote the vector field

V = 2(∂1f) aλ df +
(
λ2ρλ f2 − 〈aλ df, df〉

)−→e1

Then
d∗V = 2(∂1f) g + λ2(∂1ρλ)f2 − 〈(∂1aλ)df, df〉

Applying the divergence theorem on the set x1 ≤ r yields∫
x1=r

V1 dx′ . λ2‖f‖2
L2(Rn) + ‖df‖2

L2(Rn) + ‖g‖2
L2(Rn)

Since aλ and ρ are pointwise close to the flat metric, we have pointwise that

V1 ≥ 3
4 |∂1f |2 + 3

4λ2|f |2 − |∂x′f |2

The frequency localization of f̂ to |ξ′| ≤ cλ yields∫
x1=r

V1 dx′ ≥ 1
2

∫
x1=r

|df |2 + λ2|f |2 dx′

Integrating this over r in an interval of size R yields (15). �

References

[1] X.T. Duong, E.M. Ouhabaz and A. Sikora, Plancherel-type estimates and sharp spectral multi-
pliers, J. Funct. Anal. 196 (2002), 443–485.

[2] V. Ivrii, Sharp spectral asymptotics for operators with irregular coefficients, Internat. Math.
Res. Notices 2000 no. 22, 1155–1166.

[3] G. Mockenhaupt, A. Seeger and C. Sogge, Local smoothing of Fourier integrals and Carleson-
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