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Abstract. We show that any real valued bounded potential with compact support,

V ∈ L∞c (Rn;R), n odd, has some scattering resonances. For n ≥ 3 that was known

before only for sufficiently smooth potentials. The proof is based on the following

inverse result:

V ∈ L∞c (Rn;R), t
n
2 tr(et(∆−V ) − et∆) ∈ C∞([0,∞)) ⇐⇒ V ∈ C∞c (Rn;R).

1. Introduction and statements of results

Let V ∈ L∞c (Rn;R) be a bounded, compactly supported, real valued potential and

let n ≥ 3 be odd. We consider the Schrödinger operator,

PV = −∆ + V (x), (1.1)

and ask the question whether PV always (for V 6= 0) has infinitely many scattering

resonances. Scattering resonances are defined defined as poles of the meromorphic

continuation of the resolvent

RV (λ) := (−∆ + V − λ2)−1, n odd, (1.2)

from Imλ > 0 to λ ∈ C. The multiplicity of a resonance at λ 6= 0 is defined as

mV (λ) = rank

∮
λ

RV (ζ)dζ, (1.3)

where the integral is over a circle around λ enclosing no other singularities of RV than

(possibly) λ – see [DyZw, §3.2]. At λ = 0 we put

mV (0) =
1

2
rank

∮
0

RV (ζ)dζ + rank

∮
0

RV (ζ)2ζdζ. (1.4)

If mV (0) = m ∈ N then PV has an eigenvalues of multiplicity m at 0. If mV (0) = m+ 1
2
,

m ∈ N then in addition, PV has a zero resonance – see [DyZw, §3.3], [Je90] and

[JeKa79].

These poles have many interesting interpretations and in particular appear in expan-

sions of solutions to the wave equation – see §2 and references given there. For n even

the situation is more complicated as the meromorphic continuation has a logarithmic
1
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branch singularity at λ = 0 – see [ChHi10] and references given there. Here we prove

that

Theorem 1. Suppose that V ∈ L∞c (Rn;R) and that n is odd. Then the meromorphic

continuation of the resolvent (1.2),

RV (λ) : L2
c(Rn)→ L2

loc(Rn), λ ∈ C,

has at least one pole. If V ∈ L∞c (Rn;R)∩H n−3
2 (Rn) then RV has infinitely many poles.

For V ∈ C∞c (Rn;R) existence of infinitely many resonances was proved by Melrose

[Me95] for n = 3 and by Sá Barreto–Zworski [SaZw96] for all odd n. Soon afterwards

quantitative statements about the counting function, N(r), of resonances in {|λ| ≤ r}
were obtained by Christiansen [Ch99] and Sá Barreto [Sa01]:

lim sup
r→∞

N(r)

r
> 0.

For potentials generic in C∞c (Rn;F) or L∞c (Rn;F), F = R or C, Christiansen and Hislop

[Ch05],[ChHi05] proved a stronger statement

lim sup
r→∞

logN(r)

log r
= n. (1.5)

This means that the upper bound N(r) ≤ Crn from [Zw89] is optimal for generic

complex or real valued potentials. The only case of asymptotics ∼ rn for non-radial

potentials was provided by Dinh and Vu [DiVu13] who proved that a large class of L∞

potentials supported in B(0, 1) has resonances satisfying a Weyl law.

Tanya Christiansen pointed out that our argument provides the following “inverse”

result:

Theorem 2. Suppose that Vj ∈ L∞c (Rn;R), j = 1, 2 and n is odd. If, in the notation

of (1.3) and (1.4),

mV1(λ) = mV2(λ), λ ∈ C, (1.6)

then for any m ∈ N,

V1 ∈ Hm(Rn) ⇐⇒ V2 ∈ Hm(Rn).

This is interesting because of the dearth of results on resonance inverse problems.

It is known that resonances alone may not determine the potential uniquely – see

Korotyav [Kor], [Zw01] and also Autin [Au11], [Ch08] where references to more general

“isopolar” problems can be found. In the positive direction Datchev–Hezari [DaHe12]

showed that in the semiclassical setting certain radial potentials are determined by the

asymptotic behaviour of resonances. That paper contains further references to inverse

problems for resonances.



HEAT TRACES AND EXISTENCE OF RESONANCES 3

To prove Theorem 1 we proceed by contradiction, as in [BaSa95], [Me95] and

[SaZw96], and assume that there are no resonances. By a direct argument (Propo-

sition 2.1) this implies that the scattering phase is a polynomial. This in turn implies

(Proposition 2.2) that the heat trace has an asymptotic expansion. The main result

of this note, Theorem 3 below, shows that this implies that V ∈ C∞c , and since it is

real valued we obtain a contradiction by [Me95] and [SaZw96]. (We provide a direct

argument of the contradiction in §2.) See §2.4 for why our arguments do not yield a

contradiction for a finite number of resonances if n ≥ 5 and V ∈ L∞c (Rn,R).

Although we expect (1.5), or possible even N(r) > rn/C when r � 1, to be true for

all non-zero real valued potentials, Christiansen gave classes of examples of non-zero

V ∈ C∞c (Rn;C) which have no resonances.

Our argument outlined above depends on the following, which is the principal new

result of this paper.

Theorem 3. Suppose that PV is given by (1.1), and V ∈ L∞c (Rn;R), where n ≥ 1

may be even or odd. If

t
n
2 tr
(
e−tPV − e−tP0

)
∈ C∞([0,∞)) (1.7)

then V ∈ C∞c (Rn;R).

Theorem 3 is a direct consequence of a more precise result presented in Theorem

4 in §3. The study of heat expansions has a very long tradition going back to Kac,

Berger and McKean–Singer – see [CdV12],[Gil04],[HiPo03] for more recent accounts

and references. Theorem 3, although not surprising, seems to be new. However, closely

related inverse results are well known. They concern recovering Sobolev norms from

the coefficients of expansion of smooth potentials, and using those a priori bounds to

prove compactness of sets of isospectral potentials – see Brüning [Br84] and Donnelly

[Do04], and for the origins of that approach, McKean–van Moerbeke [McMo75].

The paper is organized as follows. In §2 we review the scattering theory needed

for the proofs of Theorems 1 and 2. For detailed arguments we refer to the original

papers and to the on-line notes [DyZw]. The section on the heat trace §3 is by contrast

completely self-contained. Some aspects of the approach in §3 appear to be new, in

particular the use of Gagliardo–Nirenberg–Moser inequalities in a bootstrap regularity

scheme.

Acknowledgements. We would like to thank Gunther Uhlmann for a helpful discus-

sion, in particular for reminding us of the references [Br84] and [McMo75], and Tanya

Christiansen for helpful comments on the first version of this note, and especially for

suggesting Theorem 2. This material is based upon work supported by the National

Science Foundation under Grants DMS-1161283(HS) and DMS-1201417(MZ).
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2. Review of scattering theory

Here we recall various facts in scattering theory and show how Theorem 1 follows

from Theorem 3.

2.1. The scattering matrix. The continued resolvent, RV (λ), given in (1.2) does not

have any poles on R\{0} – that is a well known consequence of the Rellich uniqueness

theorem – see [DyZw, §3.6]. This implies that, for λ ∈ R \ {0} and ω ∈ Sn−1, there

exist (unique) solutions to

(PV − λ2)w(x, λ, ω) = 0, w(x, λ, ω) = e−iλ〈x,ω〉 + u(x, λ, ω),

u(x, λ, ω) = |x|−
n−1
2 eiλ|x|

(
b(λ, x/|x|, ω) +O(|x|−1)

)
, |x| → ∞.

(2.1)

The radiation pattern b(λ, θ, ω), is the observed field in a scattering experiment. The

scattering matrix, SV (λ), can be defined using b(λ, θ, ω). This definition is not the

most intuitive, and we refer to [DyZw, §3.7] for motivation. Here we define SV (λ) :

L2(Sn−1)→ L2(Sn−1) as

SV (λ)f(θ) = f(θ) +

∫
Sn−1

a(λ, θ, ω)f(ω)dω,

a(λ, θ, ω) := (2π)−
n−1
2 e

π
4

(n−1)iλ
n−1
2 b(λ, θ,−ω).

(2.2)

We also have the following useful representations of a(λ, θ, ω):

a(λ, θ, ω) = anλ
n−2

∫
Rn
e−iλ〈x,θ〉V (x)w(x, λ,−ω)dx

= anλ
n−2

∫
Rn
e−iλ〈x,ω−θ〉V (x)(1− e−iλ〈x,ω〉)RV (λ)(eλ〈•,ω〉V )(x)dx,

(2.3)

where an = (2π)−n+1/2i.

The scattering matrix is unitary for λ real, and from (2.3) we see that it continues

meromorphically to all of C. Hence we have

SV (λ)−1 = SV (λ̄)∗, λ ∈ C. (2.4)

Another symmetry comes from changing λ to −λ:

SV (λ)−1 = JSV (−λ)J, Jf(θ) := f(−θ). (2.5)

The operator SV (λ) − I is of trace class, and hence detSV (λ) is well defined. The

following result, see [DyZw, Theorem 3.4] or [Zw97], is important for the investigation

of scattering resonances:
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Proposition 2.1. Suppose that V ∈ L∞c (Rn;R), where n is odd. Then detSV (λ) is a

meromorphic function of order n. More precisely,

detSV (λ) = (−1)m

(
K∏
k=1

iµk + λ

iµk − λ

)
P (−λ)

P (λ)
, (2.6)

where µk ≥ 0, −µ2
1 < −µ2

2 ≤ · · · ≤ −µ2
K ≤ 0 are the eigenvalues of PV , included

according to multiplicity, P (λ) is entire and non-zero for Imλ ≥ 0, and

|P (λ)| ≤ Cεe
Cεrn+ε , for any ε > 0. (2.7)

The power m in (2.6) is the multiplicity of the zero resonance, m = 0 or 1 for n = 1, 3

and m = 0 for for n ≥ 5; see [DyZw, §3.3] and [JeKa79].

We make the following observation based on the second representation in (2.3):

λ is a pole of detSV =⇒ λ is a pole of SV =⇒ λ is a pole of RV . (2.8)

A more precise statement is possible (see [DyZw, Theorem 3.42]) but we do not need

it for Theorem 1. To show existence of poles of RV we only need to show existence of

poles of detSV .

2.2. A trace formula. The tool connecting the scattering matrix to the heat trace

is the Birman–Krĕın trace formula. In §3 we will recall the argument showing that

e−tPV − e−tP0 is of trace class.

Proposition 2.2. Suppose that V ∈ L∞c (Rn;R). Then, in the notation of Proposition

2.1,

tr(e−tPV − e−tP0) =
1

2πi

∫ ∞
0

tr
(
SV (λ)−1∂λSV (λ)

)
e−tλ

2

dλ+
K∑
k=1

etµ
2
k + 1

2
m. (2.9)

If V ∈ C∞c , this is proved for n = 3 in [CdV81], and for n ≥ 5 in [Gu81] and

references given there. The proofs for V ∈ L∞c can be found in [DyZw, §3.8, §4.6].

Since | detSV (λ)| = 1 for λ ∈ R (which follows from (2.4), the unitarity of the

scattering matrix) we can define the winding number of the scattering phase:

σ(λ) :=
1

2πi
log detSV (λ), σ′(λ) =

1

2πi
tr
(
SV (λ)−1∂λSV (λ)

)
, λ ∈ R.

In the case of V ∈ C∞c (Rn,R), n odd, σ(λ) admits a full asymptotic expansion for

λ→∞, with only odd powers of λ except for the constant term. When n = 3,

θ(+∞)− θ(0) = K + 1
2
m, θ(λ) := σ(λ) + λ

(
1
2

∫
R
V (x)dx

)
,
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and for n ≥ 5,

θ(+∞)− θ(0) = K, θ(λ) := σ(λ)−
n−1
2∑

k=1

ck(V )λn−2k ,

where ck(V ) are the coefficients in the expansion of σ(λ). For proofs see [CdV81],

[Gu81], [DyZw, §3.7], and for less regular potentials but fewer expansion terms [Je90].

2.3. Proof of Theorem 1. If V has no resonances then Proposition 2.1 shows that

detSV (λ) =
P (−λ)

P (λ)
,

where P (λ) is an entire function with no zeros and of order n. This implies that

P (λ) = eG(λ) where G(λ) is a polynomial of degree at most n; see for instance [Ti64,

8.24]. Defining the odd polynomial g(λ) = (G(−λ)−G(λ))/(2πi), we obtain

detSV (λ) = e2πig(λ), σ′(λ) = g′(λ).

The unitarity of SV (λ) for λ real shows that g(λ) has real coefficients, g(λ) = a0λ
n +

a1λ
n−2 + · · ·+ an−1

2
λ. Hence,

∫ ∞
0

σ′(λ) e−tλ
2

dλ = t−
n
2

n−1
2∑
j=0

a′jt
j, (2.10)

where a′n := anΓ(n/2− j + 1).

We now insert (2.10) into the trace formula (2.9) to see that tn/2 tr(e−tPV − e−tP0)

has a full asymptotic expansion
∑∞

j=0 cjt
j as t→ 0+. That means that the assumption

of Theorem 3 is satisfied, and hence V ∈ C∞c (Rn;R). But the result of [SaZw96] (see

also [DyZw, §3.7]) then contradicts our assumption that V has no resonances: every

nonzero potential in C∞c (Rn,R) has to have infinitely many resonances.

Christiansen’s argument [Ch99] that there must be at least one resonance for nonzero

V ∈ C∞c (Rn;R) is simple and elegant, and we reproduce it here. As above, absence of

resonances would imply that σ′(λ) = a′0λ
n−1 + a′1λ

n−3 + · · · a′n. Comparison with the

heat expansion shows that a′2 = cn
∫
V 2 6= 0. That immediately provides a contradic-

tion in the case of n = 3. When n ≥ 5 we use the representation (2.3):

σ′(λ) = trSV (λ)∗∂λSV (λ)

=

∫
Sn−1

∂λa(λ, θ, θ)dθ +

∫
Sn−1

∫
Sn−1

a(λ, ω, θ)∂λa(λ, ω, θ)dωdθ.

Under the assumption that RV is holomorphic, that is no poles, (2.3) then shows that

σ′(λ) = O(λn−3) as λ→ 0. But this contradicts a′2 6= 0, since that would imply a lower

order of vanishing at λ = 0.



HEAT TRACES AND EXISTENCE OF RESONANCES 7

We now use Theorem 4 to show that if V ∈ L∞c (Rn,R) ∩ H n−3
2 (Rn), then RV has

infinitely many poles. This is again seen by contradiction, by assuming that detSV (λ)

has only finitely many resonances. In that case, let −µ2
1 < −µ2

2 ≤ · · · ≤ −µ2
K′ < 0,

µk > 0, denote the negative eigenvalues of PV , and let iρj, ρj < 0, j = 1, . . . , J1,

λj 6= −λ̄j, j = 1, . . . , J2 the remaining finite set of resonances. Proposition 2.1 gives

detSV (λ) = (−1)meg(λ)

K′∏
k=1

λ+ iµk
λ− iµk

J1∏
j=1

λ+ iρj
λ− iρj

J2∏
j=1

λ− λ̄j
λ− λj

λ− λj
λ+ λ̄j

.

Hence for λ ∈ R,

σ′(λ)− g′(λ) = − 1

π

K′∑
k=1

µj
λ2 + µ2

j

− 1

π

J1∑
j=1

ρj
λ2 + ρ2

j

− 1

π

J2∑
j=1

(
Imλj
|λ− λj|2

+
Imλj
|λ+ λj|2

)
,

(2.11)

That implies that ∫ ∞
0

(σ′(λ)− g′(λ)) dλ = −1
2
K ′ + 1

2
J1 + J2. (2.12)

where K ′ ≤ K is the number of negative eigenvalues. We compare this with Proposi-

tion 2.2 and the expansion in Theorem 4: if V ∈ L∞c (Rn,R) ∩ H n−3
2 (Rn), then (3.1)

shows that

tr(e−tPV − e−tP0) =

n−1
2∑

k=1

c′kt
−n

2
+k +O(t

1
2 ).

In particular,

tr(e−tPV − e−tP0) −
n−1
2∑

k=1

c′kt
−n

2
+k → 0, t→ 0 + . (2.13)

Since the terms on the right hand side of (2.11) make bounded contributions, compar-

ison with (2.9) shows that
n−1
2∑

k=1

c′k t
−n

2
+k =

1

2πi

∫ ∞
0

g′(λ)e−tλ
2

dt.

Using (2.9) and (2.12) we obtain

tr(e−tPV − e−tP0)−
n−1
2∑

k=1

c′kt
−n

2
+k = tr(e−tPV − e−tP0)− 1

2πi

∫ ∞
0

g′(λ)e−tλ
2

dλ

=
1

2πi

∫ ∞
0

(σ′(λ)− g′(λ))e−λ
2tdλ+

K∑
k=1

eµ
2
kt + 1

2
m.
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Taking the limit as t→ 0+ we obtain∫ ∞
0

(σ′(λ)− g′(λ)) dλ+K + 1
2
m = K − 1

2
K ′ + 1

2
m+ 1

2
J1 + J2 > 0 .

But this contradicts (2.13).

2.4. Why not infinitely many? A frustrating aspect of the argument in §2.3 is that

for V ∈ L∞c (Rn,R), n ≥ 5, it only shows existence of one resonance. The reason

for that is the strong assumption in Theorem 3. If we allowed, for example, a unique

(non-zero) resonance λ0 = iρ0 (it has to be purely imaginary, as the symmetry λ 7→ −λ̄
would otherwise imply that there are two) then the factorization argument above would

imply

detSV (λ) = e2πig(λ) iρ0 + λ

iρ0 − λ
, σ′(λ) = g(λ)− 1

π

ρ0

λ2 + ρ2
0

.

We now note that

1

π

∫ ∞
0

e−sr
2

1 + r2
dr ∼ 1

2
es + s

1
2

∞∑
j=0

bjs
j, s→ 0 + . (2.14)

To see (2.14), let I(s) := (1/π)
∫∞

0
e−s(1+r2)/(1 + r2)dr. Then the right hand side of

(2.14) is esI(s), while ∂sI(s) = −(1/π)
∫∞

0
e−s(1+r2)dr = αe−s/s

1
2 , α = 1/2

√
π. Hence

I(s) = I(0) + α
∫ s

0
e−s1s

− 1
2

1 ∼ 1
2

+ s
1
2

∑∞
j=0 b

′
js
j. Multiplying by es gives (2.14).

Inserting (2.14) into the trace formula (2.9), and noting that if ρ0 > 0 we have an

eigenvalue, gives

tr(e−tPV − e−tP0) = t−n/2
∞∑
j=1

ajt+ 1
2
eρ

2
0t,

and we cannot use Theorem 3 to conclude that V is smooth. The same problem arises

if we assume that we have two (or more) resonances, λ0, −λ̄0.

The following simple example does not fit into our hypotheses, but it suggests a

possible complication. Consider n = 1 and V = δ0. Then there is only one resonance,

at λ = −2i, and the heat trace has an expansion with both integers and half-integers.

2.5. Proof of Theorem 2. We again use the Birman–Krĕın formula (2.9) to see that,

under the assumption that the eigenvalue and zero resonance contributions cancel,

tr
(
e−tPV1 − e−tPV2

)
=

1

2πi

∫ ∞
0

∂λ det
(
SV2(λ)−1SV1(λ)

)
e−tλ

2

dλ.

The assumption (1.6) and [DyZw, Theorem 3.42] show that detSVj(λ), j = 1, 2, have

the same poles and zeros (with the agreement of multiplicities). Arguing as in §2.3 we

then see that

det
(
SV2(λ)−1SV1(λ)

)
= e2πih(λ), h(λ) = b0λ

n + b1λ
n−2 + · · · bn−1

2
λ.
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Then as in (2.10) we see that

tr
(
e−tPV1 − e−tPV2

)
= t−n/2

n−1
2∑
j=0

b′jt
j, b′n =

bn
Γ(n/2− j + 1)

.

That means that (3.1) holds for V1 if and only if it holds for V2, and the Theorem

follows from Theorem 4.

3. Heat trace expansions

For PV given by (1.1) with V ∈ L∞c (Rn;C), it is well known that e−tPV − e−tP0 is

trace class for t > 0, and if V ∈ C∞c it is known that tr
(
e−tPV − e−tP0

)
admits a full

asymptotic expansion – see for instance [vdB91] and references given there.

Theorem 3 is a consequence of a converse result which gives a sharp relation be-

tween existence of a finite expansion for the trace, and a given finite order of Sobolev

regularity for V , assuming that V is real-valued.

Theorem 4. Suppose that V ∈ L∞c (Rn,R), and that for some m ∈ N one can write

tr
(
e−tPV − e−tP0

)
= (4πt)−

n
2

(
c1t+ c2t

2 + · · ·+ cm+1t
m+1 + rm+2(t)tm+2

)
, (3.1)

where |rm+2(t)| ≤ C for 0 < t ≤ 1. Then V ∈ Hm(Rn). Conversely, if V ∈ Hm(Rn)

then (3.1) holds with such an rm+2(t), and limt→0+ rm+2(t) = cm+2 exists.

The proof of Therem 4 begins by using iteration to expand the heat kernel for

PV = −∆ + V . The formula is

e−tPV − e−tP0 =
∞∑
k=1

Wk(t) ,

where

Wk(t) =

∫
0<s1<···<sk<t

e−(t−sk)P0 V e−(sk−sk−1)P0 V · · · V e−(s2−s1)P0 V e−s1P0ds1 · · · dsk .

Convergence of the expansion in the L2 operator norm follows from ‖Wk(t)‖L2→L2 ≤
‖V ‖kL∞tk/k!, which holds since for all sj and t the integrand is L2 bounded by ‖V ‖kL∞ ,

and the volume of integration is tk/k!.

We also have a bound on the trace class norm:

‖Wk(t)‖L1 ≤ Ck k
n
2 tk−

n
2 /k!, (3.2)

where n is the dimension. For this we use that the trace class is an ideal, so it suffices to

show that one pair of successive terms in the product has L1 bound less than C k
n
2 t−

n
2 .
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We then observe that at least one of t− sk, sj+1− sj or s1 is greater than t/k, and for

that term we use the trace bound

‖e−sP0χ‖L1 ≤ C s−n/2, (3.3)

where χ ∈ C∞c is chosen to be 1 on the support of V . To prove (3.3) we choose

χ1 ∈ C∞c equal to 1 on suppχ. Then the explicit Schwartz kernel, K1(x, y) of

(1 − χ1)e−sP0χ satisfies |∂αK1| ≤ Cα,Ns
N(1 + |x| + |y|)−N , for any α and N . Hence

‖(1 − χ1)esP0χ‖L1 = O(s∞). On the other hand, if K2(x, y) is the Schwartz kernel of

e−sP0/2χ1 then
∫∫
|K2(x, y)|2dxdy ≤ Cs−n/2 which provides an estimate O(s−n/4) on

the Hilbert–Schmidt norm. These two bounds give (3.3):

‖e−sP0χ‖L1 ≤ C‖χ1e
−sP0χ1‖L1 + ‖(1− χ1)e−sP0χ‖L1

≤ C‖χ1e
−sP0/2‖2

L2 + CNs
N ≤ C s−n/2.

Using (3.2), we see that e−tPV − e−tP0 is of trace class for t > 0. The trace can be

brought into the sum, and we write

tr
(
e−tPV − e−tP0

)
=
∞∑
k=1

tr
(
Wk(t)

)
.

It is well known, and we include the proof, that

tr
(
W1(t)

)
= (4πt)−

n
2 t

∫
V (y) dy ,

which shows that c1 =
∫
V , and the expansion (3.1) is equivalent to

∞∑
k=2

tr
(
Wk(t)

)
= (4πt)−

n
2

(
c2t

2 + · · ·+ cm+1t
m+1 + rm+2(t)

)
.

Theorem 4 will then follow as a result of the following two propositions that concern

the asymptotics of the individual terms tr
(
Wk(t)

)
.

Proposition 3.1. If V ∈ L∞c (Rn,R) ∩Hm(Rn), then one can write

tr
(
W2(t)

)
= (4πt)−

n
2

(
c2,2t

2 + · · ·+ c2,2+mt
2+m + ε(t)t2+m

)
, (3.4)

with limt→0+ ε(t) = 0 and c2,2+j = aj‖|D|jV ‖L2 for 0 ≤ j ≤ m, for constants aj 6= 0.

Conversely, assuming V ∈ L∞c (Rn,R) ∩Hm−1(Rn), if one can write

tr
(
W2(t)

)
= (4πt)−

n
2

(
c2,2t

2 + · · ·+ c2,1+mt
1+m + r2,2+m(t)t2+m

)
, (3.5)

where |r2,2+m(t)| ≤ C for 0 < t ≤ 1, then V ∈ Hm(Rn), and hence (3.4) holds.

Proposition 3.2. If V ∈ L∞c (Rn,R) ∩Hm(Rn), then for k ≥ 3 one can write

tr
(
Wk(t)

)
= (4πt)−

n
2

(
ck,kt

k + · · ·+ ck,k+m−1t
k+m−1 + rk,k+m(t)tk+m

)
, (3.6)
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where, for a constant C depending on k and m, for 0 ≤ j ≤ m,

|ck,k+j| ≤ C ‖V ‖k−2
L∞ ‖V ‖

2
Hj , sup

0<t<1
|rk,k+m(t)| ≤ C ‖V ‖k−2

L∞ ‖V ‖
2
Hm .

The fact that V ∈ L∞c (Rn,R) ∩Hm(Rn) implies existence of the asymptotic expan-

sion (3.1) of order m + 2 is an easy consequence of the above propositions. By the

bound ‖Wk(t)‖L1 ≤ Ck k
n
2 tk−

n
2 /k! we have that

tr
∞∑

k=m+3

Wk(t) ≤ C tm+3−n
2 , 0 < t ≤ 1 . (3.7)

On the other hand, Propositions 3.1 and 3.2 show that

tr
m+2∑
k=1

Wk(t) = (4πt)−
n
2

(
c1t+ c2t

2 + · · ·+ cm+1t
m+1 + cm+2t

m+2 + ε(t)tm+2
)
,

where for j ≥ 2 we have cj =
∑j

k=2 ck,j.

The other direction of Theorem 4, that existence of an asymptotic expansion implies

regularity, is carried out by induction. Assume m ≥ 1 and V ∈ L∞c ∩Hm−1(Rn), which

trivially holds if m = 1 since L∞c ⊂ L2(Rn). Assume (3.1) holds. By (3.7) this implies

tr
m+2∑
k=2

Wk(t) = (4πt)−
n
2

(
c1t+ c2t

2 + · · ·+ cm+1t
m+1 + rm+2(t)tm+2

)
,

where |rm+2(t)| ≤ C.

By Proposition 3.2, since V ∈ L∞c ∩Hm−1(Rn) the same relation holds, with different

coefficients that can be bounded from L∞ and Hj norm bounds for V with j ≤ m− 1,

for tr
∑m+2

k=3 Wk(t) . Hence the relation (3.5) holds, and we conclude V ∈ Hm(Rn).

3.1. Calculating tr
(
W1(t)

)
. We calculate the trace of W1(t) by integrating over the

diagonal

tr
(
W1(t)

)
= (4π)−n

∫
Rn

∫
Rn

∫ t

0

(t− s)−
n
2 s−

n
2 e−

|x−y|2
4(t−s) V (y) e−

|y−x|2
4s ds dx dy .

The integral dx is carried out∫
Rn
e−
|x−y|2

4
t

(t−s)s dx = (4π)
n
2 t−

n
2 (t− s)

n
2 s

n
2

leading to

tr
(
W1(t)

)
= (4πt)−

n
2 t

∫
V (y) dy .

(From now on the integrals without integration limits will denote integrals over Rn.)
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3.2. Calculating tr
(
W2(t)

)
. Again we integrate over the diagonal to write tr

(
W2(t)

)
as

(4π)−
3n
2

∫
0<r<s<t

(t− s)−
n
2 (s− r)−

n
2 r−

n
2 e−

|x−y|2
4(t−s)−

|y−z|2
4(s−r)−

|z−x|2
4r V (y)V (z) dr ds dx dy dz .

We let u = t − s and x0 =
(

r
r+u

)
y +

(
u
r+u

)
z and carry out the integral over x by

writing

|x− y|2

u
+
|z − x|2

r
=
r + u

ru
|x− x0|2 +

1

r + u
|y − z|2 (3.8)

which expresses tr
(
W2(t)

)
as

(4π)−n
∫
r+u<t
0<r,u

(t− u− r)−
n
2 (u+ r)−

n
2 e−

|y−z|2
4

(
1

t−u−r+ 1
u+r

)
V (y)V (z) dr du dy dz .

Let r = tv − u, so dr du = t dv du, the integrand is then independent of u, the new

limits are 0 < u < tv, 0 < v < 1, and we get

t2 (4πt)−n
∫ ∫ ∫ 1

0

(1− v)−
n
2 v−

n
2

+1 e−
|y−z|2

4t
1

v(1−v) V (y)V (z) dv dy dz .

Since V is real we can use the Plancherel theorem to write this as

t2 (4πt)−
n
2

∫ 1

0

v

(
(2π)−n

∫
e−t(1−v)v|ξ|2 ∣∣V̂ (ξ)

∣∣2 dξ) dv .
By symmetry under v → 1− v we can also write this as

1

2
t2 (4πt)−

n
2

∫ 1

0

(
(2π)−n

∫
e−t(1−v)v|ξ|2 ∣∣V̂ (ξ)

∣∣2 dξ) dv .
The term in parentheses is continuous in t, and at t = 0 equals ‖V ‖2

L2 , so

tr
(
W2(t)

)
=

1

2
t2 (4πt)−

n
2

(
‖V ‖2

L2 + ε(t)
)
, lim

t→0+
ε(t) = 0 . (3.9)

This settles the case m = 0 of Theorem 4 which, since L∞c ⊂ H0(Rn) = L2(Rn), is

nontrivial only for the existence of the expansion (3.1) for m = 0. It also shows that

we can recover ‖V ‖L2 from limt→0+ r2(t).

Remark. If we were to assume V is Hölder-α, then to get van den Berg’s bounds

[vdB91] we would write

V (y)V (z) =
1

2

(
V (y)2 + V (z)2 −

(
V (y)− V (z)

)2
)

and writing |V (y)− V (z)|2 ≤ |y − z|2α would lead to a gain of tα for the last term on

the right; the other two terms would lead to the desired leading term, so we would get

ε(t) . tα.
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3.3. Proof of Proposition 3.1. First consider the case m = 1, and suppose that we

have an expansion

tr
(
W2(t)

)
= (4πt)−

n
2

(
c2 t

2 +O(t3)
)
, t ≤ 1 .

From (3.9) we must have c2 = 1
2
‖V ‖2

L2 . This leads to the estimate∫ 1

0

∫ (
1− e−t(1−v)v|ξ|2

t

) ∣∣V̂ (ξ)
∣∣2 dξ dv ≤ C , 0 < t ≤ 1 .

The integrand is positive, so by Fatou’s lemma we get(∫ 1

0

(1− v)v dv

)∫
|ξ|2

∣∣V̂ (ξ)
∣∣2 dξ ≤ C ,

implying that V ∈ H1(Rn). Conversely, if V ∈ H1(Rn)∩L∞c (Rn,R) we would get such

an expansion by dominated convergence.

To consider higher values of m, write

e−s =
m−1∑
j=0

(−1)j

j!
sj + rm(s)

(−1)m

m!
sm , (3.10)

where rm(s) is a smooth function, and by the Lagrange form for the remainder,

0 ≤ rm(s) ≤ 1 if s ≥ 0 , rm(0) = 1 , ∂srm(0) =
−1

m+ 1
. (3.11)

Now suppose that V ∈ Hm(Rn) for some m ≥ 1. Then we can expand∫ 1

0

(∫
e−t(1−v)v|ξ|2 ∣∣V̂ (ξ)

∣∣2 dξ) dv =
m−1∑
j=0

(
1

j!

∫ 1

0

(1−v)jvj dv

)(∫
|ξ|2j

∣∣V̂ (ξ)
∣∣2 dξ) tj

+
(−1)m

m!

(∫ 1

0

∫
rm
(
t(1− v)v|ξ|2

)
(1− v)mvm |ξ|2m

∣∣V̂ (ξ)
∣∣2 dξ dv) tm .

The coefficient of tm is continuous in t, and converges to am ‖|D|mV ‖2
L2 as t→ 0, where

am 6= 0. Thus, if we can write

tr
(
W2(t)

)
= (4πt)−

n
2

( m∑
j=0

cj t
j +O

(
tm+1

))
, t ≤ 1 ,

then cj = aj‖|D|jV ‖2
L2 for 0 ≤ j ≤ m, and in addition we have uniform bounds for

0 < t ≤ 1 ∫ 1

0

∫ (
1− rm

(
t(1− v)v|ξ|2

)
t

)
(1− v)mvm|ξ|2m

∣∣V̂ (ξ)
∣∣2 dξ dv ≤ C .

Then by Fatou’s lemma and (3.11) we get

1

m+ 1

(∫ 1

0

(1− v)m+1vm+1 dv

)(∫
|ξ|2(m+1)

∣∣V̂ (ξ)
∣∣2 dξ) ≤ C ,
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so necessarily V ∈ Hm+1(Rn), completing the proof of Proposition 3.1.

3.4. Trace of Wk(t) for k ≥ 3. To estimate products of derivatives, we will use the

following particular case of the Gagliardo–Nirenberg–Moser inequalities.

Lemma 3.3. Suppose {αj}kj=1 are multi-indices, with |αj| ≤ m, and
∑

j |αj| = 2m. If

u ∈ L∞(Rn) ∩Hm(Rn), then for a constant C depending only on n and m,∥∥ k∏
j=1

(
∂αjuj

)∥∥
L1 ≤ C

( k∑
j=1

‖uj‖L∞
)k−2( k∑

j=1

‖Dmuj‖L2

)2

.

Proof. We use the following bound [Tay11, (3.17) in §13.3]. Assuming u ∈ L∞ ∩Hm,

‖∂αjuj‖
L

2m
|αj |
≤ C ‖uj‖

1−
|αj |
m

L∞ ‖Dmuj‖
|αj |
m

L2 .

The result follows by Hölder’s inequality after taking the product over j. �

We now write tr
(
Wk(t)

)
for t > 0 as an integral

∫
0<s1<···<sk<t

e
− |x−yk|

2

4(t−sk)
−
|yk−yk−1|

2

4(sk−sk−1)
···− |y1−x|

2

4s1 V (yk) · · ·V (y1)

(4π)
n
2

(k+1)(t− sk)
n
2 · · · (s2 − s1)

n
2 (s1)

n
2

dy1 · · · dyk ds1 · · · dsk dx .

After integrating over x, and letting sj = trj, then letting Σ ⊂ Rk denote the set

{r ∈ Rk : 0 < r1 < · · · < rk < 1}, we obtain

tk
∫

Σ

∫
(Rn)k

e
−
|yk−yk−1|

2

4t(rk−rk−1)
···− |y2−y1|

2

4t(r2−r1)
− |y1−yk|

2

4t(1+r1−rk) V (yk) · · ·V (y1)

(4πt)
n
2
k(rk − rk−1)

n
2 · · · (r2 − r1)

n
2 (1 + r1 − rk)

n
2

dy dr .

To analyse this, we introduce variables u1 = y1, and uj = yj − y1 for 2 ≤ j ≤ k.

Then du1 ∧ · · · ∧ duk = dy1 ∧ · · · ∧ dyk, so the formula for tr
(
Wk(t)

)
becomes

tk

(4πt)
n
2

∫
Σ

∫
(Rn)k

Gr,t(u
′) V (u1 + uk) · · ·V (u1 + u2)V (u1) du dr , (3.12)

where Gr,t(u
′) is the Gaussian function of u′ = (u2, . . . , uk) ∈ (Rn)k−1

Gr,t(u2, . . . , uk) =
e
− 1

4t

(
|uk|

2

1+r1−rk
+
|uk−uk−1|

2

rk−rk−1
···+ |u3−u2|

2

r3−r2
+
|u2|

2

r2−r1

)
(4πt)

n
2

(k−1)(1 + r1 − rk)
n
2 (rk − rk−1)

n
2 · · · (r2 − r1)

n
2

.

Applying successively the following equality, which is a special case of (3.8),

|uj+1 − uj|2

rj+1 − rj
+
|uj|2

rj − r1

=
rj+1 − r1

(rj+1 − rj)(rj − r1)

∣∣∣uj − rj − r1

rj+1 − r1

uj+1

∣∣∣2 +
1

rj+1 − r1

|uj+1|2
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we can write the quadratic term in the exponent of Gr,t as

|uk|2

(1 + r1 − rk)(rk − r1)
+

k−1∑
j=2

(rj+1 − r1)

(rj+1 − rj)(rj − r1)

∣∣∣uj − rj − r1

rj+1 − r1

uj+1

∣∣∣2 (3.13)

In particular we see that, for all t > 0 and r ∈ Σ,∫
(Rn)k−1

Gr,t(u
′) du′ = 1 .

For t > 0 consider the k-linear form

Bt(V1, . . . , Vk) =

∫
Σ

∫
(Rn)k

Gr,t(u
′) Vk(u1 + uk) · · ·V2(u1 + u2)V1(u1) du dr .

By Hölder’s inequality applied to the integral over u1, we have

|Bt(V1, . . . , Vk)| ≤
k∏
j=1

‖Vj‖Lk(Rn) ,

and thus Bt is uniformly continuous on bounded sets in Lk(Rn)k. The quadratic form

(3.13) is bounded below by c |u′|2, for c > 0 independent of r ∈ Σ. An approximation

to the identity argument then shows that Bt is continuous over t ∈ [0,∞), for fixed

elements of Lk(Rn)k, where we set

B0(V1, . . . , Vk) =
1

k!

∫
Rn
Vk(u1) · · ·V1(u1) du1 .

Consequently, we can write

tr
(
Wk(t)

)
= (4πt)−

n
2 tk Bt(V ) , Bt(V ) ∈ C

(
[0,∞)

)
, B0(V ) =

1

k!

∫
V (y)k dy .

Here we set Bt(V ) = Bt(V, . . . , V ), which, by the above, is for each t a continuous

function of V ∈ Lk(Rn).

We start by demonstrating an m-th order expansion of Bt(V ) when V ∈ C∞c (Rn,R),

after which we will show it applies to V ∈ L∞c (Rn,R) ∩Hm(Rn) by taking limits.

For 2 ≤ j ≤ k we write

V (uj + u1) = (2π)−n
∫
eiηj ·(u1+uj)V̂ (ηj)

and plug this into (3.12) to express

Bt(V ) = (2π)−n(k−1)

∫
Σ

∫
(Rn)k−1

e−tQr(η
′)V̂ (ηk) · · · V̂ (η2) V̂ (η2 + · · ·+ ηk) dη2 · · · dηk dr .

where Qr(η
′) is the quadratic form inverse to (3.13), and where V̂ (−ζ) = V̂ (ζ) since

V is real valued.
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We expand exp
(
−tQr(η

′)
)

as in (3.10). The first m− 1 terms give contributions to

Bt(V ) of the form

(2π)−n(k−1)

m−1∑
j=0

(−1)j

j!
tj
∫

Q(η′)
j
V̂ (ηk) · · · V̂ (η2) V̂ (η2 + · · ·+ ηk) dη2 · · · dηk ,

where Q(η′) is the quadratic form obtained by integrating Qr(η
′) over r. The key

observation we need is that we can write

Q(η′)j =
∑

Cαk,...,α1 η
αk
k · · · η

α2
2 (η2 + · · ·+ ηk)

α1

where
∑k

i=1 |αi| = 2j, and |αi| ≤ j for every i.

Thus, the coefficient of tj is such a linear combination of terms of the form

(2π)−n(k−1)

∫
̂(∂αkV )(ηk) · · · (̂∂α2V )(η2) (̂∂α1V )(η2 + · · ·+ ηk) dη2 · · · dηk ,

This integral is equal to∫
(∂αkV )(y) · · · (∂α2V )(y) (∂α1V )(y) dy ,

which by Lemma 3.3 is bounded by C ‖V ‖k−2
L∞ ‖DjV ‖2

L2 . This establishes the bounds

of Proposition 3.2 on the coefficients ck,j+k, provided V ∈ C∞c (Rn).

The m-th order remainder is a constant times

tm
∫ 1

0

(1− s)m−1

∫
Σ

∫
(Rn)k−1

e−stQr(η
′)Qr(η

′)
m
V̂ (ηk) · · · V̂ (η2) V̂ (η2 + · · ·+ ηk) dη

′ dr ds ,

which by a similar argument can be written as an integral over r and s of various

polynomials in r, s times

tm
∫
e−stQr(η

′) ̂(∂αkV )(ηk) · · · (̂∂α2V )(η2) (̂∂α1V )(η2 + · · ·+ ηk) dη2 · · · dηk ,

with |αi| ≤ m, and
∑

i |αi| = 2m. We now show that, uniformly over r ∈ Σ, and t > 0,

1

(2π)n(k−1)

∣∣∣∣ ∫ e−tQr(η
′)v̂k(ηk) · · · v̂2(η2) v̂1(η2 + · · ·+ ηk) dη

′
∣∣∣∣ ≤ k∏

j=1

‖vj‖Lpj , (3.14)

whenever 2 ≤ pj ≤ ∞ and
∑

j p
−1
j = 1 . Here we note that the proof of Lemma 3.3

bounds the right hand side, with pj = 2m/|αj| and vj = ∂αjV , by ‖V ‖k−2
L∞ ‖V ‖2

Hm . The

bounds on rk,k+m(t) in Proposition 3.2 will follow for V ∈ C∞c (Rn).

The left hand side of (3.14) equals∣∣∣∣ ∫ Gr,t(y2 − x, . . . , yk − x) vk(yk) · · · v2(y2) v1(x) dx dy2 · · · dyk
∣∣∣∣ .

The kernel Gr,t is positive and has total integral 1, so for proving the bound we may

assume each vj is nonnegative. By interpolation, we may restrict to the case that two
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of the pj’s are equal to 2, and the rest equal ∞. There are then two distinct cases to

consider: p1 = p2 = 2, or p2 = p3 = 2. In the first case, we dominate the integral by

‖vk‖L∞ · · · ‖v3‖L∞
∫
K(y2 − x) v2(y2) v1(x) dy2 dx (3.15)

where

K(z) =

∫
Gr,t(z, y3, . . . , yk) dy3 · · · dyk .

Since
∫
K = 1, by Young’s inequality the integral in (3.15) is bounded by ‖v2‖L2‖v1‖L2 .

In case p2 = p3 = 2, we bound the integral by

‖vk‖L∞ · · · ‖v4‖L∞‖v1‖L∞
∫
K(y2, y3) v3(y3 − x) v2(y2 − x) dy2 dy3 dx , (3.16)

where now

K(y2, y3) =

∫
Gr,t(y2, y3, y4, . . . , yk) dy4 · · · dyk .

Thus K̂(η2, η3) = e−tQr(η2,η3,0,...,0). Writing v2 and v3 in terms of their Fourier trans-

forms, and integrating out y2 and y3, expresses the integral in (3.16) as

(2π)−2n

∫
e−ix(η2+η3)e−tQr(−η2,−η3,0,...,0) v̂3(η3) v̂2(η2) dη2 dη3 dx

= (2π)−n
∫
e−tQr(−η2,η2,0,...,0)v̂3(−η2)v̂2(η2) dη2 ,

which is bounded by ‖v3‖L2‖v2‖L2 by the Schwarz inequality, as Qr ≥ 0.

It remains to show the expansion holds for general V ∈ L∞(Rn,R) ∩Hm(Rn). We

set φε ∗ V = Vε ∈ C∞c (Rn), where φε = ε−nφ(ε−1·) is a family of smooth compactly

supported mollifiers.

Recall that tr
(
Wk(t)

)
= (4πt)−n/2tkBt(V ). Since for each t, Bt(V ) is continuous in

V in the Lk(Rn) topology, then Bt(V ) = limε→0Bt(Vε). Furthermore, since ‖Vε‖L∞ ≤
‖V ‖L∞ , ‖Vε‖Hm ≤ ‖V ‖Hm , we have the following bounds, uniform for t > 0 and ε > 0,

‖rk,k+m(t, Vε)‖ ≤ C ‖V ‖k−2
L∞ ‖V ‖

2
Hm .

It thus remains to show that limε→0 ck,k+j(Vε) = ck,k+j(V ) if j ≤ m− 1, for appropri-

ately defined ck,k+j(V ) satisfying the bounds of Proposition 3.2.

Recall that ck,k+j(Vε) can be written as a linear combination of terms of the form∫
(∂αkVε)(y) · · · (∂α1Vε)(y) dy , (3.17)

where |αi| ≤ j for all i, and
∑k

i=1 |αi| = 2j . We define ck,k+j(V ) by the same formula,

which by Lemma 3.3 is well defined, and absolutely dominated by ‖V ‖k−2
L∞ ‖DjV ‖2

L2 .
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To see that (3.17) converges, as ε→ 0, to the same expression with Vε replaced by V ,

we note that, by the proof of Lemma 3.3, ∂αiV ∈ L
2m
|αi| , so for |αi| > 0,

lim
ε→0
‖∂αiVε − ∂αiV ‖

L
2m
|αi|

= 0 .

Thus, the product over the terms in (3.17) with |αi| 6= 0 converges in L
m
j to the same

product with Vε replace by V . Since m
j
> 1, the integral in (3.17) converges as ε→ 0

by the fact that Vε → V in Lp for all p <∞.
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[Gu81] L. Guillopé, Asymptotique de la phase de diffusion pour l’opérateur de Schrödinger avec po-
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