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Abstract

We present a multi-scale solution scheme for hyperbolic evolution equations
with curvelets. We assume, essentially, that the second-order derivatives of
the symbol of the evolution operator are uniformly Lipschitz. The scheme is
based on a solution construction introduced by Smith [23] and is composed of
generating an approximate solution following a paradifferential decomposition
of the mentioned symbol, here, with a second-order correction reminiscent of
geometrical asymptotics involving a Hamilton-Jacobi system of equations and,
subsequently, solving a particular Volterra equation. We analyze the regularity
of the associated Volterra kernel, and then determine the optimal quadrature in
the evolution parameter. Moreover, we provide an estimate for the spreading of
(finite) sets of curvelets, enabling the multi-scale numerical computation with
controlled error.
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1. Introduction

We study the regularity in the construction of solutions of a general class
of evolution equations with limited smoothness. We have applications to wave
propagation in non-smooth media in mind. The construction makes use of a
frame of curvelets [14, 12, 13], generates the weak solution on the one hand but
reveals the geometrical properties reminiscent of the propagation of singularities
in the case of smooth media on the other hand.
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Let p(z, x, ξ) be a real-valued function defined on [0, Z] × Rnx × (Rnξ \ {0})
that is smooth and positively homogeneous of degree 1 with respect to ξ. If
z0 ∈ [0, Z], we then consider the initial value problem

(∂z − i p(z, x,Dx))u(z, x) = 0 and u(z0, x) = u0(x). (1)

Here p(z, x,Dx) is a pseudodifferential operator (ΨDO) whose symbol, p, may
be rough in the z and x variables. We will require here that p ∈ Cm,1S1

cl with
m = 1 or 2. This means that the mth derivatives of p with respect to z and x
exist everywhere, are uniformly Lipschitz, and for every multi-index α there is
a constant Cα such that for all ξ sufficiently large

‖∂αξ p(·, ξ)‖Cm,1 ≤ Cα(1 + |ξ|)1−|α|.

The notation of the left-hand side above indicates the Cm,1 norm in (z, x).
The technique used here for construction of solutions to (1) was introduced

by Smith [23]. More recently, properties of these solutions were studied from
the point of view of concentration of curvelets motivated by the propagation of
singularities for the case of smooth symbols [3]. The solution construction is
initiated by the construction of an approximate solution following the smooth-
ing, that is, paradifferential decomposition of the symbol p, and is completed
by solving a Volterra equation of the second kind which corrects for the sym-
bol smoothing and essentially accounts for scattering between curvelets. The
approximate solution is constructed using geometrical asymptotics and involves
solving the Hamilton and Hamilton-Jacobi systems generated by the smoothed
symbols. The Volterra equation can be solved by a Neumann series – as in the
computation of certain multiple scattering series – revealing a curvelet-curvelet
interaction. The main goal of this work is to develop regularity estimates in
the evolution coordinate z for the Volterra kernel and solution. These estimates
govern the choice of quadrature used when solving the Volterra equation, and
subsequently the initial value problem, numerically.

Our main result uses an adapted underlying approximate solution operator
(parametrix) for (1) with second-order correction. With this parametrix we
provide scale-independent regularity estimates of the associated Volterra kernel
in Hs, and likewise estimates for the regularity of the solution g(z, x) of the
Volterra equation in the z variable as a map into Hs, when m = 2 (or larger)
and −1 ≤ s ≤ 2. Specifically, we obtain a Hölder estimate of order 1/2. Thus
a natural choice of quadrature when considering the numerical solution of the
Volterra equation becomes the trapezoidal rule [8]. The approximate solution
construction to second order is obtained from results pertaining to expansions of
Fourier integral operators generated by canonical transformations [15, 11]. This
second order parametrix improves on first order parametrices in at least two
ways. First, the Hölder regularity mentioned above is required to prove that a
discretization of the Volterra equation in the evolution parameter z converges as
the discretization step size goes to zero. Second, the Volterra kernel associated
with the second order parametrix is actually compact acting on Hs (in fact it
maps into Hs+1/2) and so exhibits better behavior when iterated.
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Figure 1: Diagram describing a numeric solution including a single Volterra iteration. The
parametrix is based on the second-order (geometric) approximation and depicted in blue.
Some “scattered” curvelets produced by the Volterra iteration are depicted in red. The decay
of curvelet frame coefficients for one of the wave packets propagated by the parametrix is
illustrated by grayscale.

The results obtained here can be extended directly to apply to solving the
second-order wave equation and associated Cauchy initial value problem.

A key aspect of developing an efficient computational algorithm will rely
on available sparse decompositions of u0 (that is, the initial data at z0), and
of the Volterra operator applied to the current solution by the Neumann se-
ries expansion (that is, the residual force at values of z dictated by the chosen
quadrature). We have developed first steps towards an approach based on non-
linear approximation [1, 2], motivated by the work of Beylkin and Monzón [5, 6].
Here, we provide an estimate of the spreading of the set of curvelet coefficients
under propagation as a function of scale. Following the decomposition of u0

into wave packets, a natural solution strategy – tracing the convergence of the
Neumann series expansion – starts at the finest available scale and progresses
to the coarser scales. The Volterra equation can be solved with a step-by-
step method reminiscent of the semi-group property. The numerical analysis
of curvelet-like transforms can be found in [10, 19]; this analysis plays a role
in developing a fast algorithm for the above mentioned approximate solution.
We note that the regularity and spreading estimates obtained here imply error
estimates of corresponding numerical schemes. One possible such result is given
in Corollary 12.

The results obtained in this paper have direct applications, for example, in
seismic imaging. Indeed most imaging procedures can be expressed in terms
of evolution equations [20]. We mention “reverse-time migration” based imag-
ing [16] and “downward continuation (reverse depth)” based imaging [24, 25].
Furthermore, curvelet based data regularization dovetails perfectly with these
imaging techniques.
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2. Solution of the evolution equation

We find solutions for (1) in two steps. We first construct an approximate
solution operator, which we will refer to as a parametrix, and then we use this
parametrix to transform (1) into an equivalent Volterra equation of the second
kind for a function with values in a Sobolev space. To be more precise, we first
construct a family of operators T(z, z′) : Hs(Rn) → Hs(Rn) for some s ∈ R
parametrized by (z, z′) ∈ [0, Z]×[0, Z] which satisfy the following two properties

T(z′, z′) = Id for all z′ ∈ [0, Z], and (2)

(∂z − i p(z, x,Dx)) T(z, z′) : Hs → Hs uniformly for (z, z′) ∈ [0, Z]× [0, Z].
(3)

Because (∂z − i p(z, x,Dx)) is a (possibly rough) ΨDO of order 1, the mapping
property (3) is better than would be expected and so it is this property that
makes T(z, z′) an approximate solution operator. Here “uniformly” means that
there is a single modulus of continuity that holds for all (z, z′). We think of
T(z, z0)u0 as giving the approximate solution of (1). Any family of operators
satisfying these properties will be called a parametrix.

Once we have a parametrix we look for an exact solution for (1) in the form

u(z, x) = [T(z, z0)u0](x) +

∫ z

z0

[T(z, z′)g(z′, ·)](x) dz′. (4)

Intuitively, we are setting u(z, x) to be the approximate solution plus an error
term that we expect can be found or at least estimated. Now the function to
be determined is g(z, x) which we refer to as the residual. A calculation making
use of (2) shows that u(z, x) is a solution of (1) if and only if

g(z, x) = −[(∂z − i p(z, x,Dx))T(z, z0)u0](x)

−
∫ z

z0

[(∂z − i p(z, x,Dx))T(z, z′)g(z′, ·)](x)dz′.

Motivated by this fact we introduce the Volterra kernel

K(z, z′) = −(∂z − i p(z, x,Dx))T(z, z′) (5)

so that the equation for g(z, x) becomes

g(z, x) = [K(z, z0)u0](x) +

∫ z

z0

[K(z, z′)g(z′, ·)](x) dz′. (6)

This is a linear Volterra equation of the second kind where the function to be
determined (g(z, ·)) takes values in the Sobolev space Hs. For a review of the
classical theory of this type of equation see [8]. Although the theory there only
explicitly deals with real and complex valued functions many of the results still
hold in the case of functions valued in general Banach spaces with the same
proofs.
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The solution of (6) may be obtained via a Neumann series. Indeed, let us
define

K1(z) = K(z, z0), and for n > 1 Kn(z) =

∫ z

z0

K(z, z′)Kn−1(z′) dz′.

Note that by (3) K(z, z′) : Hs → Hs uniformly, and thus the composition used
in the iterative definition of Kn(z) is still an operator on Hs. Furthermore, if
‖K(z, z′)‖(Hs,Hs) ≤ C(Z) for all z and z′, then for all n and z it follows from
the definition that

‖Kn(z)‖(Hs,Hs) ≤
Zn−1

(n− 1)!
C(Z)n. (7)

The solution of (6) is then

g(z, x) =

∞∑
n=1

[Kn(z)u0](x) =: [R(z)u0](x).

By (7) this sum converges absolutely in Hs for every z ∈ [0, Z], and in fact

‖R(z)‖(Hs,Hs) ≤ C(Z)eZC(Z). (8)

We refer to R(z) as the resolvent corresponding to the parametrix T.
This method of solution was first introduced for the half wave equation in

[23], and has been used previously to analyze the equation (1) in [3]. In both of
these works the parametrix T is constructed by decomposing u0 in the curvelet
frame, and then applying a rigid motion to each individual curvelet. We refer
to this “rigid motion” parametrix as T1. In the current work we will introduce
a new parametrix, T2, which still uses a curvelet decomposition of u0, but also
incorporates spreading into the evolution of each individual curvelet. As we
will see, when T2 is used as the parametrix the corresponding Volterra kernel
K2(z, z′) will have additional regularity properties in the z variables.

3. Construction of the parametrices

In this section we describe two possible ways to construct a parametrix
satisfying the requirements (2) and (3). Both methods are based upon a curvelet
decomposition. The first uses only a rigid motion of the curvelets, while the
second also incorporates spreading. The treatment of caustics in the second
method needs special attention, which we do not elaborate on here. The first
method does not provide strong enough estimates to guarantee that numerical
solutions of the Volterra equation will converge. The proofs in this section and
section 4 make use of the results in both of the appendices, and in particular
the rules for manipulating families of curvelet like functions (FCLFs) developed
in Appendix A. When dealing with a FCLF F we sometimes use the notation
fγ ∈ πS(F) for a function in the family corresponding to the curvelet index γ.
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The first step for both parametrices is to smooth the rough symbol p of (1)
in the x variable according to scale. In this way we obtain a sequence of smooth
(in x) symbols pk which approximate p. Indeed, let ψ ∈ C∞c (Rn) be an even
function such that ψ(ξ) = 1 for |ξ| ≤ 1 and ψ(ξ) = 0 for |ξ| ≥ 2. We also assume
0 ≤ ψ ≤ 1 everywhere. Then define

pk(z, x, ξ) = [ψ(2−k/2Dx)p(z, ·x, ξ)](x) (9)

for all k ∈ N. Thus for each k we low pass filter p in the x variable around
the frequency 2k/2 to obtain pk ∈ C∞. This sequence of approximations to p
satisfies the following estimates. For j + |β| ≤ m + 1 (when j + |β| = m + 1
estimate (10) holds everywhere the left hand side is defined)

|∂jz∂βx∂αξ (p− pk)(z, x, ξ)| . 2−k(m−|β|−j+1)/2‖∂αξ p(·, ξ)‖Cm,1 (10)

and
|∂jz∂βx∂αξ pk(z, x, ξ)| . ‖∂αξ p(·, ξ)‖Cm,1 . (11)

Also, if j ≤ m and |β| ≥ m+ 1− j then

|∂jz∂βx∂αξ pk(z, x, ξ)| . 2k(|β|+j−m−1)/2‖∂αξ p(·, ξ)‖Cm,1 . (12)

Here and in the remainder of this work the notation Ak . Bk means that there
exists a constant C > 0 independent of the scale k, or more generally the index
γ = (x, ν, k), such that Ak ≤ CBk. In the following parametrix constructions
pk(z, x,Dx) will be used to approximate the action of p(z, x,Dx) on the curvelets
at scale k.

3.1. Rigid motion parametix

We first review the construction from [3] of a parametrix, referred to here
as T1(z, z′), based only on the rigid motion of curvelets. The purpose of this
review is twofold. First, some of the techniques involved will be used again in
the construction of the new parametrix in section 3.2, and second we eventually
wish to compare some results for this parametrix and associated Volterra kernel
to those for the new parametrix. In this interest we will also prove regularity
estimates for T1(z, z′) in the z and z′ variables. We will always assume that
m = 1 when we are considering T1.

We begin by considering the system

dyk
dz

(z, z′) = −∂ξpk(z, yk, νk) ,

dνk
dz

(z, z′) = ∂xpk(z, yk, νk)−

〈
νk, ∂xpk(z, yk, νk)

〉
νk,

(13)

and
dΘk

dz
(z, z′) = Θk

[
νk ⊗ ∂xpk(z, yk, νk)− ∂xpk(z, yk, νk)⊗ νk

]
. (14)
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which gives the co-sphere projected Hamiltonian flow associated to pk. We write

yk(z, z′, x, ν) , νk(z, z′, x, ν) , and Θk(z, z′, x, ν)

for the solution of (13) and (14) with initial data

yk(z′, z′, x, ν) = x , νk(z′, z′, x, ν) = ν , and Θk(z′, z′, x, ν) = Id,

and refer to the map (x, ν) 7→ (yk(z, z′, x, ν), νk(z, z′, x, ν)) as Ψk
z,z′ . We also

consider the system (13) and (14) with pk replaced by p, and introduce a corre-
sponding map Ψz,z′ defined in the analogous manner (note that since p ∈ C1,1

the problem is well-posed). In [23] it is shown that

d(Ψz,z′(x, ν),Ψk
z,z′(x, ν)) . 2−k, (15)

where d is the pseudodistance defined in Appendix A.
If γ = (x, ν, k) is a curvelet index, then the flow out of the individual curvelet

ϕγ is given by

ϕ1,γ(z, z′, y) = ϕγ(Θk(z, z′, x, ν)(y − yk(z, z′, x, ν)) + x).

If u ∈ L2(Rn), then the parametrix T1(z, z′) is defined by

[T1(z, z′)u](y) =
∑
γ

uγ ϕ1,γ(z, z′, y) (16)

where the uγ are the coefficients of u given by the curvelet co-frame. Since

it will be useful below, we also define operators Tk′

1 (z, z′) which only give the
contributions of curvelets at scale k′:

[Tk′

1 (z, z′)u](y) =
∑

{γ=(x,ν,k):k=k′}

uγ ϕ1,γ(z, z′, y). (17)

It is proven in [3] that T1(z, z′) is a parametrix as defined in section 2 for
−1 ≤ s ≤ 2.

Remark 1. We comment here that it should be possible in (16) to use elements
of a FCLFs that also form a frame to define an operator similar to T1, but with
respect to this alternate frame. The same comment applies later to the operator
T2 introduced in the next section. Furthermore, essentially the same analysis
should apply to that case. Also, we note that the frame of wave atoms is not a
FCLF because it does not use parabolic scaling. In fact the operator T1 would not
be a parametrix if the curvelet frame is replaced with a frame of wave atoms.
The analogue of the parametrix T2 in the wave atom frame is the Gaussian
beam approximation. (For information on wave atoms and their application to
represent wave propagators see [17] and [18].)

To finish this section we prove the following regularity result for T1(z, z′).
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Lemma 2. The operator T1(z, z′) is uniformly Lipschitz in both of its argu-
ments as a map from Hs to Hs−1 for any s and on any fixed domain [0, Z] ×
[0, Z]. That is

‖T1(z, z′)−T1(z̄, z′)‖(Hs,Hs−1) ≤ C1(Z)|z − z̄| (18)

for all z, z̄, and z′ ∈ [0, Z], and the same estimate holds when z′ is varied rather
than z. Furthermore,

‖Tk′

1 (z, z′)−Tk′

1 (z̄, z′)‖(L2,L2) ≤ C1(Z) 2k
′
|z − z̄| (19)

and the same holds when z′ is varied instead of z.

Proof. For γ = (x0, ν
0, k) the index of a curvelet, we define the change of

variables

y 7→ Φ1,γ(z, z′, y) := Θk(z, z′, x0, ν
0)(y − yk(z, z′, x0, ν

0)) + x0.

This family of maps satisfies the hypotheses of Lemma 19 relative to the FCLF
given by the curvelet frame. Therefore{

2−k∂zϕ1,γ(z, z′, y),Φ∗1,γ(γ)
}

is a FCLF, and by Lemma 14 we have for every δ > 0 a constant Cδ such that∣∣∣〈ϕγ̃ , ∂zϕ1,γ(z, z′, y)
〉∣∣∣ ≤ Cδ2kµδ(γ̃,Φ∗1,γ(γ)), (20)

where µδ is the weight function introduced in Appendix A. This is equivalent
to

|∂zc1,γ̃γ(z, z′)| ≤ Cδ2kµδ(γ̃,Ψk
z,z′(γ)) (21)

where c1,γ̃,γ(z, z′) is the matrix for T1 with respect to the curvelet frame given
by

c1,γ̃γ(z, z′) = 〈ϕγ̃(y), ϕ1,γ(z, z′, y)〉. (22)

Using (15) we may replace Ψk
z,z′ by Ψz,z′ in (21) and so results in [23] imply

that ∂zT1(z, z′) : Hs → Hs−1 is uniformly bounded for all z and z′ ∈ [0, Z].
Therefore

‖T1(z, z′)−T1(z, z′)‖(Hs,Hs−1) ≤
∫ z

z

‖∂tT1(t, z′)‖(Hs,Hs−1) dt ≤ C1(Z)|z − z|

where C1(Z) = supz,z′∈[0,Z] ‖∂zT1(z, z′)‖(Hs,Hs−1). This proves (18). If we note
that (21) implies

|∂zck
′

1,γ̃γ(z, z′)| ≤ Cδ2k
′
µδ(γ̃,Ψ

k′

z,z′(γ)),

then (19) follows in the same way.
Finally, the result for the z′ variable follows by the same proof if we begin

by obtaining (20) where the differentiation is with respect to z′ instead of z.
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Remark 3. We observe that both Tk
1(z, z′) and Tk

1(z, z′) −Tk
1(z, z′) are fam-

ilies of operators satisfying the hypotheses required for Fk in Lemma 21 with,
respectively, r = 0 and r = 1 and in the latter case with C = C1(Z) |z − z|.

At this point we note that Lemma 2 together with the fact that T1 is a
parametrix allow us to prove a (already known, see e.g. [27]) regularity result for
the solution of (1). Indeed, from (4) we see that if m = 1, then for −1 ≤ s ≤ 2
and initial data u0 ∈ Hs the solution u(z, x) of (1) is in C0,1([0, Z];Hs−1).

3.2. Parametrix with second order correction

In this section we will construct a parametrix, T2(z, z′), that takes into ac-
count the spreading of curvelets. The action of this parametrix will be specified
in the same way as in section 3.1 by defining an action on each curvelet individu-
ally. The underlying motivation for the parametrix construction comes from an
approximation to a Fourier integral operator, via a phase expansion as discussed
in [15], with phase function defining the propagation of singularities for (1). In
contrast to the parametrix T1 introduced in the previous section, T2 accounts
for the full ray geometry, rather than just the rigid motion along a single ray,
the natural spreading of the curvelets which occurs as they propagate, and a
small phase shift. These are the effects that are necessary to obtain the next
level of accuracy in an asymptotic solution for (1).

We should note that this parametrix construction only works in the absence
of caustics (this restriction will be made more precise below). However, if there
is a global minimum time before any caustics develop, then it is possible to
repeatedly apply the construction stepping forward in sufficiently small time
steps. Thus, though we do not formulate the precise statements here, these
results can also apply past caustics. When we consider T2(z, z′) we will always
assume that m = 2.

We begin the construction by introducing the Hamiltonian system that gives
the propagation of singularities for (1). In contrast to (13) and (14) the integral
curves here are not projected onto the unit co-sphere. For every (x, η) ∈ Rnx ×
(Rnη \ {0}) we consider the flow given by

dyk
dz

(z, z′, x, η) = −∂ξpk(z, yk, νk) , and
dνk
dz

(z, z′, x, η) = ∂xpk(z, yk, νk)

(23)
with initial data yk(z′, z′, x, η) = x, and νk(z′, z′, x, η) = η. The curves

(yk(z, z′, x, η), νk(z, z′, x, η))

are the integral curves of the z-dependent Hamiltonian vector field given by pk
with initial data (x, η). We consider the following system of equations

(y, ν) = (yk(z, z′, x, η), νk(z, z′, x, η)) . (24)

For every k these define a mapping from (z, z′, x, η) to (y, ν) which is the canon-
ical relation of the solution operator for (1) if p is replaced by pk. Using them to
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define implicit relations amongst the various variables amounts to parametrizing
this canonical relation by different subsets of the variables.

Now we supplement the flow (23) with another system that gives the depen-
dence of (y, ν) on perturbations of (x, η). This system, the linearized Hamilton-
Jacobi system associated to pk, is

d

dz
kW (z, z′, x, η) =

(
−∂2

ξxpk(z, yk, νk) −∂2
ξξpk(z, yk, νk)

∂2
xxpk(z, yk, νk) ∂2

xξpk(z, yk, νk)

)
kW (z, z′, x, η)

(25)
where kW (z, z′, x, η) is a 2n×2n matrix with initial data kW (z′, z′, x, η) = Id2n.
We split kW (z, z′, x, η) up into four n× n matrices

kW (z, z′, x, η) =

(
kW1(z, z′, x, η) kW2(z, z′, x, η)

kW3(z, z′, x, η) kW4(z, z′, x, η)

)
,

and then we have
∂yk
∂x

(z, z′, x, η) = kW1(z, z′, x, η).

We will assume that kW1(z, z′, x, η) is always invertible, and so by the implicit
function theorem the equations (24) can be solved for x and ν as a function of
(z, z′, y, η) at least locally. Since these functions depend on k we will label them
as x̃k and ν̃k. We can then introduce a defining function Sk(z, z′, y, η) for the
canonical relation defined by (24) given by

Sk(z, z′, y, η) = 〈x̃k(z, z′, y, η), η〉.

We will always assume that this map x̃k exists globally for z and z′ ∈ [0, Z].
This is the assumption that there are no caustics. We can also find formulas for
the derivatives of x̃k(z, z′, y, η) and ν̃k(z, z′, y, η). In the following the matrices

kWi are understood to be evaluated at the point (z, z′, x̃k(z, z′, y, η), η).

∂x̃k
∂y

(z, z′, y, η) = kW
−1
1 , (26)

∂x̃k
∂η

(z, z′, y, η) = −kW−1
1 kW2, (27)

∂ν̃k
∂y

(z, z′, y, η) = kW3 kW
−1
1 , (28)

and

∂ν̃k
∂η

(z, z′, y, η) = kW4 − kW3 kW
−1
1 kW2. (29)

Using the homogeneity of pk we can also prove the two following properties

η = kW
T
1 ν̃k(z, z′, y, η), (30)

and

kW
T
2 kW

−T
1 η = 0. (31)
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Here kW
−T
1 refers to the inverse of the transpose of kW1. Finally, since Sk(z, z′, y, η)

is a smooth function, using the above properties and the equality of the mixed
partials of Sk we have

kW
−T
1 =

(
∂xk
∂y

)T
=

(
∂2Sk
∂y∂η

)T
=
∂2Sk
∂η∂y

=
∂νk
∂η

= kW4 − kW3 kW
−1
1 kW2.

(32)
Thus (29) becomes

∂ν̃k
∂η

(z, z′, y, η) = kW
−T
1 . (29′)

Finally, we can check using some of the above identities that kW3 kW
−1
1 and

kW
−1
1 kW2 are always symmetric matrices.
Next we will introduce the phase function used to construct the action of

our parametrix on curvelets at scale k. Let γ = (x0, ν
0, k) be the index of a

curvelet. Then, for z, z′ ∈ [0, Z], y ∈ Rn, and η ∈ Rn, define (motivated in part
by an expansion of Sk(z, z′, y, η))

S̃γ(z, z′, y, η) =
〈
x̃k(z, z′, y, ν0), η

〉
− 1

2〈ν0, η〉
〈
kW
−1
1 kW2 η, η

〉
− 1

2

∫ z

z′
tr

(
kW3 kW

−1
1 ∂2

ξξpk(t, yk, νk)

)
dt

(33)

where the kWi, yk, and νk are the functions defined above all evaluated at the
point (t, z′, x0, ν

0) within the integrand and (z, z′, x0, ν
0) outside the integral.

This will be the convention for the remainder of this work when kWi, yk, or
νk are written without any argument. Note that the last term in the definition
only depends on z, z′ and the curvelet index γ. Because of this we introduce
the notation

Uγ(z, z′) =
1

2

∫ z

z′
tr

(
kW3 kW

−1
1 ∂2

ξξpk(t, yk, νk)

)
dt.

Now we define the action of an operator on the curvelet ϕγ as

ϕ2,γ(z, z′, y) =
1

(2π)n

∫
Rn
eiS̃γ(z,z′,y,η)ϕ̂γ(η) dη.

Note that ϕ1,γ could be written using the same formula if S̃γ were replaced
by a linear phase function. To gain more intuition about the action of T2 we
may consider the individual effects of each of the terms in the definition (33)

of S̃γ . The first term alone produces simply a change of variables that is done
in accordance with the ray geometry. Thus T2 takes into account the full ray
geometry rather than just rigid translations along individual rays as in the case
of T1. The second term in (33) produces the spreading of the curvelets which
naturally occurs as they propagate. Finally the third term in (33) produces a
phase change along the rays which either advances of retards the phase in the
direction of propagation.

11



Now T2(z, z′) and Tk′

2 (z, z′) are defined respectively by (16) and (17) with
ϕ1,γ replaced by ϕ2,γ . In Theorem 7 we will prove that T2 is a parametrix for
(1), but for now we prove only the following analog of Lemma 2.

Lemma 4. The results of Lemma 2 hold with T1 replaced by T2 assuming that
no caustics develop in the interval [0, Z].

Proof. As one might suspect, the proof is similar to that of Lemma 2. We
first note that

∂zϕ2,γ(z, z′, y) =
i

(2π)n

∫
eiS̃γ(z,z′,y,η)∂zS̃γ(z, z′, y, η) ϕ̂γ(η) dη. (34)

Now if we define new functions by

f̂γ(z, z′, η) = e
−i

2〈ν0,η〉

〈
kW
−1
1 kW2 η, η

〉
ϕ̂γ(η), (35)

then using (31) we see that {fγ(z, z′, ·), γ}γ∈Γ0
, where Γ0 is the grid of indices

corresponding to the curvelet frame, is a FCLF. Further, if we write

Φ2,γ(z, z′, y) = x̃k(z, z′, y, ν0),

then from (34) we have

∂zϕ2,γ(z, z′, y) = i e−i Uγ(z,z′)
(
∂zS̃γ(z, z′, y,D)fγ(z, z′, ·)

)∣∣∣∣∣
Φ2,γ(z,z′,y)

. (36)

To simplify notation in the following we will write y = Φ−1
2,γ(z, z′, x) where

Φ−1
2,γ(z, z′, ·) is the inverse of y 7→ Φ2,γ(z, z′, y), and ν = νk(z, z′, x, ν0). From

the definition of S̃γ as well as identities (26) and (32), we may calculate

∂zS̃γ(z, z′, y, η) =
〈
∂ξpk(z, y, ν), kW

−T
1 (z, z′, x, ν0) η

〉
+

1

2〈ν0, η〉
〈
∂2
ξξpk(z, yk, νk) kW

−T
1 η, kW

−T
1 η

〉
− 1

2
tr

(
kW3 kW

−1
1 ∂2

ξξpk(z, yk, νk)

)
.

(37)

From this formula and using (12) we see that ∂zS̃γ(z, z′,Φ−1
2,γ(z, z′, x), η) satisfies

the hypotheses of Lemma 18 where z and z′ are considered as parameters. By
that lemma and Lemma 19,{

2−k∂zϕ2,γ(z, z′, y),Φ∗2,γ(z, z′, ·)(γ)
}
γ∈Γ0

(38)

is a FCLF.
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Now let us introduce the matrix coefficients c2,γ̃γ(z, z′) defined by (22) with
ϕ1,γ replaced by ϕ2,γ . Just as in the proof of Lemma 2 from (38) it follows that

|∂zc2,γ̃γ(z, z′)| ≤ Cδ 2kµδ(γ̃,Φ
∗
2,γ(z, z′, ·)(γ))

for any δ > 0. Now we can calculate using (26) and (30)

Φ∗2,γ(z, z′, ·)(γ) =

(
yk(z, z′, x0, ν

0),

νk(z, z′, x0, ν
0)

|νk(z, z′, x0, ν0)|
, k + log2(|νk(z, z′, x0, ν

0)|)
)
.

The only difference between this and Φ∗1,γ(z, z′, ·)(γ) is the potential shift in the
scale k by log2(|νk(z, z′, x0, ν

0)|). However the size of this shift can be bounded
uniformly by a constant times Z supω∈Sn−1 ‖p(·, ω)‖Cm,1 , and so as before we
may replace Φ∗2,γ(z, z′, ·)(γ) by Ψz,z′(γ). The results now follow as in the proof
of Lemma 2.

Remark 5. From the proof of Lemma 4, using Lemma 17, we may conclude
that Tk

2(z, z′) and Tk
2(z, z′)−Tk

2(z, z′) satisfy the hypotheses for Fk in Lemma 21
with respectively r = 0 and r = 1, and in the latter case C = C2(Z)|z − z|. The
constant A is related to the change in scale log2(|νk(z, z′, x0, ν

0)|), giving the
frequency localization.

4. Properties of the Volterra kernels and solutions

In this section we will prove a number of properties of the Volterra kernels
K1 and K2 associated, by (5), respectively to the parametrices T1 and T2

introduced in the previous section.

4.1. Regularity estimates for the Volterra kernels

We will prove two theorems which give respectively Lipschitz and Hölder
regularity estimates for K1 and K2. The key distinction is that K2 has Hölder
regularity as a map from Hs to Hs for certain values of s, while K1 only has
this type of regularity as a map from Hs to Hs−ε for some positive epsilon.
Actually we will just prove a Lipschitz estimate for K1 as a map from Hs to
Hs−1, but using interpolation such Hölder estimates could be found.

The first result concerns K1.

Theorem 6. For −1/2 ≤ s ≤ 1

‖K1(z, z′)−K1(z̄, z′)‖(Hs+1,Hs) ≤ CH1 (Z) |z − z̄|, (39)

uniformly in z′ ∈ [0, Z]. An equivalent estimate holds when z′ is varied instead
of z.
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Proof. To begin we make a decomposition of
(
∂z − i p(z, y,Dy)

)
T1(z, z′) −(

∂z̄ − i p(z̄, y,Dy)
)
T1(z̄, z′) into the following three pieces∑

k

(∂z − i pk(z, y,Dy)
)
Tk

1(z, z′)−
(
∂z̄ − i pk(z̄, y,Dy)

)
Tk

1(z̄, z′), (40)

i
∑
k

(
pk(z, y,Dy)− p(z, y,Dy)

)(
Tk

1(z, z′)−Tk
1(z̄, z′)

)
, (41)

and

i
∑
k

(
(pk(z, y,Dy)− pk(z̄, y,Dy))− (p(z, y,Dy)− p(z̄, y,Dy))

)
Tk

1(z̄, z′). (42)

The proof that the kernel is Lipschitz in the z variable will be complete if we
can estimate the norm of each of the previous three operators by |z̄ − z|. To
estimate (41) we note, referring to remark 3, that Tk

1(z, z′)−Tk
1(z, z′) satisfies

the requirements of Fk in Lemma 21 with r = 1 and C = C1(Z)|z − z̄|. Also
p(z, y, ξ) takes the place of a(y, ξ) with m = 1 for fixed z, and so Lemma 21
implies the required estimate for (41). Similarly, Lemma 21 implies the result
for (42) taking this time Fk = Tk

1(z̄, z′), r = 0, m = 0, and a(y, ξ) = p(z, y, ξ)−
p(z̄, y, ξ). We now continue to analyze (40).

We will use the same notation as in the proof of Lemma 2. First define

ϕ̃1,γ(z, z′, y) =
(
∂z − i pk(z, y,Dy)

)
ϕ1,γ(z, z′, y) (43)

and consider

∂zϕ̃1,γ(z, z′, y) =

(∂z − i pk(z, y,Dy))∂zϕ1,γ(z, z′, y)− i ∂zpk(z, y,Dy)ϕ1,γ(z, z′, y).
(44)

Applying several of the lemmas from Appendix A to this formula we see that{
2−k∂zϕ̃1,γ(z, z′, y),Φ∗1,γ(z, z′, ·)(γ)

}
γ∈Γ0

is a FCLF. Here we have omitted some calculations that show the cancellation
of certain terms, but these calculations are essentially the same as some which
can be found in [3], and a more sophisticated version is given in the proof of
Theorem 7. The result for (40) now follows as in the proof of Lemma 2.

To prove the final statement about regularity in z′ we write

K1(z, z′)−K1(z, z) =
∑
k

(
∂z − i pk(z, y,Dy)

)(
Tk

1(z, z′)−Tk
1(z, z)

)
− i
∑
k

(
pk(z, y,Dy)− p(z, y,Dy)

)(
Tk

1(z, z′)−Tk
1(z, z)

)
.

The required estimate for the first term in the sum above follows just as the
estimate for (40), while the second term is estimated in the same way as (41).
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The following theorem regarding regularity of K2 is the main technical result
of this paper.

Theorem 7. For −3/2 ≤ s ≤ 3, K2(z, z′) : Hs−1/2 → Hs continuously. If
−1 ≤ s ≤ 2 then

‖K2(z, z′)−K2(z̄, z′)‖(Hs,Hs) ≤ CH2 (Z) |z − z̄|1/2, (45)

uniformly in z′ ∈ [0, Z]. An equivalent estimate holds if we vary z′ instead of z.

Remark 8. Note that the first statement of the theorem shows that T2 is a
parametrix for −3/2 ≤ s ≤ 3.

Proof. First assume that −3/2 ≤ s ≤ 3. We begin as before by splitting K2

into smooth and rough parts:∑
k

(
∂z − i pk(z, y,Dy)

)
Tk

2 + i
∑
k

(
pk(z, y,Dy)− p(z, y,Dy)

)
Tk

2 .

For the rough part (the second summand above) we use the fact that Tk
2 satisfies

the requirements of Lemma 21 with r = 0, and so the required estimates follow
by applying the lemma with m = 2. Now we continue to analyze the smooth
part given by the first summand.

We use the same notation as in the proof of Lemma 4, and begin with
formulas (36) and (37). Indeed, by (37) we have

∂zS̃γ(z, z′, y,D)fγ = −i
〈
∂ξpk(z, y, ν), kW

−T
1 (z, z′, x, ν0) ∂xfγ

〉
−1

2
tr

(
kW
−1
1 ∂2

ξξpk(z, yk, νk)kW
−T
1

∂2
xx

〈ν0, D〉

)
fγ

− 1

2
tr

(
kW3 kW

−1
1 ∂2

ξξpk(z, yk, νk)

)
fγ .

Combined with (36) this gives a formula for ∂zϕ2,γ(z, z′, y).
Next let us analyze i pk(z, y,Dy)ϕ2,γ(z, z′, y). Since

ϕ2,γ(z, z′, y) = e−i Uγ(z,z′)[Φ∗2,γ(z, z′, ·)fγ(z, z′, ·)](y),

we may begin by applying the calculus of ΨDOs (see in particular [21, Theorem
18.1.17]) as well a generalization of [15, Lemma 3.1] to obtain the formula

pk(z, y,Dy)ϕ2,γ(z, z′, y) = e−i Uγ(z,z′)Φ∗2,γ(z, z′, ·)[gγ(z, z′, ·)](y)
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where

gγ(z, z′, x) =

(
pk(z, y, dΦT2,γ(z, z′, y)D)

−1

2
tr

(
kW3 kW

−1
1 ∂2

ξξpk(z, yk, νk)

)
+ ak(z, z′, x,D)

)
fγ

and the ak(z, z′, x, η) result from the remainder terms of the ΨDO calculus and
the application of the lemma. The symbols ak are such that both

{2k/2ak(z, z′, x,D)fγ(z, z′, ·), γ}γ∈Γ0

and
{2−k/2∂zak(z, z′, x,D)fγ(z, z′, ·), γ}γ∈Γ0

are families of curvelet like functions. This follows from analysis of these re-
mainders and size estimates of kW1 and its derivatives. By Lemmas 20 and 16
if

g̃γ = i 2k/2e−i Uγ(z,z′)
(
∂zS̃γ(z, z′, y,D)fγ − gγ

)
= i 2k/2e−i Uγ(z,z′)ak(z, z′, x,D)fγ

(46)

then {
Φ∗2,γ(z, z′, ·)g̃γ(z, z′, ·),Φ∗2,γ(z, z′, ·)(γ)

}
γ∈Γ0

(47)

is a FCLF. Combining all the previous calculations we see that

2k/2(∂z − ipk(z, y,Dy))ϕ2,γ(z, z′, y) = [Φ∗2,γ(z, z′, ·)g̃γ(z, z′, ·)](y),

and we finally conclude that{
2k/2(∂z − ipk(z, y,Dy))ϕ2,γ(z, z′, y),Φ∗2,γ(z, z′, ·)(γ)

}
γ∈Γ0

(48)

is a FCLF. The first statement of the theorem now follows as in previous proofs.
To prove (45) we combine the result already obtained for the continuity of

K2(z, z′) with the following estimate which we will show holds for −3/2 ≤ s ≤ 2.

‖K2(z, z′)−K2(z̄, z′)‖(Hs+1/2,Hs) ≤
(
CH2 (Z)

)2
2

|z − z̄| (49)

for a constant CH2 (Z) > 0. Indeed, if we establish (49) then (45) follows by
interpolation and the triangle inequality. The proof of (49) is the same as the
proof of Theorem 6. First we split K2(z, z′) − K2(z, z′) into (40), (41), (42)
with Tk

1 replaced by Tk
2 wherever it appears. The estimates for the two rough

parts, (41) and (42), follow just as before except that now m = 2 and 1 in the
respective applications of Lemma 21. Finally, we analyze the part corresponding
to (40).
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The object is to show that{
2−k/2∂z(∂z − i pk(z, y,D))ϕ2,γ(z, z′, y),Φ∗2,γ(z, z′, ·)(γ)

}
γ∈Γ0

. (50)

is a FCLF from which (49) follows as in the previous proofs. To do this, we
calculate using the results from above

2−k/2∂z(∂z − i pk(z, y,D))ϕ2,γ(z, z′, y) = 2−k
[(
∂z̃ Φ∗2,γ(z̃, z′, ·)

)
g̃γ(z, z′, ·)

∣∣∣∣
z̃=z

+ Φ∗2,γ(z, z′, ·)
(
∂z g̃γ(z, z′, ·)

)]
(y).

The first term on the right hand side gives a FCLF by Lemma 19, and we
can see that the second term also gives a FCLF by analyzing the derivative of
the second line of (46). This completes the proof of (50) and also the proof of
the Hölder regularity in z. To prove regularity in z′ we begin with the same
expression as (50) with the first ∂z replaced by ∂z′ and apply a similar analysis.

4.2. Estimates of the iterated Volterra kernel and solution

Now that we have established our central technical results in the previous
two sections, we apply them to the solution of the Volterra equation, and by
extension the full solution of (1). Assume that we have a Volterra kernel K(z, z′)
with the following properties. There exist r, s, α, C(Z), CH(Z) ∈ R with r ≥ 0,
1 ≥ α > 0, and C(Z), CH(Z) > 0 such that

K(z, z′) : Hs → Hs uniformly for z, z′ ∈ [0, Z] with constant C(Z), (51)

‖K(z, z′)−K(z̄, z̄′)‖(Hs,Hs−r) ≤ CH(Z)(|z − z̄|α + |z′ − z̄′|α) (52)

for all z, z′, z̄, and z̄′ ∈ [0, Z]. Note that the Volterra kernel associated to any
parametrix satisfies (51), K1 from section 3.1 satisfies (52) with certain values
of s, r = 1, and α = 1, and K2 from section 3.2 satisfies (52) with certain values
of s, r = 0, and α = 1/2. Thus all the estimates of this section applied to either
K1 or K2 may be considered as corollaries of Theorems 6 and 7.

We first consider the iterated Volterra kernel Kn given by (9). The following
estimate is proven by applying (52) to the definition of the iterated kernel and
using an inductive argument.

‖Kn(z)−Kn(z̄)‖(Hs,Hs−r) ≤
Zn−1

(n− 1)!
C(Z)n−1CH(Z)|z − z̄|α. (53)

We next consider the resolvent R(z) defined in section 2 corresponding to
K(z, z′). By summing up (53) we obtain the following.

‖R(z)−R(z̄)‖(Hs,Hs−r) ≤ eZC(Z)CH(Z) |z − z̄|α, (54)
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Now, for u0 ∈ Hs, let g(z, x) = [R(z)u0](x) be the solution of the Volterra
equation (6). A straightforward application of (54) then immediately implies
that

‖g(z, ·)− g(z̄, ·)‖Hs−r ≤ eZC(Z)CH(Z) |z − z̄|α ‖u0‖Hs . (55)

This, together with the comments above, shows that if 0 ≤ s ≤ 2 and g1(z, x) is
the solution of (6) using K1 with initial data u0 ∈ Hs, then g1 ∈ C0,1([0, Z];Hs−1).
If −1 ≤ s ≤ 2 and g2(z, x) is the solution of (6) using K2 with initial data
u0 ∈ Hs, then g2 ∈ C0,1/2([0, Z];Hs).

5. Approximation by semi-discretization

In this section we discretize the Volterra equation (6) with respect to the z
variable. To accomplish this we use the repeated trapezoid rule to approximate
the integral, and it is here that the regularity estimates from the previous section
will play a key role. Using these estimates we have certain error bounds for the
quadrature scheme which allow us to prove in turn convergence of a resulting
approximation of the solution to the Volterra equation.

5.1. Quadrature scheme

To produce a numeric algorithm to solve the Volterra equation (6) we first
introduce a quadrature scheme for the integration involved there. Given that
the Volterra kernel and solution have Hölder regularity and in general no better,
a natural choice of scheme is the trapezoid rule defined as follows.

For every N ∈ N we introduce a partition PN = {zN0 , zN1 , ... , zNN } of the
interval [0, Z]. That is, we chose the zNi so that 0 = zN0 < zN1 < · · · < zNN = Z.
We then define hNi = zNi − zNi−1, and the weights

wNij =


hNj +hNj+1

2 if 0 < j < i ≤ N ,
hNj
2 if j = i > 0,
hN1
2 if j = 0 and i > 0,

(56)

and otherwise wNij = 0. Also let hN = supi∈1, ... ,Nh
N
i . If B is any Banach space

and f : [0, Z]→ B is continuous, then the repeated trapezoid rule is given by∫ zNi

0

f(z) dz =

i∑
j=0

wNij f(zNj ) + ENi (f). (57)

We are thinking of the sum in the previous expression as an approximation to
the integral and ENi (f) as an error term which should approach zero as N →∞.
Indeed, we have in general the following estimates

‖ENi (f)‖B ≤ zNi (hN )α L α
[0,zNi ](f) (58)

where

L α
[0,zNi ](f) = sup

z,z∈[0,zNi ]: z 6=z

‖f(z)− f(z)‖B
|z − z|α

.
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The cases that are relevant here are when f(z′) = Km(zi, z
′)g(z′, ·) : [0, zi] →

Hs where m = 1 or 2 and s is in the allowed range depending on m.

5.2. Semi-discrete Volterra equation
We now introduce the semi-discrete Volterra equation. If K is the Volterra

kernel associated to a parametrix, as defined in section 2, then we will write
KN
ij := K(zNi , z

N
j ). Also we define

ANij := wNijK
N
ij ,

where wij are the weights given in (56). Thus AN is a (N + 1)× (N + 1) matrix
with entries in the space of continuous linear operators from Hs to Hs. The
semi-discrete Volterra equation is then

gNi = KN
i0 u0 +

i∑
j=0

ANij g
N
j for all i ∈ {0, ... , N}. (59)

We assume that u0 ∈ Hs. If hN < 2 then, since Aii = hiId/2 for i > 0, and
A00 = 0, we see that this equation has a unique solution in (Hs)N+1. This
method of approximating g, using (59), is known as direct quadrature. The next
proposition establishes how well the solution of (59) approximates the solution
of the Volterra equation.

Proposition 9. Suppose that the Volterra kernel K(z, z′) satisfies (51) and
(52) for some values of the parameters, and for given u0 ∈ Hs let g(z, x) ∈
L∞([0, Z], Hs) be the solution of (6) and gN ∈ (Hs)N+1 be the solution of (59).
Assume also that K(z, z′) extends to a uniformly continuous map from Hs−r to
Hs−r with the same constant C(Z) and that hN < 1. Then

supi∈{0, ... ,N}‖g(zi, ·)−gNi (·)‖Hs−r ≤ 2 e

(
Z+

2NhN
2−hN

)
C(Z)

CH(Z)hαN‖u0‖Hs . (60)

Proof. We first note that by (8), (52), and (55)

‖K(zNi , z
′)g(z′, ·)−K(zNi , z̄

′)g(z̄′, ·)‖Hs−r ≤ 2eZC(Z)CH(Z)|z′ − z̄′|α‖u0‖Hs
(61)

for all i, z′, and z̄′. We will write dNi (x) = g(zNi , x)− gNi (x). Then (6) and (59)
imply

dNi (x) =

∫ zNi

0

[K(zNi , z
′)g(z′, ·)](x) dz′ −

i∑
j=0

[ANij g(zNj , ·)](x)


+

i∑
j=0

[ANij (g(zNj , ·)− gNj (·))](x)

= ENi ([K(zi, z
′)g(z′, ·)]) +

i∑
j=0

[ANijd
N
j (·)](x).

(62)
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Using now (58) with B = Hs−r and (61) we have

‖dNi ‖Hs−r ≤ 2eZC(Z)CH(Z)hαN‖u0‖Hs + C(Z)

i∑
j=0

wNij ‖dNj ‖Hs−r

≤ 2
eZC(Z)CH(Z)hαN‖u0‖Hs

1− hN/2
+

C(Z)hN
1− hN/2

i−1∑
j=0

‖dNj ‖Hs−r

A discrete Gronwall-type inequality (see [8, section 1.5.3]) now implies that

‖dNi ‖Hs−r ≤ 4eZC(Z)CH(Z)hαN‖u0‖Hse
NhNC(Z)

1−hN/2 .

This completes the proof.

If hN ≈ 1/N , as would be the case if the partition P is evenly spaced, then
Proposition 9 implies that ‖g(zi, ·) − gNi (·)‖Hr−s ≈ (1/N)α as N → ∞. The
proposition also reveals the key difference between the parametrices T1 and T2

and corresponding Volterra kernels K1 and K2. For K1 we only have the Hölder
estimates (52) in the case where r > 0, and so we can only estimate the error
incurred as a result of the discretization in a norm which is rougher than that
of the space where the initial data u0 lies. However, for K2 we can take r = 0
and obtain an error estimate with respect to the original norm.

6. Concentration of sets of wave packets

In this section we assume that the initial data, u0, has a representation in
the curvelet frame that is concentrated near a finite set of curvelet indices Γ0,
and then study how much the curvelet coefficients for the solution of (1) spread
away from Ψz,0(Γ0) as z increases. The motivation for this study is to apply
the results to prove convergence of a numeric scheme to solve (1) using only a
finite set of curvelets.

Following [3], we first introduce the following weighted spaces.

Definition 10. Let Γ0 be a finite set of curvelet indices. We define the space
Hσ,α

Γ0
by the norm

‖f‖2Hσ,αΓ0

=
∑
γ

∣∣ 2kσ min
γ0∈Γ0

{(
2max(k,k0)d(γ; γ0)

)α}
fγ
∣∣2 ,

where γ = (x, ν, k), and fγ are the coefficients of f with respect to the curvelet
frame.
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In this definition, σ corresponds to the Sobolev space regularity of f while α
gives the degree to which the curvelet coefficients of f are concentrated near Γ0.
A useful estimate is the following

‖f‖2Hσ,αΓ0

≈ min
γ0∈Γ0

∑
γ

∣∣ 2kσ (2max(k,k0) d(γ; γ0)
)α
fγ
∣∣2. (63)

The constants relating the two sides can be found based on the “radius” of the
set Γ0 (under a proper interpretation of the radius).

Estimates in terms of the Hσ,α
Γ0

norm allow us to easily estimate how well a
given function is approximated by a finite set of curvelets. Indeed, given a finite
set of curvelet indices Γ0 ⊂ Γ let Γr0 be the set of all indices γ that are indices
of curvelets in the curvelet frame, and such that

min
γ0∈Γ0

2max(k,k0)d(γ; γ0) ≤ r.

Then define ∆r
Γ0

to be the operator given by

∆r
Γ0
f =

∑
γ∈Γr0

fγϕγ .

If α ≥ 0 and f ∈ Hσ,α
Γ0

it is then straight forward to check that f ∈ Hσ and

‖f −∆r
Γ0
f‖Hσ ≤ min(r−α, 1)‖f‖Hσ,αΓ0

. (64)

This inequality will be useful below when we estimate the error incurred by
solving the Volterra equation with only a finite number of curvelets. However,
to accomplish this goal we will first require the following lemma.

Lemma 11. Let 0 ≤ α < m+1
2 , |σ| ≤ m−1

2 with m = 1 (p ∈ C1,1S1
cl) or 2

(p ∈ C2,1S1
cl). It holds true that

‖Km(z, z′)‖(Hσ,α
Ψ
z′,0(Γ0 )

,Hσ,α
Ψz,0(Γ0)

) ≤ CK(Z) (65)

uniformly in z, z′ ∈ [0, Z].

Proof. Let cm,γγ′(z, z
′) and c̃m,γγ′(z, z

′) be respectively matrices of the oper-
ators ∑

k

(∂z − i pk(z, y,Dy))Tk
m(z, z′) and Tm(z, z′)

with respect to the curvelet frame. Then by results in sections 3 and 4 as well
as [23, Lemma 2.2] we have the estimates

|cm,γγ′(z, z′)| . 2k(1−m)/2µδ(γ,Ψz,z′(γ
′)), and |c̃m,γγ′(z, z′)| . µδ(γ,Ψz,z′(γ

′))
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for any δ > 0. Also, by [3, Theorem 5.5] (or, more accurately, using a portion
of the proof of that theorem) and (63) we have the estimates

‖
(
pk(z, y,Dy)− p(z, y,Dy)

)
ϕγ‖Hσ,α

Ψz,0(Γ0)
. ‖ϕγ‖Hσ,α

Ψz,0(Γ0)

. 2kσ min
γ0∈Ψz,0(Γ0)

{(
2max(k,k0)d(γ; γ0)

)α}
for α and σ within the ranges specified in the hypotheses and where ϕγ is a
curvelet at scale k. Making the same decomposition as in the proof of Theorem 7
we have

‖Km(z, z′)f‖2Hσ,α
Ψz,0(Γ0)

.(∑
γ

∑
γ′

2kσ min
γ0∈Ψz,0(Γ0)

{(
2max(k,k0)d(γ; γ0)

)α}
cm,γγ′(z, z

′) |fγ′ |

+
∑
γ

∑
γ′:k′=k

2kσ min
γ0∈Ψz,0(Γ0)

{(
2max(k,k0)d(γ; γ0)

)α}
c̃m,γγ′(z, z

′) |fγ′ |

)2

.

Now we apply the estimate(
2max(k,k0)d(γ; Ψz,0(γ0))

)α
.
(
2max(k,k′)d(γ; Ψz,z′(γ

′))
)α

·
(
2max(k′,k0)d(Ψz,0(γ0); Ψz,z′(γ

′))
)α

which together with the bounds from above on the matrix coefficients cm,γγ′

and c̃m,γγ′ gives for any δ > 0

‖Km(z, z′)f‖2Hσ,α
Ψz,0(Γ0)

.

min
γ0∈Ψz,0(Γ0)

∑
γ

(∑
γ′

µδ(γ0,Ψz,z′(γ
′))
∣∣∣2k′σ(2max(k′,k0)d(γ0; Ψz,z′(γ

′))
)α
fγ′
∣∣∣)2

.

Finally, [23, Lemmas 2.1, 2.2, 2.4] imply with the last inequality and (63) that

‖Km(z, z′)f‖2Hσ,α
Ψz,0(Γ0)

. ‖f‖2Hσ,α
Ψ
z′,0(Γ0)

.

This completes the proof.

The lemma also yields estimates for the resolvents:

‖Rm(z)‖(Hσ,αΓ0
,Hσ,α

Ψz,0(Γ0)
) ≤ CR,m(Z) (66)

uniformly for z ∈ [0, Z].
With the previous result we may now prove an error estimate that relates the

solution of the fully discrete Volterra equation (i.e. the semi-discrete equation

22



from the previous section truncated to a finite set of curvelets) to the true
Volterra solution. We begin by modifying the semi-discrete Volterra equation
to become fully discrete. Using the same notation as in section 5.2, for any
given r > 0 and finite set of indices Γ0 let

ÃNij = wij ∆r
Ψ
zN
i
,0

(Γ0)Kij

The fully discrete Volterra equation is then (compare with (59))

g̃Ni = ∆r
Ψ
zN
i
,0

(Γ0)Ki0 u0 +

i∑
j=0

Ãij g̃
N
j . (67)

Note that for every i and N the solution g̃Ni of (67) is a linear combination of
curvelets corresponding to the indices ΨzNi ,0

(Γ0)r. Now we present the result,
which is a sort of extension of Proposition 9.

Corollary 12. Let u0 be a linear combination of curvelets with indices in the
finite set Γ0. Suppose that g(z, x) is the solution of (6) corresponding to K2,
and that g̃N is the corresponding solution of (67). Then for any |s| ≤ 1/2 and
0 ≤ α < 3/2 we have the estimate

sup
i∈{0, ... ,N}

‖g(zNi , ·)− g̃Ni ‖Hs ≤ C(Z) (h
1/2
N + min(r−α, 1)))‖u0‖Hs

Proof. The proof is largely the same as the proof of Proposition 9. The pri-
mary difference is that in (62) d̃Ni (x) = g(zNi , x) − g̃Ni (x) replaces dNi (x), ÃNij
replaces ANij in the sum on the second line, and there appear the extra terms∥∥∥∥∥∥

i∑
j=0

[ANij − ÃNij ]g(zNj , ·)

∥∥∥∥∥∥
Hs

≤ min(r−α, 1)Z C2(Z)CR,2(Z) ‖u0‖Hs

and
‖Ki0 u0 −∆r

Ψ
zN
i
,0

(Γ0) Ki0 u0‖Hs ≤ min(r−α, 1)C2(Z)‖u0‖Hs .

These estimates use the result of Lemma 11, (64), and (66) as well as the
continuity of K2. Inserting these into the proof of Proposition 9 yields the
proof of the corollary.

This last corollary establishes the possibility of approximating the solution
of the Volterra equation using only curvelets that lie within a certain distance
of the Hamiltonian flow corresponding to the finite number of initial curvelets.
We note additionally that the estimates lend themselves well to a “step-by-step”
approach to solving the fully discrete Volterra equation (67). Given a choice of
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step size in the quadrature, and a choice for r, at each time step we compute
only those curvelet coefficients corresponding to indices in ΨzNi ,0

(Γ0)r. This
means, loosely speaking, that we only consider those curvelets lying within r of
the original curvelets flowed forward to time zi.

In the same vein as remark 1 above, we comment that it should be possible
to replace the frame of curvelets by another frame that is also a FCLF. Since
the major part of our analysis leading up to the results in this section uses only
the properties of FCLFs, it should then proceed in the same manner, and for a
numerical scheme based on a parametrix constructed using this different frame
we expect the same result as Corollary 12. We point out that in harmonic
analysis there are a number of distinct “wave packet” frames and, speaking
again somewhat loosely, amongst these those which are based on a parabolic
scaling in phase space will generally be FCLFs.

Finally, we point out that the approximate solution of (1) provided by the
fully discrete Volterra equation will consist of a sum of terms each being a com-
position of some number of operators of the form K2(zNi , z

N
j ) or T2(zNi , z

N
j ).

We comment that there will be a further error which has not been analyzed here
arising from the numerical computation of these operators which might be done
in several ways. An efficient method might be carried out via a separated repre-
sentation similar to that used in the proofs of Theorems 6 and 7. A full analysis
of this is reserved for future work. A method of numerical implementation for
T2 and some analysis of the associated error has been done in [4].

Appendix A. Curvelet like functions

In this appendix we develop some technical machinery which we use to an-
alyze the various operators defined in terms of the curvelet frame. In the main
text, we use a curvelet frame based on parabolic scaling as defined, for example,
in either [3] or [23]. Our notation for curvelets and the curvelet frame matches
that of [3]. In particular, we use the notation Γ = Rn × Sn−1 × R and refer to
Γ as the set of “curvelet indices.” Also d is the pseudodistance on Rn × Sn−1

introduced in [22, Definition 2.1]

d(x, ν;x′, ν′) = |〈ν, x− x′〉|+ |〈ν′, x− x′〉|
+ min{|x− x′|, |x− x′|2}+ |ν − ν′|2. (A.1)

If γ = (x, ν, k) and γ′ = (x′, ν′, k′) ∈ Γ, let

d(γ; γ′) = 2−min(k,k′) + d(x, ν;x′, ν′). (A.2)

The weight function µδ(γ, γ
′) is given by

µδ(γ, γ
′) = (1 + |k′ − k|2)−12−( 1

2n+δ)|k′−k|2−(n+δ) min(k′,k)d(γ; γ′)−(n+δ).

This weight function is different from, but equivalent to that introduced in [22].

We also use both notations f̂ and F{f} for the Fourier transform of f depending
on the aesthetic demands of the individual situation.

24



The curvelets at scale zero require a brief special note. These elements of
the frame do not have a direction and so are indexed only by their position.
Nonetheless in sums over the frame such as (16) and (63) we include these zero
scale curvelets without comment. If γ = (x, 0) is the index of a zero scale
curvelet then the function d defined in the previous paragraph is modified to

d(γ; γ′) = 1 + |x− x′|2

and this is then used in the definition of the weights uδ when one of the indices
is at the zero scale.

We now begin to introduce more general classes of functions that behave in
many ways like those which make up the curvelet frame. For k ∈ R we will
denote by Ck the cylinder

Ck = [2k−1, 2k+1]× Bn−1
2k/2 ⊂ Rn. (A.3)

where Bn−1
2k/2 is the n− 1 dimensional ball of radius 2k/2 centered at the origin.

The term “dyadic parabolic scaling” refers to the relative proportions of these
cylinders which scale like 2k in the direction of e1, and 2k/2 in the perpendicular
directions. Given ν ∈ Sn−1 let Θν ∈ O(n) represent any rotation that maps e1

into ν, and define
Cν,k = ΘνCk.

Naturally Cν,k is independent of the specific rotation that is chosen. Also, we
write ρk = |Ck| ∼ 2k(n+1)/2. The families of functions are now defined as
follows.

Definition 13. A subset F ⊂ S(Rn)× Γ is a family of curvelet like func-
tions (FCLF) if the following conditions are met.

1. For every j ∈ N, α ∈ Nn, and N ∈ N, there exists a constant Cj,α,N > 0
such that the following estimates hold for all (f, (x, ν, k)) ∈ F

ρ
1/2
k

∣∣〈ν, ∂ξ〉j∂αξ (ei〈x,ξ〉f̂(ξ))
∣∣ ≤ Cj,α,N2−k

(
j+
|α|
2

)(
1 + 2−k/2‖ξ − Cν,k‖

)−N
.

2. There exists a constant C ∈ R (possibly less than zero) such that for all
(f, (x, ν, k)) ∈ F , k ≥ C.

When we have a family of curvelet like functions, F , we use the notation πΓ :
F → Γ for the map projecting F onto the set of curvelet indices, and πx, πν ,
πk for the respective projections onto components of the curvelet indices. Also,
πS : F → S(Rn) is the projection onto S(Rn). When referring to a fixed family
of curvelet like functions we will usually write γ = (x, ν, k) for the curvelet index
of arbitrary functions in the family.

We make the observation that if F and G are FCLFs such that πΓ(F) =
πΓ(G), then we may form another FCLF as F + G = {(f + g, γ) : (f, γ) ∈
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F and (g, γ) ∈ G}. That F + G defined in this way is in fact a FCLF follows
easily from the definition.

Curvelet frames with parabolic scaling give families of curvelet like functions
if we remove the elements of the frame whose Fourier transform covers the origin
(i.e. the zero scale curvelets). The motivation for considering these families is
that they are more or less preserved under most of the operations that we
would like to perform on curvelets. In the following series of lemmas we will
show precisely what this means, and in essence establish a calculus for families
of curvelet like functions.

Lemma 14. Suppose that F and G are two families of curvelet like functions.
Then for every δ > 0 there exists a constant Cδ such that for every f ∈ F and
g ∈ G ∣∣∣〈πS(f), πS(g)

〉∣∣∣ ≤ Cδ µδ(πΓ(f), πΓ(g)).

Proof. We first prove the result for the case when one of the families is given
by a curvelet frame. Then we represent the functions in each of two families with
respect to this curvelet frame and apply a slight generalization of [23, Lemma
2.5] to the case when the γ and γ0 need not be in the grid corresponding to the
curvelet frame.

We next study what happens when we take derivatives of curvelet like func-
tions.

Lemma 15. Suppose that F is a family of curvelet like functions. Then{(
2−k〈ν, ∂y〉 f, γ

)}
(f,γ)∈F

and
{(

2k〈ν, y − x〉 f, γ
)}

(f,γ)∈F

are also families of curvelet like functions. Furthermore, if we are given a map
ν⊥ : F → Sn−1 such that 〈ν⊥(f, γ), ν〉 = 0 for every (f, γ) ∈ F , then{(

2−k/2〈ν⊥(f, γ), ∂y〉 f, γ
)}

(f,γ)∈F

and {(
2k/2〈ν⊥(f, γ), y − x〉 f, γ

)}
(f,γ)∈F

are both families of curvelet like functions.

Proof. For (f, γ) ∈ F we have

2−kF
{
〈ν, ∂y〉 f

}
(ξ) = i 2−k〈ν, ξ〉 f̂(ξ).

Combined with the inequality

2−k|〈ν, ξ〉| ≤ 2(1 + 2−k/2‖ξ − Cν,k‖)
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this gives the first assertion of the lemma.
Next we have

F
{
〈ν, y − x〉 f

}
= 〈ν,D f̂ 〉,

which easily implies the second assertion.
The third and fourth assertions follow in the same way if we use also the

inequality
2−k/2|〈ν⊥(f, γ), ξ〉| ≤ (1 + 2−k/2‖ξ − Cν,k‖)

which holds for any ν⊥ satisfying the hypotheses.

We next study how curvelet like functions change under pull-back by a
change of coordinates. Suppose that Φ : Rn → Rn is a diffeomorphism. First
recall that the pull-back of a function f ∈ S(Rn) is given by the composition
Φ∗(f)(x) = f(Φ(x)). We define the pull-back of a curvelet index γ = (x, ν, k)
by

Φ∗(γ) =
(

Φ−1(x), (dΦT (x)ν)/|dΦT (x)ν|, k + log2(|dΦT (x)ν|)
)
.

Note that since Φ is a diffeomorphism, the map Φ∗ : Γ→ Γ is invertible.

Lemma 16. Suppose that F is a family of curvelet like functions, and that
{Φγ}γ∈πΓ(F) is a family of diffeomorphisms on Rn satisfying

‖∂αxΦ±1
γ ‖ ≤ Cα for 0 < |α| ≤ 2, and ‖∂αxΦ±1

γ ‖ ≤ 2k(|α|−2)/2Cα for 2 < |α|.

Then {(
Φ∗γ(f),Φ∗γ(γ)

)}
(f,γ)∈F

is a family of curvelet like functions. Note that Φ∗γ(f) is the pull-back of the
function f , while Φ∗γ(γ) is the pull-back of the curvelet index γ.

Proof. Let (f, γ) ∈ F . By the Fourier inversion formula we have the following
formula

〈ν′, ∂ξ〉j∂αξ
(
ei〈Φ

−1
γ (x),ξ〉Φ̂∗γf(ξ)

)
=
ij+|α|

(2π)n

∫∫
ei
(
〈Φγ(y)−x,η〉−〈y−Φ−1

γ (x),ξ〉
)

·〈ν′,Φ−1
γ (x)− y〉j

(
Φ−1
γ (x)− y

)α(
ei〈x,η〉f̂(η)

)
dη dy.

where k′ ∈ R and ν′ ∈ Sn−1 are the respective components of the pull-back
Φ∗γ(γ). Note that this should be interpreted as an iterated integral with the
integration done first in η and then in y. Making the change x̃ = Φγ(y)− x in
the second integral gives

〈ν′,∂ξ〉j∂αξ
(
ei〈Φ

−1
γ (x),ξ〉Φ̂∗γf(ξ)

)
=
ij+|α|

(2π)n

∫∫
ei
(
〈x̃,η〉−〈Φ−1

γ (x̃+x)−Φ−1
γ (x),ξ〉

)
〈ν′,Φ−1

γ (x)− Φ−1
γ (x̃+ x)〉j

·
(

Φ−1
γ (x)− Φ−1

γ (x̃+ x)
)α(

ei〈x,η〉f̂(η)
) dη dx̃

|det(dΦγ(x̃+ x))|
.
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By Taylor’s theorem we may write

Φ−1
γ (x̃+ x)r − Φ−1

γ (x)r = dΦ−1
γ (x)rp x̃

p + Ψ̃γ(x̃, x)rpq x̃
q x̃p

using the summation convention. Here Ψ̃γ is a smooth array of functions that
can all be simultaneously bounded in Cl in terms of bounds on the derivatives of
Φ−1
γ up to order l+ 2. We will also write Φ̃γ(x̃, x)rp = dΦ−1

γ (x)rp+ Ψ̃γ(x̃, x)rpq x̃
q.

With this notation

〈ν′, ∂ξ〉j∂αξ
(
ei〈Φ

−1
γ (x),ξ〉Φ̂∗γf(ξ)

)
=

(−i)j+|α|

(2π)n

∫∫
ei
(
〈x̃,η〉−〈Φ̃γ(x̃,x)x̃,ξ〉

)
〈ν′, Φ̃γ(x̃, x)x̃〉j

·
(

Φ̃γ(x̃, x)x̃
)α(

ei〈x,η〉f̂(η)
) dη dx̃

|det(dΦγ(x̃+ x))|

=
(−i)j

(2π)n

∫∫
ei
(
〈x̃,η〉−〈Φ̃γ(x̃,x)x̃,ξ〉

)(
〈ν′,dΦ−1

γ (x) ∂η〉+
(
ν′r Ψ̃γ(x̃, x)rpq∂

2
ηpηq

))j
·
(

Φ̃γ(x̃, x) ∂η

)α(
ei〈x,η〉f̂(η)

) dη dx̃

|det(dΦγ(x̃+ x))|
.

Now if we define the differential operator

L =
1− i 2−k

〈
η − ∂x̃(〈Φ̃γ(x̃, x) x̃, ξ〉), ∂x̃

〉
1 + 2−k |η − ∂x̃〈Φ̃γ(x̃, x) x̃, ξ〉|2

then after several more rounds of integration by parts, for any M and Ñ the
last expression equals

(−i)j

(2π)n

∫∫
ei
(
〈x̃,η〉−〈Φ̃γ(x̃,x)x̃,ξ〉

)
(Lt)M

(
〈ν′,dΦ−1

γ (x) ∂η〉+ ν′r Ψ̃γ(x̃, x)rpq∂
2
ηpηq

)j
·
(

1− 2k∆η

1 + 2k|x̃|2

)Ñ (
Φ̃γ(x̃, x) ∂η

)α(
ei〈x,η〉f̂(η)

) dη dx̃

|det(dΦγ(x̃+ x))|
,

which may now be interpreted as an integral over R2n. Using definition 13 and
the hypotheses on Φγ , the integrand in the previous formula can be bounded
for any N by an expression of the form

C 2−k(j+
|α|
2 )(1 + 2−k/2‖η − Cν,k‖)−N (1 + 2−k/2|η − ∂x̃(〈Φ̃γ(x̃, x)x̃, ξ〉)|)−M

· (1 + 2k|x̃|2)−Ñ

for some positive C. Therefore, if Ñ and M are taken sufficiently large then∣∣∣∣ρ1/2
k′ 〈ν

′, ∂ξ〉j∂αξ
(
ei〈Φ

−1
γ (x),ξ〉Φ̂∗γf(ξ)

)∣∣∣∣
. 2−k(j+

|α|
2 )(1 + 2−k/2‖ξ − dΦTγ (x)Cν,k‖)−N

. 2−k(j+
|α|
2 )(1 + 2−k/2‖ξ − Cν′,k′‖)−N .

This is the required estimate and completes the proof.
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The next lemma says that we may decompose curvelet like functions into
two pieces one of which is compactly supported in the frequency variable and
the other which decays very quickly with the scale k.

Lemma 17. If F is a family of curvelet like functions, then for every ε > 0 it
is possible to find a family of curvelet like functions G and a map, TG : F → G
such that

1. πΓ ◦ TG = πΓ

2. For every (g, γ) ∈ G, if ξ ∈ supp(ĝ), then

2k(1/2− ε) ≤ |ξ| ≤ 2k(2 + ε) and 2k(1/2− ε) ≤ |〈ν, ξ〉| ≤ 2k(2 + ε).

3. For every m ∈ R, {(
2km(f − πS ◦ TG(f, γ)), γ

)}
(f,γ)∈F

is a family of curvelet like functions.

Proof. We begin by choosing a cut-off function χ ∈ C∞c supported within ε of
the set A1 = {2−1 ≤ |ξ| ≤ 2}∩ {2−1 ≤ |〈ν, ξ〉| ≤ 2} and equal to 1 within ε/2 of
this set. We construct χ so that it is symmetric with respect to rotations that
preserve ν. Also, we set χk(ξ) = χ(2−kξ). The first task is to show that

G =
{
χk(D)f, γ

}
(f,γ)∈F

is a family of curvelet like functions which will then satisfy requirement 2. For
(f, γ) ∈ F we have

ρ
1/2
k 〈ν, ∂ξ〉

j∂αξ e
i〈x,ξ〉 ̂[χk(D)f ](ξ) = 〈ν, ∂ξ〉j∂αξ

(
ρ

1/2
k ei〈x,ξ〉χk(ξ) f̂(ξ)

)
and it follows from this expression and the Liebniz rule that G is a family of
curvelet like functions.

It now remains to show that for any m,

H =
{

2km
(
1− χk(D)

)
f, γ
}

(f,γ)∈F

is a family of curvelet like functions. Once again for (f, γ) ∈ F , we have using
definition 13 that for any N∣∣∣∣ ρ1/2

k 〈ν, ∂ξ〉
j∂αξ e

i〈x,ξ〉 ̂[(
1− χk(D)

)
f
]
(ξ)

∣∣∣∣
=

∣∣∣∣〈ν, ∂ξ〉j∂αξ (ρ1/2
k ei〈x,ξ〉(1− χk(ξ)) f̂(ξ)

)∣∣∣∣
. 2−k(j+

|α|
2 )(1 + 2−k/2‖ξ − Cν,k‖)−N sup

‖ξ−2kA1‖>ε2k−1

(1 + 2−k/2‖ξ − Cν,k‖)−2m

. 2−k(j+
|α|
2 )(1 + 2−k/2‖ξ − Cν,k‖)−N2−mk.

This completes the proof.
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Now we begin to examine the action of pseudodifferential operators on fam-
ilies of curvelet like functions.

Lemma 18. Suppose that F is a family of curvelet like functions, and that
{pγ(y, ξ)}γ∈πΓ(F) is a collection of smooth functions on Rn × (Rn \ {0}) such
that for some m ∈ R, any multi-indices α and β, and any nonnegative integer
j there is a constant Cα,β,j so that

|∂βy ∂αξ 〈ν, ∂ξ〉jpγ(y, ξ)| ≤ Cα,β,j2k
|β|
2 (1 + |ξ|)m−

|α|
2 −j

for all (y, ξ). Then {(
2−kmpγ(y,D)f, γ

)}
(f,γ)∈F

is a family of curvelet like functions.

Proof. We begin by choosing a family G as in Lemma 17 with some small
value of ε > 0. The following calculation then applies when (h, γ) equals either
TG(f, γ) or (f − πS ◦ TG(f, γ), γ).

ρ
1/2
k 〈ν, ∂ξ〉

j∂αξ e
i〈x,ξ〉F

{
pγ(y,D)h

}
(ξ)

=
1

(2π)n

∫∫
ei〈η−ξ,y−x〉〈ν, ∂η〉j ∂αη pγ(y, η)

(
ρ

1/2
k ei〈x,η〉ĥ(η)

)
dη dy

=
1

(2π)n

∫∫
ei〈η−ξ,y〉〈ν, ∂η〉j ∂αη pγ(y + x, η)

(
ρ

1/2
k ei〈x,η〉ĥ(η)

)
dη dy

=
1

(2π)n

∫∫
ei〈η−ξ,y〉

(
1− i 2−k〈η − ξ, ∂y〉

1 + 2−k|η − ξ|2

)M(
1− 2k∆η

1 + 2k|y|2

)N
· 〈ν, ∂η〉j ∂αη pγ(y + x, η)

(
ρ

1/2
k ei〈x,η〉ĥ(η)

)
dη dy.

In the case when (h, γ) = TG(f, γ), by taking M sufficiently large this integral
may be bounded by the required estimate since on the support of h∣∣∂βy ∂αη 〈ν, ∂η〉jpγ(y + x, η)

∣∣ . 2k(m−j−
|α|
2 +

|β|
2 )

and

(1 + 2−k/2|η − ξ|)−1(1 + 2−k/2‖η − Cν,k‖)−1 ≤ (1 + 2−k/2‖ξ − Cν,k‖)−1.

For the case when (h, γ) = (f − πS ◦ TG(f, γ), γ), we use the fact that 2km̃(f −
πS ◦ TG(f, γ)) gives a family of curvelet like functions for any m̃. Therefore the
integral in this case may be bounded by a constant times

2−km̃(1 + 2−k/2‖ξ − Cν,k‖)−N

for any m̃. This proves the result.

30



The next lemma examines the case of Lemma 16 when the diffeomorphisms
depend on a parameter.

Lemma 19. Suppose that F is a family of curvelet like functions, and that
{Φγ}γ∈πΓ(F) is a smooth family of functions from [z0, Z]× Rn to Rn such that

{Φγ(z, ·)}γ∈πγ(F)

satisfies the hypotheses of Lemma 16 for every fixed z with the constants in the
estimates uniform with respect to z, and

|∂αy ∂zΦγ(z, y)| ≤ Cα2k
|α|
2 .

Then {(
2−k∂z[Φ

∗
γ(z, ·)f ],Φ∗γ(γ)

)}
(f,γ)∈F

is a family of curvelet like functions.

Proof. Let (f, γ) ∈ F . Then, as in the proof of Lemma 16 we use the Fourier
inversion formula to establish that

∂z[Φ
∗
γ(z, ·)f ](y) =

i

(2π)n

∫∫
ei〈Φγ(z,y),ξ〉〈∂zΦγ(z, y), ξ

〉
f̂(ξ) dξ

= Φ∗γ(z, ·)
[
〈∂zΦγ(z,Φ−1

γ (z, ·)), ∂y〉f
]
(y)

The collection of functions
{
〈∂zΦγ(z,Φ−1

γ (z, y)), ξ〉
}
γ∈πγ(F)

satisfy the hypothe-

ses of Lemma 18 with m = 1, and so that lemma and Lemma 16 imply the result.

The next lemma gives an explicit expression for the leading order terms of the
action of a suitable family of pseudodifferential operators with principal symbols
that are homogeneous of degree 1 on a family of curvelet like functions. For
every ν ∈ πν(F) we use the notation Pν for the matrix which gives orthogonal
projection onto the space perpendicular to ν.

Lemma 20. Suppose that F is a family of curvelet like functions, and that
{pγ}γ∈πΓ(F) is a collection of smooth functions on Rn × (Rn \ {0}) such that

|∂βy ∂αξ pγ(y, ξ)| ≤ Cα,β2k
|β|
2 (1 + |ξ|)1−|α| ,

and every pγ is positive homogeneous in ξ of degree 1 on {2C−2 ≤ |〈ξ, ν〉|}
where C is the constant from part 2 of definition 13. Also, let φ(t) ∈ C∞c (R) be
a function that is equal to zero when |t| ≤ 2C−3 and equal to 1 when |t| > 2C−2.
If for every (f, γ) ∈ F we define

g = 2k/2

(
pγ(y,D)f −

〈
∂ξpγ(y, ν), Df

〉
− 1

2
tr

(
∂2
ξpγ(x, ν)

φ(〈ν,D〉)
〈ν,D〉

D2f

))
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then {(
g, γ
)}

(f,γ)∈F

is a family of curvelet like functions.

Proof. First, applying both Lemma 17 and Lemma 18 we may assume without
loss of generality that every (f, γ) ∈ F satisfies part 2 of Lemma 17 for some
small value of ε > 0.

Next we make the following expansion of pγ , which holds for ξ ∈ supp(f̂)
and follows using the homogeneity assumption.

pγ(y, ξ) = 〈∂ξpγ(y, ν), ξ〉+
1

2

n∑
q,r=1

∂2
ξpγ(x, ν)qr

ξq ξr

〈ξ, ν〉
+Rγ(y, ξ) (A.4)

where

Rγ(y, ξ) =

1

2

n∑
q,r,s=1

(∫ 1

0

(1− t)2∂3
ξqξrξspγ(y, 〈ξ, ν〉ν + t Pνξ) dt

)
(Pνξ)

q (Pνξ)
r (Pνξ)

s

+
1

2

n∑
q,r,s=1

(∫ 1

0

∂3
yqξrξspγ(x+ t (y − x), ν) dt

)
(x− y)q

(Pνξ)
r (Pνξ)

s

〈ξ, ν〉
.

Note that in order to obtain this formula we use the fact that ν lies in the
kernel of the Hessian ∂2

ξpγ(y, ν) due to the homogeneity assumption. We write

(R1
γ)qrs(y, ξ) and (R2

γ)rs(y) respectively for the two arrays of functions inside
parentheses given by the integrals in the preceding formula. From the hypothe-
ses and the fact that every (f, γ) ∈ F satisfies part 2 of Lemma 17 we see that
each of these functions satisfy the hypotheses of Lemma 18 with respectively
m = −2 and m = 0 for ξ restricted to supp(f̂) (in fact, (R2

γ)rs satisfies the
hypotheses with m = −1/2 when restricted in this way). Therefore by 15{

2k/2[Rγ(y,D)f ], γ
}

(f,γ)∈F

is a family of curvelet like functions. From (A.4) we observe that

g = 2k/2[Rγ(y,D)f ],

and so the proof is complete.

Appendix B. Lemma for paradifferential estimates

In this appendix we will state and prove the lemma used to deal with the
“rough” parts of the Volterra kernels. The lemma is an extension of Lemma 13
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in [9] to a broader class than just multipliers. The expansion methods used here
can be found for example in [26] where credit is given to [7] for originating the
ideas. See also [23, Theorem 4.5].

Let m a nonnegative integer, a(x, ξ) ∈ Cm,1S1
cl(Rn) be homogeneous of

order 1 in ξ, and ak be obtained by (9) applied to a instead of p. Also, let
β ∈ C∞0 (Rn) be a function such that 0 ≤ β ≤ 1, supp(β) ⊂ {1/2 ≤ |ξ| ≤ 2} for

some l0 ∈ Z+, and constructed so that β0(ξ) +
∞∑
k=1

β(2−k+1ξ) = 1 for another

function β0 ∈ C∞0 (Rn) with support contained in the unit ball. For convenience
we define βk(ξ) = β(2−k+1ξ) for k ≥ 1 (i.e. so that {βk} provides a Littlewood-
Paley partition of unity). Assume that Fk is a family of operators on L2(Rn)
satisfying estimates of the form

‖Fku‖L2(Rn) ≤ C 2kr‖βk(D)u‖L2(Rn). (B.1)

We will further assume that each Fk is frequency localized at the scale A 2k for
some constant A in the sense that (1−βk(D/A))Fk = Rk where Rk : Hs′ → Hs

is continuous uniform in k for all s′ and s.

Lemma 21. If m ≥ 0 and −(m + 1)/2 ≤ s ≤ m + 1 then there is an N ∈ N
such that for any u ∈ Hs+r−(m−1)/2(Rn)∥∥∥∥∥

(∑
k

(
a(y,D)−ak(y,D)

)
Fk

)
u

∥∥∥∥∥
Hs

. (C + C ′)
∑
|α|≤2N

sup
ω∈Sn−1

‖∂αξ a(·, ω)‖Cm,1‖u‖
Hs+r−

m−1
2
.

The constant C in this estimate is the same as the constant in (B.1), and C ′ is
a uniform modulus of continuity for Rk acting between appropriate spaces.

Proof. For ease of notation we will write fk(y, ξ) = a(y, ξ)− ak(y, ξ) and now
record a few properties of fk. First, from the homogeneity of a it is still true
that fk is homogeneous of degree 1 in ξ. Second, because ak is obtained by a
low pass filter in y from a, f̂k(η, ξ) = f̂j(η, ξ) for |η| ≥ 2max(k,j)/2. Finally, the
estimates

|∂βy ∂αξ fk(y, ξ)| . 2−k(m+1−|β|)/2‖∂αξ a(·, ξ)‖Cm,1 (B.2)

for |β| ≤ m+ 1 follow from (10).
The first step of the proof will be to decompose fk(y,D) in terms of a sum

of multiplication and convolution operators by using spherical harmonics in the
phase space. Indeed, let {wκ} denote the set of eigenfunctions of ∆Sn−1 , with the
eigenvalue of wκ denoted by λκ, which form an orthonormal basis for L2(Sn−1).
By the homogeneity of fk in ξ we have

fk(y, ξ) = |ξ|
∑
κ

fkκ(y)wκ(ξ/|ξ|)
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where

fkκ(y) =

∫
Sn−1

fk(y, ω)wκ(ω) dω.

By Green’s formula we have for any N ∈ N

λNκ fkκ =

∫
Sn−1

fk(y, ω)∆N
Sn−1wκ(ω)dω =

∫
Sn−1

(∆N
Sn−1fk)(y, ω)wκ(ω)dω,

which using (B.2) gives

|∂βy fkκ| . λ−Nκ 2−k(m+1−|β|)/2
∑
|α|≤2N

sup
ω∈Sn−1

‖∂αξ a(·, ω)‖Cm,1 (B.3)

for |β| ≤ m+ 1 and any N . Also, we can see from the definition that the family

{fkκ} inherits the property that f̂kκ(η) = f̂jκ(η) for |η| ≥ 2max(k,j)/2 from {fk}.
With this decomposition we have∑

k

fk(y,D)Fk =
∑
k,κ

fkκ(y) |D|wκ(D/|D|)Fk.

Following [23] we now split this sum to be estimated into two sums with even
and odd k so that the sets where the Fk in each sum are concentrated do not
overlap. Each of these sums may now be treated in the same way and so we
focus only on the sum with even k which may be decomposed in the following
way ∑

k even

fk(y, ξ)Fku =
∑

κ, k even

fkκ(y)βk(D/A)vκ

−
∑

κ, k even

fkκ(y)βk(D/A)
∑

j even, j 6=k

Rjκu+
∑

κ, k even

fkκ(y)Rkκu

(B.4)
where vκ =

∑
j even

|D|wκ(D/|D|)Fju and Rkκ = |D|wκ(D/|D|)Rk. Note that

using (B.1) and the estimate ‖wκ‖L∞ . λ
n−1

4
κ we have

‖vκ‖
Hs−

m+1
2

. Cλ
n−1

4
κ ‖u‖

Hs+r−
m−1

2
.

Since Rkκ has the same mapping properties as Rk, but with norms bounded

by λ
n−1

4
κ , if we take N to be large enough then the sums on the second line of

(B.4) give an operator with the required properties provided that |s| ≤ m + 1
in which case fkκ acts as a multiplier mapping Hs to Hs with norm bounded
by (B.3). Thus, using the rapid decay of fkκ in κ, we have reduced the proof to
showing that operators of the form∑

k

fkκ(y)βk(D/A)
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map Hs−m+1
2 to Hs continuously with appropriately bounded norm for −(m+

1)/2 ≤ s ≤ m+ 1. In fact this is already done for the case m = 1 in [23].
We finally introduce one more decomposition so that the last sum becomes

S =
∑
k,j

βj(D/A)fkκ(y)βk(D/A). (B.5)

Now we will look in more detail at the operators in this sum, which we will label
as

Γjkκ = βj(D/A) fkκ βk(D/A).

We will use the notation l(A) = min(0,floor(log2(A))) and

‖a‖N =
∑
|α|≤2N

sup
ω∈Sn−1

‖∂αξ a(·, ω)‖Cm,1 .

Taking advantage of the frequency localization of β(D/A) we may show

‖Γjkκ‖L2→L2 .


Aλ−Nκ 2−j(m+1)‖a‖N j > k + 3− l(A),
A λ−Nκ 2−k(m+1)/2‖a‖N k + 3− l(A) ≥ j ≥ k − 3 + l(A),
A λ−Nκ 2−k(m+1)‖a‖N k − 3 + l(A) > j.

With these estimates available we now return to (B.5). For v ∈ C∞0 (Rn)

‖Sv‖2Hs . C2
∑
k,j

22js ‖Γjkκ‖2L2→L2 ‖βk(D)v‖2L2

. C2
∑
k,j

22(js−k(s−m+1
2 )) ‖Γjkκ‖2L2→L2

(
2k(s−m+1

2 ) ‖βk(D)v‖L2

)2

. C2‖a‖2N

( ∑
j>k+3−l(A)

22(j(s−m−1)−k(s−m+1
2 ))

(
2k(s−m+1

2 ) ‖βk(D)v‖L2

)2

+
∑

k−3+l(A)≤j≤k+3−l(A)

22(js−ks)
(

2k(s−m+1
2 ) ‖βk(D)v‖L2

)2

+
∑

k>j+3−l(A)

22(js−k(s+m+1
2 ))

(
2k(s−m+1

2 ) ‖βk(D)v‖L2

)2
)
.

If s < m + 1, then the first sum in parentheses is bounded by ‖u‖2
Hs−

m+1
2

.The second sum converges for any s and is also bounded by a constant times
‖u‖2

Hs−
m+1

2

. Finally, if s > (m+1)/2, then the third sum is bounded by the same

quantity. This completes the proof of the lemma for −(m+ 1)/2 < s < m+ 1.
To complete the proof for the endpoints s = −(m + 1)/2 and s = m + 1

we first consider the case m ≥ 1 where we use induction on m, and the fact
mentioned above that the m = 1 case is already proven in [23]. Indeed, we

already have that S∂x : H
m+1

2 → Hm and ∂xS : H−
m−1

2 → H0, and so it
suffices to show that

[∂x, S] : Hs−m−1
2 → Hs
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for s = m and s = 0. However,

[∂x, S] =
∑
k

∂yfkκ(y)βk(D/A),

and the functions ∂yfkκ have the same properties as fkκ but with m replaced
by m− 1. Using induction the proof is now complete for m ≥ 1. In case m = 0,
we use by the above that

S〈D〉 1
2 : H

1
2 → H

1
2 , 〈D〉 1

2S : H0 → H0 .

Thus, it suffices to show that [〈D〉 1
2 , S] : Hs → Hs for s = 1

2 and s = 0. In fact,

[〈D〉 1
2 , S] : H0 → H

1
2 ,

as can be seen by interpolating the estimates in Propositions 4.1.B and 4.1.E
of [26], since S ∈ LipS1

cl. We remark that the estimates in [26] are stated for
A ∈ C1S1

cl but in fact hold for A ∈ LipS1
cl, as seen by the Propositions 4.1.A

and 4.1.D from which they are deduced.
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