
MATH 580A 6/30 Notes

1 Recap and Introduction

Last class we covered strings and dictionaries, which were the last two major common data
structures in Python. We saw how to format strings, use dictionaries to store more complicated
data, and had a brief exposure to representing directed graphs in Python.

Today we will cover some miscellaneous useful topics in Python and conclude with a large
example on LZW compression. This will complete the list of basic topics and syntax in Python.
Starting next week we will cover more algorithmic topics, starting with graphs. These topics will
provide us with lots of examples to reinforce programming in Python.

2 Lambda Functions and Functions as Arguments

We’ve worked with functions quite a bit at this point. We’ve seen how to define a function and
also seen different argument definitions, including positional arguments, keyword arguments,
and taking in an arbitrary positional argument list. We will now look at one more way to define
functions called lambda functions. These are short one-line expressions that define a function
without a name. They are usually used as a convenient way to write small functions without
having to give them a name.

Listing 1 demonstrates a multitude of ways to define and use lambda functions. Line 1 shows
the basic syntax for defining a lambda function. We use the lambda keyword, followed by a list of
argument names, followed by a colon :, and then the function body. Unlike a regular function,
there is no return keyword and whatever value we write in the function body gets returned.
Also, unlike a regular function, we can’t execute multiple computations or use for loops or if
statements. Notice that in line 1, we actually define the function and assign it to a variable called
double. The reason we can do this is that in principle, functions are just a type of value, like
strings, numbers, lists, and dictionaries. Thus, we can assign it to a variable. Once assigned
to double, we can use the parentheses notation double(10) to call the function, passing in the
argument 10.

Lines 4 through 8 are an example of a lambda function that takes two arguments v,w and
computes their cross product. Here we assume the arguments are both lists of length 3. Although
we said that lambda functions are typically one line, the actual requirement is that the function
body consists of a value that’s returned. In this case, since we can define lists across multiple
lines, we have a multiline return value which is a single list.

Lines 11 and 12 show another example of how functions are a type of value just like strings
and numbers. We define a lambda function that takes two arguments, a function f and a value x
and returns f applied twice to x. Observe that the function double, acts as any other value, and
can be used as the argument in apply_twice.

Line 14 shows a more complicated lambda function that combines its two input functions,
composing one after another. In order to define this, the return value of compose is itself a

1



MATH 580A: Graduate Computing Seminar

1 double = lambda x: x * 2
2 print("double(10):", double(10))
3

4 cross_product = lambda v, w: [
5 v[1]*w[2] - v[2]*w[1],
6 -v[0]*w[2] + v[2]*w[0],
7 v[0]*w[1] - v[1]*w[0],
8 ]
9 print("cross_product([1,1,-1], [0,2,1]):", cross_product([1,1,-1], [0,2,1]))

10

11 apply_twice = lambda f, x: f(f(x))
12 print("apply_twice(double, 10):", apply_twice(double, 10))
13

14 compose = lambda f, g: (lambda *args: g(f(*args)))
15 print("compose(double, double)(10):", compose(double, double)(10))
16 print("compose(cross_product, sorted)([1,1,-1], [0,2,1]):",
17 compose(cross_product, sorted)([1,1,-1], [0,2,1]))
18

19 list = [[1,1], [-1,0], [1,0], [0,-1]]
20 list.sort(key = lambda coord: math.atan2(coord[1], coord[0]))
21 print("list:", list)
22

23 functions = [double, lambda x: x+1, abs]
24 y = -7
25 for fn in functions:
26 y = fn(y)
27 print("y:", y)

Listing 1: Function Examples.

function. It is a function that takes an arbitrary number of positional arguments and forwards
those along into f.

Lines 19 to 21 gives a common practical application of lambda functions. Often you will have
lists of some type of interesting object and wish to sort the list using the built in sort() function.
However, Python doesn’t know how to compare elements in your list and you’ll need to provide
a function as the key argument. The function should take an element of the list and return some
value that Python does know how to compare, usually a number or string. In this case, we
return the angle from the x-axis for each of the coordinates and sort the coordinates by their
angles. Note that the key argument in Python’s sort() function is a keyword-only argument so
you must type out the key= section.

Finally, lines 23 through 27 show one more example of the versatility of functions. You can
put them in lists (and also dictionaries!) and iterate over and call them.

Do exercise 1. The first exercise asks you to compute the fixed points of a function passed in.
The second exercise asks you to compute a list of maximal elements among the passed in list,
using a custom comparator function. The final exercise asks you to take a list of lists and flatten
it.

2/5



MATH 580A: Graduate Computing Seminar

3 List Comprehensions

There is a syntax for constructing lists that is very compact and convenient. In mathematics, one
might write {x2 : x ∈ Z} to denote the set of all square integers. Python has a syntax similar
to this called a list comprehension. The syntax for this looks like [<variable> for <variable> in
<iterable>], where <iterable> is any sort of object you can loop over with a regular for loop.

1 sample = [1,2,4,8,16,32]
2 doubled = [2*i for i in sample]
3 print("doubled:", doubled)
4

5 multiples_of_four = [i for i in sample if i%4 == 0]
6 print("multiples_of_four:", multiples_of_four)
7

8 def add(list1, list2):
9 return [list1[i] + list2[i] for i in range(min(len(list1), len(list2)))]

10

11 def add_(list1, list2):
12 return [x+y for x,y in zip(list1, list2)]
13

14 print("add([1,2,3], [-1,-2,-3])", add([1,2,3], [-1,-2,-3]))
15 print("add_([1,2,3], [-1,-2,-3])", add_([1,2,3], [-1,-2,-3]))
16 print("zip([1,2,3], [-1,-2,-3])", zip([1,2,3], [-1,-2,-3]))
17 print("list(zip([1,2,3], [-1,-2,-3]))", list(zip([1,2,3], [-1,-2,-3])))

Listing 2: List Comprehension Examples.

Listing 2 shows some examples of using list comprehensions. Line 2 is one of the simplest
ways of writing a list comprehension. It defines a new list whose elements are those in sample
except that each element is doubled.

Line 5 demonstrates how list comprehensions can also be used to filter for elements that
satisfy a certain condition. Here, we use the condition if i%4 == 0 in order to obtain a sublist
of sample that consists only of the values divisible by 4.

Lines 8 and 12 show two ways to write a function that takes in lists <list1> and <list2>
as arguments and returns a list of the component-wise sum of the two. The second defini-
tion demonstrates the built-in Python function zip() which takes two lists and returns a list
where elements are paired up together, truncating to the length of the shorter list. For example,
zip([1,2], ["a","b"]) = [(1,"a"), (2,"b")].

List comprehensions, like lambda functions, are primarily included in Python as a convenient
way to implement certain functionality in fewer lines of code. You could equivalently start with
an empty list and use a regular for-loop to append elements, but would often have to write a fair
bit more code to do so.

3/5



MATH 580A: Graduate Computing Seminar

4 Miscellaneous Data Structures

Although we have covered the main data structures in Python, there are a couple more built
into the language. There is the tuple which is similar to a list, but immutable. That is, once a
tuple is created, you cannot modify the contents of it or add or remove to it. There is the set
data structure which is a container that holds values, but is unordered and deduplicates values.
Finally, there is the frozenset data structure which is analogous to a tuple in that it is a set that is
immutable.

Listing 3 illustrates the use of these data structures and also demonstrates a couple pitfalls.
Line 1 shows the basic definition of a tuple. It differs from lists in that you use parentheses
instead of square brackets to define the tuple. Lines 5 and 6 show invalid operations on a tuple
as it is immutable. You can uncomment these lines to see what errors Python will raise.

Lines 8 through 15 show why immutability is useful and why you might use a tuple over
a list. Dictionary keys need to be stable. You can’t use a list as a key because the contents of a
list might change, rendering it invalid. To get around that, you can instead use tuples as keys
because their contents will not change. Lines 14 and 15 show invalid operations. Because lists
and dictionaries are mutable, they are not valid to use as keys.

The basic definition for sets is demonstrated on lines 17 through 19. If you call set() with no
arguments, you get back an empty set. To define a set with some initial elements, you can use
curly braces, similar to in mathematics. This differs from the definition for a dictionary because
there are colons creating key-value pairs. Another way to define a set with elements is to pass
in a list-like object as an argument to set(). Python will convert it into a set, removing any
duplicate entries in the process. To add or remove elements, use the add() or remove() functions
as on lines 24 through 28. Notice that if you add an element that already exists in a list, nothing
will happen.

Lines 31 through 35 demonstrate some mathematical set operations you can do. First, the
< operator is used to check for strict set inclusion. You can use <= to check for set inclusion
with equality. The | operator computes the union of two sets and the & operator computes the
intersection of two sets.

Finally, lines 37 through 42 demonstrate frozensets. Because a frozenset is immutable, you
will generally call frozenset() with a list-like object as the argument to create the immutable
object. Frozensets can be used as dictionary keys because they are immutable but regular sets
cannot, as seen on line 42.

Do exercise 2. Exercise 2 is a fairly substantial exercise about solving a word game called
Spelling Bee!

4/5



MATH 580A: Graduate Computing Seminar

1 coordinate = (0,1)
2 print("coordinate:", coordinate)
3

4 # Invalid code:
5 #coordinate[0] = 1
6 #coordinate.append(0)
7

8 points = {}
9 points[coordinate] = "A"

10 points[(1,-1)] = "B"
11 print("points:", points)
12

13 # Invalid code:
14 #points[[-1,0]] = "C"
15 #points[{}] = "D"
16

17 emptyset = set()
18 integers = {1,2,3,1,2,3}
19 deduped_letters = set("SYSTEMATIC")
20 print("emptyset", emptyset)
21 print("integers", integers)
22 print("deduped_letters", deduped_letters)
23

24 integers.add(4)
25 integers.add(3)
26 print("integers after adding:", integers)
27 integers.remove(2)
28 print("integers after removing:", integers)
29 more_integers = set(range(100))
30

31 print("integers < more_integers: ", integers < more_integers)
32 print("integers < integers: ", integers < integers)
33 print("integers <= integers: ", integers <= integers)
34 print("union:", integers | deduped_letters)
35 print("intersection:", deduped_letters & set("ORANGE"))
36

37 d = {}
38 d[frozenset(integers)] = True
39 print("d:", d)
40

41 # Invalid code:
42 # d[integers] = False

Listing 3: List Comprehension Examples.

5/5


	Recap and Introduction
	Lambda Functions and Functions as Arguments
	List Comprehensions
	Miscellaneous Data Structures

