
MATH 580A 6/21 Notes

1 What is the Graduate Computing Seminar?

This is an experimental summer course that we’re running for the first time (and hopefully not
the last!). The goal will be to learn fundamental programming concepts, be comfortable working
in Python, and then do a whirlwind tour of some areas of mathematics that benefit from the
inclusion of programming as a tool in our toolbox.

We’ll be meeting twice a week in C-38 on Tuesdays and Thursdays from 11:00 AM - 12:30 PM.
There will be assignments each week, alternating between a set of multiple small programming
problems and a single larger project. Grading will be credit / no credit and essentially based on
whether or not you turn in something for the assignments; don’t stress out about the grading, but
the assignments should be fun! Different people will have different definitions of fun of course,
but I hope that the assignments touch on a lot of topics and feel rewarding to implement.

2 Python Setup

We will be programming in Python 3.8 on https://repl.it which will handle all the environ-
ment set up for you and ensure that your code is backed up online. Python is a widely used
modern programming language. It is interpreted as opposed to compiled, which means that the
code doesn’t get turned into machine code (i.e. 0’s and 1’s or assembly code). Instead, there
is a Python interpreter, which is a separate program that reads your Python code, parses it, and
executes the code you write. In general, interpreted programming languages tend to run slower
since the interpreter needs to spend time parsing and then executing the code on your behalf. In
order to speed up the actual running of your code, some projects on repl.it will run your code
using PyPy3 which does something called JIT (just in time) compilation to speed up how it runs
your code.

You may also wish to set up Python on your own computer for any projects you do or just
to have a sense of how the installation process goes. For that, take a look at the official Python
website instructions on https://wiki.python.org/moin/BeginnersGuide/Download.

Python itself comes with a rich standard library which is a suite of code that adds a lot of
functionality. For example, the standard library in Python allows you to do things ranging from
mathematical operations such as computing the greatest common divisor of a set of numbers or
iterating over the Cartesian product of two sets to more pragmatic things such as reading CSV
(comma separated value) files or drawing graphics using the Turtle library. More pre-written
code is bundled in packages and is available from something called the Python Package Index
(PyPI).
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3 Variables and Flow Control

A program is essentially an ordered set of instructions for the computer to execute. For example,
an instruction might be to add two numbers together and return the result. Another instruction
might be to find the first occurrence of a 0 in an n × n matrix.

Intermediate results get stored in variables which you can think of as locations in a large
warehouse (i.e. the computer’s memory or RAM) and you can store objects at those locations.
Variables are not intrinsically tied to the values stored in them and you can reassign their values.

Instructions you can tell Python to run generally consist of two types. One are operators which
are symbols like +, -, *, / that handle very fundamental operations like arithmetic. The other,
more general category of instructions are called functions. A function can take a certain number of
arguments and compute a result based on all of them. Traditionally, the first program introduced
in books and such is usually called “Hello World!” and just consists of outputting the phrase
“Hello World!” onto the screen. We’re going to do just a little more interesting, namely output
the (approximate) solutions to the quadratic equation πx2 + x − e = 0. This program is shown
in Listing 1.

1 import math
2

3 x = (-1 + math.sqrt(1 + 4*math.pi*math.e))/(2*math.pi)
4 print("Solution 1:", x)
5

6 # Note that you can use ** for exponentiation as well.
7 x = (-1 - (1 + 4*math.pi*math.e)**0.5)/(2*math.pi)
8 print("Solution 2:", x)

Listing 1: Solutions to πx2 + x − e = 0.

Let us break down this example. Line 1 has an import statement. A lot of functionality in
Python is in its standard library and in order to make use of them, you need to import them in
your file to load them for use. In this example, we are importing the math library which provides
access to the square root sqrt() function and the mathematical constants pi and e. Lines 3 and 7
are the main instructions for calculating the solutions to the quadratic equation. We use a mix of
operators for addition, subtraction, and division as well as calling the function math.sqrt(). The
right hand side of the equation is one big expression that Python evaluates and stores the result
of in the variable x. In line 7, we demonstrate the built-in Python operator ** for exponentiation
instead of math.sqrt(). Notice that in order to assign a value to a variable we have to write the
variable name on the left hand side and the value we’re assigning to it on the right hand side.
On line 6, there is a comment. Any line prefixed with a # is a comment and won’t be interpreted
as code. It is a way to add some documentation and explanations in your program. Finally,
lines 4 and 8 called the built-in print() function that displays the text Solution 1: or Solution
2: followed by the value in the variable x. Text inside quotation marks are called strings and
represent the literal text itself as opposed to say variable names.

Let us take a look at another example program, one that attempts a crude approximation to
π using the identity π = 4 · arctan(1) and the Taylor series expansion for arctan(x) = x − x3

3 +
x5

5 − x7

7 + · · · . This program is in Listing 2.
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1 pi = 4
2 pi = pi - 4/3
3 pi = pi + 4/5
4 pi -= 4/7
5 pi += 4/9
6

7 print(pi)

Listing 2: Approximating π.

There are a few things of note here. First is that even though there is a pi variable in the
math module, we can define our own pi variable. In additional, our variable names don’t have to
be a single character. They can be any combination of letters, numbers, and underscores. Next,
observe that pi appears on both sides of the = in line 2. The way variable assignment works is
you use the current value of pi to evaluate the right hand side and then assign that value to the
variable on the left hand side. So in line 2, the right hand side is equivalent to 4 - 4/3 since pi
has value 4 at the point in the program. Similarly, the right hand side in line 3 is equivalent to 4 -
4/3 + 4/5. Lines 4 and 5 introduce some shorthand operator. Namely, pi -= 4/7 is equivalent
to pi = pi - 4/7. Similarly, pi += 4/9 is equivalent to pi = pi + 4/9.

Our programs have shown that we can use programs to help us do computations, but so far
they seem like slightly fancier calculators. We can do a lot more by learning to define our own
functions and using some flow control tools such as if-else statements and for loops. We will
first define our own general function for solving quadratic equations in Listing 3.

1 import math
2

3 def solve_quadratic(a, b, c):
4 if a == 0:
5 if b == 0:
6 return
7 else:
8 return -c/b
9 else:

10 discriminant = (b**2 - 4*a*c)**0.5
11 return (-b + discriminant)/(2*a), (-b-discriminant)/(2*a)
12

13 print(solve_quadratic(1,2,1))
14 print(solve_quadratic(1,0,1))
15 print(solve_quadratic(math.pi, 1, -math.e))
16 print(solve_quadratic(0,5,4))
17 print(solve_quadratic(0,0,4))

Listing 3: A General Quadratic Equation Solving Function.

Lines 3 through 11 are how we define a custom function called solve_quadratic(). This
function has 3 arguments which are the input values it takes. These three arguments will be
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stored in variables called a, b, and c. Next, lines 4 through 11 are called the function body and
describe what our function does.

Before discussing how the function body is written, let us take a small detour to talk about
whitespace in Python. In Python, the whitespace in your code matters, and the function body
has to be indented the same amount throughout. If you indent the else: in line 9 a bit further in
or don’t indent it, then Python will complain. If I try indenting line 9 by two extra spaces, I’ll see
the error in Fig. 1. The error message is SyntaxError: invalid syntax which unfortunately
isn’t that helpful in this case. However, it provides the line number which is quite helpful with
debugging.

Figure 1: Example Python Error Message.

Returning to the function body, we have 3 cases to handle for a quadratic equation of the
form ax2 + bx + c = 0, depending on if a = b = 0, a = 0 but b ̸= 0, and a ̸= 0. To handle
these three cases, in Python we use if-else statements. The general syntax is if <condition>:
<statements> followed by else: <statements>. In line 4, we check if the variable a is 0. Notice
that to compare we use == as opposed to =, since in Python = is used for assigning values to a
variable. Lines 5 through 8 are the statements that get executed if a is 0 and lines 10 and 11 are
the statements that get executed if a is not 0. In lines 5 through 8, we further distinguish between
the cases where b is 0 or not. Finally, lines 6, 8, and 11 have a keyword return which ends and
returns the result of the function computation. In Python you can return multiple values (or
none). Line 6 returns no values in the case where a = b = 0 and the result gets printed out as the
special Python value None. Line 7 returns one result in the case of a linear equation, and line 11
returns both solutions in the case of a quadratic equation. Python also has built-in support for
complex numbers, though it uses the notation j instead of i for imaginary numbers. Thus, you
would write 1-1j for 1 − 1i in Python.

Lines 13 through 17 show how we call our new function solve_quadratic(). Defining func-
tions is very powerful since it lets us abstract away logic into functions. Each time we call our
function in lines 13 through 17, we are actually executing lines 1 through 11, but with different
values of a, b, and c. If nothing else, it means we don’t have to repeat those lines five times with
different values.

We will now look at an improvement to Listing 2 for computing π. In that program, we only
approximated π using the first 5 terms of the Taylor expansion of arctan and had to manually
write out the terms we were adding and subtracting. We will use a for loop in Listing 4 to let us
easily compute π using the first 100 terms of the Taylor expansion.

Line 4 is the beginning of the for-loop. The general syntax is for <variable> in range(<length>):
<statements>. Here we chose to call our loop variable i and we loop a total of num_terms times.
The for-loop will execute the statements inside the loop body (line 5 in this example) repeatedly,
but the value of i will be different on each iteration of the loop. In this basic for-loop example,
the values of i will range from 0, 1, . . ., num_terms-1.
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1 num_terms = 100
2 pi = 0
3

4 for i in range(num_terms):
5 pi += 4 * (-1)**i / (2*i + 1)
6

7 print(pi)

Listing 4: Computing π Using A for Loop.

Like defining custom functions, this is allows us to run a large number of instructions in our
program without having to explicitly write out all the instructions. We could for example, copy
and paste line 5 one hundred times and replace the value of i appropriately. We would obtain
the same result but the code would be very long and tedious.

Work on exercise1.py, which involves filling in the function body for two functions. One is
the compute pi via a Monte Carlo approximation. The other is to compute use the trapezoidal
rule to integrate.

Work through any repl.it issues and solidify basic understanding of variables, functions, and
for loops.

4 Recursion and Lists

We’ve seen that we can call functions and define our own custom functions. We can in fact call
a function in its own function body and use this to recursively do computations. Listing 5 is
a recursive example of computing the Fibonacci numbers defined by F0 = F1 = 1 and Fn =

Fn−1 + Fn−2 for n ≥ 2.

1 def fibonacci(n):
2 if n == 0 or n == 1:
3 return 1
4 else:
5 return fibonacci(n-1) + fibonacci(n-2)
6

7 for i in range(10):
8 print(f"F_{i} = {fibonacci(i)}")

Listing 5: Computing the First 10 Fibonacci Numbers.

Lines 2 and 3 constitute the base cases F0 = F1 = 1 and line 5 is the recurrence Fn = Fn−1 +

Fn−2. For example, when fibonacci(3) is called, it needs to execute 3 lines of code (lines 2, 4, 5)
and then before returning the value, it needs to compute fibonacci(2) and fibonacci(1). The
latter takes 2 lines of code (lines 2 and 3) while the former takes another 3 lines of code followed
by computing fibonacci(1) and fibonacci(0). Notice that fibonacci(1) had to be computed
twice in this example. In general, this implementation of computing Fn is quite slow since we
may have to compute fibonacci(i) many times over for different values of i.
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Here we also introduced f-strings on line 11, a more convenient way to output text. F-strings
require prepending f in front of the string. Inside an f-string the contents of curly braces are
not printed out verbatim, but instead evaluated as code and the result of that evaluation is
printed out. Thus on line 11, f"F_i = fibonacci(i)" evaluates the value of i and the value
fibonacci(i) and prints that.

Listing 6 shows a slight modification that saves the previous values computed to avoid having
to recompute them. This technique of speeding up code is known as memoization. The memo
variable is a data structure called a dictionary in Python (often called a map in other languages
such as C++ and Java) that can store values based on other values called keys. We will discuss
this in more depth next time, but you can think of it as a single variable that acts as a box, holding
many values. Here we use it to store the previous Fibonacci numbers we’ve calculated so far. Try
modifying Listing 5 to compute the first 100 Fibonacci numbers and observe how it slows down
past F25 or so compared to the memoized version.

1 memo = {}
2 def fibonacci(n):
3 if n not in memo:
4 if n == 0 or n == 1:
5 memo[n] = 1
6 else:
7 memo[n] = fibonacci(n-1) + fibonacci(n-2)
8 return memo[n]
9

10 for i in range(100):
11 print(f"F_{i} = {fibonacci(i)}")

Listing 6: Using Memoization in Computing the First 100 Fibonacci Numbers.

We will cover one more example of using recursion by solving the “Towers of Hanoi” game.
In this game, there are 3 pegs and n disks of radii 1 through n. Initially, the n disks are stacked
in order of decreasing radii on peg 1. The goal is to move all n disks to peg 3. At each step, you
can move the topmost disk of a peg to another peg, but you cannot place a larger disk on top of
a smaller disk. Fig. 2 illustrates a solution for when n = 3.

There is a simple recursive solution for the Towers of Hanoi. We will let peg 1 be called the
source peg, let peg 3 be called the target peg, and let peg 2 be called the spare peg. If n = 1, then
we move the sole disk from the source to the target and are done. Otherwise, we recursively
move the first n − 1 disks from the source peg to the spare peg, using the target peg as a new
spare peg in this recursion. Then we move the largest disk from the source to the target. Finally,
we recursively move the first n − 1 disks from the spare peg to the target peg, using the source
peg now as a spare peg in the recursion.

Listing 7 is an implementation of this recursive solution. Ignore lines 16 through 26 for
now. Those lines of code print out the disks and pegs in a nice manner. We define a function
solve_towers_of_hanoi() that takes 5 arguments. The first argument pegs is a data structure
called a list, which as the name suggests, is a list of values. The values have a specific order to
them and there be any number of values in a list. We will also discuss this data structure in more
detail next lecture.
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Figure 2: Solving the Towers of Hanoi for n = 3.

Here, pegs is in fact a list of 3 lists. That is, there are 3 values in pegs and each value is itself
a list. The sublists contain the numbers 1 through n, representing the disk radii. The next three
arguments specify which peg numbers are the source, spare, and target pegs respectively. The
first time the function gets called on line 32, these values are 0, 1, and 2. In Python, lists are what
are called 0-indexed, so the first value in the list is the 0th one, the second value is the 1st one,
and so on. Finally, depth is the value of n used at that particular recursion step. Notice that the
recursive calls on lines 10 and 14 call solve_towers_of_hanoi() with depth-1.

Let us briefly analyze the recursive implementation now. Lines 5 to 8 are the base case
where n = 1. In this case, we remove the top most disk from the source peg and assign
it to x by calling x = source_peg.pop(0) and moving it on top of the target peg by calling
target_peg.insert(0,x). Some data structures or values in Python have functions attached to
them and calling those functions operates on that specific value. Functions attached to a spe-
cific value or object are called methods, and the general syntax for calling a method in Python
is <object>.<function>(<arguments>). Here, source_peg and target_peg are lists and we are
calling their pop(<position>) and insert(<position>, <value>) methods which remove an
element and insert an element into the list respectively.

Lines 10 through 14 are similar, except they involve the recursive steps mentioned earlier.
Observe the order in which we pass in source, target and spare when making the recursive
calls.

We will discuss list comprehensions next time and be able to understand how print_hanoi()
works. For the time being, you can observe lines 23 through 26 and see how we make use of lists,
for-loops, and f-strings.

Work through exercise 2, computing the nth prime in a memoized fashion and concatenating
two lists.
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1 def solve_towers_of_hanoi(pegs, source, spare, target, depth):
2 source_peg = pegs[source]
3 target_peg = pegs[target]
4

5 if depth == 1:
6 x = source_peg.pop(0)
7 target_peg.insert(0, x)
8 print_hanoi(pegs)
9 else:

10 solve_towers_of_hanoi(pegs, source, target, spare, depth-1)
11 x = source_peg.pop(0)
12 target_peg.insert(0, x)
13 print_hanoi(pegs)
14 solve_towers_of_hanoi(pegs, spare, source, target, depth-1)
15

16 def print_hanoi(pegs):
17 # Compute height as the total number of disks
18 height = sum([len(p) for p in pegs])
19

20 # Pad shorter pegs with | before printing.
21 padded_pegs = [["|"] * (height - len(p)) + p for p in pegs]
22

23 l, c, r = padded_pegs[0], padded_pegs[1], padded_pegs[2]
24 for i in range(height):
25 print(f"{l[i]} {c[i]} {r[i]}")
26 print("-----\n")
27

28 depth = 4
29 pegs = [list(range(depth)), [], []]
30

31 print_hanoi(pegs)
32 solve_towers_of_hanoi(pegs, 0, 1, 2, depth)

Listing 7: Solving the Towers of Hanoi Game.
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