DISPERSIVE ESTIMATES FOR THE WAVE EQUATION
ON
RIEMANNIAN MANIFOLDS OF BOUNDED CURVATURE

YUANLONG CHEN AND HART F. SMITH

ABSTRACT. We prove space-time dispersive estimates for solutions to
the wave equation on compact Riemannian manifolds with bounded
curvature tensor, where we assume that the metric tensor is of WP
regularity for some p > d which ensures that the curvature tensor is
well defined in the weak sense. The estimates are established for the
same range of Lebesgue and Sobolev exponents that hold in the case of
smooth metrics. Our results are for bounded time intervals, so by finite
propagation velocity they hold also on non-compact manifolds under
appropriate uniform geometry conditions.

1. INTRODUCTION

We assume throughout this paper that (M,g) is a d-dimensional Rie-
mannian manifold of C' structure with the following property: there exists
ro > 0, Cyp < 00, and p € (d, 0], such that for each z € M there is a C*
coordinate chart ®, : B,, — M with ®,(0) = z, in which the induced metric
gij on B, C R? satisfies

8ij(0) = dij,  sup|lgijllwrr < Co.
ij
As shown in [26, Chapter 3 §9] or Section 2 of this paper, the Riemannian
curvature tensor components R;;i; are then well defined as distributions
in W‘l’p(BTO). We make the assumption that the R;ji; are measurable
functions, and that for some Cj uniform over the coordinate charts,

sup [|Rijwill Lo~ (B,,) < Co.
ijkl

In Theorem 2.2 we show that the Sobolev spaces H*(M) for —2 < s < 2
defined using local harmonic coordinates are equivalent to those defined
using fractional powers of —A, via the spectral calculus. For —1 <5 <2
the following Cauchy problem for the wave equation on (M, g) can then be
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solved using the spectral decomposition for A, and Duhamel’s formula,
(07 — Ag)ult,z) = F(t,a) € LY([=T,T]; H-2(M)),
(1.1) u(0,2) = f(x) € H*(M),
ou(0,2) = g(x) € H 1 (M).
In this paper we prove two types of dispersive estimates on the solution w,

under the above assumptions on (M,g). Recall that a triple (s,q,r) with
2 < gq,r < oo is said to be admissible for the wave equation if

1,4 _4d 1<E(1_1)
’ 2 r/

q+r 2 q 2

Theorem 1.1 (Strichartz estimates). If (s,q,7) and (1 —s,q,7) are ad-
missible, and r,7 < oo, then for a positive T  depending only on (M,g),
solutions to (1.1) defined using the spectral decomposition of Ag satisfy

lull La(—r,ry;m (vy) + | oo (= 1)1 (0 + 11Ol oo (- 1) 1751 (0
< C( 1 [ ez= vy + gl =100y + W F N o7 () )

Note that under these assumptions 0 < s < 1, and since ¢ > 2 we see
3 ~ 3
that H2(M) C L™ (M), hence F € Ll([—T, T];H_E(M)).
The next estimate is due in the smooth case to Mockenhaupt-Seeger-Sogge

[11]. Here we consider only the critical exponent g4, but similar results with
sq¢ < s < 2 hold by Sobolev embedding.

Theorem 1.2 (Squarefunction estimate). Let g3 = 2(j—+11)’ and sqg = qid.

Then for a positive T depending only on (M,g), solutions to (1.1) satisfy
[l Loaarsc2 1)) < C U lmsacany +191 msa—rany HIF I pr o mysmsa—1any)) -

A straightforward consequence of the squarefunction estimate are the fol-
lowing L? — L7 bounds for unit-width spectral projection operators, which
were originally established for smooth metrics by Sogge [17].

Corollary 1.3. Suppose that A > 0, and let [y \;1] denote the L*(M)
projection onto the span of eigenfunctions {¢;} such that —Agp; = )\?qu
with A\j € [\, X+ 1]. Then for some C depending only on (M,g),

1_1 1

T a a1 fl Laary < CAd(TE)*inHB(M), qa < q < oo.

Corollary 1.3 is proven for ¢ = g4 from Theorem 1.2, and for ¢ > ¢4 it
follows by Sobolev embedding. See [14] for details. It is shown there that
the ¢ = oo case, which is related to the spectral counting remainder esti-
mates of Avakumovié-Levitan-Hormander, holds more generally on compact
manifolds with metrics g of Lipschitz regularity.

The first version of Strichartz estimates was obtained globally on R4*!

by Strichartz in [21], [22], for s =  and ¢ =7 = %. The results were
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subsequently extended to other values of the exponents, and to the setting
of smooth Riemannian manifolds using a Fourier integral representation of
the fundamental solution. More details can be found in [18], [8], [9], and
[10]. Of particular interest are the critical indices, when equality holds in
the second admissibility condition.

For a non-smooth metric g, the standard constructions of the fundamen-
tal solution do not work. However, the second author used paradifferen-
tial techniques and wave packet parametrices in [13] to prove homogeneous
Strichartz estimates in dimensions d = 2,3 under the condition that the
metric g is C"!. For all dimensions this is the minimal regularity condition
on g in the context of Holder spaces that implies the Strichartz estimates.
Indeed, Smith and Sogge in [16] produced explicit examples of C'1'® metrics
for which the homogeneous Strichartz estimates fail, for each 0 < o < 1.

The key idea in handling non-smooth metrics is to introduce a para-
differential approximation P to y/—A,, in that P? + Ay behaves as a first
order operator on a suitable range of Sobolev spaces. By energy estimates
it then suffices to establish the bounds of Theorems 1.1 and 1.2 when A, is
replaced by —P? in (1.1). The operator P has symbol of class Sl1 . and is

'3
obtained by mollifying the coefficients of g over scale 9=5 when acting on
functions at frequency scale 2F.

One then seeks a construction of the evolution operator e~ ¥ for which
the desired dispersive bounds can be proven. In [13], an approximation
E(t) to e P was obtained by working in a frame of dyadic-parabolic wave
packets (curvelets). A key property of such wave packets is that the action of
e P on each element of the frame is well approximated by rigid translation
of the packet along the Hamiltonian flow of P, and E(t) was defined as
this rigid motion. This operator E(t) failed to satisfy the unitary group
property E(t)E(s)* = E(t — s), however, which is a crucial requirement for
the established proofs of dispersive bounds such as in [9]. This limited the
results of [13] to low dimensions. The Strichartz estimates of Theorem 1.1
for C™! metrics and general dimensions were subsequently established by
Tataru in [23], [24], [25], where space-time bounds on the FBI transform
were used. The paper [15] of Smith used a modified FBI transform to
translate the problem to phase-space, and e ¥ was approximated on the
transform side by the Hamiltonian flow map. This forms a unitary group,
and the estimates in Theorems 1.1 and 1.2 (with ' = 0 in Theorem 1.1)
were established for C1'' metrics, in all dimensions.

For metrics of bounded curvature the paradifferential construction of the
self-adjoint operator P goes through as above, provided one works in har-
monic coordinates on (M, g). In such coordinates the metric g has second
derivatives belonging to BM O, which is sufficient to show that P2+Ag maps
H*® — H*! for a range of s. The wave packet methods fail to give a useful
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construction of e~®F however, since the error estimates for the rigid trans-
lation or Hamiltonian flow approximations depend explicitly on pointwise
bounds on 92g¥(z). On the other hand, by the Jacobi variation formula
L™ bounds on the Riemannian curvature tensor imply that the geodesic
and Hamiltonian flows are bilipschitz. A consequence is that the solution to
the eikonal equation in any local harmonic coordinate system has bounded
second derivatives, the same regularity as for C'! metrics.

This naturally leads us in this paper to imitate the Lax parametrix con-
struction for e 7. It turns out that solving the transport equations for the
amplitude produces no further improvement beyond setting the amplitude
to be identically one, as all terms in the expansion of the amplitude would be
symbols of order zero, due to the fact that the symbol of P is of class Sll Iy

On the other hand, to have a unitary group we need work with the exaét
operator e~ We achieve this by producing e~*" exactly as an iterative
expansion of the Lax approximation, which we show converges uniformly on
finite time intervals in the H?® operator norm for every s € R.

To prove the dispersive estimates of Theorems 1.1 and 1.2 we establish
bounds on the integral kernel of e~ ®F localized dyadically in frequency.
These bounds capture the pointwise decay of the fundamental solution away
from the light cone, and are of the exact same form as for smooth metrics. An
advantage of this proof is that we can obtain the inhomogeneous estimates
stated in Theorem 1.1. We establish the kernel bounds using a version of the
wave packet frame of [13] rescaled by time ¢. This method is well adapted
to handle the multiple products arising in the iterative expression for e ¥,
since the bounds can be phrased in terms of operator bounds in certain
weighted norm spaces.

The proof of Theorems 1.1 and 1.2 is composed of multiple distinct steps,
and we divide it up into sections as follows. A more detailed summary of
each section is included at its beginning.

In Section 2, we present the details of harmonic coordinates on (M, g)
and the regularity results for g in such coordinates. The procedure is similar
to that in Taylor [26], Chapter 3 §9. We then reduce matters to working
with a compact perturbation of the Euclidean metric on R?. We introduce
the paradifferential operator approximation P, and equate the estimates of
Theorems 1.1 and 1.2 to Lebesgue space mapping properties for e ~*F.

In Section 3, we use the Jacobi variation formula to study the regularity
of the geodesic flow for the metric g, that is obtained by mollifying g at
k
scale 27 2. The estimates on the derivatives of the geodesic flow are exactly
those obtained in the case g € CbL.
In Section 4, we use the results derived in Section 3 and a dilation ar-

gument to prove symbol type estimates on the solution ¢i(t,z,n) of the
eikonal equation for gi. A key result is obtaining better estimates for small
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t, which is crucial to proving the dispersive estimates on the kernel of e~#¥
when [t| < 1.

In Section 5, we introduce an approximation W (t) to e~*F, which is a
sum over k of terms

(Wet)f) () =

ik (t,x,n) 7

@) / e Yi(n)f(n) dn,

where vy, is a Littlewood-Paley partition of unity. We show that
(01 +iPy) (Wi(t)f) = Bi(t)f

where By(t) is an oscillatory integral operator with phase ¢y, and symbol
by (t, z,n) of order 0 that satisfies derivative bounds similar to those for ¢j.

Section 6 is concerned with energy flow properties of iterated compositions
of W (t) and B(t), which arise in the expansion of e~#F. In particular, we
show that multiple compositions preserve dyadic localization in frequency up
to smoothing errors. Thus, in proving dispersive estimates for e =¥ we need
only handle the composition of terms Wy and By, all of which are localized
at the same dyadic scale. We also prove “sideways” energy estimates that
arise in the proof of Theorem 1.2.

In Section 7 we prove that, for small ¢, the kernel K (¢, z,y) of e "#F4.(D)
satisfies, modulo a smoothing operator, the same bounds as for smooth
metrics:

_d—1

Kkt ,y)| < On 28 (14 2518)) ™2 (1 4 28dist(z, Si(y))) ",

where S;(y) is the geodesic sphere centered at y and dist(-,-) the geodesic
distance for gi. Together with standard arguments these estimates yield
Theorems 1.1 and 1.2. The proof of this estimate proceeds, for a given value
of t, by representing e~*F¢;(D) in a wave packet frame that is obtained
by scaling by |¢| the dyadic-parabolic frame from [13]. The kernel estimates
follow by showing that the operator e~ (D) maps a frame element at
time 0 to a similar function translated along the Hamiltonian flow through
its center. This fact is deduced from showing the same result for the terms
Wi(s) and By(s) for 0 < s < ¢ that arise in the iterative formula for e =",

2. PRELIMINARIES AND REDUCTION TO THE MODEL OPERATOR

In this section we establish regularity estimates for the metric g in local
harmonic coordinate charts. We then consider Sobolev spaces on M, and
define the wave group for /—A, using the orthonormal basis for L?(M)
consisting of eigenfunctions of A,. We conclude by reducing the proof of
Theorem 1.1 to estimates for the evolution group e " of the self-adjoint
first order pseudodifferential operator P on R%, where P is an extension to
R? of a paradifferential approximation to +/ —A, in one of a finite cover by
M of local harmonic coordinate charts.
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2.1. Harmonic coordinates on (M,g). We start with the assumption
that (M,g) is a Riemannian manifold of C! structure with the following
condition: there exists 19 > 0, Cp < 00, and p € (d, o], and for each z € M
a coordinate chart @, : B,, — M with ®,(0) = z, so that the induced metric
g on B,, C RY satisfies

8ij(0) = 6i,  sup|lgijllwrr < Co.

)

Since WP functions are of Holder regularity 1 — % > 0, by shrinking rq if
needed we may additionally assume that, given cg > 0 to be determined,
sup |g; () — dij| < co.
xEBrO
Following Taylor [26], Chapter 3 §9, in particular [26, ch. 3, Prop. 9.1]
and the comments following [26, ch. 3, (9.39)], after replacing 9 by po =
po(d,p, Co, cp), we may assume that the induced coordinate functions, f! :
®.(B,,) — R, are harmonic functions with respect to the Laplace-Beltrami
operator of g, and that overlapping harmonic coordinate charts have tran-
sition functions of regularity W?2P on their overlaps. The harmonic coor-
dinates are related to the coordinate functions of ®, by a WP change of
coordinates over B,,, and it follows that the original coordinates were nec-

essarily of regularity W?2P C Cl’k% on their overlaps. Consequently, M is a
manifold with W?2P structure. This is consistent with the fact that a metric
g maintains its WP regularity under a W?2P change of coordinates, which
can be seen by (2.1) below.

For every integer m > 0, there is a continuous linear extension operator
of W™P(B, ) to W™P(RY); see e.g. [19, ch. VI §3 Thm. 5]. We may thus
apply [26, ch. 2 Prop. 1.1], together with the inclusions

Wir(RY) c L2®RY),  H'Y(RY) = WH2(RY) ¢ L2 (RY),
to see that the following hold, both on R¢ and B,
21 Nfgllwee <Clfllwrellglwre, — I1fglm < Cliflwrellglmr-
The Riemannian curvature tensor R for g is given in coordinates by
Rijr = % 682~gaik aaégﬂ B 862-%5 B 882-?
x;0xy ;0% 20z, ;0%

where Q(g,0g) is a quadratic form in first order derivatives of g;;, with

+ Q(g, 9g),

coefficients given by a combination of coefficients of g, hence Q(g, dg) € L3
when g € WP with p > d. Then R is defined as a distribution, and our
key assumption is that R;ji; is a bounded measurable function, such that
uniformly in the local coordinates F,

sup [[RijkillL=(B,,) < Co.
ijkl
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This is implied by assuming that R is a measurable function, together with
the geometric condition that for all continuous vector fields v;,

[{R(v1,v2)v3, va)lLee(ary < Co i [|g(v))llpee(ary < 1.

In harmonic coordinates, the Ricci tensor Ric can be written, see for
example [5], in the form

Ricj = Y O, (87" Or,8i) + Qg 02).

mn

Since Ric;; € L>®(B,,), following [26, ch. 3 §10] we conclude g;; € W*4(B,)
for all p < po and all ¢ < oo, hence g;; € Lip(B.gp, ).

Take ¢ € C°(Bgy,) with ¢ =1 on Bz, and x € C°(B.g,,) with x =1
on Bg,,, and assume ¢ and x take values in [0, 1].

We form a Riemannian metric g;; = ¢ g;;+ (1 —ng) 8;; on R, and uniformly
elliptic coefficients a” = yg¥ + (1 — X)(Sij on RZ. Note that Q(g,dg) €
L>(B.gp,) since g € Lip(B.gp,). Then the following holds globally on R,

d
> 0n, (a0, 8i5) € LY.

m,n=1

Since the ™" are globally Lipschitz, from [26, ch. 3, Prop. 10.3] we conclude
that 92g,; € BMO(R?); more precisely 92g;; belongs to BMO(R?) and is
supported in B g,.

Note that the Riemannian curvature tensor R of § belongs to L3°(R%),

where we use that g is Lipschitz, so R = ¢R modulo products of g and 9,g
and functions in CZ°(B.g,,). After shrinking py by a factor of 2, we conclude

Lemma 2.1. Given ¢y > 0, there exists pg > 0 and Cy < 0o so that for each
z € M there is a harmonic coordinate chart ®, : By, — M, with ®,(0) = 2,
such that the induced metric on B,, agrees with the restriction of a metric
g defined on R? that satisfies gij = 6;; if |x| > 2po, and

1021 B0 + llgijllLip + |Rijrll e < Co, lgij — dijllL < co
In particular, g;; — 6;; belongs to WCQ’q(Rd) for all ¢ < 0.

We now cover M by a finite collection of harmonic coordinate charts
®; =, : By, = M, each of which satisfies the conditions of Lemma 2.1,
such that there is a partition of unity x; on M with supp(x;) C ®;(B,,/3)
and x; o ®; € W?P(B,,) for each i,j. In particular, y; o ®; € Wf’p(Bpo).

By (2.1), multiplication by x; o ®; maps Hj. (B,,) into HZ(B,,) for s =
0,1,2. By interpolation this holds for 0 < s < 2. We may then introduce
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Sobolev spaces H*(M) C L?>(M), for 0 < s < 2, by the condition
feHY(M) & fo®j e Hj(Bp) Vj,
(2:2) 1 lliany = D N0 © Bl s (e

J

If g € H(B,,) then
I(xj - g0 ®; ") 0 ®jllas < Cllgllus,

for C depending on the support of g. This holds for s = 0, 1 since <I>i_1 o®;
is a C' diffeomorphism. It holds for s = 2 since D(®; o ®;) € WP is a
multiplier on H! by (2.1). It then holds by interpolation for 0 < s < 2.
Consequently, there are natural continuous inclusions H(B,,) — H*(M)
for 0 < s <2given by g =+ go <I>;1, and one may identify H*(M) with a
closed subspace of the finite direct sum over j of H*(B,,).

An element of (H*®)* thus induces an element of H,  (B,,), and if we
identify H™*(M) with (H*)* for 0 < s < 2, then the condition (2.2) holds
for —2 < s < 2, with approximate equality for the norm.

We observe here the following regularity property for A, in harmonic
coordinates, which follows, for example, from [7, Thm. 8.9]. Suppose that
u € HY(B,,) is a weak solution to Agu = f, where f € L?(B,,). Then

u € H?(B,) for all p < pp, and
(2.3) lull 2B,y < Cp (Nullerr(s,y) + 1£1122(8,,))-

The Sobolev spaces for |s| < 2 can also be characterized using the spectral
decomposition of A, on L*(M). Consider the quadratic form on H'(M)
given by

Qu,v) = — / T (Agv) dmg — / o(dT, dv) dmy.

Then @ is symmetric, nonnegative, and coercive. By the Rellich compact-
ness theorem there is a complete orthonormal basis {v;} of L?(M, dm,) that
diagonalizes @, in that for f,g € H'(M)

W) =X NN = [ dne

and 0 = Ay < A < --- is a sequence of real numbers converging to co.
The v; are weak solutions in H'(M) to —Agv; = /\j2- vj, hence (2.3) gives
Vil 2 ary < C’)\JQ«. It follows that ¢;(f) can be defined for f € H*(M) when
—2 < 5 <0 as the action of f on vj;.

The operator (1 — Ag) is equivalent to multiplication by (1 + /\]2) in the
basis {v;}, and the following theorem then gives a more natural definition
of HS(M).
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Theorem 2.2. For —2 < s < 2, the mapping [ — {cj(f)}?-’;o defines a
homeomorphism of H*(M) with the space £* (N, 1+ )\?)S). In particular,
uniformly over —2 < s < 2, we have
oo
1 = SO0+ XV IG(OF, o) = [ fodm,

J=0

and Z;'io ¢j(f)vj converges to f in the topology of H*(M).

Proof. The theorem holds for s = 0 by orthonormality, and for s = 1 since
1£113: =~ If]132 + Q(f, f). For s =2, we note that the partial sums

N N N
S ei((L=2g)f) vy = (1+A)c;(fvj=1=2:) ci(f)v;
j=0 j=0 j=0

converge in L2(M) to (1-Ay) f if f € H?(M). It follows by elliptic regularity
that >, ¢;(f) v; converges in H?(M) to f. Surjectivity onto ¢?(N, (1—1—)\?)2)
follows similarly. The theorem follows for 0 < s < 2 by interpolation, and
for —2 < s <0 by duality. (]

We note that the proof also shows that —A; conjugates to multiplication
by {)\3} in the basis {v;}, as a map from H*(M) — H* ?(M), provided
0<s<2.

2.2. The wave equation on (M,g). For data (f,g) € L*(M)® H~ (M)
and F € Lj [-T,T]; H*(M)) we define the solution of the Cauchy problem
(1.1) to be

[e.e]

(2.4) wu(t,x) = (COS(t)\j) ci(f)+ )\;1 sin(tA;) ¢j(9)
=0

= [ s = ) (s ->>)vj<x>

where we set 0~ ! sin(0t) = t. We show here that Theorem 1.1 can be deduced
from the following assertion:

Assume that u € CO(H*(M)) N CYH(H*~1(M)), and that u is given by (2.4).
Then for s,q,q,r,7 as in Theorem 1.1, the following estimate holds,

HUHLg([fT,T};LT(M)) < C( HUHL,?O([—T,T];HS(M)) + HatUHLr([—T,T};Hsfl(M))
I g -y any )

To see that this result implies Theorem 1.1, consider first the case F' = 0.
Then by the spectral representation of v we have

lwllzoe (—r 1785 (0 + 10wl oo (—r 1151 (aryy = || f s ary + 9l =1 0y
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and Theorem 1.1 follows from the assertion. We apply this to the triple
(1 —s,q,7) and use duality to see that, when f = g =0,

all e oy umyy + 10l e -z rysmrs=1 )y < CNE M g ¢y, oy
The continuity of u and du follows by translation continuity, and Theorem

1.1 then follows from the assertion for the case F' # 0.
As a result we may assume that
w e CO(H*(M)) N C'(H*" (M) 0 C2(H*~2(M)),
and in particular, 9?u = Agu in the weak sense on B, in each of the local
harmonic coordinate charts ®;.

If the data (f, g, F') is localized in ®;(B,,/3), then finite propagation ve-
locity shows that u(t) is supported in ®;(Bsy,,/3) if [t| < po/6, where we use
W?2P regularity of g for all p < 0o, and closeness of gij to d;; for co small.

Using the partition of unity x;, we can thus reduce the proof of Theorem
1.1 to the case that the Cauchy data is supported in ®;(B,,/3), and thus

work on R? with a metric satisfying the conditions of Lemma 2.1. After
rescaling space and time by a factor R > 1, where R~!Cy < ¢4, we can
reduce Theorems 1.1 and 1.2 with T = R™!py/6 to the following Theorem
2.3. The constant ¢4 will be fixed depending only on the dimension, and in
particular will be small enough to rule out conjugate points for [¢| < 1.

Theorem 2.3. Assume g is a Riemannian metric on R?, such that for a
prescribed constant cq depending on the dimension d,

IRijrillzoe + llgij — 0ijlluip + |02i || Brro < ca

Assume that (s,q,r) and (1 — s,q,7) are admissible with r,7 < oo, and let
u e CO([0,1]; H*(RY)) nC*([0,1]; H*~H(R?)) be a weak solution to

(8t2 - Ag)u =F u0,)=f, 0owu(0, )=y
Then there is a constant C' < oo depending only on d, so that
lwll agpo,] L (rey) < C( [wll oo (fo,17: 2 (Re)) + 10l oo 0,175 1 (RaY)

171 o1ty )

If g4 = 2glj11) and s = sq = qgl, then
ull paarasz2(o,1)) < C (1 saay + 191 grsa1way + 1 F [ paqo,1y, 0001 (me)) -

2.3. The model operator P. We construct here the paradifferential ap-
proximation to /—Ag, where we will assume that g is a metric on R? that
satisfies the conditions of Theorem 2.3.

We fix a family of dyadically supported functions i (&) for k& > 0, such
that B1(&) = B1(2'7F¢) if k > 1, and such that (&) = B(€)? gives a
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Littlewood-Paley partition of unity. We will assume that
oo
supp(B1) C {35 < 11 <2}, Bo(©)*+ ) B(€)? =1.
k=1

We introduce a family of metrics gi(x) that are mollifications of g(z) on

spatial scale 9275 Precisely, fix a radial function y € C°(B1), so that
/X(m) dr =1, /azax(l‘) de =0 if 1<]a| <3.
For k > 1 define a smooth metric g;, on R? by

(g0) () = 2% / x(2

IES

(@ =) 8" (y) dy.
From the conditions on g in Theorem 2.3 it follows that ||g; — I||Lip < cq-
Also,
y 1+log(k), |Bl=2
B 5 ’ )
19285l < Ca {2’505—2), 18] > 3.

The estimate for |3| = 2 holds when k = 1 since 92(x * g) = (0xX) * (928).
For k > 2 we use that X(2%-) — x(-) is an H'-atom, and 9%g € BMO(R?).
The estimate for || > 3 follows by writing

k
2

08 (i) (x) = 25@+181-2) / (52 (25 (x — v)) D267 (1) dy,

and using that 9%y is an H'-atom, with norm C, when |0] > 1.

We also note here the following bounds:
(2.5) H@f(gk - gkfl)HLoo <Cp 9 kt3lAlk
For this, write
X(©) —x(226) = [€Pp(6).  peSERY), p(0)=0.
Then, setting pr(§) = p(2—§§), we have

gk —8k-1 =2 "pi * (Ag).
The bound (2.5) then follows from [20, IV.1.1.4] as above.

Many of the steps in subsequent estimates use only the weaker estimates
that follow from the Lipschitz bounds on g,

3 1 Bl <1
B i ) ’
(2.6) 1078 Nl o < Ca {2'2%6—1), 18] > 2.
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ij=1
of degree 1 in £. Then by (2.6) and the conditions of Theorem 2.3
(2, &) — [€]| + 10upr(z, &)| < calt],

10802 pi(,€)| < Cq 527 ™OIBI=D) [¢[1-le,

1
Define pg(z,&) = (Zd g (x) & §j> *, so that pg(z,€) is homogeneous

2.7)

Hence, 8Epk(:n,£)¢k(§) IS Slll, uniformly over k > 1, if |3] < 1. Similarly,
2
by (2.5) we see that

(2.8) (Prt1 — Pk € Si% uniformly over k.

Define
P = Bo(D)? + 5 3 5e(D) (pu(z, D) + pilar, D)) i D),
k=1

and let p(z,&) be the symbol of P. Then P is self-adjoint, and the S, 1
2
pseudodifferential calculus shows that

k=1

In particular,
dpe Sl for B < 1.
2

We note for future use that the Garding inequality for P follows easily. It
can be verified by letting

D=

bz, ) = (vo(§) + Y pr(@. Oun()) .
k=1

Then b(xz, D)*b(z,D) — P € Op(Sg 1), hence for f € H?, and some real C}
2

(2.9) (Pf.f) > =Cullf|7.-
Lemma 2.4. The following holds for 0 < s < 2,

HPZU + AguHHS—l(]Rd) S C HUHHs(Rd) .

Proof. By (2.7), we deduce that afpk(x,é)ﬂk(f) € ‘911% for || < 1, with

uniform bounds over k. Furthermore, 3; has disjoint support from g; if
|7 — k| > 1. The composition calculus together with (2.8) thus show that

[e.e]

d
p2_ Z(Z gg(;ﬂ)pipj)@pk(m +r(x,D), r(r,€) €8,

k=0 ij=1
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and in particular r(x, D) : H® — H*! for all s. We next write
d
_ ij D. -3(D, 3 09))\ D,
—Ag = Z g’ (z)D;Dj + det(g) 2 (Dl(det(g)Q g ))D].
i,J=

By (2.1) we see that det(g)_%(Di(det(g)% g7)) € WP is a multiplier on
H? for |s| < 1, so the second term maps H® — H* ! for 0 < s < 2.
We thus need establish that, for each i, j, we have

(210) || (e7(@) — & @) vu(D)Diu|| < Clulm if —1<s<1.
k=0

By the vanishing moment condition on the radial function x € Cg°, we
can write

min(1, [€[>71),jef < 1,
€|, &l = 1.

1—x(&) = [¢’h(), where [0%h(£)| < Cq {
For j,k > 0, we let h;(§) = wj(f)h(Q_gé’) and then have
(2.11) |0ghk(€)] < C, 27129kl g=ilal

That is, {2|2j *k|h]~,k};‘;0 satisfies the derivative estimates and localization

properties of a Littlewood-Paley partition of unity in j, uniformly over k.
We then write

o0
g—gr=2") gix, where gj;=—(2m) "hjx*(Ag).
=0

We observe that
supp(gjx) C {2771 < |¢] <2742}, |lgjllpe < 271K

For the second estimate we use that ||fjj\k % (Ag) || < C 27| Ag| Buso-
This follows for j # 0 from dilation invariance of BMO and the bound

/hj”“(x) de =0,  |hjx(z)] < C27 %M oin(1 4 97)z)) ",

See for example [20, IV.1.1.4]. For j = 0 we write go, = (V@) x (Vg).
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If j < k— 1, the function g; 1 v, (D)u has Fourier transform supported
in {271 < |¢] < 2842} so we can use orthogonality to estimate the corre-
sponding terms in (2.10) over j < k — 1,

oo k—2 00 k—2 . 9
“ 27 g; k(D IDUH <C H 2" g;k¢%(LU1)UH
00 k—2 9
<> (Y 2 H )y (D)ulne )
k=0  j=0

8

C > Ir(D)ull3s < C llullFe.
k=0

If j > k+1, then g; ;9 (D)u is frequency supported in {2971 < |¢] < 2712},
and we estimate the corresponding terms in (2.10) over j > k + 1,

I3 3 2 tmunopu], <3 3 2 HlauinD)Dula:

k=0 j=k+2 k=0 j=k+2
<CY . Y 27Mlg (D) Dull 2
k=0 j=k+2
<cy Yy 2IHE gy (D) ul s
k=0 j=k+2

<CY 27" (Dyull g < Cllul -
k=0

It remains to handle the case [j—k| < 1. For this, we note that, by (2.11), the
function ay(€) := 2* >_lj—k<1 My (&) satisfies the properties of a Littlewood-

Paley partition of unity, as does 2 % (D)D := @/?k(D) We then rewrite
the remaining terms in (2.10) as

|3 2 (wD)ae) (Guoy) |

For —1 < s <0, we can dominate this using the inequality

Hs

(2.12) § (ar(D)Ag) (27 %4 (D)) , < ClAglsuollull -
L
k=0

This inequality is a discrete version of Theorem 33 of [3]; for completeness
we sketch the proof here. The key estimate is that

Z‘ ak ‘ d.%'(SQ k()
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is a Carleson measure, and ||dullc < C||Ag|/%0- This follows from the
proof of [20, IV.4.3 (37)], which goes through using that {as(2%¢)}52, is a
uniformly bounded set in C°(3 < [¢] < 8). To verify (2.12) we test the
left hand side against » € L?(R%). Fix a Schwartz function ¢ with ¢(¢) =1
for |£] < 8. Then since (ak.(D)Ag) (QZ)]C(D)U) is frequency supported in

|€] < 2%+3 we have

‘ / nY " (ax(D)Ag) (27 4y (D)u) da
k=0

|3 GO0 (ar(D)sg) (20D
k=0

<(/ ki 62 *D)h? rakwmgﬁdx)é( / kf 12—'fz,z3k<D>u|2dm);-
=0 =0

By a result of Carleson [2], see [20, 11.2.2, Theorem 2] and [20, I11.2.4 (24)],

1
the penultimate term is dominated by |||/ 2 ||dp||Z < C||h| 2] Ag||Bmo, and
by orthogonality the last term is dominated by ||u||g-1.

For s > 0, we use the frequency support of (ak(D)Ag) (J)k(D)u) to bound

ok(s—1) H (ak(D)Ag) (@k(D)“) HL2

e

|3 2 (aD)ae) 5Dy |
k=0

Hs

Ed

=0

C Y 22X Agllsaro |1k (D)ull 2
k=0

IN

<C 27| Agl syollvk(D)ul| s
k=0

< C||Agl Bmollullms.
(]
2.4. Reduction to a first order equation. Write (97 + P?)u = F + G,
where G = (P? + A)u. By Lemma 2.4,

< Clull

1G] e (0.1):55-1(RY)) g (0.1 H5(RD))°

If v solves (07 + P?)v = G with Cauchy data set to 0, then by the Duhamel
formula and energy estimates we can deduce

[ollpgry + lvllgemy + 1000l oo a1 < CllullLgems,

provided that we prove homogeneous Strichartz estimates for 07 + P2. By
splitting u = v+ (u—v), the Strichartz estimates of Theorem 2.3 can thus be
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reduced to the same estimates with —A, replaced by P?; that is, by proving
that the following holds on [0, 1] x R%, provided u € COH* N C*H™1,

(213)  lullggry < € (lull g + 10l oy + 102 + Pl g0 )-

We replace u(t, ) by (D) *u(t,-), where (D) = (1 — A)%, and note that
(9% + P?)(D)*u = [P%, (D) *u + (D) ~*(8? + P?)u.

The S 1 calculus shows that [P?, (D)~°] € 5’117_;, where we also use that

Opp(z,§) € Si L Consequently, using Duhamel’s principle as above we see

that (2.13) is equivalent to showing that, for u € C°L?> N C*H !, we have
D) ull gz < € (ullzgerz + 100l e g + 1D) @7 + PRhull . )-
By (2.9), with g =1+ Cy we have

(P f )= Ifl7: = WP +u)flee = Ifllz when fe H'.
By elliptic estimates we have |[(P + u)fllz2ray = [|f| 1 (re), consequently

(P 4 pu)~! exists as a map from L?(R?) — H'(R?). One can show that
(P+p)y~te Op(Sfi)7 for example by [1].
2
Note that since (P+pu)?—P? € Op(Sl1 1), the estimate remains unchanged
2
if we replace P by P + p. We will therefore assume P is invertible, with
P lc OP(S;D-
)

The remainder of this paper is devoted to constructing the exact evolu-
tion group E(t) = exp(—itP) for the self-adjoint operator P, and proving
dispersive estimates for its kernel. The group FE(t) will satisfy following
properties:

e E(t) is a strongly continuous 1-parameter unitary group on L?(R%).

e F(t) is strongly continuous with respect to ¢t on H*(R?) for all s € R.

e 0,E(t) is strongly continuous with respect to ¢ from H*(R?) into
H*Y(RY) for all s € R.

e E(0)f = f, and 0;E(t)f = —iPE(t)f = —iE(t)Pf if f € H*(R?)
for some s € R.

The second and third condition imply that E(t)f € CO(H®) N CY(H*™1)
if f € H5(RY). For s < 0 we understand this to mean that E(t) extends
continuously to such an operator from L?(]Rd). It follows from the third and
fourth conditions that E(t)f € CV(H*77) for all s € R and all j € N. We
now let

Ct)=3(E{t)+E(-t)),  S(t)=3(E(t)— E(-t)P~".
The solution u to the Cauchy problem with Sobolev data
(O + Pu="F, u©)=f 0u©)=g,
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is then given by

u(t) =C(t)f+S(t)g+ /Ot S(t— s)F(s)ds.

The Strichartz estimates in Theorem 2.3 are thus reduced to showing that,
for s,q,q,r,T as in the statement of Theorem 1.1,

(2.14)
(DY PE@) fllzazr qoyxrey < Cllfllz2 e

t
|(D)~* /0 B(t = $)F(s, gz ozt < C DI Fll g 1o 011

Here we have used that (D)'=*P~1(D)* is bounded on L7 (R%) since it is a
Calderén-Zygmund operator.

Similar steps apply to the squarefunction estimate. For that estimate it
will be more convenient to work with smooth cutoffs of the solution. We
fix ¢ € C2((—3,3)) with ¢(t) = 1if |¢| < % . By energy conservation the
squarefunction estimates of Theorem 2.3 are then reduced to showing

(2'15) ‘|¢(t)<D>_5dE(t)f||LgdL§(Rd><[0,1]) <C ||f||L2(IRd)'
3. REGULARITY OF THE GEODESIC AND HAMILTONIAN FLOWS

In this section we establish estimates for derivatives of all order on the
geodesic and Hamiltonian flows of the metrics g, as well as for spatial
dilates gi(e-) for € < 1. To operate in a general context we will consider a
family of metrics ga; on R? that satisfy derivative estimates depending on
the parameter M € [1,00).

For a sufficiently small constant ¢4 to be chosen depending only on the
dimension d, we will assume a smallness condition

(3.1) IRijrillzoe + | (gan)ij — ijllLip + IV (80 )is ]| Braro < ca.

Here, Rjjx; is the Riemann curvature tensor of gjs. This tensor, as well
as the Christoffel symbols 7, depends on M, but to simplify notation we
suppress the subscript M.

We additionally assume that, for constants C independent of M,
(3:2) |07e e < CaM Pt |5 > 1,
(3.3) |08 Rl < Cy ML, 18] 2 0.

Let v(t,y,w) be the geodesic for gy, with initial conditions (y,w):

Ry =D THOTY, Oy w) =y, F(0.yw) =w,
]

where 4 = 0yy. Note that by (3.1)-(3.2) we have
(3-4) Tl Sca 1105T e < Cs M8 > 1,



18 Y. CHEN AND H. SMITH

where in this section a < b means that a < C'b, where C' depends only on
the dimension d.

Theorem 3.1. Suppose that gy satisfies (3.1)~(3.3), for a suitably small
constant cq. Then there are constants Cy g, depending only on the constants
Cj in (3.2)-(3.3), so that over the set & < |w| <2 and |t| <1,

(35) 18y — 1+ 10,3 + 10wy — 1| Scar 10wy — 1] S caltl,
and
1050 05(t, y, w)| + 105 054(t, y, w)| < Cog MIFHPIZL o] 418 > 1.
Additionally,
105007t y,w)| < Cap|t] ML if ol > 1 or |B] > 2.

Proof. We produce a (not necessarily orthonormal) frame {V;,,}¢,_, along
v(t,y,w) by parallel translation of the standard frame {0,,}% _,. We label
the resulting vector fields V;,,(t,y,w) = > v (t,y,w)0,. The dual frame
{V7}d_, under gy is obtained by parallel translating > gt/ (y)0y, along
7, so v™(t, y, w) =3 gt (y)vl, (¢, y, w), and derivative estimates for the
functions v™! will follow directly from those for v,. We have

(36) 6lfvm = _FZ(V)’Y Um’ Um(07t7 w) = 5?n
We expand the variation of the flow in the initial parameters using the frame,
Oy = > Ity w) Vo = > Fi (g, w)vd, (t,y,w) 05,
m myj
(3.7) 4
awkfy = Z h?(@ Y, w) Vm = Z th(t’ Y, w)vfn(t, Y, w)aj
m myj

By (3.6) we then have
D™ = 010" = D _(Onfi")v ZF )4 i)
m

O A" = 010,67 = > _(Oh7")v Zr

Since DOy = 3,,(07 fi") Vin, with Dy covariant differention in ¢, the
Jacobi variation formula yields

(3.9) R 11 =3 (D0 Rugip(n)yvii' o™ ) fi,

n  ijlp

(3.8)

with the following initial conditions, where the second holds by (3.8),
[0, y,w) =6, A0, y,w Zr

The equation (3.9) holds with f replaced by h, Wlth initial conditions
hy'(0,y,w) =0, Ochy (0, y,w) = §;".
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The bound |§] <1 and |v| S 1, together with (3.4), yield for |t| <1,

0] = OF [+ [fi" — O + 0S| + |0k — 6| S e, [hg" — 05| < calt]-
Together with (3.4) and (3.7)—(3.8) these yield the bound (3.5).

Assume we have shown the following for |a| + || < N — 1, where N > 1,

(3.10) 1905} F B+ 10050y, Ouhi)| < Co g MIAHPL
Using (3.7), (3.4), and (3.8), we conclude that if 1 < |a|+ |5] < N,
105057 + 10,057 < Cop ML,
y (3.6) and the Leibniz rule, for |a| 4 |3] = N we then can write
Q10505 = —T(7)4 00 0%l + O (M8,

Similarly, by (3.9), for |a| 4+ |8] = N we have

ORI = D2 (D Rasip ()3 3w ) 005 it + O(M 1A,

n  ijlp
and the same for f replaced by h. By the initial conditions, we have
D% (v, fI by O )|,y = 0, 30005 fI(0, y, w)| < Co g ML
An application of Gronwall’s lemma then yields, for |a| + || = N
|05 0% (ur, F5 W) | + 105 0 (DS, Ohi)| < Clo g MIHIAL,

and (3.10) follows for |a| + |B] = N by (3.7) and (3.8), hence all «, 5 by
induction. As above, this implies the desired bounds for 85 9% (7,7)-

The last estimate of the theorem follows from the bound on |8t85 9%/,
since 95 0%~(0,y,w) = 0 if either || > 1 or || > 2. O

We now consider the related Hamiltonian flow. Let
1
< Z g M 77177]) )

and consider the solution (x(t, Yy M), f(t, v, 77)) to Hamilton’s equations,

&= (Vepn)(@,€), €= —(Vapa)(,€),  2(0,y,n) =y, &(0,y.m) =1.
These are related to the geodesic flow by the following,

2t y,n) = (ty, wiy,m)),

&ty =pa(yn) > gy (V) A (L. wly.m)),
j
where

w'(y,n) = pl) > i) n;.

M(yvn j
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It follows from (3.1) that
Byl + [w = In| ™ 0| + |0yw — T= | *n @ n)| < ca,
and from (3.2) and homogeneity that
(0,05 w(y,m)| < Cag M1 |11,

Observe that 1—|n|2n®n = Hf;, the projection onto the plane perpendic-
ular to 7. We use this to deduce the following corollary of Theorem 3.1.

Corollary 3.2. Suppose that gy satisfies (3.1)—~(3.3), for a suitably small
constant cq. Then there are constants Cy g, depending only on the constants
Cjs in (3.2)~(3.3), so that for |t| <1

0y 1| +10,€ =T Sca, 101+ 1€ —nl Scalnl,  |Opz — Ty | S eqlt,
and when |a| + |B] +m > 1,
105080 x(t, y. )| + |05 0LOE(t, y,m)| < Cayp MICHIAHmM=L p1=lel,
Additionally,
10,05 a(t,y,m)| < Cap|t] MIFFPL 7ol ol > 1 or |8] > 2.
Proof. The estimates other than those involving derivatives in ¢ follow from

Theorem 3.1. Estimates on derivatives in ¢ follow by induction using Hamil-
ton’s equations and the following consequence of (3.2),

10208 (Vepar) | + €] |0202 (Vapar) | < Cap M (g1,
0

For the generating function ¢g(t,z,n), we need consider the function
y(t,z,n) that is the inverse of the map y — z(¢,y,n).

Theorem 3.3. Suppose that gy satisfies (3.1)—(3.3), for a suitably small
constant cq. Then there are constants Cy g, depending only on the constants
Cs in (3.2)~(3.3), so that if [t| < 1 and n # 0 the map y — x(t,y,n) is
invertible. The inverse map y(t,z,n) satisfies |0,y — 1| < ¢q, and

0505 y(t,2,m)| < Cap MIFHFPIE =1l a4 (8] > 1.
Additionally,
10505y (t,2,m)| < Cop|t] MIFHAILplel ol > 1 or |8] > 2.
Also, for the function &(t,,m) := £(t,y(t, 3, 1), ),
07076 (t,2,m)| < Cop M 17100 af 4+ 18] > 1.
Proof. We have |z(t,y,n) — y| < |t], so for each n # 0 and |t| < 1 the map
y — « is proper and hence a closed mapping. Since |0y — I| < ¢q it is

an open mapping, hence onto and one-to-one by connectivity and simple
connectivity of R%. Thus y — z(t,y,n) is a diffeomorphism of R¢, with
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inverse satisfying |0,y — I| < ¢g. The estimates of the theorem are then a
consequence of the inverse function theorem and Corollary 3.2. O

4. ESTIMATES FOR SOLUTIONS OF THE EIKONAL EQUATION

In this section we establish estimates on derivatives of the solution to the
eikonal equation for gi. For simplicity we consider 0 < ¢ < 1. Let g be

the mollification of g at spatial scale 9275 from Chapter 2, and let ¢ be the
solution to the eikonal equation

8t(10/€(t7 x, 77) = —Pk (l’, vx@k(tv L, 77)) ’ SOk(O, Z, 7]) = <$? 77>
Then ¢k (t, z,m) = >, miyi(t,x,n), where y(t,z,n) is as in Theorem 3.3, and
the estimates of that theorem hold with M = 23. Furthermore,

anj@k(t,ffan) = yj(t7 L, 77)7 aijOk(tafEa 17) = gj(tvxa 77)

These identities follows from the fact that n-dy = £ -dx for the homogeneous
symplectic transformation (y,n) — (z,€) at fixed .

We then easily read off the following from Theorem 3.3,

(4.1) B oi(t,e,m)| < Cp2: AP 5] > 2,
(4.2) 090,00 (t, 2,m)| < Cat2: 08D |81 > 2,
k
(4.3) 08051 (t,,m)| < Cgt2zlelFBI=2pi=lel =g > 9,
Additionally,
(4.4) 020y ek (t, z,m)| < C.

The following shows that some estimates can be improved for derivatives in
71, which is key to controlling the evolution operators for small .

Theorem 4.1. Assume that || > 2 or |3| > 2. Then when 27F <t <1,
; 1.k
|00 0005 0u(t,.m)| < i (1223) 123072 g1,
and when 0 <t < 2"“,
|0.0,) 0105 (1., m)] < iy 220921,

Proof. By homogeneity it suffices to consider the case j = 0. If |o| < 1, the
estimates for all 0 < ¢ < 1 follow from (4.1)—(4.2). To handle |a| > 2, we
take a parameter ¢ with 27%/2 < ¢ < 1. Let g.x(2) = gr(cx), where gy is

the localization of g to frequency 2¥/2. Similarly, let Pei(2,8) = pr(ex, §).
Let ¢, 1 be the solution to

Opei(t,x,n) = —pei(z, Voo k(t, 2,1m)) ©ek(0,2,m) = (z,7m).
Then by homogeneity we have
(45) @k(taxan) = 5908,16(8_11:’5_11‘777) .
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The metric g. 1 (z) is mollification of g(ex) at scale e1275 < 1. Since g(ex)
is Lipschitz with bounded curvature, uniformly over € € [0, 1], we can apply

estimates (4.1)—(4.3) with 25 replaced by M = €25,
For 275 <t < 1 we take ¢ = ¢ in (4.5), and apply (4.3) with M = 2%
to get
‘8'880‘(,% t,z,m)| < Cqy @tlo" 195 (lal+181-2) ) ||l
For |a| > 2 this implies the desired estimate.

For 0 <t < 27% we take ¢ = 272 in (4.5), and apply (4.3) with 25
replaced by 1 to get

0205 ok (t, 2, m)| < Cagt22 171 ]l

|
Since t < t7‘2§(‘0‘|_2) for t > 27% and |a| > 2, and t2518l < 25 (181-2) for
0<t< 2"“, this concludes the theorem for 0 < ¢ < 27%. O

As a corollary we obtain the estimates we need for linearizing the phase
function, and showing the symbols are slowly varying, for 7 in an appropriate
conical region. Given a unit vector v, and 27% < ¢t < 1, we define the
dyadic/conic region

k— k - 1.k
(4.6) he=1n: 32" <l < 52572 v — [l il < fgt72272 )
Note that on this region, since +3275 <1,
1,k
nl = (v,n) = 3Inl,  [un| <722z,

where II, 1 is projection onto the hyperplane perpendicular to v.

Corollary 4.2. The following estimates hold if n € Qf , and 27k <t <.

(A7) (v, 0,)70500(92¢r)(t, )| < Clapt2 275 (¢ (tz2-2)* 23181,

(4.8)  [(v,0y) 0507 (0n0npr) (t, )| + 27F| (v, 8) 050 (O3epw ) (t, 2, )|

< Chap2 M (t2272)1 23101
and
(49> ‘<l/7 67])]6385 (@k‘(tv xz, 77) -n-: vﬁ@k(ta Z, l/)) ‘

< G2 (ho byl 0801

For 0 <t <27F these hold for n in the dyadic shell %2’“*1 <|Inl < %2’”2 if
t is replaced by 27 on the right hand side.

Proof. We consider the estimate (4.7). Theorem 4.1 gives the following,
|1, 0, D502 (D201 (8 ,m)| < Ca 27 (12273l 25171
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After rotation we may assume that v = (1,0,...,0). We proceed by induc-
tion in j, the case j = 0 being the same as above. Suppose then that (4.7)
holds for j < jo. We expand

(1, Oy >]0 = 77]08]0 + Z Cjo, g, 77177"183718767!
J+lal<jo
Jj<Jjo

Since m; < %2’”2 and || < 7325 on Qf ;» the induction hypothesis yields

10 030 9508 (02i01) (8,0, m)| < Cjapt27* (12275) " 23191,

which establishes (4.7) for j = jo, since n; > 272

establish (4.8).
The estimate (4.9) follows from (4.7) if |a| > 2, so it suffices to consider
|a] < 1. The proof for || # 0 will follow from the proof for § = 0 with

o replaced by 85 Yk, so we assume [ = 0. We then rotate to assume that
v = e, in which case by homogeneity the estimate becomes

on QZJ/. Similar steps

109,00 (er(t,z,m, ') — er(t,2,m,0) =0 - Vipor(t, z,m1,0))|
< Cja27M (12272)
This estimate follows from a Taylor expansion argument together with (4.7),
since || < 7325 on Q)
For 0 < t < 2% the desired estimates follow easily from Theorem 4.1. [
We also record estimates for time derivatives of ¢y, which will be used in

establishing space-time energy estimates.

Corollary 4.3. Assume that 27% <t < 1. If |a| > 1, then
(0, 0 02 Drpi (b, 0, m)| < Cja (#2287 1o,
and if m+ |5 > 2,
- 1k k _ _
[0, 0, 050507 (b, 2, )| < (1227 ) 22 (B2 1o,

If0 < t < 27% both of these estimates hold with t replaced by 27% on the
right hand side.

Proof. By homogeneity we may assume j = 0. The estimates that involve no
derivatives in ¢, the second estimate with m = 0, hold by Theorem 4.1. We
assume both estimates hold for derivatives up to order m > 0 in ¢, and prove
they hold for derivatives of order m+1 in t. Write dypx, = p(x, Vzer), and
observe that 85 8,07‘8;”“@;9 can be written as a sum of terms of the form

(0207 pr) (2, Vaton) (9210510 V aip) -+~ (9571010 Vo).
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where ZMOBJ B, ZMl aj = a, ZMl mj =m. If || = m = 0, we must
have |a;| > 1 for all j, and the first estimate of the corollary is a result of
the following bounds from (2.7) and Theorem 4.1,

| (02Pk) (2, Vaspr) | < Cy |11,
1009V o] < i, (1223117 1=l

Assume that |B| +m > 1. If |By| > 1, then the second estimate of the
corollary is a result of the following bounds from (2.7) and the induction
assumption,

(907 pe) (2 Vipn)| < Oy 220017V )1,

105900909V oo < Ca 5, m, 250014 (1328 )l 1l

3:B5 1
Finally, if |5p| = 0 then we may assume |51| +m; > 1, and use the bounds
(8gpk) (.1‘, vaOk)‘ < C"/ |77|1_|’Y|7

(02105197 Vpi] < Coy g 25 12Hm=D (328) 1 1l

2 2
0205 0)" Vaiph| < Cay 3, m, 2205079 (1225 g el

5. PARAMETRIX FOR THE DYADICALLY LOCALIZED EQUATION

In this section, we use the eikonal solution ¢ to produce an approxima-
tion to the wave group for P with data at frequency scale 2*. In the next
section we will use these approximations to produce the exact evolution
group for P by iteration. For k > 2 we define

k+1
Z Bi(D py z,D) + pj(z, D)* )6J(D)

]kl

Let pi(x,n) denote the symbol of Py,. Recalling that 6]2 = 1);, then

k41 k41

(5.1) Pr(zn) = > pil@n)eim) + Y qi(x,n)Bi(1n),
Jj=k—1 j=k—1

where ¢; € Sl L uniformly over j. For |n| € [ 2k 42’“'1] we define

bi(t, z,n) = e irltz) (9 + Z']Sk)eisok(t,rm)

where Isk acts on x.
We then define Wi, (t) for & > 2 by

(52) (Welt))(@) = gz [ €902 i) )
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It follows that (Bt + i]sk) Wi (t) = Bg(t), where

63 (BUON)@) = gz [ @D bt Fon) dn.

Theorem 5.1. For |t| < 1 the symbol by(t,z,n) satisfies

[, B 02D O by (£, 2, m)| < C (r275) 23 (PR g > 27k,
9 7x7 — j
1, 0y)” Oy Oy O by, n J,o,8,m 9—klal 2%(\5|+m)7 It| < 9—k

Proof. The symbol by (t,z,n) is given by the oscillatory integral

(5.4)  i0pr(t,,m) +

(2;)n /ei(x—y,CHw:@(t,ym)—icpk(t,wm)ﬁk(x’Q dy d¢

where recall that we assume |n| € [22F, 22FF1] We write
er(t,y,n) —er(t,z,n) = (y —x) - V(L 2,y —x,m),
where
V(t,x,h,n) = /Ol(ngok)(t,a: + sh,n)ds.
Then
V(t,xz,0,n) = Vapr(t,z,n), 0p,Vi(t,z,0,n) = %ﬁxﬁzjcpk(t,a:,n).

We note [V (t,, h,n) — 1l < Ll by (3.1), and for |a| + |8+ m + 2] > 1
Corollary 4.3 yields

(5.5)  |020207" 0NV (t,2,h,m)| < Cogm 230 HBHmADI=D) p1lal,

We make the change of variables y — y+h, followed by ( — V (¢, x, h,n)+,
to write the integral term in (5.4) as

(5.6) /e_i<h’<)]5k (x, V(t,z,h,n) + C) dh dC.

We then decompose (5.6) using a smooth cutoff x, supported in |(| < 2,
with x(¢) =1 for |[¢| < 1. Specifically, we write

1= X(Q_k+40(1 — X(h)) + (1 — X(2_k+4§)) + X(h)X(Q_k+4C).

Since py, € S1 ,, the estimates (5.5) imply that if |y € [22F, 32k+1],

1,3
(5.7) 82009200} By, (w, V (t, 2, by ) + ) x (2740

gh(1=lal=16) 95 (al+I81+m+11=D)  |o| 1+ 8]+ m + 4] > 1,
< a7ﬁ7m7770 k 17 9
2R, lof + 18] +m + |y = 0.
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Consider first the term r (¢, x,n), defined by
/ e Oy (w, V(t, 2, hym) + Q) x(27MHO) (1 = x(R)) dhdg

= /e—i<h,C) Aé‘v (ﬁk (1‘, V(ta z, h7 77) + C) X(Q_k+4C))
x (1= x(h))|h| 2N dh d¢.

The estimates (5.7) show that the integrand is bounded by 2F(1=2N)|p| =2V
and it is supported where |¢| < 2873 and |h| > 1. Similar estimates on its
derivatives in (z,7) yield that, for all N,

(58) (0500081 (tx,n)| < COnapm2 ™Y, |nl € [32¢,42841],

Next consider the term ry(t, z,n), defined by the integral
/ e pr(a, V(t 2, hyn) + ) (1 - x(2750) dhdg =

/ e (1= A)" AN (Bl, V(E 2, hom) + Q) (1= x(27F40)) ¢ 72Y)
x (1+|h[*)"™dhd(.

The estimates (5.7) show that the integrand is bounded by a constant times
2k(N+%)|§|—2N(1 +|h?|)™", and it is supported where [¢| > 271, It follows
that ro(t, z,n) also satisfies the estimates (5.8).

Thus, up to rapidly decreasing terms, the symbol by (¢, z,n) is equal to

/e”h’Qﬁk(x, V(t,z, h,n) + ) x(275+4¢) x(h) dh dC.

. 1
ZatQOk (ta z, 77) + (27_[_)d

We take a Taylor expansion in ¢ of py about ( = 0 to write the integral as

> 71. / e DY ((@256) @, V (8 by ) X () ) x(274C) dh d¢

|v|<2N
+ r(t,z,n),

where r(t, x,n) is given by

1
3 /0 (1—5)N-1 / &9 7 (07 ) (. V (1. h.m) + 5O x(1)

ly|=2N
x x(27F4¢) dh d¢ ds.
The estimates (5.7) show that \85837‘@,%77)] < Cn,ap ok(d+1—3lal+3181-N)
provided that |n| € [32F, 32F+1].

To handle the terms with |y| < 2N, let ¢(h) = 2749%(27*h), which has
integral (27)™ and vanishing moments of all non-zero order, and write the
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~ term in the sum as
/ e~ D) (O i) (w, V (t b)) x(R) ) 27 6(24R) dh d.

We Taylor expand p (:U,V(t,x,h, n))x(h) to order N about h = 0. The

N-th order remainder term will lead to a term bounded by ok(l=3l|-N ),
with similar estimates on derivatives in (x,7). All terms with h? with 6 # 0
integrate to 0 by the moment condition. Therefore, since Oppi(t,z,n) =
—pi(x, Vi (t, z,m)), we can write bk(t x,n) as r(t,x,n) plus

(5.9) ( pr(z, Veor(t,z,m)) + Z 37Pk)(l” V(t,z,h,n) |h:0)
lyl<2N

If |n] € [%Qk, %2’““] then (Yr—1+ Yk + Vrs1)(Vaer(t,z,n)) =1, so by (5.1)
the v = 0 term combines with —pg(t, z, Vi (t, z,1)) to give

k+1
j=k—1
! k+1
+ Y g5, Vapr(t,z,n)) Bi(Vaer(t x,n)).
j=k—1

We will estimate this term similar to the term |y| = 1, using the following
estimate, which is a consequence of (2.5),

(5.11) 0008 (b — ;) €)] < Cop 221D g1
The same estimates hold for the term g;(x,€) € S? , when |¢| &~ 2%,
2

We now examine the terms in the sum when |y| > 1. Observe that

8zv(t7x7h7n)‘h:0 8 vx@k(t z 77)

1
1+16|

The v term in (5.9) is then a finite linear combination of terms of the form

(8§+oﬁk)(w,vx¢k(t,x,n)) (00 YV oion(t, z,m)) - (00 Vapr(t,z,m)),
where 01 + -+ 6; =7, each 6; #0, and | = |o| > 1.
By Corollary 4.3, when 6; # 0, |n| € [ ok 42’““], and 27F <t <1,

| (1,897 05, 070" (0 Vwon(t, a2, m) )|
< G 250014 (1397501 3 (514m)
A recursion argument and (2.7) then show that, for 2% <t < 1,
(0,0, 05000" (O 7Bk (2, Vaipr) O Vaipi -+ 019,01 )|

< Cja.8mny.0 25 2—l-lol) (t22 )|a‘22(\,8|+m)'
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The expression for bx (¢, z,n) involves an asymptotic sum over |y| > 1, where
also |o| > 1 in all terms, and the sum thus satisfies the statement of the
theorem in case 2% < t < 1. The estimate for 0 < ¢t < 27% follows similarly.

It remains to consider the term (5.10). Using (5.11) and a similar recur-
sion argument, we obtain for the case 27% <t < 1,

k+1
1,07 05020 (1 ok = 1) (w0, Vasprlt. 2. m) 0 Tasprlt, ) )|
i=k—1
< Cj,a,ﬁ,m (t%27§)|a‘ 2%(\ﬁ|+m)’
and the proof for 0 < t < 27% is similar. U

Repeating the proof of Corollary 4.2, we obtain the following.
Corollary 5.2. The following estimates hold for n € . ,,

(1, 0 02D Dbk (8, 2, m) | < Cjapm 27 (12273) 1% 22051m),

For 0 <t < 27F these hold for n in the dyadic shell %2’“*1 <|nl < %2k+2 if
t is replaced by 27 on the right hand side.

6. ENERGY FLOW ESTIMATES

In this section we construct the exact wave group exp(—itP) via a con-
vergent iteration based on the approximate wave group

(6.1) W(t) = Wi(t) + ¢o(D) + ¢ (D).
k=2

Recall (5.2)-(5.3) that (8; + iP,)W(t) = By(t) is of order 0. To show that
(0r + iP)W(t) is of order 0 we will show that, for [t| < 1, Wj(¢)f remains
localized in frequency to an appropriate dyadic shell at scale 2¥, modulo
smoothing errors. This will yield

(0 +iP)W (1) = i By(t) + R(1).
k=2

with R(t) a smoothing error. Denoting the right hand side by B(t), since
W(0) =1 the wave group can be obtained by convergent iteration of W (t)
and B(t), using Sobolev mapping bounds for both. Dispersive estimates will
then depend on showing that composite terms

W(t—s1)B(s1 —s2) - B(Sp—1— 8n)B(sn), t>81>-->38,>0,

have similar microlocal mapping properties to W (t) and B(t). For a fixed
n we could show that this term has an oscillatory integral representation
similar to that for B(t), but at frequency scale 2¥ we will need consider n
up to n ~ 2% for some o > 0. To prove preservation of dyadic localization
of the energy we then need to microlocalize the energy mapping of each
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term By(s) to within 2¢(0=9) of the Hamiltonian flow. For convenience we
fix o = i, though any o € (0, %) would work. We then consider frequency
cutoffs with symbols a(n) € SY, that is

4

_3 _
(6.2) ‘8,?@(77)‘ < Cp 27 ikl supp(a) C {n: %2’“ L<n| < 32k+21

Given any compact set K C {n: %2’“*1 <|nl < %2’”2} and § > 0, there

exists a cutoff a satisfying (6.2) such that supp(a) is contained in the 52°t

neighborhood of K and a = 1 on the %62% neighborhood of K, and such

that the constants C,, depend on § but are independent of K. Such an a(n)
can be obtained, for example, by convolving the support function of the

%5 2% neighborhood of K with an approximation to the identity supported
in the §4 ball.

Lemma 6.1. Suppose that a1 and ag are cutoffs satisfying (6.2), and let K
be the projection onto n of the image of R% x supp(a1) under the Hamiltonian

flow of pr, at time t. Assume that ao = 1 on the 521k neighborhood of K.
Then for all N,

1(1 = a2(D)) Bu(t)ar (D) f || o < On 2™ ||l -,

where the constant Cn depends only on N, the constants Cy in (6.2), and
d. The same holds with By (t) replaced by Wi(t).

Proof. We prove this using a modification of the Cérdoba-Fefferman wave
packet transform introduced in [4]. We use the particular transform from
[13], which is based on a Schwartz function with Fourier transform of com-
pact support, instead of a Gaussian. Fix g a radial, real Schwartz function

with ||g||2 = (2#)% and supp(g) C {|¢| < 1}, and set
Grg(z) = 27 €577 g (25 (z ).
For f € L*(R?) define
TD)w6) = [ 1) e de
Then T}, is an isometry, with adjoint given by
(TEF)(2) = [ P, guele) duds
Since |n| &~ 2¥ on the support of a;(n), it suffices to show that for all N,

175 (DYN (1 — ag(D)) B (t)ay (D)T} F || 12geay < COn 27N F|| p2(reay.-

The operator on the left is given by the following integral kernel,

Kilt,/,€52,9) = [ (Bu(®)a1(D) ge) () (D) (1 = aa(D) g ()
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Let (x¢,&) = x¢(x,§), with x; the Hamiltonian flow for pg. A simple in-
tegration by parts argument, using Lemma 6.2 below, shows that for all
N,

(6.3) |Ki(t, 2, &;2,6)] < On2FN (14220 — oy +272]¢ — &) >N 2!

_ k _k —2d—
< C2 MV (14 250 — x| +275]¢ — &) >

I

where in deducing the second bound we used that the integrand vanishes

unless |¢' —&| > 0 2% —25. The desired L? bound then follows by the Schur
test, using the fact that (z,£) — (z4,&) is a volume preserving diffeomor-
phism, which is homogeneous in ¢ and bilipshitz on the cotangent bundle
(uniformly over k). O

Lemma 6.2. Let f,¢(y) = Q%e"@’y*@f@g(y - ac)) Assume that [ is a
Schwartz function and || € [2871,2842) and let (z4,&) = xi(z,€). Then

(Bi(t)fr) (2) = 27 6050 n (1,25 (2 — 7)),
where for all N, j,7,
4 "
0107 h(t, 2)| < Cn ey 227 (1 +]2) 7.

For each N, j,7, the constant Cy ;. is bounded by a Schwartz seminorm of
f, but is uniform over k,x,&.

Proof. Up to a factor of (2)?, the function h(t, z) is given by the integral

[ bt + 2 E e 2l + 2 Fo)
where
B(t,2,17) = @it wr +27 52,6 +25n) — (2,6 +25n) — (£,27 22),

Since @y, is the homogeneous generating function for x;, this equals

(pk(twrt + 27%2”75—’_ 2§77) - @k(t,xt,g)
— 23y (Vo) (8, 2, €) — 2752 - (Vain) (¢, 21, €).

By Corollary 3.2, Theorem 4.1, Corollary 4.3, and (4.4), the following esti-
mates hold on the support of the integrand,

{0005 ®(=z,m)| < Capy 2% i o]+ 8] = 2.
As ® vanishes to second order at z = 1 = 0, then on the region of integration
] (=,m)| < C; 237 (1 + |2] + In]?,
0] V=@ (zm)] < C; 257 (1+ |2] + In).
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By Theorem 3.3 we have |V, V,®(z,1) —1| < cq, and since |V%<I>(y,17)| <C,
we deduce that |z| < C(|V,®(z,1)| + |n|) and thus
1 1+ |n|?
< .
L+ [Vy@(y, )P~ 14z

By Corollary 3.2, Theorem 5.1, and (6.2), since | + 2§n| ~ 2% we have

00205 (bi(t, w0+ 275 2, + 28 un (6 + 28n) Fn)) |
ks —-N
< CNapy 22 (T+l)
Integrating by parts with respect to the vector field
I 1 -1V, ®(2,n) -V,
1+ |Vy®(z,m)?

then leads to the bounds on 5’1{ 07k in the statement. O

The same argument also shows that the kernel of T}, By (t)T}; satisfies (6.3)
with N = 0, and in particular By(t) is bounded on L?(R?), uniformly over
k and |t| < 1. By applying Lemma 6.1 with a1(n) = 1 on the support of
Br(n), and as(n) supported in the annulus |n| € [2571, 25+2], we then obtain
the following by an orthogonality argument.

Lemma 6.3. For all s € R we have |32, Bk(t)fHHs < Cs||flls, uni-
formly over |t] < 1.

We can now show that W(t) defined above is an approximate evolution
operator for P.

Lemma 6.4. Let W(t) be defined by (6.1). Then
(O +iP)W(t) =Y Bi(t) + R(t),
k=2

where R(t) is an integral kernel operator with kernel K satisfying
020, K (t,2,y)] < Onap (L + ]z —y) ™.
In particular, |R(t)fllgy < Cn || fllg-~ for all N, uniformly over |t| < 1.

Proof. We take ag(n) supported in {%2’“ < |nl < %2’”1}, and equal to 1
where {Z2F < || < 221} satisfying (6.2) with constants C, independent
of k. For cq small enough, the condition of Lemma 6.1 with a; = v and
as = ay, is satisfied for all ¢ with || < 1. We need show that the operator

[e.o] [e.9]

D (P = P)Wi(t) = > (P = P) (1 — ap(D)) Wi(1).

k=2 k=2
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satisfies the conditions for R(t), since P o (¢o(D) + 11 (D)) does. It suffices
to show we can write

(P — Py)Wi(t) = Op(Ry) o ¢x(D)
with Ry(t,z,y) an integral kernel satisfying, for all N,
1050, Ry.(t, 2, y)| < O 2 N (1 + |z —y)) ™.

Observe that Ry = T} Op(K}y) Ty, where K}, satisfies (6.3), and vanishes
unless [¢] € [22%, 52FF1] and [¢/| ¢ [§2%, 82"F1]. For ¢4 small this implies
|&| € [22F, 825+ hence |¢/ — &| > 271 Since |z — 2y < 2 for [t| < 1, we
have for all N

_ _k —N —-N
Ky (t,0, &5, 6)| < On27MV (14272 |¢)) 7 (14 |z —2'])
The operator T}, is given by a kernel satisfying for all N
laf 4 d
0T, &) < O a2 (58 (14 2810 )7,

Since the volume of integration in & is less than Cy2%¢, the estimate for
Ry (t, z,y) follows by composition. O

We now write

[ Beltez) D)) dy = s [ e () o) o),

with
r(t, z,n) = e PPrET) /Rk(t,x, y) e v gy,
Then for all N
020074t 2, m)| < Copn27HN, 281 < | < 2KH2,

and we can incorporate 7 into by, and hence Ry (t) into By(t). Thus we can
write

(O +iPYW(t) =Y Bi(t) + Po (h(D) + ¢1(D)) = B(t).
k=2

We now can generate the exact wave group F(t) for 0, + i P by iteration,

E(t) = W(t)—/o W (t—s)B(s) ds+/0 /08 W(t—s)B(s—r)B(r)drds—---

To write the iteration more concisely, let A™ C RTH be the m-simplex, con-

sisting of r = (71, ..., 7m41) withr; > 0 for all j, and with ri+---+ry,11 = 1.
Let dr be the measure on A™ induced by projection onto (r1,..., 7). Then
o0
(6.4) E(t) = (=)™ W (trpm41)B(try,) -+ - B(try) dr.
m=0 Am
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If C, is an upper bound for the H*(R?) operator norm of both W (t) and
B(t) for all |t| < 1, then the m-th term has H*(R%) operator norm at most
CmH¢m /m) and the following theorem holds.

Theorem 6.5. The expansion (6.4) converges uniformly over |t| < 1, in the
operator norm topology on H*(R?) for all s € R. The limit E(t) is a one pa-
rameter group of L?-unitary opemtors and for f € H®, F € L*([-1,1], H%),
the solution to (0y +iP)u = F, u(0,-) = f is given by

u(t, - f—l—/Et—s ,+) ds.

Our next two results show that if we localize E(t) on the right to frequency
scale 2%, then modulo a smoothing operator error one can localize each of
the terms W (tr;) and B(tr;) in (6.4) to frequencies of scale 2¥. We use the

notation ¥y = Y¥r_1 + ¥ + Yr+1, and define
Wi(t) = (D) (Wi—1 + Wi + Wii1) (),
Bi(t) = (D) (Br1 + By + Bry)(2).
Lemma 6.6. If m+1 < 2§, then for all N > 0 the operator
Ry x(t) = W(trmy1)B(try) - - - B(try)yr(D)
— Wi (t7ma1) Bi(try,) - - By (tr1)v(D)

satisfies the following, with constant Cn independent of m, t, k, and r,

| Rew () fllgy < CN 27N || Fllr-n.

(6.5)

Proof. Fix t and r, and without loss of generality assume ¢t > 0. We intro-
duce a family of intermediate cutoffs vy, ;(D) for 1 < j < m, which depend
on tr. Define points 10 < Pio1 <pj <pj < g as follows. Take ¢y and c;

such that pg = e = 190, and et = 2 For j > 0 we set

k , _k
cotci(ri++rj)ttc1j27 4 coter(rite+rj)t+er(j+5)274

pj=e ,  pi=e
Thus 1)y, is supported where || € [pSIQk,pOQkH], and (1) = 1 on the set
—1
{n:Inl € [p, 2%, 0,21} Also,
_k
D —pil = 52T, pir — Pl = errjpat + Le27w

Let 90 = 9. By the comments following (6.2) we can construct func-
tions vy, ; (&) for j > 1 that satisfy (6.2), with constants C, that depend
only on the dimension d, such that

supp(vrj) C {n:nl € [p 2%, 2k 1]}, >0,

Urj(n) =1 if |n| € [p; 12", p2"Y, j>1.
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Let ¢ = sup, ¢ (|€]7 [ Vepr(z,€)|) < ca- Then for solutions to the Hamil-
tonian flow,
exp(—cgtr;) [§(s)| < [§(s +trj)| < exp(cytr;) [€(s)]-
Then if cél < ¢1, the condition of Lemma 6.1 with § = %cl is satisfied for
az = Yy ; and a1 = g j—1. Thus Lemma 6.1 yields, for j > 1,
1(1 = 4r,5 (D) B(trj)tn,j1 (D)l s ms < Con 27N, Vs, N.
Since B(t)yr (D) = Bi(t)ir (D), and the number of terms is at most

k . .
m < 241, we can apply this repeatedly to write

W (trm+1)B(trm) - - - B(tr1)yx(D)
= Wk(trm-i-l)wk,m(D)Bk(trm) e ¢k,1(D)Bk(trl)wk(D) + Rk,r(t) ;

where || Ry r(t)||grs—ms < Csn 2~ NF for all s, N. We then prove Lemma 6.6
by observing that the same steps let us write

Wi (t7m+1) 0k m (D) By (t7) - - - 1.1 (D) Bi (tr1) v (D)
= Wk(trerl)Bk(trm) e Bk(trl)¢k(D) + ka(t) )

for a similar Ry (¢). Since Ry .(t) is localized on the right at frequency 2,
it follows that || Ry (t)||g-~_,zgnv < Cn27*N for all N. O

Corollary 6.7. One can write

k
co 24

E(t)=>_ > (-t X Wi (t7ma1) B (trm) - - - Be(tr))p(D) dr + R(t),
k=0 m=0 "
where for all N we have |[R(t)f||lgx < CN || fllg-~, uniformly over |t| < 1.

Proof. Consider

Z (=)™ W (trm1)B(try) - - - B(tr)yr(D) dr.

k Am
m=214

For |t| < 1 and all N, the HY — H¥ operator norm of this sum is bounded

by the sum " CWH /m!l < Cn273FN . Tt is localized on the right at
m_
frequency 2%, and thus maps H~" — HY with norm < Cn27*V. O

The arguments leading to Lemma 6.6 apply equally well to conic local-
ization. We take a finite partition of unity on R\ {0},

1
1:Zaw(D); SUpp(aw(n)) C {7” ‘w_i‘ < @}
we=
Let a,(n) be a smooth, homogeneous cutoff such that

5 . n 1 5 n 1
aw(n) =1 if ‘wf m‘ < 20’ supp(a,) C {n: ‘wf m‘ < E}
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We define an angularly localized version of Wy, recalling (6.5),
(6 6) ngj(t) = aw(D)Wk(t)&w(D)a
Bl{:(t) = dw(D)Bk(t)dw(D)'

Then,
(6.7)  RE () = W(trmi1)B(trm) - - - B(tri)aw(D)yr(D)
W () BE () - BE (t11)au (D) (D)

satisfies the conclusion of Lemma 6.6, and consequently, with R(¢) as in
Corollary 6.7,

E(t) =Y E¢(t)+R(),
k=0 we=
where we define
2%
(6.8) Ep(t)=Y (=)™ - Wi (trm41) BE (trm) - - By (tr1)aw (D)yr (D).
m=0

Lemma 6.8. Let f,¢(y) = Q%ei(g’y_@f@g(y — x)) Assume that [ is a
Schwartz function, and let (x4, &) = xi(x,§). Then one can write

n kd i(¢,2—w k —
(B () fog) (2) = 27 C520n (1,23 (2 — 20)) = h(t, Do g,
where for all N,
[0707h(t. 2)] < Civ o 287 (14 12,

For each N, j,~, the constant Cy j~ is bounded by a Schwartz seminorm of
f, but is uniform over k,x,&.

Proof. Let K(s,y,n;x,§) denote the integral kernel of TkB]f(s)T,:‘. Following
the proof of (6.3) we can bound, with C uniform over k and s,

k _k —N
|K(s,y,m2,8)| <Cn(1L+ 22|y —as| +272n— &) .

Furthermore, this kernel vanishes unless 2872 < |5, |¢] < 283, By the
bilipschitz property of the Hamiltonian flow, for such 7, £ we have

(6.9) lys — s + 27 |ns — &| < Aly — 2| +27FAlp — ¢|.

For N > 2d + 1, we then bound the kernel of TyBY(tr1)BY (tre)T} =
(TkB,‘j(trl)T,:) (TkB,f(trg)T,j) by C% multiplied by the quantity

k _k —N k _k —N
/(1+22|y—Zm+2 2n—Cir ) (1422 |z—24py | +272[C=&sry|) dzdC

E _k —-N
< AN(1+22|y_$t(r1+r2)| +2 2‘77_57&(7“1+1“2)|) :
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Similarly, for r € A™ the operator TyW (trp,11)BY (try,) - - - BE (tr1) Ty has
kernel bounded by

C (ANCN)™ (1+ 25|y — mo| + 2730 — &) 7,
and summing over m gives the following bounds for the kernel of TkE,‘: ()T},
KE (£ y, 150, )] < On VOV (14 25|y — | + 275y — &)
Let F' = Tj(fze). Then
F(@,0)| < On(1+27|2 — x| +272]E—¢) ™.
Then (E,‘;’(t)fwg) (z) is equal to

[NIES

2% /K?(t,y,n;f,é)F(f,E) =Y g(22 (2 — y)) dz dE dy dn.

The change of variables
_k k
(yﬂ?) — (xt+2 2y7€t+2277)
(7,8) > (v + 2723, + 258)
ok .
shows that h(t, z) = 271 e~i2 % (6:2) (B (t) foe) (ze + 275 2) is equal to
> _k k _k . k B
/K,‘;’(t,:z:t—l—Q 2y, &+ 220+ 2728, + 228)F(e + 27 22,§ + 228)

ok . _
x 712 2Ew) 2 =) o (2 — ) dz dE dy dn.
By the bilipschitz property (6.9) of x; we have

k
2

— k k
lyl + [n] < Alz| + AJ€] + 22 |(ze +272y) — (z + 27

Z)e|
+275 (6 +2

)
) — (€+278)],
and conclude that
K2 (twe +2 5y, & + 25m; 0+ 2722, + 220))

< On (1ol +n) ™ (L4 J2[ + 1)

Together with the bound
|F(z+2752,6 +228)| < O (1 + 2| +1€]) ",

this leads to the following estimates on 97 h(t, z), which is the case j = 0,
(6.10) 07R(t,2)] < Cnqy(1+12) .

The constant Cy  is seen to be bounded by a Schwartz seminorm of f, but
uniform over k,x,&.
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To handle time derivatives we proceed by induction, and assume the es-
timates on 9!97 h(t, 2) hold for 0 < i < j, and all v. We write

~ ~ t ~ ~
ES(t) foe = WE(t) fre + /0 Wit — 5)B2() fog ds,

where on the right the term E{(t), defined in (6.8), has upper summation
limit reduced by 1. This does not affect the validity of (6.10), since the proof
of (6.10) is done separately for each value of m. By Lemma 6.2 the first
term satisfies the conditions of the statement, since the proof of that lemma
works equally well for By (t) replaced by W(t). The desired estimates on h
are then a consequence of the following, for the given value of j and all ~,

(6.11) ‘(az—igt) (0 + ipx (2, &)’ / Wit —s) ‘é’(S)fx,de‘

< Onjia2 1 25 (14 252 — )Y
This is seen by noting that

k
2

e (Drbipy (@, &) (€7 h(E, 25 (=) ) = (D)1, 23 (=)

— (iVaprlen, &) - (= = 2)h + 25 (Vepi) (0, &) - Vah ) (8,25 (2 = 21)).

The latter terms are controlled by the spatial derivative bounds on h, and
their time derivatives controlled by the bounds

10/ (Vapi) (e, &) < Ci 2830 107 (Vepr) (a4, &)| < C; 227,

which follow by Corollary 3.2 and (2.7).
To establish (6.11) we expand

. o -
(00t vl )™ [ W= ) B () e ds

J o -
Z 315 + ipk (x4, ft)) [(ar + ip (T igrs §H_T))1W§’(r) By (t) frg 0
1=0

/() (at + 2p]<;(.1't, ft)) Ww(t — S) ( )f:c,§ ds.

The latter term on the right is handled by Lemma 6.2, since we have already
shown that EJ(s)fre = f(5,)z,c, where f(s,:) is a bounded family of
Schwartz functions. The first term on the right expands into a sum of terms

(6.12) {@n (3r+ipk(l‘t+r,§t+r))iW/:;U(7‘)L:0 (3t+ipk($taft))j_n_iEf(t)fx,g-

We can write [af (8T + ipr(Ter, §t+r))iW,‘: (r)} as a sum of terms

r=0

(07 (e, &1)) - - (O™ pr(e, &) [(@ + ipk(Tetr, ft—i—r))lwlg)(?")}

r=0
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where nq + -+ 4+ ny +m+ 1 =n +14, and each n; > 1. By Lemma 6.2 and
the induction assumption we can write

[(@ + ipr(Tesr, §t+r))lW1;U(7’)} 0 (8% + ipr (a1, ft))j_n_iEf(t)fz,E
= 95— £y, Vars
for a bounded family of Schwartz functions f(¢,-). The estimates
|00 pr (1, &)| < Ci, 95(ni+1) nj>1,

then show that the term in (6.12) is of the form 2§jf(t, )& for a bounded
family of Schwartz functions f(¢,-), which implies (6.11). O

We use this to establish sideways energy estimates for E(t), which state
that if the initial data f is microlocalized to frequencies within a small angle
of the co-direction w, then the L? norm of the restriction of E(t)f to space-
time hyperplanes perpendicular to w is dominated by the L? norm of f. By
rotation and translation invariance it suffices to consider w = e; and the
plane z; = 0.

Theorem 6.9. Suppose ¢ € C°((—3,3)). Then

H¢ ae1 )W(D) ) x1=0HLi,L? < C’HfHL2

for a constant C' that is independent of k.

Proof. By Lemma 6.6 and the comments following Corollary 6.7, it suffices
to show that

lo(t) (B (¢ )f)‘;UI:OHLi,LfSCHfHLZ‘

For ¢ € R? with [Z(£,e1)| < & and |s| < 2, the null bicharacteristic curve

v(s) € (RT1)* of 7+ pr(y,n) that passes over (z,€) at time s = 0 satisfies
% < |yi(s)] < 2. Consequently, if |z1| < 3 and |£(&,e1)| < 3 there is a
unique value s = s(z,€) in {s: |s| < 2} such that y(s(x,§)) € {y1 = 0}. We
parameterize the cotangent bundle of y; = 0 by (¢,3/,7,7’), and let T,? be the
wave packet transform acting on this plane. Observe that the integral kernel
Koty 7052, €) of TP (¢(t) EgH (1)T}) vanishes unless [£(€,e1)| < 1.

We show that if |21 < 2, then
(6.13) |K; (69,7052, 8)|
E _k -N
S C’N (1 + 22 |(t’ y,) - Ht,y’V(S(xv 5))’ + 272 |(T’ 77,) - HT 77/’}/(8(56, 5))|)
The Schur test, and the fact that (z,§) — )} is a bilipschitz
symplectic map, shows L? boundedness of T} (b t) (t)T Y ]1| 2y|<2- We con-

sider the case |21 > 3 afterwards.
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To prove (6.13), we use Lemma 6.8 to express K.'(t,y,7,1;x,§) as

2% ei(§5,(D,z’)—a}s)—iT(s—t)—i(n’,z’—y’)

k
2

x h(s, 25((0, 2 —x5)) g(22(s —t,2' — ) dsdz.

Since v is null, we have ILv(s) = —p(xs, &) = — (s, Oszs). We then note
that

(80 + i = ) e @ -zminte—=itrd /) _ g

(0 + (7 + Prls, €)= 10584, (0, 2)) = ) ) 60w o=l ),

Applying each of 2_5821, 2_585, or (9s&s, (0,2") — z4) to the amplitude term
h(--+)g(---) preserves its form. An integration by parts argument, together
with Schwartz bounds on h and g, then shows that the integral is dominated
in absolute value by

kd k k
o10) Cy2¥ [(1e2 b - €42 b+ a6
k k / / k / -N /
F25)s —t| + 252 —y\+2z|(o,z)—x5|) dsdz.
Note that |(zs)1] > 3]s—s(z,&)| as [0s(zs)1] > 2. Since 27F&,, 27 py (s, &),
and z, are all uniformly Lipschitz in s, the integral is in turn bounded by

CN12n+1 2% /(1 25 |s —t| + 23 |2 — y'|)_2n_1 dsdz’

k k -N
x (1427517 0) = Ty (s(, €)] + 28 (o) = Ty (s(2,9))])

which yields the estimate (6.13) for |z;| < 3.

If |z1] > 3, |t| < 1, we have |(2¢)1] > #|z1] > 1[t|. By a similar proof to
above, (6.14) then leads to the following bounds,

‘Kgl(t;y/ﬂ'ﬂ?/;ﬂfv&)]1|x1|2%‘
_k _k oy k koo =N
<Cn(L+272 7 +pil@, O+ 272 — &1+ 22 || + 22|y — )
Here we use, for example, that
21| + |y = 2| S @) + |y = 2| Sl(@1)s] + |y — 25| + s — ¢

by the above. The Schur test, and the fact that (z,&,¢") — (x, pr(x,€), &)
is a diffeomorphism on | (¢, e1)| < 3, proves L? boundedness of the operator

TP $() B (DT Ly 5. s
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We now turn to the proof of (2.14) for the operator E(t), that is
(D) P E@) fllLarrjo,yxrey < C I fll2may

S/Ot E(t—s)F(s,-) ds‘

for s,q,q,r,7 satisfying the conditions of Theorem 1.1. A consequence of
Corollary 6.7 is that

au(D) (D) E(t) = aw(D)r(D)E(t)al, (D), (D) + aw(D)vr(D)R(t),
with R(t) a smoothing operator, and al,(n)v;.(n) a 59,0 cutoff to a §2F neigh-

borhood of the support of ay,(n)1x(n). Since ¢, > 2 > ¢, it suffices by
Littlewood-Paley theory to prove that, for a constant C' independent of k,

law(D)r(D)E®) fllLors (o, xrey < C 25| Fll L2y,

<CIDY*F ¢

LILy ((0,1] xR LY L7 ([0.1]xR)

and that

H/O au (D) Yy (D) E(t — s)aj,(D)r (D) F(s, )dslmn([ouxﬂ%d)
< C2°|F||, o

LY L7 ([0,1]xRd)"
Since E(t)E*(s) = E(t — s), we can apply [9, Theorem 1.2] with a scaling of
(t,x) by 2¥ to conclude that these are implied by the estimate
llag, (D)1, (D) E(t — )aj, (D), (D) f oo (ra)
kd k —4t
§C2 (1+2 |t—S|) 2 HfHLl(Rd)

By Corollary 6.7 and the comments following it, this estimate in turn is
implied by proving the same estimate with E(t — s) replaced by E}(t — s).
Letting K’(t,x,y) be the integral kernel of E}’(t), we need show that

~ _d—1
K (t, 2, y)| < C2M (14 25))) " 2, It < 1.

We in fact prove a stronger estimate, which captures the decay of the
fundamental solution away from the light cone. We will show in Section 7
that, for all N, with S;(y) the geodesic sphere of radius |t| centered at y,
and dist(z, S¢(y)) the geodesic distance in gk of = to the set S¢(y),

(6.15)  |KP(t,2,y)| < Cn 281 + 28[¢]) =2 (1 + 2% [dist(z, Se(y))] ) ™",
which will imply (2.14) by the above.

By similar steps and duality, estimate (2.15) reduces to proving that, for
qq and sq as in Theorem 1.2, and ¢ € C°((— % %))

[oco) [ Bt~ spotoF s, )as

It suffices to prove this for w = e;. We deduce from (6.15) that

<cMap| .
Ly12

qu LQ -

|Kk (t,z,y)| < C'N2kd(1—|-2k|$—y|) 1—|—2k|t—dlst(x y)|) N,
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which uses that dist(z, Si(y)) > |t — dist(z, y)‘, and dist(z,y) ~ |z —y|. As
a consequence, letting x = (z1,2’), we have

o) [ &t = 5.0 00 F (sl ds

LL?
d—1
< C2MD A+ 2Ky — )T F Gyl re
Y

On the other hand, writing E(t — s) = E(t)E(s)*, Theorem 6.9 and the
comments surrounding (6.7) show that

Hgb(t)/}%]il (t - S>$17$,7y1>y,)¢(8)F(81yby,) ds dy, 12 12
.Z'/ t

< CIF Gl e

Interpolation then yields

Hgb(t)/[%]il(t_ 5,1’1,$l,y1,y,)¢(8)F(5,yl,y,) dey, ch,lLf

1 1

1411
< C22k8d’$1 - yl‘ K ||F('7y17 )H

’
9472’
LyLs

and an application of the Hardy-Littlewood inequality yields the desired
bound.

7. WAVE PACKETS AND DISPERSIVE ESTIMATES

This section is devoted to the proof of (6.15) for |t| < 1. Without loss of
generality we assume 0 < t < 1 throughout to simplify notation.

To motivate the proof we recall Fefferman’s analysis in [6] of exp(—i|D|),
the wave group for the Euclidean laplacian at ¢ = 1. Consider

Ki(z) = (2m) ™ / e =il () iy

Following [6], decompose 9,(n) = >, ¥} (1), where 9} equals 1/, multiplied

by a homogeneous cutoff to a conic neighborhood of angle 9=% about the
direction v € S, and v varies over a discrete set of directions separated

by distance 9% . The function 1y’ behaves like a scaled cutoff to a rectangle
of dimension 2¥ x (25)‘1_1, in that

(Lol
‘<Va 8n>m8$wIZ(77)‘ < Cmya2 Mm+73 )a

with constants independent of k. The angular width is selected since one
can write

e~y (n) = e af (),
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where a satisfies the same derivative estimates as v;. This decomposes
Ki(z) =) fi(z—v), where f{(n)=a{(n).
14

The function fy(x — v) is concentrated in a rectangle centered at v, of

dimension 27% along the v direction and 975 in perpendicular directions.
By the spacing of the indices v these rectangles are essentially disjoint, and
simple geometry shows that, for all IV,

d+1

|Ki ()] < On 285 (14 28| |2 — 1)) .

If 27% < ¢t < 1, the above argument can be scaled by ¢ to decompose the
kernel of exp(—it|D[). This gives a t-dependent splitting ¢, = >, 9y,

where now ¢, is localized to a cone of angle t7%27§, and the f/,(z —tv)

are concentrated in a rectangle of dimensions 2~% and t%27§, centered at
tv. These rectangles are again mutually disjoint, leading to bounds

1

|K(t, )] < Oy 22530 (14 28| — o).

For 0 <t <27k, ‘E\he symbol e~/ is a classical symbol, and the kernel has
the same size as ¢ (—x), or as Ki(t,z) at t = 27,

The decomposition of [6] was used in Seeger-Sogge-Stein [12] to estimate
the kernel of oscillatory integral operators with nondegenerate phase func-
tions, for example exp(—iP) for a smooth metric. The key ingredient is that
the phase function ¢(z,n) can be linearized in 7 over the support of each
Yy, up to an error that behaves like an appropriate amplitude function.

To get the correct kernel estimates for ¢ < 1 requires better estimates on
the phase function for it to linearize over the support of ¢Z7t. The needed
estimates are precisely those of (4.7), and the corresponding estimates for
amplitudes are those of (4.8).

The proof of the estimates in (6.15) for a single term W(t) or BY(t)
would follow along the lines of [12], using the decomposition Yy 4, together
with (4.7)-(4.8). We need, however, prove these estimates for a product of
arbitrarily many terms Hj Bl‘j(trj), where ) r; = 1. It is still appropriate
to use the partition 1}/, for each term; however, we need a function space
argument in order to handle a product of terms since there is no hope for
controlling the operator product using a symbol calculus. We therefore
work with a wave packet frame and function spaces using weighted norms
in that frame that grow with the distance to a given point (zg, 1) on the
cosphere bundle. We prove that the operator Bf(s) is bounded from the
space weighted at (z9, 1) to the space weighted at its time-s flowout (zs, vs).
These function space estimates iterate and yield a convergent sum, which is
sufficient to prove the bounds in (6.15).
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7.1. The wave packet frame. We will establish (6.15) for 27% < t < 1;
the proof for 0 < t < 27k follows by using the same proof as for t = 2k,
We consider t to be fixed for this section and suppress the dependence of the
frame on t; however, we note that all constants are uniform over ¢ € [0, 1].

We prove the estimate by studying the behavior of E,‘:(t) in a family of
wave packets that form a frame for functions that are frequency localized
at scale 2. The wave packet frame that we use at scale 2 is essentially a
spatial dilation by ¢! of the scale t2* parabolic wave packets of Smith [13].
The only difference is that our frame covers more than one dyadic region,
but we provide the details here for completeness.

We will be expanding functions with Fourier transform supported in the
annulus
. 4 ok—1 5 ok+2
Ap={n:52" " <yl < 2"
Let A} = {n: 3281 < || < 2252} We construct a partition of unity on
Ay, supported in Aj, of the form

1= Z 5Z,t(77)2 when 1 € Ay, supp(Bg:) C Q4
VETkﬂt

where T}, ; is a collection of unit vectors separated by t_%2_g, and G} ,(n)
satisfies the following estimates

(7.1 |(.0,)705 8¢, (n)] < Cra 274 (1 328) 71
Observe that € ,, defined in (4.6), is contained in a rectangle of dimension

2F+3 along the direction v, and 7325 along the directions orthogonal to v.
For each v, let =} ; be a rectangular lattice in R" with spacing 2m - 2—k=3

along the v direction and spacing 27 - #2275 in directions orthogonal to v.
Let T'y+ = {(ac, v):x € EZ,t? v e Tk’t}, which is a discrete subset of the
cosphere bundle S*(RY). We use v = (x,v) to denote a variable in S*(R9),
and for v € I' 4 we set

S d+1 d—1 .
Gy (n) = 277 27 M T emilem gy (),

Then, with (v, d,) denoting derivatives in directions perpendicular to v,

d—1

d
(7.2) (0, 0,) %0061 (y)] < O 27T 1T x
oklBl (t_%2%)|a| (1 + 2k|(u, y—x)| + t— 1ok ly — :1:|2)_N.

Functions f € L2(R") with supp(f) C Ay admit an expansion in {0y byeris

f= Z CyDry, Cy = /Wf(y) dy.

YE L ¢

We define a pseudodistance function on the cosphere bundle S*(R?) by

di(z,v;a’ V) = (v, x — )|+ [(V,x — 2|+t =V ]? +t7 o — 22
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This is the parabolic pseudodistance of Smith [13] scaled like the wave packet
frame, and satisfies, for all ¢ > 0,

(7.3) de(v; ") < 4di(v;7) +4de(v'5").

It is also approximately invariant under the Hamiltonian flow y, for s < t.
This was proven for C1'! metrics in [13], we provide the proof here for metrics
of bounded curvature.

Lemma 7.1. For some C and all 0 < s < t < 1, and xs the projected
Hamiltonian flow map for any metric gy satisfying (3.1)—(3.3). Then

C dy(v;7) < de(xs(7); xs (7)) < Cde(v;7')-

Proof. Let n =v and n = V. If (x4, &) is the (non-projected) Hamiltonian
flow of (z,n), then Hﬁs\ - 1‘ < ¢4, 80 we can replace v by & in the distance
function. From Corollary 3.2, when |n| = 1 we have the bound |0yz,| < s,
|02s| + [02Es| + |0p&s] < 1, and we deduce

|7 — ws| + I8 — &l S |2’ — x|+t —nl.
Applying this also to x_s we obtain
= @+ tle — &Pt e — aP
By symmetry it thus suffices to show that
(7.4) [(n,2" — @) — (&, 2y — @s)| Sty —asl? + " — ).

Let ¢ be the phase function for gy, and write = V,¢(s,zs,n) and & =
Vap(s, zs,n). By homogeneity,

(n, 2" — 2)— (&, 7 — x5)
= (0, Viyp(a, 25, 0') = Vip(s, 25,m)) — (Vap(s, x5,m), 2 — x5)
= (s, 75,7) — (s, x5,m) — (2 — s, Vaip(s, T5, 1))
=" = n, V(s 2, ')
Observe that, by Theorem 3.3,

(0 =, V(s xn') = Vne(s,ze,m))| S 10— nl(|a — x| + t|n" —n])

St el — @+t — )

Consequently, it suffices to show that the error bound for the first order
Taylor expansion of ¢(s,x%,n') — ¢(s,zs,n) is bounded by the right hand
side of (7.4). The estimates (4.1)—(4.4) give |92¢r| < 1, [0:0p0k] S 1,
020k| < |sl, and hence the remainder is dominated by

oy — sf? + Jafy — sl I =+t =l < J eVl —af® + Sty —nf?
giving the desired bound. O
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For any given integer M > 0 and point vy € S*(R?), we define a weighted
norm space

1130 = S (14 2 00) M e (D en(f) = / 5w () dy.

Y

For dyadically localized f, this norm roughly measures how far f is from
being a wave packet centered at vg. In the next subsection we will prove the
following theorem.

Theorem 7.2. Suppose that 0 < s <t <1, vy € I'ky, and xs(70) = (x5, vs),
where x s is the projected Hamiltonian flow for g. Then for alll, B, N, there
are constants Cy g N so that

(7.5) |0, 00)°08 (B (5)6,)(@)] < O s 2250 F
% 2kl (t—%gé)la\ (14 2\ (v 2 — 23)] + £ 2% — asf?) V.

In the remainder of this subsection we deduce (6.15) from Theorem 7.2.
First we deduce || - ||as,y,(y) mapping properties for By/(s) from (7.5). The
left hand side of (7.5) vanishes unless Z(w,vy) < 2

7> SO We may assume
1
Z(w,vs) < 5.

Lemma 7.3. Suppose that [ is supported in the set {n:Z(n,) < %}, and
for all N, «, B we have

‘(V()Lv 8y>“65f(y)] < Cpnap 2K
x 2H81 (7328 (14 28 (v, y — o) + 47128y — 20 f?)”

Let o = (zg,v0). Then for all M > 0 we have || f||rr~, < Cum, where Cyy
depends on only a finite number of the Cn o 3.

d+1) _d—1
4/t a4

N

Proof. Without loss of generality we assume that 1y = e;. By the derivative
estimates we have

A d d— —
1Fm)] < Cn 275D 5 (1 27 % |+ 2Rty 12) Y,

where for each N the value of Cy depends on only a finite number of Cy 4 s.
Since -, is supported where || > 2¥=%|v — e1|, by Plancherel’s theorem we
obtain for all N, and similar Cly,

N

(76) ley(N < Cy (142w — )N, ey(f) = /wymy)dm

By the pointwise estimates on f(y) and ¢, (y), we have

ey ()] < Oy 25 /(1 + 25y (y, e1;70)) 2V

)) —2N—d

x (14 2%dy(y, vy dy.
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By (7.3), noting that di(y, e1;y,v) = t|lv — e1]?, we have
150 (v,70) < dily, e1;70) + dely, vi7) + ty — en]*.

Together with (7.6), this implies |¢y(f)] < Cn (1 + det(%%))—N. The
lemma then follows from the bound

(7.7) sup »  (142F di(v;y)) " < Cy,
gl YE L ¢
which follows from estimate (2.3) in [13] after rescaling. O

The converse to Lemma 7.3 also holds; we need it only for « = 8 = 0,
and prove that version in the proof of Corollary 7.5 below.

An immediate consequence of Theorem 7.2 and Lemma 7.3 is decay esti-
mates on the matrix coefficients of B{(s). Precisely, for all N we have

(7.8) (/W(BZ?(S)W)(@/) dy’ < On (14 2%y (i xs () .

We then use this to prove boundedness of B,‘j(s) in the weighted norm spaces
via the following lemma.

Lemma 7.4. Suppose that M >0,0<s<t<1, and T : S(R?) — S'(R?)
is a linear map such that the matrixz coefficients

a(17) = [ G (T6,)w) dy
satisfy the bound

la(7, ) < (1+ 28 di(v; x5 (7))
Then, uniformly over vo € S*(RY), we have || Tf || sy (v0) < Catll fllnt0-

—(M+d+1)

Proof. 1t follows from (7.7) that
SUPZ\ a(y,7) < C,

and, since di(v; xs(7')) = di(x— ( );7') by Lemma 7.1, we also have
s Y latn )l < .

where C' is independent of s, ¢ and k. By Schur’s lemma we conclude

15 (5) flloxatr0) < C 1l Fllo.5o-
The weighted case M > 1 follows by noting that

(1+25di(v: x5 (10))) S (1 + 25 (s xs(7))) (L + 28de (73 70)),
which follows from

di(7:xs(70)) < 4de(v; x5(7)) + 4de(xs (V)5 x5 (70))
and the fact that di(xs(7"); xs(70)) = de(v',7%0)- O
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Corollary 7.5. Let x5 denote the time s projected Hamiltonian flow for gy.
Then for 0 < s <t <1, and all M > 0,

1EE () fllatxs () < Cnall f 1250
with constant Cay independent of s, t, v, w, and k.

Proof. By Lemma 7.4 and the estimate (7.8), which holds also for W (s)
by the same proof, we have

1B () f M xr0) < Cuall fllage-

The formula (6.8) for EN',:" (t) and the group property of xs then show that

5 o g™Mm C]\??}[-‘rl
1B iy € D T | f s

m=0

= Cn €M ||f Iz -

O

We conclude this section by deriving the bound (6.15) from Corollary 7.5.
Write K¢(t,z,y) = (E¢(t)dy)(x). Since E¥(t) has the factor ¢4 (D) on the
right, we may write

(EX(00y) () = Y (EX(0)B{4(D)?y) ().

veTy ¢

The function B,’;t(D)Q(Sy has Fourier transform e~ ﬁ,’;t(n)z. Up to a nor-
malization factor, this behaves like the frame element ¢ at v = (y,v), and
it is easy to verify that for all M

188 /(D)?8, a1y < Cag 28505
By Theorem 7.5, letting v; = (x4, ¢) = x¢(y, ) we have
(7.9) 1B (0)8 (D)6, a1y < Car 25
This implies that, for all IV,
| (B¢ ()8, (D)?5,) (x

)|
< Oy2RF -V

)45 (1425 (up, & — )| + 286 — a]?)

We see this using (7.9), that the frame coefficients {c,/} of E,f(t)ﬁ,’c’jt(D)%y
satisfy for all M

ey | < Car 2651 T (14 25, (v 0))
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From estimates (7.2) on |¢,(x)|, we follow the proof of [13, Lemma 2.5] with
v = (2/,1") to bound ‘(E,‘j(t)ﬁ};t(D)26y)(x)| by

O 2R Z (1+2Fdy(+; %))_M(l +2%d,((z,0); 7/))_M
Y€l ¢
< Oy T 3T (L 2 (i)
VETE
a+1 ~M+g

< O 2T (1428 (vy, & — @) | + 2547 o — z,[%)
Deriving (6.15) from Corollary 7.5 then reduces to showing that

Z (1+ 2K (g, & — xg)| + 28t o — mt|2)7N7d
VETk,t

< On (1 + 2" dist(z, Si(y))) .
If (24, 20) = x¢(y,v) and (x4, 1) = x¢(y, V), then by Corollary 3.2

t < 12 — a4

< <it.

(S
ot

v —v|
Consequently, the points x; are separated by 3973 for v € Tj4, and thus
Z (1+ 2kt |z — xt|2)_d <C.

VETk,t
It therefore suffices to show that, for ¢4 small enough, and for each v € S1,
(7.10) (v, x — x| + 1 |lx — xt|2 > %dist(;r, Se(y)).
Here, z; € S¢(y) for each v, and 14 is the unit normal to Si(y) at the point
ry, in that (v, Oy, @¢|y=y) = 0, which follows by homogeneity.

We observe that, by scaling, it suffices to prove (7.10) in the case t = 1.
Precisely, (¢t~ 1a,14) is the image at time 1 of (t~!y,v) under the projected
Hamiltonian flow for the metric gx(¢-), and ¢t71S(y) is the corresponding
unit geodesic sphere centered at ¢!y, hence the two sides of (7.10) dilate
by the same factor t. Furthermore, the metric gi(¢-) satisfies conditions
(3.1)-(3.3) with M = 25 < 25.

Without loss of generality we assume v = e; and y = 0. We introduce the
notation (z(w),n(w)) = x1(0,w) to denote the mapping of the unit sphere

S%! onto the unit conormal bundle of S;(0). By Corollary 3.2, this map is
C'-close to the map w — (w,w); precisely

|z(w) — w| + |[Vyz(w) — Hoﬂ + |n(w) — w|+ |Von(w) — Hj\ < ¢q.

As a consequence we may parameterize 51(0) N {z1 > 0, [2/| < 1} as a
graph z1 = F(2'), where

(7.11) |02 (F(2') = /1= |2/]?)| < cas la] <2, |2| <

N | —



THE WAVE EQUATION ON MANIFOLDS OF BOUNDED CURVATURE 49

This holds for |a| < 1 by C! closeness of z(w) to w, and for |a| = 2 since
Vo F(2') = —n/(w(x')/n1(w(z')) is C! close to —a'/+/1 — |2/|2.

The bound (7.10) is equivalent to proving, for z = (z1,2') € R,
min |z — 2(w)| < 4(|{n(er). = w(e))| + |z = a(e)?).

We assume that [z — z(e1)| < 1, hence |2/| < 1, as the bound is immediate
otherwise. The left hand 81de is bounded above by |z1 — ( )], and the
bound then follows by the Taylor expansion of F'(z’) about 2/(eq),

1 = F(2')] < |21 = F(a'(e1)) = (2’ — &/ (e1), Var F (2’ (1)) + [ — 2/ (e1)]?
=ni(e) " [(n(er), z — z(en))| + [ — 2’(er)

where we use that [|[V2 F|| < 2 for |2/| < by (7.11) if ¢4 is small, and
F(a'(e1)) = z1(e1).

7.2. Proof of Theorem 7.2. We follow the key idea of [12], that the action
of a Fourier integral operator on a function f whose Fourier transform is
suitably localized can be decomposed as a pseudodifferential operator acting
on f, followed by a change of coordinates. Suitably localized means that
the phase function can be written as a phase that is linear in 7 plus a term
that satisfies the estimates of a zero-order symbol on the support of f (n).
Here we take f = ¢, with f supported in the set Oy ; defined by (4.6), and
the zero-order symbol estimates are those of Corollary 5.2. The estimates
of Corollary 4.2 will be used to establish the linearization of ¢ on in.

We prove Theorem 7.2 with B{(s)¢, replaced by By(s); recall the defi-
nition (6.6) and (6.5). The operators d. (D) (D) is a mollifier on spatial
scale 27% and commutes with differentiation, hence preserves the estimates
of Theorem 7.2, and a,, (D), satisfies the same conditions as ¢~. The terms
By+1(s) will follow the same proof as for By(s).

Without loss of generality we assume vy = (0, e1). We need establish the
bounds of Theorem 7.2 for the function

(Br(s)n, ) (x) = 27227 HE¢ / eter(sany (s, x,m) Bl (n) dn.
We can express this in the form

(Bus)6) (a) =2 b 3" [ itreahn) htomaty s, )3 o) i
where y(s,z) = Vypr(s,x,e1), and where by (4.9) on the support of Bg}t
the function h(s,z,n) = vi(s,z,n) — 1 - Oypr(s,x,e1) satisfies

|09 8308 h(s, 2,m)| < Cjap27 (17277) 1% 23181,
This, together with Corollary 5.2 and (7.1), leads to the estimates
(7.12) ‘aﬂ aaaﬁ< ey (s, 2,m) B8 (n ))

ki, Lok k
i O <Cjap2 kj (t22 2)‘0422'5‘.
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We now express
d—1

(Bk(s)qb%)(x) = Qk(%)t_TF(:r,y(s,x)),

where
F(z,y) =2 So—k(H) A5t /ei(y,meih(svz’”)bk(&x,U)Bli}t(ﬂ) dn.
The estimates (7.12) and integration by parts leads to the bounds

k 1 k —
|09 0% F (2, y)| < Onjiayp 22171288 (¢7323) 10l (1 4 28y, | 447125y 2) ™

We now use the chain rule to express z-derivatives of the composition of
F(z,y) with y = y(s,z) as a sum of terms,
O F (2, y(s,0)) = (0, F) (2, y(s,2)) + (Vy F) (2, y(s, 7)) - Oy (s, ).

The 0., in first term on the right counts as a factor of 2% in the derivative
estimates, which is better than the conclusion of Theorem 7.2. Similar
considerations apply to terms in the expansion of higher order derivatives.
Since we will estimate individually each term arising in such an expansion,
we therefore can consider functions F' that are functions of only y. That is,
we assume for all N that

. k _
(7.13) |00 0% F(y)| < Cnayp 2% (¢7727) 101 (14 28|y | + ¢ 125y 2)

and prove that the composition with y(s, z) satisfies for all N

(7.14) |#700F(y(s,x))|
< CNap okIB| (t_% 2%)'04 (1 + 2k|<1/3, x — xs)| + t_12k]m - acs|2)_N,

where @, = <V§‘, 0;) denotes derivatives in directions perpendicular to vg.

Since y(s, xs) = 0, and the map x — y(s, x) is a globally bi-Lipschitz map
of R, with uniform bounds on the map and its inverse, we have
ly(s, @) ? = [ — [,
with the ratio of the two sides close to 1 for ¢4 small. For a constant ¢ close
to 1, we also have

CVs = (vx@k‘)(svxs’el) = (anmgpk)(s,xs,el) = (vxyl)(s’xS)'
We also have the equality yi(s,z) = pi(s,x,e1) by homogeneity, which by
(4.1) implies
c, 18] =1
1 s
(7.15) 103 v1(s, $)|—{022(|5| 2)’ 18] > 2.

Together with a first order Taylor expansion these imply that, for 0 < ¢ <1,
(7.16) (s )|+t Uy (s )P & (s — )] + £ — a2

with uniform bounds on the ratios. Together with (7.13) this gives (7.14)
for j =a=0.
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To bound derivatives, we use the chain rule to express @507 F(y(s, z)) as
a sum of terms of the form

(8;}6§,F)(agla§1 Y1) (agmafmyl)(agmﬂ a£m+1y ) (agm+|6|a§m+\0\y/)

where
m+|0| m+|0|

a= Z aj, B= Z By, m+ 10| < |al + |8].
j=1 j=1

The estimate (7.14) then follows from (7.13) and (7.16), together with the
following bounds for the derivatives of y(s,z) for |a| + 3] > 1, and where
27k <t <1,

920015, 2)] < Cop 209D (3 25) (1 1 1328 ja — )
7205y (s,2)] < Cug okl Bl (f%ﬁ)m\_l.

The second of these holds by the stronger bound of C, g 25 (al+81-1) from
Theorem 3.3, where if |a| = 0 we use that 27% < (f%Q%)_l and || > 1.
For the first, if |a| = 1 and |3] = 0, we use (7.15) and that (J,y1)(s,zs) = 0
to see that |@,v1(s,z)| < C|z — xs|]. If |a] > 2 or |3] > 1 then the estimate
follows directly from (7.15). O
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