
MATH 580A 6/28 Notes

1 Recap and Introduction

Last class we covered the list data structure in detail, seeing various operations on lists and how
to use multi-dimensional lists to process data. We gave a real-world computing application of
multi-dimensional lists in the form of box blurring images. After covering lists, we took a look
at a some more flow control tools in the form of while-loops, break and continue statements.
Finally, we learned about different ways of defining functions. We saw the difference between
positional and keyword arguments and saw how to define a function that can accept an arbitrary
number of arguments.

Today, we will cover two main topics: strings and dictionaries. Strings are the basic objects
used to store and handle text in Python and to a first approximation, act as lists of letters.
Dictionaries are a more complicated data structure that allows you to store arbitrary data based
on a key. Unlike lists which are a linear order of values and are indexed by the numbers 0, 1, 2,
and so forth, dictionaries can be indexed by nearly any type of value. For example, you could
write dict["hello"] or dict[(1,2)] or dict[-100] and so on. At the end of today’s class, we
will also discuss some details about how numbers and dictionaries actually work “under the
hood”. What we typically work with in Python are abstractions the language has provided us.
Some knowledge about how it is implemented is helpful for when the abstractions break down
in edge cases and we need to understand why.

We are also building up towards one major example application for next class which is a com-
pression algorithm for text known as LZW. You may have heard of some compression schemes
such as Huffman encoding, which can achieve optimality if you know the probability distribution
on letter sequences. This compression algorithm is similar in that it doesn’t lose any informa-
tion during the compression, but differs in that it builds up a dictionary of commonly occurring
strings along the way as opposed to doing any sort of up front analysis.

2 Strings

Strings are an object representing text in Python. Some languages have a separate character object
for single letter strings, but in Python there is no distinction. The concept of a character is still
useful and you can think of strings as lists of characters. However, strings have some additional
methods specific to text and some list methods such as sum() don’t make sense on strings.

In Python, there are some subtleties in defining strings. Listing 1 demonstrates some of them.
Line 1 is the standard way of defining a string in Python. It consists of some text enclosed in
double quotation marks. Line 4 is a variant in Python provided for convenience. If you prefer,
you can use single quotation marks to define strings rather than double quotation marks.

Line 7 demonstrates escape characters in Python. A newline for example isn’t typeable (splitting
a string across multiple lines directly doesn’t work). In order to have your text be split across

1

MATH 580A: Graduate Computing Seminar

multiple lines, you will need to use the newline escape character \n in your string. This is
similar to control sequences in LaTeX except there are a standard predefined number of them in
Python. For example, if you are using double quotation marks to delimit your string, then you
will need the escape character \" to display a double quotation mark in your string. Finally, two
backslashes in a row \\ will display the backslash character itself.

Lines 10 through 13 demonstrate what to do if you have a really long string that you want to
split across multiple lines in the code for readability reasons. As mentioned earlier, you cannot
directly define a string across multiple lines. However, there is a special escape character that
allows you to split a string definition over multiple lines. By writing a backslash character at the
end of the line, it continues the current line of code on the next line. In fact, this works not just
for strings but for long lines of code in general. You can split it over two or more lines using a
backslash at the end of the line.

Finally, lines 16 to 19 show a special syntax for defining multi-line strings. You need to start
and end the string with 3 double quotation marks. When using this syntax, all newlines are
preserved so in this example, we end up defining a string with 4 lines total.

1 s = "It was the best of times. It was the worst of times."
2 print(s)
3

4 s = 'You can use single quotes as well.'
5 print(s)
6

7 s = "Backslashes are escape characters.\n\"\\n\" and '\\\"' are some examples."
8 print(s)
9

10 s = "Really really really really really really really really\
11 really really really really really really really really really\
12 really really really really long strings can be cut across\
13 multiple lines using backslashes too."
14 print(s)
15

16 s = """Triple quotes are used as multiline strings.
17 Newlines and
18 formatting are
19 preserved."""
20 print(s)

Listing 1: String Definitions.

Next, let us take a look at some string operations. They are similar to lists in many ways.
Listing 2 highlights some of these common operations. Lines 1 and 4 demonstrate how to con-
catenate strings to form longer ones. In line 8 we see that the same list indexing syntax works for
strings as well. You can use the len() function to obtain the length of a string. These are some
of the list operations that also operate on strings.

Lines 13 and 14 show a couple useful functions for converting English letters in a string to all
uppercase or all lowercase. These are often helpful if you’re reading some input text and want

2/11

MATH 580A: Graduate Computing Seminar

to standardize to avoid having to distinguish between lowercase and uppercase letters.
Lines 16 to 20 demonstrate the split() function and its “inverse” function join(). The

split(<separator>) function takes an argument which is used to split the string into a list of
strings. In our example, we split "06/28/2022" according to the separator "/" which will give us
a list of 3 strings ["06", "28", "2022"]. The separator can be a string of any length, including
the empty string "". The inverse function <string>.join(<list>) takes a list of strings and joins
them together, using the calling string as the separator. In our example here, we join together the
coordinates using the separator ", " to obtain the string "-1, 3, -8, 12".

Finally, lines 22 to 31 demonstrate substring comparisons. The in keyword can be used
to check if one string is contained inside another. For example, on line 28, "OWE" in "TOWER"
evaluates to True because "TOWER" contains "OWE" as a contiguous substring. Lines 24 to 26
demonstrate a small program used to print out all the letters that appear in a given word. Lines
30 and 31 demonstrate a similar function <string>.find(<substring>). The difference between
using .find() and the in keyword is that .find() will return the beginning index of the first
occurrence of the substring if it exists. If the substring doesn’t exist, then it will return -1.

One last aspect of strings that we will cover is formatting. Often, you will compute numerical
values but printing them directly is not desirable and you’d like to round to a certain number of
significant figures, or include commas to separate the thousands figures, etc. Listing 3 highlights
how to do some of these formatting operations with strings.

We’ve briefly talked about f-strings previously but line 4 demonstrates how to use them once
more. An f-string lets you mix literal text and the values of variable into a single string. You need
to prefix the string with f" instead of the usual " to begin an f-string. Inside an f-string, { and }
are treated specially and a variable inside will have its value printed out inside the string. If you
need to print the actual curly brace characters, you can double them up. That is, {{ and }} will
print the curly brace characters themselves. Observe that in our example, any type of variable
can be printed out in f-strings, not just numbers but also lists and other strings.

Lines 9 through 11 demonstrate several ways of formatting numbers. Inside an f-string, to
format a number a specific way, add a colon : character after the variable name and then a
format specification after the colon. The full range of specifications you can write is quite large
and is detailed in the official Python documentation. These examples should give you a sense
of what’s possible with format specification, but is by no means exhaustive. A quick note is that
writing an integer in binary as on line 11 is to write it using 0’s and 1’s. We will discuss binary
representations in some more detail later.

Finally, lines 13 through 20 show how to convert from strings to numbers and back. The
float() function takes a string and converts it to a floating-point number, that is, a not necessarily
integral number. The int(<string>, <base>) function takes a string and converts it to a number.
It can optionally take a base argument which specifies what base to interpret the string in. Finally,
lines 19 and 20 show how to convert a number into a string. Line 20 in particular converts an
integral number to its binary representation. The difference between this function and the f-string
approach on line 11 is that bin() will prepend 0b to the string it returns.

Do exercises 1, 2 and 3. Exercise 1 has two different mini-exercises involving string operations.
Exercise 2 involves generating all the permutations of a list as a review of lists and recursion.
Finally, exercise 3 asks you to format some numbers and requires learning to read the official
Python documentation.

3/11

https://docs.python.org/3/library/string.html#format-specification-mini-language

MATH 580A: Graduate Computing Seminar

1 s = "Before" + " " + "and" + " "
2 print(s)
3

4 s += "after"
5 print(s)
6

7 s = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
8 print(s[6:10])
9 print(len(s))

10

11 s = "mIXing CapITALizATIon!!!"
12 print(s)
13 print(s.upper())
14 print(s.lower())
15

16 date = "06/28/2022"
17 print(date.split("/"))
18

19 coordinates = ["-1", "3", "-8", "12"]
20 print("[" + ", ".join(coordinates) + "]")
21

22 alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
23 word = "TOWER"
24 for c in alphabet:
25 if c in word:
26 print(c)
27

28 print("OWE" in "TOWER")
29

30 print("TOWER".find("OWE"))
31 print("TOWER".find("COW"))

Listing 2: String Operations.

3 Dictionaries

The final built-in data structure in Python that we will talk about is the dictionary. We’ve briefly
seen dictionaries used before but glossed over their details. A dictionary, also called a map in
other languages, is a way of storing a collection of data but unlike lists, the data is not ordered
linearly. Instead, the data is in correspondence with a set of elements known as keys and math-
ematically, you can think of a dictionary in Python as expressing a bijection between a set of
elements known as keys and a set of elements known as values. Let us take a look at a concrete
example of some dictionary usage in Listing 4.

Lines 2 through 7 define a dictionary. You will often split up the definition of dictionaries
across multiple lines. The syntax or notation for defining a dictionary are the curly braces {} and
pairs of key-value elements in between. A key-value pair is of the form <key>:<value> and pairs

4/11

MATH 580A: Graduate Computing Seminar

1 l = [1,2,3]
2 n = 3.14159
3 s = "Hello"
4 print(f"list = {l}; number = {n}; string = {s}")
5

6 n = 3.14159
7 large_n = 1000000000000000
8 integer_n = 75
9 print(f"float with 2 decimal points = {n:.2f}")

10 print(f"float in scientific notation = {large_n:e}")
11 print(f"integer in binary = {integer_n:b}")
12

13 s = "100.29"
14 binary_string = "10101"
15 n = 2022
16 print(float(s))
17 print(int(binary_string))
18 print(int(binary_string, 2))
19 print(str(n))
20 print(bin(n))

Listing 3: String Formatting.

are separated by commas. Observe that you are allowed to have a comma after the very last pair
as well. In this example dictionary, the first key-value pair has the key 20 and a value of "V".
In general, your keys will usually be numbers or strings. Not all types of elements can be keys.
Lists in particular are prohibited and we will see why when delving into how dictionaries are
actually implemented.

Lines 4 through 6 define another key-value pair in this example. Here, key refers to the vari-
able defined on line 1 and so actually the string "K" is used as the key. The value is another dic-
tionary and this nested dictionary has a single key-value pair. Its key is the string "string_key"
and its value is the string "string_value". To access a specific value in a dictionary, you can
index it using its key like on line 9. To get the number of key-value pairs in a dictionary, you can
use the len() function.

Lines 12 through 17 demonstrate how to add and remove values. To add a new key-value
pair to a dictionary, you index into it using the a new key that does not yet exist and assign to the
indexed dictionary as if it were a variable. You can also use this notation to reassign the value
associated with a key that already exists, as on line 13. To delete a key-value pair, you can use
the del keyword as on line 16.

Lines 19 through 36 demonstrate how you might use dictionaries in order to represent di-
rected graphs. The nodes are labeled with the letters "A", "B", "C", "D" and each key-value pair
has a node label as its key and a list of node labels it points to. The graph represented is shown
in Fig. 1.

Lines 26 through 36 show three different ways to loop over a dictionary. You can use
.items(), .keys(), .values() to loop over the key-value pairs, just the keys, or just the val-

5/11

MATH 580A: Graduate Computing Seminar

1 key = "K"
2 dictionary = {
3 20: "V",
4 key: {
5 "string_key": "string_value",
6 },
7 }
8 print("Initial dictionary:", dictionary)
9 print("dictionary[key]:", dictionary[key])

10 print("Dictionary size:", len(dictionary))
11

12 dictionary["another_key"] = [1,2,3]
13 dictionary[20] = "CHANGED VALUE"
14 print("Modified dictionary:", dictionary)
15

16 del dictionary[20]
17 print("Dictionary after deletion:", dictionary)
18

19 graph = {
20 "A": ["B", "C"],
21 "B": ["C", "D"],
22 "C": [],
23 "D": ["A"],
24 }
25

26 print("Graph key-value pairs")
27 for key, value in graph.items():
28 print(key, value)
29

30 print("Graph keys")
31 for key in graph.keys():
32 print(key)
33

34 print("Graph values")
35 for value in graph.values():
36 print(value)

Listing 4: Basic Dictionary Usage.

A B

C D

Figure 1: Graph Depicted in Listing 4

6/11

MATH 580A: Graduate Computing Seminar

ues respectively. These functions return something called view objects and if you want an ac-
tual list of the key-value pairs, keys, or values, you can call list() on them. For example,
list(graph.keys()) would return the list ["A", "B", "C", "D"].

These last few lines of code highlight one useful application of dictionaries. In general, they’re
useful for storing a collection of data associated with some set of keys, but in particular, they’re
quite useful for representing directed graphs where the keys are source nodes and values are
lists of target nodes of edges. We will discuss graphs and graph algorithms in more detail next
week, but let us examine one more simple example of using dictionaries to represent graphs.

Listing 5 demonstrates a few simple operations on directed graphs, namely computing a list
of the sink and source nodes respectively in a graph. An intermediary helper function we define
is invert() which takes a directed graph and returns a new directed graph with all the edges
reversed. This then makes writing sources(<graph>) very easy. It simply returns the the sinks
in the inverted graph.

In this example, we are representing directed graphs in the same manner as before. Let us
first look at how we implement invert(<graph>). We initialize a new dictionary for the return
value and set up key-value pairs for each node in the graph. All the values in the graph are
initially empty lists, representing an empty graph with no edges. We then iterate over every key-
value pair in the original graph. The ts variable in line 5 holds the endpoint of every directed
edge starting at s. We iterate over these end nodes and appending s to ret[t] inserts an edge in
the opposite direction.

Next, let us take a look at how sinks(<graph>) is implemented. Here, we simply iterate
over all nodes in the graph and append those without outbound edges. This is easy to check in
our representation of the graph, since len(graph[node]) is precisely the number of outbound
edges. Observe that the number of inbound edges is not as easy to derive since our representation
is asymmetrical. We would have to loop over all the values in each key-value pair in order to
compute the number of inbound edges for a given node.

Rather than writing a lengthy sources(<graph>) function, we’ve written a helper function
invert(<graph>) that may also prove to be useful in its own right. This allowed us to write
sources(<graph>) simply as a composition of two functions. This illustrates a relatively subtle
principle in writing code. Often, judiciously defining and implementing certain “building block”
functions will allow you to write other more complicated functions in a simple manner. There
isn’t really a hard and fast rule of how to decompose your code into separate functions, but if
you notice yourself repeating the same type of computation multiple times, that might be a good
candidate for putting into a function by itself.

Do exercises 4 and exercise 5, time permitting. Exercise 4 is about checking whether two
strings are anagrams of each other and incorporates both strings and dictionaries. Exercise 5
is about computing the transitive closure of a partially ordered set, but uses the same directed
graph representation we’ve discussed.

4 Under the Hood: Numbers and Dictionaries

We will switch gears for a bit to talk about some details of how things in Python work under the
hood. Integer and non-integer numbers on computers are generally represented in two different
ways. Integer numbers at the lowest level are represented as a series of on and off values or as 0’s
and 1’s. This type of representation is the binary representation of a number and writing a number

7/11

MATH 580A: Graduate Computing Seminar

1 def invert(graph):
2 ret = {}
3 for node in graph.keys():
4 ret[node] = []
5 for s, ts in graph.items():
6 for t in ts:
7 ret[t].append(s)
8 return ret
9

10 def sinks(graph):
11 ret = []
12 for node in graph.keys():
13 if len(graph[node]) == 0:
14 ret.append(node)
15 return ret
16

17 def sources(graph):
18 return sinks(invert(graph))
19

20 example = {
21 "A": ["B", "C", "D"],
22 "B": ["E"],
23 "C": ["F"],
24 "D": ["G"],
25 "E": ["H"],
26 "F": ["H", "I"],
27 "G": ["I"],
28 "H": [],
29 "I": [],
30 }
31 print("Graph:", example)
32 print("Inverted graph:", invert(example))
33 print("Sinks:", sinks(example))
34 print("Sources:", sources(example))

Listing 5: Simple Directed Graph Example.

in binary is expressing it in base 2 or equivalently as a sum of powers of 2.
An example is 84 = 1 · 64 + 0 · 32 + 1 · 16 + 0 · 8 + 1 · 4 + 0 · 2 + 0 · 1. In binary, we then write

85 as 10101002, where the subscript 2 tells us that the number is to be interpreted as a binary
string. To compute the binary representation of a number, you can greedily keep subtracting off
the largest power of 2 possible until you reach 0. Most programming languages typically use
integers of a fixed bit-width such as 32 or 64 which is to say that each integer corresponds to a
binary string of length 32 or 64, padded with 0’s to the left if necessary. Fun fact: when you hear a
CPU referred to as 32-bit or 64-bit, it is about the how many bits (short for binary digits) are used
to represent a standard integer at the CPU level. Python is a bit unique among programming

8/11

MATH 580A: Graduate Computing Seminar

languages in that handles arbitrarily large integer numbers. They are still represented in as
binary strings but there is no cap of 264 or 232.

Non-integral numbers are also represented as 0’s and 1’s but follow a different sort of rep-
resentation. We won’t get into the details, but the most common type of representation of non-
integral numbers is called floating-point arithmetic and non-integral numbers are called floats.
There is a fixed amount of precision (typically 53 bits worth) and so you will notice precision
errors when working with non-integral numbers. Python floats also are subject to the same kind
of inaccuracy; in our applications we don’t need to worry about precision issues but it’s worth
being aware of as you might sometimes see output from computations that aren’t exactly what
you expect but usually only differ by very small amounts. Numerical issues are one reason why
computer algebra systems will use more memory in order to represent numbers accurately and
compute the desired number of precision when required to do so. One computer algebra system
is called sage and it builds on top of Python. In the second half of the course, we may cover
using Sage since a lot of mathematical objects are implemented and provided by it.

Finally, let us delve into how dictionaries are implemented. Although they are a more com-
plicated data structure, they can be interpreted in terms of lists. The main differences with lists
is the method of indexing and the performance of using dictionaries. We have already seen the
difference in indexing. In terms of performance, lists can take O(n) time to insert and remove
elements where n is the length of the list. For example, when adding or removing an element
from the beginning a list, all subsequent elements will need to be shifted. A dictionary on the
other hand, takes on average O(1) or constant time to add or remove elements.

The simplest way you might think of implementing a dictionary is to have a list of all the
key-value pairs (each pair is itself a list of 2 elements). However, if you want to find an element
given a key or remove an element, you have to potentially look through the entire list each time
checking each key. To be more efficient, dictionaries are actually implemented as a fixed size
list. Each entry in the list is a “bucket” to hold key-value pairs for the dictionary. Ideally, each
bucket would only hold one pair so that you don’t have to check all the pairs in the bucket, so
this depends on how we assign a key-value pair to a bucket. It should only depend on the key
and output a number between 0 and the length of the list minus 1. Such an assignment is given
by a hash function which takes a key and spits out a number. The hash function should be fairly
uniform in that if I have different keys, the likelihood of them getting the same hash is low. This
way, buckets generally won’t have more than a single key-value pair.

Thus, the improved implementation of a dictionary now looks like: assign key-value pairs to
a bucket based on a hash of its key. When a bucket does end up having multiple key-value pairs
assigned to it, loop through them to find the correct pair to return or delete. This works well
assuming the hash function is not overly expensive to compute and the likelihood of two key-
value pairs getting put in the same bucket is low (i.e. the hash function is uniform). Fig. 2 depicts
how a dictionary is implemented as a list of buckets, including a scenario where 2 key-value pairs
have the same bucket.

However, there is still an issue if the dictionary gets too big! If there are more key-value pairs
than the initial fixed size of the list we’re using, then any additional pairs added are guaranteed
to collide with another pair’s bucket. The load factor of a dictionary is a ratio of the number of
key-value pairs stored to the size of the backing list. As a rule of thumb, if the load factor exceeds
0.75 or so, implementations will create a new list of usually double the size and rehash and store
the current key-value pairs in the larger list.

9/11

MATH 580A: Graduate Computing Seminar

Figure 2: Dictionary Implementation as a List of Buckets

A sample implementation of dictionaries using the ideas we’ve discussed can be seen in List-
ing 6. The actual implementation used in Python is quite complicated and takes up over 5000
lines of code! You can see the code on GitHub However, the general ideas are the same and a lot
of the additional complexity comes from providing additional built-in dictionary functionality,
handling various edges cases, and iterating through buckets with multiple key-value pairs dif-
ferently. Look for the USABLE_FRACTION value to see that the actual load factor used in practice is
set to 2

3 .

10/11

https://github.com/python/cpython/blob/main/Objects/dictobject.c

MATH 580A: Graduate Computing Seminar

1 LOAD_FACTOR = 0.75
2 ALPHABET = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
3

4 def new_dictionary(size=4):
5 store = []
6 for i in range(size):
7 store.append([])
8 return [store, 0]
9

10 def hash(modulo, string):
11 ret = 0
12 for i in range(len(string)):
13 ret += ALPHABET.find(string[i]) * (26 ** i)
14 return ret % modulo
15

16 def get(dictionary, key):
17 store, _ = dictionary
18 h = hash(len(store), key)
19 for k, v in store[h]:
20 if k == key:
21 return v
22

23 def add(dictionary, key, value):
24 store, _ = dictionary
25 h = hash(len(store), key)
26 store[h].append([key, value])
27 dictionary[1] += 1
28

29 if dictionary[1] / len(store) > LOAD_FACTOR:
30 resize(dictionary)
31

32 def resize(dictionary):
33 print("Resizing...")
34 store, num_entries = dictionary
35 store_ = []
36 for i in range(2*num_entries):
37 store_.append([])
38 for i in range(len(store)):
39 for key, value in store[i]:
40 h = hash(len(store), key)
41 store_[h].append([key, value])
42 dictionary[0] = store_

Listing 6: Sample Dictionary Implementation.

11/11

	Recap and Introduction
	Strings
	Dictionaries
	Under the Hood: Numbers and Dictionaries

