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generalized Radon transform. To address the illumination challenge and enable (accurate)
local parameter estimation, we develop a method for partial reconstruction. We make
use of the curvelet transform, the structure of the associated matrix representation of the
generalized Radon transform, which needs to be extended in the presence of caustics, and
phase-linearization. We pair an image target with partial waveform reflection data, and
develop a way to solve the matrix normal equations that connect their curvelet coefficients
via diagonal approximation. Moreover, we develop an approximation, reminiscent of
Gaussian beams, for the computation of the generalized Radon transform matrix elements
only making use of multiplications and convolutions, given the underlying ray geometry;
this leads to computational efficiency. Throughout, we exploit the (wavenumber) multi-
scale features of the dyadic parabolic decomposition underlying the curvelet transform
and establish approximations that are accurate for sufficiently fine scales. The analysis we
develop here has its roots in and represents a unified framework for (double) beamforming
and beam-stack imaging, parsimonious pre-stack Kirchhoff migration, pre-stack plane-
wave (Kirchhoff) migration, and delayed-shot pre-stack migration.
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1. Introduction

1.1. Seismic Imaging with Arrays — Beyond Current Capabilities

Much research in modern, quantitative seismology is motivated — on the one hand — by the
need to understand subsurface structures and processes on a wide range of length scales,
and — on the other hand — by the availability of ever growing volumes of high fidelity
digital data from modern seismograph networks and access to increasingly powerful
computational facilities.

Passive-source seismic tomography, a class of imaging techniques (derived from the
geodesicX -ray transform and) adopted from medical applications in the late 1960’s, has
been used to map the smooth variations in the propagation speed of seismic P and S
waves below the earth’s surface (see, e.g., Romanowicz [1], for a review and pertinent
references). To image singularities in the earth’s medium properties one needs to resort to
scattered waves or phases. Exploration seismologists have developed and long used a range
of imaging and inverse scattering techniques with scattered waves, generated by active
sources, to delineate and characterize subsurface reservoirs of fossil fuels (e.g., Yilmaz
[2]). A large class of these imaging and inverse scattering techniques can be formulated
and analyzed in terms of a Generalized Radon Transform (GRT [3, 4,5, 6, 7, 8, 9, 10, 11])
and its extension [11] using techniques from microlocal analysis.

Recently, while using tomographic models as a background, passive-source seismic
imaging and inverse scattering techniques have been developed for the exploration of
Earth’s deep interior. For the imaging of crustal structure and subduction processes, see
Bostocket al. [12] and Rondenat al. [13] — here, the incident, teleseismic, waves are
assumed to be “plane” waves. Waagal. [14] present an inverse scattering approach
based upon the GRT to image selected neighborhoods of Earth’s core-mantle boundary
(CMB) using broadband wavefields including the main “topside” reflections off the CMB
and its precursors and coda (generated by scattering off interfaces above the CMB).
Through joint interpretation with data from mineral physics this method enabled the
estimation of temperatures at and near the CMB [15]. In order to increase the extent of
the CMB region that can be imaged, Waagal. [16] extended the method to enable
GRT-like transforms of “underside” reflections, sampling the CMB and structures above it
from below. In a modification of this use of underside reflections, €a. [17] used SS
precursors (see figure 1) to produce high resolution images of the upper mantle transition
zone discontinuities. Mantle discontinuities near the CMB and in the transition zone are
associated with phase transformations.

The key challenge of applying the GRT to global earth configurations remains
the available data coverage; but the challenge of subsurface illumination also exists in
exploration seismology, for example, in regions with salt tectonics. Indeed, various
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structures in the earth’s interior have so far escaped resolution, or discovery, due to
restrictions in illumination by (passive) sources and (arrays of) receivers. In this paper,
we assume that the data coverage cannot be improved. Given the available data coverage
on the one hand and the complexity of the background model (expressed in terms of
spatial wavespeed variations) on the other hand, we address the challenge of subsurface
illumination in imaging reflectors from waveform surface reflection data. We develop a
method for partial reconstruction. Our approach makes use of the frame of curvelets and
curvelet transform [18, 19, 20, 21], the associated matrix representation of the generalized
Radon transform, which need be extended in the presence of caustics, and phase-
linearization. We pair an image target — focussing on specific structures (or geodynamical
processes) — with partial reflection data, and develop a way to solve the matrix normal
equations that connect their curvelet coefficients via diagonal approximation.

The analysis we develop here has its roots in (double) beamforming, double
beam migration [22, 23] and beam-stack imaging [24, 25], which pose less stringent
requirements on data coverage than the GRT. Seismic data can be sparsely represented
by curvelet-like functions [26]. Therefore, the results presented here shed new light
on the concept of parsimonious pre-stack Kirchhoff migration [27]. Our approach also
retains aspects of pre-stack plane-wave (Kirchhoff) migration [28, 29], offset plane-wave
migration [30, 31], and delayed-shot pre-stack migration [32]. For example, synthesizing
“incident” plane waves from point sources has its counterpart in the curvelet transform of
the data.

There exists arich literature on the use of regional (dense) seismic arrays to detect and
locate the origin of scattered energy in the seismic wavefield. Recent reviews of such array
processing techniques are given by, for instance, Rost and Thomas [33] and Roetlenay
al. [34]. In general, these techniques involve some type of beamforming [35]; that is,
they assume (or aim to detect) the wave vector (or the horizontal slowness — related to the
angle of incidence and back azimuth) of the incoming waves, and use this information to
separate the coherent from the incoherent parts of the recorded signal. Implicitly, these
methods aim to detect the wavefront set of the scattered wavefield [36]; this detection can
then be used in migration. In beam-stack imaging [25] a region of the crust is subdivided
into sub-areas. For each sub-area to be scanned, the seismograms from an event suite
are incoherently stacked after beam-correcting each trace, computing new beams for each
crustal sub-area, and migrating the results by applying appropriate time offsets, in the spirit
of time migration or geophysical diffraction tomography. Deesal. [37] use an imaging
approach through waveform stacking, in particular, of SS precursors: After selecting a
bin of scattering (or image) points, which implies a selection of source-receiver pairs, the
authors correct for the moveout (observed reference arrival times) of SS in the seismic
records, and then stack the records at different slownesses (dependent on the bin) for given
(array specific) times relative to the SS arrival time. (This stacking can be viewed as
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beamforming.) For this family of imaging techniques, see also Flanagan and Shearer [38].
Receiver functions and the process of imaging P-to-S converted waves assuming an

incident plane P wave [39] are also related to the subject of this paper. But such analysis is

essentially restricted to imaging beneath continental regionals and isolated islands.

Migration methods have been applied to regional data sets with a weighting factor
which depends on the incident angles of the rays. To this end, the migration operators
have been limited to the Fresnel volume of the reflected ray paths [40] to reduce artifacts
caused by truncated wavefield observations. In this context, the migration operator
has been further subjected to slowness-backazimuth weighting with the aid of Gaussian
window functions [41]. The desired artifact reduction is implied by the rigorous patrtial
reconstruction proposed and developed in this paper.

The main objective of the research presented here is to be able to extend imaging
and interface characterization with inverse scattering into (geographical) regions where
degraded data coverage no longer justifies the application of a “global” GRT. Moreover,
through the (direct) computation of image curvelet coefficients, our approach enables a
careful examination of the different scales in rapid variation — and, hence, regularity —
in medium properties and the processes that shape them. We develop an approximation,
reminiscent of Gaussian beams [42], for the computation and application of the generalized
Radon transform matrix (with respect to curvelets) only making use of multiplications
and convolutions, given the underlying ray geometry. Throughout, we exploit the
(wavenumber) multi-scale features of the dyadic parabolic decomposition underlying the
curvelet transform and establish approximations that are accurate for sufficiently fine
scales.

The outline of the paper is as follows. In Section 2 we summarize the extension
of the generalized Radon transform viewed as a Fourier integral operator and bring
its kernel in a particular oscillatory integral form. In Section 3 we review the (co-
)frame of curvelets and the underlying dyadic parabolic decomposition, and introduce the
relevant matrix classes. We then prove a result pertaining to the diagonal approximation
of pseudodifferential operators (Lemma 3.1) and the computation of their inverses on
the range of the curvelet transform restricted to sufficiently fine scales. To this end,
we introduce the symbol clas,i?‘z,0 , and the notion of a “curvelet-like function”. In
Section 4 we prove results (Theorems 4.1-4.3) pertaining to matrix approximations to the
generalized Radon transform. The approximations are characterized by multiplications
and convolutions, the consequence of an underlying separation of variables in phase space
of the relevant symbols. These lead to fast algorithms, and we speak of imaging “in the
curvelet domain”. The results of this section also apply, for example, to the Fourier integral
operator representing the parametrix of the wave equation with smooth coefficients. In
Section 5 we introduce a method of partial reconstruction incorporating “illumination
correction” and prove the necessary estimates (Lemma 5.1). The results of this section can
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Figure 1. Scattered rays (broken geodesics) for imaging discontinuities (here the “660”
corresponding with a phase transition at 660 km depth) in Earth’s mantle. (CMB stands
for core-mantle boundary.)

be directly extended to other imaging schemes as long as the canonical relation describing
the propagation of singularities by the scheme is locally the graph of an invertible canonical
transformation.

1.2. Modelling, Scattering Operator

The propagation and scattering of seismic waves is governed by the elastic wave equation,
which is written in the form

Pilul = fi7 (1)
where
w = +/p(z)(displacement, fi= 1( )(volume force density, (2)
plx
and
2 ..
ljil = 6”8_2 + Ail + l.o.t. s Ail = — 0 Cljkl(x) 0 (3)

ot
where l.o.t. stands for “lower-order termsi € R™ and the subscripts, j, k,I €
{1,...,n}; pis the density of mass whilg,;; denotes the stiffnesss tensor. The system
of partial differential equations (1) is assumed to be of principal type. It supports different

dx; p(x) Oxy’
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wave types (also called modes), one “compressional’ranrd1 “shear”. We label the
modes byM, N, ...

For waves in modé/, singularities are propagated along bicharacteristics, which are
determined by Hamilton’s equations with Hamiltoni&r,; that is

dx 0 dt

a - a_éB]W(I7£) ) ﬁ - 17 (4)
& 0 dr

a - _%B]W(x7£) ; a = 0.

The By (x, £) follow from the diagonalization of the principal symbol matrix4f(z, &),
namely as the (distinct) square roots of its eigenvalues. Clearly, the solution of (4) may be
parameterized by(that is,\ = t). We denote the solution of (4) with initial valués, &)
att = 0 by (za(zo, 0, 1), Em (o, &0, 1))

To introduce the scattering of waves, the total value of the medium pararpetgys
is written as the sum of a smooth background compongnt), c;;x;(z), and a singular
perturbationgp(x), dc;jx (), Nnamelyp(z)+dp(z), ciju(x)+dcik(z). This decomposition
induces a perturbation d®; (cf. (3)),

5P¢l _ 5”5,0_(@8_2 _ 0 5Cijkl($) 0 .
p(z) ot Ox; p(x) Oxy

The scattered fieldy;, in the single scattering approximation, satisfies

Pyou, = —0Pyuy.

Data are measurements of the scattered wave field When no confusion is possible,
we denote data by, however. We assume point sources (consistent with the far field
approximation) and point receivers. Then the scattered wave field is expressible in terms
of the Green’s function perturbation&7 ;v (7, Z, t), with incident modes of propagation
N generated at and scattered modes of propagatighobserved af: as a function of
time. Here,(z, 7, t) are contained in some acquisition manifold. This is made explicit by
introducing the coordinate transformation— (z(y), z(y), t(y)), such thaty = (¢/, y")
and the acquisition manifold; say, is given by/” = 0. We assume that the dimension of
y" is 2 + ¢, wherec is the codimension of the acquisition geometry. In this framework, the
data are modeled by
(2,20t ) s an(@(0/,0). 5060 0,0 ®)

When no confusion is possible, we use the notadiGhy v (v').

We denote scattering points by; zo € X C R", reflecting thasupp dp C X and
supp dc C X. The bicharacteristics connecting the scattering point to a receiver (in mode
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M) or a source (in modé/) can be written as solutions of (4),

7= ay(zo, €0, 1), T = xn(T0,80,1)
€ = fM(ZUo,fo,%\) 9 f = £N(x07’£07t) )
with appropriately chosen “initial’a) and 50 respectively. Then = ¢ + ¢ represents
the “two-way” reflection time. The frequency satisfiest = —Bjy(xo,&). We
obtain (y(l’o, 507 507 %\7 2)7 77(1507 507 507 %\7 %v)) by tranSforming(/J}\, f? %\ + %; 57 67 T) to (y7 T])
coordinates. We then invoke the following assumptions that concern scattering over
and rays grazing the acquisition manifold:

Assumption 1. There are no elementg’, 0, 7', ") with (v, ") € T*Y'\0 such that there
is a direct bicharacteristic froniz(y', 0),£(y/, 0,7, ")) to (z (v, 0), —&£(v', 0,7, ")) with
arrival timet(y’, 0).
Assumption 2. The matrix
/!
AayN —— has maximal rank. (6)
6($0, 607 507 ta t )
With Assumptions 1 and 2, equation (5) defines a Fourier integral operator of order
%3 and canonical relation, that governs the propagation of singularities, given by

AMN = {(?/(370,goag)aa’{),77/(33075)75)7%\,?);370,50 + gO) | (7)

B]V[(l'oaa)) = BN($075)) =T y”(ana)vg)v%\vftv) = 0}
C TY\0 x T*X\0.

The conditiony” (zo, &, &, 1, 1) = 0 determines the traveltimeésfor given (z, &) and?
for given (zo,&). The canonical relation admits coordinatég;, xo, ), wherel U J
is a partition of{1,...,2n — 1 — ¢}, and has an associated phase functidg,y =
Pun (Y, xo,m;). While establishing a connection with double beamforming, we will also
use the notation® = z(y',0), 2" = z(y’,0); when no confusion is possible, we use the
simplified notatiorny’ = (z*, 2", t).

We refer to the operator above as the scattering operator. Its principal symbol can
be explicitly computed in terms of solutions of the transport equation [11]. In the further
analysis we suppress the subscripts, and drop the prime and writgfor 3/ andn for 1.

2. Generalized Radon Transform

Through an extension, the scattering operator becomes, microlocally, an invertible Fourier
integral operator, the canonical relation of which is a graph. The inverse operator acts on
seismic reflection data and describes inverse scattering by the generalized Radon transform.
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2.1. Extension

Subject to the restriction to the acquisition manifdldthe data are a function @h—1—c¢
variables, while the singular part of the medium parameters is a functiervafiables.

Here, we discuss the extension of the scattering operator to act on distributibns bf-c
variables, equal to the number of degrees of freedom in the data acquisition. We recall the
commonly invoked

Assumption 3. (Guillemin [43]) The projectionry of A onT*Y\0 is an embedding.

This assumption is known as the Bolker condition. It admits the presence of caustics.
Because\ is a canonical relation that projects submersively on the subsurface variables
(x,€) (using that the matrix operatd?; is of principal type), the projection of (7) on
T*Y'\0 is immersive [44, Lemma 25.3.6 and (25.3.4)]. Indeed, only the injectivity part
of the Bolker condition needs to be verified. The imayef 7y is locally a coisotropic
submanifold of7™*Y"\0.

Since the projectiomrx of A on 7" X\0 is submersive, we can chooge ¢) as the
first 2n local coordinates om; the remaining dim” — n = n — 1 — ¢ coordinates are
denoted by € F, F being a manifold itself. Moreover; = ||£||~'¢ is identified as the
seismicmigration dip The setsY > (x, ) = const. are the isotropic fibers of the fibration
of Hormander [45], Theorem 21.2.6; see also Theorem 21.2.4. The wavefront set of the
data is contained i and is a union of such fibers. The magr,' : £ — X is a
canonical isotropic fibration, which can be associated with seismjz migration46].

With Assumption 3 being satisfied, we defifleas the map (o),

Q: (z,&e)— (y(z,&e),n(z,&e)): T"X\0Ox E— T*Y\0;

this map conserves the symplectic form BfX\0. The (z,&,e) are “symplectic”
coordinates on the projectiaghof A on7*Y"\0. In the following lemma, these coordinates
are extended to symplectic coordinates on an open neighborhodt] efhich is a
manifestation of Darboux’s theorem stating tliat” can be covered with symplectic local
charts.

Lemma 2.1. Let £ be an embedded coisotropic submanifold/6t\0, with symplectic
coordinates(z,{,e). Denotel > (y,n) = Q(x,&e). We can find a homogeneous
canonical mapG from an open part of *(X x E)\0 to an open neighborhood @ in
T*Y'\0, such thatz(z, e, &, e = 0) = Q(z,&, e).

Let M be the canonical relation defined as the graph of tiapthis lemma, i.e.
M = {(G(z,e,& e);x,e,€,6)} CTY\O x T*(X x E)\O .

One can then construct a Maslov-type phase function\fothat is directly related to a
phase function foA. Supposéy;, z,7,) are suitable coordinates fdr. For || small, the
constant= subset ofM/ allows the same set of coordinates, thus we can use coordinates
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Figure 2. Wavefront set of an extended image= r(x,e). The gray surface (singular
support) corresponds with= 0 and maps into the range of the scattering operator before
extension. The transparent surface exemplifies the extensioveloes away from zero.

(yr,ms,x,e) on M. Now there is (see Theorem 4.21 in Maslov and Fedoriuk [47]) a
function S(y;, z,ns,€), called the generating function, such tiidtis given by

_ 95 _ _95
Yy anj ’ nr ay] )
(8)
(05 _ 08
G N Oe
A phase function foM/ is hence given by
W(y,l’, 677]J7€) = S(yfax)nJag) - <77JayJ> + <€7 €>. (9)

A phase function for\ is then recovered by

Lp(y7xu %‘520777]70) = ¢(yax07nJ> .

We then obtain a mapping from a reflectivity function (illustrated in figure 2) to
reflection data that extends the mapping from contrast to data (cf. (5)). We recall

Theorem 2.2.[11] Suppose microlocally that Assumptions 1 (no scattering ayer2
(transversality), and 3 (Bolker condition) are satisfied. lfétbe the Fourier integral
operator,

F: E&8(XxE)—>D(Y),

with canonical relation given by the graph of the extended @ap (x, ¢, e,¢) — (y,n)
constructed in Lemma 2.1. Then the data can be modeldd &gting on a distribution
r(z,e) of the form

r(z,e) = R(z, D, e) c(x), (10)
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whereR stands for a smooth-family of pseudodifferential operators ande £'(X) with

dcijrl &
c= <—; ,7’)).

The operator F' is microlocally invertible. By composing with an elliptic
pseudodifferential operator we can assume without loss of generality“that zeroth
order Fourier integral operator associated to a (local) canonical graph. We recall that
for Fourier integral operators the canonical relations of which are locally the graphs of
canonical transformations, we have the property that their orders equal their Sobolev orders
[45, Cor. 24.3.2]

Remark. The operatorF’ extends the procedure applied in [14, 15] to image, with the
adjoint £*, D" in Earth’s lowermost mantle using core reflected ScS “phases”, their
precursors and their coda, to the generic case admitting the formation of caustics. The
e dependence in(zx,e) can be exploited in a formulation of inference of singularities in
the presence of (coherent) “noise” [48].

2.2. Oscillatory Integral Representation

If we have a canonical transformation from a neighborhootgfe, &y, c0) € T*(X x
E)\0 to a neighborhood ofyy,70) € 7*Y'\0, then one can choose local coordinates
(y,&,¢) on a neighborhood ofyy, 10, 2o, €0, &0, €0) ON M [44, Prop. 25.3.3], that is,
M : (y,n,ze&e) — (y ¢, ¢) is a local diffeomorphism. We denote the associated
generating function bﬁ S(y ¢, ¢) and obtain the phase function

¢(x7 €, yﬂl) - S(ZJ, 575) - <§,ZE> - <6’ €> (11)
(cf. (9)). In fact, on)M locally we can regarg and(z, e) as functions ofy, ¢, €); then we
can takeS(y,§,¢) = (n(y & ¢), (2(y, €, €),e(y, €, €))) [45 Thm. 21.2.18].

We introduce the shorthand notatian;= (z,¢), £ := (&, €), resettingn := 2n — 1,

andS(y,¢) = S(y.6,) andX : (2.€) — (y,7) < 1(,€), s (x, €)) corresponding
with G(z,e, £, ¢), cf. Lemma 2.1. We identify(x) with r(z, e), and we get, sincé’ is a
Fourier integral operator,

(Po)(o) = [ Aly.)elz) do. 12)
The kernel admits an oscillatory integral representation
Alye) = [ aly.©) explio(y. €] de, 13)

with non-degenerate phase function
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and amplitudea = a(y,&), a standard symbol of order zero, with principal part
homogeneous i of order0. With the above form of the phase function, it follows
immediately that operatdr propagates singularities according to the map,

08 08
which can be identified as. Substituting (14) into (12)-(13) yields the representation
(Po)(0) = [ alo.€) expliS(y. )5(6) de, (16)

in which S satisfies the homogeneity propeflyy, c¢) = ¢S(y, £) for ¢ > 0; v denotes the
Fourier transform of,, andd¢ denoteg27) " times Lebesgue measure.

We remark that the above representation is valid microlocally. In Section 4 we study
the action of operators of the form (16) to curvelets. The results for the global Fourier
integral operatorr’ are obtained by taking a superposition of the above representations
using an appropriate microlocal partition of the unity in phase space.

3. Dyadic Parabolic Decomposition and “Curvelets”

We introduce boxes (along tige-axis, that is¢’ = &;)
L L L LV n—1
B, — ¢ — Zk ¢ o Tk _ Tk Lk
k |:§k 92 75]@ + 92 :| X |: 9 ) 9 )
where the centerg,, as well as the side lengthg, and L}, satisfy the parabolic scaling
condition
& ~2%  L~2F LY ~2M? ask — oo

Y

Next, for eachk > 1, letv vary over a set of approximate®f™—1/2 uniformly distributed
unit vectors. (We can indexby ¢ = 0,..., N, — 1, Ny = |2F"=D/2]: v = p(¢) while we
adhere to the convention that0) = ¢, aligns with the¢;-axis.) Let©, , denote a choice
of rotation matrix which maps to ¢;, and

By = ©,,,.By.

In the (co-)frame construction, we have two sequences of smooth funcfignand B,,,k,
onR", each supported i, ;, so that they form a co-partition of unity

(OO + 33 Rk ©Bn(©) = 1, 17)

k>1 v

and satisfy the estimates
(v, 0e)? O R ()] + (v, ) D B ()] < Cjp 272,
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We then form

Dui(€) = 01 PBun(€) s Bur(€) = o PRun(€), (18)

with p, the volume ofB;. These functions satisfy the estimates

‘SOI/,k('CE)‘ <C 2k(n+1)/4 2k 2k/2 —N
Wy r(@)| [ SN (25 (v, )| + 22|«

for all N. To obtain a (co-)frame, one introduces the integer latti€e:= (ji, ..., j,),
the dilation matrix

1 L 01xn-1 _
D, = — k xn det D, = (2m)™"
g 2m ( Op—1x1 Lllgl[nfl ) ’ ¢ g ( F) Pk

and pointsz; = O, D, ' X;. The frame elements:(> 1) are then defined in the Fourier
domain as

B1(6) = o *Run(€) expl=ile;, )], v = (w0, k), (19)
and similarly for@v(g). We obtain the transform pair
v = (@B vw) = 3 v (20)

Y
with the property thad__,. ., v, Py(§) = ﬁ(f)ﬁu,k(f)@,k(f), for eachy, k.

Remark. If we write 0, ,(§) = p,lc/%(g)@k(g), the curvelet transform pair attains the

form of a quadrature applied to the convolution,

v(x) = Z Uy * Py p(T) . (22)
v,k

This observation can be exploited to obtain sparse approximations, oy sums of
wavepackets [26].

We introduce the notatio@® for the curvelet transform (analysis); = (Cv),, and
also defineC~'{c,} = >, ¢ypy for the inverse transform (synthesis). We observe that
C~1C = I on L*(R"), and thatCC~! = II is a (not necessarily orthogonal) projection
operator oféi onto the range of the analysis operator It holds thatll?> = II, butII is
generally not self-adjoint unlesgs, = .. Observe that, as a matrix Qﬁﬁ

Iy = (U, 0y) -

If A: L*(R") — L*R"), then the matriA] = CAC™! preserves the range 6f,
sinceC~'TI = C~!, andIIC = C. In particular,[A]II = TI[A] = [A]. Here, and when
convenient, we identify operators dﬁwith matrices.
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3.1. Matrix Classes and Operators

Let d denote the pseudodistance $1.X) introduced in [49, Definition 2.1]
d(z,v;2' V') = [(v,z — )| + [(V', 2 — 2)|
+min{||lz — '], [l — 2|I*} + [lv = /|
If v = (x,v,k)andy = (', k'), let
d(yiy) =270 4 d(z, vy, V), (22)
The weight functionus(+,~’) introduced in [50] is given by
H5(7,7') = (L [ — k)~ 2 el g (e minh gy /) =0rs),

We summarize [50, Definitions 2.6-2.8]. ¥fis a mapping ort™*(R™), the matrix/
with elements\/,.., belongs to the clas$/}(x), if there is a constant'(9) such that

| M| < C(6) 2" us(v, x(7)) @ =~ |I€]M); (23)
here,x(v) = (x(z;,v), k). Furthermore M"(x) = Ns=oMj(x). If x is the projection of
a homogeneous canonical transformation, then by [49, Lemma 2.2] the megserves
the distancel up to a bounded constant; thatdéy~'(v),~') ~ d(v, x(y')) . Hence, the
transpose operation takes matricediti(y) to M"(x~!). We note that the projection map
II = CC~! belongs taM?(7), see [50, Lemma 2.9].

It is also useful to introduce norms on the class of matrices determined by distance-

WeightedK?y norms on columns and rows. Precisely, for 0 and a giveny,

1M]3,, = sup Yy 22 HlagzminRDag(y/s y ()2 [ M, [

Y ~

+sup y 22 Klegmin R () y (4))2 M [P (24)
,y/
Y

We remark that any matrix bounded @ must have finite(2;0) norm, since this
corresponds to rows and columns being square summable. Additionally, it follows
immediately that

[M|lziq4n <00 = M€ Mg(x). (25)
Inclusion in the other direction follows from the proof of [50, Lemma 2.4]
Me M) = |M|sa < oo. (26)

The technique of2; «) bounds has been designed for propagation and scattering problems
in rough background metrics (density normalized stiffness), butAtjeconditions lead
more directly to desired mapping properties.
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3.2. Pseudodifferential Operators and Diagonal Approximation

Pseudodifferential operators, of ordemwith appropriate symbols are the most important
example of operators with matrices of clagt (7).
Let

Av(z) = a(z, Dyo(x) = / explifz, €)) a(z, ©)(€) d,
where the symbol satisfies, for allo, 3,
(€, 06) 0202 a(w, )| < Cjap(l+ [l€]) 2210, 27)

We denote the class of symbols satisfying these estimaté&$ as. Thus,a € S9 rad
27 29

precisely when(§, o)’ a € Sg,% for all j. More generallya € S;md precisely when
(€,0¢)a € S;% for all j. Let A be a pseudodifferential operator with symbolSide. A
stationary phase analysis then shows that = 2*" f., where

&) = 9 %50 (€) expl—ia, €)], (28)
in whichg, . satisfies the estimates

(v, Y 02| < Can2 F 021D (14 27|(, €)| + 2742l — Boyl) ™"

for all N, where||¢ — B, ;|| denotes the distance §to the rectangle3, , supportingy, x.
Such anf, will be called a “curvelet-like function” centered af cf. (19). In particular,

[ (Wb, f)] < C(6) s (v, 7)

for all § > 0, so that(y, f,) € MO(I).

If the principal symbol ofA is homogeneous of ordéY, ag(x,&) = ao(x,&/[[€]]),
we have the following diagonalization result, which is a simple variation of the phase-
linearization of Seeger-Sogge-Stein [51]

Lemma 3.1. Suppose thatl is a pseudodifferential operator with homogeneous principle
symbolay(x, &) of order(0. Then

ASOV = ao(%ﬂ/) Py +2_k/2f'yv (29)
wheref, is a curvelet-like function centered at

Proof. The precise assumption we need is that the symbdl@fualsa, plus a symbol of
classS, ? . The terms of order-; can be absorbed intf,, while
27

ao(z, D)oy (z) = o> / expli{z — 7, &)ao(x, €)Tor(€) dE.
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For convenience we assume that (1,0, ...,0) lies on thet; axis. By homogeneity,
ao(x,&) = ao(z,1,£"/&), wherel” = (&,...,&,). We take the first-order Taylor
expansion on a cone about theaxis, that is,

ao(w,1,8"/61) — ao(zj,v) = bi(x,€) - (v — 25) + ba(w,§) - £ /&1,

whereb, andb, are smooth homogeneous symbols. The term @fifg; is bounded by
27k/2 on the support o, ., and preserves the derivative bounds (28)pn with a gain
of 27%/2, The termb, - (x — z;) leads to a contribution

i [ explite = 2,, ) Delba(w, Rur() e,
which also yields a curvelet-like function of orde%. O

In (29) we writer., = 27%/2f. . Taking inner products witky., yields

[Alyy = ao(zj, v) Wy + (75 - (30)
If A is elliptic, we have uniform upper and lower bounds on the symal6t, &), that is
C! < ap(z,€)| < C for some positive constant. By (30) we then have

ag(x;,v) " [A]yy — I, € M72(I). (31)
Also, by (30),
|ao(zj,v) — (¥, 907>_1[A]W | < C 272,

It follows that (31) holds withuy(x;, v) replaced by the normalized diagonal
D, = H;&[A]vw

after modifying[A].., if necessary, by terms of size*/2, to allow for the possibility that
the diagonal elements @fi| may vanish for smalt.

We remark that (31) also holds withy(xz;, v) replaced byao(z},v'). (The latter
appears from applying the procedure of diagonal approximation tadjoent of A.) This
follows by (30) and the fact that

lag(z;,v) — ao(a:;», V)| < C(laj — x;| + v =) < Cd(zy, l/;$2»7 VY2
hence the commutatdu, (2}, ') — ao(z;, v))IL,, belongs taM~z(I). As above, it then
follows that

D! [A}v"y = Iy 4+ Ry Re Mﬁ%(f) : (32)

Y
While A need not be invertible, (32) implies that one can inydfton the range o

restricted tok sufficiently large. Precisely, let, be a collection of indices. We denote

by 170 the multiplication operator (diagonal) dﬁ; that truncates a sequenceltg Then



Generalized Radon Transform and Curvelets 16

I17° = II 17® is an approximate projection into the range(gfwith rapidly decreasing
coefficients away froni'y. In practice, it is desirous to tak&’®, at each fixed scalk, to
be a smooth truncation to a neighborhoodpfsuch that 17> — 1$,°| < Cd(y,y)% . In
this case,

(10— 1)1, e M2, (33)

so that1’® preserves the range 6fat any fixed scalé up to an operator of norra+/2,
hence the difference betweéi® and 17° is small on the range of for largek.
If we multiply (32) on the right by1§0, and use thaiz = R1I, then

DA =117 + R17° = (I + Ry)IT*°,

whereR, is the matrixR restricted to the scalésoccuring in/,. Hence, if[} is supported
by k sufficiently large, thed + R, can be inverted, and

(I+ Ry) "D '[A] 170 =T1"0

using a Neumann expansion. To leading order the inverdiagonal We will exploit this
result in Section 5, while solving the normal equations derived from the compositibh
yielding “illumination correction” and partial reconstruction of the reflectivity function.

4. Generalized Radon Transform Matrix Approximation

We consider the action of the generalized Radon transform opédrainra single curvelet,
that isv = ¢, in (16),

(Fo) =" [ty ORsl®) expli (5619 — (E.r)de. (39

With the outcome, we can associate a “kernel”

Avr(y, z5) = (Foq)(y) - (35)
The infinite generalized Radon transform matrix is given by
/% F@'y dy - /1/17 l/k y,x])dy (36)

We then have” = ¢!

We seek an approximation éfy., via expansions of the generating functisfy, §)
and the symbol(y, &) near the microlocal support ¢f,. The first-order Taylor expansion
of S(y, &) along thev axis, following [51], yields

S(yaé) - <§7xj> = <§7 g_g(y7 V) - xj> + h2<y7§)7 (37)
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where the error termh,(y, &) satisfies the estimates (27) on tfesupport of X, 4.
Consequentlyexplihs(y, £)] is a symbol of clas§2’md if £ is localized to the rectangle
B, . supportingy, k. ’

We introduce the coordinate transformation (note thdépends oik)

oS
y— T,y = a_g(y’ V).

If b, x(z,€) is the orde) symbol

bl/7k(x7 5) = (a(y7 5) exp[ih2<y7 5)] )|y:T;g(x) ’

then
(Fo)(y) = (@, D)psl oo, -

This decomposition expresses the generalized Radon transform operatofrag) a
dependent pseudodifferential operator followed by a change of coordinates, also depending
on the pair(v, k). This decomposition can be used to show that the maffj¥elongs

to M°(x), wherey is the projection of the homogeneous canonical transformation

(cf. (15)) to the co-sphere bundle; see [53] and [54]. (See also Theorem 4.3 below.)

We use an expansion of the symbol and phase of the oscillatory integral representation
to obtain an approximation for the generalized Radon transform matrix elements up to error
of size2~*/2; more precisely, the matrix errors will be of cIaAS‘%(X). The principal
partay(y, &) of symbola(y, &) is homogeneous of ordér Following Lemma 3.1, we may
replaceay(y, £) by eitheray(y, v) or ag(y;, v), where

oS
Tj = a_f(ij I/) = Tu,k’(yj) )

with the effect of modifying the generalized Radon transform matrix by a matrix of class
Mz (x).

The symbolh,(y, &) is homogeneous of order 1 and of claﬁéﬂs,md on the support of
Xv.k» Whence we need account for the second-order terms in its Taylor expansion to obtain
an approximation within orde#%. The relevant approximation is to Taylor expandin
in directions perpendicular to, preserving homogeneity of order 1 in the radial direction;
this is dictated by the non-isotropic geometry of the second-dyadic (or dyadic parabolic)
decomposition.

For convenience of notation, we consider the casetHas on the¢; axis. Then
(compare (37))

oS

"2 825
S(060,€") = 6S(0: 1,6"/60) = € 57 () + <

1
2 & 851/2

(y7y) + h3(:l/,€)7
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wherehs(y,§) € Siad if ¢ is restricted to the support of, .. Replacing the symbol

explihs(y,£)] by 1 changes the matrix by terms of cIaM‘%(X), as in the proof
of Lemma 3.1. Consequently, up to errors of ordej, one can replace the symbol

a(y, &) explihe(y, )] on B, by
aly,v)explis &€ 92,S(y. v)] 1g,,(€)

with 15, , a smooth cutoff to the rectanglg, . supportingy, .

The exponent separates the variableand &, and is bounded by a constant,
independent of(v, k). Approximating the complex exponential for bounded @©Y
arguments by a polynomial function leads to a tensor-product representation of the symbol:

a<y7 ) eXp[l 2 61 15//2 82” ya Z Oés o k s v,k 5)

To obtain an error of size~*/2 requiresC" /N! < 2"“/2, orN ~ k/logk:

Theorem 4.1. With N ~ k/ log k, one may express

FSOV Zasuk suk*gpﬁ’)OTVk(y>+27k/2f% (38)

wheref., is a curvelet-like function centered at~).

An alternative approximation starts with replacin@, &) or a(y, ) by a(y;, v) with
yj = T;,Cl(xj) (andy = (z;,v, k)). Similarly, up to an error of orde#%, one may replace

& 02,8y, v) by &€ - 92,5 (y;,v). Consequently, replacing, . (z, £) by thez-
independensymbol

b, (&) = aly;,v) expli 5 &€ - 92,5 (y;,v)] 1, (€) = @ (&),
modifies the generalized Radon transform matrix by term@lin%(x). Precisely,
Theorem 4.2. One may express

(Fo)(y) = (ay x 0y) 0 Tply) + 272, (39)
wheref., is a curvelet-like function centered gt~).

This is a generalization of the geometrical, zeroth-order approximation of the
common-offset realization — valid in the absence of caustics — of the generalized Radon
transform considered in [55].

The change of variabl€g, ;. can also be suitably approximated by a local expansion
of the generating function abouy;,~). This requires an approximation of the phase
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(€, % (y,v) — ;) up to an error of size~*/* (cf. (37)), which is accomplished by taking

the second-order expansiongrabouty;. Precisely, we write

0S 0%S 1 038
8_§(y’ V) —xj = @(%7 v)-(y—y;)+ B W(%‘: v) - (y — ;)
+ h3(y7 V)u (40)

whereh;(y, v) vanishes to third order at = y;, and hence - hs(y, v) leads to terms of
order2-*/2 as in Lemma 3.1. The first two terms on the right hand side of (40) are exactly
the quadratic expansion @tk abouty = y;.
In the expression- %(yj, v)- (y—y;)* the terms ir¢ perpendicular te are of size
2k/2 as opposed t2* for the component of parallel tov, hence lead to terms of size*/2.
This allows one to replace the third-order derivative term by the quadratic expression
1 23S 5
B {V'W(yﬁ’/) (Y —vy) } v
1 [9%8
=5 {8—1/2(%7”) (Y — yj)ﬂ v=0Qy-(y—y)’
with y; = T, ! (z;) (andy = (z;, v, k)) as before:

(41)

Theorem 4.3. One may express

(Foy)(y) = (ay * pu) o [DT, - (y — y;) + Qo - (y — y;)°] + 2772 £,(42)

wheref, is a curvelet-like function centered @t(v), k).

Here, the affine mapT, = 65—;”“(%) = %(yj, v) can be decomposed into a rigid

motion and a shear. The shear factor acts in a bounded manner on the curvelet, in that it
preserves position and direction; see also [55].

The contribution®., - (v — y;)* captures the curvature of the underlying canonical
transformation applied to the infinitesimal plane wave attacheg, toAs with the shear
term it acts in a bounded manner on a curvelet, and can be neglected in a zeroth-order
approximation. This is the case in [50], where rigid approximations,tpowere taken.

Both shear and curvature terms must be accounted for to obtain an approximation up to
errors of size*/2,

The expansion in Theorem 4.3 is analogous to the Gaussian beam expansion for
isotropic wave packets evolving under the wave equation, that isviere the forward
parametrix of the wave equation. A Gaussian beam is frequency localized to a ball of
diameter*/2 in ¢, and in the Gaussian beam expansion one considers quadratic expansions
in ¢ about the centef; of the packet. For curvelets, the support is of dimengfoim radial
directions, and the approximations to the phase must preserve homogeneity in the radial
variable.

Remark. The matrix[£*], essentially, provides the means to perform generalized Radon
transform imaging entirely in the curvelet domain (that is, “after double beamforming”).
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In this context, “beam stack migration” can be understood as “scanning” the magnitude of
(F0zg,u) = 3 (Oags F0) uy = 3 F*,(20) u, as a function of,.

5. Partial Reconstruction

In applications, the image will admit a sparse decomposition into curvelets. Suppose
the goal is to reconstruct the image contribution composed of a small set of curvelets (a
“target”). The aim is to reconstruct this contribution by the available acquisition of data
with the least “artifacts” (hence curvelets).

Let v denote a model of reflectivity, as before, andts image, interrelated through
w = F*Fv. We write

N = F*F,

so that [N] = [F*][F]. The operatorN is a pseudodifferential operator with
polyhomogeneous symbol of ordé&rin particular N has homogeneous principal symbol
of order0, and the results of Section 3.2 applyXo

We describe a target region by the set of indiégs Our resolution-illumination
analysis is thus focused on the prod{¥f I17°. The acquisition of data is accounted for
by I1¢ = I115, whereS stands for the (finite) set of curvelets that can be observed given
the acquisition geometry. The resolution is thus described by the operator, and matrix,

N=FC'"15CF, [N]=[F]15[F] = [F*|II°[F],

and the normal equation to be solved, yielding the partial reconstruction, is given by
[N]Cv = [F*][ISCu whereIISCu represents the observed data. The$é assumed

to contain a suitable neighborhood pfI7), in thatd(y, x(v)) > 27% for v € S°¢ and

v € I, at scalek. (Otherwise,l, or S, need to be adjusted.) The matn[iz)?[] then
approximates the matrixV] near/ in the following sense:

Lemma5.1. Let
Ap, = inf  2lfomklgminGoRig(y: y(vq)).

0 YES¢,v0€lD
Then for allo,, andm arbitrarily large, there exists a constant, ,,, such that
I(IN] = [NDIT[lg:0 < Cam AR
Proof. Since[F*|I1 = [F*] and[F]II = [F], the matrix[N]II" — [N]II™ takes the form
Z[F*]w” 15'6’ [F]v”v’ 15'0 :
,Y//

The sum is dominated by

Com Y 1s(X(7):7") 150 pogm (", X (7)) 122
,Y//
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We use the boung;,.(v", x(v)) < AR"us(v", x(7')) and [50, Lemma 2.5], together
with invariance of the distance underto bound the sum bg’s ., A" 1s(,7'). The result
follows, since||us(., . )|J2.a S 1if d > O
Finally, we explore the invertibility oi[ﬁ] on the range ofl’°. To this end, we
introduce an intermediate index sét with I'y C I € x'(S), for whichAp, =~ Arp,,

and with
[T — Tl S AR (43)

~Y

for m arbitrarily large. Fory in a set containing’y, then|[N],, — [N].,| < 1. We
introduce the inverse diagonal,

D;1 - HY“/[N];'yl

for v near/;, and smoothly truncaté;1 to 0 away from/7. Then
DNt =" + R,

where||R||2.. < 1if Ap, is sufficiently large, depending on the given

If 17" were a true projection then we would hake= RT1'*, and applying I + R)™*
would yield the desired inverse {177] on the range ofI’*. In the case of the approximate
projectionslI’?, I1’, one can obtain an approximate inverse agdiHst We write

(I+R)'D NI =110 + (1 + R) (T 1170 — 1170)

By (43) this yields o B
(I+ R)'D NI =117 + R,

where||}~%||2,a < 1, provided A, is sufficiently large, depending on the given Thus,

by applying (I + R)"'D~* to [F*]IISCu, we obtain the desired, approximate, partial
reconstruction of the reflectivity function, whefe has replaced the notion of double
beamforming, andF’| and[F*] can now be replaced by their approximations developed in
the previous section.

Remark. In practical applicationsi and R are neglected. In general, with limited
illumination, the diagonal elementsV],, have to be estimated numerically through
“demigration” followed by “remigration” againgi‘©. In the case of full illumination, the
diagonal elements can be directly approximated using (30). For an optimization approach
to solving the normal equation, in this context, see Symes [56] and Herretah{57].

Remark. The image of a single data curvelet is naturally giveny= F*p, =
>y [F*]yyp whencew,, = [F*],,. From the fact that the matrig™] belongs to
MO(x~1), itis immediate that fory arbitrarily large (cf. (24))
Z22|k—k’|a22min(k,k’)aa(,y/;X—l(,y))%y HF*]’Y’W'Q <C
Y
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illustrating that the curvelet decomposition of the data eliminates the “isochrone smear”
associated with imaging individual data samples.

6. Conclusion

The results presented in this paper essentially provide a novel approach to imaging, based
on the generalized Radon transform, replacing the notions of “plane-wave migration” and
“beam-stack imaging” by matrix approximations using curvelets on the one hand, and
addressing the problem of partial reconstruction on the other hand. However, the results
presented in Section 3.2 apply to general, elliptic, pseudodifferential operators, while the
results presented in Section 4 pertain to all Fourier integral operators (of order zero) the
canonical relation of which is (locally) a canonical graph.
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